/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2016 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
* Copyright 2014 OmniTI Computer Consulting, Inc. All rights reserved.
* Copyright (c) 2014, Tegile Systems Inc. All rights reserved.
*/
/*
* Copyright (c) 2000 to 2010, LSI Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms of all code within
* this file that is exclusively owned by LSI, with or without
* modification, is permitted provided that, in addition to the CDDL 1.0
* License requirements, the following conditions are met:
*
* Neither the name of the author nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
/*
* mptsas - This is a driver based on LSI Logic's MPT2.0/2.5 interface.
*
*/
#if defined(lint) || defined(DEBUG)
#define MPTSAS_DEBUG
#endif
/*
* standard header files.
*/
#include <sys/note.h>
#include <sys/scsi/scsi.h>
#include <sys/pci.h>
#include <sys/file.h>
#include <sys/policy.h>
#include <sys/model.h>
#include <sys/sysevent.h>
#include <sys/sysevent/eventdefs.h>
#include <sys/sysevent/dr.h>
#include <sys/sata/sata_defs.h>
#include <sys/sata/sata_hba.h>
#include <sys/scsi/generic/sas.h>
#include <sys/scsi/impl/scsi_sas.h>
#pragma pack(1)
#include <sys/scsi/adapters/mpt_sas/mpi/mpi2_type.h>
#include <sys/scsi/adapters/mpt_sas/mpi/mpi2.h>
#include <sys/scsi/adapters/mpt_sas/mpi/mpi2_cnfg.h>
#include <sys/scsi/adapters/mpt_sas/mpi/mpi2_init.h>
#include <sys/scsi/adapters/mpt_sas/mpi/mpi2_ioc.h>
#include <sys/scsi/adapters/mpt_sas/mpi/mpi2_sas.h>
#include <sys/scsi/adapters/mpt_sas/mpi/mpi2_tool.h>
#include <sys/scsi/adapters/mpt_sas/mpi/mpi2_raid.h>
#pragma pack()
/*
* private header files.
*
*/
#include <sys/scsi/impl/scsi_reset_notify.h>
#include <sys/scsi/adapters/mpt_sas/mptsas_var.h>
#include <sys/scsi/adapters/mpt_sas/mptsas_ioctl.h>
#include <sys/scsi/adapters/mpt_sas/mptsas_smhba.h>
#include <sys/scsi/adapters/mpt_sas/mptsas_hash.h>
#include <sys/raidioctl.h>
#include <sys/fs/dv_node.h> /* devfs_clean */
/*
* FMA header files
*/
#include <sys/ddifm.h>
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>
#include <sys/fm/io/ddi.h>
/*
* autoconfiguration data and routines.
*/
static int mptsas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int mptsas_detach(dev_info_t *devi, ddi_detach_cmd_t cmd);
static int mptsas_power(dev_info_t *dip, int component, int level);
/*
* cb_ops function
*/
static int mptsas_ioctl(dev_t dev, int cmd, intptr_t data, int mode,
cred_t *credp, int *rval);
#ifdef __sparc
static int mptsas_reset(dev_info_t *devi, ddi_reset_cmd_t cmd);
#else /* __sparc */
static int mptsas_quiesce(dev_info_t *devi);
#endif /* __sparc */
/*
* Resource initilaization for hardware
*/
static void mptsas_setup_cmd_reg(mptsas_t *mpt);
static void mptsas_disable_bus_master(mptsas_t *mpt);
static void mptsas_hba_fini(mptsas_t *mpt);
static void mptsas_cfg_fini(mptsas_t *mptsas_blkp);
static int mptsas_hba_setup(mptsas_t *mpt);
static void mptsas_hba_teardown(mptsas_t *mpt);
static int mptsas_config_space_init(mptsas_t *mpt);
static void mptsas_config_space_fini(mptsas_t *mpt);
static void mptsas_iport_register(mptsas_t *mpt);
static int mptsas_smp_setup(mptsas_t *mpt);
static void mptsas_smp_teardown(mptsas_t *mpt);
static int mptsas_cache_create(mptsas_t *mpt);
static void mptsas_cache_destroy(mptsas_t *mpt);
static int mptsas_alloc_request_frames(mptsas_t *mpt);
static int mptsas_alloc_sense_bufs(mptsas_t *mpt);
static int mptsas_alloc_reply_frames(mptsas_t *mpt);
static int mptsas_alloc_free_queue(mptsas_t *mpt);
static int mptsas_alloc_post_queue(mptsas_t *mpt);
static void mptsas_alloc_reply_args(mptsas_t *mpt);
static int mptsas_alloc_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd);
static void mptsas_free_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd);
static int mptsas_init_chip(mptsas_t *mpt, int first_time);
/*
* SCSA function prototypes
*/
static int mptsas_scsi_start(struct scsi_address *ap, struct scsi_pkt *pkt);
static int mptsas_scsi_reset(struct scsi_address *ap, int level);
static int mptsas_scsi_abort(struct scsi_address *ap, struct scsi_pkt *pkt);
static int mptsas_scsi_getcap(struct scsi_address *ap, char *cap, int tgtonly);
static int mptsas_scsi_setcap(struct scsi_address *ap, char *cap, int value,
int tgtonly);
static void mptsas_scsi_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt);
static struct scsi_pkt *mptsas_scsi_init_pkt(struct scsi_address *ap,
struct scsi_pkt *pkt, struct buf *bp, int cmdlen, int statuslen,
int tgtlen, int flags, int (*callback)(), caddr_t arg);
static void mptsas_scsi_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt);
static void mptsas_scsi_destroy_pkt(struct scsi_address *ap,
struct scsi_pkt *pkt);
static int mptsas_scsi_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip,
scsi_hba_tran_t *hba_tran, struct scsi_device *sd);
static void mptsas_scsi_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip,
scsi_hba_tran_t *hba_tran, struct scsi_device *sd);
static int mptsas_scsi_reset_notify(struct scsi_address *ap, int flag,
void (*callback)(caddr_t), caddr_t arg);
static int mptsas_get_name(struct scsi_device *sd, char *name, int len);
static int mptsas_get_bus_addr(struct scsi_device *sd, char *name, int len);
static int mptsas_scsi_quiesce(dev_info_t *dip);
static int mptsas_scsi_unquiesce(dev_info_t *dip);
static int mptsas_bus_config(dev_info_t *pdip, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp);
/*
* SMP functions
*/
static int mptsas_smp_start(struct smp_pkt *smp_pkt);
/*
* internal function prototypes.
*/
static void mptsas_list_add(mptsas_t *mpt);
static void mptsas_list_del(mptsas_t *mpt);
static int mptsas_quiesce_bus(mptsas_t *mpt);
static int mptsas_unquiesce_bus(mptsas_t *mpt);
static int mptsas_alloc_handshake_msg(mptsas_t *mpt, size_t alloc_size);
static void mptsas_free_handshake_msg(mptsas_t *mpt);
static void mptsas_ncmds_checkdrain(void *arg);
static int mptsas_prepare_pkt(mptsas_cmd_t *cmd);
static int mptsas_accept_pkt(mptsas_t *mpt, mptsas_cmd_t *sp);
static int mptsas_accept_txwq_and_pkt(mptsas_t *mpt, mptsas_cmd_t *sp);
static void mptsas_accept_tx_waitq(mptsas_t *mpt);
static int mptsas_do_detach(dev_info_t *dev);
static int mptsas_do_scsi_reset(mptsas_t *mpt, uint16_t devhdl);
static int mptsas_do_scsi_abort(mptsas_t *mpt, int target, int lun,
struct scsi_pkt *pkt);
static int mptsas_scsi_capchk(char *cap, int tgtonly, int *cidxp);
static void mptsas_handle_qfull(mptsas_t *mpt, mptsas_cmd_t *cmd);
static void mptsas_handle_event(void *args);
static int mptsas_handle_event_sync(void *args);
static void mptsas_handle_dr(void *args);
static void mptsas_handle_topo_change(mptsas_topo_change_list_t *topo_node,
dev_info_t *pdip);
static void mptsas_restart_cmd(void *);
static void mptsas_flush_hba(mptsas_t *mpt);
static void mptsas_flush_target(mptsas_t *mpt, ushort_t target, int lun,
uint8_t tasktype);
static void mptsas_set_pkt_reason(mptsas_t *mpt, mptsas_cmd_t *cmd,
uchar_t reason, uint_t stat);
static uint_t mptsas_intr(caddr_t arg1, caddr_t arg2);
static void mptsas_process_intr(mptsas_t *mpt,
pMpi2ReplyDescriptorsUnion_t reply_desc_union);
static void mptsas_handle_scsi_io_success(mptsas_t *mpt,
pMpi2ReplyDescriptorsUnion_t reply_desc);
static void mptsas_handle_address_reply(mptsas_t *mpt,
pMpi2ReplyDescriptorsUnion_t reply_desc);
static int mptsas_wait_intr(mptsas_t *mpt, int polltime);
static void mptsas_sge_setup(mptsas_t *mpt, mptsas_cmd_t *cmd,
uint32_t *control, pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl);
static void mptsas_watch(void *arg);
static void mptsas_watchsubr(mptsas_t *mpt);
static void mptsas_cmd_timeout(mptsas_t *mpt, mptsas_target_t *ptgt);
static void mptsas_start_passthru(mptsas_t *mpt, mptsas_cmd_t *cmd);
static int mptsas_do_passthru(mptsas_t *mpt, uint8_t *request, uint8_t *reply,
uint8_t *data, uint32_t request_size, uint32_t reply_size,
uint32_t data_size, uint32_t direction, uint8_t *dataout,
uint32_t dataout_size, short timeout, int mode);
static int mptsas_free_devhdl(mptsas_t *mpt, uint16_t devhdl);
static uint8_t mptsas_get_fw_diag_buffer_number(mptsas_t *mpt,
uint32_t unique_id);
static void mptsas_start_diag(mptsas_t *mpt, mptsas_cmd_t *cmd);
static int mptsas_post_fw_diag_buffer(mptsas_t *mpt,
mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
static int mptsas_release_fw_diag_buffer(mptsas_t *mpt,
mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
uint32_t diag_type);
static int mptsas_diag_register(mptsas_t *mpt,
mptsas_fw_diag_register_t *diag_register, uint32_t *return_code);
static int mptsas_diag_unregister(mptsas_t *mpt,
mptsas_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
static int mptsas_diag_query(mptsas_t *mpt, mptsas_fw_diag_query_t *diag_query,
uint32_t *return_code);
static int mptsas_diag_read_buffer(mptsas_t *mpt,
mptsas_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
uint32_t *return_code, int ioctl_mode);
static int mptsas_diag_release(mptsas_t *mpt,
mptsas_fw_diag_release_t *diag_release, uint32_t *return_code);
static int mptsas_do_diag_action(mptsas_t *mpt, uint32_t action,
uint8_t *diag_action, uint32_t length, uint32_t *return_code,
int ioctl_mode);
static int mptsas_diag_action(mptsas_t *mpt, mptsas_diag_action_t *data,
int mode);
static int mptsas_pkt_alloc_extern(mptsas_t *mpt, mptsas_cmd_t *cmd,
int cmdlen, int tgtlen, int statuslen, int kf);
static void mptsas_pkt_destroy_extern(mptsas_t *mpt, mptsas_cmd_t *cmd);
static int mptsas_kmem_cache_constructor(void *buf, void *cdrarg, int kmflags);
static void mptsas_kmem_cache_destructor(void *buf, void *cdrarg);
static int mptsas_cache_frames_constructor(void *buf, void *cdrarg,
int kmflags);
static void mptsas_cache_frames_destructor(void *buf, void *cdrarg);
static void mptsas_check_scsi_io_error(mptsas_t *mpt, pMpi2SCSIIOReply_t reply,
mptsas_cmd_t *cmd);
static void mptsas_check_task_mgt(mptsas_t *mpt,
pMpi2SCSIManagementReply_t reply, mptsas_cmd_t *cmd);
static int mptsas_send_scsi_cmd(mptsas_t *mpt, struct scsi_address *ap,
mptsas_target_t *ptgt, uchar_t *cdb, int cdblen, struct buf *data_bp,
int *resid);
static int mptsas_alloc_active_slots(mptsas_t *mpt, int flag);
static void mptsas_free_active_slots(mptsas_t *mpt);
static int mptsas_start_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd);
static void mptsas_restart_hba(mptsas_t *mpt);
static void mptsas_restart_waitq(mptsas_t *mpt);
static void mptsas_deliver_doneq_thread(mptsas_t *mpt);
static void mptsas_doneq_add(mptsas_t *mpt, mptsas_cmd_t *cmd);
static void mptsas_doneq_mv(mptsas_t *mpt, uint64_t t);
static mptsas_cmd_t *mptsas_doneq_thread_rm(mptsas_t *mpt, uint64_t t);
static void mptsas_doneq_empty(mptsas_t *mpt);
static void mptsas_doneq_thread(mptsas_doneq_thread_arg_t *arg);
static mptsas_cmd_t *mptsas_waitq_rm(mptsas_t *mpt);
static void mptsas_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd);
static mptsas_cmd_t *mptsas_tx_waitq_rm(mptsas_t *mpt);
static void mptsas_tx_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd);
static void mptsas_start_watch_reset_delay();
static void mptsas_setup_bus_reset_delay(mptsas_t *mpt);
static void mptsas_watch_reset_delay(void *arg);
static int mptsas_watch_reset_delay_subr(mptsas_t *mpt);
/*
* helper functions
*/
static void mptsas_dump_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd);
static dev_info_t *mptsas_find_child(dev_info_t *pdip, char *name);
static dev_info_t *mptsas_find_child_phy(dev_info_t *pdip, uint8_t phy);
static dev_info_t *mptsas_find_child_addr(dev_info_t *pdip, uint64_t sasaddr,
int lun);
static mdi_pathinfo_t *mptsas_find_path_addr(dev_info_t *pdip, uint64_t sasaddr,
int lun);
static mdi_pathinfo_t *mptsas_find_path_phy(dev_info_t *pdip, uint8_t phy);
static dev_info_t *mptsas_find_smp_child(dev_info_t *pdip, char *str_wwn);
static int mptsas_parse_address(char *name, uint64_t *wwid, uint8_t *phy,
int *lun);
static int mptsas_parse_smp_name(char *name, uint64_t *wwn);
static mptsas_target_t *mptsas_phy_to_tgt(mptsas_t *mpt,
mptsas_phymask_t phymask, uint8_t phy);
static mptsas_target_t *mptsas_wwid_to_ptgt(mptsas_t *mpt,
mptsas_phymask_t phymask, uint64_t wwid);
static mptsas_smp_t *mptsas_wwid_to_psmp(mptsas_t *mpt,
mptsas_phymask_t phymask, uint64_t wwid);
static int mptsas_inquiry(mptsas_t *mpt, mptsas_target_t *ptgt, int lun,
uchar_t page, unsigned char *buf, int len, int *rlen, uchar_t evpd);
static int mptsas_get_target_device_info(mptsas_t *mpt, uint32_t page_address,
uint16_t *handle, mptsas_target_t **pptgt);
static void mptsas_update_phymask(mptsas_t *mpt);
static int mptsas_send_sep(mptsas_t *mpt, mptsas_target_t *ptgt,
uint32_t *status, uint8_t cmd);
static dev_info_t *mptsas_get_dip_from_dev(dev_t dev,
mptsas_phymask_t *phymask);
static mptsas_target_t *mptsas_addr_to_ptgt(mptsas_t *mpt, char *addr,
mptsas_phymask_t phymask);
static int mptsas_flush_led_status(mptsas_t *mpt, mptsas_target_t *ptgt);
/*
* Enumeration / DR functions
*/
static void mptsas_config_all(dev_info_t *pdip);
static int mptsas_config_one_addr(dev_info_t *pdip, uint64_t sasaddr, int lun,
dev_info_t **lundip);
static int mptsas_config_one_phy(dev_info_t *pdip, uint8_t phy, int lun,
dev_info_t **lundip);
static int mptsas_config_target(dev_info_t *pdip, mptsas_target_t *ptgt);
static int mptsas_offline_target(dev_info_t *pdip, char *name);
static int mptsas_config_raid(dev_info_t *pdip, uint16_t target,
dev_info_t **dip);
static int mptsas_config_luns(dev_info_t *pdip, mptsas_target_t *ptgt);
static int mptsas_probe_lun(dev_info_t *pdip, int lun,
dev_info_t **dip, mptsas_target_t *ptgt);
static int mptsas_create_lun(dev_info_t *pdip, struct scsi_inquiry *sd_inq,
dev_info_t **dip, mptsas_target_t *ptgt, int lun);
static int mptsas_create_phys_lun(dev_info_t *pdip, struct scsi_inquiry *sd,
char *guid, dev_info_t **dip, mptsas_target_t *ptgt, int lun);
static int mptsas_create_virt_lun(dev_info_t *pdip, struct scsi_inquiry *sd,
char *guid, dev_info_t **dip, mdi_pathinfo_t **pip, mptsas_target_t *ptgt,
int lun);
static void mptsas_offline_missed_luns(dev_info_t *pdip,
uint16_t *repluns, int lun_cnt, mptsas_target_t *ptgt);
static int mptsas_offline_lun(dev_info_t *pdip, dev_info_t *rdip,
mdi_pathinfo_t *rpip, uint_t flags);
static int mptsas_config_smp(dev_info_t *pdip, uint64_t sas_wwn,
dev_info_t **smp_dip);
static int mptsas_offline_smp(dev_info_t *pdip, mptsas_smp_t *smp_node,
uint_t flags);
static int mptsas_event_query(mptsas_t *mpt, mptsas_event_query_t *data,
int mode, int *rval);
static int mptsas_event_enable(mptsas_t *mpt, mptsas_event_enable_t *data,
int mode, int *rval);
static int mptsas_event_report(mptsas_t *mpt, mptsas_event_report_t *data,
int mode, int *rval);
static void mptsas_record_event(void *args);
static int mptsas_reg_access(mptsas_t *mpt, mptsas_reg_access_t *data,
int mode);
mptsas_target_t *mptsas_tgt_alloc(refhash_t *, uint16_t, uint64_t,
uint32_t, mptsas_phymask_t, uint8_t);
static mptsas_smp_t *mptsas_smp_alloc(mptsas_t *, mptsas_smp_t *);
static int mptsas_online_smp(dev_info_t *pdip, mptsas_smp_t *smp_node,
dev_info_t **smp_dip);
/*
* Power management functions
*/
static int mptsas_get_pci_cap(mptsas_t *mpt);
static int mptsas_init_pm(mptsas_t *mpt);
/*
* MPT MSI tunable:
*
* By default MSI is enabled on all supported platforms.
*/
boolean_t mptsas_enable_msi = B_TRUE;
boolean_t mptsas_physical_bind_failed_page_83 = B_FALSE;
/*
* Global switch for use of MPI2.5 FAST PATH.
* We don't really know what FAST PATH actually does, so if it is suspected
* to cause problems it can be turned off by setting this variable to B_FALSE.
*/
boolean_t mptsas_use_fastpath = B_TRUE;
static int mptsas_register_intrs(mptsas_t *);
static void mptsas_unregister_intrs(mptsas_t *);
static int mptsas_add_intrs(mptsas_t *, int);
static void mptsas_rem_intrs(mptsas_t *);
/*
* FMA Prototypes
*/
static void mptsas_fm_init(mptsas_t *mpt);
static void mptsas_fm_fini(mptsas_t *mpt);
static int mptsas_fm_error_cb(dev_info_t *, ddi_fm_error_t *, const void *);
extern pri_t minclsyspri, maxclsyspri;
/*
* This device is created by the SCSI pseudo nexus driver (SCSI vHCI). It is
* under this device that the paths to a physical device are created when
* MPxIO is used.
*/
extern dev_info_t *scsi_vhci_dip;
/*
* Tunable timeout value for Inquiry VPD page 0x83
* By default the value is 30 seconds.
*/
int mptsas_inq83_retry_timeout = 30;
/*
* This is used to allocate memory for message frame storage, not for
* data I/O DMA. All message frames must be stored in the first 4G of
* physical memory.
*/
ddi_dma_attr_t mptsas_dma_attrs = {
DMA_ATTR_V0, /* attribute layout version */
0x0ull, /* address low - should be 0 (longlong) */
0xffffffffull, /* address high - 32-bit max range */
0x00ffffffull, /* count max - max DMA object size */
4, /* allocation alignment requirements */
0x78, /* burstsizes - binary encoded values */
1, /* minxfer - gran. of DMA engine */
0x00ffffffull, /* maxxfer - gran. of DMA engine */
0xffffffffull, /* max segment size (DMA boundary) */
MPTSAS_MAX_DMA_SEGS, /* scatter/gather list length */
512, /* granularity - device transfer size */
0 /* flags, set to 0 */
};
/*
* This is used for data I/O DMA memory allocation. (full 64-bit DMA
* physical addresses are supported.)
*/
ddi_dma_attr_t mptsas_dma_attrs64 = {
DMA_ATTR_V0, /* attribute layout version */
0x0ull, /* address low - should be 0 (longlong) */
0xffffffffffffffffull, /* address high - 64-bit max */
0x00ffffffull, /* count max - max DMA object size */
4, /* allocation alignment requirements */
0x78, /* burstsizes - binary encoded values */
1, /* minxfer - gran. of DMA engine */
0x00ffffffull, /* maxxfer - gran. of DMA engine */
0xffffffffull, /* max segment size (DMA boundary) */
MPTSAS_MAX_DMA_SEGS, /* scatter/gather list length */
512, /* granularity - device transfer size */
0 /* flags, set to 0 */
};
ddi_device_acc_attr_t mptsas_dev_attr = {
DDI_DEVICE_ATTR_V1,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
static struct cb_ops mptsas_cb_ops = {
scsi_hba_open, /* open */
scsi_hba_close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
mptsas_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* chpoll */
ddi_prop_op, /* cb_prop_op */
NULL, /* streamtab */
D_MP, /* cb_flag */
CB_REV, /* rev */
nodev, /* aread */
nodev /* awrite */
};
static struct dev_ops mptsas_ops = {
DEVO_REV, /* devo_rev, */
0, /* refcnt */
ddi_no_info, /* info */
nulldev, /* identify */
nulldev, /* probe */
mptsas_attach, /* attach */
mptsas_detach, /* detach */
#ifdef __sparc
mptsas_reset,
#else
nodev, /* reset */
#endif /* __sparc */
&mptsas_cb_ops, /* driver operations */
NULL, /* bus operations */
mptsas_power, /* power management */
#ifdef __sparc
ddi_quiesce_not_needed
#else
mptsas_quiesce /* quiesce */
#endif /* __sparc */
};
#define MPTSAS_MOD_STRING "MPTSAS HBA Driver 00.00.00.24"
static struct modldrv modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
MPTSAS_MOD_STRING, /* Name of the module. */
&mptsas_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1, &modldrv, NULL
};
#define TARGET_PROP "target"
#define LUN_PROP "lun"
#define LUN64_PROP "lun64"
#define SAS_PROP "sas-mpt"
#define MDI_GUID "wwn"
#define NDI_GUID "guid"
#define MPTSAS_DEV_GONE "mptsas_dev_gone"
/*
* Local static data
*/
#if defined(MPTSAS_DEBUG)
/*
* Flags to indicate which debug messages are to be printed and which go to the
* debug log ring buffer. Default is to not print anything, and to log
* everything except the watchsubr() output which normally happens every second.
*/
uint32_t mptsas_debugprt_flags = 0x0;
uint32_t mptsas_debuglog_flags = ~(1U << 30);
#endif /* defined(MPTSAS_DEBUG) */
uint32_t mptsas_debug_resets = 0;
static kmutex_t mptsas_global_mutex;
static void *mptsas_state; /* soft state ptr */
static krwlock_t mptsas_global_rwlock;
static kmutex_t mptsas_log_mutex;
static char mptsas_log_buf[256];
_NOTE(MUTEX_PROTECTS_DATA(mptsas_log_mutex, mptsas_log_buf))
static mptsas_t *mptsas_head, *mptsas_tail;
static clock_t mptsas_scsi_watchdog_tick;
static clock_t mptsas_tick;
static timeout_id_t mptsas_reset_watch;
static timeout_id_t mptsas_timeout_id;
static int mptsas_timeouts_enabled = 0;
/*
* Default length for extended auto request sense buffers.
* All sense buffers need to be under the same alloc because there
* is only one common top 32bits (of 64bits) address register.
* Most requests only require 32 bytes, but some request >256.
* We use rmalloc()/rmfree() on this additional memory to manage the
* "extended" requests.
*/
int mptsas_extreq_sense_bufsize = 256*64;
/*
* We believe that all software resrictions of having to run with DMA
* attributes to limit allocation to the first 4G are removed.
* However, this flag remains to enable quick switchback should suspicious
* problems emerge.
* Note that scsi_alloc_consistent_buf() does still adhere to allocating
* 32 bit addressable memory, but we can cope if that is changed now.
*/
int mptsas_use_64bit_msgaddr = 1;
/*
* warlock directives
*/
_NOTE(SCHEME_PROTECTS_DATA("unique per pkt", scsi_pkt \
mptsas_cmd NcrTableIndirect buf scsi_cdb scsi_status))
_NOTE(SCHEME_PROTECTS_DATA("unique per pkt", smp_pkt))
_NOTE(SCHEME_PROTECTS_DATA("stable data", scsi_device scsi_address))
_NOTE(SCHEME_PROTECTS_DATA("No Mutex Needed", mptsas_tgt_private))
_NOTE(SCHEME_PROTECTS_DATA("No Mutex Needed", scsi_hba_tran::tran_tgt_private))
/*
* SM - HBA statics
*/
char *mptsas_driver_rev = MPTSAS_MOD_STRING;
#ifdef MPTSAS_DEBUG
void debug_enter(char *);
#endif
/*
* Notes:
* - scsi_hba_init(9F) initializes SCSI HBA modules
* - must call scsi_hba_fini(9F) if modload() fails
*/
int
_init(void)
{
int status;
/* CONSTCOND */
ASSERT(NO_COMPETING_THREADS);
NDBG0(("_init"));
status = ddi_soft_state_init(&mptsas_state, MPTSAS_SIZE,
MPTSAS_INITIAL_SOFT_SPACE);
if (status != 0) {
return (status);
}
if ((status = scsi_hba_init(&modlinkage)) != 0) {
ddi_soft_state_fini(&mptsas_state);
return (status);
}
mutex_init(&mptsas_global_mutex, NULL, MUTEX_DRIVER, NULL);
rw_init(&mptsas_global_rwlock, NULL, RW_DRIVER, NULL);
mutex_init(&mptsas_log_mutex, NULL, MUTEX_DRIVER, NULL);
if ((status = mod_install(&modlinkage)) != 0) {
mutex_destroy(&mptsas_log_mutex);
rw_destroy(&mptsas_global_rwlock);
mutex_destroy(&mptsas_global_mutex);
ddi_soft_state_fini(&mptsas_state);
scsi_hba_fini(&modlinkage);
}
return (status);
}
/*
* Notes:
* - scsi_hba_fini(9F) uninitializes SCSI HBA modules
*/
int
_fini(void)
{
int status;
/* CONSTCOND */
ASSERT(NO_COMPETING_THREADS);
NDBG0(("_fini"));
if ((status = mod_remove(&modlinkage)) == 0) {
ddi_soft_state_fini(&mptsas_state);
scsi_hba_fini(&modlinkage);
mutex_destroy(&mptsas_global_mutex);
rw_destroy(&mptsas_global_rwlock);
mutex_destroy(&mptsas_log_mutex);
}
return (status);
}
/*
* The loadable-module _info(9E) entry point
*/
int
_info(struct modinfo *modinfop)
{
/* CONSTCOND */
ASSERT(NO_COMPETING_THREADS);
NDBG0(("mptsas _info"));
return (mod_info(&modlinkage, modinfop));
}
static int
mptsas_target_eval_devhdl(const void *op, void *arg)
{
uint16_t dh = *(uint16_t *)arg;
const mptsas_target_t *tp = op;
return ((int)tp->m_devhdl - (int)dh);
}
static int
mptsas_target_eval_slot(const void *op, void *arg)
{
mptsas_led_control_t *lcp = arg;
const mptsas_target_t *tp = op;
if (tp->m_enclosure != lcp->Enclosure)
return ((int)tp->m_enclosure - (int)lcp->Enclosure);
return ((int)tp->m_slot_num - (int)lcp->Slot);
}
static int
mptsas_target_eval_nowwn(const void *op, void *arg)
{
uint8_t phy = *(uint8_t *)arg;
const mptsas_target_t *tp = op;
if (tp->m_addr.mta_wwn != 0)
return (-1);
return ((int)tp->m_phynum - (int)phy);
}
static int
mptsas_smp_eval_devhdl(const void *op, void *arg)
{
uint16_t dh = *(uint16_t *)arg;
const mptsas_smp_t *sp = op;
return ((int)sp->m_devhdl - (int)dh);
}
static uint64_t
mptsas_target_addr_hash(const void *tp)
{
const mptsas_target_addr_t *tap = tp;
return ((tap->mta_wwn & 0xffffffffffffULL) |
((uint64_t)tap->mta_phymask << 48));
}
static int
mptsas_target_addr_cmp(const void *a, const void *b)
{
const mptsas_target_addr_t *aap = a;
const mptsas_target_addr_t *bap = b;
if (aap->mta_wwn < bap->mta_wwn)
return (-1);
if (aap->mta_wwn > bap->mta_wwn)
return (1);
return ((int)bap->mta_phymask - (int)aap->mta_phymask);
}
static uint64_t
mptsas_tmp_target_hash(const void *tp)
{
return ((uint64_t)(uintptr_t)tp);
}
static int
mptsas_tmp_target_cmp(const void *a, const void *b)
{
if (a > b)
return (1);
if (b < a)
return (-1);
return (0);
}
static void
mptsas_target_free(void *op)
{
kmem_free(op, sizeof (mptsas_target_t));
}
static void
mptsas_smp_free(void *op)
{
kmem_free(op, sizeof (mptsas_smp_t));
}
static void
mptsas_destroy_hashes(mptsas_t *mpt)
{
mptsas_target_t *tp;
mptsas_smp_t *sp;
for (tp = refhash_first(mpt->m_targets); tp != NULL;
tp = refhash_next(mpt->m_targets, tp)) {
refhash_remove(mpt->m_targets, tp);
}
for (sp = refhash_first(mpt->m_smp_targets); sp != NULL;
sp = refhash_next(mpt->m_smp_targets, sp)) {
refhash_remove(mpt->m_smp_targets, sp);
}
refhash_destroy(mpt->m_tmp_targets);
refhash_destroy(mpt->m_targets);
refhash_destroy(mpt->m_smp_targets);
mpt->m_targets = NULL;
mpt->m_smp_targets = NULL;
}
static int
mptsas_iport_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
dev_info_t *pdip;
mptsas_t *mpt;
scsi_hba_tran_t *hba_tran;
char *iport = NULL;
char phymask[MPTSAS_MAX_PHYS];
mptsas_phymask_t phy_mask = 0;
int dynamic_port = 0;
uint32_t page_address;
char initiator_wwnstr[MPTSAS_WWN_STRLEN];
int rval = DDI_FAILURE;
int i = 0;
uint8_t numphys = 0;
uint8_t phy_id;
uint8_t phy_port = 0;
uint16_t attached_devhdl = 0;
uint32_t dev_info;
uint64_t attached_sas_wwn;
uint16_t dev_hdl;
uint16_t pdev_hdl;
uint16_t bay_num, enclosure, io_flags;
char attached_wwnstr[MPTSAS_WWN_STRLEN];
/* CONSTCOND */
ASSERT(NO_COMPETING_THREADS);
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
/*
* If this a scsi-iport node, nothing to do here.
*/
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
pdip = ddi_get_parent(dip);
if ((hba_tran = ndi_flavorv_get(pdip, SCSA_FLAVOR_SCSI_DEVICE)) ==
NULL) {
cmn_err(CE_WARN, "Failed attach iport because fail to "
"get tran vector for the HBA node");
return (DDI_FAILURE);
}
mpt = TRAN2MPT(hba_tran);
ASSERT(mpt != NULL);
if (mpt == NULL)
return (DDI_FAILURE);
if ((hba_tran = ndi_flavorv_get(dip, SCSA_FLAVOR_SCSI_DEVICE)) ==
NULL) {
mptsas_log(mpt, CE_WARN, "Failed attach iport because fail to "
"get tran vector for the iport node");
return (DDI_FAILURE);
}
/*
* Overwrite parent's tran_hba_private to iport's tran vector
*/
hba_tran->tran_hba_private = mpt;
ddi_report_dev(dip);
/*
* Get SAS address for initiator port according dev_handle
*/
iport = ddi_get_name_addr(dip);
if (iport && strncmp(iport, "v0", 2) == 0) {
if (ddi_prop_update_int(DDI_DEV_T_NONE, dip,
MPTSAS_VIRTUAL_PORT, 1) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
MPTSAS_VIRTUAL_PORT);
mptsas_log(mpt, CE_WARN, "mptsas virtual port "
"prop update failed");
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
mutex_enter(&mpt->m_mutex);
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
bzero(phymask, sizeof (phymask));
(void) sprintf(phymask,
"%x", mpt->m_phy_info[i].phy_mask);
if (strcmp(phymask, iport) == 0) {
break;
}
}
if (i == MPTSAS_MAX_PHYS) {
mptsas_log(mpt, CE_WARN, "Failed attach port %s because port"
"seems not exist", iport);
mutex_exit(&mpt->m_mutex);
return (DDI_FAILURE);
}
phy_mask = mpt->m_phy_info[i].phy_mask;
if (mpt->m_phy_info[i].port_flags & AUTO_PORT_CONFIGURATION)
dynamic_port = 1;
else
dynamic_port = 0;
/*
* Update PHY info for smhba
*/
if (mptsas_smhba_phy_init(mpt)) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas phy update "
"failed");
return (DDI_FAILURE);
}
mutex_exit(&mpt->m_mutex);
numphys = 0;
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
if ((phy_mask >> i) & 0x01) {
numphys++;
}
}
bzero(initiator_wwnstr, sizeof (initiator_wwnstr));
(void) sprintf(initiator_wwnstr, "w%016"PRIx64,
mpt->un.m_base_wwid);
if (ddi_prop_update_string(DDI_DEV_T_NONE, dip,
SCSI_ADDR_PROP_INITIATOR_PORT, initiator_wwnstr) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE,
dip, SCSI_ADDR_PROP_INITIATOR_PORT);
mptsas_log(mpt, CE_WARN, "mptsas Initiator port "
"prop update failed");
return (DDI_FAILURE);
}
if (ddi_prop_update_int(DDI_DEV_T_NONE, dip,
MPTSAS_NUM_PHYS, numphys) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip, MPTSAS_NUM_PHYS);
return (DDI_FAILURE);
}
if (ddi_prop_update_int(DDI_DEV_T_NONE, dip,
"phymask", phy_mask) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "phymask");
mptsas_log(mpt, CE_WARN, "mptsas phy mask "
"prop update failed");
return (DDI_FAILURE);
}
if (ddi_prop_update_int(DDI_DEV_T_NONE, dip,
"dynamic-port", dynamic_port) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "dynamic-port");
mptsas_log(mpt, CE_WARN, "mptsas dynamic port "
"prop update failed");
return (DDI_FAILURE);
}
if (ddi_prop_update_int(DDI_DEV_T_NONE, dip,
MPTSAS_VIRTUAL_PORT, 0) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
MPTSAS_VIRTUAL_PORT);
mptsas_log(mpt, CE_WARN, "mptsas virtual port "
"prop update failed");
return (DDI_FAILURE);
}
mptsas_smhba_set_all_phy_props(mpt, dip, numphys, phy_mask,
&attached_devhdl);
mutex_enter(&mpt->m_mutex);
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)attached_devhdl;
rval = mptsas_get_sas_device_page0(mpt, page_address, &dev_hdl,
&attached_sas_wwn, &dev_info, &phy_port, &phy_id,
&pdev_hdl, &bay_num, &enclosure, &io_flags);
if (rval != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN,
"Failed to get device page0 for handle:%d",
attached_devhdl);
mutex_exit(&mpt->m_mutex);
return (DDI_FAILURE);
}
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
bzero(phymask, sizeof (phymask));
(void) sprintf(phymask, "%x", mpt->m_phy_info[i].phy_mask);
if (strcmp(phymask, iport) == 0) {
(void) sprintf(&mpt->m_phy_info[i].smhba_info.path[0],
"%x",
mpt->m_phy_info[i].phy_mask);
}
}
mutex_exit(&mpt->m_mutex);
bzero(attached_wwnstr, sizeof (attached_wwnstr));
(void) sprintf(attached_wwnstr, "w%016"PRIx64,
attached_sas_wwn);
if (ddi_prop_update_string(DDI_DEV_T_NONE, dip,
SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE,
dip, SCSI_ADDR_PROP_ATTACHED_PORT);
return (DDI_FAILURE);
}
/* Create kstats for each phy on this iport */
mptsas_create_phy_stats(mpt, iport, dip);
/*
* register sas hba iport with mdi (MPxIO/vhci)
*/
if (mdi_phci_register(MDI_HCI_CLASS_SCSI,
dip, 0) == MDI_SUCCESS) {
mpt->m_mpxio_enable = TRUE;
}
return (DDI_SUCCESS);
}
/*
* Notes:
* Set up all device state and allocate data structures,
* mutexes, condition variables, etc. for device operation.
* Add interrupts needed.
* Return DDI_SUCCESS if device is ready, else return DDI_FAILURE.
*/
static int
mptsas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
mptsas_t *mpt = NULL;
int instance, i, j;
int doneq_thread_num;
char intr_added = 0;
char map_setup = 0;
char config_setup = 0;
char hba_attach_setup = 0;
char smp_attach_setup = 0;
char mutex_init_done = 0;
char event_taskq_create = 0;
char dr_taskq_create = 0;
char doneq_thread_create = 0;
char added_watchdog = 0;
scsi_hba_tran_t *hba_tran;
uint_t mem_bar = MEM_SPACE;
int rval = DDI_FAILURE;
/* CONSTCOND */
ASSERT(NO_COMPETING_THREADS);
if (scsi_hba_iport_unit_address(dip)) {
return (mptsas_iport_attach(dip, cmd));
}
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
if ((hba_tran = ddi_get_driver_private(dip)) == NULL)
return (DDI_FAILURE);
mpt = TRAN2MPT(hba_tran);
if (!mpt) {
return (DDI_FAILURE);
}
/*
* Reset hardware and softc to "no outstanding commands"
* Note that a check condition can result on first command
* to a target.
*/
mutex_enter(&mpt->m_mutex);
/*
* raise power.
*/
if (mpt->m_options & MPTSAS_OPT_PM) {
mutex_exit(&mpt->m_mutex);
(void) pm_busy_component(dip, 0);
rval = pm_power_has_changed(dip, 0, PM_LEVEL_D0);
if (rval == DDI_SUCCESS) {
mutex_enter(&mpt->m_mutex);
} else {
/*
* The pm_raise_power() call above failed,
* and that can only occur if we were unable
* to reset the hardware. This is probably
* due to unhealty hardware, and because
* important filesystems(such as the root
* filesystem) could be on the attached disks,
* it would not be a good idea to continue,
* as we won't be entirely certain we are
* writing correct data. So we panic() here
* to not only prevent possible data corruption,
* but to give developers or end users a hope
* of identifying and correcting any problems.
*/
fm_panic("mptsas could not reset hardware "
"during resume");
}
}
mpt->m_suspended = 0;
/*
* Reinitialize ioc
*/
mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET;
if (mptsas_init_chip(mpt, FALSE) == DDI_FAILURE) {
mutex_exit(&mpt->m_mutex);
if (mpt->m_options & MPTSAS_OPT_PM) {
(void) pm_idle_component(dip, 0);
}
fm_panic("mptsas init chip fail during resume");
}
/*
* mptsas_update_driver_data needs interrupts so enable them
* first.
*/
MPTSAS_ENABLE_INTR(mpt);
mptsas_update_driver_data(mpt);
/* start requests, if possible */
mptsas_restart_hba(mpt);
mutex_exit(&mpt->m_mutex);
/*
* Restart watch thread
*/
mutex_enter(&mptsas_global_mutex);
if (mptsas_timeout_id == 0) {
mptsas_timeout_id = timeout(mptsas_watch, NULL,
mptsas_tick);
mptsas_timeouts_enabled = 1;
}
mutex_exit(&mptsas_global_mutex);
/* report idle status to pm framework */
if (mpt->m_options & MPTSAS_OPT_PM) {
(void) pm_idle_component(dip, 0);
}
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
instance = ddi_get_instance(dip);
/*
* Allocate softc information.
*/
if (ddi_soft_state_zalloc(mptsas_state, instance) != DDI_SUCCESS) {
mptsas_log(NULL, CE_WARN,
"mptsas%d: cannot allocate soft state", instance);
goto fail;
}
mpt = ddi_get_soft_state(mptsas_state, instance);
if (mpt == NULL) {
mptsas_log(NULL, CE_WARN,
"mptsas%d: cannot get soft state", instance);
goto fail;
}
/* Indicate that we are 'sizeof (scsi_*(9S))' clean. */
scsi_size_clean(dip);
mpt->m_dip = dip;
mpt->m_instance = instance;
/* Make a per-instance copy of the structures */
mpt->m_io_dma_attr = mptsas_dma_attrs64;
if (mptsas_use_64bit_msgaddr) {
mpt->m_msg_dma_attr = mptsas_dma_attrs64;
} else {
mpt->m_msg_dma_attr = mptsas_dma_attrs;
}
mpt->m_reg_acc_attr = mptsas_dev_attr;
mpt->m_dev_acc_attr = mptsas_dev_attr;
/*
* Size of individual request sense buffer
*/
mpt->m_req_sense_size = EXTCMDS_STATUS_SIZE;
/*
* Initialize FMA
*/
mpt->m_fm_capabilities = ddi_getprop(DDI_DEV_T_ANY, mpt->m_dip,
DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
mptsas_fm_init(mpt);
if (mptsas_alloc_handshake_msg(mpt,
sizeof (Mpi2SCSITaskManagementRequest_t)) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "cannot initialize handshake msg.");
goto fail;
}
/*
* Setup configuration space
*/
if (mptsas_config_space_init(mpt) == FALSE) {
mptsas_log(mpt, CE_WARN, "mptsas_config_space_init failed");
goto fail;
}
config_setup++;
if (ddi_regs_map_setup(dip, mem_bar, (caddr_t *)&mpt->m_reg,
0, 0, &mpt->m_reg_acc_attr, &mpt->m_datap) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "map setup failed");
goto fail;
}
map_setup++;
/*
* A taskq is created for dealing with the event handler
*/
if ((mpt->m_event_taskq = ddi_taskq_create(dip, "mptsas_event_taskq",
1, TASKQ_DEFAULTPRI, 0)) == NULL) {
mptsas_log(mpt, CE_NOTE, "ddi_taskq_create failed");
goto fail;
}
event_taskq_create++;
/*
* A taskq is created for dealing with dr events
*/
if ((mpt->m_dr_taskq = ddi_taskq_create(dip,
"mptsas_dr_taskq",
1, TASKQ_DEFAULTPRI, 0)) == NULL) {
mptsas_log(mpt, CE_NOTE, "ddi_taskq_create for discovery "
"failed");
goto fail;
}
dr_taskq_create++;
mpt->m_doneq_thread_threshold = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
0, "mptsas_doneq_thread_threshold_prop", 10);
mpt->m_doneq_length_threshold = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
0, "mptsas_doneq_length_threshold_prop", 8);
mpt->m_doneq_thread_n = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
0, "mptsas_doneq_thread_n_prop", 8);
if (mpt->m_doneq_thread_n) {
cv_init(&mpt->m_doneq_thread_cv, NULL, CV_DRIVER, NULL);
mutex_init(&mpt->m_doneq_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_enter(&mpt->m_doneq_mutex);
mpt->m_doneq_thread_id =
kmem_zalloc(sizeof (mptsas_doneq_thread_list_t)
* mpt->m_doneq_thread_n, KM_SLEEP);
for (j = 0; j < mpt->m_doneq_thread_n; j++) {
cv_init(&mpt->m_doneq_thread_id[j].cv, NULL,
CV_DRIVER, NULL);
mutex_init(&mpt->m_doneq_thread_id[j].mutex, NULL,
MUTEX_DRIVER, NULL);
mutex_enter(&mpt->m_doneq_thread_id[j].mutex);
mpt->m_doneq_thread_id[j].flag |=
MPTSAS_DONEQ_THREAD_ACTIVE;
mpt->m_doneq_thread_id[j].arg.mpt = mpt;
mpt->m_doneq_thread_id[j].arg.t = j;
mpt->m_doneq_thread_id[j].threadp =
thread_create(NULL, 0, mptsas_doneq_thread,
&mpt->m_doneq_thread_id[j].arg,
0, &p0, TS_RUN, minclsyspri);
mpt->m_doneq_thread_id[j].donetail =
&mpt->m_doneq_thread_id[j].doneq;
mutex_exit(&mpt->m_doneq_thread_id[j].mutex);
}
mutex_exit(&mpt->m_doneq_mutex);
doneq_thread_create++;
}
/*
* Disable hardware interrupt since we're not ready to
* handle it yet.
*/
MPTSAS_DISABLE_INTR(mpt);
if (mptsas_register_intrs(mpt) == FALSE)
goto fail;
intr_added++;
/* Initialize mutex used in interrupt handler */
mutex_init(&mpt->m_mutex, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(mpt->m_intr_pri));
mutex_init(&mpt->m_passthru_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&mpt->m_tx_waitq_mutex, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(mpt->m_intr_pri));
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
mutex_init(&mpt->m_phy_info[i].smhba_info.phy_mutex,
NULL, MUTEX_DRIVER,
DDI_INTR_PRI(mpt->m_intr_pri));
}
cv_init(&mpt->m_cv, NULL, CV_DRIVER, NULL);
cv_init(&mpt->m_passthru_cv, NULL, CV_DRIVER, NULL);
cv_init(&mpt->m_fw_cv, NULL, CV_DRIVER, NULL);
cv_init(&mpt->m_config_cv, NULL, CV_DRIVER, NULL);
cv_init(&mpt->m_fw_diag_cv, NULL, CV_DRIVER, NULL);
mutex_init_done++;
mutex_enter(&mpt->m_mutex);
/*
* Initialize power management component
*/
if (mpt->m_options & MPTSAS_OPT_PM) {
if (mptsas_init_pm(mpt)) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas pm initialization "
"failed");
goto fail;
}
}
/*
* Initialize chip using Message Unit Reset, if allowed
*/
mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET;
if (mptsas_init_chip(mpt, TRUE) == DDI_FAILURE) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas chip initialization failed");
goto fail;
}
mpt->m_targets = refhash_create(MPTSAS_TARGET_BUCKET_COUNT,
mptsas_target_addr_hash, mptsas_target_addr_cmp,
mptsas_target_free, sizeof (mptsas_target_t),
offsetof(mptsas_target_t, m_link),
offsetof(mptsas_target_t, m_addr), KM_SLEEP);
/*
* The refhash for temporary targets uses the address of the target
* struct itself as tag, so the tag offset is 0. See the implementation
* of mptsas_tmp_target_hash() and mptsas_tmp_target_cmp().
*/
mpt->m_tmp_targets = refhash_create(MPTSAS_TMP_TARGET_BUCKET_COUNT,
mptsas_tmp_target_hash, mptsas_tmp_target_cmp,
mptsas_target_free, sizeof (mptsas_target_t),
offsetof(mptsas_target_t, m_link), 0, KM_SLEEP);
/*
* Fill in the phy_info structure and get the base WWID
*/
if (mptsas_get_manufacture_page5(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN,
"mptsas_get_manufacture_page5 failed!");
goto fail;
}
if (mptsas_get_sas_io_unit_page_hndshk(mpt)) {
mptsas_log(mpt, CE_WARN,
"mptsas_get_sas_io_unit_page_hndshk failed!");
goto fail;
}
if (mptsas_get_manufacture_page0(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN,
"mptsas_get_manufacture_page0 failed!");
goto fail;
}
mutex_exit(&mpt->m_mutex);
/*
* Register the iport for multiple port HBA
*/
mptsas_iport_register(mpt);
/*
* initialize SCSI HBA transport structure
*/
if (mptsas_hba_setup(mpt) == FALSE)
goto fail;
hba_attach_setup++;
if (mptsas_smp_setup(mpt) == FALSE)
goto fail;
smp_attach_setup++;
if (mptsas_cache_create(mpt) == FALSE)
goto fail;
mpt->m_scsi_reset_delay = ddi_prop_get_int(DDI_DEV_T_ANY,
dip, 0, "scsi-reset-delay", SCSI_DEFAULT_RESET_DELAY);
if (mpt->m_scsi_reset_delay == 0) {
mptsas_log(mpt, CE_NOTE,
"scsi_reset_delay of 0 is not recommended,"
" resetting to SCSI_DEFAULT_RESET_DELAY\n");
mpt->m_scsi_reset_delay = SCSI_DEFAULT_RESET_DELAY;
}
/*
* Initialize the wait and done FIFO queue
*/
mpt->m_donetail = &mpt->m_doneq;
mpt->m_waitqtail = &mpt->m_waitq;
mpt->m_tx_waitqtail = &mpt->m_tx_waitq;
mpt->m_tx_draining = 0;
/*
* ioc cmd queue initialize
*/
mpt->m_ioc_event_cmdtail = &mpt->m_ioc_event_cmdq;
mpt->m_dev_handle = 0xFFFF;
MPTSAS_ENABLE_INTR(mpt);
/*
* enable event notification
*/
mutex_enter(&mpt->m_mutex);
if (mptsas_ioc_enable_event_notification(mpt)) {
mutex_exit(&mpt->m_mutex);
goto fail;
}
mutex_exit(&mpt->m_mutex);
/*
* used for mptsas_watch
*/
mptsas_list_add(mpt);
mutex_enter(&mptsas_global_mutex);
if (mptsas_timeouts_enabled == 0) {
mptsas_scsi_watchdog_tick = ddi_prop_get_int(DDI_DEV_T_ANY,
dip, 0, "scsi-watchdog-tick", DEFAULT_WD_TICK);
mptsas_tick = mptsas_scsi_watchdog_tick *
drv_usectohz((clock_t)1000000);
mptsas_timeout_id = timeout(mptsas_watch, NULL, mptsas_tick);
mptsas_timeouts_enabled = 1;
}
mutex_exit(&mptsas_global_mutex);
added_watchdog++;
/*
* Initialize PHY info for smhba.
* This requires watchdog to be enabled otherwise if interrupts
* don't work the system will hang.
*/
if (mptsas_smhba_setup(mpt)) {
mptsas_log(mpt, CE_WARN, "mptsas phy initialization "
"failed");
goto fail;
}
/* Check all dma handles allocated in attach */
if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_req_sense_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_hshk_dma_hdl)
!= DDI_SUCCESS)) {
goto fail;
}
/* Check all acc handles allocated in attach */
if ((mptsas_check_acc_handle(mpt->m_datap) != DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_req_sense_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_hshk_acc_hdl)
!= DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_config_handle)
!= DDI_SUCCESS)) {
goto fail;
}
/*
* After this point, we are not going to fail the attach.
*/
/* Print message of HBA present */
ddi_report_dev(dip);
/* report idle status to pm framework */
if (mpt->m_options & MPTSAS_OPT_PM) {
(void) pm_idle_component(dip, 0);
}
return (DDI_SUCCESS);
fail:
mptsas_log(mpt, CE_WARN, "attach failed");
mptsas_fm_ereport(mpt, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_LOST);
if (mpt) {
/* deallocate in reverse order */
if (added_watchdog) {
mptsas_list_del(mpt);
mutex_enter(&mptsas_global_mutex);
if (mptsas_timeout_id && (mptsas_head == NULL)) {
timeout_id_t tid = mptsas_timeout_id;
mptsas_timeouts_enabled = 0;
mptsas_timeout_id = 0;
mutex_exit(&mptsas_global_mutex);
(void) untimeout(tid);
mutex_enter(&mptsas_global_mutex);
}
mutex_exit(&mptsas_global_mutex);
}
mptsas_cache_destroy(mpt);
if (smp_attach_setup) {
mptsas_smp_teardown(mpt);
}
if (hba_attach_setup) {
mptsas_hba_teardown(mpt);
}
if (mpt->m_tmp_targets)
refhash_destroy(mpt->m_tmp_targets);
if (mpt->m_targets)
refhash_destroy(mpt->m_targets);
if (mpt->m_smp_targets)
refhash_destroy(mpt->m_smp_targets);
if (mpt->m_active) {
mptsas_free_active_slots(mpt);
}
if (intr_added) {
mptsas_unregister_intrs(mpt);
}
if (doneq_thread_create) {
mutex_enter(&mpt->m_doneq_mutex);
doneq_thread_num = mpt->m_doneq_thread_n;
for (j = 0; j < mpt->m_doneq_thread_n; j++) {
mutex_enter(&mpt->m_doneq_thread_id[j].mutex);
mpt->m_doneq_thread_id[j].flag &=
(~MPTSAS_DONEQ_THREAD_ACTIVE);
cv_signal(&mpt->m_doneq_thread_id[j].cv);
mutex_exit(&mpt->m_doneq_thread_id[j].mutex);
}
while (mpt->m_doneq_thread_n) {
cv_wait(&mpt->m_doneq_thread_cv,
&mpt->m_doneq_mutex);
}
for (j = 0; j < doneq_thread_num; j++) {
cv_destroy(&mpt->m_doneq_thread_id[j].cv);
mutex_destroy(&mpt->m_doneq_thread_id[j].mutex);
}
kmem_free(mpt->m_doneq_thread_id,
sizeof (mptsas_doneq_thread_list_t)
* doneq_thread_num);
mutex_exit(&mpt->m_doneq_mutex);
cv_destroy(&mpt->m_doneq_thread_cv);
mutex_destroy(&mpt->m_doneq_mutex);
}
if (event_taskq_create) {
ddi_taskq_destroy(mpt->m_event_taskq);
}
if (dr_taskq_create) {
ddi_taskq_destroy(mpt->m_dr_taskq);
}
if (mutex_init_done) {
mutex_destroy(&mpt->m_tx_waitq_mutex);
mutex_destroy(&mpt->m_passthru_mutex);
mutex_destroy(&mpt->m_mutex);
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
mutex_destroy(
&mpt->m_phy_info[i].smhba_info.phy_mutex);
}
cv_destroy(&mpt->m_cv);
cv_destroy(&mpt->m_passthru_cv);
cv_destroy(&mpt->m_fw_cv);
cv_destroy(&mpt->m_config_cv);
cv_destroy(&mpt->m_fw_diag_cv);
}
if (map_setup) {
mptsas_cfg_fini(mpt);
}
if (config_setup) {
mptsas_config_space_fini(mpt);
}
mptsas_free_handshake_msg(mpt);
mptsas_hba_fini(mpt);
mptsas_fm_fini(mpt);
ddi_soft_state_free(mptsas_state, instance);
ddi_prop_remove_all(dip);
}
return (DDI_FAILURE);
}
static int
mptsas_suspend(dev_info_t *devi)
{
mptsas_t *mpt, *g;
scsi_hba_tran_t *tran;
if (scsi_hba_iport_unit_address(devi)) {
return (DDI_SUCCESS);
}
if ((tran = ddi_get_driver_private(devi)) == NULL)
return (DDI_SUCCESS);
mpt = TRAN2MPT(tran);
if (!mpt) {
return (DDI_SUCCESS);
}
mutex_enter(&mpt->m_mutex);
if (mpt->m_suspended++) {
mutex_exit(&mpt->m_mutex);
return (DDI_SUCCESS);
}
/*
* Cancel timeout threads for this mpt
*/
if (mpt->m_quiesce_timeid) {
timeout_id_t tid = mpt->m_quiesce_timeid;
mpt->m_quiesce_timeid = 0;
mutex_exit(&mpt->m_mutex);
(void) untimeout(tid);
mutex_enter(&mpt->m_mutex);
}
if (mpt->m_restart_cmd_timeid) {
timeout_id_t tid = mpt->m_restart_cmd_timeid;
mpt->m_restart_cmd_timeid = 0;
mutex_exit(&mpt->m_mutex);
(void) untimeout(tid);
mutex_enter(&mpt->m_mutex);
}
mutex_exit(&mpt->m_mutex);
(void) pm_idle_component(mpt->m_dip, 0);
/*
* Cancel watch threads if all mpts suspended
*/
rw_enter(&mptsas_global_rwlock, RW_WRITER);
for (g = mptsas_head; g != NULL; g = g->m_next) {
if (!g->m_suspended)
break;
}
rw_exit(&mptsas_global_rwlock);
mutex_enter(&mptsas_global_mutex);
if (g == NULL) {
timeout_id_t tid;
mptsas_timeouts_enabled = 0;
if (mptsas_timeout_id) {
tid = mptsas_timeout_id;
mptsas_timeout_id = 0;
mutex_exit(&mptsas_global_mutex);
(void) untimeout(tid);
mutex_enter(&mptsas_global_mutex);
}
if (mptsas_reset_watch) {
tid = mptsas_reset_watch;
mptsas_reset_watch = 0;
mutex_exit(&mptsas_global_mutex);
(void) untimeout(tid);
mutex_enter(&mptsas_global_mutex);
}
}
mutex_exit(&mptsas_global_mutex);
mutex_enter(&mpt->m_mutex);
/*
* If this mpt is not in full power(PM_LEVEL_D0), just return.
*/
if ((mpt->m_options & MPTSAS_OPT_PM) &&
(mpt->m_power_level != PM_LEVEL_D0)) {
mutex_exit(&mpt->m_mutex);
return (DDI_SUCCESS);
}
/* Disable HBA interrupts in hardware */
MPTSAS_DISABLE_INTR(mpt);
/*
* Send RAID action system shutdown to sync IR
*/
mptsas_raid_action_system_shutdown(mpt);
mutex_exit(&mpt->m_mutex);
/* drain the taskq */
ddi_taskq_wait(mpt->m_event_taskq);
ddi_taskq_wait(mpt->m_dr_taskq);
return (DDI_SUCCESS);
}
#ifdef __sparc
/*ARGSUSED*/
static int
mptsas_reset(dev_info_t *devi, ddi_reset_cmd_t cmd)
{
mptsas_t *mpt;
scsi_hba_tran_t *tran;
/*
* If this call is for iport, just return.
*/
if (scsi_hba_iport_unit_address(devi))
return (DDI_SUCCESS);
if ((tran = ddi_get_driver_private(devi)) == NULL)
return (DDI_SUCCESS);
if ((mpt = TRAN2MPT(tran)) == NULL)
return (DDI_SUCCESS);
/*
* Send RAID action system shutdown to sync IR. Disable HBA
* interrupts in hardware first.
*/
MPTSAS_DISABLE_INTR(mpt);
mptsas_raid_action_system_shutdown(mpt);
return (DDI_SUCCESS);
}
#else /* __sparc */
/*
* quiesce(9E) entry point.
*
* This function is called when the system is single-threaded at high
* PIL with preemption disabled. Therefore, this function must not be
* blocked.
*
* This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
* DDI_FAILURE indicates an error condition and should almost never happen.
*/
static int
mptsas_quiesce(dev_info_t *devi)
{
mptsas_t *mpt;
scsi_hba_tran_t *tran;
/*
* If this call is for iport, just return.
*/
if (scsi_hba_iport_unit_address(devi))
return (DDI_SUCCESS);
if ((tran = ddi_get_driver_private(devi)) == NULL)
return (DDI_SUCCESS);
if ((mpt = TRAN2MPT(tran)) == NULL)
return (DDI_SUCCESS);
/* Disable HBA interrupts in hardware */
MPTSAS_DISABLE_INTR(mpt);
/* Send RAID action system shutdonw to sync IR */
mptsas_raid_action_system_shutdown(mpt);
return (DDI_SUCCESS);
}
#endif /* __sparc */
/*
* detach(9E). Remove all device allocations and system resources;
* disable device interrupts.
* Return DDI_SUCCESS if done; DDI_FAILURE if there's a problem.
*/
static int
mptsas_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
{
/* CONSTCOND */
ASSERT(NO_COMPETING_THREADS);
NDBG0(("mptsas_detach: dip=0x%p cmd=0x%p", (void *)devi, (void *)cmd));
switch (cmd) {
case DDI_DETACH:
return (mptsas_do_detach(devi));
case DDI_SUSPEND:
return (mptsas_suspend(devi));
default:
return (DDI_FAILURE);
}
/* NOTREACHED */
}
static int
mptsas_do_detach(dev_info_t *dip)
{
mptsas_t *mpt;
scsi_hba_tran_t *tran;
int circ = 0;
int circ1 = 0;
mdi_pathinfo_t *pip = NULL;
int i;
int doneq_thread_num = 0;
NDBG0(("mptsas_do_detach: dip=0x%p", (void *)dip));
if ((tran = ndi_flavorv_get(dip, SCSA_FLAVOR_SCSI_DEVICE)) == NULL)
return (DDI_FAILURE);
mpt = TRAN2MPT(tran);
if (!mpt) {
return (DDI_FAILURE);
}
/*
* Still have pathinfo child, should not detach mpt driver
*/
if (scsi_hba_iport_unit_address(dip)) {
if (mpt->m_mpxio_enable) {
/*
* MPxIO enabled for the iport
*/
ndi_devi_enter(scsi_vhci_dip, &circ1);
ndi_devi_enter(dip, &circ);
while (pip = mdi_get_next_client_path(dip, NULL)) {
if (mdi_pi_free(pip, 0) == MDI_SUCCESS) {
continue;
}
ndi_devi_exit(dip, circ);
ndi_devi_exit(scsi_vhci_dip, circ1);
NDBG12(("detach failed because of "
"outstanding path info"));
return (DDI_FAILURE);
}
ndi_devi_exit(dip, circ);
ndi_devi_exit(scsi_vhci_dip, circ1);
(void) mdi_phci_unregister(dip, 0);
}
ddi_prop_remove_all(dip);
return (DDI_SUCCESS);
}
/* Make sure power level is D0 before accessing registers */
if (mpt->m_options & MPTSAS_OPT_PM) {
(void) pm_busy_component(dip, 0);
if (mpt->m_power_level != PM_LEVEL_D0) {
if (pm_raise_power(dip, 0, PM_LEVEL_D0) !=
DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN,
"mptsas%d: Raise power request failed.",
mpt->m_instance);
(void) pm_idle_component(dip, 0);
return (DDI_FAILURE);
}
}
}
/*
* Send RAID action system shutdown to sync IR. After action, send a
* Message Unit Reset. Since after that DMA resource will be freed,
* set ioc to READY state will avoid HBA initiated DMA operation.
*/
mutex_enter(&mpt->m_mutex);
MPTSAS_DISABLE_INTR(mpt);
mptsas_raid_action_system_shutdown(mpt);
mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET;
(void) mptsas_ioc_reset(mpt, FALSE);
mutex_exit(&mpt->m_mutex);
mptsas_rem_intrs(mpt);
ddi_taskq_destroy(mpt->m_event_taskq);
ddi_taskq_destroy(mpt->m_dr_taskq);
if (mpt->m_doneq_thread_n) {
mutex_enter(&mpt->m_doneq_mutex);
doneq_thread_num = mpt->m_doneq_thread_n;
for (i = 0; i < mpt->m_doneq_thread_n; i++) {
mutex_enter(&mpt->m_doneq_thread_id[i].mutex);
mpt->m_doneq_thread_id[i].flag &=
(~MPTSAS_DONEQ_THREAD_ACTIVE);
cv_signal(&mpt->m_doneq_thread_id[i].cv);
mutex_exit(&mpt->m_doneq_thread_id[i].mutex);
}
while (mpt->m_doneq_thread_n) {
cv_wait(&mpt->m_doneq_thread_cv,
&mpt->m_doneq_mutex);
}
for (i = 0; i < doneq_thread_num; i++) {
cv_destroy(&mpt->m_doneq_thread_id[i].cv);
mutex_destroy(&mpt->m_doneq_thread_id[i].mutex);
}
kmem_free(mpt->m_doneq_thread_id,
sizeof (mptsas_doneq_thread_list_t)
* doneq_thread_num);
mutex_exit(&mpt->m_doneq_mutex);
cv_destroy(&mpt->m_doneq_thread_cv);
mutex_destroy(&mpt->m_doneq_mutex);
}
scsi_hba_reset_notify_tear_down(mpt->m_reset_notify_listf);
mptsas_list_del(mpt);
/*
* Cancel timeout threads for this mpt
*/
mutex_enter(&mpt->m_mutex);
if (mpt->m_quiesce_timeid) {
timeout_id_t tid = mpt->m_quiesce_timeid;
mpt->m_quiesce_timeid = 0;
mutex_exit(&mpt->m_mutex);
(void) untimeout(tid);
mutex_enter(&mpt->m_mutex);
}
if (mpt->m_restart_cmd_timeid) {
timeout_id_t tid = mpt->m_restart_cmd_timeid;
mpt->m_restart_cmd_timeid = 0;
mutex_exit(&mpt->m_mutex);
(void) untimeout(tid);
mutex_enter(&mpt->m_mutex);
}
mutex_exit(&mpt->m_mutex);
/*
* last mpt? ... if active, CANCEL watch threads.
*/
mutex_enter(&mptsas_global_mutex);
if (mptsas_head == NULL) {
timeout_id_t tid;
/*
* Clear mptsas_timeouts_enable so that the watch thread
* gets restarted on DDI_ATTACH
*/
mptsas_timeouts_enabled = 0;
if (mptsas_timeout_id) {
tid = mptsas_timeout_id;
mptsas_timeout_id = 0;
mutex_exit(&mptsas_global_mutex);
(void) untimeout(tid);
mutex_enter(&mptsas_global_mutex);
}
if (mptsas_reset_watch) {
tid = mptsas_reset_watch;
mptsas_reset_watch = 0;
mutex_exit(&mptsas_global_mutex);
(void) untimeout(tid);
mutex_enter(&mptsas_global_mutex);
}
}
mutex_exit(&mptsas_global_mutex);
/*
* Delete Phy stats
*/
mptsas_destroy_phy_stats(mpt);
mptsas_destroy_hashes(mpt);
/*
* Delete nt_active.
*/
mutex_enter(&mpt->m_mutex);
mptsas_free_active_slots(mpt);
mutex_exit(&mpt->m_mutex);
/* deallocate everything that was allocated in mptsas_attach */
mptsas_cache_destroy(mpt);
mptsas_hba_fini(mpt);
mptsas_cfg_fini(mpt);
/* Lower the power informing PM Framework */
if (mpt->m_options & MPTSAS_OPT_PM) {
if (pm_lower_power(dip, 0, PM_LEVEL_D3) != DDI_SUCCESS)
mptsas_log(mpt, CE_WARN,
"!mptsas%d: Lower power request failed "
"during detach, ignoring.",
mpt->m_instance);
}
mutex_destroy(&mpt->m_tx_waitq_mutex);
mutex_destroy(&mpt->m_passthru_mutex);
mutex_destroy(&mpt->m_mutex);
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
mutex_destroy(&mpt->m_phy_info[i].smhba_info.phy_mutex);
}
cv_destroy(&mpt->m_cv);
cv_destroy(&mpt->m_passthru_cv);
cv_destroy(&mpt->m_fw_cv);
cv_destroy(&mpt->m_config_cv);
cv_destroy(&mpt->m_fw_diag_cv);
mptsas_smp_teardown(mpt);
mptsas_hba_teardown(mpt);
mptsas_config_space_fini(mpt);
mptsas_free_handshake_msg(mpt);
mptsas_fm_fini(mpt);
ddi_soft_state_free(mptsas_state, ddi_get_instance(dip));
ddi_prop_remove_all(dip);
return (DDI_SUCCESS);
}
static void
mptsas_list_add(mptsas_t *mpt)
{
rw_enter(&mptsas_global_rwlock, RW_WRITER);
if (mptsas_head == NULL) {
mptsas_head = mpt;
} else {
mptsas_tail->m_next = mpt;
}
mptsas_tail = mpt;
rw_exit(&mptsas_global_rwlock);
}
static void
mptsas_list_del(mptsas_t *mpt)
{
mptsas_t *m;
/*
* Remove device instance from the global linked list
*/
rw_enter(&mptsas_global_rwlock, RW_WRITER);
if (mptsas_head == mpt) {
m = mptsas_head = mpt->m_next;
} else {
for (m = mptsas_head; m != NULL; m = m->m_next) {
if (m->m_next == mpt) {
m->m_next = mpt->m_next;
break;
}
}
if (m == NULL) {
mptsas_log(mpt, CE_PANIC, "Not in softc list!");
}
}
if (mptsas_tail == mpt) {
mptsas_tail = m;
}
rw_exit(&mptsas_global_rwlock);
}
static int
mptsas_alloc_handshake_msg(mptsas_t *mpt, size_t alloc_size)
{
ddi_dma_attr_t task_dma_attrs;
mpt->m_hshk_dma_size = 0;
task_dma_attrs = mpt->m_msg_dma_attr;
task_dma_attrs.dma_attr_sgllen = 1;
task_dma_attrs.dma_attr_granular = (uint32_t)(alloc_size);
/* allocate Task Management ddi_dma resources */
if (mptsas_dma_addr_create(mpt, task_dma_attrs,
&mpt->m_hshk_dma_hdl, &mpt->m_hshk_acc_hdl, &mpt->m_hshk_memp,
alloc_size, NULL) == FALSE) {
return (DDI_FAILURE);
}
mpt->m_hshk_dma_size = alloc_size;
return (DDI_SUCCESS);
}
static void
mptsas_free_handshake_msg(mptsas_t *mpt)
{
if (mpt->m_hshk_dma_size == 0)
return;
mptsas_dma_addr_destroy(&mpt->m_hshk_dma_hdl, &mpt->m_hshk_acc_hdl);
mpt->m_hshk_dma_size = 0;
}
static int
mptsas_hba_setup(mptsas_t *mpt)
{
scsi_hba_tran_t *hba_tran;
int tran_flags;
/* Allocate a transport structure */
hba_tran = mpt->m_tran = scsi_hba_tran_alloc(mpt->m_dip,
SCSI_HBA_CANSLEEP);
ASSERT(mpt->m_tran != NULL);
hba_tran->tran_hba_private = mpt;
hba_tran->tran_tgt_private = NULL;
hba_tran->tran_tgt_init = mptsas_scsi_tgt_init;
hba_tran->tran_tgt_free = mptsas_scsi_tgt_free;
hba_tran->tran_start = mptsas_scsi_start;
hba_tran->tran_reset = mptsas_scsi_reset;
hba_tran->tran_abort = mptsas_scsi_abort;
hba_tran->tran_getcap = mptsas_scsi_getcap;
hba_tran->tran_setcap = mptsas_scsi_setcap;
hba_tran->tran_init_pkt = mptsas_scsi_init_pkt;
hba_tran->tran_destroy_pkt = mptsas_scsi_destroy_pkt;
hba_tran->tran_dmafree = mptsas_scsi_dmafree;
hba_tran->tran_sync_pkt = mptsas_scsi_sync_pkt;
hba_tran->tran_reset_notify = mptsas_scsi_reset_notify;
hba_tran->tran_get_bus_addr = mptsas_get_bus_addr;
hba_tran->tran_get_name = mptsas_get_name;
hba_tran->tran_quiesce = mptsas_scsi_quiesce;
hba_tran->tran_unquiesce = mptsas_scsi_unquiesce;
hba_tran->tran_bus_reset = NULL;
hba_tran->tran_add_eventcall = NULL;
hba_tran->tran_get_eventcookie = NULL;
hba_tran->tran_post_event = NULL;
hba_tran->tran_remove_eventcall = NULL;
hba_tran->tran_bus_config = mptsas_bus_config;
hba_tran->tran_interconnect_type = INTERCONNECT_SAS;
/*
* All children of the HBA are iports. We need tran was cloned.
* So we pass the flags to SCSA. SCSI_HBA_TRAN_CLONE will be
* inherited to iport's tran vector.
*/
tran_flags = (SCSI_HBA_HBA | SCSI_HBA_TRAN_CLONE);
if (scsi_hba_attach_setup(mpt->m_dip, &mpt->m_msg_dma_attr,
hba_tran, tran_flags) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "hba attach setup failed");
scsi_hba_tran_free(hba_tran);
mpt->m_tran = NULL;
return (FALSE);
}
return (TRUE);
}
static void
mptsas_hba_teardown(mptsas_t *mpt)
{
(void) scsi_hba_detach(mpt->m_dip);
if (mpt->m_tran != NULL) {
scsi_hba_tran_free(mpt->m_tran);
mpt->m_tran = NULL;
}
}
static void
mptsas_iport_register(mptsas_t *mpt)
{
int i, j;
mptsas_phymask_t mask = 0x0;
/*
* initial value of mask is 0
*/
mutex_enter(&mpt->m_mutex);
for (i = 0; i < mpt->m_num_phys; i++) {
mptsas_phymask_t phy_mask = 0x0;
char phy_mask_name[MPTSAS_MAX_PHYS];
uint8_t current_port;
if (mpt->m_phy_info[i].attached_devhdl == 0)
continue;
bzero(phy_mask_name, sizeof (phy_mask_name));
current_port = mpt->m_phy_info[i].port_num;
if ((mask & (1 << i)) != 0)
continue;
for (j = 0; j < mpt->m_num_phys; j++) {
if (mpt->m_phy_info[j].attached_devhdl &&
(mpt->m_phy_info[j].port_num == current_port)) {
phy_mask |= (1 << j);
}
}
mask = mask | phy_mask;
for (j = 0; j < mpt->m_num_phys; j++) {
if ((phy_mask >> j) & 0x01) {
mpt->m_phy_info[j].phy_mask = phy_mask;
}
}
(void) sprintf(phy_mask_name, "%x", phy_mask);
mutex_exit(&mpt->m_mutex);
/*
* register a iport
*/
(void) scsi_hba_iport_register(mpt->m_dip, phy_mask_name);
mutex_enter(&mpt->m_mutex);
}
mutex_exit(&mpt->m_mutex);
/*
* register a virtual port for RAID volume always
*/
(void) scsi_hba_iport_register(mpt->m_dip, "v0");
}
static int
mptsas_smp_setup(mptsas_t *mpt)
{
mpt->m_smptran = smp_hba_tran_alloc(mpt->m_dip);
ASSERT(mpt->m_smptran != NULL);
mpt->m_smptran->smp_tran_hba_private = mpt;
mpt->m_smptran->smp_tran_start = mptsas_smp_start;
if (smp_hba_attach_setup(mpt->m_dip, mpt->m_smptran) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "smp attach setup failed");
smp_hba_tran_free(mpt->m_smptran);
mpt->m_smptran = NULL;
return (FALSE);
}
/*
* Initialize smp hash table
*/
mpt->m_smp_targets = refhash_create(MPTSAS_SMP_BUCKET_COUNT,
mptsas_target_addr_hash, mptsas_target_addr_cmp,
mptsas_smp_free, sizeof (mptsas_smp_t),
offsetof(mptsas_smp_t, m_link), offsetof(mptsas_smp_t, m_addr),
KM_SLEEP);
mpt->m_smp_devhdl = 0xFFFF;
return (TRUE);
}
static void
mptsas_smp_teardown(mptsas_t *mpt)
{
(void) smp_hba_detach(mpt->m_dip);
if (mpt->m_smptran != NULL) {
smp_hba_tran_free(mpt->m_smptran);
mpt->m_smptran = NULL;
}
mpt->m_smp_devhdl = 0;
}
static int
mptsas_cache_create(mptsas_t *mpt)
{
int instance = mpt->m_instance;
char buf[64];
/*
* create kmem cache for packets
*/
(void) sprintf(buf, "mptsas%d_cache", instance);
mpt->m_kmem_cache = kmem_cache_create(buf,
sizeof (struct mptsas_cmd) + scsi_pkt_size(), 8,
mptsas_kmem_cache_constructor, mptsas_kmem_cache_destructor,
NULL, (void *)mpt, NULL, 0);
if (mpt->m_kmem_cache == NULL) {
mptsas_log(mpt, CE_WARN, "creating kmem cache failed");
return (FALSE);
}
/*
* create kmem cache for extra SGL frames if SGL cannot
* be accomodated into main request frame.
*/
(void) sprintf(buf, "mptsas%d_cache_frames", instance);
mpt->m_cache_frames = kmem_cache_create(buf,
sizeof (mptsas_cache_frames_t), 8,
mptsas_cache_frames_constructor, mptsas_cache_frames_destructor,
NULL, (void *)mpt, NULL, 0);
if (mpt->m_cache_frames == NULL) {
mptsas_log(mpt, CE_WARN, "creating cache for frames failed");
return (FALSE);
}
return (TRUE);
}
static void
mptsas_cache_destroy(mptsas_t *mpt)
{
/* deallocate in reverse order */
if (mpt->m_cache_frames) {
kmem_cache_destroy(mpt->m_cache_frames);
mpt->m_cache_frames = NULL;
}
if (mpt->m_kmem_cache) {
kmem_cache_destroy(mpt->m_kmem_cache);
mpt->m_kmem_cache = NULL;
}
}
static int
mptsas_power(dev_info_t *dip, int component, int level)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(component))
#endif
mptsas_t *mpt;
int rval = DDI_SUCCESS;
int polls = 0;
uint32_t ioc_status;
if (scsi_hba_iport_unit_address(dip) != 0)
return (DDI_SUCCESS);
mpt = ddi_get_soft_state(mptsas_state, ddi_get_instance(dip));
if (mpt == NULL) {
return (DDI_FAILURE);
}
mutex_enter(&mpt->m_mutex);
/*
* If the device is busy, don't lower its power level
*/
if (mpt->m_busy && (mpt->m_power_level > level)) {
mutex_exit(&mpt->m_mutex);
return (DDI_FAILURE);
}
switch (level) {
case PM_LEVEL_D0:
NDBG11(("mptsas%d: turning power ON.", mpt->m_instance));
MPTSAS_POWER_ON(mpt);
/*
* Wait up to 30 seconds for IOC to come out of reset.
*/
while (((ioc_status = ddi_get32(mpt->m_datap,
&mpt->m_reg->Doorbell)) &
MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
if (polls++ > 3000) {
break;
}
delay(drv_usectohz(10000));
}
/*
* If IOC is not in operational state, try to hard reset it.
*/
if ((ioc_status & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_OPERATIONAL) {
mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET;
if (mptsas_restart_ioc(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN,
"mptsas_power: hard reset failed");
mutex_exit(&mpt->m_mutex);
return (DDI_FAILURE);
}
}
mpt->m_power_level = PM_LEVEL_D0;
break;
case PM_LEVEL_D3:
NDBG11(("mptsas%d: turning power OFF.", mpt->m_instance));
MPTSAS_POWER_OFF(mpt);
break;
default:
mptsas_log(mpt, CE_WARN, "mptsas%d: unknown power level <%x>.",
mpt->m_instance, level);
rval = DDI_FAILURE;
break;
}
mutex_exit(&mpt->m_mutex);
return (rval);
}
/*
* Initialize configuration space and figure out which
* chip and revison of the chip the mpt driver is using.
*/
static int
mptsas_config_space_init(mptsas_t *mpt)
{
NDBG0(("mptsas_config_space_init"));
if (mpt->m_config_handle != NULL)
return (TRUE);
if (pci_config_setup(mpt->m_dip,
&mpt->m_config_handle) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "cannot map configuration space.");
return (FALSE);
}
/*
* This is a workaround for a XMITS ASIC bug which does not
* drive the CBE upper bits.
*/
if (pci_config_get16(mpt->m_config_handle, PCI_CONF_STAT) &
PCI_STAT_PERROR) {
pci_config_put16(mpt->m_config_handle, PCI_CONF_STAT,
PCI_STAT_PERROR);
}
mptsas_setup_cmd_reg(mpt);
/*
* Get the chip device id:
*/
mpt->m_devid = pci_config_get16(mpt->m_config_handle, PCI_CONF_DEVID);
/*
* Save the revision.
*/
mpt->m_revid = pci_config_get8(mpt->m_config_handle, PCI_CONF_REVID);
/*
* Save the SubSystem Vendor and Device IDs
*/
mpt->m_svid = pci_config_get16(mpt->m_config_handle, PCI_CONF_SUBVENID);
mpt->m_ssid = pci_config_get16(mpt->m_config_handle, PCI_CONF_SUBSYSID);
/*
* Set the latency timer to 0x40 as specified by the upa -> pci
* bridge chip design team. This may be done by the sparc pci
* bus nexus driver, but the driver should make sure the latency
* timer is correct for performance reasons.
*/
pci_config_put8(mpt->m_config_handle, PCI_CONF_LATENCY_TIMER,
MPTSAS_LATENCY_TIMER);
(void) mptsas_get_pci_cap(mpt);
return (TRUE);
}
static void
mptsas_config_space_fini(mptsas_t *mpt)
{
if (mpt->m_config_handle != NULL) {
mptsas_disable_bus_master(mpt);
pci_config_teardown(&mpt->m_config_handle);
mpt->m_config_handle = NULL;
}
}
static void
mptsas_setup_cmd_reg(mptsas_t *mpt)
{
ushort_t cmdreg;
/*
* Set the command register to the needed values.
*/
cmdreg = pci_config_get16(mpt->m_config_handle, PCI_CONF_COMM);
cmdreg |= (PCI_COMM_ME | PCI_COMM_SERR_ENABLE |
PCI_COMM_PARITY_DETECT | PCI_COMM_MAE);
cmdreg &= ~PCI_COMM_IO;
pci_config_put16(mpt->m_config_handle, PCI_CONF_COMM, cmdreg);
}
static void
mptsas_disable_bus_master(mptsas_t *mpt)
{
ushort_t cmdreg;
/*
* Clear the master enable bit in the PCI command register.
* This prevents any bus mastering activity like DMA.
*/
cmdreg = pci_config_get16(mpt->m_config_handle, PCI_CONF_COMM);
cmdreg &= ~PCI_COMM_ME;
pci_config_put16(mpt->m_config_handle, PCI_CONF_COMM, cmdreg);
}
int
mptsas_dma_alloc(mptsas_t *mpt, mptsas_dma_alloc_state_t *dma_statep)
{
ddi_dma_attr_t attrs;
attrs = mpt->m_io_dma_attr;
attrs.dma_attr_sgllen = 1;
ASSERT(dma_statep != NULL);
if (mptsas_dma_addr_create(mpt, attrs, &dma_statep->handle,
&dma_statep->accessp, &dma_statep->memp, dma_statep->size,
&dma_statep->cookie) == FALSE) {
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
void
mptsas_dma_free(mptsas_dma_alloc_state_t *dma_statep)
{
ASSERT(dma_statep != NULL);
mptsas_dma_addr_destroy(&dma_statep->handle, &dma_statep->accessp);
dma_statep->size = 0;
}
int
mptsas_do_dma(mptsas_t *mpt, uint32_t size, int var, int (*callback)())
{
ddi_dma_attr_t attrs;
ddi_dma_handle_t dma_handle;
caddr_t memp;
ddi_acc_handle_t accessp;
int rval;
ASSERT(mutex_owned(&mpt->m_mutex));
attrs = mpt->m_msg_dma_attr;
attrs.dma_attr_sgllen = 1;
attrs.dma_attr_granular = size;
if (mptsas_dma_addr_create(mpt, attrs, &dma_handle,
&accessp, &memp, size, NULL) == FALSE) {
return (DDI_FAILURE);
}
rval = (*callback) (mpt, memp, var, accessp);
if ((mptsas_check_dma_handle(dma_handle) != DDI_SUCCESS) ||
(mptsas_check_acc_handle(accessp) != DDI_SUCCESS)) {
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
rval = DDI_FAILURE;
}
mptsas_dma_addr_destroy(&dma_handle, &accessp);
return (rval);
}
static int
mptsas_alloc_request_frames(mptsas_t *mpt)
{
ddi_dma_attr_t frame_dma_attrs;
caddr_t memp;
ddi_dma_cookie_t cookie;
size_t mem_size;
/*
* re-alloc when it has already alloced
*/
if (mpt->m_dma_req_frame_hdl)
mptsas_dma_addr_destroy(&mpt->m_dma_req_frame_hdl,
&mpt->m_acc_req_frame_hdl);
/*
* The size of the request frame pool is:
* Number of Request Frames * Request Frame Size
*/
mem_size = mpt->m_max_requests * mpt->m_req_frame_size;
/*
* set the DMA attributes. System Request Message Frames must be
* aligned on a 16-byte boundry.
*/
frame_dma_attrs = mpt->m_msg_dma_attr;
frame_dma_attrs.dma_attr_align = 16;
frame_dma_attrs.dma_attr_sgllen = 1;
/*
* allocate the request frame pool.
*/
if (mptsas_dma_addr_create(mpt, frame_dma_attrs,
&mpt->m_dma_req_frame_hdl, &mpt->m_acc_req_frame_hdl, &memp,
mem_size, &cookie) == FALSE) {
return (DDI_FAILURE);
}
/*
* Store the request frame memory address. This chip uses this
* address to dma to and from the driver's frame. The second
* address is the address mpt uses to fill in the frame.
*/
mpt->m_req_frame_dma_addr = cookie.dmac_laddress;
mpt->m_req_frame = memp;
/*
* Clear the request frame pool.
*/
bzero(mpt->m_req_frame, mem_size);
return (DDI_SUCCESS);
}
static int
mptsas_alloc_sense_bufs(mptsas_t *mpt)
{
ddi_dma_attr_t sense_dma_attrs;
caddr_t memp;
ddi_dma_cookie_t cookie;
size_t mem_size;
int num_extrqsense_bufs;
/*
* re-alloc when it has already alloced
*/
if (mpt->m_dma_req_sense_hdl) {
rmfreemap(mpt->m_erqsense_map);
mptsas_dma_addr_destroy(&mpt->m_dma_req_sense_hdl,
&mpt->m_acc_req_sense_hdl);
}
/*
* The size of the request sense pool is:
* (Number of Request Frames - 2 ) * Request Sense Size +
* extra memory for extended sense requests.
*/
mem_size = ((mpt->m_max_requests - 2) * mpt->m_req_sense_size) +
mptsas_extreq_sense_bufsize;
/*
* set the DMA attributes. ARQ buffers
* aligned on a 16-byte boundry.
*/
sense_dma_attrs = mpt->m_msg_dma_attr;
sense_dma_attrs.dma_attr_align = 16;
sense_dma_attrs.dma_attr_sgllen = 1;
/*
* allocate the request sense buffer pool.
*/
if (mptsas_dma_addr_create(mpt, sense_dma_attrs,
&mpt->m_dma_req_sense_hdl, &mpt->m_acc_req_sense_hdl, &memp,
mem_size, &cookie) == FALSE) {
return (DDI_FAILURE);
}
/*
* Store the request sense base memory address. This chip uses this
* address to dma the request sense data. The second
* address is the address mpt uses to access the data.
* The third is the base for the extended rqsense buffers.
*/
mpt->m_req_sense_dma_addr = cookie.dmac_laddress;
mpt->m_req_sense = memp;
memp += (mpt->m_max_requests - 2) * mpt->m_req_sense_size;
mpt->m_extreq_sense = memp;
/*
* The extra memory is divided up into multiples of the base
* buffer size in order to allocate via rmalloc().
* Note that the rmallocmap cannot start at zero!
*/
num_extrqsense_bufs = mptsas_extreq_sense_bufsize /
mpt->m_req_sense_size;
mpt->m_erqsense_map = rmallocmap_wait(num_extrqsense_bufs);
rmfree(mpt->m_erqsense_map, num_extrqsense_bufs, 1);
/*
* Clear the pool.
*/
bzero(mpt->m_req_sense, mem_size);
return (DDI_SUCCESS);
}
static int
mptsas_alloc_reply_frames(mptsas_t *mpt)
{
ddi_dma_attr_t frame_dma_attrs;
caddr_t memp;
ddi_dma_cookie_t cookie;
size_t mem_size;
/*
* re-alloc when it has already alloced
*/
if (mpt->m_dma_reply_frame_hdl) {
mptsas_dma_addr_destroy(&mpt->m_dma_reply_frame_hdl,
&mpt->m_acc_reply_frame_hdl);
}
/*
* The size of the reply frame pool is:
* Number of Reply Frames * Reply Frame Size
*/
mem_size = mpt->m_max_replies * mpt->m_reply_frame_size;
/*
* set the DMA attributes. System Reply Message Frames must be
* aligned on a 4-byte boundry. This is the default.
*/
frame_dma_attrs = mpt->m_msg_dma_attr;
frame_dma_attrs.dma_attr_sgllen = 1;
/*
* allocate the reply frame pool
*/
if (mptsas_dma_addr_create(mpt, frame_dma_attrs,
&mpt->m_dma_reply_frame_hdl, &mpt->m_acc_reply_frame_hdl, &memp,
mem_size, &cookie) == FALSE) {
return (DDI_FAILURE);
}
/*
* Store the reply frame memory address. This chip uses this
* address to dma to and from the driver's frame. The second
* address is the address mpt uses to process the frame.
*/
mpt->m_reply_frame_dma_addr = cookie.dmac_laddress;
mpt->m_reply_frame = memp;
/*
* Clear the reply frame pool.
*/
bzero(mpt->m_reply_frame, mem_size);
return (DDI_SUCCESS);
}
static int
mptsas_alloc_free_queue(mptsas_t *mpt)
{
ddi_dma_attr_t frame_dma_attrs;
caddr_t memp;
ddi_dma_cookie_t cookie;
size_t mem_size;
/*
* re-alloc when it has already alloced
*/
if (mpt->m_dma_free_queue_hdl) {
mptsas_dma_addr_destroy(&mpt->m_dma_free_queue_hdl,
&mpt->m_acc_free_queue_hdl);
}
/*
* The reply free queue size is:
* Reply Free Queue Depth * 4
* The "4" is the size of one 32 bit address (low part of 64-bit
* address)
*/
mem_size = mpt->m_free_queue_depth * 4;
/*
* set the DMA attributes The Reply Free Queue must be aligned on a
* 16-byte boundry.
*/
frame_dma_attrs = mpt->m_msg_dma_attr;
frame_dma_attrs.dma_attr_align = 16;
frame_dma_attrs.dma_attr_sgllen = 1;
/*
* allocate the reply free queue
*/
if (mptsas_dma_addr_create(mpt, frame_dma_attrs,
&mpt->m_dma_free_queue_hdl, &mpt->m_acc_free_queue_hdl, &memp,
mem_size, &cookie) == FALSE) {
return (DDI_FAILURE);
}
/*
* Store the reply free queue memory address. This chip uses this
* address to read from the reply free queue. The second address
* is the address mpt uses to manage the queue.
*/
mpt->m_free_queue_dma_addr = cookie.dmac_laddress;
mpt->m_free_queue = memp;
/*
* Clear the reply free queue memory.
*/
bzero(mpt->m_free_queue, mem_size);
return (DDI_SUCCESS);
}
static int
mptsas_alloc_post_queue(mptsas_t *mpt)
{
ddi_dma_attr_t frame_dma_attrs;
caddr_t memp;
ddi_dma_cookie_t cookie;
size_t mem_size;
/*
* re-alloc when it has already alloced
*/
if (mpt->m_dma_post_queue_hdl) {
mptsas_dma_addr_destroy(&mpt->m_dma_post_queue_hdl,
&mpt->m_acc_post_queue_hdl);
}
/*
* The reply descriptor post queue size is:
* Reply Descriptor Post Queue Depth * 8
* The "8" is the size of each descriptor (8 bytes or 64 bits).
*/
mem_size = mpt->m_post_queue_depth * 8;
/*
* set the DMA attributes. The Reply Descriptor Post Queue must be
* aligned on a 16-byte boundry.
*/
frame_dma_attrs = mpt->m_msg_dma_attr;
frame_dma_attrs.dma_attr_align = 16;
frame_dma_attrs.dma_attr_sgllen = 1;
/*
* allocate the reply post queue
*/
if (mptsas_dma_addr_create(mpt, frame_dma_attrs,
&mpt->m_dma_post_queue_hdl, &mpt->m_acc_post_queue_hdl, &memp,
mem_size, &cookie) == FALSE) {
return (DDI_FAILURE);
}
/*
* Store the reply descriptor post queue memory address. This chip
* uses this address to write to the reply descriptor post queue. The
* second address is the address mpt uses to manage the queue.
*/
mpt->m_post_queue_dma_addr = cookie.dmac_laddress;
mpt->m_post_queue = memp;
/*
* Clear the reply post queue memory.
*/
bzero(mpt->m_post_queue, mem_size);
return (DDI_SUCCESS);
}
static void
mptsas_alloc_reply_args(mptsas_t *mpt)
{
if (mpt->m_replyh_args == NULL) {
mpt->m_replyh_args = kmem_zalloc(sizeof (m_replyh_arg_t) *
mpt->m_max_replies, KM_SLEEP);
}
}
static int
mptsas_alloc_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
mptsas_cache_frames_t *frames = NULL;
if (cmd->cmd_extra_frames == NULL) {
frames = kmem_cache_alloc(mpt->m_cache_frames, KM_NOSLEEP);
if (frames == NULL) {
return (DDI_FAILURE);
}
cmd->cmd_extra_frames = frames;
}
return (DDI_SUCCESS);
}
static void
mptsas_free_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
if (cmd->cmd_extra_frames) {
kmem_cache_free(mpt->m_cache_frames,
(void *)cmd->cmd_extra_frames);
cmd->cmd_extra_frames = NULL;
}
}
static void
mptsas_cfg_fini(mptsas_t *mpt)
{
NDBG0(("mptsas_cfg_fini"));
ddi_regs_map_free(&mpt->m_datap);
}
static void
mptsas_hba_fini(mptsas_t *mpt)
{
NDBG0(("mptsas_hba_fini"));
/*
* Free up any allocated memory
*/
if (mpt->m_dma_req_frame_hdl) {
mptsas_dma_addr_destroy(&mpt->m_dma_req_frame_hdl,
&mpt->m_acc_req_frame_hdl);
}
if (mpt->m_dma_req_sense_hdl) {
rmfreemap(mpt->m_erqsense_map);
mptsas_dma_addr_destroy(&mpt->m_dma_req_sense_hdl,
&mpt->m_acc_req_sense_hdl);
}
if (mpt->m_dma_reply_frame_hdl) {
mptsas_dma_addr_destroy(&mpt->m_dma_reply_frame_hdl,
&mpt->m_acc_reply_frame_hdl);
}
if (mpt->m_dma_free_queue_hdl) {
mptsas_dma_addr_destroy(&mpt->m_dma_free_queue_hdl,
&mpt->m_acc_free_queue_hdl);
}
if (mpt->m_dma_post_queue_hdl) {
mptsas_dma_addr_destroy(&mpt->m_dma_post_queue_hdl,
&mpt->m_acc_post_queue_hdl);
}
if (mpt->m_replyh_args != NULL) {
kmem_free(mpt->m_replyh_args, sizeof (m_replyh_arg_t)
* mpt->m_max_replies);
}
}
static int
mptsas_name_child(dev_info_t *lun_dip, char *name, int len)
{
int lun = 0;
char *sas_wwn = NULL;
int phynum = -1;
int reallen = 0;
/* Get the target num */
lun = ddi_prop_get_int(DDI_DEV_T_ANY, lun_dip, DDI_PROP_DONTPASS,
LUN_PROP, 0);
if ((phynum = ddi_prop_get_int(DDI_DEV_T_ANY, lun_dip,
DDI_PROP_DONTPASS, "sata-phy", -1)) != -1) {
/*
* Stick in the address of form "pPHY,LUN"
*/
reallen = snprintf(name, len, "p%x,%x", phynum, lun);
} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, lun_dip,
DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET_PORT, &sas_wwn)
== DDI_PROP_SUCCESS) {
/*
* Stick in the address of the form "wWWN,LUN"
*/
reallen = snprintf(name, len, "%s,%x", sas_wwn, lun);
ddi_prop_free(sas_wwn);
} else {
return (DDI_FAILURE);
}
ASSERT(reallen < len);
if (reallen >= len) {
mptsas_log(0, CE_WARN, "!mptsas_get_name: name parameter "
"length too small, it needs to be %d bytes", reallen + 1);
}
return (DDI_SUCCESS);
}
/*
* tran_tgt_init(9E) - target device instance initialization
*/
static int
mptsas_scsi_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip,
scsi_hba_tran_t *hba_tran, struct scsi_device *sd)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(hba_tran))
#endif
/*
* At this point, the scsi_device structure already exists
* and has been initialized.
*
* Use this function to allocate target-private data structures,
* if needed by this HBA. Add revised flow-control and queue
* properties for child here, if desired and if you can tell they
* support tagged queueing by now.
*/
mptsas_t *mpt;
int lun = sd->sd_address.a_lun;
mdi_pathinfo_t *pip = NULL;
mptsas_tgt_private_t *tgt_private = NULL;
mptsas_target_t *ptgt = NULL;
char *psas_wwn = NULL;
mptsas_phymask_t phymask = 0;
uint64_t sas_wwn = 0;
mptsas_target_addr_t addr;
mpt = SDEV2MPT(sd);
ASSERT(scsi_hba_iport_unit_address(hba_dip) != 0);
NDBG0(("mptsas_scsi_tgt_init: hbadip=0x%p tgtdip=0x%p lun=%d",
(void *)hba_dip, (void *)tgt_dip, lun));
if (ndi_dev_is_persistent_node(tgt_dip) == 0) {
(void) ndi_merge_node(tgt_dip, mptsas_name_child);
ddi_set_name_addr(tgt_dip, NULL);
return (DDI_FAILURE);
}
/*
* phymask is 0 means the virtual port for RAID
*/
phymask = (mptsas_phymask_t)ddi_prop_get_int(DDI_DEV_T_ANY, hba_dip, 0,
"phymask", 0);
if (mdi_component_is_client(tgt_dip, NULL) == MDI_SUCCESS) {
if ((pip = (void *)(sd->sd_private)) == NULL) {
/*
* Very bad news if this occurs. Somehow scsi_vhci has
* lost the pathinfo node for this target.
*/
return (DDI_NOT_WELL_FORMED);
}
if (mdi_prop_lookup_int(pip, LUN_PROP, &lun) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "Get lun property failed\n");
return (DDI_FAILURE);
}
if (mdi_prop_lookup_string(pip, SCSI_ADDR_PROP_TARGET_PORT,
&psas_wwn) == MDI_SUCCESS) {
if (scsi_wwnstr_to_wwn(psas_wwn, &sas_wwn)) {
sas_wwn = 0;
}
(void) mdi_prop_free(psas_wwn);
}
} else {
lun = ddi_prop_get_int(DDI_DEV_T_ANY, tgt_dip,
DDI_PROP_DONTPASS, LUN_PROP, 0);
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, tgt_dip,
DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET_PORT, &psas_wwn) ==
DDI_PROP_SUCCESS) {
if (scsi_wwnstr_to_wwn(psas_wwn, &sas_wwn)) {
sas_wwn = 0;
}
ddi_prop_free(psas_wwn);
} else {
sas_wwn = 0;
}
}
ASSERT((sas_wwn != 0) || (phymask != 0));
addr.mta_wwn = sas_wwn;
addr.mta_phymask = phymask;
mutex_enter(&mpt->m_mutex);
ptgt = refhash_lookup(mpt->m_targets, &addr);
mutex_exit(&mpt->m_mutex);
if (ptgt == NULL) {
mptsas_log(mpt, CE_WARN, "!tgt_init: target doesn't exist or "
"gone already! phymask:%x, saswwn %"PRIx64, phymask,
sas_wwn);
return (DDI_FAILURE);
}
if (hba_tran->tran_tgt_private == NULL) {
tgt_private = kmem_zalloc(sizeof (mptsas_tgt_private_t),
KM_SLEEP);
tgt_private->t_lun = lun;
tgt_private->t_private = ptgt;
hba_tran->tran_tgt_private = tgt_private;
}
if (mdi_component_is_client(tgt_dip, NULL) == MDI_SUCCESS) {
return (DDI_SUCCESS);
}
mutex_enter(&mpt->m_mutex);
if (ptgt->m_deviceinfo &
(MPI2_SAS_DEVICE_INFO_SATA_DEVICE |
MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) {
uchar_t *inq89 = NULL;
int inq89_len = 0x238;
int reallen = 0;
int rval = 0;
struct sata_id *sid = NULL;
char model[SATA_ID_MODEL_LEN + 1];
char fw[SATA_ID_FW_LEN + 1];
char *vid, *pid;
mutex_exit(&mpt->m_mutex);
/*
* According SCSI/ATA Translation -2 (SAT-2) revision 01a
* chapter 12.4.2 VPD page 89h includes 512 bytes ATA IDENTIFY
* DEVICE data or ATA IDENTIFY PACKET DEVICE data.
*/
inq89 = kmem_zalloc(inq89_len, KM_SLEEP);
rval = mptsas_inquiry(mpt, ptgt, 0, 0x89,
inq89, inq89_len, &reallen, 1);
if (rval != 0) {
if (inq89 != NULL) {
kmem_free(inq89, inq89_len);
}
mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page "
"0x89 for SATA target:%x failed!", ptgt->m_devhdl);
return (DDI_SUCCESS);
}
sid = (void *)(&inq89[60]);
swab(sid->ai_model, model, SATA_ID_MODEL_LEN);
swab(sid->ai_fw, fw, SATA_ID_FW_LEN);
model[SATA_ID_MODEL_LEN] = 0;
fw[SATA_ID_FW_LEN] = 0;
sata_split_model(model, &vid, &pid);
/*
* override SCSA "inquiry-*" properties
*/
if (vid)
(void) scsi_device_prop_update_inqstring(sd,
INQUIRY_VENDOR_ID, vid, strlen(vid));
if (pid)
(void) scsi_device_prop_update_inqstring(sd,
INQUIRY_PRODUCT_ID, pid, strlen(pid));
(void) scsi_device_prop_update_inqstring(sd,
INQUIRY_REVISION_ID, fw, strlen(fw));
if (inq89 != NULL) {
kmem_free(inq89, inq89_len);
}
} else {
mutex_exit(&mpt->m_mutex);
}
return (DDI_SUCCESS);
}
/*
* tran_tgt_free(9E) - target device instance deallocation
*/
static void
mptsas_scsi_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip,
scsi_hba_tran_t *hba_tran, struct scsi_device *sd)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(hba_dip, tgt_dip, hba_tran, sd))
#endif
mptsas_tgt_private_t *tgt_private = hba_tran->tran_tgt_private;
if (tgt_private != NULL) {
kmem_free(tgt_private, sizeof (mptsas_tgt_private_t));
hba_tran->tran_tgt_private = NULL;
}
}
/*
* scsi_pkt handling
*
* Visible to the external world via the transport structure.
*/
/*
* Notes:
* - transport the command to the addressed SCSI target/lun device
* - normal operation is to schedule the command to be transported,
* and return TRAN_ACCEPT if this is successful.
* - if NO_INTR, tran_start must poll device for command completion
*/
static int
mptsas_scsi_start(struct scsi_address *ap, struct scsi_pkt *pkt)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(ap))
#endif
mptsas_t *mpt = PKT2MPT(pkt);
mptsas_cmd_t *cmd = PKT2CMD(pkt);
int rval;
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
NDBG1(("mptsas_scsi_start: pkt=0x%p", (void *)pkt));
ASSERT(ptgt);
if (ptgt == NULL)
return (TRAN_FATAL_ERROR);
/*
* prepare the pkt before taking mutex.
*/
rval = mptsas_prepare_pkt(cmd);
if (rval != TRAN_ACCEPT) {
return (rval);
}
/*
* Send the command to target/lun, however your HBA requires it.
* If busy, return TRAN_BUSY; if there's some other formatting error
* in the packet, return TRAN_BADPKT; otherwise, fall through to the
* return of TRAN_ACCEPT.
*
* Remember that access to shared resources, including the mptsas_t
* data structure and the HBA hardware registers, must be protected
* with mutexes, here and everywhere.
*
* Also remember that at interrupt time, you'll get an argument
* to the interrupt handler which is a pointer to your mptsas_t
* structure; you'll have to remember which commands are outstanding
* and which scsi_pkt is the currently-running command so the
* interrupt handler can refer to the pkt to set completion
* status, call the target driver back through pkt_comp, etc.
*
* If the instance lock is held by other thread, don't spin to wait
* for it. Instead, queue the cmd and next time when the instance lock
* is not held, accept all the queued cmd. A extra tx_waitq is
* introduced to protect the queue.
*
* The polled cmd will not be queud and accepted as usual.
*
* Under the tx_waitq mutex, record whether a thread is draining
* the tx_waitq. An IO requesting thread that finds the instance
* mutex contended appends to the tx_waitq and while holding the
* tx_wait mutex, if the draining flag is not set, sets it and then
* proceeds to spin for the instance mutex. This scheme ensures that
* the last cmd in a burst be processed.
*
* we enable this feature only when the helper threads are enabled,
* at which we think the loads are heavy.
*
* per instance mutex m_tx_waitq_mutex is introduced to protect the
* m_tx_waitqtail, m_tx_waitq, m_tx_draining.
*/
if (mpt->m_doneq_thread_n) {
if (mutex_tryenter(&mpt->m_mutex) != 0) {
rval = mptsas_accept_txwq_and_pkt(mpt, cmd);
mutex_exit(&mpt->m_mutex);
} else if (cmd->cmd_pkt_flags & FLAG_NOINTR) {
mutex_enter(&mpt->m_mutex);
rval = mptsas_accept_txwq_and_pkt(mpt, cmd);
mutex_exit(&mpt->m_mutex);
} else {
mutex_enter(&mpt->m_tx_waitq_mutex);
/*
* ptgt->m_dr_flag is protected by m_mutex or
* m_tx_waitq_mutex. In this case, m_tx_waitq_mutex
* is acquired.
*/
if (ptgt->m_dr_flag == MPTSAS_DR_INTRANSITION) {
if (cmd->cmd_pkt_flags & FLAG_NOQUEUE) {
/*
* The command should be allowed to
* retry by returning TRAN_BUSY to
* to stall the I/O's which come from
* scsi_vhci since the device/path is
* in unstable state now.
*/
mutex_exit(&mpt->m_tx_waitq_mutex);
return (TRAN_BUSY);
} else {
/*
* The device is offline, just fail the
* command by returning
* TRAN_FATAL_ERROR.
*/
mutex_exit(&mpt->m_tx_waitq_mutex);
return (TRAN_FATAL_ERROR);
}
}
if (mpt->m_tx_draining) {
cmd->cmd_flags |= CFLAG_TXQ;
*mpt->m_tx_waitqtail = cmd;
mpt->m_tx_waitqtail = &cmd->cmd_linkp;
mutex_exit(&mpt->m_tx_waitq_mutex);
} else { /* drain the queue */
mpt->m_tx_draining = 1;
mutex_exit(&mpt->m_tx_waitq_mutex);
mutex_enter(&mpt->m_mutex);
rval = mptsas_accept_txwq_and_pkt(mpt, cmd);
mutex_exit(&mpt->m_mutex);
}
}
} else {
mutex_enter(&mpt->m_mutex);
/*
* ptgt->m_dr_flag is protected by m_mutex or m_tx_waitq_mutex
* in this case, m_mutex is acquired.
*/
if (ptgt->m_dr_flag == MPTSAS_DR_INTRANSITION) {
if (cmd->cmd_pkt_flags & FLAG_NOQUEUE) {
/*
* commands should be allowed to retry by
* returning TRAN_BUSY to stall the I/O's
* which come from scsi_vhci since the device/
* path is in unstable state now.
*/
mutex_exit(&mpt->m_mutex);
return (TRAN_BUSY);
} else {
/*
* The device is offline, just fail the
* command by returning TRAN_FATAL_ERROR.
*/
mutex_exit(&mpt->m_mutex);
return (TRAN_FATAL_ERROR);
}
}
rval = mptsas_accept_pkt(mpt, cmd);
mutex_exit(&mpt->m_mutex);
}
return (rval);
}
/*
* Accept all the queued cmds(if any) before accept the current one.
*/
static int
mptsas_accept_txwq_and_pkt(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
int rval;
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* The call to mptsas_accept_tx_waitq() must always be performed
* because that is where mpt->m_tx_draining is cleared.
*/
mutex_enter(&mpt->m_tx_waitq_mutex);
mptsas_accept_tx_waitq(mpt);
mutex_exit(&mpt->m_tx_waitq_mutex);
/*
* ptgt->m_dr_flag is protected by m_mutex or m_tx_waitq_mutex
* in this case, m_mutex is acquired.
*/
if (ptgt->m_dr_flag == MPTSAS_DR_INTRANSITION) {
if (cmd->cmd_pkt_flags & FLAG_NOQUEUE) {
/*
* The command should be allowed to retry by returning
* TRAN_BUSY to stall the I/O's which come from
* scsi_vhci since the device/path is in unstable state
* now.
*/
return (TRAN_BUSY);
} else {
/*
* The device is offline, just fail the command by
* return TRAN_FATAL_ERROR.
*/
return (TRAN_FATAL_ERROR);
}
}
rval = mptsas_accept_pkt(mpt, cmd);
return (rval);
}
static int
mptsas_accept_pkt(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
int rval = TRAN_ACCEPT;
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
NDBG1(("mptsas_accept_pkt: cmd=0x%p", (void *)cmd));
ASSERT(mutex_owned(&mpt->m_mutex));
if ((cmd->cmd_flags & CFLAG_PREPARED) == 0) {
rval = mptsas_prepare_pkt(cmd);
if (rval != TRAN_ACCEPT) {
cmd->cmd_flags &= ~CFLAG_TRANFLAG;
return (rval);
}
}
/*
* reset the throttle if we were draining
*/
if ((ptgt->m_t_ncmds == 0) &&
(ptgt->m_t_throttle == DRAIN_THROTTLE)) {
NDBG23(("reset throttle"));
ASSERT(ptgt->m_reset_delay == 0);
mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE);
}
/*
* If HBA is being reset, the DevHandles are being re-initialized,
* which means that they could be invalid even if the target is still
* attached. Check if being reset and if DevHandle is being
* re-initialized. If this is the case, return BUSY so the I/O can be
* retried later.
*/
if ((ptgt->m_devhdl == MPTSAS_INVALID_DEVHDL) && mpt->m_in_reset) {
mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET);
if (cmd->cmd_flags & CFLAG_TXQ) {
mptsas_doneq_add(mpt, cmd);
mptsas_doneq_empty(mpt);
return (rval);
} else {
return (TRAN_BUSY);
}
}
/*
* If device handle has already been invalidated, just
* fail the command. In theory, command from scsi_vhci
* client is impossible send down command with invalid
* devhdl since devhdl is set after path offline, target
* driver is not suppose to select a offlined path.
*/
if (ptgt->m_devhdl == MPTSAS_INVALID_DEVHDL) {
NDBG3(("rejecting command, it might because invalid devhdl "
"request."));
mptsas_set_pkt_reason(mpt, cmd, CMD_DEV_GONE, STAT_TERMINATED);
if (cmd->cmd_flags & CFLAG_TXQ) {
mptsas_doneq_add(mpt, cmd);
mptsas_doneq_empty(mpt);
return (rval);
} else {
return (TRAN_FATAL_ERROR);
}
}
/*
* The first case is the normal case. mpt gets a command from the
* target driver and starts it.
* Since SMID 0 is reserved and the TM slot is reserved, the actual max
* commands is m_max_requests - 2.
*/
if ((mpt->m_ncmds <= (mpt->m_max_requests - 2)) &&
(ptgt->m_t_throttle > HOLD_THROTTLE) &&
(ptgt->m_t_ncmds < ptgt->m_t_throttle) &&
(ptgt->m_reset_delay == 0) &&
(ptgt->m_t_nwait == 0) &&
((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0)) {
if (mptsas_save_cmd(mpt, cmd) == TRUE) {
(void) mptsas_start_cmd(mpt, cmd);
} else {
mptsas_waitq_add(mpt, cmd);
}
} else {
/*
* Add this pkt to the work queue
*/
mptsas_waitq_add(mpt, cmd);
if (cmd->cmd_pkt_flags & FLAG_NOINTR) {
(void) mptsas_poll(mpt, cmd, MPTSAS_POLL_TIME);
/*
* Only flush the doneq if this is not a TM
* cmd. For TM cmds the flushing of the
* doneq will be done in those routines.
*/
if ((cmd->cmd_flags & CFLAG_TM_CMD) == 0) {
mptsas_doneq_empty(mpt);
}
}
}
return (rval);
}
int
mptsas_save_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
mptsas_slots_t *slots = mpt->m_active;
uint_t slot, start_rotor;
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
ASSERT(MUTEX_HELD(&mpt->m_mutex));
/*
* Account for reserved TM request slot and reserved SMID of 0.
*/
ASSERT(slots->m_n_normal == (mpt->m_max_requests - 2));
/*
* Find the next available slot, beginning at m_rotor. If no slot is
* available, we'll return FALSE to indicate that. This mechanism
* considers only the normal slots, not the reserved slot 0 nor the
* task management slot m_n_normal + 1. The rotor is left to point to
* the normal slot after the one we select, unless we select the last
* normal slot in which case it returns to slot 1.
*/
start_rotor = slots->m_rotor;
do {
slot = slots->m_rotor++;
if (slots->m_rotor > slots->m_n_normal)
slots->m_rotor = 1;
if (slots->m_rotor == start_rotor)
break;
} while (slots->m_slot[slot] != NULL);
if (slots->m_slot[slot] != NULL)
return (FALSE);
ASSERT(slot != 0 && slot <= slots->m_n_normal);
cmd->cmd_slot = slot;
slots->m_slot[slot] = cmd;
mpt->m_ncmds++;
/*
* only increment per target ncmds if this is not a
* command that has no target associated with it (i.e. a
* event acknoledgment)
*/
if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) {
/*
* Expiration time is set in mptsas_start_cmd
*/
ptgt->m_t_ncmds++;
cmd->cmd_active_expiration = 0;
} else {
/*
* Initialize expiration time for passthrough commands,
*/
cmd->cmd_active_expiration = gethrtime() +
(hrtime_t)cmd->cmd_pkt->pkt_time * NANOSEC;
}
return (TRUE);
}
/*
* prepare the pkt:
* the pkt may have been resubmitted or just reused so
* initialize some fields and do some checks.
*/
static int
mptsas_prepare_pkt(mptsas_cmd_t *cmd)
{
struct scsi_pkt *pkt = CMD2PKT(cmd);
NDBG1(("mptsas_prepare_pkt: cmd=0x%p", (void *)cmd));
/*
* Reinitialize some fields that need it; the packet may
* have been resubmitted
*/
pkt->pkt_reason = CMD_CMPLT;
pkt->pkt_state = 0;
pkt->pkt_statistics = 0;
pkt->pkt_resid = 0;
cmd->cmd_age = 0;
cmd->cmd_pkt_flags = pkt->pkt_flags;
/*
* zero status byte.
*/
*(pkt->pkt_scbp) = 0;
if (cmd->cmd_flags & CFLAG_DMAVALID) {
pkt->pkt_resid = cmd->cmd_dmacount;
/*
* consistent packets need to be sync'ed first
* (only for data going out)
*/
if ((cmd->cmd_flags & CFLAG_CMDIOPB) &&
(cmd->cmd_flags & CFLAG_DMASEND)) {
(void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0,
DDI_DMA_SYNC_FORDEV);
}
}
cmd->cmd_flags =
(cmd->cmd_flags & ~(CFLAG_TRANFLAG)) |
CFLAG_PREPARED | CFLAG_IN_TRANSPORT;
return (TRAN_ACCEPT);
}
/*
* tran_init_pkt(9E) - allocate scsi_pkt(9S) for command
*
* One of three possibilities:
* - allocate scsi_pkt
* - allocate scsi_pkt and DMA resources
* - allocate DMA resources to an already-allocated pkt
*/
static struct scsi_pkt *
mptsas_scsi_init_pkt(struct scsi_address *ap, struct scsi_pkt *pkt,
struct buf *bp, int cmdlen, int statuslen, int tgtlen, int flags,
int (*callback)(), caddr_t arg)
{
mptsas_cmd_t *cmd, *new_cmd;
mptsas_t *mpt = ADDR2MPT(ap);
int failure = 1;
uint_t oldcookiec;
mptsas_target_t *ptgt = NULL;
int rval;
mptsas_tgt_private_t *tgt_private;
int kf;
kf = (callback == SLEEP_FUNC)? KM_SLEEP: KM_NOSLEEP;
tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran->
tran_tgt_private;
ASSERT(tgt_private != NULL);
if (tgt_private == NULL) {
return (NULL);
}
ptgt = tgt_private->t_private;
ASSERT(ptgt != NULL);
if (ptgt == NULL)
return (NULL);
ap->a_target = ptgt->m_devhdl;
ap->a_lun = tgt_private->t_lun;
ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC);
#ifdef MPTSAS_TEST_EXTRN_ALLOC
statuslen *= 100; tgtlen *= 4;
#endif
NDBG3(("mptsas_scsi_init_pkt:\n"
"\ttgt=%d in=0x%p bp=0x%p clen=%d slen=%d tlen=%d flags=%x",
ap->a_target, (void *)pkt, (void *)bp,
cmdlen, statuslen, tgtlen, flags));
/*
* Allocate the new packet.
*/
if (pkt == NULL) {
ddi_dma_handle_t save_dma_handle;
cmd = kmem_cache_alloc(mpt->m_kmem_cache, kf);
if (cmd) {
save_dma_handle = cmd->cmd_dmahandle;
bzero(cmd, sizeof (*cmd) + scsi_pkt_size());
cmd->cmd_dmahandle = save_dma_handle;
pkt = (void *)((uchar_t *)cmd +
sizeof (struct mptsas_cmd));
pkt->pkt_ha_private = (opaque_t)cmd;
pkt->pkt_address = *ap;
pkt->pkt_private = (opaque_t)cmd->cmd_pkt_private;
pkt->pkt_scbp = (opaque_t)&cmd->cmd_scb;
pkt->pkt_cdbp = (opaque_t)&cmd->cmd_cdb;
cmd->cmd_pkt = (struct scsi_pkt *)pkt;
cmd->cmd_cdblen = (uchar_t)cmdlen;
cmd->cmd_scblen = statuslen;
cmd->cmd_rqslen = SENSE_LENGTH;
cmd->cmd_tgt_addr = ptgt;
failure = 0;
}
if (failure || (cmdlen > sizeof (cmd->cmd_cdb)) ||
(tgtlen > PKT_PRIV_LEN) ||
(statuslen > EXTCMDS_STATUS_SIZE)) {
if (failure == 0) {
/*
* if extern alloc fails, all will be
* deallocated, including cmd
*/
failure = mptsas_pkt_alloc_extern(mpt, cmd,
cmdlen, tgtlen, statuslen, kf);
}
if (failure) {
/*
* if extern allocation fails, it will
* deallocate the new pkt as well
*/
return (NULL);
}
}
new_cmd = cmd;
} else {
cmd = PKT2CMD(pkt);
new_cmd = NULL;
}
/* grab cmd->cmd_cookiec here as oldcookiec */
oldcookiec = cmd->cmd_cookiec;
/*
* If the dma was broken up into PARTIAL transfers cmd_nwin will be
* greater than 0 and we'll need to grab the next dma window
*/
/*
* SLM-not doing extra command frame right now; may add later
*/
if (cmd->cmd_nwin > 0) {
/*
* Make sure we havn't gone past the the total number
* of windows
*/
if (++cmd->cmd_winindex >= cmd->cmd_nwin) {
return (NULL);
}
if (ddi_dma_getwin(cmd->cmd_dmahandle, cmd->cmd_winindex,
&cmd->cmd_dma_offset, &cmd->cmd_dma_len,
&cmd->cmd_cookie, &cmd->cmd_cookiec) == DDI_FAILURE) {
return (NULL);
}
goto get_dma_cookies;
}
if (flags & PKT_XARQ) {
cmd->cmd_flags |= CFLAG_XARQ;
}
/*
* DMA resource allocation. This version assumes your
* HBA has some sort of bus-mastering or onboard DMA capability, with a
* scatter-gather list of length MPTSAS_MAX_DMA_SEGS, as given in the
* ddi_dma_attr_t structure and passed to scsi_impl_dmaget.
*/
if (bp && (bp->b_bcount != 0) &&
(cmd->cmd_flags & CFLAG_DMAVALID) == 0) {
int cnt, dma_flags;
mptti_t *dmap; /* ptr to the S/G list */
/*
* Set up DMA memory and position to the next DMA segment.
*/
ASSERT(cmd->cmd_dmahandle != NULL);
if (bp->b_flags & B_READ) {
dma_flags = DDI_DMA_READ;
cmd->cmd_flags &= ~CFLAG_DMASEND;
} else {
dma_flags = DDI_DMA_WRITE;
cmd->cmd_flags |= CFLAG_DMASEND;
}
if (flags & PKT_CONSISTENT) {
cmd->cmd_flags |= CFLAG_CMDIOPB;
dma_flags |= DDI_DMA_CONSISTENT;
}
if (flags & PKT_DMA_PARTIAL) {
dma_flags |= DDI_DMA_PARTIAL;
}
/*
* workaround for byte hole issue on psycho and
* schizo pre 2.1
*/
if ((bp->b_flags & B_READ) && ((bp->b_flags &
(B_PAGEIO|B_REMAPPED)) != B_PAGEIO) &&
((uintptr_t)bp->b_un.b_addr & 0x7)) {
dma_flags |= DDI_DMA_CONSISTENT;
}
rval = ddi_dma_buf_bind_handle(cmd->cmd_dmahandle, bp,
dma_flags, callback, arg,
&cmd->cmd_cookie, &cmd->cmd_cookiec);
if (rval == DDI_DMA_PARTIAL_MAP) {
(void) ddi_dma_numwin(cmd->cmd_dmahandle,
&cmd->cmd_nwin);
cmd->cmd_winindex = 0;
(void) ddi_dma_getwin(cmd->cmd_dmahandle,
cmd->cmd_winindex, &cmd->cmd_dma_offset,
&cmd->cmd_dma_len, &cmd->cmd_cookie,
&cmd->cmd_cookiec);
} else if (rval && (rval != DDI_DMA_MAPPED)) {
switch (rval) {
case DDI_DMA_NORESOURCES:
bioerror(bp, 0);
break;
case DDI_DMA_BADATTR:
case DDI_DMA_NOMAPPING:
bioerror(bp, EFAULT);
break;
case DDI_DMA_TOOBIG:
default:
bioerror(bp, EINVAL);
break;
}
cmd->cmd_flags &= ~CFLAG_DMAVALID;
if (new_cmd) {
mptsas_scsi_destroy_pkt(ap, pkt);
}
return ((struct scsi_pkt *)NULL);
}
get_dma_cookies:
cmd->cmd_flags |= CFLAG_DMAVALID;
ASSERT(cmd->cmd_cookiec > 0);
if (cmd->cmd_cookiec > MPTSAS_MAX_CMD_SEGS) {
mptsas_log(mpt, CE_NOTE, "large cookiec received %d\n",
cmd->cmd_cookiec);
bioerror(bp, EINVAL);
if (new_cmd) {
mptsas_scsi_destroy_pkt(ap, pkt);
}
return ((struct scsi_pkt *)NULL);
}
/*
* Allocate extra SGL buffer if needed.
*/
if ((cmd->cmd_cookiec > MPTSAS_MAX_FRAME_SGES64(mpt)) &&
(cmd->cmd_extra_frames == NULL)) {
if (mptsas_alloc_extra_sgl_frame(mpt, cmd) ==
DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "MPT SGL mem alloc "
"failed");
bioerror(bp, ENOMEM);
if (new_cmd) {
mptsas_scsi_destroy_pkt(ap, pkt);
}
return ((struct scsi_pkt *)NULL);
}
}
/*
* Always use scatter-gather transfer
* Use the loop below to store physical addresses of
* DMA segments, from the DMA cookies, into your HBA's
* scatter-gather list.
* We need to ensure we have enough kmem alloc'd
* for the sg entries since we are no longer using an
* array inside mptsas_cmd_t.
*
* We check cmd->cmd_cookiec against oldcookiec so
* the scatter-gather list is correctly allocated
*/
if (oldcookiec != cmd->cmd_cookiec) {
if (cmd->cmd_sg != (mptti_t *)NULL) {
kmem_free(cmd->cmd_sg, sizeof (mptti_t) *
oldcookiec);
cmd->cmd_sg = NULL;
}
}
if (cmd->cmd_sg == (mptti_t *)NULL) {
cmd->cmd_sg = kmem_alloc((size_t)(sizeof (mptti_t)*
cmd->cmd_cookiec), kf);
if (cmd->cmd_sg == (mptti_t *)NULL) {
mptsas_log(mpt, CE_WARN,
"unable to kmem_alloc enough memory "
"for scatter/gather list");
/*
* if we have an ENOMEM condition we need to behave
* the same way as the rest of this routine
*/
bioerror(bp, ENOMEM);
if (new_cmd) {
mptsas_scsi_destroy_pkt(ap, pkt);
}
return ((struct scsi_pkt *)NULL);
}
}
dmap = cmd->cmd_sg;
ASSERT(cmd->cmd_cookie.dmac_size != 0);
/*
* store the first segment into the S/G list
*/
dmap->count = cmd->cmd_cookie.dmac_size;
dmap->addr.address64.Low = (uint32_t)
(cmd->cmd_cookie.dmac_laddress & 0xffffffffull);
dmap->addr.address64.High = (uint32_t)
(cmd->cmd_cookie.dmac_laddress >> 32);
/*
* dmacount counts the size of the dma for this window
* (if partial dma is being used). totaldmacount
* keeps track of the total amount of dma we have
* transferred for all the windows (needed to calculate
* the resid value below).
*/
cmd->cmd_dmacount = cmd->cmd_cookie.dmac_size;
cmd->cmd_totaldmacount += cmd->cmd_cookie.dmac_size;
/*
* We already stored the first DMA scatter gather segment,
* start at 1 if we need to store more.
*/
for (cnt = 1; cnt < cmd->cmd_cookiec; cnt++) {
/*
* Get next DMA cookie
*/
ddi_dma_nextcookie(cmd->cmd_dmahandle,
&cmd->cmd_cookie);
dmap++;
cmd->cmd_dmacount += cmd->cmd_cookie.dmac_size;
cmd->cmd_totaldmacount += cmd->cmd_cookie.dmac_size;
/*
* store the segment parms into the S/G list
*/
dmap->count = cmd->cmd_cookie.dmac_size;
dmap->addr.address64.Low = (uint32_t)
(cmd->cmd_cookie.dmac_laddress & 0xffffffffull);
dmap->addr.address64.High = (uint32_t)
(cmd->cmd_cookie.dmac_laddress >> 32);
}
/*
* If this was partially allocated we set the resid
* the amount of data NOT transferred in this window
* If there is only one window, the resid will be 0
*/
pkt->pkt_resid = (bp->b_bcount - cmd->cmd_totaldmacount);
NDBG3(("mptsas_scsi_init_pkt: cmd_dmacount=%d.",
cmd->cmd_dmacount));
}
return (pkt);
}
/*
* tran_destroy_pkt(9E) - scsi_pkt(9s) deallocation
*
* Notes:
* - also frees DMA resources if allocated
* - implicit DMA synchonization
*/
static void
mptsas_scsi_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
{
mptsas_cmd_t *cmd = PKT2CMD(pkt);
mptsas_t *mpt = ADDR2MPT(ap);
NDBG3(("mptsas_scsi_destroy_pkt: target=%d pkt=0x%p",
ap->a_target, (void *)pkt));
if (cmd->cmd_flags & CFLAG_DMAVALID) {
(void) ddi_dma_unbind_handle(cmd->cmd_dmahandle);
cmd->cmd_flags &= ~CFLAG_DMAVALID;
}
if (cmd->cmd_sg) {
kmem_free(cmd->cmd_sg, sizeof (mptti_t) * cmd->cmd_cookiec);
cmd->cmd_sg = NULL;
}
mptsas_free_extra_sgl_frame(mpt, cmd);
if ((cmd->cmd_flags &
(CFLAG_FREE | CFLAG_CDBEXTERN | CFLAG_PRIVEXTERN |
CFLAG_SCBEXTERN)) == 0) {
cmd->cmd_flags = CFLAG_FREE;
kmem_cache_free(mpt->m_kmem_cache, (void *)cmd);
} else {
mptsas_pkt_destroy_extern(mpt, cmd);
}
}
/*
* kmem cache constructor and destructor:
* When constructing, we bzero the cmd and allocate the dma handle
* When destructing, just free the dma handle
*/
static int
mptsas_kmem_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
mptsas_cmd_t *cmd = buf;
mptsas_t *mpt = cdrarg;
int (*callback)(caddr_t);
callback = (kmflags == KM_SLEEP)? DDI_DMA_SLEEP: DDI_DMA_DONTWAIT;
NDBG4(("mptsas_kmem_cache_constructor"));
/*
* allocate a dma handle
*/
if ((ddi_dma_alloc_handle(mpt->m_dip, &mpt->m_io_dma_attr, callback,
NULL, &cmd->cmd_dmahandle)) != DDI_SUCCESS) {
cmd->cmd_dmahandle = NULL;
return (-1);
}
return (0);
}
static void
mptsas_kmem_cache_destructor(void *buf, void *cdrarg)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(cdrarg))
#endif
mptsas_cmd_t *cmd = buf;
NDBG4(("mptsas_kmem_cache_destructor"));
if (cmd->cmd_dmahandle) {
ddi_dma_free_handle(&cmd->cmd_dmahandle);
cmd->cmd_dmahandle = NULL;
}
}
static int
mptsas_cache_frames_constructor(void *buf, void *cdrarg, int kmflags)
{
mptsas_cache_frames_t *p = buf;
mptsas_t *mpt = cdrarg;
ddi_dma_attr_t frame_dma_attr;
size_t mem_size, alloc_len;
ddi_dma_cookie_t cookie;
uint_t ncookie;
int (*callback)(caddr_t) = (kmflags == KM_SLEEP)
? DDI_DMA_SLEEP: DDI_DMA_DONTWAIT;
frame_dma_attr = mpt->m_msg_dma_attr;
frame_dma_attr.dma_attr_align = 0x10;
frame_dma_attr.dma_attr_sgllen = 1;
if (ddi_dma_alloc_handle(mpt->m_dip, &frame_dma_attr, callback, NULL,
&p->m_dma_hdl) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "Unable to allocate dma handle for"
" extra SGL.");
return (DDI_FAILURE);
}
mem_size = (mpt->m_max_request_frames - 1) * mpt->m_req_frame_size;
if (ddi_dma_mem_alloc(p->m_dma_hdl, mem_size, &mpt->m_dev_acc_attr,
DDI_DMA_CONSISTENT, callback, NULL, (caddr_t *)&p->m_frames_addr,
&alloc_len, &p->m_acc_hdl) != DDI_SUCCESS) {
ddi_dma_free_handle(&p->m_dma_hdl);
p->m_dma_hdl = NULL;
mptsas_log(mpt, CE_WARN, "Unable to allocate dma memory for"
" extra SGL.");
return (DDI_FAILURE);
}
if (ddi_dma_addr_bind_handle(p->m_dma_hdl, NULL, p->m_frames_addr,
alloc_len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, callback, NULL,
&cookie, &ncookie) != DDI_DMA_MAPPED) {
(void) ddi_dma_mem_free(&p->m_acc_hdl);
ddi_dma_free_handle(&p->m_dma_hdl);
p->m_dma_hdl = NULL;
mptsas_log(mpt, CE_WARN, "Unable to bind DMA resources for"
" extra SGL");
return (DDI_FAILURE);
}
/*
* Store the SGL memory address. This chip uses this
* address to dma to and from the driver. The second
* address is the address mpt uses to fill in the SGL.
*/
p->m_phys_addr = cookie.dmac_laddress;
return (DDI_SUCCESS);
}
static void
mptsas_cache_frames_destructor(void *buf, void *cdrarg)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(cdrarg))
#endif
mptsas_cache_frames_t *p = buf;
if (p->m_dma_hdl != NULL) {
(void) ddi_dma_unbind_handle(p->m_dma_hdl);
(void) ddi_dma_mem_free(&p->m_acc_hdl);
ddi_dma_free_handle(&p->m_dma_hdl);
p->m_phys_addr = NULL;
p->m_frames_addr = NULL;
p->m_dma_hdl = NULL;
p->m_acc_hdl = NULL;
}
}
/*
* Figure out if we need to use a different method for the request
* sense buffer and allocate from the map if necessary.
*/
static boolean_t
mptsas_cmdarqsize(mptsas_t *mpt, mptsas_cmd_t *cmd, size_t senselength, int kf)
{
if (senselength > mpt->m_req_sense_size) {
unsigned long i;
/* Sense length is limited to an 8 bit value in MPI Spec. */
if (senselength > 255)
senselength = 255;
cmd->cmd_extrqschunks = (senselength +
(mpt->m_req_sense_size - 1))/mpt->m_req_sense_size;
i = (kf == KM_SLEEP ? rmalloc_wait : rmalloc)
(mpt->m_erqsense_map, cmd->cmd_extrqschunks);
if (i == 0)
return (B_FALSE);
cmd->cmd_extrqslen = (uint16_t)senselength;
cmd->cmd_extrqsidx = i - 1;
cmd->cmd_arq_buf = mpt->m_extreq_sense +
(cmd->cmd_extrqsidx * mpt->m_req_sense_size);
} else {
cmd->cmd_rqslen = (uchar_t)senselength;
}
return (B_TRUE);
}
/*
* allocate and deallocate external pkt space (ie. not part of mptsas_cmd)
* for non-standard length cdb, pkt_private, status areas
* if allocation fails, then deallocate all external space and the pkt
*/
/* ARGSUSED */
static int
mptsas_pkt_alloc_extern(mptsas_t *mpt, mptsas_cmd_t *cmd,
int cmdlen, int tgtlen, int statuslen, int kf)
{
caddr_t cdbp, scbp, tgt;
NDBG3(("mptsas_pkt_alloc_extern: "
"cmd=0x%p cmdlen=%d tgtlen=%d statuslen=%d kf=%x",
(void *)cmd, cmdlen, tgtlen, statuslen, kf));
tgt = cdbp = scbp = NULL;
cmd->cmd_scblen = statuslen;
cmd->cmd_privlen = (uchar_t)tgtlen;
if (cmdlen > sizeof (cmd->cmd_cdb)) {
if ((cdbp = kmem_zalloc((size_t)cmdlen, kf)) == NULL) {
goto fail;
}
cmd->cmd_pkt->pkt_cdbp = (opaque_t)cdbp;
cmd->cmd_flags |= CFLAG_CDBEXTERN;
}
if (tgtlen > PKT_PRIV_LEN) {
if ((tgt = kmem_zalloc((size_t)tgtlen, kf)) == NULL) {
goto fail;
}
cmd->cmd_flags |= CFLAG_PRIVEXTERN;
cmd->cmd_pkt->pkt_private = tgt;
}
if (statuslen > EXTCMDS_STATUS_SIZE) {
if ((scbp = kmem_zalloc((size_t)statuslen, kf)) == NULL) {
goto fail;
}
cmd->cmd_flags |= CFLAG_SCBEXTERN;
cmd->cmd_pkt->pkt_scbp = (opaque_t)scbp;
/* allocate sense data buf for DMA */
if (mptsas_cmdarqsize(mpt, cmd, statuslen -
MPTSAS_GET_ITEM_OFF(struct scsi_arq_status, sts_sensedata),
kf) == B_FALSE)
goto fail;
}
return (0);
fail:
mptsas_pkt_destroy_extern(mpt, cmd);
return (1);
}
/*
* deallocate external pkt space and deallocate the pkt
*/
static void
mptsas_pkt_destroy_extern(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
NDBG3(("mptsas_pkt_destroy_extern: cmd=0x%p", (void *)cmd));
if (cmd->cmd_flags & CFLAG_FREE) {
mptsas_log(mpt, CE_PANIC,
"mptsas_pkt_destroy_extern: freeing free packet");
_NOTE(NOT_REACHED)
/* NOTREACHED */
}
if (cmd->cmd_extrqslen != 0) {
rmfree(mpt->m_erqsense_map, cmd->cmd_extrqschunks,
cmd->cmd_extrqsidx + 1);
}
if (cmd->cmd_flags & CFLAG_CDBEXTERN) {
kmem_free(cmd->cmd_pkt->pkt_cdbp, (size_t)cmd->cmd_cdblen);
}
if (cmd->cmd_flags & CFLAG_SCBEXTERN) {
kmem_free(cmd->cmd_pkt->pkt_scbp, (size_t)cmd->cmd_scblen);
}
if (cmd->cmd_flags & CFLAG_PRIVEXTERN) {
kmem_free(cmd->cmd_pkt->pkt_private, (size_t)cmd->cmd_privlen);
}
cmd->cmd_flags = CFLAG_FREE;
kmem_cache_free(mpt->m_kmem_cache, (void *)cmd);
}
/*
* tran_sync_pkt(9E) - explicit DMA synchronization
*/
/*ARGSUSED*/
static void
mptsas_scsi_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
{
mptsas_cmd_t *cmd = PKT2CMD(pkt);
NDBG3(("mptsas_scsi_sync_pkt: target=%d, pkt=0x%p",
ap->a_target, (void *)pkt));
if (cmd->cmd_dmahandle) {
(void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0,
(cmd->cmd_flags & CFLAG_DMASEND) ?
DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU);
}
}
/*
* tran_dmafree(9E) - deallocate DMA resources allocated for command
*/
/*ARGSUSED*/
static void
mptsas_scsi_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt)
{
mptsas_cmd_t *cmd = PKT2CMD(pkt);
mptsas_t *mpt = ADDR2MPT(ap);
NDBG3(("mptsas_scsi_dmafree: target=%d pkt=0x%p",
ap->a_target, (void *)pkt));
if (cmd->cmd_flags & CFLAG_DMAVALID) {
(void) ddi_dma_unbind_handle(cmd->cmd_dmahandle);
cmd->cmd_flags &= ~CFLAG_DMAVALID;
}
mptsas_free_extra_sgl_frame(mpt, cmd);
}
static void
mptsas_pkt_comp(struct scsi_pkt *pkt, mptsas_cmd_t *cmd)
{
if ((cmd->cmd_flags & CFLAG_CMDIOPB) &&
(!(cmd->cmd_flags & CFLAG_DMASEND))) {
(void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0,
DDI_DMA_SYNC_FORCPU);
}
(*pkt->pkt_comp)(pkt);
}
static void
mptsas_sge_mainframe(mptsas_cmd_t *cmd, pMpi2SCSIIORequest_t frame,
ddi_acc_handle_t acc_hdl, uint_t cookiec, uint32_t end_flags)
{
pMpi2SGESimple64_t sge;
mptti_t *dmap;
uint32_t flags;
dmap = cmd->cmd_sg;
sge = (pMpi2SGESimple64_t)(&frame->SGL);
while (cookiec--) {
ddi_put32(acc_hdl,
&sge->Address.Low, dmap->addr.address64.Low);
ddi_put32(acc_hdl,
&sge->Address.High, dmap->addr.address64.High);
ddi_put32(acc_hdl, &sge->FlagsLength,
dmap->count);
flags = ddi_get32(acc_hdl, &sge->FlagsLength);
flags |= ((uint32_t)
(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS |
MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
MPI2_SGE_FLAGS_SHIFT);
/*
* If this is the last cookie, we set the flags
* to indicate so
*/
if (cookiec == 0) {
flags |= end_flags;
}
if (cmd->cmd_flags & CFLAG_DMASEND) {
flags |= (MPI2_SGE_FLAGS_HOST_TO_IOC <<
MPI2_SGE_FLAGS_SHIFT);
} else {
flags |= (MPI2_SGE_FLAGS_IOC_TO_HOST <<
MPI2_SGE_FLAGS_SHIFT);
}
ddi_put32(acc_hdl, &sge->FlagsLength, flags);
dmap++;
sge++;
}
}
static void
mptsas_sge_chain(mptsas_t *mpt, mptsas_cmd_t *cmd,
pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl)
{
pMpi2SGESimple64_t sge;
pMpi2SGEChain64_t sgechain;
uint64_t nframe_phys_addr;
uint_t cookiec;
mptti_t *dmap;
uint32_t flags;
/*
* Save the number of entries in the DMA
* Scatter/Gather list
*/
cookiec = cmd->cmd_cookiec;
/*
* Hereby we start to deal with multiple frames.
* The process is as follows:
* 1. Determine how many frames are needed for SGL element
* storage; Note that all frames are stored in contiguous
* memory space and in 64-bit DMA mode each element is
* 3 double-words (12 bytes) long.
* 2. Fill up the main frame. We need to do this separately
* since it contains the SCSI IO request header and needs
* dedicated processing. Note that the last 4 double-words
* of the SCSI IO header is for SGL element storage
* (MPI2_SGE_IO_UNION).
* 3. Fill the chain element in the main frame, so the DMA
* engine can use the following frames.
* 4. Enter a loop to fill the remaining frames. Note that the
* last frame contains no chain element. The remaining
* frames go into the mpt SGL buffer allocated on the fly,
* not immediately following the main message frame, as in
* Gen1.
* Some restrictions:
* 1. For 64-bit DMA, the simple element and chain element
* are both of 3 double-words (12 bytes) in size, even
* though all frames are stored in the first 4G of mem
* range and the higher 32-bits of the address are always 0.
* 2. On some controllers (like the 1064/1068), a frame can
* hold SGL elements with the last 1 or 2 double-words
* (4 or 8 bytes) un-used. On these controllers, we should
* recognize that there's not enough room for another SGL
* element and move the sge pointer to the next frame.
*/
int i, j, k, l, frames, sgemax;
int temp;
uint8_t chainflags;
uint16_t chainlength;
mptsas_cache_frames_t *p;
/*
* Sgemax is the number of SGE's that will fit
* each extra frame and frames is total
* number of frames we'll need. 1 sge entry per
* frame is reseverd for the chain element thus the -1 below.
*/
sgemax = ((mpt->m_req_frame_size / sizeof (MPI2_SGE_SIMPLE64))
- 1);
temp = (cookiec - (MPTSAS_MAX_FRAME_SGES64(mpt) - 1)) / sgemax;
/*
* A little check to see if we need to round up the number
* of frames we need
*/
if ((cookiec - (MPTSAS_MAX_FRAME_SGES64(mpt) - 1)) - (temp *
sgemax) > 1) {
frames = (temp + 1);
} else {
frames = temp;
}
dmap = cmd->cmd_sg;
sge = (pMpi2SGESimple64_t)(&frame->SGL);
/*
* First fill in the main frame
*/
j = MPTSAS_MAX_FRAME_SGES64(mpt) - 1;
mptsas_sge_mainframe(cmd, frame, acc_hdl, j,
((uint32_t)(MPI2_SGE_FLAGS_LAST_ELEMENT) <<
MPI2_SGE_FLAGS_SHIFT));
dmap += j;
sge += j;
j++;
/*
* Fill in the chain element in the main frame.
* About calculation on ChainOffset:
* 1. Struct msg_scsi_io_request has 4 double-words (16 bytes)
* in the end reserved for SGL element storage
* (MPI2_SGE_IO_UNION); we should count it in our
* calculation. See its definition in the header file.
* 2. Constant j is the counter of the current SGL element
* that will be processed, and (j - 1) is the number of
* SGL elements that have been processed (stored in the
* main frame).
* 3. ChainOffset value should be in units of double-words (4
* bytes) so the last value should be divided by 4.
*/
ddi_put8(acc_hdl, &frame->ChainOffset,
(sizeof (MPI2_SCSI_IO_REQUEST) -
sizeof (MPI2_SGE_IO_UNION) +
(j - 1) * sizeof (MPI2_SGE_SIMPLE64)) >> 2);
sgechain = (pMpi2SGEChain64_t)sge;
chainflags = (MPI2_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS |
MPI2_SGE_FLAGS_64_BIT_ADDRESSING);
ddi_put8(acc_hdl, &sgechain->Flags, chainflags);
/*
* The size of the next frame is the accurate size of space
* (in bytes) used to store the SGL elements. j is the counter
* of SGL elements. (j - 1) is the number of SGL elements that
* have been processed (stored in frames).
*/
if (frames >= 2) {
ASSERT(mpt->m_req_frame_size >= sizeof (MPI2_SGE_SIMPLE64));
chainlength = mpt->m_req_frame_size /
sizeof (MPI2_SGE_SIMPLE64) *
sizeof (MPI2_SGE_SIMPLE64);
} else {
chainlength = ((cookiec - (j - 1)) *
sizeof (MPI2_SGE_SIMPLE64));
}
p = cmd->cmd_extra_frames;
ddi_put16(acc_hdl, &sgechain->Length, chainlength);
ddi_put32(acc_hdl, &sgechain->Address.Low, p->m_phys_addr);
ddi_put32(acc_hdl, &sgechain->Address.High, p->m_phys_addr >> 32);
/*
* If there are more than 2 frames left we have to
* fill in the next chain offset to the location of
* the chain element in the next frame.
* sgemax is the number of simple elements in an extra
* frame. Note that the value NextChainOffset should be
* in double-words (4 bytes).
*/
if (frames >= 2) {
ddi_put8(acc_hdl, &sgechain->NextChainOffset,
(sgemax * sizeof (MPI2_SGE_SIMPLE64)) >> 2);
} else {
ddi_put8(acc_hdl, &sgechain->NextChainOffset, 0);
}
/*
* Jump to next frame;
* Starting here, chain buffers go into the per command SGL.
* This buffer is allocated when chain buffers are needed.
*/
sge = (pMpi2SGESimple64_t)p->m_frames_addr;
i = cookiec;
/*
* Start filling in frames with SGE's. If we
* reach the end of frame and still have SGE's
* to fill we need to add a chain element and
* use another frame. j will be our counter
* for what cookie we are at and i will be
* the total cookiec. k is the current frame
*/
for (k = 1; k <= frames; k++) {
for (l = 1; (l <= (sgemax + 1)) && (j <= i); j++, l++) {
/*
* If we have reached the end of frame
* and we have more SGE's to fill in
* we have to fill the final entry
* with a chain element and then
* continue to the next frame
*/
if ((l == (sgemax + 1)) && (k != frames)) {
sgechain = (pMpi2SGEChain64_t)sge;
j--;
chainflags = (
MPI2_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS |
MPI2_SGE_FLAGS_64_BIT_ADDRESSING);
ddi_put8(p->m_acc_hdl,
&sgechain->Flags, chainflags);
/*
* k is the frame counter and (k + 1)
* is the number of the next frame.
* Note that frames are in contiguous
* memory space.
*/
nframe_phys_addr = p->m_phys_addr +
(mpt->m_req_frame_size * k);
ddi_put32(p->m_acc_hdl,
&sgechain->Address.Low,
nframe_phys_addr);
ddi_put32(p->m_acc_hdl,
&sgechain->Address.High,
nframe_phys_addr >> 32);
/*
* If there are more than 2 frames left
* we have to next chain offset to
* the location of the chain element
* in the next frame and fill in the
* length of the next chain
*/
if ((frames - k) >= 2) {
ddi_put8(p->m_acc_hdl,
&sgechain->NextChainOffset,
(sgemax *
sizeof (MPI2_SGE_SIMPLE64))
>> 2);
ddi_put16(p->m_acc_hdl,
&sgechain->Length,
mpt->m_req_frame_size /
sizeof (MPI2_SGE_SIMPLE64) *
sizeof (MPI2_SGE_SIMPLE64));
} else {
/*
* This is the last frame. Set
* the NextChainOffset to 0 and
* Length is the total size of
* all remaining simple elements
*/
ddi_put8(p->m_acc_hdl,
&sgechain->NextChainOffset,
0);
ddi_put16(p->m_acc_hdl,
&sgechain->Length,
(cookiec - j) *
sizeof (MPI2_SGE_SIMPLE64));
}
/* Jump to the next frame */
sge = (pMpi2SGESimple64_t)
((char *)p->m_frames_addr +
(int)mpt->m_req_frame_size * k);
continue;
}
ddi_put32(p->m_acc_hdl,
&sge->Address.Low,
dmap->addr.address64.Low);
ddi_put32(p->m_acc_hdl,
&sge->Address.High,
dmap->addr.address64.High);
ddi_put32(p->m_acc_hdl,
&sge->FlagsLength, dmap->count);
flags = ddi_get32(p->m_acc_hdl,
&sge->FlagsLength);
flags |= ((uint32_t)(
MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS |
MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
MPI2_SGE_FLAGS_SHIFT);
/*
* If we are at the end of the frame and
* there is another frame to fill in
* we set the last simple element as last
* element
*/
if ((l == sgemax) && (k != frames)) {
flags |= ((uint32_t)
(MPI2_SGE_FLAGS_LAST_ELEMENT) <<
MPI2_SGE_FLAGS_SHIFT);
}
/*
* If this is the final cookie we
* indicate it by setting the flags
*/
if (j == i) {
flags |= ((uint32_t)
(MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST) <<
MPI2_SGE_FLAGS_SHIFT);
}
if (cmd->cmd_flags & CFLAG_DMASEND) {
flags |=
(MPI2_SGE_FLAGS_HOST_TO_IOC <<
MPI2_SGE_FLAGS_SHIFT);
} else {
flags |=
(MPI2_SGE_FLAGS_IOC_TO_HOST <<
MPI2_SGE_FLAGS_SHIFT);
}
ddi_put32(p->m_acc_hdl,
&sge->FlagsLength, flags);
dmap++;
sge++;
}
}
/*
* Sync DMA with the chain buffers that were just created
*/
(void) ddi_dma_sync(p->m_dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
}
static void
mptsas_ieee_sge_mainframe(mptsas_cmd_t *cmd, pMpi2SCSIIORequest_t frame,
ddi_acc_handle_t acc_hdl, uint_t cookiec, uint8_t end_flag)
{
pMpi2IeeeSgeSimple64_t ieeesge;
mptti_t *dmap;
uint8_t flags;
dmap = cmd->cmd_sg;
NDBG1(("mptsas_ieee_sge_mainframe: cookiec=%d, %s", cookiec,
cmd->cmd_flags & CFLAG_DMASEND?"Out":"In"));
ieeesge = (pMpi2IeeeSgeSimple64_t)(&frame->SGL);
while (cookiec--) {
ddi_put32(acc_hdl,
&ieeesge->Address.Low, dmap->addr.address64.Low);
ddi_put32(acc_hdl,
&ieeesge->Address.High, dmap->addr.address64.High);
ddi_put32(acc_hdl, &ieeesge->Length,
dmap->count);
NDBG1(("mptsas_ieee_sge_mainframe: len=%d", dmap->count));
flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
/*
* If this is the last cookie, we set the flags
* to indicate so
*/
if (cookiec == 0) {
flags |= end_flag;
}
ddi_put8(acc_hdl, &ieeesge->Flags, flags);
dmap++;
ieeesge++;
}
}
static void
mptsas_ieee_sge_chain(mptsas_t *mpt, mptsas_cmd_t *cmd,
pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl)
{
pMpi2IeeeSgeSimple64_t ieeesge;
pMpi25IeeeSgeChain64_t ieeesgechain;
uint64_t nframe_phys_addr;
uint_t cookiec;
mptti_t *dmap;
uint8_t flags;
/*
* Save the number of entries in the DMA
* Scatter/Gather list
*/
cookiec = cmd->cmd_cookiec;
NDBG1(("mptsas_ieee_sge_chain: cookiec=%d", cookiec));
/*
* Hereby we start to deal with multiple frames.
* The process is as follows:
* 1. Determine how many frames are needed for SGL element
* storage; Note that all frames are stored in contiguous
* memory space and in 64-bit DMA mode each element is
* 4 double-words (16 bytes) long.
* 2. Fill up the main frame. We need to do this separately
* since it contains the SCSI IO request header and needs
* dedicated processing. Note that the last 4 double-words
* of the SCSI IO header is for SGL element storage
* (MPI2_SGE_IO_UNION).
* 3. Fill the chain element in the main frame, so the DMA
* engine can use the following frames.
* 4. Enter a loop to fill the remaining frames. Note that the
* last frame contains no chain element. The remaining
* frames go into the mpt SGL buffer allocated on the fly,
* not immediately following the main message frame, as in
* Gen1.
* Restrictions:
* For 64-bit DMA, the simple element and chain element
* are both of 4 double-words (16 bytes) in size, even
* though all frames are stored in the first 4G of mem
* range and the higher 32-bits of the address are always 0.
*/
int i, j, k, l, frames, sgemax;
int temp;
uint8_t chainflags;
uint32_t chainlength;
mptsas_cache_frames_t *p;
/*
* Sgemax is the number of SGE's that will fit
* each extra frame and frames is total
* number of frames we'll need. 1 sge entry per
* frame is reseverd for the chain element thus the -1 below.
*/
sgemax = ((mpt->m_req_frame_size / sizeof (MPI2_IEEE_SGE_SIMPLE64))
- 1);
temp = (cookiec - (MPTSAS_MAX_FRAME_SGES64(mpt) - 1)) / sgemax;
/*
* A little check to see if we need to round up the number
* of frames we need
*/
if ((cookiec - (MPTSAS_MAX_FRAME_SGES64(mpt) - 1)) - (temp *
sgemax) > 1) {
frames = (temp + 1);
} else {
frames = temp;
}
NDBG1(("mptsas_ieee_sge_chain: temp=%d, frames=%d", temp, frames));
dmap = cmd->cmd_sg;
ieeesge = (pMpi2IeeeSgeSimple64_t)(&frame->SGL);
/*
* First fill in the main frame
*/
j = MPTSAS_MAX_FRAME_SGES64(mpt) - 1;
mptsas_ieee_sge_mainframe(cmd, frame, acc_hdl, j, 0);
dmap += j;
ieeesge += j;
j++;
/*
* Fill in the chain element in the main frame.
* About calculation on ChainOffset:
* 1. Struct msg_scsi_io_request has 4 double-words (16 bytes)
* in the end reserved for SGL element storage
* (MPI2_SGE_IO_UNION); we should count it in our
* calculation. See its definition in the header file.
* 2. Constant j is the counter of the current SGL element
* that will be processed, and (j - 1) is the number of
* SGL elements that have been processed (stored in the
* main frame).
* 3. ChainOffset value should be in units of quad-words (16
* bytes) so the last value should be divided by 16.
*/
ddi_put8(acc_hdl, &frame->ChainOffset,
(sizeof (MPI2_SCSI_IO_REQUEST) -
sizeof (MPI2_SGE_IO_UNION) +
(j - 1) * sizeof (MPI2_IEEE_SGE_SIMPLE64)) >> 4);
ieeesgechain = (pMpi25IeeeSgeChain64_t)ieeesge;
chainflags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
ddi_put8(acc_hdl, &ieeesgechain->Flags, chainflags);
/*
* The size of the next frame is the accurate size of space
* (in bytes) used to store the SGL elements. j is the counter
* of SGL elements. (j - 1) is the number of SGL elements that
* have been processed (stored in frames).
*/
if (frames >= 2) {
ASSERT(mpt->m_req_frame_size >=
sizeof (MPI2_IEEE_SGE_SIMPLE64));
chainlength = mpt->m_req_frame_size /
sizeof (MPI2_IEEE_SGE_SIMPLE64) *
sizeof (MPI2_IEEE_SGE_SIMPLE64);
} else {
chainlength = ((cookiec - (j - 1)) *
sizeof (MPI2_IEEE_SGE_SIMPLE64));
}
p = cmd->cmd_extra_frames;
ddi_put32(acc_hdl, &ieeesgechain->Length, chainlength);
ddi_put32(acc_hdl, &ieeesgechain->Address.Low, p->m_phys_addr);
ddi_put32(acc_hdl, &ieeesgechain->Address.High, p->m_phys_addr >> 32);
/*
* If there are more than 2 frames left we have to
* fill in the next chain offset to the location of
* the chain element in the next frame.
* sgemax is the number of simple elements in an extra
* frame. Note that the value NextChainOffset should be
* in double-words (4 bytes).
*/
if (frames >= 2) {
ddi_put8(acc_hdl, &ieeesgechain->NextChainOffset,
(sgemax * sizeof (MPI2_IEEE_SGE_SIMPLE64)) >> 4);
} else {
ddi_put8(acc_hdl, &ieeesgechain->NextChainOffset, 0);
}
/*
* Jump to next frame;
* Starting here, chain buffers go into the per command SGL.
* This buffer is allocated when chain buffers are needed.
*/
ieeesge = (pMpi2IeeeSgeSimple64_t)p->m_frames_addr;
i = cookiec;
/*
* Start filling in frames with SGE's. If we
* reach the end of frame and still have SGE's
* to fill we need to add a chain element and
* use another frame. j will be our counter
* for what cookie we are at and i will be
* the total cookiec. k is the current frame
*/
for (k = 1; k <= frames; k++) {
for (l = 1; (l <= (sgemax + 1)) && (j <= i); j++, l++) {
/*
* If we have reached the end of frame
* and we have more SGE's to fill in
* we have to fill the final entry
* with a chain element and then
* continue to the next frame
*/
if ((l == (sgemax + 1)) && (k != frames)) {
ieeesgechain = (pMpi25IeeeSgeChain64_t)ieeesge;
j--;
chainflags =
MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
ddi_put8(p->m_acc_hdl,
&ieeesgechain->Flags, chainflags);
/*
* k is the frame counter and (k + 1)
* is the number of the next frame.
* Note that frames are in contiguous
* memory space.
*/
nframe_phys_addr = p->m_phys_addr +
(mpt->m_req_frame_size * k);
ddi_put32(p->m_acc_hdl,
&ieeesgechain->Address.Low,
nframe_phys_addr);
ddi_put32(p->m_acc_hdl,
&ieeesgechain->Address.High,
nframe_phys_addr >> 32);
/*
* If there are more than 2 frames left
* we have to next chain offset to
* the location of the chain element
* in the next frame and fill in the
* length of the next chain
*/
if ((frames - k) >= 2) {
ddi_put8(p->m_acc_hdl,
&ieeesgechain->NextChainOffset,
(sgemax *
sizeof (MPI2_IEEE_SGE_SIMPLE64))
>> 4);
ASSERT(mpt->m_req_frame_size >=
sizeof (MPI2_IEEE_SGE_SIMPLE64));
ddi_put32(p->m_acc_hdl,
&ieeesgechain->Length,
mpt->m_req_frame_size /
sizeof (MPI2_IEEE_SGE_SIMPLE64) *
sizeof (MPI2_IEEE_SGE_SIMPLE64));
} else {
/*
* This is the last frame. Set
* the NextChainOffset to 0 and
* Length is the total size of
* all remaining simple elements
*/
ddi_put8(p->m_acc_hdl,
&ieeesgechain->NextChainOffset,
0);
ddi_put32(p->m_acc_hdl,
&ieeesgechain->Length,
(cookiec - j) *
sizeof (MPI2_IEEE_SGE_SIMPLE64));
}
/* Jump to the next frame */
ieeesge = (pMpi2IeeeSgeSimple64_t)
((char *)p->m_frames_addr +
(int)mpt->m_req_frame_size * k);
continue;
}
ddi_put32(p->m_acc_hdl,
&ieeesge->Address.Low,
dmap->addr.address64.Low);
ddi_put32(p->m_acc_hdl,
&ieeesge->Address.High,
dmap->addr.address64.High);
ddi_put32(p->m_acc_hdl,
&ieeesge->Length, dmap->count);
flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
/*
* If we are at the end of the frame and
* there is another frame to fill in
* do we need to do anything?
* if ((l == sgemax) && (k != frames)) {
* }
*/
/*
* If this is the final cookie set end of list.
*/
if (j == i) {
flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
}
ddi_put8(p->m_acc_hdl, &ieeesge->Flags, flags);
dmap++;
ieeesge++;
}
}
/*
* Sync DMA with the chain buffers that were just created
*/
(void) ddi_dma_sync(p->m_dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
}
static void
mptsas_sge_setup(mptsas_t *mpt, mptsas_cmd_t *cmd, uint32_t *control,
pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl)
{
ASSERT(cmd->cmd_flags & CFLAG_DMAVALID);
NDBG1(("mptsas_sge_setup: cookiec=%d", cmd->cmd_cookiec));
/*
* Set read/write bit in control.
*/
if (cmd->cmd_flags & CFLAG_DMASEND) {
*control |= MPI2_SCSIIO_CONTROL_WRITE;
} else {
*control |= MPI2_SCSIIO_CONTROL_READ;
}
ddi_put32(acc_hdl, &frame->DataLength, cmd->cmd_dmacount);
/*
* We have 4 cases here. First where we can fit all the
* SG elements into the main frame, and the case
* where we can't. The SG element is also different when using
* MPI2.5 interface.
* If we have more cookies than we can attach to a frame
* we will need to use a chain element to point
* a location of memory where the rest of the S/G
* elements reside.
*/
if (cmd->cmd_cookiec <= MPTSAS_MAX_FRAME_SGES64(mpt)) {
if (mpt->m_MPI25) {
mptsas_ieee_sge_mainframe(cmd, frame, acc_hdl,
cmd->cmd_cookiec,
MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
} else {
mptsas_sge_mainframe(cmd, frame, acc_hdl,
cmd->cmd_cookiec,
((uint32_t)(MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST) <<
MPI2_SGE_FLAGS_SHIFT));
}
} else {
if (mpt->m_MPI25) {
mptsas_ieee_sge_chain(mpt, cmd, frame, acc_hdl);
} else {
mptsas_sge_chain(mpt, cmd, frame, acc_hdl);
}
}
}
/*
* Interrupt handling
* Utility routine. Poll for status of a command sent to HBA
* without interrupts (a FLAG_NOINTR command).
*/
int
mptsas_poll(mptsas_t *mpt, mptsas_cmd_t *poll_cmd, int polltime)
{
int rval = TRUE;
NDBG5(("mptsas_poll: cmd=0x%p", (void *)poll_cmd));
if ((poll_cmd->cmd_flags & CFLAG_TM_CMD) == 0) {
mptsas_restart_hba(mpt);
}
/*
* Wait, using drv_usecwait(), long enough for the command to
* reasonably return from the target if the target isn't
* "dead". A polled command may well be sent from scsi_poll, and
* there are retries built in to scsi_poll if the transport
* accepted the packet (TRAN_ACCEPT). scsi_poll waits 1 second
* and retries the transport up to scsi_poll_busycnt times
* (currently 60) if
* 1. pkt_reason is CMD_INCOMPLETE and pkt_state is 0, or
* 2. pkt_reason is CMD_CMPLT and *pkt_scbp has STATUS_BUSY
*
* limit the waiting to avoid a hang in the event that the
* cmd never gets started but we are still receiving interrupts
*/
while (!(poll_cmd->cmd_flags & CFLAG_FINISHED)) {
if (mptsas_wait_intr(mpt, polltime) == FALSE) {
NDBG5(("mptsas_poll: command incomplete"));
rval = FALSE;
break;
}
}
if (rval == FALSE) {
/*
* this isn't supposed to happen, the hba must be wedged
* Mark this cmd as a timeout.
*/
mptsas_set_pkt_reason(mpt, poll_cmd, CMD_TIMEOUT,
(STAT_TIMEOUT|STAT_ABORTED));
if (poll_cmd->cmd_queued == FALSE) {
NDBG5(("mptsas_poll: not on waitq"));
poll_cmd->cmd_pkt->pkt_state |=
(STATE_GOT_BUS|STATE_GOT_TARGET|STATE_SENT_CMD);
} else {
/* find and remove it from the waitq */
NDBG5(("mptsas_poll: delete from waitq"));
mptsas_waitq_delete(mpt, poll_cmd);
}
}
mptsas_fma_check(mpt, poll_cmd);
NDBG5(("mptsas_poll: done"));
return (rval);
}
/*
* Used for polling cmds and TM function
*/
static int
mptsas_wait_intr(mptsas_t *mpt, int polltime)
{
int cnt;
pMpi2ReplyDescriptorsUnion_t reply_desc_union;
uint32_t int_mask;
NDBG5(("mptsas_wait_intr"));
mpt->m_polled_intr = 1;
/*
* Get the current interrupt mask and disable interrupts. When
* re-enabling ints, set mask to saved value.
*/
int_mask = ddi_get32(mpt->m_datap, &mpt->m_reg->HostInterruptMask);
MPTSAS_DISABLE_INTR(mpt);
/*
* Keep polling for at least (polltime * 1000) seconds
*/
for (cnt = 0; cnt < polltime; cnt++) {
(void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORCPU);
reply_desc_union = (pMpi2ReplyDescriptorsUnion_t)
MPTSAS_GET_NEXT_REPLY(mpt, mpt->m_post_index);
if (ddi_get32(mpt->m_acc_post_queue_hdl,
&reply_desc_union->Words.Low) == 0xFFFFFFFF ||
ddi_get32(mpt->m_acc_post_queue_hdl,
&reply_desc_union->Words.High) == 0xFFFFFFFF) {
drv_usecwait(1000);
continue;
}
/*
* The reply is valid, process it according to its
* type.
*/
mptsas_process_intr(mpt, reply_desc_union);
if (++mpt->m_post_index == mpt->m_post_queue_depth) {
mpt->m_post_index = 0;
}
/*
* Update the global reply index
*/
ddi_put32(mpt->m_datap,
&mpt->m_reg->ReplyPostHostIndex, mpt->m_post_index);
mpt->m_polled_intr = 0;
/*
* Re-enable interrupts and quit.
*/
ddi_put32(mpt->m_datap, &mpt->m_reg->HostInterruptMask,
int_mask);
return (TRUE);
}
/*
* Clear polling flag, re-enable interrupts and quit.
*/
mpt->m_polled_intr = 0;
ddi_put32(mpt->m_datap, &mpt->m_reg->HostInterruptMask, int_mask);
return (FALSE);
}
static void
mptsas_handle_scsi_io_success(mptsas_t *mpt,
pMpi2ReplyDescriptorsUnion_t reply_desc)
{
pMpi2SCSIIOSuccessReplyDescriptor_t scsi_io_success;
uint16_t SMID;
mptsas_slots_t *slots = mpt->m_active;
mptsas_cmd_t *cmd = NULL;
struct scsi_pkt *pkt;
ASSERT(mutex_owned(&mpt->m_mutex));
scsi_io_success = (pMpi2SCSIIOSuccessReplyDescriptor_t)reply_desc;
SMID = ddi_get16(mpt->m_acc_post_queue_hdl, &scsi_io_success->SMID);
/*
* This is a success reply so just complete the IO. First, do a sanity
* check on the SMID. The final slot is used for TM requests, which
* would not come into this reply handler.
*/
if ((SMID == 0) || (SMID > slots->m_n_normal)) {
mptsas_log(mpt, CE_WARN, "?Received invalid SMID of %d\n",
SMID);
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
return;
}
cmd = slots->m_slot[SMID];
/*
* print warning and return if the slot is empty
*/
if (cmd == NULL) {
mptsas_log(mpt, CE_WARN, "?NULL command for successful SCSI IO "
"in slot %d", SMID);
return;
}
pkt = CMD2PKT(cmd);
pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | STATE_SENT_CMD |
STATE_GOT_STATUS);
if (cmd->cmd_flags & CFLAG_DMAVALID) {
pkt->pkt_state |= STATE_XFERRED_DATA;
}
pkt->pkt_resid = 0;
if (cmd->cmd_flags & CFLAG_PASSTHRU) {
cmd->cmd_flags |= CFLAG_FINISHED;
cv_broadcast(&mpt->m_passthru_cv);
return;
} else {
mptsas_remove_cmd(mpt, cmd);
}
if (cmd->cmd_flags & CFLAG_RETRY) {
/*
* The target returned QFULL or busy, do not add tihs
* pkt to the doneq since the hba will retry
* this cmd.
*
* The pkt has already been resubmitted in
* mptsas_handle_qfull() or in mptsas_check_scsi_io_error().
* Remove this cmd_flag here.
*/
cmd->cmd_flags &= ~CFLAG_RETRY;
} else {
mptsas_doneq_add(mpt, cmd);
}
}
static void
mptsas_handle_address_reply(mptsas_t *mpt,
pMpi2ReplyDescriptorsUnion_t reply_desc)
{
pMpi2AddressReplyDescriptor_t address_reply;
pMPI2DefaultReply_t reply;
mptsas_fw_diagnostic_buffer_t *pBuffer;
uint32_t reply_addr, reply_frame_dma_baseaddr;
uint16_t SMID, iocstatus;
mptsas_slots_t *slots = mpt->m_active;
mptsas_cmd_t *cmd = NULL;
uint8_t function, buffer_type;
m_replyh_arg_t *args;
int reply_frame_no;
ASSERT(mutex_owned(&mpt->m_mutex));
address_reply = (pMpi2AddressReplyDescriptor_t)reply_desc;
reply_addr = ddi_get32(mpt->m_acc_post_queue_hdl,
&address_reply->ReplyFrameAddress);
SMID = ddi_get16(mpt->m_acc_post_queue_hdl, &address_reply->SMID);
/*
* If reply frame is not in the proper range we should ignore this
* message and exit the interrupt handler.
*/
reply_frame_dma_baseaddr = mpt->m_reply_frame_dma_addr & 0xffffffffu;
if ((reply_addr < reply_frame_dma_baseaddr) ||
(reply_addr >= (reply_frame_dma_baseaddr +
(mpt->m_reply_frame_size * mpt->m_max_replies))) ||
((reply_addr - reply_frame_dma_baseaddr) %
mpt->m_reply_frame_size != 0)) {
mptsas_log(mpt, CE_WARN, "?Received invalid reply frame "
"address 0x%x\n", reply_addr);
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
return;
}
(void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0,
DDI_DMA_SYNC_FORCPU);
reply = (pMPI2DefaultReply_t)(mpt->m_reply_frame + (reply_addr -
reply_frame_dma_baseaddr));
function = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->Function);
NDBG31(("mptsas_handle_address_reply: function 0x%x, reply_addr=0x%x",
function, reply_addr));
/*
* don't get slot information and command for events since these values
* don't exist
*/
if ((function != MPI2_FUNCTION_EVENT_NOTIFICATION) &&
(function != MPI2_FUNCTION_DIAG_BUFFER_POST)) {
/*
* This could be a TM reply, which use the last allocated SMID,
* so allow for that.
*/
if ((SMID == 0) || (SMID > (slots->m_n_normal + 1))) {
mptsas_log(mpt, CE_WARN, "?Received invalid SMID of "
"%d\n", SMID);
ddi_fm_service_impact(mpt->m_dip,
DDI_SERVICE_UNAFFECTED);
return;
}
cmd = slots->m_slot[SMID];
/*
* print warning and return if the slot is empty
*/
if (cmd == NULL) {
mptsas_log(mpt, CE_WARN, "?NULL command for address "
"reply in slot %d", SMID);
return;
}
if ((cmd->cmd_flags &
(CFLAG_PASSTHRU | CFLAG_CONFIG | CFLAG_FW_DIAG))) {
cmd->cmd_rfm = reply_addr;
cmd->cmd_flags |= CFLAG_FINISHED;
cv_broadcast(&mpt->m_passthru_cv);
cv_broadcast(&mpt->m_config_cv);
cv_broadcast(&mpt->m_fw_diag_cv);
return;
} else if (!(cmd->cmd_flags & CFLAG_FW_CMD)) {
mptsas_remove_cmd(mpt, cmd);
}
NDBG31(("\t\tmptsas_process_intr: slot=%d", SMID));
}
/*
* Depending on the function, we need to handle
* the reply frame (and cmd) differently.
*/
switch (function) {
case MPI2_FUNCTION_SCSI_IO_REQUEST:
mptsas_check_scsi_io_error(mpt, (pMpi2SCSIIOReply_t)reply, cmd);
break;
case MPI2_FUNCTION_SCSI_TASK_MGMT:
cmd->cmd_rfm = reply_addr;
mptsas_check_task_mgt(mpt, (pMpi2SCSIManagementReply_t)reply,
cmd);
break;
case MPI2_FUNCTION_FW_DOWNLOAD:
cmd->cmd_flags |= CFLAG_FINISHED;
cv_signal(&mpt->m_fw_cv);
break;
case MPI2_FUNCTION_EVENT_NOTIFICATION:
reply_frame_no = (reply_addr - reply_frame_dma_baseaddr) /
mpt->m_reply_frame_size;
args = &mpt->m_replyh_args[reply_frame_no];
args->mpt = (void *)mpt;
args->rfm = reply_addr;
/*
* Record the event if its type is enabled in
* this mpt instance by ioctl.
*/
mptsas_record_event(args);
/*
* Handle time critical events
* NOT_RESPONDING/ADDED only now
*/
if (mptsas_handle_event_sync(args) == DDI_SUCCESS) {
/*
* Would not return main process,
* just let taskq resolve ack action
* and ack would be sent in taskq thread
*/
NDBG20(("send mptsas_handle_event_sync success"));
}
if (mpt->m_in_reset) {
NDBG20(("dropping event received during reset"));
return;
}
if ((ddi_taskq_dispatch(mpt->m_event_taskq, mptsas_handle_event,
(void *)args, DDI_NOSLEEP)) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "No memory available"
"for dispatch taskq");
/*
* Return the reply frame to the free queue.
*/
ddi_put32(mpt->m_acc_free_queue_hdl,
&((uint32_t *)(void *)
mpt->m_free_queue)[mpt->m_free_index], reply_addr);
(void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
if (++mpt->m_free_index == mpt->m_free_queue_depth) {
mpt->m_free_index = 0;
}
ddi_put32(mpt->m_datap,
&mpt->m_reg->ReplyFreeHostIndex, mpt->m_free_index);
}
return;
case MPI2_FUNCTION_DIAG_BUFFER_POST:
/*
* If SMID is 0, this implies that the reply is due to a
* release function with a status that the buffer has been
* released. Set the buffer flags accordingly.
*/
if (SMID == 0) {
iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl,
&reply->IOCStatus);
buffer_type = ddi_get8(mpt->m_acc_reply_frame_hdl,
&(((pMpi2DiagBufferPostReply_t)reply)->BufferType));
if (iocstatus == MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) {
pBuffer =
&mpt->m_fw_diag_buffer_list[buffer_type];
pBuffer->valid_data = TRUE;
pBuffer->owned_by_firmware = FALSE;
pBuffer->immediate = FALSE;
}
} else {
/*
* Normal handling of diag post reply with SMID.
*/
cmd = slots->m_slot[SMID];
/*
* print warning and return if the slot is empty
*/
if (cmd == NULL) {
mptsas_log(mpt, CE_WARN, "?NULL command for "
"address reply in slot %d", SMID);
return;
}
cmd->cmd_rfm = reply_addr;
cmd->cmd_flags |= CFLAG_FINISHED;
cv_broadcast(&mpt->m_fw_diag_cv);
}
return;
default:
mptsas_log(mpt, CE_WARN, "Unknown function 0x%x ", function);
break;
}
/*
* Return the reply frame to the free queue.
*/
ddi_put32(mpt->m_acc_free_queue_hdl,
&((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index],
reply_addr);
(void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
if (++mpt->m_free_index == mpt->m_free_queue_depth) {
mpt->m_free_index = 0;
}
ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex,
mpt->m_free_index);
if (cmd->cmd_flags & CFLAG_FW_CMD)
return;
if (cmd->cmd_flags & CFLAG_RETRY) {
/*
* The target returned QFULL or busy, do not add this
* pkt to the doneq since the hba will retry
* this cmd.
*
* The pkt has already been resubmitted in
* mptsas_handle_qfull() or in mptsas_check_scsi_io_error().
* Remove this cmd_flag here.
*/
cmd->cmd_flags &= ~CFLAG_RETRY;
} else {
mptsas_doneq_add(mpt, cmd);
}
}
#ifdef MPTSAS_DEBUG
static uint8_t mptsas_last_sense[256];
#endif
static void
mptsas_check_scsi_io_error(mptsas_t *mpt, pMpi2SCSIIOReply_t reply,
mptsas_cmd_t *cmd)
{
uint8_t scsi_status, scsi_state;
uint16_t ioc_status, cmd_rqs_len;
uint32_t xferred, sensecount, responsedata, loginfo = 0;
struct scsi_pkt *pkt;
struct scsi_arq_status *arqstat;
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
uint8_t *sensedata = NULL;
uint64_t sas_wwn;
uint8_t phy;
char wwn_str[MPTSAS_WWN_STRLEN];
scsi_status = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->SCSIStatus);
ioc_status = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->IOCStatus);
scsi_state = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->SCSIState);
xferred = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->TransferCount);
sensecount = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->SenseCount);
responsedata = ddi_get32(mpt->m_acc_reply_frame_hdl,
&reply->ResponseInfo);
if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
sas_wwn = ptgt->m_addr.mta_wwn;
phy = ptgt->m_phynum;
if (sas_wwn == 0) {
(void) sprintf(wwn_str, "p%x", phy);
} else {
(void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn);
}
loginfo = ddi_get32(mpt->m_acc_reply_frame_hdl,
&reply->IOCLogInfo);
mptsas_log(mpt, CE_NOTE,
"?Log info 0x%x received for target %d %s.\n"
"\tscsi_status=0x%x, ioc_status=0x%x, scsi_state=0x%x",
loginfo, Tgt(cmd), wwn_str, scsi_status, ioc_status,
scsi_state);
}
NDBG31(("\t\tscsi_status=0x%x, ioc_status=0x%x, scsi_state=0x%x",
scsi_status, ioc_status, scsi_state));
pkt = CMD2PKT(cmd);
*(pkt->pkt_scbp) = scsi_status;
if (loginfo == 0x31170000) {
/*
* if loginfo PL_LOGINFO_CODE_IO_DEVICE_MISSING_DELAY_RETRY
* 0x31170000 comes, that means the device missing delay
* is in progressing, the command need retry later.
*/
*(pkt->pkt_scbp) = STATUS_BUSY;
return;
}
if ((scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS) &&
((ioc_status & MPI2_IOCSTATUS_MASK) ==
MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE)) {
pkt->pkt_reason = CMD_INCOMPLETE;
pkt->pkt_state |= STATE_GOT_BUS;
if (ptgt->m_reset_delay == 0) {
mptsas_set_throttle(mpt, ptgt,
DRAIN_THROTTLE);
}
return;
}
if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) {
responsedata &= 0x000000FF;
if (responsedata & MPTSAS_SCSI_RESPONSE_CODE_TLR_OFF) {
mptsas_log(mpt, CE_NOTE, "Do not support the TLR\n");
pkt->pkt_reason = CMD_TLR_OFF;
return;
}
}
switch (scsi_status) {
case MPI2_SCSI_STATUS_CHECK_CONDITION:
pkt->pkt_resid = (cmd->cmd_dmacount - xferred);
arqstat = (void*)(pkt->pkt_scbp);
arqstat->sts_rqpkt_status = *((struct scsi_status *)
(pkt->pkt_scbp));
pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET |
STATE_SENT_CMD | STATE_GOT_STATUS | STATE_ARQ_DONE);
if (cmd->cmd_flags & CFLAG_XARQ) {
pkt->pkt_state |= STATE_XARQ_DONE;
}
if (pkt->pkt_resid != cmd->cmd_dmacount) {
pkt->pkt_state |= STATE_XFERRED_DATA;
}
arqstat->sts_rqpkt_reason = pkt->pkt_reason;
arqstat->sts_rqpkt_state = pkt->pkt_state;
arqstat->sts_rqpkt_state |= STATE_XFERRED_DATA;
arqstat->sts_rqpkt_statistics = pkt->pkt_statistics;
sensedata = (uint8_t *)&arqstat->sts_sensedata;
cmd_rqs_len = cmd->cmd_extrqslen ?
cmd->cmd_extrqslen : cmd->cmd_rqslen;
(void) ddi_dma_sync(mpt->m_dma_req_sense_hdl, 0, 0,
DDI_DMA_SYNC_FORKERNEL);
#ifdef MPTSAS_DEBUG
bcopy(cmd->cmd_arq_buf, mptsas_last_sense,
((cmd_rqs_len >= sizeof (mptsas_last_sense)) ?
sizeof (mptsas_last_sense):cmd_rqs_len));
#endif
bcopy((uchar_t *)cmd->cmd_arq_buf, sensedata,
((cmd_rqs_len >= sensecount) ? sensecount :
cmd_rqs_len));
arqstat->sts_rqpkt_resid = (cmd_rqs_len - sensecount);
cmd->cmd_flags |= CFLAG_CMDARQ;
/*
* Set proper status for pkt if autosense was valid
*/
if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
struct scsi_status zero_status = { 0 };
arqstat->sts_rqpkt_status = zero_status;
}
/*
* ASC=0x47 is parity error
* ASC=0x48 is initiator detected error received
*/
if ((scsi_sense_key(sensedata) == KEY_ABORTED_COMMAND) &&
((scsi_sense_asc(sensedata) == 0x47) ||
(scsi_sense_asc(sensedata) == 0x48))) {
mptsas_log(mpt, CE_NOTE, "Aborted_command!");
}
/*
* ASC/ASCQ=0x3F/0x0E means report_luns data changed
* ASC/ASCQ=0x25/0x00 means invalid lun
*/
if (((scsi_sense_key(sensedata) == KEY_UNIT_ATTENTION) &&
(scsi_sense_asc(sensedata) == 0x3F) &&
(scsi_sense_ascq(sensedata) == 0x0E)) ||
((scsi_sense_key(sensedata) == KEY_ILLEGAL_REQUEST) &&
(scsi_sense_asc(sensedata) == 0x25) &&
(scsi_sense_ascq(sensedata) == 0x00))) {
mptsas_topo_change_list_t *topo_node = NULL;
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_NOSLEEP);
if (topo_node == NULL) {
mptsas_log(mpt, CE_NOTE, "No memory"
"resource for handle SAS dynamic"
"reconfigure.\n");
break;
}
topo_node->mpt = mpt;
topo_node->event = MPTSAS_DR_EVENT_RECONFIG_TARGET;
topo_node->un.phymask = ptgt->m_addr.mta_phymask;
topo_node->devhdl = ptgt->m_devhdl;
topo_node->object = (void *)ptgt;
topo_node->flags = MPTSAS_TOPO_FLAG_LUN_ASSOCIATED;
if ((ddi_taskq_dispatch(mpt->m_dr_taskq,
mptsas_handle_dr,
(void *)topo_node,
DDI_NOSLEEP)) != DDI_SUCCESS) {
kmem_free(topo_node,
sizeof (mptsas_topo_change_list_t));
mptsas_log(mpt, CE_NOTE, "mptsas start taskq"
"for handle SAS dynamic reconfigure"
"failed. \n");
}
}
break;
case MPI2_SCSI_STATUS_GOOD:
switch (ioc_status & MPI2_IOCSTATUS_MASK) {
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
pkt->pkt_reason = CMD_DEV_GONE;
pkt->pkt_state |= STATE_GOT_BUS;
if (ptgt->m_reset_delay == 0) {
mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE);
}
NDBG31(("lost disk for target%d, command:%x",
Tgt(cmd), pkt->pkt_cdbp[0]));
break;
case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
NDBG31(("data overrun: xferred=%d", xferred));
NDBG31(("dmacount=%d", cmd->cmd_dmacount));
pkt->pkt_reason = CMD_DATA_OVR;
pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET
| STATE_SENT_CMD | STATE_GOT_STATUS
| STATE_XFERRED_DATA);
pkt->pkt_resid = 0;
break;
case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
NDBG31(("data underrun: xferred=%d", xferred));
NDBG31(("dmacount=%d", cmd->cmd_dmacount));
pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET
| STATE_SENT_CMD | STATE_GOT_STATUS);
pkt->pkt_resid = (cmd->cmd_dmacount - xferred);
if (pkt->pkt_resid != cmd->cmd_dmacount) {
pkt->pkt_state |= STATE_XFERRED_DATA;
}
break;
case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
if (cmd->cmd_active_expiration <= gethrtime()) {
/*
* When timeout requested, propagate
* proper reason and statistics to
* target drivers.
*/
mptsas_set_pkt_reason(mpt, cmd, CMD_TIMEOUT,
STAT_BUS_RESET | STAT_TIMEOUT);
} else {
mptsas_set_pkt_reason(mpt, cmd, CMD_RESET,
STAT_BUS_RESET);
}
break;
case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
mptsas_set_pkt_reason(mpt,
cmd, CMD_RESET, STAT_DEV_RESET);
break;
case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET);
mptsas_set_pkt_reason(mpt,
cmd, CMD_TERMINATED, STAT_TERMINATED);
break;
case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
case MPI2_IOCSTATUS_BUSY:
/*
* set throttles to drain
*/
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE);
}
/*
* retry command
*/
cmd->cmd_flags |= CFLAG_RETRY;
cmd->cmd_pkt_flags |= FLAG_HEAD;
(void) mptsas_accept_pkt(mpt, cmd);
break;
default:
mptsas_log(mpt, CE_WARN,
"unknown ioc_status = %x\n", ioc_status);
mptsas_log(mpt, CE_CONT, "scsi_state = %x, transfer "
"count = %x, scsi_status = %x", scsi_state,
xferred, scsi_status);
break;
}
break;
case MPI2_SCSI_STATUS_TASK_SET_FULL:
mptsas_handle_qfull(mpt, cmd);
break;
case MPI2_SCSI_STATUS_BUSY:
NDBG31(("scsi_status busy received"));
break;
case MPI2_SCSI_STATUS_RESERVATION_CONFLICT:
NDBG31(("scsi_status reservation conflict received"));
break;
default:
mptsas_log(mpt, CE_WARN, "scsi_status=%x, ioc_status=%x\n",
scsi_status, ioc_status);
mptsas_log(mpt, CE_WARN,
"mptsas_process_intr: invalid scsi status\n");
break;
}
}
static void
mptsas_check_task_mgt(mptsas_t *mpt, pMpi2SCSIManagementReply_t reply,
mptsas_cmd_t *cmd)
{
uint8_t task_type;
uint16_t ioc_status;
uint32_t log_info;
uint16_t dev_handle;
struct scsi_pkt *pkt = CMD2PKT(cmd);
task_type = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->TaskType);
ioc_status = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->IOCStatus);
log_info = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->IOCLogInfo);
dev_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->DevHandle);
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas_check_task_mgt: Task 0x%x "
"failed. IOCStatus=0x%x IOCLogInfo=0x%x target=%d\n",
task_type, ioc_status, log_info, dev_handle);
pkt->pkt_reason = CMD_INCOMPLETE;
return;
}
switch (task_type) {
case MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK:
case MPI2_SCSITASKMGMT_TASKTYPE_CLEAR_TASK_SET:
case MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK:
case MPI2_SCSITASKMGMT_TASKTYPE_CLR_ACA:
case MPI2_SCSITASKMGMT_TASKTYPE_QRY_TASK_SET:
case MPI2_SCSITASKMGMT_TASKTYPE_QRY_UNIT_ATTENTION:
break;
case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET:
case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET:
case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET:
/*
* Check for invalid DevHandle of 0 in case application
* sends bad command. DevHandle of 0 could cause problems.
*/
if (dev_handle == 0) {
mptsas_log(mpt, CE_WARN, "!Can't flush target with"
" DevHandle of 0.");
} else {
mptsas_flush_target(mpt, dev_handle, Lun(cmd),
task_type);
}
break;
default:
mptsas_log(mpt, CE_WARN, "Unknown task management type %d.",
task_type);
mptsas_log(mpt, CE_WARN, "ioc status = %x", ioc_status);
break;
}
}
static void
mptsas_doneq_thread(mptsas_doneq_thread_arg_t *arg)
{
mptsas_t *mpt = arg->mpt;
uint64_t t = arg->t;
mptsas_cmd_t *cmd;
struct scsi_pkt *pkt;
mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t];
mutex_enter(&item->mutex);
while (item->flag & MPTSAS_DONEQ_THREAD_ACTIVE) {
if (!item->doneq) {
cv_wait(&item->cv, &item->mutex);
}
pkt = NULL;
if ((cmd = mptsas_doneq_thread_rm(mpt, t)) != NULL) {
cmd->cmd_flags |= CFLAG_COMPLETED;
pkt = CMD2PKT(cmd);
}
mutex_exit(&item->mutex);
if (pkt) {
mptsas_pkt_comp(pkt, cmd);
}
mutex_enter(&item->mutex);
}
mutex_exit(&item->mutex);
mutex_enter(&mpt->m_doneq_mutex);
mpt->m_doneq_thread_n--;
cv_broadcast(&mpt->m_doneq_thread_cv);
mutex_exit(&mpt->m_doneq_mutex);
}
/*
* mpt interrupt handler.
*/
static uint_t
mptsas_intr(caddr_t arg1, caddr_t arg2)
{
mptsas_t *mpt = (void *)arg1;
pMpi2ReplyDescriptorsUnion_t reply_desc_union;
uchar_t did_reply = FALSE;
NDBG1(("mptsas_intr: arg1 0x%p arg2 0x%p", (void *)arg1, (void *)arg2));
mutex_enter(&mpt->m_mutex);
/*
* If interrupts are shared by two channels then check whether this
* interrupt is genuinely for this channel by making sure first the
* chip is in high power state.
*/
if ((mpt->m_options & MPTSAS_OPT_PM) &&
(mpt->m_power_level != PM_LEVEL_D0)) {
mutex_exit(&mpt->m_mutex);
return (DDI_INTR_UNCLAIMED);
}
/*
* If polling, interrupt was triggered by some shared interrupt because
* IOC interrupts are disabled during polling, so polling routine will
* handle any replies. Considering this, if polling is happening,
* return with interrupt unclaimed.
*/
if (mpt->m_polled_intr) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mpt_sas: Unclaimed interrupt");
return (DDI_INTR_UNCLAIMED);
}
/*
* Read the istat register.
*/
if ((INTPENDING(mpt)) != 0) {
/*
* read fifo until empty.
*/
#ifndef __lock_lint
_NOTE(CONSTCOND)
#endif
while (TRUE) {
(void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORCPU);
reply_desc_union = (pMpi2ReplyDescriptorsUnion_t)
MPTSAS_GET_NEXT_REPLY(mpt, mpt->m_post_index);
if (ddi_get32(mpt->m_acc_post_queue_hdl,
&reply_desc_union->Words.Low) == 0xFFFFFFFF ||
ddi_get32(mpt->m_acc_post_queue_hdl,
&reply_desc_union->Words.High) == 0xFFFFFFFF) {
break;
}
/*
* The reply is valid, process it according to its
* type. Also, set a flag for updating the reply index
* after they've all been processed.
*/
did_reply = TRUE;
mptsas_process_intr(mpt, reply_desc_union);
/*
* Increment post index and roll over if needed.
*/
if (++mpt->m_post_index == mpt->m_post_queue_depth) {
mpt->m_post_index = 0;
}
}
/*
* Update the global reply index if at least one reply was
* processed.
*/
if (did_reply) {
ddi_put32(mpt->m_datap,
&mpt->m_reg->ReplyPostHostIndex, mpt->m_post_index);
}
} else {
mutex_exit(&mpt->m_mutex);
return (DDI_INTR_UNCLAIMED);
}
NDBG1(("mptsas_intr complete"));
/*
* If no helper threads are created, process the doneq in ISR. If
* helpers are created, use the doneq length as a metric to measure the
* load on the interrupt CPU. If it is long enough, which indicates the
* load is heavy, then we deliver the IO completions to the helpers.
* This measurement has some limitations, although it is simple and
* straightforward and works well for most of the cases at present.
*/
if (!mpt->m_doneq_thread_n ||
(mpt->m_doneq_len <= mpt->m_doneq_length_threshold)) {
mptsas_doneq_empty(mpt);
} else {
mptsas_deliver_doneq_thread(mpt);
}
/*
* If there are queued cmd, start them now.
*/
if (mpt->m_waitq != NULL) {
mptsas_restart_waitq(mpt);
}
mutex_exit(&mpt->m_mutex);
return (DDI_INTR_CLAIMED);
}
static void
mptsas_process_intr(mptsas_t *mpt,
pMpi2ReplyDescriptorsUnion_t reply_desc_union)
{
uint8_t reply_type;
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* The reply is valid, process it according to its
* type. Also, set a flag for updated the reply index
* after they've all been processed.
*/
reply_type = ddi_get8(mpt->m_acc_post_queue_hdl,
&reply_desc_union->Default.ReplyFlags);
reply_type &= MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (reply_type == MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
reply_type == MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS) {
mptsas_handle_scsi_io_success(mpt, reply_desc_union);
} else if (reply_type == MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
mptsas_handle_address_reply(mpt, reply_desc_union);
} else {
mptsas_log(mpt, CE_WARN, "?Bad reply type %x", reply_type);
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
}
/*
* Clear the reply descriptor for re-use and increment
* index.
*/
ddi_put64(mpt->m_acc_post_queue_hdl,
&((uint64_t *)(void *)mpt->m_post_queue)[mpt->m_post_index],
0xFFFFFFFFFFFFFFFF);
(void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
}
/*
* handle qfull condition
*/
static void
mptsas_handle_qfull(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
if ((++cmd->cmd_qfull_retries > ptgt->m_qfull_retries) ||
(ptgt->m_qfull_retries == 0)) {
/*
* We have exhausted the retries on QFULL, or,
* the target driver has indicated that it
* wants to handle QFULL itself by setting
* qfull-retries capability to 0. In either case
* we want the target driver's QFULL handling
* to kick in. We do this by having pkt_reason
* as CMD_CMPLT and pkt_scbp as STATUS_QFULL.
*/
mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE);
} else {
if (ptgt->m_reset_delay == 0) {
ptgt->m_t_throttle =
max((ptgt->m_t_ncmds - 2), 0);
}
cmd->cmd_pkt_flags |= FLAG_HEAD;
cmd->cmd_flags &= ~(CFLAG_TRANFLAG);
cmd->cmd_flags |= CFLAG_RETRY;
(void) mptsas_accept_pkt(mpt, cmd);
/*
* when target gives queue full status with no commands
* outstanding (m_t_ncmds == 0), throttle is set to 0
* (HOLD_THROTTLE), and the queue full handling start
* (see psarc/1994/313); if there are commands outstanding,
* throttle is set to (m_t_ncmds - 2)
*/
if (ptgt->m_t_throttle == HOLD_THROTTLE) {
/*
* By setting throttle to QFULL_THROTTLE, we
* avoid submitting new commands and in
* mptsas_restart_cmd find out slots which need
* their throttles to be cleared.
*/
mptsas_set_throttle(mpt, ptgt, QFULL_THROTTLE);
if (mpt->m_restart_cmd_timeid == 0) {
mpt->m_restart_cmd_timeid =
timeout(mptsas_restart_cmd, mpt,
ptgt->m_qfull_retry_interval);
}
}
}
}
mptsas_phymask_t
mptsas_physport_to_phymask(mptsas_t *mpt, uint8_t physport)
{
mptsas_phymask_t phy_mask = 0;
uint8_t i = 0;
NDBG20(("mptsas%d physport_to_phymask enter", mpt->m_instance));
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* If physport is 0xFF, this is a RAID volume. Use phymask of 0.
*/
if (physport == 0xFF) {
return (0);
}
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
if (mpt->m_phy_info[i].attached_devhdl &&
(mpt->m_phy_info[i].phy_mask != 0) &&
(mpt->m_phy_info[i].port_num == physport)) {
phy_mask = mpt->m_phy_info[i].phy_mask;
break;
}
}
NDBG20(("mptsas%d physport_to_phymask:physport :%x phymask :%x, ",
mpt->m_instance, physport, phy_mask));
return (phy_mask);
}
/*
* mpt free device handle after device gone, by use of passthrough
*/
static int
mptsas_free_devhdl(mptsas_t *mpt, uint16_t devhdl)
{
Mpi2SasIoUnitControlRequest_t req;
Mpi2SasIoUnitControlReply_t rep;
int ret;
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* Need to compose a SAS IO Unit Control request message
* and call mptsas_do_passthru() function
*/
bzero(&req, sizeof (req));
bzero(&rep, sizeof (rep));
req.Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL;
req.Operation = MPI2_SAS_OP_REMOVE_DEVICE;
req.DevHandle = LE_16(devhdl);
ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, NULL,
sizeof (req), sizeof (rep), NULL, 0, NULL, 0, 60, FKIOCTL);
if (ret != 0) {
cmn_err(CE_WARN, "mptsas_free_devhdl: passthru SAS IO Unit "
"Control error %d", ret);
return (DDI_FAILURE);
}
/* do passthrough success, check the ioc status */
if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) {
cmn_err(CE_WARN, "mptsas_free_devhdl: passthru SAS IO Unit "
"Control IOCStatus %d", LE_16(rep.IOCStatus));
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
static void
mptsas_update_phymask(mptsas_t *mpt)
{
mptsas_phymask_t mask = 0, phy_mask;
char *phy_mask_name;
uint8_t current_port;
int i, j;
NDBG20(("mptsas%d update phymask ", mpt->m_instance));
ASSERT(mutex_owned(&mpt->m_mutex));
(void) mptsas_get_sas_io_unit_page(mpt);
phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP);
for (i = 0; i < mpt->m_num_phys; i++) {
phy_mask = 0x00;
if (mpt->m_phy_info[i].attached_devhdl == 0)
continue;
bzero(phy_mask_name, sizeof (phy_mask_name));
current_port = mpt->m_phy_info[i].port_num;
if ((mask & (1 << i)) != 0)
continue;
for (j = 0; j < mpt->m_num_phys; j++) {
if (mpt->m_phy_info[j].attached_devhdl &&
(mpt->m_phy_info[j].port_num == current_port)) {
phy_mask |= (1 << j);
}
}
mask = mask | phy_mask;
for (j = 0; j < mpt->m_num_phys; j++) {
if ((phy_mask >> j) & 0x01) {
mpt->m_phy_info[j].phy_mask = phy_mask;
}
}
(void) sprintf(phy_mask_name, "%x", phy_mask);
mutex_exit(&mpt->m_mutex);
/*
* register a iport, if the port has already been existed
* SCSA will do nothing and just return.
*/
(void) scsi_hba_iport_register(mpt->m_dip, phy_mask_name);
mutex_enter(&mpt->m_mutex);
}
kmem_free(phy_mask_name, MPTSAS_MAX_PHYS);
NDBG20(("mptsas%d update phymask return", mpt->m_instance));
}
/*
* mptsas_handle_dr is a task handler for DR, the DR action includes:
* 1. Directly attched Device Added/Removed.
* 2. Expander Device Added/Removed.
* 3. Indirectly Attached Device Added/Expander.
* 4. LUNs of a existing device status change.
* 5. RAID volume created/deleted.
* 6. Member of RAID volume is released because of RAID deletion.
* 7. Physical disks are removed because of RAID creation.
*/
static void
mptsas_handle_dr(void *args) {
mptsas_topo_change_list_t *topo_node = NULL;
mptsas_topo_change_list_t *save_node = NULL;
mptsas_t *mpt;
dev_info_t *parent = NULL;
mptsas_phymask_t phymask = 0;
char *phy_mask_name;
uint8_t flags = 0, physport = 0xff;
uint8_t port_update = 0;
uint_t event;
topo_node = (mptsas_topo_change_list_t *)args;
mpt = topo_node->mpt;
event = topo_node->event;
flags = topo_node->flags;
phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP);
NDBG20(("mptsas%d handle_dr enter", mpt->m_instance));
switch (event) {
case MPTSAS_DR_EVENT_RECONFIG_TARGET:
if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) ||
(flags == MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE) ||
(flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) {
/*
* Direct attached or expander attached device added
* into system or a Phys Disk that is being unhidden.
*/
port_update = 1;
}
break;
case MPTSAS_DR_EVENT_RECONFIG_SMP:
/*
* New expander added into system, it must be the head
* of topo_change_list_t
*/
port_update = 1;
break;
default:
port_update = 0;
break;
}
/*
* All cases port_update == 1 may cause initiator port form change
*/
mutex_enter(&mpt->m_mutex);
if (mpt->m_port_chng && port_update) {
/*
* mpt->m_port_chng flag indicates some PHYs of initiator
* port have changed to online. So when expander added or
* directly attached device online event come, we force to
* update port information by issueing SAS IO Unit Page and
* update PHYMASKs.
*/
(void) mptsas_update_phymask(mpt);
mpt->m_port_chng = 0;
}
mutex_exit(&mpt->m_mutex);
while (topo_node) {
phymask = 0;
if (parent == NULL) {
physport = topo_node->un.physport;
event = topo_node->event;
flags = topo_node->flags;
if (event & (MPTSAS_DR_EVENT_OFFLINE_TARGET |
MPTSAS_DR_EVENT_OFFLINE_SMP)) {
/*
* For all offline events, phymask is known
*/
phymask = topo_node->un.phymask;
goto find_parent;
}
if (event & MPTSAS_TOPO_FLAG_REMOVE_HANDLE) {
goto handle_topo_change;
}
if (flags & MPTSAS_TOPO_FLAG_LUN_ASSOCIATED) {
phymask = topo_node->un.phymask;
goto find_parent;
}
if ((flags ==
MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) &&
(event == MPTSAS_DR_EVENT_RECONFIG_TARGET)) {
/*
* There is no any field in IR_CONFIG_CHANGE
* event indicate physport/phynum, let's get
* parent after SAS Device Page0 request.
*/
goto handle_topo_change;
}
mutex_enter(&mpt->m_mutex);
if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) {
/*
* If the direct attached device added or a
* phys disk is being unhidden, argument
* physport actually is PHY#, so we have to get
* phymask according PHY#.
*/
physport = mpt->m_phy_info[physport].port_num;
}
/*
* Translate physport to phymask so that we can search
* parent dip.
*/
phymask = mptsas_physport_to_phymask(mpt,
physport);
mutex_exit(&mpt->m_mutex);
find_parent:
bzero(phy_mask_name, MPTSAS_MAX_PHYS);
/*
* For RAID topology change node, write the iport name
* as v0.
*/
if (flags & MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) {
(void) sprintf(phy_mask_name, "v0");
} else {
/*
* phymask can bo 0 if the drive has been
* pulled by the time an add event is
* processed. If phymask is 0, just skip this
* event and continue.
*/
if (phymask == 0) {
mutex_enter(&mpt->m_mutex);
save_node = topo_node;
topo_node = topo_node->next;
ASSERT(save_node);
kmem_free(save_node,
sizeof (mptsas_topo_change_list_t));
mutex_exit(&mpt->m_mutex);
parent = NULL;
continue;
}
(void) sprintf(phy_mask_name, "%x", phymask);
}
parent = scsi_hba_iport_find(mpt->m_dip,
phy_mask_name);
if (parent == NULL) {
mptsas_log(mpt, CE_WARN, "Failed to find an "
"iport, should not happen!");
goto out;
}
}
ASSERT(parent);
handle_topo_change:
mutex_enter(&mpt->m_mutex);
/*
* If HBA is being reset, don't perform operations depending
* on the IOC. We must free the topo list, however.
*/
if (!mpt->m_in_reset)
mptsas_handle_topo_change(topo_node, parent);
else
NDBG20(("skipping topo change received during reset"));
save_node = topo_node;
topo_node = topo_node->next;
ASSERT(save_node);
kmem_free(save_node, sizeof (mptsas_topo_change_list_t));
mutex_exit(&mpt->m_mutex);
if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) ||
(flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) ||
(flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED)) {
/*
* If direct attached device associated, make sure
* reset the parent before start the next one. But
* all devices associated with expander shares the
* parent. Also, reset parent if this is for RAID.
*/
parent = NULL;
}
}
out:
kmem_free(phy_mask_name, MPTSAS_MAX_PHYS);
}
static void
mptsas_handle_topo_change(mptsas_topo_change_list_t *topo_node,
dev_info_t *parent)
{
mptsas_target_t *ptgt = NULL;
mptsas_smp_t *psmp = NULL;
mptsas_t *mpt = (void *)topo_node->mpt;
uint16_t devhdl;
uint16_t attached_devhdl;
uint64_t sas_wwn = 0;
int rval = 0;
uint32_t page_address;
uint8_t phy, flags;
char *addr = NULL;
dev_info_t *lundip;
int circ = 0, circ1 = 0;
char attached_wwnstr[MPTSAS_WWN_STRLEN];
NDBG20(("mptsas%d handle_topo_change enter, devhdl 0x%x,"
"event 0x%x, flags 0x%x", mpt->m_instance, topo_node->devhdl,
topo_node->event, topo_node->flags));
ASSERT(mutex_owned(&mpt->m_mutex));
switch (topo_node->event) {
case MPTSAS_DR_EVENT_RECONFIG_TARGET:
{
char *phy_mask_name;
mptsas_phymask_t phymask = 0;
if (topo_node->flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) {
/*
* Get latest RAID info.
*/
(void) mptsas_get_raid_info(mpt);
ptgt = refhash_linear_search(mpt->m_targets,
mptsas_target_eval_devhdl, &topo_node->devhdl);
if (ptgt == NULL)
break;
} else {
ptgt = (void *)topo_node->object;
}
if (ptgt == NULL) {
/*
* If a Phys Disk was deleted, RAID info needs to be
* updated to reflect the new topology.
*/
(void) mptsas_get_raid_info(mpt);
/*
* Get sas device page 0 by DevHandle to make sure if
* SSP/SATA end device exist.
*/
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) |
topo_node->devhdl;
rval = mptsas_get_target_device_info(mpt, page_address,
&devhdl, &ptgt);
if (rval == DEV_INFO_WRONG_DEVICE_TYPE) {
mptsas_log(mpt, CE_NOTE,
"mptsas_handle_topo_change: target %d is "
"not a SAS/SATA device. \n",
topo_node->devhdl);
} else if (rval == DEV_INFO_FAIL_ALLOC) {
mptsas_log(mpt, CE_NOTE,
"mptsas_handle_topo_change: could not "
"allocate memory. \n");
} else if (rval == DEV_INFO_FAIL_GUID) {
mptsas_log(mpt, CE_NOTE,
"mptsas_handle_topo_change: could not "
"get SATA GUID for target %d. \n",
topo_node->devhdl);
}
/*
* If rval is DEV_INFO_PHYS_DISK or indicates failure
* then there is nothing else to do, just leave.
*/
if (rval != DEV_INFO_SUCCESS) {
return;
}
}
ASSERT(ptgt->m_devhdl == topo_node->devhdl);
mutex_exit(&mpt->m_mutex);
flags = topo_node->flags;
if (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) {
phymask = ptgt->m_addr.mta_phymask;
phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP);
(void) sprintf(phy_mask_name, "%x", phymask);
parent = scsi_hba_iport_find(mpt->m_dip,
phy_mask_name);
kmem_free(phy_mask_name, MPTSAS_MAX_PHYS);
if (parent == NULL) {
mptsas_log(mpt, CE_WARN, "Failed to find a "
"iport for PD, should not happen!");
mutex_enter(&mpt->m_mutex);
break;
}
}
if (flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) {
ndi_devi_enter(parent, &circ1);
(void) mptsas_config_raid(parent, topo_node->devhdl,
&lundip);
ndi_devi_exit(parent, circ1);
} else {
/*
* hold nexus for bus configure
*/
ndi_devi_enter(scsi_vhci_dip, &circ);
ndi_devi_enter(parent, &circ1);
rval = mptsas_config_target(parent, ptgt);
/*
* release nexus for bus configure
*/
ndi_devi_exit(parent, circ1);
ndi_devi_exit(scsi_vhci_dip, circ);
/*
* Add parent's props for SMHBA support
*/
if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) {
bzero(attached_wwnstr,
sizeof (attached_wwnstr));
(void) sprintf(attached_wwnstr, "w%016"PRIx64,
ptgt->m_addr.mta_wwn);
if (ddi_prop_update_string(DDI_DEV_T_NONE,
parent,
SCSI_ADDR_PROP_ATTACHED_PORT,
attached_wwnstr)
!= DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE,
parent,
SCSI_ADDR_PROP_ATTACHED_PORT);
mptsas_log(mpt, CE_WARN, "Failed to"
"attached-port props");
return;
}
if (ddi_prop_update_int(DDI_DEV_T_NONE, parent,
MPTSAS_NUM_PHYS, 1) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE,
parent, MPTSAS_NUM_PHYS);
mptsas_log(mpt, CE_WARN, "Failed to"
" create num-phys props");
return;
}
/*
* Update PHY info for smhba
*/
mutex_enter(&mpt->m_mutex);
if (mptsas_smhba_phy_init(mpt)) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas phy"
" update failed");
return;
}
mutex_exit(&mpt->m_mutex);
/*
* topo_node->un.physport is really the PHY#
* for direct attached devices
*/
mptsas_smhba_set_one_phy_props(mpt, parent,
topo_node->un.physport, &attached_devhdl);
if (ddi_prop_update_int(DDI_DEV_T_NONE, parent,
MPTSAS_VIRTUAL_PORT, 0) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE,
parent, MPTSAS_VIRTUAL_PORT);
mptsas_log(mpt, CE_WARN,
"mptsas virtual-port"
"port prop update failed");
return;
}
}
}
mutex_enter(&mpt->m_mutex);
NDBG20(("mptsas%d handle_topo_change to online devhdl:%x, "
"phymask:%x.", mpt->m_instance, ptgt->m_devhdl,
ptgt->m_addr.mta_phymask));
break;
}
case MPTSAS_DR_EVENT_OFFLINE_TARGET:
{
devhdl = topo_node->devhdl;
ptgt = refhash_linear_search(mpt->m_targets,
mptsas_target_eval_devhdl, &devhdl);
if (ptgt == NULL)
break;
sas_wwn = ptgt->m_addr.mta_wwn;
phy = ptgt->m_phynum;
addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
if (sas_wwn) {
(void) sprintf(addr, "w%016"PRIx64, sas_wwn);
} else {
(void) sprintf(addr, "p%x", phy);
}
ASSERT(ptgt->m_devhdl == devhdl);
if ((topo_node->flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) ||
(topo_node->flags ==
MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) {
/*
* Get latest RAID info if RAID volume status changes
* or Phys Disk status changes
*/
(void) mptsas_get_raid_info(mpt);
}
/*
* Abort all outstanding command on the device
*/
rval = mptsas_do_scsi_reset(mpt, devhdl);
if (rval) {
NDBG20(("mptsas%d handle_topo_change to reset target "
"before offline devhdl:%x, phymask:%x, rval:%x",
mpt->m_instance, ptgt->m_devhdl,
ptgt->m_addr.mta_phymask, rval));
}
mutex_exit(&mpt->m_mutex);
ndi_devi_enter(scsi_vhci_dip, &circ);
ndi_devi_enter(parent, &circ1);
rval = mptsas_offline_target(parent, addr);
ndi_devi_exit(parent, circ1);
ndi_devi_exit(scsi_vhci_dip, circ);
NDBG20(("mptsas%d handle_topo_change to offline devhdl:%x, "
"phymask:%x, rval:%x", mpt->m_instance,
ptgt->m_devhdl, ptgt->m_addr.mta_phymask, rval));
kmem_free(addr, SCSI_MAXNAMELEN);
/*
* Clear parent's props for SMHBA support
*/
flags = topo_node->flags;
if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) {
bzero(attached_wwnstr, sizeof (attached_wwnstr));
if (ddi_prop_update_string(DDI_DEV_T_NONE, parent,
SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, parent,
SCSI_ADDR_PROP_ATTACHED_PORT);
mptsas_log(mpt, CE_WARN, "mptsas attached port "
"prop update failed");
break;
}
if (ddi_prop_update_int(DDI_DEV_T_NONE, parent,
MPTSAS_NUM_PHYS, 0) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, parent,
MPTSAS_NUM_PHYS);
mptsas_log(mpt, CE_WARN, "mptsas num phys "
"prop update failed");
break;
}
if (ddi_prop_update_int(DDI_DEV_T_NONE, parent,
MPTSAS_VIRTUAL_PORT, 1) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, parent,
MPTSAS_VIRTUAL_PORT);
mptsas_log(mpt, CE_WARN, "mptsas virtual port "
"prop update failed");
break;
}
}
mutex_enter(&mpt->m_mutex);
ptgt->m_led_status = 0;
(void) mptsas_flush_led_status(mpt, ptgt);
if (rval == DDI_SUCCESS) {
refhash_remove(mpt->m_targets, ptgt);
ptgt = NULL;
} else {
/*
* clean DR_INTRANSITION flag to allow I/O down to
* PHCI driver since failover finished.
* Invalidate the devhdl
*/
ptgt->m_devhdl = MPTSAS_INVALID_DEVHDL;
ptgt->m_tgt_unconfigured = 0;
mutex_enter(&mpt->m_tx_waitq_mutex);
ptgt->m_dr_flag = MPTSAS_DR_INACTIVE;
mutex_exit(&mpt->m_tx_waitq_mutex);
}
/*
* Send SAS IO Unit Control to free the dev handle
*/
if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) ||
(flags == MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE)) {
rval = mptsas_free_devhdl(mpt, devhdl);
NDBG20(("mptsas%d handle_topo_change to remove "
"devhdl:%x, rval:%x", mpt->m_instance, devhdl,
rval));
}
break;
}
case MPTSAS_TOPO_FLAG_REMOVE_HANDLE:
{
devhdl = topo_node->devhdl;
/*
* If this is the remove handle event, do a reset first.
*/
if (topo_node->event == MPTSAS_TOPO_FLAG_REMOVE_HANDLE) {
rval = mptsas_do_scsi_reset(mpt, devhdl);
if (rval) {
NDBG20(("mpt%d reset target before remove "
"devhdl:%x, rval:%x", mpt->m_instance,
devhdl, rval));
}
}
/*
* Send SAS IO Unit Control to free the dev handle
*/
rval = mptsas_free_devhdl(mpt, devhdl);
NDBG20(("mptsas%d handle_topo_change to remove "
"devhdl:%x, rval:%x", mpt->m_instance, devhdl,
rval));
break;
}
case MPTSAS_DR_EVENT_RECONFIG_SMP:
{
mptsas_smp_t smp;
dev_info_t *smpdip;
devhdl = topo_node->devhdl;
page_address = (MPI2_SAS_EXPAND_PGAD_FORM_HNDL &
MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)devhdl;
rval = mptsas_get_sas_expander_page0(mpt, page_address, &smp);
if (rval != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "failed to online smp, "
"handle %x", devhdl);
return;
}
psmp = mptsas_smp_alloc(mpt, &smp);
if (psmp == NULL) {
return;
}
mutex_exit(&mpt->m_mutex);
ndi_devi_enter(parent, &circ1);
(void) mptsas_online_smp(parent, psmp, &smpdip);
ndi_devi_exit(parent, circ1);
mutex_enter(&mpt->m_mutex);
break;
}
case MPTSAS_DR_EVENT_OFFLINE_SMP:
{
devhdl = topo_node->devhdl;
uint32_t dev_info;
psmp = refhash_linear_search(mpt->m_smp_targets,
mptsas_smp_eval_devhdl, &devhdl);
if (psmp == NULL)
break;
/*
* The mptsas_smp_t data is released only if the dip is offlined
* successfully.
*/
mutex_exit(&mpt->m_mutex);
ndi_devi_enter(parent, &circ1);
rval = mptsas_offline_smp(parent, psmp, NDI_DEVI_REMOVE);
ndi_devi_exit(parent, circ1);
dev_info = psmp->m_deviceinfo;
if ((dev_info & DEVINFO_DIRECT_ATTACHED) ==
DEVINFO_DIRECT_ATTACHED) {
if (ddi_prop_update_int(DDI_DEV_T_NONE, parent,
MPTSAS_VIRTUAL_PORT, 1) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, parent,
MPTSAS_VIRTUAL_PORT);
mptsas_log(mpt, CE_WARN, "mptsas virtual port "
"prop update failed");
return;
}
/*
* Check whether the smp connected to the iport,
*/
if (ddi_prop_update_int(DDI_DEV_T_NONE, parent,
MPTSAS_NUM_PHYS, 0) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, parent,
MPTSAS_NUM_PHYS);
mptsas_log(mpt, CE_WARN, "mptsas num phys"
"prop update failed");
return;
}
/*
* Clear parent's attached-port props
*/
bzero(attached_wwnstr, sizeof (attached_wwnstr));
if (ddi_prop_update_string(DDI_DEV_T_NONE, parent,
SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, parent,
SCSI_ADDR_PROP_ATTACHED_PORT);
mptsas_log(mpt, CE_WARN, "mptsas attached port "
"prop update failed");
return;
}
}
mutex_enter(&mpt->m_mutex);
NDBG20(("mptsas%d handle_topo_change to remove devhdl:%x, "
"rval:%x", mpt->m_instance, psmp->m_devhdl, rval));
if (rval == DDI_SUCCESS) {
refhash_remove(mpt->m_smp_targets, psmp);
} else {
psmp->m_devhdl = MPTSAS_INVALID_DEVHDL;
}
bzero(attached_wwnstr, sizeof (attached_wwnstr));
break;
}
default:
return;
}
}
/*
* Record the event if its type is enabled in mpt instance by ioctl.
*/
static void
mptsas_record_event(void *args)
{
m_replyh_arg_t *replyh_arg;
pMpi2EventNotificationReply_t eventreply;
uint32_t event, rfm;
mptsas_t *mpt;
int i, j;
uint16_t event_data_len;
boolean_t sendAEN = FALSE;
replyh_arg = (m_replyh_arg_t *)args;
rfm = replyh_arg->rfm;
mpt = replyh_arg->mpt;
eventreply = (pMpi2EventNotificationReply_t)
(mpt->m_reply_frame + (rfm -
(mpt->m_reply_frame_dma_addr & 0xffffffffu)));
event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event);
/*
* Generate a system event to let anyone who cares know that a
* LOG_ENTRY_ADDED event has occurred. This is sent no matter what the
* event mask is set to.
*/
if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
sendAEN = TRUE;
}
/*
* Record the event only if it is not masked. Determine which dword
* and bit of event mask to test.
*/
i = (uint8_t)(event / 32);
j = (uint8_t)(event % 32);
if ((i < 4) && ((1 << j) & mpt->m_event_mask[i])) {
i = mpt->m_event_index;
mpt->m_events[i].Type = event;
mpt->m_events[i].Number = ++mpt->m_event_number;
bzero(mpt->m_events[i].Data, MPTSAS_MAX_EVENT_DATA_LENGTH * 4);
event_data_len = ddi_get16(mpt->m_acc_reply_frame_hdl,
&eventreply->EventDataLength);
if (event_data_len > 0) {
/*
* Limit data to size in m_event entry
*/
if (event_data_len > MPTSAS_MAX_EVENT_DATA_LENGTH) {
event_data_len = MPTSAS_MAX_EVENT_DATA_LENGTH;
}
for (j = 0; j < event_data_len; j++) {
mpt->m_events[i].Data[j] =
ddi_get32(mpt->m_acc_reply_frame_hdl,
&(eventreply->EventData[j]));
}
/*
* check for index wrap-around
*/
if (++i == MPTSAS_EVENT_QUEUE_SIZE) {
i = 0;
}
mpt->m_event_index = (uint8_t)i;
/*
* Set flag to send the event.
*/
sendAEN = TRUE;
}
}
/*
* Generate a system event if flag is set to let anyone who cares know
* that an event has occurred.
*/
if (sendAEN) {
(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
"SAS", NULL, NULL, DDI_NOSLEEP);
}
}
#define SMP_RESET_IN_PROGRESS MPI2_EVENT_SAS_TOPO_LR_SMP_RESET_IN_PROGRESS
/*
* handle sync events from ioc in interrupt
* return value:
* DDI_SUCCESS: The event is handled by this func
* DDI_FAILURE: Event is not handled
*/
static int
mptsas_handle_event_sync(void *args)
{
m_replyh_arg_t *replyh_arg;
pMpi2EventNotificationReply_t eventreply;
uint32_t event, rfm;
mptsas_t *mpt;
uint_t iocstatus;
replyh_arg = (m_replyh_arg_t *)args;
rfm = replyh_arg->rfm;
mpt = replyh_arg->mpt;
ASSERT(mutex_owned(&mpt->m_mutex));
eventreply = (pMpi2EventNotificationReply_t)
(mpt->m_reply_frame + (rfm -
(mpt->m_reply_frame_dma_addr & 0xffffffffu)));
event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event);
if (iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl,
&eventreply->IOCStatus)) {
if (iocstatus == MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
mptsas_log(mpt, CE_WARN,
"!mptsas_handle_event_sync: event 0x%x, "
"IOCStatus=0x%x, "
"IOCLogInfo=0x%x", event, iocstatus,
ddi_get32(mpt->m_acc_reply_frame_hdl,
&eventreply->IOCLogInfo));
} else {
mptsas_log(mpt, CE_WARN,
"mptsas_handle_event_sync: event 0x%x, "
"IOCStatus=0x%x, "
"(IOCLogInfo=0x%x)", event, iocstatus,
ddi_get32(mpt->m_acc_reply_frame_hdl,
&eventreply->IOCLogInfo));
}
}
/*
* figure out what kind of event we got and handle accordingly
*/
switch (event) {
case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
{
pMpi2EventDataSasTopologyChangeList_t sas_topo_change_list;
uint8_t num_entries, expstatus, phy;
uint8_t phystatus, physport, state, i;
uint8_t start_phy_num, link_rate;
uint16_t dev_handle, reason_code;
uint16_t enc_handle, expd_handle;
char string[80], curr[80], prev[80];
mptsas_topo_change_list_t *topo_head = NULL;
mptsas_topo_change_list_t *topo_tail = NULL;
mptsas_topo_change_list_t *topo_node = NULL;
mptsas_target_t *ptgt;
mptsas_smp_t *psmp;
uint8_t flags = 0, exp_flag;
smhba_info_t *pSmhba = NULL;
NDBG20(("mptsas_handle_event_sync: SAS topology change"));
sas_topo_change_list = (pMpi2EventDataSasTopologyChangeList_t)
eventreply->EventData;
enc_handle = ddi_get16(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->EnclosureHandle);
expd_handle = ddi_get16(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->ExpanderDevHandle);
num_entries = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->NumEntries);
start_phy_num = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->StartPhyNum);
expstatus = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->ExpStatus);
physport = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->PhysicalPort);
string[0] = 0;
if (expd_handle) {
flags = MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED;
switch (expstatus) {
case MPI2_EVENT_SAS_TOPO_ES_ADDED:
(void) sprintf(string, " added");
/*
* New expander device added
*/
mpt->m_port_chng = 1;
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_SLEEP);
topo_node->mpt = mpt;
topo_node->event = MPTSAS_DR_EVENT_RECONFIG_SMP;
topo_node->un.physport = physport;
topo_node->devhdl = expd_handle;
topo_node->flags = flags;
topo_node->object = NULL;
if (topo_head == NULL) {
topo_head = topo_tail = topo_node;
} else {
topo_tail->next = topo_node;
topo_tail = topo_node;
}
break;
case MPI2_EVENT_SAS_TOPO_ES_NOT_RESPONDING:
(void) sprintf(string, " not responding, "
"removed");
psmp = refhash_linear_search(mpt->m_smp_targets,
mptsas_smp_eval_devhdl, &expd_handle);
if (psmp == NULL)
break;
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_SLEEP);
topo_node->mpt = mpt;
topo_node->un.phymask =
psmp->m_addr.mta_phymask;
topo_node->event = MPTSAS_DR_EVENT_OFFLINE_SMP;
topo_node->devhdl = expd_handle;
topo_node->flags = flags;
topo_node->object = NULL;
if (topo_head == NULL) {
topo_head = topo_tail = topo_node;
} else {
topo_tail->next = topo_node;
topo_tail = topo_node;
}
break;
case MPI2_EVENT_SAS_TOPO_ES_RESPONDING:
break;
case MPI2_EVENT_SAS_TOPO_ES_DELAY_NOT_RESPONDING:
(void) sprintf(string, " not responding, "
"delaying removal");
break;
default:
break;
}
} else {
flags = MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE;
}
NDBG20(("SAS TOPOLOGY CHANGE for enclosure %x expander %x%s\n",
enc_handle, expd_handle, string));
for (i = 0; i < num_entries; i++) {
phy = i + start_phy_num;
phystatus = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->PHY[i].PhyStatus);
dev_handle = ddi_get16(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->PHY[i].AttachedDevHandle);
reason_code = phystatus & MPI2_EVENT_SAS_TOPO_RC_MASK;
/*
* Filter out processing of Phy Vacant Status unless
* the reason code is "Not Responding". Process all
* other combinations of Phy Status and Reason Codes.
*/
if ((phystatus &
MPI2_EVENT_SAS_TOPO_PHYSTATUS_VACANT) &&
(reason_code !=
MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING)) {
continue;
}
curr[0] = 0;
prev[0] = 0;
string[0] = 0;
switch (reason_code) {
case MPI2_EVENT_SAS_TOPO_RC_TARG_ADDED:
{
NDBG20(("mptsas%d phy %d physical_port %d "
"dev_handle %d added", mpt->m_instance, phy,
physport, dev_handle));
link_rate = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->PHY[i].LinkRate);
state = (link_rate &
MPI2_EVENT_SAS_TOPO_LR_CURRENT_MASK) >>
MPI2_EVENT_SAS_TOPO_LR_CURRENT_SHIFT;
switch (state) {
case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED:
(void) sprintf(curr, "is disabled");
break;
case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED:
(void) sprintf(curr, "is offline, "
"failed speed negotiation");
break;
case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE:
(void) sprintf(curr, "SATA OOB "
"complete");
break;
case SMP_RESET_IN_PROGRESS:
(void) sprintf(curr, "SMP reset in "
"progress");
break;
case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5:
(void) sprintf(curr, "is online at "
"1.5 Gbps");
break;
case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0:
(void) sprintf(curr, "is online at 3.0 "
"Gbps");
break;
case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0:
(void) sprintf(curr, "is online at 6.0 "
"Gbps");
break;
case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0:
(void) sprintf(curr,
"is online at 12.0 Gbps");
break;
default:
(void) sprintf(curr, "state is "
"unknown");
break;
}
/*
* New target device added into the system.
* Set association flag according to if an
* expander is used or not.
*/
exp_flag =
MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE;
if (flags ==
MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED) {
flags = exp_flag;
}
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_SLEEP);
topo_node->mpt = mpt;
topo_node->event =
MPTSAS_DR_EVENT_RECONFIG_TARGET;
if (expd_handle == 0) {
/*
* Per MPI 2, if expander dev handle
* is 0, it's a directly attached
* device. So driver use PHY to decide
* which iport is associated
*/
physport = phy;
mpt->m_port_chng = 1;
}
topo_node->un.physport = physport;
topo_node->devhdl = dev_handle;
topo_node->flags = flags;
topo_node->object = NULL;
if (topo_head == NULL) {
topo_head = topo_tail = topo_node;
} else {
topo_tail->next = topo_node;
topo_tail = topo_node;
}
break;
}
case MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING:
{
NDBG20(("mptsas%d phy %d physical_port %d "
"dev_handle %d removed", mpt->m_instance,
phy, physport, dev_handle));
/*
* Set association flag according to if an
* expander is used or not.
*/
exp_flag =
MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE;
if (flags ==
MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED) {
flags = exp_flag;
}
/*
* Target device is removed from the system
* Before the device is really offline from
* from system.
*/
ptgt = refhash_linear_search(mpt->m_targets,
mptsas_target_eval_devhdl, &dev_handle);
/*
* If ptgt is NULL here, it means that the
* DevHandle is not in the hash table. This is
* reasonable sometimes. For example, if a
* disk was pulled, then added, then pulled
* again, the disk will not have been put into
* the hash table because the add event will
* have an invalid phymask. BUT, this does not
* mean that the DevHandle is invalid. The
* controller will still have a valid DevHandle
* that must be removed. To do this, use the
* MPTSAS_TOPO_FLAG_REMOVE_HANDLE event.
*/
if (ptgt == NULL) {
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_SLEEP);
topo_node->mpt = mpt;
topo_node->un.phymask = 0;
topo_node->event =
MPTSAS_TOPO_FLAG_REMOVE_HANDLE;
topo_node->devhdl = dev_handle;
topo_node->flags = flags;
topo_node->object = NULL;
if (topo_head == NULL) {
topo_head = topo_tail =
topo_node;
} else {
topo_tail->next = topo_node;
topo_tail = topo_node;
}
break;
}
/*
* Update DR flag immediately avoid I/O failure
* before failover finish. Pay attention to the
* mutex protect, we need grab m_tx_waitq_mutex
* during set m_dr_flag because we won't add
* the following command into waitq, instead,
* we need return TRAN_BUSY in the tran_start
* context.
*/
mutex_enter(&mpt->m_tx_waitq_mutex);
ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION;
mutex_exit(&mpt->m_tx_waitq_mutex);
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_SLEEP);
topo_node->mpt = mpt;
topo_node->un.phymask =
ptgt->m_addr.mta_phymask;
topo_node->event =
MPTSAS_DR_EVENT_OFFLINE_TARGET;
topo_node->devhdl = dev_handle;
topo_node->flags = flags;
topo_node->object = NULL;
if (topo_head == NULL) {
topo_head = topo_tail = topo_node;
} else {
topo_tail->next = topo_node;
topo_tail = topo_node;
}
break;
}
case MPI2_EVENT_SAS_TOPO_RC_PHY_CHANGED:
link_rate = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sas_topo_change_list->PHY[i].LinkRate);
state = (link_rate &
MPI2_EVENT_SAS_TOPO_LR_CURRENT_MASK) >>
MPI2_EVENT_SAS_TOPO_LR_CURRENT_SHIFT;
pSmhba = &mpt->m_phy_info[i].smhba_info;
pSmhba->negotiated_link_rate = state;
switch (state) {
case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED:
(void) sprintf(curr, "is disabled");
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_PHY_EVENT,
SAS_PHY_REMOVE,
&mpt->m_phy_info[i].smhba_info);
mpt->m_phy_info[i].smhba_info.
negotiated_link_rate
= 0x1;
break;
case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED:
(void) sprintf(curr, "is offline, "
"failed speed negotiation");
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_PHY_EVENT,
SAS_PHY_OFFLINE,
&mpt->m_phy_info[i].smhba_info);
break;
case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE:
(void) sprintf(curr, "SATA OOB "
"complete");
break;
case SMP_RESET_IN_PROGRESS:
(void) sprintf(curr, "SMP reset in "
"progress");
break;
case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5:
(void) sprintf(curr, "is online at "
"1.5 Gbps");
if ((expd_handle == 0) &&
(enc_handle == 1)) {
mpt->m_port_chng = 1;
}
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_PHY_EVENT,
SAS_PHY_ONLINE,
&mpt->m_phy_info[i].smhba_info);
break;
case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0:
(void) sprintf(curr, "is online at 3.0 "
"Gbps");
if ((expd_handle == 0) &&
(enc_handle == 1)) {
mpt->m_port_chng = 1;
}
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_PHY_EVENT,
SAS_PHY_ONLINE,
&mpt->m_phy_info[i].smhba_info);
break;
case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0:
(void) sprintf(curr, "is online at "
"6.0 Gbps");
if ((expd_handle == 0) &&
(enc_handle == 1)) {
mpt->m_port_chng = 1;
}
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_PHY_EVENT,
SAS_PHY_ONLINE,
&mpt->m_phy_info[i].smhba_info);
break;
case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0:
(void) sprintf(curr, "is online at "
"12.0 Gbps");
if ((expd_handle == 0) &&
(enc_handle == 1)) {
mpt->m_port_chng = 1;
}
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_PHY_EVENT,
SAS_PHY_ONLINE,
&mpt->m_phy_info[i].smhba_info);
break;
default:
(void) sprintf(curr, "state is "
"unknown");
break;
}
state = (link_rate &
MPI2_EVENT_SAS_TOPO_LR_PREV_MASK) >>
MPI2_EVENT_SAS_TOPO_LR_PREV_SHIFT;
switch (state) {
case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED:
(void) sprintf(prev, ", was disabled");
break;
case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED:
(void) sprintf(prev, ", was offline, "
"failed speed negotiation");
break;
case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE:
(void) sprintf(prev, ", was SATA OOB "
"complete");
break;
case SMP_RESET_IN_PROGRESS:
(void) sprintf(prev, ", was SMP reset "
"in progress");
break;
case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5:
(void) sprintf(prev, ", was online at "
"1.5 Gbps");
break;
case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0:
(void) sprintf(prev, ", was online at "
"3.0 Gbps");
break;
case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0:
(void) sprintf(prev, ", was online at "
"6.0 Gbps");
break;
case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0:
(void) sprintf(prev, ", was online at "
"12.0 Gbps");
break;
default:
break;
}
(void) sprintf(&string[strlen(string)], "link "
"changed, ");
break;
case MPI2_EVENT_SAS_TOPO_RC_NO_CHANGE:
continue;
case MPI2_EVENT_SAS_TOPO_RC_DELAY_NOT_RESPONDING:
(void) sprintf(&string[strlen(string)],
"target not responding, delaying "
"removal");
break;
}
NDBG20(("mptsas%d phy %d DevHandle %x, %s%s%s\n",
mpt->m_instance, phy, dev_handle, string, curr,
prev));
}
if (topo_head != NULL) {
/*
* Launch DR taskq to handle topology change
*/
if ((ddi_taskq_dispatch(mpt->m_dr_taskq,
mptsas_handle_dr, (void *)topo_head,
DDI_NOSLEEP)) != DDI_SUCCESS) {
while (topo_head != NULL) {
topo_node = topo_head;
topo_head = topo_head->next;
kmem_free(topo_node,
sizeof (mptsas_topo_change_list_t));
}
mptsas_log(mpt, CE_NOTE, "mptsas start taskq "
"for handle SAS DR event failed. \n");
}
}
break;
}
case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
{
Mpi2EventDataIrConfigChangeList_t *irChangeList;
mptsas_topo_change_list_t *topo_head = NULL;
mptsas_topo_change_list_t *topo_tail = NULL;
mptsas_topo_change_list_t *topo_node = NULL;
mptsas_target_t *ptgt;
uint8_t num_entries, i, reason;
uint16_t volhandle, diskhandle;
irChangeList = (pMpi2EventDataIrConfigChangeList_t)
eventreply->EventData;
num_entries = ddi_get8(mpt->m_acc_reply_frame_hdl,
&irChangeList->NumElements);
NDBG20(("mptsas%d IR_CONFIGURATION_CHANGE_LIST event received",
mpt->m_instance));
for (i = 0; i < num_entries; i++) {
reason = ddi_get8(mpt->m_acc_reply_frame_hdl,
&irChangeList->ConfigElement[i].ReasonCode);
volhandle = ddi_get16(mpt->m_acc_reply_frame_hdl,
&irChangeList->ConfigElement[i].VolDevHandle);
diskhandle = ddi_get16(mpt->m_acc_reply_frame_hdl,
&irChangeList->ConfigElement[i].PhysDiskDevHandle);
switch (reason) {
case MPI2_EVENT_IR_CHANGE_RC_ADDED:
case MPI2_EVENT_IR_CHANGE_RC_VOLUME_CREATED:
{
NDBG20(("mptsas %d volume added\n",
mpt->m_instance));
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_SLEEP);
topo_node->mpt = mpt;
topo_node->event =
MPTSAS_DR_EVENT_RECONFIG_TARGET;
topo_node->un.physport = 0xff;
topo_node->devhdl = volhandle;
topo_node->flags =
MPTSAS_TOPO_FLAG_RAID_ASSOCIATED;
topo_node->object = NULL;
if (topo_head == NULL) {
topo_head = topo_tail = topo_node;
} else {
topo_tail->next = topo_node;
topo_tail = topo_node;
}
break;
}
case MPI2_EVENT_IR_CHANGE_RC_REMOVED:
case MPI2_EVENT_IR_CHANGE_RC_VOLUME_DELETED:
{
NDBG20(("mptsas %d volume deleted\n",
mpt->m_instance));
ptgt = refhash_linear_search(mpt->m_targets,
mptsas_target_eval_devhdl, &volhandle);
if (ptgt == NULL)
break;
/*
* Clear any flags related to volume
*/
(void) mptsas_delete_volume(mpt, volhandle);
/*
* Update DR flag immediately avoid I/O failure
*/
mutex_enter(&mpt->m_tx_waitq_mutex);
ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION;
mutex_exit(&mpt->m_tx_waitq_mutex);
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_SLEEP);
topo_node->mpt = mpt;
topo_node->un.phymask =
ptgt->m_addr.mta_phymask;
topo_node->event =
MPTSAS_DR_EVENT_OFFLINE_TARGET;
topo_node->devhdl = volhandle;
topo_node->flags =
MPTSAS_TOPO_FLAG_RAID_ASSOCIATED;
topo_node->object = (void *)ptgt;
if (topo_head == NULL) {
topo_head = topo_tail = topo_node;
} else {
topo_tail->next = topo_node;
topo_tail = topo_node;
}
break;
}
case MPI2_EVENT_IR_CHANGE_RC_PD_CREATED:
case MPI2_EVENT_IR_CHANGE_RC_HIDE:
{
ptgt = refhash_linear_search(mpt->m_targets,
mptsas_target_eval_devhdl, &diskhandle);
if (ptgt == NULL)
break;
/*
* Update DR flag immediately avoid I/O failure
*/
mutex_enter(&mpt->m_tx_waitq_mutex);
ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION;
mutex_exit(&mpt->m_tx_waitq_mutex);
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_SLEEP);
topo_node->mpt = mpt;
topo_node->un.phymask =
ptgt->m_addr.mta_phymask;
topo_node->event =
MPTSAS_DR_EVENT_OFFLINE_TARGET;
topo_node->devhdl = diskhandle;
topo_node->flags =
MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED;
topo_node->object = (void *)ptgt;
if (topo_head == NULL) {
topo_head = topo_tail = topo_node;
} else {
topo_tail->next = topo_node;
topo_tail = topo_node;
}
break;
}
case MPI2_EVENT_IR_CHANGE_RC_UNHIDE:
case MPI2_EVENT_IR_CHANGE_RC_PD_DELETED:
{
/*
* The physical drive is released by a IR
* volume. But we cannot get the the physport
* or phynum from the event data, so we only
* can get the physport/phynum after SAS
* Device Page0 request for the devhdl.
*/
topo_node = kmem_zalloc(
sizeof (mptsas_topo_change_list_t),
KM_SLEEP);
topo_node->mpt = mpt;
topo_node->un.phymask = 0;
topo_node->event =
MPTSAS_DR_EVENT_RECONFIG_TARGET;
topo_node->devhdl = diskhandle;
topo_node->flags =
MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED;
topo_node->object = NULL;
mpt->m_port_chng = 1;
if (topo_head == NULL) {
topo_head = topo_tail = topo_node;
} else {
topo_tail->next = topo_node;
topo_tail = topo_node;
}
break;
}
default:
break;
}
}
if (topo_head != NULL) {
/*
* Launch DR taskq to handle topology change
*/
if ((ddi_taskq_dispatch(mpt->m_dr_taskq,
mptsas_handle_dr, (void *)topo_head,
DDI_NOSLEEP)) != DDI_SUCCESS) {
while (topo_head != NULL) {
topo_node = topo_head;
topo_head = topo_head->next;
kmem_free(topo_node,
sizeof (mptsas_topo_change_list_t));
}
mptsas_log(mpt, CE_NOTE, "mptsas start taskq "
"for handle SAS DR event failed. \n");
}
}
break;
}
default:
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* handle events from ioc
*/
static void
mptsas_handle_event(void *args)
{
m_replyh_arg_t *replyh_arg;
pMpi2EventNotificationReply_t eventreply;
uint32_t event, iocloginfo, rfm;
uint32_t status;
uint8_t port;
mptsas_t *mpt;
uint_t iocstatus;
replyh_arg = (m_replyh_arg_t *)args;
rfm = replyh_arg->rfm;
mpt = replyh_arg->mpt;
mutex_enter(&mpt->m_mutex);
/*
* If HBA is being reset, drop incoming event.
*/
if (mpt->m_in_reset) {
NDBG20(("dropping event received prior to reset"));
mutex_exit(&mpt->m_mutex);
return;
}
eventreply = (pMpi2EventNotificationReply_t)
(mpt->m_reply_frame + (rfm -
(mpt->m_reply_frame_dma_addr & 0xffffffffu)));
event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event);
if (iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl,
&eventreply->IOCStatus)) {
if (iocstatus == MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
mptsas_log(mpt, CE_WARN,
"!mptsas_handle_event: IOCStatus=0x%x, "
"IOCLogInfo=0x%x", iocstatus,
ddi_get32(mpt->m_acc_reply_frame_hdl,
&eventreply->IOCLogInfo));
} else {
mptsas_log(mpt, CE_WARN,
"mptsas_handle_event: IOCStatus=0x%x, "
"IOCLogInfo=0x%x", iocstatus,
ddi_get32(mpt->m_acc_reply_frame_hdl,
&eventreply->IOCLogInfo));
}
}
/*
* figure out what kind of event we got and handle accordingly
*/
switch (event) {
case MPI2_EVENT_LOG_ENTRY_ADDED:
break;
case MPI2_EVENT_LOG_DATA:
iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl,
&eventreply->IOCLogInfo);
NDBG20(("mptsas %d log info %x received.\n", mpt->m_instance,
iocloginfo));
break;
case MPI2_EVENT_STATE_CHANGE:
NDBG20(("mptsas%d state change.", mpt->m_instance));
break;
case MPI2_EVENT_HARD_RESET_RECEIVED:
NDBG20(("mptsas%d event change.", mpt->m_instance));
break;
case MPI2_EVENT_SAS_DISCOVERY:
{
MPI2_EVENT_DATA_SAS_DISCOVERY *sasdiscovery;
char string[80];
uint8_t rc;
sasdiscovery =
(pMpi2EventDataSasDiscovery_t)eventreply->EventData;
rc = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sasdiscovery->ReasonCode);
port = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sasdiscovery->PhysicalPort);
status = ddi_get32(mpt->m_acc_reply_frame_hdl,
&sasdiscovery->DiscoveryStatus);
string[0] = 0;
switch (rc) {
case MPI2_EVENT_SAS_DISC_RC_STARTED:
(void) sprintf(string, "STARTING");
break;
case MPI2_EVENT_SAS_DISC_RC_COMPLETED:
(void) sprintf(string, "COMPLETED");
break;
default:
(void) sprintf(string, "UNKNOWN");
break;
}
NDBG20(("SAS DISCOVERY is %s for port %d, status %x", string,
port, status));
break;
}
case MPI2_EVENT_EVENT_CHANGE:
NDBG20(("mptsas%d event change.", mpt->m_instance));
break;
case MPI2_EVENT_TASK_SET_FULL:
{
pMpi2EventDataTaskSetFull_t taskfull;
taskfull = (pMpi2EventDataTaskSetFull_t)eventreply->EventData;
NDBG20(("TASK_SET_FULL received for mptsas%d, depth %d\n",
mpt->m_instance, ddi_get16(mpt->m_acc_reply_frame_hdl,
&taskfull->CurrentDepth)));
break;
}
case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
{
/*
* SAS TOPOLOGY CHANGE LIST Event has already been handled
* in mptsas_handle_event_sync() of interrupt context
*/
break;
}
case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
{
pMpi2EventDataSasEnclDevStatusChange_t encstatus;
uint8_t rc;
char string[80];
encstatus = (pMpi2EventDataSasEnclDevStatusChange_t)
eventreply->EventData;
rc = ddi_get8(mpt->m_acc_reply_frame_hdl,
&encstatus->ReasonCode);
switch (rc) {
case MPI2_EVENT_SAS_ENCL_RC_ADDED:
(void) sprintf(string, "added");
break;
case MPI2_EVENT_SAS_ENCL_RC_NOT_RESPONDING:
(void) sprintf(string, ", not responding");
break;
default:
break;
}
NDBG20(("mptsas%d ENCLOSURE STATUS CHANGE for enclosure "
"%x%s\n", mpt->m_instance,
ddi_get16(mpt->m_acc_reply_frame_hdl,
&encstatus->EnclosureHandle), string));
break;
}
/*
* MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE is handled by
* mptsas_handle_event_sync,in here just send ack message.
*/
case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
{
pMpi2EventDataSasDeviceStatusChange_t statuschange;
uint8_t rc;
uint16_t devhdl;
uint64_t wwn = 0;
uint32_t wwn_lo, wwn_hi;
statuschange = (pMpi2EventDataSasDeviceStatusChange_t)
eventreply->EventData;
rc = ddi_get8(mpt->m_acc_reply_frame_hdl,
&statuschange->ReasonCode);
wwn_lo = ddi_get32(mpt->m_acc_reply_frame_hdl,
(uint32_t *)(void *)&statuschange->SASAddress);
wwn_hi = ddi_get32(mpt->m_acc_reply_frame_hdl,
(uint32_t *)(void *)&statuschange->SASAddress + 1);
wwn = ((uint64_t)wwn_hi << 32) | wwn_lo;
devhdl = ddi_get16(mpt->m_acc_reply_frame_hdl,
&statuschange->DevHandle);
NDBG13(("MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE wwn is %"PRIx64,
wwn));
switch (rc) {
case MPI2_EVENT_SAS_DEV_STAT_RC_SMART_DATA:
NDBG20(("SMART data received, ASC/ASCQ = %02x/%02x",
ddi_get8(mpt->m_acc_reply_frame_hdl,
&statuschange->ASC),
ddi_get8(mpt->m_acc_reply_frame_hdl,
&statuschange->ASCQ)));
break;
case MPI2_EVENT_SAS_DEV_STAT_RC_UNSUPPORTED:
NDBG20(("Device not supported"));
break;
case MPI2_EVENT_SAS_DEV_STAT_RC_INTERNAL_DEVICE_RESET:
NDBG20(("IOC internally generated the Target Reset "
"for devhdl:%x", devhdl));
break;
case MPI2_EVENT_SAS_DEV_STAT_RC_CMP_INTERNAL_DEV_RESET:
NDBG20(("IOC's internally generated Target Reset "
"completed for devhdl:%x", devhdl));
break;
case MPI2_EVENT_SAS_DEV_STAT_RC_TASK_ABORT_INTERNAL:
NDBG20(("IOC internally generated Abort Task"));
break;
case MPI2_EVENT_SAS_DEV_STAT_RC_CMP_TASK_ABORT_INTERNAL:
NDBG20(("IOC's internally generated Abort Task "
"completed"));
break;
case MPI2_EVENT_SAS_DEV_STAT_RC_ABORT_TASK_SET_INTERNAL:
NDBG20(("IOC internally generated Abort Task Set"));
break;
case MPI2_EVENT_SAS_DEV_STAT_RC_CLEAR_TASK_SET_INTERNAL:
NDBG20(("IOC internally generated Clear Task Set"));
break;
case MPI2_EVENT_SAS_DEV_STAT_RC_QUERY_TASK_INTERNAL:
NDBG20(("IOC internally generated Query Task"));
break;
case MPI2_EVENT_SAS_DEV_STAT_RC_ASYNC_NOTIFICATION:
NDBG20(("Device sent an Asynchronous Notification"));
break;
default:
break;
}
break;
}
case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
{
/*
* IR TOPOLOGY CHANGE LIST Event has already been handled
* in mpt_handle_event_sync() of interrupt context
*/
break;
}
case MPI2_EVENT_IR_OPERATION_STATUS:
{
Mpi2EventDataIrOperationStatus_t *irOpStatus;
char reason_str[80];
uint8_t rc, percent;
uint16_t handle;
irOpStatus = (pMpi2EventDataIrOperationStatus_t)
eventreply->EventData;
rc = ddi_get8(mpt->m_acc_reply_frame_hdl,
&irOpStatus->RAIDOperation);
percent = ddi_get8(mpt->m_acc_reply_frame_hdl,
&irOpStatus->PercentComplete);
handle = ddi_get16(mpt->m_acc_reply_frame_hdl,
&irOpStatus->VolDevHandle);
switch (rc) {
case MPI2_EVENT_IR_RAIDOP_RESYNC:
(void) sprintf(reason_str, "resync");
break;
case MPI2_EVENT_IR_RAIDOP_ONLINE_CAP_EXPANSION:
(void) sprintf(reason_str, "online capacity "
"expansion");
break;
case MPI2_EVENT_IR_RAIDOP_CONSISTENCY_CHECK:
(void) sprintf(reason_str, "consistency check");
break;
default:
(void) sprintf(reason_str, "unknown reason %x",
rc);
}
NDBG20(("mptsas%d raid operational status: (%s)"
"\thandle(0x%04x), percent complete(%d)\n",
mpt->m_instance, reason_str, handle, percent));
break;
}
case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
{
pMpi2EventDataSasBroadcastPrimitive_t sas_broadcast;
uint8_t phy_num;
uint8_t primitive;
sas_broadcast = (pMpi2EventDataSasBroadcastPrimitive_t)
eventreply->EventData;
phy_num = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sas_broadcast->PhyNum);
primitive = ddi_get8(mpt->m_acc_reply_frame_hdl,
&sas_broadcast->Primitive);
switch (primitive) {
case MPI2_EVENT_PRIMITIVE_CHANGE:
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_HBA_PORT_BROADCAST,
SAS_PORT_BROADCAST_CHANGE,
&mpt->m_phy_info[phy_num].smhba_info);
break;
case MPI2_EVENT_PRIMITIVE_SES:
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_HBA_PORT_BROADCAST,
SAS_PORT_BROADCAST_SES,
&mpt->m_phy_info[phy_num].smhba_info);
break;
case MPI2_EVENT_PRIMITIVE_EXPANDER:
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_HBA_PORT_BROADCAST,
SAS_PORT_BROADCAST_D01_4,
&mpt->m_phy_info[phy_num].smhba_info);
break;
case MPI2_EVENT_PRIMITIVE_ASYNCHRONOUS_EVENT:
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_HBA_PORT_BROADCAST,
SAS_PORT_BROADCAST_D04_7,
&mpt->m_phy_info[phy_num].smhba_info);
break;
case MPI2_EVENT_PRIMITIVE_RESERVED3:
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_HBA_PORT_BROADCAST,
SAS_PORT_BROADCAST_D16_7,
&mpt->m_phy_info[phy_num].smhba_info);
break;
case MPI2_EVENT_PRIMITIVE_RESERVED4:
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_HBA_PORT_BROADCAST,
SAS_PORT_BROADCAST_D29_7,
&mpt->m_phy_info[phy_num].smhba_info);
break;
case MPI2_EVENT_PRIMITIVE_CHANGE0_RESERVED:
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_HBA_PORT_BROADCAST,
SAS_PORT_BROADCAST_D24_0,
&mpt->m_phy_info[phy_num].smhba_info);
break;
case MPI2_EVENT_PRIMITIVE_CHANGE1_RESERVED:
mptsas_smhba_log_sysevent(mpt,
ESC_SAS_HBA_PORT_BROADCAST,
SAS_PORT_BROADCAST_D27_4,
&mpt->m_phy_info[phy_num].smhba_info);
break;
default:
NDBG16(("mptsas%d: unknown BROADCAST PRIMITIVE"
" %x received",
mpt->m_instance, primitive));
break;
}
NDBG16(("mptsas%d sas broadcast primitive: "
"\tprimitive(0x%04x), phy(%d) complete\n",
mpt->m_instance, primitive, phy_num));
break;
}
case MPI2_EVENT_IR_VOLUME:
{
Mpi2EventDataIrVolume_t *irVolume;
uint16_t devhandle;
uint32_t state;
int config, vol;
uint8_t found = FALSE;
irVolume = (pMpi2EventDataIrVolume_t)eventreply->EventData;
state = ddi_get32(mpt->m_acc_reply_frame_hdl,
&irVolume->NewValue);
devhandle = ddi_get16(mpt->m_acc_reply_frame_hdl,
&irVolume->VolDevHandle);
NDBG20(("EVENT_IR_VOLUME event is received"));
/*
* Get latest RAID info and then find the DevHandle for this
* event in the configuration. If the DevHandle is not found
* just exit the event.
*/
(void) mptsas_get_raid_info(mpt);
for (config = 0; (config < mpt->m_num_raid_configs) &&
(!found); config++) {
for (vol = 0; vol < MPTSAS_MAX_RAIDVOLS; vol++) {
if (mpt->m_raidconfig[config].m_raidvol[vol].
m_raidhandle == devhandle) {
found = TRUE;
break;
}
}
}
if (!found) {
break;
}
switch (irVolume->ReasonCode) {
case MPI2_EVENT_IR_VOLUME_RC_SETTINGS_CHANGED:
{
uint32_t i;
mpt->m_raidconfig[config].m_raidvol[vol].m_settings =
state;
i = state & MPI2_RAIDVOL0_SETTING_MASK_WRITE_CACHING;
mptsas_log(mpt, CE_NOTE, " Volume %d settings changed"
", auto-config of hot-swap drives is %s"
", write caching is %s"
", hot-spare pool mask is %02x\n",
vol, state &
MPI2_RAIDVOL0_SETTING_AUTO_CONFIG_HSWAP_DISABLE
? "disabled" : "enabled",
i == MPI2_RAIDVOL0_SETTING_UNCHANGED
? "controlled by member disks" :
i == MPI2_RAIDVOL0_SETTING_DISABLE_WRITE_CACHING
? "disabled" :
i == MPI2_RAIDVOL0_SETTING_ENABLE_WRITE_CACHING
? "enabled" :
"incorrectly set",
(state >> 16) & 0xff);
break;
}
case MPI2_EVENT_IR_VOLUME_RC_STATE_CHANGED:
{
mpt->m_raidconfig[config].m_raidvol[vol].m_state =
(uint8_t)state;
mptsas_log(mpt, CE_NOTE,
"Volume %d is now %s\n", vol,
state == MPI2_RAID_VOL_STATE_OPTIMAL
? "optimal" :
state == MPI2_RAID_VOL_STATE_DEGRADED
? "degraded" :
state == MPI2_RAID_VOL_STATE_ONLINE
? "online" :
state == MPI2_RAID_VOL_STATE_INITIALIZING
? "initializing" :
state == MPI2_RAID_VOL_STATE_FAILED
? "failed" :
state == MPI2_RAID_VOL_STATE_MISSING
? "missing" :
"state unknown");
break;
}
case MPI2_EVENT_IR_VOLUME_RC_STATUS_FLAGS_CHANGED:
{
mpt->m_raidconfig[config].m_raidvol[vol].
m_statusflags = state;
mptsas_log(mpt, CE_NOTE,
" Volume %d is now %s%s%s%s%s%s%s%s%s\n",
vol,
state & MPI2_RAIDVOL0_STATUS_FLAG_ENABLED
? ", enabled" : ", disabled",
state & MPI2_RAIDVOL0_STATUS_FLAG_QUIESCED
? ", quiesced" : "",
state & MPI2_RAIDVOL0_STATUS_FLAG_VOLUME_INACTIVE
? ", inactive" : ", active",
state &
MPI2_RAIDVOL0_STATUS_FLAG_BAD_BLOCK_TABLE_FULL
? ", bad block table is full" : "",
state &
MPI2_RAIDVOL0_STATUS_FLAG_RESYNC_IN_PROGRESS
? ", resync in progress" : "",
state & MPI2_RAIDVOL0_STATUS_FLAG_BACKGROUND_INIT
? ", background initialization in progress" : "",
state &
MPI2_RAIDVOL0_STATUS_FLAG_CAPACITY_EXPANSION
? ", capacity expansion in progress" : "",
state &
MPI2_RAIDVOL0_STATUS_FLAG_CONSISTENCY_CHECK
? ", consistency check in progress" : "",
state & MPI2_RAIDVOL0_STATUS_FLAG_DATA_SCRUB
? ", data scrub in progress" : "");
break;
}
default:
break;
}
break;
}
case MPI2_EVENT_IR_PHYSICAL_DISK:
{
Mpi2EventDataIrPhysicalDisk_t *irPhysDisk;
uint16_t devhandle, enchandle, slot;
uint32_t status, state;
uint8_t physdisknum, reason;
irPhysDisk = (Mpi2EventDataIrPhysicalDisk_t *)
eventreply->EventData;
physdisknum = ddi_get8(mpt->m_acc_reply_frame_hdl,
&irPhysDisk->PhysDiskNum);
devhandle = ddi_get16(mpt->m_acc_reply_frame_hdl,
&irPhysDisk->PhysDiskDevHandle);
enchandle = ddi_get16(mpt->m_acc_reply_frame_hdl,
&irPhysDisk->EnclosureHandle);
slot = ddi_get16(mpt->m_acc_reply_frame_hdl,
&irPhysDisk->Slot);
state = ddi_get32(mpt->m_acc_reply_frame_hdl,
&irPhysDisk->NewValue);
reason = ddi_get8(mpt->m_acc_reply_frame_hdl,
&irPhysDisk->ReasonCode);
NDBG20(("EVENT_IR_PHYSICAL_DISK event is received"));
switch (reason) {
case MPI2_EVENT_IR_PHYSDISK_RC_SETTINGS_CHANGED:
mptsas_log(mpt, CE_NOTE,
" PhysDiskNum %d with DevHandle 0x%x in slot %d "
"for enclosure with handle 0x%x is now in hot "
"spare pool %d",
physdisknum, devhandle, slot, enchandle,
(state >> 16) & 0xff);
break;
case MPI2_EVENT_IR_PHYSDISK_RC_STATUS_FLAGS_CHANGED:
status = state;
mptsas_log(mpt, CE_NOTE,
" PhysDiskNum %d with DevHandle 0x%x in slot %d "
"for enclosure with handle 0x%x is now "
"%s%s%s%s%s\n", physdisknum, devhandle, slot,
enchandle,
status & MPI2_PHYSDISK0_STATUS_FLAG_INACTIVE_VOLUME
? ", inactive" : ", active",
status & MPI2_PHYSDISK0_STATUS_FLAG_OUT_OF_SYNC
? ", out of sync" : "",
status & MPI2_PHYSDISK0_STATUS_FLAG_QUIESCED
? ", quiesced" : "",
status &
MPI2_PHYSDISK0_STATUS_FLAG_WRITE_CACHE_ENABLED
? ", write cache enabled" : "",
status & MPI2_PHYSDISK0_STATUS_FLAG_OCE_TARGET
? ", capacity expansion target" : "");
break;
case MPI2_EVENT_IR_PHYSDISK_RC_STATE_CHANGED:
mptsas_log(mpt, CE_NOTE,
" PhysDiskNum %d with DevHandle 0x%x in slot %d "
"for enclosure with handle 0x%x is now %s\n",
physdisknum, devhandle, slot, enchandle,
state == MPI2_RAID_PD_STATE_OPTIMAL
? "optimal" :
state == MPI2_RAID_PD_STATE_REBUILDING
? "rebuilding" :
state == MPI2_RAID_PD_STATE_DEGRADED
? "degraded" :
state == MPI2_RAID_PD_STATE_HOT_SPARE
? "a hot spare" :
state == MPI2_RAID_PD_STATE_ONLINE
? "online" :
state == MPI2_RAID_PD_STATE_OFFLINE
? "offline" :
state == MPI2_RAID_PD_STATE_NOT_COMPATIBLE
? "not compatible" :
state == MPI2_RAID_PD_STATE_NOT_CONFIGURED
? "not configured" :
"state unknown");
break;
}
break;
}
default:
NDBG20(("mptsas%d: unknown event %x received",
mpt->m_instance, event));
break;
}
/*
* Return the reply frame to the free queue.
*/
ddi_put32(mpt->m_acc_free_queue_hdl,
&((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], rfm);
(void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
if (++mpt->m_free_index == mpt->m_free_queue_depth) {
mpt->m_free_index = 0;
}
ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex,
mpt->m_free_index);
mutex_exit(&mpt->m_mutex);
}
/*
* invoked from timeout() to restart qfull cmds with throttle == 0
*/
static void
mptsas_restart_cmd(void *arg)
{
mptsas_t *mpt = arg;
mptsas_target_t *ptgt = NULL;
mutex_enter(&mpt->m_mutex);
mpt->m_restart_cmd_timeid = 0;
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
if (ptgt->m_reset_delay == 0) {
if (ptgt->m_t_throttle == QFULL_THROTTLE) {
mptsas_set_throttle(mpt, ptgt,
MAX_THROTTLE);
}
}
}
mptsas_restart_hba(mpt);
mutex_exit(&mpt->m_mutex);
}
void
mptsas_remove_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
int slot;
mptsas_slots_t *slots = mpt->m_active;
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
ASSERT(cmd != NULL);
ASSERT(cmd->cmd_queued == FALSE);
/*
* Task Management cmds are removed in their own routines. Also,
* we don't want to modify timeout based on TM cmds.
*/
if (cmd->cmd_flags & CFLAG_TM_CMD) {
return;
}
slot = cmd->cmd_slot;
/*
* remove the cmd.
*/
if (cmd == slots->m_slot[slot]) {
NDBG31(("mptsas_remove_cmd: removing cmd=0x%p, flags "
"0x%x", (void *)cmd, cmd->cmd_flags));
slots->m_slot[slot] = NULL;
mpt->m_ncmds--;
/*
* only decrement per target ncmds if command
* has a target associated with it.
*/
if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) {
ptgt->m_t_ncmds--;
/*
* reset throttle if we just ran an untagged command
* to a tagged target
*/
if ((ptgt->m_t_ncmds == 0) &&
((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0)) {
mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE);
}
/*
* Remove this command from the active queue.
*/
if (cmd->cmd_active_expiration != 0) {
TAILQ_REMOVE(&ptgt->m_active_cmdq, cmd,
cmd_active_link);
cmd->cmd_active_expiration = 0;
}
}
}
/*
* This is all we need to do for ioc commands.
*/
if (cmd->cmd_flags & CFLAG_CMDIOC) {
mptsas_return_to_pool(mpt, cmd);
return;
}
ASSERT(cmd != slots->m_slot[cmd->cmd_slot]);
}
/*
* accept all cmds on the tx_waitq if any and then
* start a fresh request from the top of the device queue.
*
* since there are always cmds queued on the tx_waitq, and rare cmds on
* the instance waitq, so this function should not be invoked in the ISR,
* the mptsas_restart_waitq() is invoked in the ISR instead. otherwise, the
* burden belongs to the IO dispatch CPUs is moved the interrupt CPU.
*/
static void
mptsas_restart_hba(mptsas_t *mpt)
{
ASSERT(mutex_owned(&mpt->m_mutex));
mutex_enter(&mpt->m_tx_waitq_mutex);
if (mpt->m_tx_waitq) {
mptsas_accept_tx_waitq(mpt);
}
mutex_exit(&mpt->m_tx_waitq_mutex);
mptsas_restart_waitq(mpt);
}
/*
* start a fresh request from the top of the device queue
*/
static void
mptsas_restart_waitq(mptsas_t *mpt)
{
mptsas_cmd_t *cmd, *next_cmd;
mptsas_target_t *ptgt = NULL;
NDBG1(("mptsas_restart_waitq: mpt=0x%p", (void *)mpt));
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* If there is a reset delay, don't start any cmds. Otherwise, start
* as many cmds as possible.
* Since SMID 0 is reserved and the TM slot is reserved, the actual max
* commands is m_max_requests - 2.
*/
cmd = mpt->m_waitq;
while (cmd != NULL) {
next_cmd = cmd->cmd_linkp;
if (cmd->cmd_flags & CFLAG_PASSTHRU) {
if (mptsas_save_cmd(mpt, cmd) == TRUE) {
/*
* passthru command get slot need
* set CFLAG_PREPARED.
*/
cmd->cmd_flags |= CFLAG_PREPARED;
mptsas_waitq_delete(mpt, cmd);
mptsas_start_passthru(mpt, cmd);
}
cmd = next_cmd;
continue;
}
if (cmd->cmd_flags & CFLAG_CONFIG) {
if (mptsas_save_cmd(mpt, cmd) == TRUE) {
/*
* Send the config page request and delete it
* from the waitq.
*/
cmd->cmd_flags |= CFLAG_PREPARED;
mptsas_waitq_delete(mpt, cmd);
mptsas_start_config_page_access(mpt, cmd);
}
cmd = next_cmd;
continue;
}
if (cmd->cmd_flags & CFLAG_FW_DIAG) {
if (mptsas_save_cmd(mpt, cmd) == TRUE) {
/*
* Send the FW Diag request and delete if from
* the waitq.
*/
cmd->cmd_flags |= CFLAG_PREPARED;
mptsas_waitq_delete(mpt, cmd);
mptsas_start_diag(mpt, cmd);
}
cmd = next_cmd;
continue;
}
ptgt = cmd->cmd_tgt_addr;
if (ptgt && (ptgt->m_t_throttle == DRAIN_THROTTLE) &&
(ptgt->m_t_ncmds == 0)) {
mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE);
}
if ((mpt->m_ncmds <= (mpt->m_max_requests - 2)) &&
(ptgt && (ptgt->m_reset_delay == 0)) &&
(ptgt && (ptgt->m_t_ncmds <
ptgt->m_t_throttle))) {
if (mptsas_save_cmd(mpt, cmd) == TRUE) {
mptsas_waitq_delete(mpt, cmd);
(void) mptsas_start_cmd(mpt, cmd);
}
}
cmd = next_cmd;
}
}
/*
* Cmds are queued if tran_start() doesn't get the m_mutexlock(no wait).
* Accept all those queued cmds before new cmd is accept so that the
* cmds are sent in order.
*/
static void
mptsas_accept_tx_waitq(mptsas_t *mpt)
{
mptsas_cmd_t *cmd;
ASSERT(mutex_owned(&mpt->m_mutex));
ASSERT(mutex_owned(&mpt->m_tx_waitq_mutex));
/*
* A Bus Reset could occur at any time and flush the tx_waitq,
* so we cannot count on the tx_waitq to contain even one cmd.
* And when the m_tx_waitq_mutex is released and run
* mptsas_accept_pkt(), the tx_waitq may be flushed.
*/
cmd = mpt->m_tx_waitq;
for (;;) {
if ((cmd = mpt->m_tx_waitq) == NULL) {
mpt->m_tx_draining = 0;
break;
}
if ((mpt->m_tx_waitq = cmd->cmd_linkp) == NULL) {
mpt->m_tx_waitqtail = &mpt->m_tx_waitq;
}
cmd->cmd_linkp = NULL;
mutex_exit(&mpt->m_tx_waitq_mutex);
if (mptsas_accept_pkt(mpt, cmd) != TRAN_ACCEPT)
cmn_err(CE_WARN, "mpt: mptsas_accept_tx_waitq: failed "
"to accept cmd on queue\n");
mutex_enter(&mpt->m_tx_waitq_mutex);
}
}
/*
* mpt tag type lookup
*/
static char mptsas_tag_lookup[] =
{0, MSG_HEAD_QTAG, MSG_ORDERED_QTAG, 0, MSG_SIMPLE_QTAG};
static int
mptsas_start_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
struct scsi_pkt *pkt = CMD2PKT(cmd);
uint32_t control = 0;
caddr_t mem, arsbuf;
pMpi2SCSIIORequest_t io_request;
ddi_dma_handle_t dma_hdl = mpt->m_dma_req_frame_hdl;
ddi_acc_handle_t acc_hdl = mpt->m_acc_req_frame_hdl;
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
uint16_t SMID, io_flags = 0;
uint8_t ars_size;
uint64_t request_desc;
uint32_t ars_dmaaddrlow;
mptsas_cmd_t *c;
NDBG1(("mptsas_start_cmd: cmd=0x%p, flags 0x%x", (void *)cmd,
cmd->cmd_flags));
/*
* Set SMID and increment index. Rollover to 1 instead of 0 if index
* is at the max. 0 is an invalid SMID, so we call the first index 1.
*/
SMID = cmd->cmd_slot;
/*
* It is possible for back to back device reset to
* happen before the reset delay has expired. That's
* ok, just let the device reset go out on the bus.
*/
if ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0) {
ASSERT(ptgt->m_reset_delay == 0);
}
/*
* if a non-tagged cmd is submitted to an active tagged target
* then drain before submitting this cmd; SCSI-2 allows RQSENSE
* to be untagged
*/
if (((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0) &&
(ptgt->m_t_ncmds > 1) &&
((cmd->cmd_flags & CFLAG_TM_CMD) == 0) &&
(*(cmd->cmd_pkt->pkt_cdbp) != SCMD_REQUEST_SENSE)) {
if ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0) {
NDBG23(("target=%d, untagged cmd, start draining\n",
ptgt->m_devhdl));
if (ptgt->m_reset_delay == 0) {
mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE);
}
mptsas_remove_cmd(mpt, cmd);
cmd->cmd_pkt_flags |= FLAG_HEAD;
mptsas_waitq_add(mpt, cmd);
}
return (DDI_FAILURE);
}
/*
* Set correct tag bits.
*/
if (cmd->cmd_pkt_flags & FLAG_TAGMASK) {
switch (mptsas_tag_lookup[((cmd->cmd_pkt_flags &
FLAG_TAGMASK) >> 12)]) {
case MSG_SIMPLE_QTAG:
control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
break;
case MSG_HEAD_QTAG:
control |= MPI2_SCSIIO_CONTROL_HEADOFQ;
break;
case MSG_ORDERED_QTAG:
control |= MPI2_SCSIIO_CONTROL_ORDEREDQ;
break;
default:
mptsas_log(mpt, CE_WARN, "mpt: Invalid tag type\n");
break;
}
} else {
if (*(cmd->cmd_pkt->pkt_cdbp) != SCMD_REQUEST_SENSE) {
ptgt->m_t_throttle = 1;
}
control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
}
if (cmd->cmd_pkt_flags & FLAG_TLR) {
control |= MPI2_SCSIIO_CONTROL_TLR_ON;
}
mem = mpt->m_req_frame + (mpt->m_req_frame_size * SMID);
io_request = (pMpi2SCSIIORequest_t)mem;
if (cmd->cmd_extrqslen != 0) {
/*
* Mapping of the buffer was done in mptsas_pkt_alloc_extern().
* Calculate the DMA address with the same offset.
*/
arsbuf = cmd->cmd_arq_buf;
ars_size = cmd->cmd_extrqslen;
ars_dmaaddrlow = (mpt->m_req_sense_dma_addr +
((uintptr_t)arsbuf - (uintptr_t)mpt->m_req_sense)) &
0xffffffffu;
} else {
arsbuf = mpt->m_req_sense + (mpt->m_req_sense_size * (SMID-1));
cmd->cmd_arq_buf = arsbuf;
ars_size = mpt->m_req_sense_size;
ars_dmaaddrlow = (mpt->m_req_sense_dma_addr +
(mpt->m_req_sense_size * (SMID-1))) &
0xffffffffu;
}
bzero(io_request, sizeof (Mpi2SCSIIORequest_t));
bzero(arsbuf, ars_size);
ddi_put8(acc_hdl, &io_request->SGLOffset0, offsetof
(MPI2_SCSI_IO_REQUEST, SGL) / 4);
mptsas_init_std_hdr(acc_hdl, io_request, ptgt->m_devhdl, Lun(cmd), 0,
MPI2_FUNCTION_SCSI_IO_REQUEST);
(void) ddi_rep_put8(acc_hdl, (uint8_t *)pkt->pkt_cdbp,
io_request->CDB.CDB32, cmd->cmd_cdblen, DDI_DEV_AUTOINCR);
io_flags = cmd->cmd_cdblen;
if (mptsas_use_fastpath &&
ptgt->m_io_flags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) {
io_flags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH;
request_desc = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
} else {
request_desc = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
}
ddi_put16(acc_hdl, &io_request->IoFlags, io_flags);
/*
* setup the Scatter/Gather DMA list for this request
*/
if (cmd->cmd_cookiec > 0) {
mptsas_sge_setup(mpt, cmd, &control, io_request, acc_hdl);
} else {
ddi_put32(acc_hdl, &io_request->SGL.MpiSimple.FlagsLength,
((uint32_t)MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_LIST) << MPI2_SGE_FLAGS_SHIFT);
}
/*
* save ARQ information
*/
ddi_put8(acc_hdl, &io_request->SenseBufferLength, ars_size);
ddi_put32(acc_hdl, &io_request->SenseBufferLowAddress, ars_dmaaddrlow);
ddi_put32(acc_hdl, &io_request->Control, control);
NDBG31(("starting message=%d(0x%p), with cmd=0x%p",
SMID, (void *)io_request, (void *)cmd));
(void) ddi_dma_sync(dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
(void) ddi_dma_sync(mpt->m_dma_req_sense_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
/*
* Build request descriptor and write it to the request desc post reg.
*/
request_desc |= (SMID << 16);
request_desc |= (uint64_t)ptgt->m_devhdl << 48;
MPTSAS_START_CMD(mpt, request_desc);
/*
* Start timeout.
*/
cmd->cmd_active_expiration =
gethrtime() + (hrtime_t)pkt->pkt_time * NANOSEC;
#ifdef MPTSAS_TEST
/*
* Force timeouts to happen immediately.
*/
if (mptsas_test_timeouts)
cmd->cmd_active_expiration = gethrtime();
#endif
c = TAILQ_FIRST(&ptgt->m_active_cmdq);
if (c == NULL ||
c->cmd_active_expiration < cmd->cmd_active_expiration) {
/*
* Common case is that this is the last pending expiration
* (or queue is empty). Insert at head of the queue.
*/
TAILQ_INSERT_HEAD(&ptgt->m_active_cmdq, cmd, cmd_active_link);
} else {
/*
* Queue is not empty and first element expires later than
* this command. Search for element expiring sooner.
*/
while ((c = TAILQ_NEXT(c, cmd_active_link)) != NULL) {
if (c->cmd_active_expiration <
cmd->cmd_active_expiration) {
TAILQ_INSERT_BEFORE(c, cmd, cmd_active_link);
break;
}
}
if (c == NULL) {
/*
* No element found expiring sooner, append to
* non-empty queue.
*/
TAILQ_INSERT_TAIL(&ptgt->m_active_cmdq, cmd,
cmd_active_link);
}
}
if ((mptsas_check_dma_handle(dma_hdl) != DDI_SUCCESS) ||
(mptsas_check_acc_handle(acc_hdl) != DDI_SUCCESS)) {
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* Select a helper thread to handle current doneq
*/
static void
mptsas_deliver_doneq_thread(mptsas_t *mpt)
{
uint64_t t, i;
uint32_t min = 0xffffffff;
mptsas_doneq_thread_list_t *item;
for (i = 0; i < mpt->m_doneq_thread_n; i++) {
item = &mpt->m_doneq_thread_id[i];
/*
* If the completed command on help thread[i] less than
* doneq_thread_threshold, then pick the thread[i]. Otherwise
* pick a thread which has least completed command.
*/
mutex_enter(&item->mutex);
if (item->len < mpt->m_doneq_thread_threshold) {
t = i;
mutex_exit(&item->mutex);
break;
}
if (item->len < min) {
min = item->len;
t = i;
}
mutex_exit(&item->mutex);
}
mutex_enter(&mpt->m_doneq_thread_id[t].mutex);
mptsas_doneq_mv(mpt, t);
cv_signal(&mpt->m_doneq_thread_id[t].cv);
mutex_exit(&mpt->m_doneq_thread_id[t].mutex);
}
/*
* move the current global doneq to the doneq of thead[t]
*/
static void
mptsas_doneq_mv(mptsas_t *mpt, uint64_t t)
{
mptsas_cmd_t *cmd;
mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t];
ASSERT(mutex_owned(&item->mutex));
while ((cmd = mpt->m_doneq) != NULL) {
if ((mpt->m_doneq = cmd->cmd_linkp) == NULL) {
mpt->m_donetail = &mpt->m_doneq;
}
cmd->cmd_linkp = NULL;
*item->donetail = cmd;
item->donetail = &cmd->cmd_linkp;
mpt->m_doneq_len--;
item->len++;
}
}
void
mptsas_fma_check(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
struct scsi_pkt *pkt = CMD2PKT(cmd);
/* Check all acc and dma handles */
if ((mptsas_check_acc_handle(mpt->m_datap) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_req_sense_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_config_handle) !=
DDI_SUCCESS)) {
ddi_fm_service_impact(mpt->m_dip,
DDI_SERVICE_UNAFFECTED);
ddi_fm_acc_err_clear(mpt->m_config_handle,
DDI_FME_VER0);
pkt->pkt_reason = CMD_TRAN_ERR;
pkt->pkt_statistics = 0;
}
if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_req_sense_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) !=
DDI_SUCCESS)) {
ddi_fm_service_impact(mpt->m_dip,
DDI_SERVICE_UNAFFECTED);
pkt->pkt_reason = CMD_TRAN_ERR;
pkt->pkt_statistics = 0;
}
if (cmd->cmd_dmahandle &&
(mptsas_check_dma_handle(cmd->cmd_dmahandle) != DDI_SUCCESS)) {
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
pkt->pkt_reason = CMD_TRAN_ERR;
pkt->pkt_statistics = 0;
}
if ((cmd->cmd_extra_frames &&
((mptsas_check_dma_handle(cmd->cmd_extra_frames->m_dma_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(cmd->cmd_extra_frames->m_acc_hdl) !=
DDI_SUCCESS)))) {
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
pkt->pkt_reason = CMD_TRAN_ERR;
pkt->pkt_statistics = 0;
}
}
/*
* These routines manipulate the queue of commands that
* are waiting for their completion routines to be called.
* The queue is usually in FIFO order but on an MP system
* it's possible for the completion routines to get out
* of order. If that's a problem you need to add a global
* mutex around the code that calls the completion routine
* in the interrupt handler.
*/
static void
mptsas_doneq_add(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
struct scsi_pkt *pkt = CMD2PKT(cmd);
NDBG31(("mptsas_doneq_add: cmd=0x%p", (void *)cmd));
ASSERT((cmd->cmd_flags & CFLAG_COMPLETED) == 0);
cmd->cmd_linkp = NULL;
cmd->cmd_flags |= CFLAG_FINISHED;
cmd->cmd_flags &= ~CFLAG_IN_TRANSPORT;
mptsas_fma_check(mpt, cmd);
/*
* only add scsi pkts that have completion routines to
* the doneq. no intr cmds do not have callbacks.
*/
if (pkt && (pkt->pkt_comp)) {
*mpt->m_donetail = cmd;
mpt->m_donetail = &cmd->cmd_linkp;
mpt->m_doneq_len++;
}
}
static mptsas_cmd_t *
mptsas_doneq_thread_rm(mptsas_t *mpt, uint64_t t)
{
mptsas_cmd_t *cmd;
mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t];
/* pop one off the done queue */
if ((cmd = item->doneq) != NULL) {
/* if the queue is now empty fix the tail pointer */
NDBG31(("mptsas_doneq_thread_rm: cmd=0x%p", (void *)cmd));
if ((item->doneq = cmd->cmd_linkp) == NULL) {
item->donetail = &item->doneq;
}
cmd->cmd_linkp = NULL;
item->len--;
}
return (cmd);
}
static void
mptsas_doneq_empty(mptsas_t *mpt)
{
if (mpt->m_doneq && !mpt->m_in_callback) {
mptsas_cmd_t *cmd, *next;
struct scsi_pkt *pkt;
mpt->m_in_callback = 1;
cmd = mpt->m_doneq;
mpt->m_doneq = NULL;
mpt->m_donetail = &mpt->m_doneq;
mpt->m_doneq_len = 0;
mutex_exit(&mpt->m_mutex);
/*
* run the completion routines of all the
* completed commands
*/
while (cmd != NULL) {
next = cmd->cmd_linkp;
cmd->cmd_linkp = NULL;
/* run this command's completion routine */
cmd->cmd_flags |= CFLAG_COMPLETED;
pkt = CMD2PKT(cmd);
mptsas_pkt_comp(pkt, cmd);
cmd = next;
}
mutex_enter(&mpt->m_mutex);
mpt->m_in_callback = 0;
}
}
/*
* These routines manipulate the target's queue of pending requests
*/
void
mptsas_waitq_add(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
NDBG7(("mptsas_waitq_add: cmd=0x%p", (void *)cmd));
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
cmd->cmd_queued = TRUE;
if (ptgt)
ptgt->m_t_nwait++;
if (cmd->cmd_pkt_flags & FLAG_HEAD) {
if ((cmd->cmd_linkp = mpt->m_waitq) == NULL) {
mpt->m_waitqtail = &cmd->cmd_linkp;
}
mpt->m_waitq = cmd;
} else {
cmd->cmd_linkp = NULL;
*(mpt->m_waitqtail) = cmd;
mpt->m_waitqtail = &cmd->cmd_linkp;
}
}
static mptsas_cmd_t *
mptsas_waitq_rm(mptsas_t *mpt)
{
mptsas_cmd_t *cmd;
mptsas_target_t *ptgt;
NDBG7(("mptsas_waitq_rm"));
MPTSAS_WAITQ_RM(mpt, cmd);
NDBG7(("mptsas_waitq_rm: cmd=0x%p", (void *)cmd));
if (cmd) {
ptgt = cmd->cmd_tgt_addr;
if (ptgt) {
ptgt->m_t_nwait--;
ASSERT(ptgt->m_t_nwait >= 0);
}
}
return (cmd);
}
/*
* remove specified cmd from the middle of the wait queue.
*/
static void
mptsas_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
mptsas_cmd_t *prevp = mpt->m_waitq;
mptsas_target_t *ptgt = cmd->cmd_tgt_addr;
NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p",
(void *)mpt, (void *)cmd));
if (ptgt) {
ptgt->m_t_nwait--;
ASSERT(ptgt->m_t_nwait >= 0);
}
if (prevp == cmd) {
if ((mpt->m_waitq = cmd->cmd_linkp) == NULL)
mpt->m_waitqtail = &mpt->m_waitq;
cmd->cmd_linkp = NULL;
cmd->cmd_queued = FALSE;
NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p",
(void *)mpt, (void *)cmd));
return;
}
while (prevp != NULL) {
if (prevp->cmd_linkp == cmd) {
if ((prevp->cmd_linkp = cmd->cmd_linkp) == NULL)
mpt->m_waitqtail = &prevp->cmd_linkp;
cmd->cmd_linkp = NULL;
cmd->cmd_queued = FALSE;
NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p",
(void *)mpt, (void *)cmd));
return;
}
prevp = prevp->cmd_linkp;
}
cmn_err(CE_PANIC, "mpt: mptsas_waitq_delete: queue botch");
}
static mptsas_cmd_t *
mptsas_tx_waitq_rm(mptsas_t *mpt)
{
mptsas_cmd_t *cmd;
NDBG7(("mptsas_tx_waitq_rm"));
MPTSAS_TX_WAITQ_RM(mpt, cmd);
NDBG7(("mptsas_tx_waitq_rm: cmd=0x%p", (void *)cmd));
return (cmd);
}
/*
* remove specified cmd from the middle of the tx_waitq.
*/
static void
mptsas_tx_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
mptsas_cmd_t *prevp = mpt->m_tx_waitq;
NDBG7(("mptsas_tx_waitq_delete: mpt=0x%p cmd=0x%p",
(void *)mpt, (void *)cmd));
if (prevp == cmd) {
if ((mpt->m_tx_waitq = cmd->cmd_linkp) == NULL)
mpt->m_tx_waitqtail = &mpt->m_tx_waitq;
cmd->cmd_linkp = NULL;
cmd->cmd_queued = FALSE;
NDBG7(("mptsas_tx_waitq_delete: mpt=0x%p cmd=0x%p",
(void *)mpt, (void *)cmd));
return;
}
while (prevp != NULL) {
if (prevp->cmd_linkp == cmd) {
if ((prevp->cmd_linkp = cmd->cmd_linkp) == NULL)
mpt->m_tx_waitqtail = &prevp->cmd_linkp;
cmd->cmd_linkp = NULL;
cmd->cmd_queued = FALSE;
NDBG7(("mptsas_tx_waitq_delete: mpt=0x%p cmd=0x%p",
(void *)mpt, (void *)cmd));
return;
}
prevp = prevp->cmd_linkp;
}
cmn_err(CE_PANIC, "mpt: mptsas_tx_waitq_delete: queue botch");
}
/*
* device and bus reset handling
*
* Notes:
* - RESET_ALL: reset the controller
* - RESET_TARGET: reset the target specified in scsi_address
*/
static int
mptsas_scsi_reset(struct scsi_address *ap, int level)
{
mptsas_t *mpt = ADDR2MPT(ap);
int rval;
mptsas_tgt_private_t *tgt_private;
mptsas_target_t *ptgt = NULL;
tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran->tran_tgt_private;
ptgt = tgt_private->t_private;
if (ptgt == NULL) {
return (FALSE);
}
NDBG22(("mptsas_scsi_reset: target=%d level=%d", ptgt->m_devhdl,
level));
mutex_enter(&mpt->m_mutex);
/*
* if we are not in panic set up a reset delay for this target
*/
if (!ddi_in_panic()) {
mptsas_setup_bus_reset_delay(mpt);
} else {
drv_usecwait(mpt->m_scsi_reset_delay * 1000);
}
rval = mptsas_do_scsi_reset(mpt, ptgt->m_devhdl);
mutex_exit(&mpt->m_mutex);
/*
* The transport layer expect to only see TRUE and
* FALSE. Therefore, we will adjust the return value
* if mptsas_do_scsi_reset returns FAILED.
*/
if (rval == FAILED)
rval = FALSE;
return (rval);
}
static int
mptsas_do_scsi_reset(mptsas_t *mpt, uint16_t devhdl)
{
int rval = FALSE;
uint8_t config, disk;
ASSERT(mutex_owned(&mpt->m_mutex));
if (mptsas_debug_resets) {
mptsas_log(mpt, CE_WARN, "mptsas_do_scsi_reset: target=%d",
devhdl);
}
/*
* Issue a Target Reset message to the target specified but not to a
* disk making up a raid volume. Just look through the RAID config
* Phys Disk list of DevHandles. If the target's DevHandle is in this
* list, then don't reset this target.
*/
for (config = 0; config < mpt->m_num_raid_configs; config++) {
for (disk = 0; disk < MPTSAS_MAX_DISKS_IN_CONFIG; disk++) {
if (devhdl == mpt->m_raidconfig[config].
m_physdisk_devhdl[disk]) {
return (TRUE);
}
}
}
rval = mptsas_ioc_task_management(mpt,
MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, devhdl, 0, NULL, 0, 0);
mptsas_doneq_empty(mpt);
return (rval);
}
static int
mptsas_scsi_reset_notify(struct scsi_address *ap, int flag,
void (*callback)(caddr_t), caddr_t arg)
{
mptsas_t *mpt = ADDR2MPT(ap);
NDBG22(("mptsas_scsi_reset_notify: tgt=%d", ap->a_target));
return (scsi_hba_reset_notify_setup(ap, flag, callback, arg,
&mpt->m_mutex, &mpt->m_reset_notify_listf));
}
static int
mptsas_get_name(struct scsi_device *sd, char *name, int len)
{
dev_info_t *lun_dip = NULL;
ASSERT(sd != NULL);
ASSERT(name != NULL);
lun_dip = sd->sd_dev;
ASSERT(lun_dip != NULL);
if (mptsas_name_child(lun_dip, name, len) == DDI_SUCCESS) {
return (1);
} else {
return (0);
}
}
static int
mptsas_get_bus_addr(struct scsi_device *sd, char *name, int len)
{
return (mptsas_get_name(sd, name, len));
}
void
mptsas_set_throttle(mptsas_t *mpt, mptsas_target_t *ptgt, int what)
{
NDBG25(("mptsas_set_throttle: throttle=%x", what));
/*
* if the bus is draining/quiesced, no changes to the throttles
* are allowed. Not allowing change of throttles during draining
* limits error recovery but will reduce draining time
*
* all throttles should have been set to HOLD_THROTTLE
*/
if (mpt->m_softstate & (MPTSAS_SS_QUIESCED | MPTSAS_SS_DRAINING)) {
return;
}
if (what == HOLD_THROTTLE) {
ptgt->m_t_throttle = HOLD_THROTTLE;
} else if (ptgt->m_reset_delay == 0) {
ptgt->m_t_throttle = what;
}
}
/*
* Clean up from a device reset.
* For the case of target reset, this function clears the waitq of all
* commands for a particular target. For the case of abort task set, this
* function clears the waitq of all commonds for a particular target/lun.
*/
static void
mptsas_flush_target(mptsas_t *mpt, ushort_t target, int lun, uint8_t tasktype)
{
mptsas_slots_t *slots = mpt->m_active;
mptsas_cmd_t *cmd, *next_cmd;
int slot;
uchar_t reason;
uint_t stat;
hrtime_t timestamp;
NDBG25(("mptsas_flush_target: target=%d lun=%d", target, lun));
timestamp = gethrtime();
/*
* Make sure the I/O Controller has flushed all cmds
* that are associated with this target for a target reset
* and target/lun for abort task set.
* Account for TM requests, which use the last SMID.
*/
for (slot = 0; slot <= mpt->m_active->m_n_normal; slot++) {
if ((cmd = slots->m_slot[slot]) == NULL)
continue;
reason = CMD_RESET;
stat = STAT_DEV_RESET;
switch (tasktype) {
case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET:
if (Tgt(cmd) == target) {
if (cmd->cmd_active_expiration <= timestamp) {
/*
* When timeout requested, propagate
* proper reason and statistics to
* target drivers.
*/
reason = CMD_TIMEOUT;
stat |= STAT_TIMEOUT;
}
NDBG25(("mptsas_flush_target discovered non-"
"NULL cmd in slot %d, tasktype 0x%x", slot,
tasktype));
mptsas_dump_cmd(mpt, cmd);
mptsas_remove_cmd(mpt, cmd);
mptsas_set_pkt_reason(mpt, cmd, reason, stat);
mptsas_doneq_add(mpt, cmd);
}
break;
case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET:
reason = CMD_ABORTED;
stat = STAT_ABORTED;
/*FALLTHROUGH*/
case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET:
if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) {
NDBG25(("mptsas_flush_target discovered non-"
"NULL cmd in slot %d, tasktype 0x%x", slot,
tasktype));
mptsas_dump_cmd(mpt, cmd);
mptsas_remove_cmd(mpt, cmd);
mptsas_set_pkt_reason(mpt, cmd, reason,
stat);
mptsas_doneq_add(mpt, cmd);
}
break;
default:
break;
}
}
/*
* Flush the waitq and tx_waitq of this target's cmds
*/
cmd = mpt->m_waitq;
reason = CMD_RESET;
stat = STAT_DEV_RESET;
switch (tasktype) {
case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET:
while (cmd != NULL) {
next_cmd = cmd->cmd_linkp;
if (Tgt(cmd) == target) {
mptsas_waitq_delete(mpt, cmd);
mptsas_set_pkt_reason(mpt, cmd,
reason, stat);
mptsas_doneq_add(mpt, cmd);
}
cmd = next_cmd;
}
mutex_enter(&mpt->m_tx_waitq_mutex);
cmd = mpt->m_tx_waitq;
while (cmd != NULL) {
next_cmd = cmd->cmd_linkp;
if (Tgt(cmd) == target) {
mptsas_tx_waitq_delete(mpt, cmd);
mutex_exit(&mpt->m_tx_waitq_mutex);
mptsas_set_pkt_reason(mpt, cmd,
reason, stat);
mptsas_doneq_add(mpt, cmd);
mutex_enter(&mpt->m_tx_waitq_mutex);
}
cmd = next_cmd;
}
mutex_exit(&mpt->m_tx_waitq_mutex);
break;
case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET:
reason = CMD_ABORTED;
stat = STAT_ABORTED;
/*FALLTHROUGH*/
case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET:
while (cmd != NULL) {
next_cmd = cmd->cmd_linkp;
if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) {
mptsas_waitq_delete(mpt, cmd);
mptsas_set_pkt_reason(mpt, cmd,
reason, stat);
mptsas_doneq_add(mpt, cmd);
}
cmd = next_cmd;
}
mutex_enter(&mpt->m_tx_waitq_mutex);
cmd = mpt->m_tx_waitq;
while (cmd != NULL) {
next_cmd = cmd->cmd_linkp;
if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) {
mptsas_tx_waitq_delete(mpt, cmd);
mutex_exit(&mpt->m_tx_waitq_mutex);
mptsas_set_pkt_reason(mpt, cmd,
reason, stat);
mptsas_doneq_add(mpt, cmd);
mutex_enter(&mpt->m_tx_waitq_mutex);
}
cmd = next_cmd;
}
mutex_exit(&mpt->m_tx_waitq_mutex);
break;
default:
mptsas_log(mpt, CE_WARN, "Unknown task management type %d.",
tasktype);
break;
}
}
/*
* Clean up hba state, abort all outstanding command and commands in waitq
* reset timeout of all targets.
*/
static void
mptsas_flush_hba(mptsas_t *mpt)
{
mptsas_slots_t *slots = mpt->m_active;
mptsas_cmd_t *cmd;
int slot;
NDBG25(("mptsas_flush_hba"));
/*
* The I/O Controller should have already sent back
* all commands via the scsi I/O reply frame. Make
* sure all commands have been flushed.
* Account for TM request, which use the last SMID.
*/
for (slot = 0; slot <= mpt->m_active->m_n_normal; slot++) {
if ((cmd = slots->m_slot[slot]) == NULL)
continue;
if (cmd->cmd_flags & CFLAG_CMDIOC) {
/*
* Need to make sure to tell everyone that might be
* waiting on this command that it's going to fail. If
* we get here, this command will never timeout because
* the active command table is going to be re-allocated,
* so there will be nothing to check against a time out.
* Instead, mark the command as failed due to reset.
*/
mptsas_set_pkt_reason(mpt, cmd, CMD_RESET,
STAT_BUS_RESET);
if ((cmd->cmd_flags &
(CFLAG_PASSTHRU | CFLAG_CONFIG | CFLAG_FW_DIAG))) {
cmd->cmd_flags |= CFLAG_FINISHED;
cv_broadcast(&mpt->m_passthru_cv);
cv_broadcast(&mpt->m_config_cv);
cv_broadcast(&mpt->m_fw_diag_cv);
}
continue;
}
NDBG25(("mptsas_flush_hba discovered non-NULL cmd in slot %d",
slot));
mptsas_dump_cmd(mpt, cmd);
mptsas_remove_cmd(mpt, cmd);
mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET);
mptsas_doneq_add(mpt, cmd);
}
/*
* Flush the waitq.
*/
while ((cmd = mptsas_waitq_rm(mpt)) != NULL) {
mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET);
if ((cmd->cmd_flags & CFLAG_PASSTHRU) ||
(cmd->cmd_flags & CFLAG_CONFIG) ||
(cmd->cmd_flags & CFLAG_FW_DIAG)) {
cmd->cmd_flags |= CFLAG_FINISHED;
cv_broadcast(&mpt->m_passthru_cv);
cv_broadcast(&mpt->m_config_cv);
cv_broadcast(&mpt->m_fw_diag_cv);
} else {
mptsas_doneq_add(mpt, cmd);
}
}
/*
* Flush the tx_waitq
*/
mutex_enter(&mpt->m_tx_waitq_mutex);
while ((cmd = mptsas_tx_waitq_rm(mpt)) != NULL) {
mutex_exit(&mpt->m_tx_waitq_mutex);
mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET);
mptsas_doneq_add(mpt, cmd);
mutex_enter(&mpt->m_tx_waitq_mutex);
}
mutex_exit(&mpt->m_tx_waitq_mutex);
/*
* Drain the taskqs prior to reallocating resources. The thread
* passing through here could be launched from either (dr)
* or (event) taskqs so only wait on the 'other' queue since
* waiting on 'this' queue is a deadlock condition.
*/
mutex_exit(&mpt->m_mutex);
if (!taskq_member((taskq_t *)mpt->m_event_taskq, curthread))
ddi_taskq_wait(mpt->m_event_taskq);
if (!taskq_member((taskq_t *)mpt->m_dr_taskq, curthread))
ddi_taskq_wait(mpt->m_dr_taskq);
mutex_enter(&mpt->m_mutex);
}
/*
* set pkt_reason and OR in pkt_statistics flag
*/
static void
mptsas_set_pkt_reason(mptsas_t *mpt, mptsas_cmd_t *cmd, uchar_t reason,
uint_t stat)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(mpt))
#endif
NDBG25(("mptsas_set_pkt_reason: cmd=0x%p reason=%x stat=%x",
(void *)cmd, reason, stat));
if (cmd) {
if (cmd->cmd_pkt->pkt_reason == CMD_CMPLT) {
cmd->cmd_pkt->pkt_reason = reason;
}
cmd->cmd_pkt->pkt_statistics |= stat;
}
}
static void
mptsas_start_watch_reset_delay()
{
NDBG22(("mptsas_start_watch_reset_delay"));
mutex_enter(&mptsas_global_mutex);
if (mptsas_reset_watch == NULL && mptsas_timeouts_enabled) {
mptsas_reset_watch = timeout(mptsas_watch_reset_delay, NULL,
drv_usectohz((clock_t)
MPTSAS_WATCH_RESET_DELAY_TICK * 1000));
ASSERT(mptsas_reset_watch != NULL);
}
mutex_exit(&mptsas_global_mutex);
}
static void
mptsas_setup_bus_reset_delay(mptsas_t *mpt)
{
mptsas_target_t *ptgt = NULL;
ASSERT(MUTEX_HELD(&mpt->m_mutex));
NDBG22(("mptsas_setup_bus_reset_delay"));
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE);
ptgt->m_reset_delay = mpt->m_scsi_reset_delay;
}
mptsas_start_watch_reset_delay();
}
/*
* mptsas_watch_reset_delay(_subr) is invoked by timeout() and checks every
* mpt instance for active reset delays
*/
static void
mptsas_watch_reset_delay(void *arg)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(arg))
#endif
mptsas_t *mpt;
int not_done = 0;
NDBG22(("mptsas_watch_reset_delay"));
mutex_enter(&mptsas_global_mutex);
mptsas_reset_watch = 0;
mutex_exit(&mptsas_global_mutex);
rw_enter(&mptsas_global_rwlock, RW_READER);
for (mpt = mptsas_head; mpt != NULL; mpt = mpt->m_next) {
if (mpt->m_tran == 0) {
continue;
}
mutex_enter(&mpt->m_mutex);
not_done += mptsas_watch_reset_delay_subr(mpt);
mutex_exit(&mpt->m_mutex);
}
rw_exit(&mptsas_global_rwlock);
if (not_done) {
mptsas_start_watch_reset_delay();
}
}
static int
mptsas_watch_reset_delay_subr(mptsas_t *mpt)
{
int done = 0;
int restart = 0;
mptsas_target_t *ptgt = NULL;
NDBG22(("mptsas_watch_reset_delay_subr: mpt=0x%p", (void *)mpt));
ASSERT(mutex_owned(&mpt->m_mutex));
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
if (ptgt->m_reset_delay != 0) {
ptgt->m_reset_delay -=
MPTSAS_WATCH_RESET_DELAY_TICK;
if (ptgt->m_reset_delay <= 0) {
ptgt->m_reset_delay = 0;
mptsas_set_throttle(mpt, ptgt,
MAX_THROTTLE);
restart++;
} else {
done = -1;
}
}
}
if (restart > 0) {
mptsas_restart_hba(mpt);
}
return (done);
}
#ifdef MPTSAS_TEST
static void
mptsas_test_reset(mptsas_t *mpt, int target)
{
mptsas_target_t *ptgt = NULL;
if (mptsas_rtest == target) {
if (mptsas_do_scsi_reset(mpt, target) == TRUE) {
mptsas_rtest = -1;
}
if (mptsas_rtest == -1) {
NDBG22(("mptsas_test_reset success"));
}
}
}
#endif
/*
* abort handling:
*
* Notes:
* - if pkt is not NULL, abort just that command
* - if pkt is NULL, abort all outstanding commands for target
*/
static int
mptsas_scsi_abort(struct scsi_address *ap, struct scsi_pkt *pkt)
{
mptsas_t *mpt = ADDR2MPT(ap);
int rval;
mptsas_tgt_private_t *tgt_private;
int target, lun;
tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran->
tran_tgt_private;
ASSERT(tgt_private != NULL);
target = tgt_private->t_private->m_devhdl;
lun = tgt_private->t_lun;
NDBG23(("mptsas_scsi_abort: target=%d.%d", target, lun));
mutex_enter(&mpt->m_mutex);
rval = mptsas_do_scsi_abort(mpt, target, lun, pkt);
mutex_exit(&mpt->m_mutex);
return (rval);
}
static int
mptsas_do_scsi_abort(mptsas_t *mpt, int target, int lun, struct scsi_pkt *pkt)
{
mptsas_cmd_t *sp = NULL;
mptsas_slots_t *slots = mpt->m_active;
int rval = FALSE;
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* Abort the command pkt on the target/lun in ap. If pkt is
* NULL, abort all outstanding commands on that target/lun.
* If you can abort them, return 1, else return 0.
* Each packet that's aborted should be sent back to the target
* driver through the callback routine, with pkt_reason set to
* CMD_ABORTED.
*
* abort cmd pkt on HBA hardware; clean out of outstanding
* command lists, etc.
*/
if (pkt != NULL) {
/* abort the specified packet */
sp = PKT2CMD(pkt);
if (sp->cmd_queued) {
NDBG23(("mptsas_do_scsi_abort: queued sp=0x%p aborted",
(void *)sp));
mptsas_waitq_delete(mpt, sp);
mptsas_set_pkt_reason(mpt, sp, CMD_ABORTED,
STAT_ABORTED);
mptsas_doneq_add(mpt, sp);
rval = TRUE;
goto done;
}
/*
* Have mpt firmware abort this command
*/
if (slots->m_slot[sp->cmd_slot] != NULL) {
rval = mptsas_ioc_task_management(mpt,
MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK, target,
lun, NULL, 0, 0);
/*
* The transport layer expects only TRUE and FALSE.
* Therefore, if mptsas_ioc_task_management returns
* FAILED we will return FALSE.
*/
if (rval == FAILED)
rval = FALSE;
goto done;
}
}
/*
* If pkt is NULL then abort task set
*/
rval = mptsas_ioc_task_management(mpt,
MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET, target, lun, NULL, 0, 0);
/*
* The transport layer expects only TRUE and FALSE.
* Therefore, if mptsas_ioc_task_management returns
* FAILED we will return FALSE.
*/
if (rval == FAILED)
rval = FALSE;
#ifdef MPTSAS_TEST
if (rval && mptsas_test_stop) {
debug_enter("mptsas_do_scsi_abort");
}
#endif
done:
mptsas_doneq_empty(mpt);
return (rval);
}
/*
* capability handling:
* (*tran_getcap). Get the capability named, and return its value.
*/
static int
mptsas_scsi_getcap(struct scsi_address *ap, char *cap, int tgtonly)
{
mptsas_t *mpt = ADDR2MPT(ap);
int ckey;
int rval = FALSE;
NDBG24(("mptsas_scsi_getcap: target=%d, cap=%s tgtonly=%x",
ap->a_target, cap, tgtonly));
mutex_enter(&mpt->m_mutex);
if ((mptsas_scsi_capchk(cap, tgtonly, &ckey)) != TRUE) {
mutex_exit(&mpt->m_mutex);
return (UNDEFINED);
}
switch (ckey) {
case SCSI_CAP_DMA_MAX:
rval = (int)mpt->m_msg_dma_attr.dma_attr_maxxfer;
break;
case SCSI_CAP_ARQ:
rval = TRUE;
break;
case SCSI_CAP_MSG_OUT:
case SCSI_CAP_PARITY:
case SCSI_CAP_UNTAGGED_QING:
rval = TRUE;
break;
case SCSI_CAP_TAGGED_QING:
rval = TRUE;
break;
case SCSI_CAP_RESET_NOTIFICATION:
rval = TRUE;
break;
case SCSI_CAP_LINKED_CMDS:
rval = FALSE;
break;
case SCSI_CAP_QFULL_RETRIES:
rval = ((mptsas_tgt_private_t *)(ap->a_hba_tran->
tran_tgt_private))->t_private->m_qfull_retries;
break;
case SCSI_CAP_QFULL_RETRY_INTERVAL:
rval = drv_hztousec(((mptsas_tgt_private_t *)
(ap->a_hba_tran->tran_tgt_private))->
t_private->m_qfull_retry_interval) / 1000;
break;
case SCSI_CAP_CDB_LEN:
rval = CDB_GROUP4;
break;
case SCSI_CAP_INTERCONNECT_TYPE:
rval = INTERCONNECT_SAS;
break;
case SCSI_CAP_TRAN_LAYER_RETRIES:
if (mpt->m_ioc_capabilities &
MPI2_IOCFACTS_CAPABILITY_TLR)
rval = TRUE;
else
rval = FALSE;
break;
default:
rval = UNDEFINED;
break;
}
NDBG24(("mptsas_scsi_getcap: %s, rval=%x", cap, rval));
mutex_exit(&mpt->m_mutex);
return (rval);
}
/*
* (*tran_setcap). Set the capability named to the value given.
*/
static int
mptsas_scsi_setcap(struct scsi_address *ap, char *cap, int value, int tgtonly)
{
mptsas_t *mpt = ADDR2MPT(ap);
int ckey;
int rval = FALSE;
NDBG24(("mptsas_scsi_setcap: target=%d, cap=%s value=%x tgtonly=%x",
ap->a_target, cap, value, tgtonly));
if (!tgtonly) {
return (rval);
}
mutex_enter(&mpt->m_mutex);
if ((mptsas_scsi_capchk(cap, tgtonly, &ckey)) != TRUE) {
mutex_exit(&mpt->m_mutex);
return (UNDEFINED);
}
switch (ckey) {
case SCSI_CAP_DMA_MAX:
case SCSI_CAP_MSG_OUT:
case SCSI_CAP_PARITY:
case SCSI_CAP_INITIATOR_ID:
case SCSI_CAP_LINKED_CMDS:
case SCSI_CAP_UNTAGGED_QING:
case SCSI_CAP_RESET_NOTIFICATION:
/*
* None of these are settable via
* the capability interface.
*/
break;
case SCSI_CAP_ARQ:
/*
* We cannot turn off arq so return false if asked to
*/
if (value) {
rval = TRUE;
} else {
rval = FALSE;
}
break;
case SCSI_CAP_TAGGED_QING:
mptsas_set_throttle(mpt, ((mptsas_tgt_private_t *)
(ap->a_hba_tran->tran_tgt_private))->t_private,
MAX_THROTTLE);
rval = TRUE;
break;
case SCSI_CAP_QFULL_RETRIES:
((mptsas_tgt_private_t *)(ap->a_hba_tran->tran_tgt_private))->
t_private->m_qfull_retries = (uchar_t)value;
rval = TRUE;
break;
case SCSI_CAP_QFULL_RETRY_INTERVAL:
((mptsas_tgt_private_t *)(ap->a_hba_tran->tran_tgt_private))->
t_private->m_qfull_retry_interval =
drv_usectohz(value * 1000);
rval = TRUE;
break;
default:
rval = UNDEFINED;
break;
}
mutex_exit(&mpt->m_mutex);
return (rval);
}
/*
* Utility routine for mptsas_ifsetcap/ifgetcap
*/
/*ARGSUSED*/
static int
mptsas_scsi_capchk(char *cap, int tgtonly, int *cidxp)
{
NDBG24(("mptsas_scsi_capchk: cap=%s", cap));
if (!cap)
return (FALSE);
*cidxp = scsi_hba_lookup_capstr(cap);
return (TRUE);
}
static int
mptsas_alloc_active_slots(mptsas_t *mpt, int flag)
{
mptsas_slots_t *old_active = mpt->m_active;
mptsas_slots_t *new_active;
size_t size;
/*
* if there are active commands, then we cannot
* change size of active slots array.
*/
ASSERT(mpt->m_ncmds == 0);
size = MPTSAS_SLOTS_SIZE(mpt);
new_active = kmem_zalloc(size, flag);
if (new_active == NULL) {
NDBG1(("new active alloc failed"));
return (-1);
}
/*
* Since SMID 0 is reserved and the TM slot is reserved, the
* number of slots that can be used at any one time is
* m_max_requests - 2.
*/
new_active->m_n_normal = (mpt->m_max_requests - 2);
new_active->m_size = size;
new_active->m_rotor = 1;
if (old_active)
mptsas_free_active_slots(mpt);
mpt->m_active = new_active;
return (0);
}
static void
mptsas_free_active_slots(mptsas_t *mpt)
{
mptsas_slots_t *active = mpt->m_active;
size_t size;
if (active == NULL)
return;
size = active->m_size;
kmem_free(active, size);
mpt->m_active = NULL;
}
/*
* Error logging, printing, and debug print routines.
*/
static char *mptsas_label = "mpt_sas";
/*PRINTFLIKE3*/
void
mptsas_log(mptsas_t *mpt, int level, char *fmt, ...)
{
dev_info_t *dev;
va_list ap;
if (mpt) {
dev = mpt->m_dip;
} else {
dev = 0;
}
mutex_enter(&mptsas_log_mutex);
va_start(ap, fmt);
(void) vsprintf(mptsas_log_buf, fmt, ap);
va_end(ap);
if (level == CE_CONT) {
scsi_log(dev, mptsas_label, level, "%s\n", mptsas_log_buf);
} else {
scsi_log(dev, mptsas_label, level, "%s", mptsas_log_buf);
}
mutex_exit(&mptsas_log_mutex);
}
#ifdef MPTSAS_DEBUG
/*
* Use a circular buffer to log messages to private memory.
* Increment idx atomically to minimize risk to miss lines.
* It's fast and does not hold up the proceedings too much.
*/
static const size_t mptsas_dbglog_linecnt = MPTSAS_DBGLOG_LINECNT;
static const size_t mptsas_dbglog_linelen = MPTSAS_DBGLOG_LINELEN;
static char mptsas_dbglog_bufs[MPTSAS_DBGLOG_LINECNT][MPTSAS_DBGLOG_LINELEN];
static uint32_t mptsas_dbglog_idx = 0;
/*PRINTFLIKE1*/
void
mptsas_debug_log(char *fmt, ...)
{
va_list ap;
uint32_t idx;
idx = atomic_inc_32_nv(&mptsas_dbglog_idx) &
(mptsas_dbglog_linecnt - 1);
va_start(ap, fmt);
(void) vsnprintf(mptsas_dbglog_bufs[idx],
mptsas_dbglog_linelen, fmt, ap);
va_end(ap);
}
/*PRINTFLIKE1*/
void
mptsas_printf(char *fmt, ...)
{
dev_info_t *dev = 0;
va_list ap;
mutex_enter(&mptsas_log_mutex);
va_start(ap, fmt);
(void) vsprintf(mptsas_log_buf, fmt, ap);
va_end(ap);
#ifdef PROM_PRINTF
prom_printf("%s:\t%s\n", mptsas_label, mptsas_log_buf);
#else
scsi_log(dev, mptsas_label, CE_CONT, "!%s\n", mptsas_log_buf);
#endif
mutex_exit(&mptsas_log_mutex);
}
#endif
/*
* timeout handling
*/
static void
mptsas_watch(void *arg)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(arg))
#endif
mptsas_t *mpt;
uint32_t doorbell;
NDBG30(("mptsas_watch"));
rw_enter(&mptsas_global_rwlock, RW_READER);
for (mpt = mptsas_head; mpt != (mptsas_t *)NULL; mpt = mpt->m_next) {
mutex_enter(&mpt->m_mutex);
/* Skip device if not powered on */
if (mpt->m_options & MPTSAS_OPT_PM) {
if (mpt->m_power_level == PM_LEVEL_D0) {
(void) pm_busy_component(mpt->m_dip, 0);
mpt->m_busy = 1;
} else {
mutex_exit(&mpt->m_mutex);
continue;
}
}
/*
* Check if controller is in a FAULT state. If so, reset it.
*/
doorbell = ddi_get32(mpt->m_datap, &mpt->m_reg->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
doorbell &= MPI2_DOORBELL_DATA_MASK;
mptsas_log(mpt, CE_WARN, "MPT Firmware Fault, "
"code: %04x", doorbell);
mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET;
if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "Reset failed"
"after fault was detected");
}
}
/*
* For now, always call mptsas_watchsubr.
*/
mptsas_watchsubr(mpt);
if (mpt->m_options & MPTSAS_OPT_PM) {
mpt->m_busy = 0;
(void) pm_idle_component(mpt->m_dip, 0);
}
mutex_exit(&mpt->m_mutex);
}
rw_exit(&mptsas_global_rwlock);
mutex_enter(&mptsas_global_mutex);
if (mptsas_timeouts_enabled)
mptsas_timeout_id = timeout(mptsas_watch, NULL, mptsas_tick);
mutex_exit(&mptsas_global_mutex);
}
static void
mptsas_watchsubr_tgt(mptsas_t *mpt, mptsas_target_t *ptgt, hrtime_t timestamp)
{
mptsas_cmd_t *cmd;
/*
* If we were draining due to a qfull condition,
* go back to full throttle.
*/
if ((ptgt->m_t_throttle < MAX_THROTTLE) &&
(ptgt->m_t_throttle > HOLD_THROTTLE) &&
(ptgt->m_t_ncmds < ptgt->m_t_throttle)) {
mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE);
mptsas_restart_hba(mpt);
}
cmd = TAILQ_LAST(&ptgt->m_active_cmdq, mptsas_active_cmdq);
if (cmd == NULL)
return;
if (cmd->cmd_active_expiration <= timestamp) {
/*
* Earliest command timeout expired. Drain throttle.
*/
mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE);
/*
* Check for remaining commands.
*/
cmd = TAILQ_FIRST(&ptgt->m_active_cmdq);
if (cmd->cmd_active_expiration > timestamp) {
/*
* Wait for remaining commands to complete or
* time out.
*/
NDBG23(("command timed out, pending drain"));
return;
}
/*
* All command timeouts expired.
*/
mptsas_log(mpt, CE_NOTE, "Timeout of %d seconds "
"expired with %d commands on target %d lun %d.",
cmd->cmd_pkt->pkt_time, ptgt->m_t_ncmds,
ptgt->m_devhdl, Lun(cmd));
mptsas_cmd_timeout(mpt, ptgt);
} else if (cmd->cmd_active_expiration <=
timestamp + (hrtime_t)mptsas_scsi_watchdog_tick * NANOSEC) {
NDBG23(("pending timeout"));
mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE);
}
}
static void
mptsas_watchsubr(mptsas_t *mpt)
{
int i;
mptsas_cmd_t *cmd;
mptsas_target_t *ptgt = NULL;
hrtime_t timestamp = gethrtime();
ASSERT(MUTEX_HELD(&mpt->m_mutex));
NDBG30(("mptsas_watchsubr: mpt=0x%p", (void *)mpt));
#ifdef MPTSAS_TEST
if (mptsas_enable_untagged) {
mptsas_test_untagged++;
}
#endif
/*
* Check for commands stuck in active slot
* Account for TM requests, which use the last SMID.
*/
for (i = 0; i <= mpt->m_active->m_n_normal; i++) {
if ((cmd = mpt->m_active->m_slot[i]) != NULL) {
if (cmd->cmd_active_expiration <= timestamp) {
if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) {
/*
* There seems to be a command stuck
* in the active slot. Drain throttle.
*/
mptsas_set_throttle(mpt,
cmd->cmd_tgt_addr,
DRAIN_THROTTLE);
} else if (cmd->cmd_flags &
(CFLAG_PASSTHRU | CFLAG_CONFIG |
CFLAG_FW_DIAG)) {
/*
* passthrough command timeout
*/
cmd->cmd_flags |= (CFLAG_FINISHED |
CFLAG_TIMEOUT);
cv_broadcast(&mpt->m_passthru_cv);
cv_broadcast(&mpt->m_config_cv);
cv_broadcast(&mpt->m_fw_diag_cv);
}
}
}
}
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
mptsas_watchsubr_tgt(mpt, ptgt, timestamp);
}
for (ptgt = refhash_first(mpt->m_tmp_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_tmp_targets, ptgt)) {
mptsas_watchsubr_tgt(mpt, ptgt, timestamp);
}
}
/*
* timeout recovery
*/
static void
mptsas_cmd_timeout(mptsas_t *mpt, mptsas_target_t *ptgt)
{
uint16_t devhdl;
uint64_t sas_wwn;
uint8_t phy;
char wwn_str[MPTSAS_WWN_STRLEN];
devhdl = ptgt->m_devhdl;
sas_wwn = ptgt->m_addr.mta_wwn;
phy = ptgt->m_phynum;
if (sas_wwn == 0) {
(void) sprintf(wwn_str, "p%x", phy);
} else {
(void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn);
}
NDBG29(("mptsas_cmd_timeout: target=%d", devhdl));
mptsas_log(mpt, CE_WARN, "Disconnected command timeout for "
"target %d %s, enclosure %u", devhdl, wwn_str,
ptgt->m_enclosure);
/*
* Abort all outstanding commands on the device.
*/
NDBG29(("mptsas_cmd_timeout: device reset"));
if (mptsas_do_scsi_reset(mpt, devhdl) != TRUE) {
mptsas_log(mpt, CE_WARN, "Target %d reset for command timeout "
"recovery failed!", devhdl);
}
}
/*
* Device / Hotplug control
*/
static int
mptsas_scsi_quiesce(dev_info_t *dip)
{
mptsas_t *mpt;
scsi_hba_tran_t *tran;
tran = ddi_get_driver_private(dip);
if (tran == NULL || (mpt = TRAN2MPT(tran)) == NULL)
return (-1);
return (mptsas_quiesce_bus(mpt));
}
static int
mptsas_scsi_unquiesce(dev_info_t *dip)
{
mptsas_t *mpt;
scsi_hba_tran_t *tran;
tran = ddi_get_driver_private(dip);
if (tran == NULL || (mpt = TRAN2MPT(tran)) == NULL)
return (-1);
return (mptsas_unquiesce_bus(mpt));
}
static int
mptsas_quiesce_bus(mptsas_t *mpt)
{
mptsas_target_t *ptgt = NULL;
NDBG28(("mptsas_quiesce_bus"));
mutex_enter(&mpt->m_mutex);
/* Set all the throttles to zero */
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE);
}
/* If there are any outstanding commands in the queue */
if (mpt->m_ncmds) {
mpt->m_softstate |= MPTSAS_SS_DRAINING;
mpt->m_quiesce_timeid = timeout(mptsas_ncmds_checkdrain,
mpt, (MPTSAS_QUIESCE_TIMEOUT * drv_usectohz(1000000)));
if (cv_wait_sig(&mpt->m_cv, &mpt->m_mutex) == 0) {
/*
* Quiesce has been interrupted
*/
mpt->m_softstate &= ~MPTSAS_SS_DRAINING;
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE);
}
mptsas_restart_hba(mpt);
if (mpt->m_quiesce_timeid != 0) {
timeout_id_t tid = mpt->m_quiesce_timeid;
mpt->m_quiesce_timeid = 0;
mutex_exit(&mpt->m_mutex);
(void) untimeout(tid);
return (-1);
}
mutex_exit(&mpt->m_mutex);
return (-1);
} else {
/* Bus has been quiesced */
ASSERT(mpt->m_quiesce_timeid == 0);
mpt->m_softstate &= ~MPTSAS_SS_DRAINING;
mpt->m_softstate |= MPTSAS_SS_QUIESCED;
mutex_exit(&mpt->m_mutex);
return (0);
}
}
/* Bus was not busy - QUIESCED */
mutex_exit(&mpt->m_mutex);
return (0);
}
static int
mptsas_unquiesce_bus(mptsas_t *mpt)
{
mptsas_target_t *ptgt = NULL;
NDBG28(("mptsas_unquiesce_bus"));
mutex_enter(&mpt->m_mutex);
mpt->m_softstate &= ~MPTSAS_SS_QUIESCED;
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE);
}
mptsas_restart_hba(mpt);
mutex_exit(&mpt->m_mutex);
return (0);
}
static void
mptsas_ncmds_checkdrain(void *arg)
{
mptsas_t *mpt = arg;
mptsas_target_t *ptgt = NULL;
mutex_enter(&mpt->m_mutex);
if (mpt->m_softstate & MPTSAS_SS_DRAINING) {
mpt->m_quiesce_timeid = 0;
if (mpt->m_ncmds == 0) {
/* Command queue has been drained */
cv_signal(&mpt->m_cv);
} else {
/*
* The throttle may have been reset because
* of a SCSI bus reset
*/
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE);
}
mpt->m_quiesce_timeid = timeout(mptsas_ncmds_checkdrain,
mpt, (MPTSAS_QUIESCE_TIMEOUT *
drv_usectohz(1000000)));
}
}
mutex_exit(&mpt->m_mutex);
}
/*ARGSUSED*/
static void
mptsas_dump_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
int i;
uint8_t *cp = (uchar_t *)cmd->cmd_pkt->pkt_cdbp;
char buf[128];
buf[0] = '\0';
NDBG25(("?Cmd (0x%p) dump for Target %d Lun %d:\n", (void *)cmd,
Tgt(cmd), Lun(cmd)));
(void) sprintf(&buf[0], "\tcdb=[");
for (i = 0; i < (int)cmd->cmd_cdblen; i++) {
(void) sprintf(&buf[strlen(buf)], " 0x%x", *cp++);
}
(void) sprintf(&buf[strlen(buf)], " ]");
NDBG25(("?%s\n", buf));
NDBG25(("?pkt_flags=0x%x pkt_statistics=0x%x pkt_state=0x%x\n",
cmd->cmd_pkt->pkt_flags, cmd->cmd_pkt->pkt_statistics,
cmd->cmd_pkt->pkt_state));
NDBG25(("?pkt_scbp=0x%x cmd_flags=0x%x\n", cmd->cmd_pkt->pkt_scbp ?
*(cmd->cmd_pkt->pkt_scbp) : 0, cmd->cmd_flags));
}
static void
mptsas_passthru_sge(ddi_acc_handle_t acc_hdl, mptsas_pt_request_t *pt,
pMpi2SGESimple64_t sgep)
{
uint32_t sge_flags;
uint32_t data_size, dataout_size;
ddi_dma_cookie_t data_cookie;
ddi_dma_cookie_t dataout_cookie;
data_size = pt->data_size;
dataout_size = pt->dataout_size;
data_cookie = pt->data_cookie;
dataout_cookie = pt->dataout_cookie;
if (dataout_size) {
sge_flags = dataout_size |
((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_HOST_TO_IOC |
MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
MPI2_SGE_FLAGS_SHIFT);
ddi_put32(acc_hdl, &sgep->FlagsLength, sge_flags);
ddi_put32(acc_hdl, &sgep->Address.Low,
(uint32_t)(dataout_cookie.dmac_laddress &
0xffffffffull));
ddi_put32(acc_hdl, &sgep->Address.High,
(uint32_t)(dataout_cookie.dmac_laddress
>> 32));
sgep++;
}
sge_flags = data_size;
sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST |
MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
MPI2_SGE_FLAGS_SHIFT);
if (pt->direction == MPTSAS_PASS_THRU_DIRECTION_WRITE) {
sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
MPI2_SGE_FLAGS_SHIFT);
} else {
sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
MPI2_SGE_FLAGS_SHIFT);
}
ddi_put32(acc_hdl, &sgep->FlagsLength,
sge_flags);
ddi_put32(acc_hdl, &sgep->Address.Low,
(uint32_t)(data_cookie.dmac_laddress &
0xffffffffull));
ddi_put32(acc_hdl, &sgep->Address.High,
(uint32_t)(data_cookie.dmac_laddress >> 32));
}
static void
mptsas_passthru_ieee_sge(ddi_acc_handle_t acc_hdl, mptsas_pt_request_t *pt,
pMpi2IeeeSgeSimple64_t ieeesgep)
{
uint8_t sge_flags;
uint32_t data_size, dataout_size;
ddi_dma_cookie_t data_cookie;
ddi_dma_cookie_t dataout_cookie;
data_size = pt->data_size;
dataout_size = pt->dataout_size;
data_cookie = pt->data_cookie;
dataout_cookie = pt->dataout_cookie;
sge_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
if (dataout_size) {
ddi_put32(acc_hdl, &ieeesgep->Length, dataout_size);
ddi_put32(acc_hdl, &ieeesgep->Address.Low,
(uint32_t)(dataout_cookie.dmac_laddress &
0xffffffffull));
ddi_put32(acc_hdl, &ieeesgep->Address.High,
(uint32_t)(dataout_cookie.dmac_laddress >> 32));
ddi_put8(acc_hdl, &ieeesgep->Flags, sge_flags);
ieeesgep++;
}
sge_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
ddi_put32(acc_hdl, &ieeesgep->Length, data_size);
ddi_put32(acc_hdl, &ieeesgep->Address.Low,
(uint32_t)(data_cookie.dmac_laddress & 0xffffffffull));
ddi_put32(acc_hdl, &ieeesgep->Address.High,
(uint32_t)(data_cookie.dmac_laddress >> 32));
ddi_put8(acc_hdl, &ieeesgep->Flags, sge_flags);
}
static void
mptsas_start_passthru(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
caddr_t memp;
pMPI2RequestHeader_t request_hdrp;
struct scsi_pkt *pkt = cmd->cmd_pkt;
mptsas_pt_request_t *pt = pkt->pkt_ha_private;
uint32_t request_size;
uint32_t i;
uint64_t request_desc = 0;
uint8_t desc_type;
uint16_t SMID;
uint8_t *request, function;
ddi_dma_handle_t dma_hdl = mpt->m_dma_req_frame_hdl;
ddi_acc_handle_t acc_hdl = mpt->m_acc_req_frame_hdl;
desc_type = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
request = pt->request;
request_size = pt->request_size;
SMID = cmd->cmd_slot;
/*
* Store the passthrough message in memory location
* corresponding to our slot number
*/
memp = mpt->m_req_frame + (mpt->m_req_frame_size * SMID);
request_hdrp = (pMPI2RequestHeader_t)memp;
bzero(memp, mpt->m_req_frame_size);
for (i = 0; i < request_size; i++) {
bcopy(request + i, memp + i, 1);
}
NDBG15(("mptsas_start_passthru: Func 0x%x, MsgFlags 0x%x, "
"size=%d, in %d, out %d, SMID %d", request_hdrp->Function,
request_hdrp->MsgFlags, request_size,
pt->data_size, pt->dataout_size, SMID));
/*
* Add an SGE, even if the length is zero.
*/
if (mpt->m_MPI25 && pt->simple == 0) {
mptsas_passthru_ieee_sge(acc_hdl, pt,
(pMpi2IeeeSgeSimple64_t)
((uint8_t *)request_hdrp + pt->sgl_offset));
} else {
mptsas_passthru_sge(acc_hdl, pt,
(pMpi2SGESimple64_t)
((uint8_t *)request_hdrp + pt->sgl_offset));
}
function = request_hdrp->Function;
if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
(function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
pMpi2SCSIIORequest_t scsi_io_req;
caddr_t arsbuf;
uint8_t ars_size;
uint32_t ars_dmaaddrlow;
NDBG15(("mptsas_start_passthru: Is SCSI IO Req"));
scsi_io_req = (pMpi2SCSIIORequest_t)request_hdrp;
if (cmd->cmd_extrqslen != 0) {
/*
* Mapping of the buffer was done in
* mptsas_do_passthru().
* Calculate the DMA address with the same offset.
*/
arsbuf = cmd->cmd_arq_buf;
ars_size = cmd->cmd_extrqslen;
ars_dmaaddrlow = (mpt->m_req_sense_dma_addr +
((uintptr_t)arsbuf - (uintptr_t)mpt->m_req_sense)) &
0xffffffffu;
} else {
arsbuf = mpt->m_req_sense +
(mpt->m_req_sense_size * (SMID-1));
cmd->cmd_arq_buf = arsbuf;
ars_size = mpt->m_req_sense_size;
ars_dmaaddrlow = (mpt->m_req_sense_dma_addr +
(mpt->m_req_sense_size * (SMID-1))) &
0xffffffffu;
}
bzero(arsbuf, ars_size);
ddi_put8(acc_hdl, &scsi_io_req->SenseBufferLength, ars_size);
ddi_put32(acc_hdl, &scsi_io_req->SenseBufferLowAddress,
ars_dmaaddrlow);
/*
* Put SGE for data and data_out buffer at the end of
* scsi_io_request message header.(64 bytes in total)
* Set SGLOffset0 value
*/
ddi_put8(acc_hdl, &scsi_io_req->SGLOffset0,
offsetof(MPI2_SCSI_IO_REQUEST, SGL) / 4);
/*
* Setup descriptor info. RAID passthrough must use the
* default request descriptor which is already set, so if this
* is a SCSI IO request, change the descriptor to SCSI IO.
*/
if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
desc_type = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
request_desc = ((uint64_t)ddi_get16(acc_hdl,
&scsi_io_req->DevHandle) << 48);
}
(void) ddi_dma_sync(mpt->m_dma_req_sense_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
}
/*
* We must wait till the message has been completed before
* beginning the next message so we wait for this one to
* finish.
*/
(void) ddi_dma_sync(dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
request_desc |= (SMID << 16) + desc_type;
cmd->cmd_rfm = NULL;
MPTSAS_START_CMD(mpt, request_desc);
if ((mptsas_check_dma_handle(dma_hdl) != DDI_SUCCESS) ||
(mptsas_check_acc_handle(acc_hdl) != DDI_SUCCESS)) {
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
}
}
typedef void (mptsas_pre_f)(mptsas_t *, mptsas_pt_request_t *);
static mptsas_pre_f mpi_pre_ioc_facts;
static mptsas_pre_f mpi_pre_port_facts;
static mptsas_pre_f mpi_pre_fw_download;
static mptsas_pre_f mpi_pre_fw_25_download;
static mptsas_pre_f mpi_pre_fw_upload;
static mptsas_pre_f mpi_pre_fw_25_upload;
static mptsas_pre_f mpi_pre_sata_passthrough;
static mptsas_pre_f mpi_pre_smp_passthrough;
static mptsas_pre_f mpi_pre_config;
static mptsas_pre_f mpi_pre_sas_io_unit_control;
static mptsas_pre_f mpi_pre_scsi_io_req;
/*
* Prepare the pt for a SAS2 FW_DOWNLOAD request.
*/
static void
mpi_pre_fw_download(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
pMpi2FWDownloadTCSGE_t tcsge;
pMpi2FWDownloadRequest req;
/*
* If SAS3, call separate function.
*/
if (mpt->m_MPI25) {
mpi_pre_fw_25_download(mpt, pt);
return;
}
/*
* User requests should come in with the Transaction
* context element where the SGL will go. Putting the
* SGL after that seems to work, but don't really know
* why. Other drivers tend to create an extra SGL and
* refer to the TCE through that.
*/
req = (pMpi2FWDownloadRequest)pt->request;
tcsge = (pMpi2FWDownloadTCSGE_t)&req->SGL;
if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 ||
tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) {
mptsas_log(mpt, CE_WARN, "FW Download tce invalid!");
}
pt->sgl_offset = offsetof(MPI2_FW_DOWNLOAD_REQUEST, SGL) +
sizeof (*tcsge);
if (pt->request_size != pt->sgl_offset)
NDBG15(("mpi_pre_fw_download(): Incorrect req size, "
"0x%x, should be 0x%x, dataoutsz 0x%x",
(int)pt->request_size, (int)pt->sgl_offset,
(int)pt->dataout_size));
if (pt->data_size < sizeof (MPI2_FW_DOWNLOAD_REPLY))
NDBG15(("mpi_pre_fw_download(): Incorrect rep size, "
"0x%x, should be 0x%x", pt->data_size,
(int)sizeof (MPI2_FW_DOWNLOAD_REPLY)));
}
/*
* Prepare the pt for a SAS3 FW_DOWNLOAD request.
*/
static void
mpi_pre_fw_25_download(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
pMpi2FWDownloadTCSGE_t tcsge;
pMpi2FWDownloadRequest req2;
pMpi25FWDownloadRequest req25;
/*
* User requests should come in with the Transaction
* context element where the SGL will go. The new firmware
* Doesn't use TCE and has space in the main request for
* this information. So move to the right place.
*/
req2 = (pMpi2FWDownloadRequest)pt->request;
req25 = (pMpi25FWDownloadRequest)pt->request;
tcsge = (pMpi2FWDownloadTCSGE_t)&req2->SGL;
if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 ||
tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) {
mptsas_log(mpt, CE_WARN, "FW Download tce invalid!");
}
req25->ImageOffset = tcsge->ImageOffset;
req25->ImageSize = tcsge->ImageSize;
pt->sgl_offset = offsetof(MPI25_FW_DOWNLOAD_REQUEST, SGL);
if (pt->request_size != pt->sgl_offset)
NDBG15(("mpi_pre_fw_25_download(): Incorrect req size, "
"0x%x, should be 0x%x, dataoutsz 0x%x",
pt->request_size, pt->sgl_offset,
pt->dataout_size));
if (pt->data_size < sizeof (MPI2_FW_DOWNLOAD_REPLY))
NDBG15(("mpi_pre_fw_25_download(): Incorrect rep size, "
"0x%x, should be 0x%x", pt->data_size,
(int)sizeof (MPI2_FW_UPLOAD_REPLY)));
}
/*
* Prepare the pt for a SAS2 FW_UPLOAD request.
*/
static void
mpi_pre_fw_upload(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
pMpi2FWUploadTCSGE_t tcsge;
pMpi2FWUploadRequest_t req;
/*
* If SAS3, call separate function.
*/
if (mpt->m_MPI25) {
mpi_pre_fw_25_upload(mpt, pt);
return;
}
/*
* User requests should come in with the Transaction
* context element where the SGL will go. Putting the
* SGL after that seems to work, but don't really know
* why. Other drivers tend to create an extra SGL and
* refer to the TCE through that.
*/
req = (pMpi2FWUploadRequest_t)pt->request;
tcsge = (pMpi2FWUploadTCSGE_t)&req->SGL;
if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 ||
tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) {
mptsas_log(mpt, CE_WARN, "FW Upload tce invalid!");
}
pt->sgl_offset = offsetof(MPI2_FW_UPLOAD_REQUEST, SGL) +
sizeof (*tcsge);
if (pt->request_size != pt->sgl_offset)
NDBG15(("mpi_pre_fw_upload(): Incorrect req size, "
"0x%x, should be 0x%x, dataoutsz 0x%x",
pt->request_size, pt->sgl_offset,
pt->dataout_size));
if (pt->data_size < sizeof (MPI2_FW_UPLOAD_REPLY))
NDBG15(("mpi_pre_fw_upload(): Incorrect rep size, "
"0x%x, should be 0x%x", pt->data_size,
(int)sizeof (MPI2_FW_UPLOAD_REPLY)));
}
/*
* Prepare the pt a SAS3 FW_UPLOAD request.
*/
static void
mpi_pre_fw_25_upload(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
pMpi2FWUploadTCSGE_t tcsge;
pMpi2FWUploadRequest_t req2;
pMpi25FWUploadRequest_t req25;
/*
* User requests should come in with the Transaction
* context element where the SGL will go. The new firmware
* Doesn't use TCE and has space in the main request for
* this information. So move to the right place.
*/
req2 = (pMpi2FWUploadRequest_t)pt->request;
req25 = (pMpi25FWUploadRequest_t)pt->request;
tcsge = (pMpi2FWUploadTCSGE_t)&req2->SGL;
if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 ||
tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) {
mptsas_log(mpt, CE_WARN, "FW Upload tce invalid!");
}
req25->ImageOffset = tcsge->ImageOffset;
req25->ImageSize = tcsge->ImageSize;
pt->sgl_offset = offsetof(MPI25_FW_UPLOAD_REQUEST, SGL);
if (pt->request_size != pt->sgl_offset)
NDBG15(("mpi_pre_fw_25_upload(): Incorrect req size, "
"0x%x, should be 0x%x, dataoutsz 0x%x",
pt->request_size, pt->sgl_offset,
pt->dataout_size));
if (pt->data_size < sizeof (MPI2_FW_UPLOAD_REPLY))
NDBG15(("mpi_pre_fw_25_upload(): Incorrect rep size, "
"0x%x, should be 0x%x", pt->data_size,
(int)sizeof (MPI2_FW_UPLOAD_REPLY)));
}
/*
* Prepare the pt for an IOC_FACTS request.
*/
static void
mpi_pre_ioc_facts(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(mpt))
#endif
if (pt->request_size != sizeof (MPI2_IOC_FACTS_REQUEST))
NDBG15(("mpi_pre_ioc_facts(): Incorrect req size, "
"0x%x, should be 0x%x, dataoutsz 0x%x",
pt->request_size,
(int)sizeof (MPI2_IOC_FACTS_REQUEST),
pt->dataout_size));
if (pt->data_size != sizeof (MPI2_IOC_FACTS_REPLY))
NDBG15(("mpi_pre_ioc_facts(): Incorrect rep size, "
"0x%x, should be 0x%x", pt->data_size,
(int)sizeof (MPI2_IOC_FACTS_REPLY)));
pt->sgl_offset = (uint16_t)pt->request_size;
}
/*
* Prepare the pt for a PORT_FACTS request.
*/
static void
mpi_pre_port_facts(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(mpt))
#endif
if (pt->request_size != sizeof (MPI2_PORT_FACTS_REQUEST))
NDBG15(("mpi_pre_port_facts(): Incorrect req size, "
"0x%x, should be 0x%x, dataoutsz 0x%x",
pt->request_size,
(int)sizeof (MPI2_PORT_FACTS_REQUEST),
pt->dataout_size));
if (pt->data_size != sizeof (MPI2_PORT_FACTS_REPLY))
NDBG15(("mpi_pre_port_facts(): Incorrect rep size, "
"0x%x, should be 0x%x", pt->data_size,
(int)sizeof (MPI2_PORT_FACTS_REPLY)));
pt->sgl_offset = (uint16_t)pt->request_size;
}
/*
* Prepare pt for a SATA_PASSTHROUGH request.
*/
static void
mpi_pre_sata_passthrough(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(mpt))
#endif
pt->sgl_offset = offsetof(MPI2_SATA_PASSTHROUGH_REQUEST, SGL);
if (pt->request_size != pt->sgl_offset)
NDBG15(("mpi_pre_sata_passthrough(): Incorrect req size, "
"0x%x, should be 0x%x, dataoutsz 0x%x",
pt->request_size, pt->sgl_offset,
pt->dataout_size));
if (pt->data_size != sizeof (MPI2_SATA_PASSTHROUGH_REPLY))
NDBG15(("mpi_pre_sata_passthrough(): Incorrect rep size, "
"0x%x, should be 0x%x", pt->data_size,
(int)sizeof (MPI2_SATA_PASSTHROUGH_REPLY)));
}
static void
mpi_pre_smp_passthrough(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(mpt))
#endif
pt->sgl_offset = offsetof(MPI2_SMP_PASSTHROUGH_REQUEST, SGL);
if (pt->request_size != pt->sgl_offset)
NDBG15(("mpi_pre_smp_passthrough(): Incorrect req size, "
"0x%x, should be 0x%x, dataoutsz 0x%x",
pt->request_size, pt->sgl_offset,
pt->dataout_size));
if (pt->data_size != sizeof (MPI2_SMP_PASSTHROUGH_REPLY))
NDBG15(("mpi_pre_smp_passthrough(): Incorrect rep size, "
"0x%x, should be 0x%x", pt->data_size,
(int)sizeof (MPI2_SMP_PASSTHROUGH_REPLY)));
}
/*
* Prepare pt for a CONFIG request.
*/
static void
mpi_pre_config(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(mpt))
#endif
pt->sgl_offset = offsetof(MPI2_CONFIG_REQUEST, PageBufferSGE);
if (pt->request_size != pt->sgl_offset)
NDBG15(("mpi_pre_config(): Incorrect req size, 0x%x, "
"should be 0x%x, dataoutsz 0x%x", pt->request_size,
pt->sgl_offset, pt->dataout_size));
if (pt->data_size != sizeof (MPI2_CONFIG_REPLY))
NDBG15(("mpi_pre_config(): Incorrect rep size, 0x%x, "
"should be 0x%x", pt->data_size,
(int)sizeof (MPI2_CONFIG_REPLY)));
pt->simple = 1;
}
/*
* Prepare pt for a SCSI_IO_REQ request.
*/
static void
mpi_pre_scsi_io_req(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(mpt))
#endif
pt->sgl_offset = offsetof(MPI2_SCSI_IO_REQUEST, SGL);
if (pt->request_size != pt->sgl_offset)
NDBG15(("mpi_pre_config(): Incorrect req size, 0x%x, "
"should be 0x%x, dataoutsz 0x%x", pt->request_size,
pt->sgl_offset,
pt->dataout_size));
if (pt->data_size != sizeof (MPI2_SCSI_IO_REPLY))
NDBG15(("mpi_pre_config(): Incorrect rep size, 0x%x, "
"should be 0x%x", pt->data_size,
(int)sizeof (MPI2_SCSI_IO_REPLY)));
}
/*
* Prepare the mptsas_cmd for a SAS_IO_UNIT_CONTROL request.
*/
static void
mpi_pre_sas_io_unit_control(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
#ifndef __lock_lint
_NOTE(ARGUNUSED(mpt))
#endif
pt->sgl_offset = (uint16_t)pt->request_size;
}
/*
* A set of functions to prepare an mptsas_cmd for the various
* supported requests.
*/
static struct mptsas_func {
U8 Function;
char *Name;
mptsas_pre_f *f_pre;
} mptsas_func_list[] = {
{ MPI2_FUNCTION_IOC_FACTS, "IOC_FACTS", mpi_pre_ioc_facts },
{ MPI2_FUNCTION_PORT_FACTS, "PORT_FACTS", mpi_pre_port_facts },
{ MPI2_FUNCTION_FW_DOWNLOAD, "FW_DOWNLOAD", mpi_pre_fw_download },
{ MPI2_FUNCTION_FW_UPLOAD, "FW_UPLOAD", mpi_pre_fw_upload },
{ MPI2_FUNCTION_SATA_PASSTHROUGH, "SATA_PASSTHROUGH",
mpi_pre_sata_passthrough },
{ MPI2_FUNCTION_SMP_PASSTHROUGH, "SMP_PASSTHROUGH",
mpi_pre_smp_passthrough},
{ MPI2_FUNCTION_SCSI_IO_REQUEST, "SCSI_IO_REQUEST",
mpi_pre_scsi_io_req},
{ MPI2_FUNCTION_CONFIG, "CONFIG", mpi_pre_config},
{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, "SAS_IO_UNIT_CONTROL",
mpi_pre_sas_io_unit_control },
{ 0xFF, NULL, NULL } /* list end */
};
static void
mptsas_prep_sgl_offset(mptsas_t *mpt, mptsas_pt_request_t *pt)
{
pMPI2RequestHeader_t hdr;
struct mptsas_func *f;
hdr = (pMPI2RequestHeader_t)pt->request;
for (f = mptsas_func_list; f->f_pre != NULL; f++) {
if (hdr->Function == f->Function) {
f->f_pre(mpt, pt);
NDBG15(("mptsas_prep_sgl_offset: Function %s,"
" sgl_offset 0x%x", f->Name,
pt->sgl_offset));
return;
}
}
NDBG15(("mptsas_prep_sgl_offset: Unknown Function 0x%02x,"
" returning req_size 0x%x for sgl_offset",
hdr->Function, pt->request_size));
pt->sgl_offset = (uint16_t)pt->request_size;
}
static int
mptsas_do_passthru(mptsas_t *mpt, uint8_t *request, uint8_t *reply,
uint8_t *data, uint32_t request_size, uint32_t reply_size,
uint32_t data_size, uint32_t direction, uint8_t *dataout,
uint32_t dataout_size, short timeout, int mode)
{
mptsas_pt_request_t pt;
mptsas_dma_alloc_state_t data_dma_state;
mptsas_dma_alloc_state_t dataout_dma_state;
caddr_t memp;
mptsas_cmd_t *cmd = NULL;
struct scsi_pkt *pkt;
uint32_t reply_len = 0, sense_len = 0;
pMPI2RequestHeader_t request_hdrp;
pMPI2RequestHeader_t request_msg;
pMPI2DefaultReply_t reply_msg;
Mpi2SCSIIOReply_t rep_msg;
int rvalue;
int i, status = 0, pt_flags = 0, rv = 0;
uint8_t function;
ASSERT(mutex_owned(&mpt->m_mutex));
reply_msg = (pMPI2DefaultReply_t)(&rep_msg);
bzero(reply_msg, sizeof (MPI2_DEFAULT_REPLY));
request_msg = kmem_zalloc(request_size, KM_SLEEP);
mutex_exit(&mpt->m_mutex);
/*
* copy in the request buffer since it could be used by
* another thread when the pt request into waitq
*/
if (ddi_copyin(request, request_msg, request_size, mode)) {
mutex_enter(&mpt->m_mutex);
status = EFAULT;
mptsas_log(mpt, CE_WARN, "failed to copy request data");
goto out;
}
NDBG27(("mptsas_do_passthru: mode 0x%x, size 0x%x, Func 0x%x",
mode, request_size, request_msg->Function));
mutex_enter(&mpt->m_mutex);
function = request_msg->Function;
if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
pMpi2SCSITaskManagementRequest_t task;
task = (pMpi2SCSITaskManagementRequest_t)request_msg;
mptsas_setup_bus_reset_delay(mpt);
rv = mptsas_ioc_task_management(mpt, task->TaskType,
task->DevHandle, (int)task->LUN[1], reply, reply_size,
mode);
if (rv != TRUE) {
status = EIO;
mptsas_log(mpt, CE_WARN, "task management failed");
}
goto out;
}
if (data_size != 0) {
data_dma_state.size = data_size;
if (mptsas_dma_alloc(mpt, &data_dma_state) != DDI_SUCCESS) {
status = ENOMEM;
mptsas_log(mpt, CE_WARN, "failed to alloc DMA "
"resource");
goto out;
}
pt_flags |= MPTSAS_DATA_ALLOCATED;
if (direction == MPTSAS_PASS_THRU_DIRECTION_WRITE) {
mutex_exit(&mpt->m_mutex);
for (i = 0; i < data_size; i++) {
if (ddi_copyin(data + i, (uint8_t *)
data_dma_state.memp + i, 1, mode)) {
mutex_enter(&mpt->m_mutex);
status = EFAULT;
mptsas_log(mpt, CE_WARN, "failed to "
"copy read data");
goto out;
}
}
mutex_enter(&mpt->m_mutex);
}
} else {
bzero(&data_dma_state, sizeof (data_dma_state));
}
if (dataout_size != 0) {
dataout_dma_state.size = dataout_size;
if (mptsas_dma_alloc(mpt, &dataout_dma_state) != DDI_SUCCESS) {
status = ENOMEM;
mptsas_log(mpt, CE_WARN, "failed to alloc DMA "
"resource");
goto out;
}
pt_flags |= MPTSAS_DATAOUT_ALLOCATED;
mutex_exit(&mpt->m_mutex);
for (i = 0; i < dataout_size; i++) {
if (ddi_copyin(dataout + i, (uint8_t *)
dataout_dma_state.memp + i, 1, mode)) {
mutex_enter(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "failed to copy out"
" data");
status = EFAULT;
goto out;
}
}
mutex_enter(&mpt->m_mutex);
} else {
bzero(&dataout_dma_state, sizeof (dataout_dma_state));
}
if ((rvalue = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) {
status = EAGAIN;
mptsas_log(mpt, CE_NOTE, "event ack command pool is full");
goto out;
}
pt_flags |= MPTSAS_REQUEST_POOL_CMD;
bzero((caddr_t)cmd, sizeof (*cmd));
bzero((caddr_t)pkt, scsi_pkt_size());
bzero((caddr_t)&pt, sizeof (pt));
cmd->ioc_cmd_slot = (uint32_t)(rvalue);
pt.request = (uint8_t *)request_msg;
pt.direction = direction;
pt.simple = 0;
pt.request_size = request_size;
pt.data_size = data_size;
pt.dataout_size = dataout_size;
pt.data_cookie = data_dma_state.cookie;
pt.dataout_cookie = dataout_dma_state.cookie;
mptsas_prep_sgl_offset(mpt, &pt);
/*
* Form a blank cmd/pkt to store the acknowledgement message
*/
pkt->pkt_cdbp = (opaque_t)&cmd->cmd_cdb[0];
pkt->pkt_scbp = (opaque_t)&cmd->cmd_scb;
pkt->pkt_ha_private = (opaque_t)&pt;
pkt->pkt_flags = FLAG_HEAD;
pkt->pkt_time = timeout;
cmd->cmd_pkt = pkt;
cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_PASSTHRU;
if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
(function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
uint8_t com, cdb_group_id;
boolean_t ret;
pkt->pkt_cdbp = ((pMpi2SCSIIORequest_t)request_msg)->CDB.CDB32;
com = pkt->pkt_cdbp[0];
cdb_group_id = CDB_GROUPID(com);
switch (cdb_group_id) {
case CDB_GROUPID_0: cmd->cmd_cdblen = CDB_GROUP0; break;
case CDB_GROUPID_1: cmd->cmd_cdblen = CDB_GROUP1; break;
case CDB_GROUPID_2: cmd->cmd_cdblen = CDB_GROUP2; break;
case CDB_GROUPID_4: cmd->cmd_cdblen = CDB_GROUP4; break;
case CDB_GROUPID_5: cmd->cmd_cdblen = CDB_GROUP5; break;
default:
NDBG27(("mptsas_do_passthru: SCSI_IO, reserved "
"CDBGROUP 0x%x requested!", cdb_group_id));
break;
}
reply_len = sizeof (MPI2_SCSI_IO_REPLY);
sense_len = reply_size - reply_len;
ret = mptsas_cmdarqsize(mpt, cmd, sense_len, KM_SLEEP);
VERIFY(ret == B_TRUE);
} else {
reply_len = reply_size;
sense_len = 0;
}
NDBG27(("mptsas_do_passthru: %s, dsz 0x%x, dosz 0x%x, replen 0x%x, "
"snslen 0x%x",
(direction == MPTSAS_PASS_THRU_DIRECTION_WRITE)?"Write":"Read",
data_size, dataout_size, reply_len, sense_len));
/*
* Save the command in a slot
*/
if (mptsas_save_cmd(mpt, cmd) == TRUE) {
/*
* Once passthru command get slot, set cmd_flags
* CFLAG_PREPARED.
*/
cmd->cmd_flags |= CFLAG_PREPARED;
mptsas_start_passthru(mpt, cmd);
} else {
mptsas_waitq_add(mpt, cmd);
}
while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) {
cv_wait(&mpt->m_passthru_cv, &mpt->m_mutex);
}
NDBG27(("mptsas_do_passthru: Cmd complete, flags 0x%x, rfm 0x%x "
"pktreason 0x%x", cmd->cmd_flags, cmd->cmd_rfm,
pkt->pkt_reason));
if (cmd->cmd_flags & CFLAG_PREPARED) {
memp = mpt->m_req_frame + (mpt->m_req_frame_size *
cmd->cmd_slot);
request_hdrp = (pMPI2RequestHeader_t)memp;
}
if (cmd->cmd_flags & CFLAG_TIMEOUT) {
status = ETIMEDOUT;
mptsas_log(mpt, CE_WARN, "passthrough command timeout");
pt_flags |= MPTSAS_CMD_TIMEOUT;
goto out;
}
if (cmd->cmd_rfm) {
/*
* cmd_rfm is zero means the command reply is a CONTEXT
* reply and no PCI Write to post the free reply SMFA
* because no reply message frame is used.
* cmd_rfm is non-zero means the reply is a ADDRESS
* reply and reply message frame is used.
*/
pt_flags |= MPTSAS_ADDRESS_REPLY;
(void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0,
DDI_DMA_SYNC_FORCPU);
reply_msg = (pMPI2DefaultReply_t)
(mpt->m_reply_frame + (cmd->cmd_rfm -
(mpt->m_reply_frame_dma_addr & 0xffffffffu)));
}
mptsas_fma_check(mpt, cmd);
if (pkt->pkt_reason == CMD_TRAN_ERR) {
status = EAGAIN;
mptsas_log(mpt, CE_WARN, "passthru fma error");
goto out;
}
if (pkt->pkt_reason == CMD_RESET) {
status = EAGAIN;
mptsas_log(mpt, CE_WARN, "ioc reset abort passthru");
goto out;
}
if (pkt->pkt_reason == CMD_INCOMPLETE) {
status = EIO;
mptsas_log(mpt, CE_WARN, "passthrough command incomplete");
goto out;
}
mutex_exit(&mpt->m_mutex);
if (cmd->cmd_flags & CFLAG_PREPARED) {
function = request_hdrp->Function;
if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
(function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
reply_len = sizeof (MPI2_SCSI_IO_REPLY);
sense_len = cmd->cmd_extrqslen ?
min(sense_len, cmd->cmd_extrqslen) :
min(sense_len, cmd->cmd_rqslen);
} else {
reply_len = reply_size;
sense_len = 0;
}
for (i = 0; i < reply_len; i++) {
if (ddi_copyout((uint8_t *)reply_msg + i, reply + i, 1,
mode)) {
mutex_enter(&mpt->m_mutex);
status = EFAULT;
mptsas_log(mpt, CE_WARN, "failed to copy out "
"reply data");
goto out;
}
}
for (i = 0; i < sense_len; i++) {
if (ddi_copyout((uint8_t *)request_hdrp + 64 + i,
reply + reply_len + i, 1, mode)) {
mutex_enter(&mpt->m_mutex);
status = EFAULT;
mptsas_log(mpt, CE_WARN, "failed to copy out "
"sense data");
goto out;
}
}
}
if (data_size) {
if (direction != MPTSAS_PASS_THRU_DIRECTION_WRITE) {
(void) ddi_dma_sync(data_dma_state.handle, 0, 0,
DDI_DMA_SYNC_FORCPU);
for (i = 0; i < data_size; i++) {
if (ddi_copyout((uint8_t *)(
data_dma_state.memp + i), data + i, 1,
mode)) {
mutex_enter(&mpt->m_mutex);
status = EFAULT;
mptsas_log(mpt, CE_WARN, "failed to "
"copy out the reply data");
goto out;
}
}
}
}
mutex_enter(&mpt->m_mutex);
out:
/*
* Put the reply frame back on the free queue, increment the free
* index, and write the new index to the free index register. But only
* if this reply is an ADDRESS reply.
*/
if (pt_flags & MPTSAS_ADDRESS_REPLY) {
ddi_put32(mpt->m_acc_free_queue_hdl,
&((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index],
cmd->cmd_rfm);
(void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
if (++mpt->m_free_index == mpt->m_free_queue_depth) {
mpt->m_free_index = 0;
}
ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex,
mpt->m_free_index);
}
if (cmd) {
if (cmd->cmd_extrqslen != 0) {
rmfree(mpt->m_erqsense_map, cmd->cmd_extrqschunks,
cmd->cmd_extrqsidx + 1);
}
if (cmd->cmd_flags & CFLAG_PREPARED) {
mptsas_remove_cmd(mpt, cmd);
pt_flags &= (~MPTSAS_REQUEST_POOL_CMD);
}
}
if (pt_flags & MPTSAS_REQUEST_POOL_CMD)
mptsas_return_to_pool(mpt, cmd);
if (pt_flags & MPTSAS_DATA_ALLOCATED) {
if (mptsas_check_dma_handle(data_dma_state.handle) !=
DDI_SUCCESS) {
ddi_fm_service_impact(mpt->m_dip,
DDI_SERVICE_UNAFFECTED);
status = EFAULT;
}
mptsas_dma_free(&data_dma_state);
}
if (pt_flags & MPTSAS_DATAOUT_ALLOCATED) {
if (mptsas_check_dma_handle(dataout_dma_state.handle) !=
DDI_SUCCESS) {
ddi_fm_service_impact(mpt->m_dip,
DDI_SERVICE_UNAFFECTED);
status = EFAULT;
}
mptsas_dma_free(&dataout_dma_state);
}
if (pt_flags & MPTSAS_CMD_TIMEOUT) {
if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "mptsas_restart_ioc failed");
}
}
if (request_msg)
kmem_free(request_msg, request_size);
NDBG27(("mptsas_do_passthru: Done status 0x%x", status));
return (status);
}
static int
mptsas_pass_thru(mptsas_t *mpt, mptsas_pass_thru_t *data, int mode)
{
/*
* If timeout is 0, set timeout to default of 60 seconds.
*/
if (data->Timeout == 0) {
data->Timeout = MPTSAS_PASS_THRU_TIME_DEFAULT;
}
if (((data->DataSize == 0) &&
(data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_NONE)) ||
((data->DataSize != 0) &&
((data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_READ) ||
(data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_WRITE) ||
((data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_BOTH) &&
(data->DataOutSize != 0))))) {
if (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_BOTH) {
data->DataDirection = MPTSAS_PASS_THRU_DIRECTION_READ;
} else {
data->DataOutSize = 0;
}
/*
* Send passthru request messages
*/
return (mptsas_do_passthru(mpt,
(uint8_t *)((uintptr_t)data->PtrRequest),
(uint8_t *)((uintptr_t)data->PtrReply),
(uint8_t *)((uintptr_t)data->PtrData),
data->RequestSize, data->ReplySize,
data->DataSize, data->DataDirection,
(uint8_t *)((uintptr_t)data->PtrDataOut),
data->DataOutSize, data->Timeout, mode));
} else {
return (EINVAL);
}
}
static uint8_t
mptsas_get_fw_diag_buffer_number(mptsas_t *mpt, uint32_t unique_id)
{
uint8_t index;
for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
if (mpt->m_fw_diag_buffer_list[index].unique_id == unique_id) {
return (index);
}
}
return (MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND);
}
static void
mptsas_start_diag(mptsas_t *mpt, mptsas_cmd_t *cmd)
{
pMpi2DiagBufferPostRequest_t pDiag_post_msg;
pMpi2DiagReleaseRequest_t pDiag_release_msg;
struct scsi_pkt *pkt = cmd->cmd_pkt;
mptsas_diag_request_t *diag = pkt->pkt_ha_private;
uint32_t i;
uint64_t request_desc;
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* Form the diag message depending on the post or release function.
*/
if (diag->function == MPI2_FUNCTION_DIAG_BUFFER_POST) {
pDiag_post_msg = (pMpi2DiagBufferPostRequest_t)
(mpt->m_req_frame + (mpt->m_req_frame_size *
cmd->cmd_slot));
bzero(pDiag_post_msg, mpt->m_req_frame_size);
ddi_put8(mpt->m_acc_req_frame_hdl, &pDiag_post_msg->Function,
diag->function);
ddi_put8(mpt->m_acc_req_frame_hdl, &pDiag_post_msg->BufferType,
diag->pBuffer->buffer_type);
ddi_put8(mpt->m_acc_req_frame_hdl,
&pDiag_post_msg->ExtendedType,
diag->pBuffer->extended_type);
ddi_put32(mpt->m_acc_req_frame_hdl,
&pDiag_post_msg->BufferLength,
diag->pBuffer->buffer_data.size);
for (i = 0; i < (sizeof (pDiag_post_msg->ProductSpecific) / 4);
i++) {
ddi_put32(mpt->m_acc_req_frame_hdl,
&pDiag_post_msg->ProductSpecific[i],
diag->pBuffer->product_specific[i]);
}
ddi_put32(mpt->m_acc_req_frame_hdl,
&pDiag_post_msg->BufferAddress.Low,
(uint32_t)(diag->pBuffer->buffer_data.cookie.dmac_laddress
& 0xffffffffull));
ddi_put32(mpt->m_acc_req_frame_hdl,
&pDiag_post_msg->BufferAddress.High,
(uint32_t)(diag->pBuffer->buffer_data.cookie.dmac_laddress
>> 32));
} else {
pDiag_release_msg = (pMpi2DiagReleaseRequest_t)
(mpt->m_req_frame + (mpt->m_req_frame_size *
cmd->cmd_slot));
bzero(pDiag_release_msg, mpt->m_req_frame_size);
ddi_put8(mpt->m_acc_req_frame_hdl,
&pDiag_release_msg->Function, diag->function);
ddi_put8(mpt->m_acc_req_frame_hdl,
&pDiag_release_msg->BufferType,
diag->pBuffer->buffer_type);
}
/*
* Send the message
*/
(void) ddi_dma_sync(mpt->m_dma_req_frame_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
request_desc = (cmd->cmd_slot << 16) +
MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cmd->cmd_rfm = NULL;
MPTSAS_START_CMD(mpt, request_desc);
if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) !=
DDI_SUCCESS)) {
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
}
}
static int
mptsas_post_fw_diag_buffer(mptsas_t *mpt,
mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
{
mptsas_diag_request_t diag;
int status, slot_num, post_flags = 0;
mptsas_cmd_t *cmd = NULL;
struct scsi_pkt *pkt;
pMpi2DiagBufferPostReply_t reply;
uint16_t iocstatus;
uint32_t iocloginfo, transfer_length;
/*
* If buffer is not enabled, just leave.
*/
*return_code = MPTSAS_FW_DIAG_ERROR_POST_FAILED;
if (!pBuffer->enabled) {
status = DDI_FAILURE;
goto out;
}
/*
* Clear some flags initially.
*/
pBuffer->force_release = FALSE;
pBuffer->valid_data = FALSE;
pBuffer->owned_by_firmware = FALSE;
/*
* Get a cmd buffer from the cmd buffer pool
*/
if ((slot_num = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) {
status = DDI_FAILURE;
mptsas_log(mpt, CE_NOTE, "command pool is full: Post FW Diag");
goto out;
}
post_flags |= MPTSAS_REQUEST_POOL_CMD;
bzero((caddr_t)cmd, sizeof (*cmd));
bzero((caddr_t)pkt, scsi_pkt_size());
cmd->ioc_cmd_slot = (uint32_t)(slot_num);
diag.pBuffer = pBuffer;
diag.function = MPI2_FUNCTION_DIAG_BUFFER_POST;
/*
* Form a blank cmd/pkt to store the acknowledgement message
*/
pkt->pkt_ha_private = (opaque_t)&diag;
pkt->pkt_flags = FLAG_HEAD;
pkt->pkt_time = 60;
cmd->cmd_pkt = pkt;
cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_FW_DIAG;
/*
* Save the command in a slot
*/
if (mptsas_save_cmd(mpt, cmd) == TRUE) {
/*
* Once passthru command get slot, set cmd_flags
* CFLAG_PREPARED.
*/
cmd->cmd_flags |= CFLAG_PREPARED;
mptsas_start_diag(mpt, cmd);
} else {
mptsas_waitq_add(mpt, cmd);
}
while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) {
cv_wait(&mpt->m_fw_diag_cv, &mpt->m_mutex);
}
if (cmd->cmd_flags & CFLAG_TIMEOUT) {
status = DDI_FAILURE;
mptsas_log(mpt, CE_WARN, "Post FW Diag command timeout");
goto out;
}
/*
* cmd_rfm points to the reply message if a reply was given. Check the
* IOCStatus to make sure everything went OK with the FW diag request
* and set buffer flags.
*/
if (cmd->cmd_rfm) {
post_flags |= MPTSAS_ADDRESS_REPLY;
(void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0,
DDI_DMA_SYNC_FORCPU);
reply = (pMpi2DiagBufferPostReply_t)(mpt->m_reply_frame +
(cmd->cmd_rfm -
(mpt->m_reply_frame_dma_addr & 0xffffffffu)));
/*
* Get the reply message data
*/
iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl,
&reply->IOCStatus);
iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl,
&reply->IOCLogInfo);
transfer_length = ddi_get32(mpt->m_acc_reply_frame_hdl,
&reply->TransferLength);
/*
* If post failed quit.
*/
if (iocstatus != MPI2_IOCSTATUS_SUCCESS) {
status = DDI_FAILURE;
NDBG13(("post FW Diag Buffer failed: IOCStatus=0x%x, "
"IOCLogInfo=0x%x, TransferLength=0x%x", iocstatus,
iocloginfo, transfer_length));
goto out;
}
/*
* Post was successful.
*/
pBuffer->valid_data = TRUE;
pBuffer->owned_by_firmware = TRUE;
*return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS;
status = DDI_SUCCESS;
}
out:
/*
* Put the reply frame back on the free queue, increment the free
* index, and write the new index to the free index register. But only
* if this reply is an ADDRESS reply.
*/
if (post_flags & MPTSAS_ADDRESS_REPLY) {
ddi_put32(mpt->m_acc_free_queue_hdl,
&((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index],
cmd->cmd_rfm);
(void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
if (++mpt->m_free_index == mpt->m_free_queue_depth) {
mpt->m_free_index = 0;
}
ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex,
mpt->m_free_index);
}
if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) {
mptsas_remove_cmd(mpt, cmd);
post_flags &= (~MPTSAS_REQUEST_POOL_CMD);
}
if (post_flags & MPTSAS_REQUEST_POOL_CMD) {
mptsas_return_to_pool(mpt, cmd);
}
return (status);
}
static int
mptsas_release_fw_diag_buffer(mptsas_t *mpt,
mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
uint32_t diag_type)
{
mptsas_diag_request_t diag;
int status, slot_num, rel_flags = 0;
mptsas_cmd_t *cmd = NULL;
struct scsi_pkt *pkt;
pMpi2DiagReleaseReply_t reply;
uint16_t iocstatus;
uint32_t iocloginfo;
/*
* If buffer is not enabled, just leave.
*/
*return_code = MPTSAS_FW_DIAG_ERROR_RELEASE_FAILED;
if (!pBuffer->enabled) {
mptsas_log(mpt, CE_NOTE, "This buffer type is not supported "
"by the IOC");
status = DDI_FAILURE;
goto out;
}
/*
* Clear some flags initially.
*/
pBuffer->force_release = FALSE;
pBuffer->valid_data = FALSE;
pBuffer->owned_by_firmware = FALSE;
/*
* Get a cmd buffer from the cmd buffer pool
*/
if ((slot_num = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) {
status = DDI_FAILURE;
mptsas_log(mpt, CE_NOTE, "command pool is full: Release FW "
"Diag");
goto out;
}
rel_flags |= MPTSAS_REQUEST_POOL_CMD;
bzero((caddr_t)cmd, sizeof (*cmd));
bzero((caddr_t)pkt, scsi_pkt_size());
cmd->ioc_cmd_slot = (uint32_t)(slot_num);
diag.pBuffer = pBuffer;
diag.function = MPI2_FUNCTION_DIAG_RELEASE;
/*
* Form a blank cmd/pkt to store the acknowledgement message
*/
pkt->pkt_ha_private = (opaque_t)&diag;
pkt->pkt_flags = FLAG_HEAD;
pkt->pkt_time = 60;
cmd->cmd_pkt = pkt;
cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_FW_DIAG;
/*
* Save the command in a slot
*/
if (mptsas_save_cmd(mpt, cmd) == TRUE) {
/*
* Once passthru command get slot, set cmd_flags
* CFLAG_PREPARED.
*/
cmd->cmd_flags |= CFLAG_PREPARED;
mptsas_start_diag(mpt, cmd);
} else {
mptsas_waitq_add(mpt, cmd);
}
while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) {
cv_wait(&mpt->m_fw_diag_cv, &mpt->m_mutex);
}
if (cmd->cmd_flags & CFLAG_TIMEOUT) {
status = DDI_FAILURE;
mptsas_log(mpt, CE_WARN, "Release FW Diag command timeout");
goto out;
}
/*
* cmd_rfm points to the reply message if a reply was given. Check the
* IOCStatus to make sure everything went OK with the FW diag request
* and set buffer flags.
*/
if (cmd->cmd_rfm) {
rel_flags |= MPTSAS_ADDRESS_REPLY;
(void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0,
DDI_DMA_SYNC_FORCPU);
reply = (pMpi2DiagReleaseReply_t)(mpt->m_reply_frame +
(cmd->cmd_rfm -
(mpt->m_reply_frame_dma_addr & 0xffffffffu)));
/*
* Get the reply message data
*/
iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl,
&reply->IOCStatus);
iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl,
&reply->IOCLogInfo);
/*
* If release failed quit.
*/
if ((iocstatus != MPI2_IOCSTATUS_SUCCESS) ||
pBuffer->owned_by_firmware) {
status = DDI_FAILURE;
NDBG13(("release FW Diag Buffer failed: "
"IOCStatus=0x%x, IOCLogInfo=0x%x", iocstatus,
iocloginfo));
goto out;
}
/*
* Release was successful.
*/
*return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS;
status = DDI_SUCCESS;
/*
* If this was for an UNREGISTER diag type command, clear the
* unique ID.
*/
if (diag_type == MPTSAS_FW_DIAG_TYPE_UNREGISTER) {
pBuffer->unique_id = MPTSAS_FW_DIAG_INVALID_UID;
}
}
out:
/*
* Put the reply frame back on the free queue, increment the free
* index, and write the new index to the free index register. But only
* if this reply is an ADDRESS reply.
*/
if (rel_flags & MPTSAS_ADDRESS_REPLY) {
ddi_put32(mpt->m_acc_free_queue_hdl,
&((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index],
cmd->cmd_rfm);
(void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
if (++mpt->m_free_index == mpt->m_free_queue_depth) {
mpt->m_free_index = 0;
}
ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex,
mpt->m_free_index);
}
if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) {
mptsas_remove_cmd(mpt, cmd);
rel_flags &= (~MPTSAS_REQUEST_POOL_CMD);
}
if (rel_flags & MPTSAS_REQUEST_POOL_CMD) {
mptsas_return_to_pool(mpt, cmd);
}
return (status);
}
static int
mptsas_diag_register(mptsas_t *mpt, mptsas_fw_diag_register_t *diag_register,
uint32_t *return_code)
{
mptsas_fw_diagnostic_buffer_t *pBuffer;
uint8_t extended_type, buffer_type, i;
uint32_t buffer_size;
uint32_t unique_id;
int status;
ASSERT(mutex_owned(&mpt->m_mutex));
extended_type = diag_register->ExtendedType;
buffer_type = diag_register->BufferType;
buffer_size = diag_register->RequestedBufferSize;
unique_id = diag_register->UniqueId;
/*
* Check for valid buffer type
*/
if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER;
return (DDI_FAILURE);
}
/*
* Get the current buffer and look up the unique ID. The unique ID
* should not be found. If it is, the ID is already in use.
*/
i = mptsas_get_fw_diag_buffer_number(mpt, unique_id);
pBuffer = &mpt->m_fw_diag_buffer_list[buffer_type];
if (i != MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID;
return (DDI_FAILURE);
}
/*
* The buffer's unique ID should not be registered yet, and the given
* unique ID cannot be 0.
*/
if ((pBuffer->unique_id != MPTSAS_FW_DIAG_INVALID_UID) ||
(unique_id == MPTSAS_FW_DIAG_INVALID_UID)) {
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID;
return (DDI_FAILURE);
}
/*
* If this buffer is already posted as immediate, just change owner.
*/
if (pBuffer->immediate && pBuffer->owned_by_firmware &&
(pBuffer->unique_id == MPTSAS_FW_DIAG_INVALID_UID)) {
pBuffer->immediate = FALSE;
pBuffer->unique_id = unique_id;
return (DDI_SUCCESS);
}
/*
* Post a new buffer after checking if it's enabled. The DMA buffer
* that is allocated will be contiguous (sgl_len = 1).
*/
if (!pBuffer->enabled) {
*return_code = MPTSAS_FW_DIAG_ERROR_NO_BUFFER;
return (DDI_FAILURE);
}
bzero(&pBuffer->buffer_data, sizeof (mptsas_dma_alloc_state_t));
pBuffer->buffer_data.size = buffer_size;
if (mptsas_dma_alloc(mpt, &pBuffer->buffer_data) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "failed to alloc DMA resource for "
"diag buffer: size = %d bytes", buffer_size);
*return_code = MPTSAS_FW_DIAG_ERROR_NO_BUFFER;
return (DDI_FAILURE);
}
/*
* Copy the given info to the diag buffer and post the buffer.
*/
pBuffer->buffer_type = buffer_type;
pBuffer->immediate = FALSE;
if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
i++) {
pBuffer->product_specific[i] =
diag_register->ProductSpecific[i];
}
}
pBuffer->extended_type = extended_type;
pBuffer->unique_id = unique_id;
status = mptsas_post_fw_diag_buffer(mpt, pBuffer, return_code);
if (mptsas_check_dma_handle(pBuffer->buffer_data.handle) !=
DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "Check of DMA handle failed in "
"mptsas_diag_register.");
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
status = DDI_FAILURE;
}
/*
* In case there was a failure, free the DMA buffer.
*/
if (status == DDI_FAILURE) {
mptsas_dma_free(&pBuffer->buffer_data);
}
return (status);
}
static int
mptsas_diag_unregister(mptsas_t *mpt,
mptsas_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
{
mptsas_fw_diagnostic_buffer_t *pBuffer;
uint8_t i;
uint32_t unique_id;
int status;
ASSERT(mutex_owned(&mpt->m_mutex));
unique_id = diag_unregister->UniqueId;
/*
* Get the current buffer and look up the unique ID. The unique ID
* should be there.
*/
i = mptsas_get_fw_diag_buffer_number(mpt, unique_id);
if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID;
return (DDI_FAILURE);
}
pBuffer = &mpt->m_fw_diag_buffer_list[i];
/*
* Try to release the buffer from FW before freeing it. If release
* fails, don't free the DMA buffer in case FW tries to access it
* later. If buffer is not owned by firmware, can't release it.
*/
if (!pBuffer->owned_by_firmware) {
status = DDI_SUCCESS;
} else {
status = mptsas_release_fw_diag_buffer(mpt, pBuffer,
return_code, MPTSAS_FW_DIAG_TYPE_UNREGISTER);
}
/*
* At this point, return the current status no matter what happens with
* the DMA buffer.
*/
pBuffer->unique_id = MPTSAS_FW_DIAG_INVALID_UID;
if (status == DDI_SUCCESS) {
if (mptsas_check_dma_handle(pBuffer->buffer_data.handle) !=
DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "Check of DMA handle failed "
"in mptsas_diag_unregister.");
ddi_fm_service_impact(mpt->m_dip,
DDI_SERVICE_UNAFFECTED);
}
mptsas_dma_free(&pBuffer->buffer_data);
}
return (status);
}
static int
mptsas_diag_query(mptsas_t *mpt, mptsas_fw_diag_query_t *diag_query,
uint32_t *return_code)
{
mptsas_fw_diagnostic_buffer_t *pBuffer;
uint8_t i;
uint32_t unique_id;
ASSERT(mutex_owned(&mpt->m_mutex));
unique_id = diag_query->UniqueId;
/*
* If ID is valid, query on ID.
* If ID is invalid, query on buffer type.
*/
if (unique_id == MPTSAS_FW_DIAG_INVALID_UID) {
i = diag_query->BufferType;
if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID;
return (DDI_FAILURE);
}
} else {
i = mptsas_get_fw_diag_buffer_number(mpt, unique_id);
if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID;
return (DDI_FAILURE);
}
}
/*
* Fill query structure with the diag buffer info.
*/
pBuffer = &mpt->m_fw_diag_buffer_list[i];
diag_query->BufferType = pBuffer->buffer_type;
diag_query->ExtendedType = pBuffer->extended_type;
if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
for (i = 0; i < (sizeof (diag_query->ProductSpecific) / 4);
i++) {
diag_query->ProductSpecific[i] =
pBuffer->product_specific[i];
}
}
diag_query->TotalBufferSize = pBuffer->buffer_data.size;
diag_query->DriverAddedBufferSize = 0;
diag_query->UniqueId = pBuffer->unique_id;
diag_query->ApplicationFlags = 0;
diag_query->DiagnosticFlags = 0;
/*
* Set/Clear application flags
*/
if (pBuffer->immediate) {
diag_query->ApplicationFlags &= ~MPTSAS_FW_DIAG_FLAG_APP_OWNED;
} else {
diag_query->ApplicationFlags |= MPTSAS_FW_DIAG_FLAG_APP_OWNED;
}
if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
diag_query->ApplicationFlags |=
MPTSAS_FW_DIAG_FLAG_BUFFER_VALID;
} else {
diag_query->ApplicationFlags &=
~MPTSAS_FW_DIAG_FLAG_BUFFER_VALID;
}
if (pBuffer->owned_by_firmware) {
diag_query->ApplicationFlags |=
MPTSAS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
} else {
diag_query->ApplicationFlags &=
~MPTSAS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
}
return (DDI_SUCCESS);
}
static int
mptsas_diag_read_buffer(mptsas_t *mpt,
mptsas_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
uint32_t *return_code, int ioctl_mode)
{
mptsas_fw_diagnostic_buffer_t *pBuffer;
uint8_t i, *pData;
uint32_t unique_id, byte;
int status;
ASSERT(mutex_owned(&mpt->m_mutex));
unique_id = diag_read_buffer->UniqueId;
/*
* Get the current buffer and look up the unique ID. The unique ID
* should be there.
*/
i = mptsas_get_fw_diag_buffer_number(mpt, unique_id);
if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID;
return (DDI_FAILURE);
}
pBuffer = &mpt->m_fw_diag_buffer_list[i];
/*
* Make sure requested read is within limits
*/
if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
pBuffer->buffer_data.size) {
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER;
return (DDI_FAILURE);
}
/*
* Copy the requested data from DMA to the diag_read_buffer. The DMA
* buffer that was allocated is one contiguous buffer.
*/
pData = (uint8_t *)(pBuffer->buffer_data.memp +
diag_read_buffer->StartingOffset);
(void) ddi_dma_sync(pBuffer->buffer_data.handle, 0, 0,
DDI_DMA_SYNC_FORCPU);
for (byte = 0; byte < diag_read_buffer->BytesToRead; byte++) {
if (ddi_copyout(pData + byte, ioctl_buf + byte, 1, ioctl_mode)
!= 0) {
return (DDI_FAILURE);
}
}
diag_read_buffer->Status = 0;
/*
* Set or clear the Force Release flag.
*/
if (pBuffer->force_release) {
diag_read_buffer->Flags |= MPTSAS_FW_DIAG_FLAG_FORCE_RELEASE;
} else {
diag_read_buffer->Flags &= ~MPTSAS_FW_DIAG_FLAG_FORCE_RELEASE;
}
/*
* If buffer is to be reregistered, make sure it's not already owned by
* firmware first.
*/
status = DDI_SUCCESS;
if (!pBuffer->owned_by_firmware) {
if (diag_read_buffer->Flags & MPTSAS_FW_DIAG_FLAG_REREGISTER) {
status = mptsas_post_fw_diag_buffer(mpt, pBuffer,
return_code);
}
}
return (status);
}
static int
mptsas_diag_release(mptsas_t *mpt, mptsas_fw_diag_release_t *diag_release,
uint32_t *return_code)
{
mptsas_fw_diagnostic_buffer_t *pBuffer;
uint8_t i;
uint32_t unique_id;
int status;
ASSERT(mutex_owned(&mpt->m_mutex));
unique_id = diag_release->UniqueId;
/*
* Get the current buffer and look up the unique ID. The unique ID
* should be there.
*/
i = mptsas_get_fw_diag_buffer_number(mpt, unique_id);
if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID;
return (DDI_FAILURE);
}
pBuffer = &mpt->m_fw_diag_buffer_list[i];
/*
* If buffer is not owned by firmware, it's already been released.
*/
if (!pBuffer->owned_by_firmware) {
*return_code = MPTSAS_FW_DIAG_ERROR_ALREADY_RELEASED;
return (DDI_FAILURE);
}
/*
* Release the buffer.
*/
status = mptsas_release_fw_diag_buffer(mpt, pBuffer, return_code,
MPTSAS_FW_DIAG_TYPE_RELEASE);
return (status);
}
static int
mptsas_do_diag_action(mptsas_t *mpt, uint32_t action, uint8_t *diag_action,
uint32_t length, uint32_t *return_code, int ioctl_mode)
{
mptsas_fw_diag_register_t diag_register;
mptsas_fw_diag_unregister_t diag_unregister;
mptsas_fw_diag_query_t diag_query;
mptsas_diag_read_buffer_t diag_read_buffer;
mptsas_fw_diag_release_t diag_release;
int status = DDI_SUCCESS;
uint32_t original_return_code, read_buf_len;
ASSERT(mutex_owned(&mpt->m_mutex));
original_return_code = *return_code;
*return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS;
switch (action) {
case MPTSAS_FW_DIAG_TYPE_REGISTER:
if (!length) {
*return_code =
MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = DDI_FAILURE;
break;
}
if (ddi_copyin(diag_action, &diag_register,
sizeof (diag_register), ioctl_mode) != 0) {
return (DDI_FAILURE);
}
status = mptsas_diag_register(mpt, &diag_register,
return_code);
break;
case MPTSAS_FW_DIAG_TYPE_UNREGISTER:
if (length < sizeof (diag_unregister)) {
*return_code =
MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = DDI_FAILURE;
break;
}
if (ddi_copyin(diag_action, &diag_unregister,
sizeof (diag_unregister), ioctl_mode) != 0) {
return (DDI_FAILURE);
}
status = mptsas_diag_unregister(mpt, &diag_unregister,
return_code);
break;
case MPTSAS_FW_DIAG_TYPE_QUERY:
if (length < sizeof (diag_query)) {
*return_code =
MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = DDI_FAILURE;
break;
}
if (ddi_copyin(diag_action, &diag_query,
sizeof (diag_query), ioctl_mode) != 0) {
return (DDI_FAILURE);
}
status = mptsas_diag_query(mpt, &diag_query,
return_code);
if (status == DDI_SUCCESS) {
if (ddi_copyout(&diag_query, diag_action,
sizeof (diag_query), ioctl_mode) != 0) {
return (DDI_FAILURE);
}
}
break;
case MPTSAS_FW_DIAG_TYPE_READ_BUFFER:
if (ddi_copyin(diag_action, &diag_read_buffer,
sizeof (diag_read_buffer) - 4, ioctl_mode) != 0) {
return (DDI_FAILURE);
}
read_buf_len = sizeof (diag_read_buffer) -
sizeof (diag_read_buffer.DataBuffer) +
diag_read_buffer.BytesToRead;
if (length < read_buf_len) {
*return_code =
MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = DDI_FAILURE;
break;
}
status = mptsas_diag_read_buffer(mpt,
&diag_read_buffer, diag_action +
sizeof (diag_read_buffer) - 4, return_code,
ioctl_mode);
if (status == DDI_SUCCESS) {
if (ddi_copyout(&diag_read_buffer, diag_action,
sizeof (diag_read_buffer) - 4, ioctl_mode)
!= 0) {
return (DDI_FAILURE);
}
}
break;
case MPTSAS_FW_DIAG_TYPE_RELEASE:
if (length < sizeof (diag_release)) {
*return_code =
MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = DDI_FAILURE;
break;
}
if (ddi_copyin(diag_action, &diag_release,
sizeof (diag_release), ioctl_mode) != 0) {
return (DDI_FAILURE);
}
status = mptsas_diag_release(mpt, &diag_release,
return_code);
break;
default:
*return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER;
status = DDI_FAILURE;
break;
}
if ((status == DDI_FAILURE) &&
(original_return_code == MPTSAS_FW_DIAG_NEW) &&
(*return_code != MPTSAS_FW_DIAG_ERROR_SUCCESS)) {
status = DDI_SUCCESS;
}
return (status);
}
static int
mptsas_diag_action(mptsas_t *mpt, mptsas_diag_action_t *user_data, int mode)
{
int status;
mptsas_diag_action_t driver_data;
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* Copy the user data to a driver data buffer.
*/
if (ddi_copyin(user_data, &driver_data, sizeof (mptsas_diag_action_t),
mode) == 0) {
/*
* Send diag action request if Action is valid
*/
if (driver_data.Action == MPTSAS_FW_DIAG_TYPE_REGISTER ||
driver_data.Action == MPTSAS_FW_DIAG_TYPE_UNREGISTER ||
driver_data.Action == MPTSAS_FW_DIAG_TYPE_QUERY ||
driver_data.Action == MPTSAS_FW_DIAG_TYPE_READ_BUFFER ||
driver_data.Action == MPTSAS_FW_DIAG_TYPE_RELEASE) {
status = mptsas_do_diag_action(mpt, driver_data.Action,
(void *)(uintptr_t)driver_data.PtrDiagAction,
driver_data.Length, &driver_data.ReturnCode,
mode);
if (status == DDI_SUCCESS) {
if (ddi_copyout(&driver_data.ReturnCode,
&user_data->ReturnCode,
sizeof (user_data->ReturnCode), mode)
!= 0) {
status = EFAULT;
} else {
status = 0;
}
} else {
status = EIO;
}
} else {
status = EINVAL;
}
} else {
status = EFAULT;
}
return (status);
}
/*
* This routine handles the "event query" ioctl.
*/
static int
mptsas_event_query(mptsas_t *mpt, mptsas_event_query_t *data, int mode,
int *rval)
{
int status;
mptsas_event_query_t driverdata;
uint8_t i;
driverdata.Entries = MPTSAS_EVENT_QUEUE_SIZE;
mutex_enter(&mpt->m_mutex);
for (i = 0; i < 4; i++) {
driverdata.Types[i] = mpt->m_event_mask[i];
}
mutex_exit(&mpt->m_mutex);
if (ddi_copyout(&driverdata, data, sizeof (driverdata), mode) != 0) {
status = EFAULT;
} else {
*rval = MPTIOCTL_STATUS_GOOD;
status = 0;
}
return (status);
}
/*
* This routine handles the "event enable" ioctl.
*/
static int
mptsas_event_enable(mptsas_t *mpt, mptsas_event_enable_t *data, int mode,
int *rval)
{
int status;
mptsas_event_enable_t driverdata;
uint8_t i;
if (ddi_copyin(data, &driverdata, sizeof (driverdata), mode) == 0) {
mutex_enter(&mpt->m_mutex);
for (i = 0; i < 4; i++) {
mpt->m_event_mask[i] = driverdata.Types[i];
}
mutex_exit(&mpt->m_mutex);
*rval = MPTIOCTL_STATUS_GOOD;
status = 0;
} else {
status = EFAULT;
}
return (status);
}
/*
* This routine handles the "event report" ioctl.
*/
static int
mptsas_event_report(mptsas_t *mpt, mptsas_event_report_t *data, int mode,
int *rval)
{
int status;
mptsas_event_report_t driverdata;
mutex_enter(&mpt->m_mutex);
if (ddi_copyin(&data->Size, &driverdata.Size, sizeof (driverdata.Size),
mode) == 0) {
if (driverdata.Size >= sizeof (mpt->m_events)) {
if (ddi_copyout(mpt->m_events, data->Events,
sizeof (mpt->m_events), mode) != 0) {
status = EFAULT;
} else {
if (driverdata.Size > sizeof (mpt->m_events)) {
driverdata.Size =
sizeof (mpt->m_events);
if (ddi_copyout(&driverdata.Size,
&data->Size,
sizeof (driverdata.Size),
mode) != 0) {
status = EFAULT;
} else {
*rval = MPTIOCTL_STATUS_GOOD;
status = 0;
}
} else {
*rval = MPTIOCTL_STATUS_GOOD;
status = 0;
}
}
} else {
*rval = MPTIOCTL_STATUS_LEN_TOO_SHORT;
status = 0;
}
} else {
status = EFAULT;
}
mutex_exit(&mpt->m_mutex);
return (status);
}
static void
mptsas_lookup_pci_data(mptsas_t *mpt, mptsas_adapter_data_t *adapter_data)
{
int *reg_data;
uint_t reglen;
/*
* Lookup the 'reg' property and extract the other data
*/
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, mpt->m_dip,
DDI_PROP_DONTPASS, "reg", &reg_data, &reglen) ==
DDI_PROP_SUCCESS) {
/*
* Extract the PCI data from the 'reg' property first DWORD.
* The entry looks like the following:
* First DWORD:
* Bits 0 - 7 8-bit Register number
* Bits 8 - 10 3-bit Function number
* Bits 11 - 15 5-bit Device number
* Bits 16 - 23 8-bit Bus number
* Bits 24 - 25 2-bit Address Space type identifier
*
*/
adapter_data->PciInformation.u.bits.BusNumber =
(reg_data[0] & 0x00FF0000) >> 16;
adapter_data->PciInformation.u.bits.DeviceNumber =
(reg_data[0] & 0x0000F800) >> 11;
adapter_data->PciInformation.u.bits.FunctionNumber =
(reg_data[0] & 0x00000700) >> 8;
ddi_prop_free((void *)reg_data);
} else {
/*
* If we can't determine the PCI data then we fill in FF's for
* the data to indicate this.
*/
adapter_data->PCIDeviceHwId = 0xFFFFFFFF;
adapter_data->MpiPortNumber = 0xFFFFFFFF;
adapter_data->PciInformation.u.AsDWORD = 0xFFFFFFFF;
}
/*
* Saved in the mpt->m_fwversion
*/
adapter_data->MpiFirmwareVersion = mpt->m_fwversion;
}
static void
mptsas_read_adapter_data(mptsas_t *mpt, mptsas_adapter_data_t *adapter_data)
{
char *driver_verstr = MPTSAS_MOD_STRING;
mptsas_lookup_pci_data(mpt, adapter_data);
adapter_data->AdapterType = mpt->m_MPI25 ?
MPTIOCTL_ADAPTER_TYPE_SAS3 :
MPTIOCTL_ADAPTER_TYPE_SAS2;
adapter_data->PCIDeviceHwId = (uint32_t)mpt->m_devid;
adapter_data->PCIDeviceHwRev = (uint32_t)mpt->m_revid;
adapter_data->SubSystemId = (uint32_t)mpt->m_ssid;
adapter_data->SubsystemVendorId = (uint32_t)mpt->m_svid;
(void) strcpy((char *)&adapter_data->DriverVersion[0], driver_verstr);
adapter_data->BiosVersion = 0;
(void) mptsas_get_bios_page3(mpt, &adapter_data->BiosVersion);
}
static void
mptsas_read_pci_info(mptsas_t *mpt, mptsas_pci_info_t *pci_info)
{
int *reg_data, i;
uint_t reglen;
/*
* Lookup the 'reg' property and extract the other data
*/
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, mpt->m_dip,
DDI_PROP_DONTPASS, "reg", &reg_data, &reglen) ==
DDI_PROP_SUCCESS) {
/*
* Extract the PCI data from the 'reg' property first DWORD.
* The entry looks like the following:
* First DWORD:
* Bits 8 - 10 3-bit Function number
* Bits 11 - 15 5-bit Device number
* Bits 16 - 23 8-bit Bus number
*/
pci_info->BusNumber = (reg_data[0] & 0x00FF0000) >> 16;
pci_info->DeviceNumber = (reg_data[0] & 0x0000F800) >> 11;
pci_info->FunctionNumber = (reg_data[0] & 0x00000700) >> 8;
ddi_prop_free((void *)reg_data);
} else {
/*
* If we can't determine the PCI info then we fill in FF's for
* the data to indicate this.
*/
pci_info->BusNumber = 0xFFFFFFFF;
pci_info->DeviceNumber = 0xFF;
pci_info->FunctionNumber = 0xFF;
}
/*
* Now get the interrupt vector and the pci header. The vector can
* only be 0 right now. The header is the first 256 bytes of config
* space.
*/
pci_info->InterruptVector = 0;
for (i = 0; i < sizeof (pci_info->PciHeader); i++) {
pci_info->PciHeader[i] = pci_config_get8(mpt->m_config_handle,
i);
}
}
static int
mptsas_reg_access(mptsas_t *mpt, mptsas_reg_access_t *data, int mode)
{
int status = 0;
mptsas_reg_access_t driverdata;
mutex_enter(&mpt->m_mutex);
if (ddi_copyin(data, &driverdata, sizeof (driverdata), mode) == 0) {
switch (driverdata.Command) {
/*
* IO access is not supported.
*/
case REG_IO_READ:
case REG_IO_WRITE:
mptsas_log(mpt, CE_WARN, "IO access is not "
"supported. Use memory access.");
status = EINVAL;
break;
case REG_MEM_READ:
driverdata.RegData = ddi_get32(mpt->m_datap,
(uint32_t *)(void *)mpt->m_reg +
driverdata.RegOffset);
if (ddi_copyout(&driverdata.RegData,
&data->RegData,
sizeof (driverdata.RegData), mode) != 0) {
mptsas_log(mpt, CE_WARN, "Register "
"Read Failed");
status = EFAULT;
}
break;
case REG_MEM_WRITE:
ddi_put32(mpt->m_datap,
(uint32_t *)(void *)mpt->m_reg +
driverdata.RegOffset,
driverdata.RegData);
break;
default:
status = EINVAL;
break;
}
} else {
status = EFAULT;
}
mutex_exit(&mpt->m_mutex);
return (status);
}
static int
led_control(mptsas_t *mpt, intptr_t data, int mode)
{
int ret = 0;
mptsas_led_control_t lc;
mptsas_target_t *ptgt;
if (ddi_copyin((void *)data, &lc, sizeof (lc), mode) != 0) {
return (EFAULT);
}
if ((lc.Command != MPTSAS_LEDCTL_FLAG_SET &&
lc.Command != MPTSAS_LEDCTL_FLAG_GET) ||
lc.Led < MPTSAS_LEDCTL_LED_MIN ||
lc.Led > MPTSAS_LEDCTL_LED_MAX ||
(lc.Command == MPTSAS_LEDCTL_FLAG_SET && lc.LedStatus != 0 &&
lc.LedStatus != 1)) {
return (EINVAL);
}
if ((lc.Command == MPTSAS_LEDCTL_FLAG_SET && (mode & FWRITE) == 0) ||
(lc.Command == MPTSAS_LEDCTL_FLAG_GET && (mode & FREAD) == 0))
return (EACCES);
/* Locate the target we're interrogating... */
mutex_enter(&mpt->m_mutex);
ptgt = refhash_linear_search(mpt->m_targets,
mptsas_target_eval_slot, &lc);
if (ptgt == NULL) {
/* We could not find a target for that enclosure/slot. */
mutex_exit(&mpt->m_mutex);
return (ENOENT);
}
if (lc.Command == MPTSAS_LEDCTL_FLAG_SET) {
/* Update our internal LED state. */
ptgt->m_led_status &= ~(1 << (lc.Led - 1));
ptgt->m_led_status |= lc.LedStatus << (lc.Led - 1);
/* Flush it to the controller. */
ret = mptsas_flush_led_status(mpt, ptgt);
mutex_exit(&mpt->m_mutex);
return (ret);
}
/* Return our internal LED state. */
lc.LedStatus = (ptgt->m_led_status >> (lc.Led - 1)) & 1;
mutex_exit(&mpt->m_mutex);
if (ddi_copyout(&lc, (void *)data, sizeof (lc), mode) != 0) {
return (EFAULT);
}
return (0);
}
static int
get_disk_info(mptsas_t *mpt, intptr_t data, int mode)
{
uint16_t i = 0;
uint16_t count = 0;
int ret = 0;
mptsas_target_t *ptgt;
mptsas_disk_info_t *di;
STRUCT_DECL(mptsas_get_disk_info, gdi);
if ((mode & FREAD) == 0)
return (EACCES);
STRUCT_INIT(gdi, get_udatamodel());
if (ddi_copyin((void *)data, STRUCT_BUF(gdi), STRUCT_SIZE(gdi),
mode) != 0) {
return (EFAULT);
}
/* Find out how many targets there are. */
mutex_enter(&mpt->m_mutex);
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
count++;
}
mutex_exit(&mpt->m_mutex);
/*
* If we haven't been asked to copy out information on each target,
* then just return the count.
*/
STRUCT_FSET(gdi, DiskCount, count);
if (STRUCT_FGETP(gdi, PtrDiskInfoArray) == NULL)
goto copy_out;
/*
* If we haven't been given a large enough buffer to copy out into,
* let the caller know.
*/
if (STRUCT_FGET(gdi, DiskInfoArraySize) <
count * sizeof (mptsas_disk_info_t)) {
ret = ENOSPC;
goto copy_out;
}
di = kmem_zalloc(count * sizeof (mptsas_disk_info_t), KM_SLEEP);
mutex_enter(&mpt->m_mutex);
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
if (i >= count) {
/*
* The number of targets changed while we weren't
* looking, so give up.
*/
refhash_rele(mpt->m_targets, ptgt);
mutex_exit(&mpt->m_mutex);
kmem_free(di, count * sizeof (mptsas_disk_info_t));
return (EAGAIN);
}
di[i].Instance = mpt->m_instance;
di[i].Enclosure = ptgt->m_enclosure;
di[i].Slot = ptgt->m_slot_num;
di[i].SasAddress = ptgt->m_addr.mta_wwn;
i++;
}
mutex_exit(&mpt->m_mutex);
STRUCT_FSET(gdi, DiskCount, i);
/* Copy out the disk information to the caller. */
if (ddi_copyout((void *)di, STRUCT_FGETP(gdi, PtrDiskInfoArray),
i * sizeof (mptsas_disk_info_t), mode) != 0) {
ret = EFAULT;
}
kmem_free(di, count * sizeof (mptsas_disk_info_t));
copy_out:
if (ddi_copyout(STRUCT_BUF(gdi), (void *)data, STRUCT_SIZE(gdi),
mode) != 0) {
ret = EFAULT;
}
return (ret);
}
static int
mptsas_ioctl(dev_t dev, int cmd, intptr_t data, int mode, cred_t *credp,
int *rval)
{
int status = 0;
mptsas_t *mpt;
mptsas_update_flash_t flashdata;
mptsas_pass_thru_t passthru_data;
mptsas_adapter_data_t adapter_data;
mptsas_pci_info_t pci_info;
int copylen;
int iport_flag = 0;
dev_info_t *dip = NULL;
mptsas_phymask_t phymask = 0;
struct devctl_iocdata *dcp = NULL;
char *addr = NULL;
mptsas_target_t *ptgt = NULL;
*rval = MPTIOCTL_STATUS_GOOD;
if (secpolicy_sys_config(credp, B_FALSE) != 0) {
return (EPERM);
}
mpt = ddi_get_soft_state(mptsas_state, MINOR2INST(getminor(dev)));
if (mpt == NULL) {
/*
* Called from iport node, get the states
*/
iport_flag = 1;
dip = mptsas_get_dip_from_dev(dev, &phymask);
if (dip == NULL) {
return (ENXIO);
}
mpt = DIP2MPT(dip);
}
/* Make sure power level is D0 before accessing registers */
mutex_enter(&mpt->m_mutex);
if (mpt->m_options & MPTSAS_OPT_PM) {
(void) pm_busy_component(mpt->m_dip, 0);
if (mpt->m_power_level != PM_LEVEL_D0) {
mutex_exit(&mpt->m_mutex);
if (pm_raise_power(mpt->m_dip, 0, PM_LEVEL_D0) !=
DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN,
"mptsas%d: mptsas_ioctl: Raise power "
"request failed.", mpt->m_instance);
(void) pm_idle_component(mpt->m_dip, 0);
return (ENXIO);
}
} else {
mutex_exit(&mpt->m_mutex);
}
} else {
mutex_exit(&mpt->m_mutex);
}
if (iport_flag) {
status = scsi_hba_ioctl(dev, cmd, data, mode, credp, rval);
if (status != 0) {
goto out;
}
/*
* The following code control the OK2RM LED, it doesn't affect
* the ioctl return status.
*/
if ((cmd == DEVCTL_DEVICE_ONLINE) ||
(cmd == DEVCTL_DEVICE_OFFLINE)) {
if (ndi_dc_allochdl((void *)data, &dcp) !=
NDI_SUCCESS) {
goto out;
}
addr = ndi_dc_getaddr(dcp);
ptgt = mptsas_addr_to_ptgt(mpt, addr, phymask);
if (ptgt == NULL) {
NDBG14(("mptsas_ioctl led control: tgt %s not "
"found", addr));
ndi_dc_freehdl(dcp);
goto out;
}
mutex_enter(&mpt->m_mutex);
if (cmd == DEVCTL_DEVICE_ONLINE) {
ptgt->m_tgt_unconfigured = 0;
} else if (cmd == DEVCTL_DEVICE_OFFLINE) {
ptgt->m_tgt_unconfigured = 1;
}
if (cmd == DEVCTL_DEVICE_OFFLINE) {
ptgt->m_led_status |=
(1 << (MPTSAS_LEDCTL_LED_OK2RM - 1));
} else {
ptgt->m_led_status &=
~(1 << (MPTSAS_LEDCTL_LED_OK2RM - 1));
}
(void) mptsas_flush_led_status(mpt, ptgt);
mutex_exit(&mpt->m_mutex);
ndi_dc_freehdl(dcp);
}
goto out;
}
switch (cmd) {
case MPTIOCTL_GET_DISK_INFO:
status = get_disk_info(mpt, data, mode);
break;
case MPTIOCTL_LED_CONTROL:
status = led_control(mpt, data, mode);
break;
case MPTIOCTL_UPDATE_FLASH:
if (ddi_copyin((void *)data, &flashdata,
sizeof (struct mptsas_update_flash), mode)) {
status = EFAULT;
break;
}
mutex_enter(&mpt->m_mutex);
if (mptsas_update_flash(mpt,
(caddr_t)(long)flashdata.PtrBuffer,
flashdata.ImageSize, flashdata.ImageType, mode)) {
status = EFAULT;
}
/*
* Reset the chip to start using the new
* firmware. Reset if failed also.
*/
mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET;
if (mptsas_restart_ioc(mpt) == DDI_FAILURE) {
status = EFAULT;
}
mutex_exit(&mpt->m_mutex);
break;
case MPTIOCTL_PASS_THRU:
/*
* The user has requested to pass through a command to
* be executed by the MPT firmware. Call our routine
* which does this. Only allow one passthru IOCTL at
* one time. Other threads will block on
* m_passthru_mutex, which is of adaptive variant.
*/
if (ddi_copyin((void *)data, &passthru_data,
sizeof (mptsas_pass_thru_t), mode)) {
status = EFAULT;
break;
}
mutex_enter(&mpt->m_passthru_mutex);
mutex_enter(&mpt->m_mutex);
status = mptsas_pass_thru(mpt, &passthru_data, mode);
mutex_exit(&mpt->m_mutex);
mutex_exit(&mpt->m_passthru_mutex);
break;
case MPTIOCTL_GET_ADAPTER_DATA:
/*
* The user has requested to read adapter data. Call
* our routine which does this.
*/
bzero(&adapter_data, sizeof (mptsas_adapter_data_t));
if (ddi_copyin((void *)data, (void *)&adapter_data,
sizeof (mptsas_adapter_data_t), mode)) {
status = EFAULT;
break;
}
if (adapter_data.StructureLength >=
sizeof (mptsas_adapter_data_t)) {
adapter_data.StructureLength = (uint32_t)
sizeof (mptsas_adapter_data_t);
copylen = sizeof (mptsas_adapter_data_t);
mutex_enter(&mpt->m_mutex);
mptsas_read_adapter_data(mpt, &adapter_data);
mutex_exit(&mpt->m_mutex);
} else {
adapter_data.StructureLength = (uint32_t)
sizeof (mptsas_adapter_data_t);
copylen = sizeof (adapter_data.StructureLength);
*rval = MPTIOCTL_STATUS_LEN_TOO_SHORT;
}
if (ddi_copyout((void *)(&adapter_data), (void *)data,
copylen, mode) != 0) {
status = EFAULT;
}
break;
case MPTIOCTL_GET_PCI_INFO:
/*
* The user has requested to read pci info. Call
* our routine which does this.
*/
bzero(&pci_info, sizeof (mptsas_pci_info_t));
mutex_enter(&mpt->m_mutex);
mptsas_read_pci_info(mpt, &pci_info);
mutex_exit(&mpt->m_mutex);
if (ddi_copyout((void *)(&pci_info), (void *)data,
sizeof (mptsas_pci_info_t), mode) != 0) {
status = EFAULT;
}
break;
case MPTIOCTL_RESET_ADAPTER:
mutex_enter(&mpt->m_mutex);
mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET;
if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "reset adapter IOCTL "
"failed");
status = EFAULT;
}
mutex_exit(&mpt->m_mutex);
break;
case MPTIOCTL_DIAG_ACTION:
/*
* The user has done a diag buffer action. Call our
* routine which does this. Only allow one diag action
* at one time.
*/
mutex_enter(&mpt->m_mutex);
if (mpt->m_diag_action_in_progress) {
mutex_exit(&mpt->m_mutex);
return (EBUSY);
}
mpt->m_diag_action_in_progress = 1;
status = mptsas_diag_action(mpt,
(mptsas_diag_action_t *)data, mode);
mpt->m_diag_action_in_progress = 0;
mutex_exit(&mpt->m_mutex);
break;
case MPTIOCTL_EVENT_QUERY:
/*
* The user has done an event query. Call our routine
* which does this.
*/
status = mptsas_event_query(mpt,
(mptsas_event_query_t *)data, mode, rval);
break;
case MPTIOCTL_EVENT_ENABLE:
/*
* The user has done an event enable. Call our routine
* which does this.
*/
status = mptsas_event_enable(mpt,
(mptsas_event_enable_t *)data, mode, rval);
break;
case MPTIOCTL_EVENT_REPORT:
/*
* The user has done an event report. Call our routine
* which does this.
*/
status = mptsas_event_report(mpt,
(mptsas_event_report_t *)data, mode, rval);
break;
case MPTIOCTL_REG_ACCESS:
/*
* The user has requested register access. Call our
* routine which does this.
*/
status = mptsas_reg_access(mpt,
(mptsas_reg_access_t *)data, mode);
break;
default:
status = scsi_hba_ioctl(dev, cmd, data, mode, credp,
rval);
break;
}
out:
return (status);
}
int
mptsas_restart_ioc(mptsas_t *mpt)
{
int rval = DDI_SUCCESS;
mptsas_target_t *ptgt = NULL;
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* Set a flag telling I/O path that we're processing a reset. This is
* needed because after the reset is complete, the hash table still
* needs to be rebuilt. If I/Os are started before the hash table is
* rebuilt, I/O errors will occur. This flag allows I/Os to be marked
* so that they can be retried.
*/
mpt->m_in_reset = TRUE;
/*
* Set all throttles to HOLD
*/
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE);
}
/*
* Disable interrupts
*/
MPTSAS_DISABLE_INTR(mpt);
/*
* Abort all commands: outstanding commands, commands in waitq and
* tx_waitq.
*/
mptsas_flush_hba(mpt);
/*
* Reinitialize the chip.
*/
if (mptsas_init_chip(mpt, FALSE) == DDI_FAILURE) {
rval = DDI_FAILURE;
}
/*
* Enable interrupts again
*/
MPTSAS_ENABLE_INTR(mpt);
/*
* If mptsas_init_chip was successful, update the driver data.
*/
if (rval == DDI_SUCCESS) {
mptsas_update_driver_data(mpt);
}
/*
* Reset the throttles
*/
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE);
}
mptsas_doneq_empty(mpt);
mptsas_restart_hba(mpt);
if (rval != DDI_SUCCESS) {
mptsas_fm_ereport(mpt, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_LOST);
}
/*
* Clear the reset flag so that I/Os can continue.
*/
mpt->m_in_reset = FALSE;
return (rval);
}
static int
mptsas_init_chip(mptsas_t *mpt, int first_time)
{
ddi_dma_cookie_t cookie;
uint32_t i;
int rval;
/*
* Check to see if the firmware image is valid
*/
if (ddi_get32(mpt->m_datap, &mpt->m_reg->HostDiagnostic) &
MPI2_DIAG_FLASH_BAD_SIG) {
mptsas_log(mpt, CE_WARN, "mptsas bad flash signature!");
goto fail;
}
/*
* Reset the chip
*/
rval = mptsas_ioc_reset(mpt, first_time);
if (rval == MPTSAS_RESET_FAIL) {
mptsas_log(mpt, CE_WARN, "hard reset failed!");
goto fail;
}
if ((rval == MPTSAS_SUCCESS_MUR) && (!first_time)) {
goto mur;
}
/*
* Setup configuration space
*/
if (mptsas_config_space_init(mpt) == FALSE) {
mptsas_log(mpt, CE_WARN, "mptsas_config_space_init "
"failed!");
goto fail;
}
/*
* IOC facts can change after a diag reset so all buffers that are
* based on these numbers must be de-allocated and re-allocated. Get
* new IOC facts each time chip is initialized.
*/
if (mptsas_ioc_get_facts(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "mptsas_ioc_get_facts failed");
goto fail;
}
if (mptsas_alloc_active_slots(mpt, KM_SLEEP)) {
goto fail;
}
/*
* Allocate request message frames, reply free queue, reply descriptor
* post queue, and reply message frames using latest IOC facts.
*/
if (mptsas_alloc_request_frames(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "mptsas_alloc_request_frames failed");
goto fail;
}
if (mptsas_alloc_sense_bufs(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "mptsas_alloc_sense_bufs failed");
goto fail;
}
if (mptsas_alloc_free_queue(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "mptsas_alloc_free_queue failed!");
goto fail;
}
if (mptsas_alloc_post_queue(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "mptsas_alloc_post_queue failed!");
goto fail;
}
if (mptsas_alloc_reply_frames(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "mptsas_alloc_reply_frames failed!");
goto fail;
}
mur:
/*
* Re-Initialize ioc to operational state
*/
if (mptsas_ioc_init(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "mptsas_ioc_init failed");
goto fail;
}
mptsas_alloc_reply_args(mpt);
/*
* Initialize reply post index. Reply free index is initialized after
* the next loop.
*/
mpt->m_post_index = 0;
/*
* Initialize the Reply Free Queue with the physical addresses of our
* reply frames.
*/
cookie.dmac_address = mpt->m_reply_frame_dma_addr & 0xffffffffu;
for (i = 0; i < mpt->m_max_replies; i++) {
ddi_put32(mpt->m_acc_free_queue_hdl,
&((uint32_t *)(void *)mpt->m_free_queue)[i],
cookie.dmac_address);
cookie.dmac_address += mpt->m_reply_frame_size;
}
(void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
/*
* Initialize the reply free index to one past the last frame on the
* queue. This will signify that the queue is empty to start with.
*/
mpt->m_free_index = i;
ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, i);
/*
* Initialize the reply post queue to 0xFFFFFFFF,0xFFFFFFFF's.
*/
for (i = 0; i < mpt->m_post_queue_depth; i++) {
ddi_put64(mpt->m_acc_post_queue_hdl,
&((uint64_t *)(void *)mpt->m_post_queue)[i],
0xFFFFFFFFFFFFFFFF);
}
(void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
/*
* Enable ports
*/
if (mptsas_ioc_enable_port(mpt) == DDI_FAILURE) {
mptsas_log(mpt, CE_WARN, "mptsas_ioc_enable_port failed");
goto fail;
}
/*
* enable events
*/
if (mptsas_ioc_enable_event_notification(mpt)) {
mptsas_log(mpt, CE_WARN,
"mptsas_ioc_enable_event_notification failed");
goto fail;
}
/*
* We need checks in attach and these.
* chip_init is called in mult. places
*/
if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_req_sense_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) !=
DDI_SUCCESS)) {
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
goto fail;
}
/* Check all acc handles */
if ((mptsas_check_acc_handle(mpt->m_datap) != DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_req_sense_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) !=
DDI_SUCCESS) ||
(mptsas_check_acc_handle(mpt->m_config_handle) !=
DDI_SUCCESS)) {
ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED);
goto fail;
}
return (DDI_SUCCESS);
fail:
return (DDI_FAILURE);
}
static int
mptsas_get_pci_cap(mptsas_t *mpt)
{
ushort_t caps_ptr, cap, cap_count;
if (mpt->m_config_handle == NULL)
return (FALSE);
/*
* Check if capabilities list is supported and if so,
* get initial capabilities pointer and clear bits 0,1.
*/
if (pci_config_get16(mpt->m_config_handle, PCI_CONF_STAT)
& PCI_STAT_CAP) {
caps_ptr = P2ALIGN(pci_config_get8(mpt->m_config_handle,
PCI_CONF_CAP_PTR), 4);
} else {
caps_ptr = PCI_CAP_NEXT_PTR_NULL;
}
/*
* Walk capabilities if supported.
*/
for (cap_count = 0; caps_ptr != PCI_CAP_NEXT_PTR_NULL; ) {
/*
* Check that we haven't exceeded the maximum number of
* capabilities and that the pointer is in a valid range.
*/
if (++cap_count > 48) {
mptsas_log(mpt, CE_WARN,
"too many device capabilities.\n");
break;
}
if (caps_ptr < 64) {
mptsas_log(mpt, CE_WARN,
"capabilities pointer 0x%x out of range.\n",
caps_ptr);
break;
}
/*
* Get next capability and check that it is valid.
* For now, we only support power management.
*/
cap = pci_config_get8(mpt->m_config_handle, caps_ptr);
switch (cap) {
case PCI_CAP_ID_PM:
mptsas_log(mpt, CE_NOTE,
"?mptsas%d supports power management.\n",
mpt->m_instance);
mpt->m_options |= MPTSAS_OPT_PM;
/* Save PMCSR offset */
mpt->m_pmcsr_offset = caps_ptr + PCI_PMCSR;
break;
/*
* The following capabilities are valid. Any others
* will cause a message to be logged.
*/
case PCI_CAP_ID_VPD:
case PCI_CAP_ID_MSI:
case PCI_CAP_ID_PCIX:
case PCI_CAP_ID_PCI_E:
case PCI_CAP_ID_MSI_X:
break;
default:
mptsas_log(mpt, CE_NOTE,
"?mptsas%d unrecognized capability "
"0x%x.\n", mpt->m_instance, cap);
break;
}
/*
* Get next capabilities pointer and clear bits 0,1.
*/
caps_ptr = P2ALIGN(pci_config_get8(mpt->m_config_handle,
(caps_ptr + PCI_CAP_NEXT_PTR)), 4);
}
return (TRUE);
}
static int
mptsas_init_pm(mptsas_t *mpt)
{
char pmc_name[16];
char *pmc[] = {
NULL,
"0=Off (PCI D3 State)",
"3=On (PCI D0 State)",
NULL
};
uint16_t pmcsr_stat;
if (mptsas_get_pci_cap(mpt) == FALSE) {
return (DDI_FAILURE);
}
/*
* If PCI's capability does not support PM, then don't need
* to registe the pm-components
*/
if (!(mpt->m_options & MPTSAS_OPT_PM))
return (DDI_SUCCESS);
/*
* If power management is supported by this chip, create
* pm-components property for the power management framework
*/
(void) sprintf(pmc_name, "NAME=mptsas%d", mpt->m_instance);
pmc[0] = pmc_name;
if (ddi_prop_update_string_array(DDI_DEV_T_NONE, mpt->m_dip,
"pm-components", pmc, 3) != DDI_PROP_SUCCESS) {
mpt->m_options &= ~MPTSAS_OPT_PM;
mptsas_log(mpt, CE_WARN,
"mptsas%d: pm-component property creation failed.",
mpt->m_instance);
return (DDI_FAILURE);
}
/*
* Power on device.
*/
(void) pm_busy_component(mpt->m_dip, 0);
pmcsr_stat = pci_config_get16(mpt->m_config_handle,
mpt->m_pmcsr_offset);
if ((pmcsr_stat & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_D0) {
mptsas_log(mpt, CE_WARN, "mptsas%d: Power up the device",
mpt->m_instance);
pci_config_put16(mpt->m_config_handle, mpt->m_pmcsr_offset,
PCI_PMCSR_D0);
}
if (pm_power_has_changed(mpt->m_dip, 0, PM_LEVEL_D0) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "pm_power_has_changed failed");
return (DDI_FAILURE);
}
mpt->m_power_level = PM_LEVEL_D0;
/*
* Set pm idle delay.
*/
mpt->m_pm_idle_delay = ddi_prop_get_int(DDI_DEV_T_ANY,
mpt->m_dip, 0, "mptsas-pm-idle-delay", MPTSAS_PM_IDLE_TIMEOUT);
return (DDI_SUCCESS);
}
static int
mptsas_register_intrs(mptsas_t *mpt)
{
dev_info_t *dip;
int intr_types;
dip = mpt->m_dip;
/* Get supported interrupt types */
if (ddi_intr_get_supported_types(dip, &intr_types) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "ddi_intr_get_supported_types "
"failed\n");
return (FALSE);
}
NDBG6(("ddi_intr_get_supported_types() returned: 0x%x", intr_types));
/*
* Try MSI, but fall back to FIXED
*/
if (mptsas_enable_msi && (intr_types & DDI_INTR_TYPE_MSI)) {
if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_MSI) == DDI_SUCCESS) {
NDBG0(("Using MSI interrupt type"));
mpt->m_intr_type = DDI_INTR_TYPE_MSI;
return (TRUE);
}
}
if (intr_types & DDI_INTR_TYPE_FIXED) {
if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_FIXED) == DDI_SUCCESS) {
NDBG0(("Using FIXED interrupt type"));
mpt->m_intr_type = DDI_INTR_TYPE_FIXED;
return (TRUE);
} else {
NDBG0(("FIXED interrupt registration failed"));
return (FALSE);
}
}
return (FALSE);
}
static void
mptsas_unregister_intrs(mptsas_t *mpt)
{
mptsas_rem_intrs(mpt);
}
/*
* mptsas_add_intrs:
*
* Register FIXED or MSI interrupts.
*/
static int
mptsas_add_intrs(mptsas_t *mpt, int intr_type)
{
dev_info_t *dip = mpt->m_dip;
int avail, actual, count = 0;
int i, flag, ret;
NDBG6(("mptsas_add_intrs:interrupt type 0x%x", intr_type));
/* Get number of interrupts */
ret = ddi_intr_get_nintrs(dip, intr_type, &count);
if ((ret != DDI_SUCCESS) || (count <= 0)) {
mptsas_log(mpt, CE_WARN, "ddi_intr_get_nintrs() failed, "
"ret %d count %d\n", ret, count);
return (DDI_FAILURE);
}
/* Get number of available interrupts */
ret = ddi_intr_get_navail(dip, intr_type, &avail);
if ((ret != DDI_SUCCESS) || (avail == 0)) {
mptsas_log(mpt, CE_WARN, "ddi_intr_get_navail() failed, "
"ret %d avail %d\n", ret, avail);
return (DDI_FAILURE);
}
if (avail < count) {
mptsas_log(mpt, CE_NOTE, "ddi_intr_get_nvail returned %d, "
"navail() returned %d", count, avail);
}
/* Mpt only have one interrupt routine */
if ((intr_type == DDI_INTR_TYPE_MSI) && (count > 1)) {
count = 1;
}
/* Allocate an array of interrupt handles */
mpt->m_intr_size = count * sizeof (ddi_intr_handle_t);
mpt->m_htable = kmem_alloc(mpt->m_intr_size, KM_SLEEP);
flag = DDI_INTR_ALLOC_NORMAL;
/* call ddi_intr_alloc() */
ret = ddi_intr_alloc(dip, mpt->m_htable, intr_type, 0,
count, &actual, flag);
if ((ret != DDI_SUCCESS) || (actual == 0)) {
mptsas_log(mpt, CE_WARN, "ddi_intr_alloc() failed, ret %d\n",
ret);
kmem_free(mpt->m_htable, mpt->m_intr_size);
return (DDI_FAILURE);
}
/* use interrupt count returned or abort? */
if (actual < count) {
mptsas_log(mpt, CE_NOTE, "Requested: %d, Received: %d\n",
count, actual);
}
mpt->m_intr_cnt = actual;
/*
* Get priority for first msi, assume remaining are all the same
*/
if ((ret = ddi_intr_get_pri(mpt->m_htable[0],
&mpt->m_intr_pri)) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "ddi_intr_get_pri() failed %d\n", ret);
/* Free already allocated intr */
for (i = 0; i < actual; i++) {
(void) ddi_intr_free(mpt->m_htable[i]);
}
kmem_free(mpt->m_htable, mpt->m_intr_size);
return (DDI_FAILURE);
}
/* Test for high level mutex */
if (mpt->m_intr_pri >= ddi_intr_get_hilevel_pri()) {
mptsas_log(mpt, CE_WARN, "mptsas_add_intrs: "
"Hi level interrupt not supported\n");
/* Free already allocated intr */
for (i = 0; i < actual; i++) {
(void) ddi_intr_free(mpt->m_htable[i]);
}
kmem_free(mpt->m_htable, mpt->m_intr_size);
return (DDI_FAILURE);
}
/* Call ddi_intr_add_handler() */
for (i = 0; i < actual; i++) {
if ((ret = ddi_intr_add_handler(mpt->m_htable[i], mptsas_intr,
(caddr_t)mpt, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "ddi_intr_add_handler() "
"failed %d\n", ret);
/* Free already allocated intr */
for (i = 0; i < actual; i++) {
(void) ddi_intr_free(mpt->m_htable[i]);
}
kmem_free(mpt->m_htable, mpt->m_intr_size);
return (DDI_FAILURE);
}
}
if ((ret = ddi_intr_get_cap(mpt->m_htable[0], &mpt->m_intr_cap))
!= DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "ddi_intr_get_cap() failed %d\n", ret);
/* Free already allocated intr */
for (i = 0; i < actual; i++) {
(void) ddi_intr_free(mpt->m_htable[i]);
}
kmem_free(mpt->m_htable, mpt->m_intr_size);
return (DDI_FAILURE);
}
/*
* Enable interrupts
*/
if (mpt->m_intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_enable() for MSI interrupts */
(void) ddi_intr_block_enable(mpt->m_htable, mpt->m_intr_cnt);
} else {
/* Call ddi_intr_enable for MSI or FIXED interrupts */
for (i = 0; i < mpt->m_intr_cnt; i++) {
(void) ddi_intr_enable(mpt->m_htable[i]);
}
}
return (DDI_SUCCESS);
}
/*
* mptsas_rem_intrs:
*
* Unregister FIXED or MSI interrupts
*/
static void
mptsas_rem_intrs(mptsas_t *mpt)
{
int i;
NDBG6(("mptsas_rem_intrs"));
/* Disable all interrupts */
if (mpt->m_intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_disable() */
(void) ddi_intr_block_disable(mpt->m_htable, mpt->m_intr_cnt);
} else {
for (i = 0; i < mpt->m_intr_cnt; i++) {
(void) ddi_intr_disable(mpt->m_htable[i]);
}
}
/* Call ddi_intr_remove_handler() */
for (i = 0; i < mpt->m_intr_cnt; i++) {
(void) ddi_intr_remove_handler(mpt->m_htable[i]);
(void) ddi_intr_free(mpt->m_htable[i]);
}
kmem_free(mpt->m_htable, mpt->m_intr_size);
}
/*
* The IO fault service error handling callback function
*/
/*ARGSUSED*/
static int
mptsas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
{
/*
* as the driver can always deal with an error in any dma or
* access handle, we can just return the fme_status value.
*/
pci_ereport_post(dip, err, NULL);
return (err->fme_status);
}
/*
* mptsas_fm_init - initialize fma capabilities and register with IO
* fault services.
*/
static void
mptsas_fm_init(mptsas_t *mpt)
{
/*
* Need to change iblock to priority for new MSI intr
*/
ddi_iblock_cookie_t fm_ibc;
/* Only register with IO Fault Services if we have some capability */
if (mpt->m_fm_capabilities) {
/* Adjust access and dma attributes for FMA */
mpt->m_reg_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
mpt->m_msg_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
mpt->m_io_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
/*
* Register capabilities with IO Fault Services.
* mpt->m_fm_capabilities will be updated to indicate
* capabilities actually supported (not requested.)
*/
ddi_fm_init(mpt->m_dip, &mpt->m_fm_capabilities, &fm_ibc);
/*
* Initialize pci ereport capabilities if ereport
* capable (should always be.)
*/
if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities) ||
DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) {
pci_ereport_setup(mpt->m_dip);
}
/*
* Register error callback if error callback capable.
*/
if (DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) {
ddi_fm_handler_register(mpt->m_dip,
mptsas_fm_error_cb, (void *) mpt);
}
}
}
/*
* mptsas_fm_fini - Releases fma capabilities and un-registers with IO
* fault services.
*
*/
static void
mptsas_fm_fini(mptsas_t *mpt)
{
/* Only unregister FMA capabilities if registered */
if (mpt->m_fm_capabilities) {
/*
* Un-register error callback if error callback capable.
*/
if (DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) {
ddi_fm_handler_unregister(mpt->m_dip);
}
/*
* Release any resources allocated by pci_ereport_setup()
*/
if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities) ||
DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) {
pci_ereport_teardown(mpt->m_dip);
}
/* Unregister from IO Fault Services */
ddi_fm_fini(mpt->m_dip);
/* Adjust access and dma attributes for FMA */
mpt->m_reg_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
mpt->m_msg_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR;
mpt->m_io_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR;
}
}
int
mptsas_check_acc_handle(ddi_acc_handle_t handle)
{
ddi_fm_error_t de;
if (handle == NULL)
return (DDI_FAILURE);
ddi_fm_acc_err_get(handle, &de, DDI_FME_VER0);
return (de.fme_status);
}
int
mptsas_check_dma_handle(ddi_dma_handle_t handle)
{
ddi_fm_error_t de;
if (handle == NULL)
return (DDI_FAILURE);
ddi_fm_dma_err_get(handle, &de, DDI_FME_VER0);
return (de.fme_status);
}
void
mptsas_fm_ereport(mptsas_t *mpt, char *detail)
{
uint64_t ena;
char buf[FM_MAX_CLASS];
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
ena = fm_ena_generate(0, FM_ENA_FMT1);
if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities)) {
ddi_fm_ereport_post(mpt->m_dip, buf, ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
}
}
static int
mptsas_get_target_device_info(mptsas_t *mpt, uint32_t page_address,
uint16_t *dev_handle, mptsas_target_t **pptgt)
{
int rval;
uint32_t dev_info;
uint64_t sas_wwn;
mptsas_phymask_t phymask;
uint8_t physport, phynum, config, disk;
uint64_t devicename;
uint16_t pdev_hdl;
mptsas_target_t *tmp_tgt = NULL;
uint16_t bay_num, enclosure, io_flags;
ASSERT(*pptgt == NULL);
rval = mptsas_get_sas_device_page0(mpt, page_address, dev_handle,
&sas_wwn, &dev_info, &physport, &phynum, &pdev_hdl,
&bay_num, &enclosure, &io_flags);
if (rval != DDI_SUCCESS) {
rval = DEV_INFO_FAIL_PAGE0;
return (rval);
}
if ((dev_info & (MPI2_SAS_DEVICE_INFO_SSP_TARGET |
MPI2_SAS_DEVICE_INFO_SATA_DEVICE |
MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) == NULL) {
rval = DEV_INFO_WRONG_DEVICE_TYPE;
return (rval);
}
/*
* Check if the dev handle is for a Phys Disk. If so, set return value
* and exit. Don't add Phys Disks to hash.
*/
for (config = 0; config < mpt->m_num_raid_configs; config++) {
for (disk = 0; disk < MPTSAS_MAX_DISKS_IN_CONFIG; disk++) {
if (*dev_handle == mpt->m_raidconfig[config].
m_physdisk_devhdl[disk]) {
rval = DEV_INFO_PHYS_DISK;
return (rval);
}
}
}
/*
* Get SATA Device Name from SAS device page0 for
* sata device, if device name doesn't exist, set mta_wwn to
* 0 for direct attached SATA. For the device behind the expander
* we still can use STP address assigned by expander.
*/
if (dev_info & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE |
MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) {
/* alloc a temporary target to send the cmd to */
tmp_tgt = mptsas_tgt_alloc(mpt->m_tmp_targets, *dev_handle,
0, dev_info, 0, 0);
mutex_exit(&mpt->m_mutex);
devicename = mptsas_get_sata_guid(mpt, tmp_tgt, 0);
if (devicename == -1) {
mutex_enter(&mpt->m_mutex);
refhash_remove(mpt->m_tmp_targets, tmp_tgt);
rval = DEV_INFO_FAIL_GUID;
return (rval);
}
if (devicename != 0 && (((devicename >> 56) & 0xf0) == 0x50)) {
sas_wwn = devicename;
} else if (dev_info & MPI2_SAS_DEVICE_INFO_DIRECT_ATTACH) {
sas_wwn = 0;
}
mutex_enter(&mpt->m_mutex);
refhash_remove(mpt->m_tmp_targets, tmp_tgt);
}
phymask = mptsas_physport_to_phymask(mpt, physport);
*pptgt = mptsas_tgt_alloc(mpt->m_targets, *dev_handle, sas_wwn,
dev_info, phymask, phynum);
if (*pptgt == NULL) {
mptsas_log(mpt, CE_WARN, "Failed to allocated target"
"structure!");
rval = DEV_INFO_FAIL_ALLOC;
return (rval);
}
(*pptgt)->m_io_flags = io_flags;
(*pptgt)->m_enclosure = enclosure;
(*pptgt)->m_slot_num = bay_num;
return (DEV_INFO_SUCCESS);
}
uint64_t
mptsas_get_sata_guid(mptsas_t *mpt, mptsas_target_t *ptgt, int lun)
{
uint64_t sata_guid = 0, *pwwn = NULL;
int target = ptgt->m_devhdl;
uchar_t *inq83 = NULL;
int inq83_len = 0xFF;
uchar_t *dblk = NULL;
int inq83_retry = 3;
int rval = DDI_FAILURE;
inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
inq83_retry:
rval = mptsas_inquiry(mpt, ptgt, lun, 0x83, inq83,
inq83_len, NULL, 1);
if (rval != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page "
"0x83 for target:%x, lun:%x failed!", target, lun);
sata_guid = -1;
goto out;
}
/* According to SAT2, the first descriptor is logic unit name */
dblk = &inq83[4];
if ((dblk[1] & 0x30) != 0) {
mptsas_log(mpt, CE_WARN, "!Descriptor is not lun associated.");
goto out;
}
pwwn = (uint64_t *)(void *)(&dblk[4]);
if ((dblk[4] & 0xf0) == 0x50) {
sata_guid = BE_64(*pwwn);
goto out;
} else if (dblk[4] == 'A') {
NDBG20(("SATA drive has no NAA format GUID."));
goto out;
} else {
/* The data is not ready, wait and retry */
inq83_retry--;
if (inq83_retry <= 0) {
goto out;
}
NDBG20(("The GUID is not ready, retry..."));
delay(1 * drv_usectohz(1000000));
goto inq83_retry;
}
out:
kmem_free(inq83, inq83_len);
return (sata_guid);
}
static int
mptsas_inquiry(mptsas_t *mpt, mptsas_target_t *ptgt, int lun, uchar_t page,
unsigned char *buf, int len, int *reallen, uchar_t evpd)
{
uchar_t cdb[CDB_GROUP0];
struct scsi_address ap;
struct buf *data_bp = NULL;
int resid = 0;
int ret = DDI_FAILURE;
ASSERT(len <= 0xffff);
ap.a_target = MPTSAS_INVALID_DEVHDL;
ap.a_lun = (uchar_t)(lun);
ap.a_hba_tran = mpt->m_tran;
data_bp = scsi_alloc_consistent_buf(&ap,
(struct buf *)NULL, len, B_READ, NULL_FUNC, NULL);
if (data_bp == NULL) {
return (ret);
}
bzero(cdb, CDB_GROUP0);
cdb[0] = SCMD_INQUIRY;
cdb[1] = evpd;
cdb[2] = page;
cdb[3] = (len & 0xff00) >> 8;
cdb[4] = (len & 0x00ff);
cdb[5] = 0;
ret = mptsas_send_scsi_cmd(mpt, &ap, ptgt, &cdb[0], CDB_GROUP0, data_bp,
&resid);
if (ret == DDI_SUCCESS) {
if (reallen) {
*reallen = len - resid;
}
bcopy((caddr_t)data_bp->b_un.b_addr, buf, len);
}
if (data_bp) {
scsi_free_consistent_buf(data_bp);
}
return (ret);
}
static int
mptsas_send_scsi_cmd(mptsas_t *mpt, struct scsi_address *ap,
mptsas_target_t *ptgt, uchar_t *cdb, int cdblen, struct buf *data_bp,
int *resid)
{
struct scsi_pkt *pktp = NULL;
scsi_hba_tran_t *tran_clone = NULL;
mptsas_tgt_private_t *tgt_private = NULL;
int ret = DDI_FAILURE;
/*
* scsi_hba_tran_t->tran_tgt_private is used to pass the address
* information to scsi_init_pkt, allocate a scsi_hba_tran structure
* to simulate the cmds from sd
*/
tran_clone = kmem_alloc(
sizeof (scsi_hba_tran_t), KM_SLEEP);
if (tran_clone == NULL) {
goto out;
}
bcopy((caddr_t)mpt->m_tran,
(caddr_t)tran_clone, sizeof (scsi_hba_tran_t));
tgt_private = kmem_alloc(
sizeof (mptsas_tgt_private_t), KM_SLEEP);
if (tgt_private == NULL) {
goto out;
}
tgt_private->t_lun = ap->a_lun;
tgt_private->t_private = ptgt;
tran_clone->tran_tgt_private = tgt_private;
ap->a_hba_tran = tran_clone;
pktp = scsi_init_pkt(ap, (struct scsi_pkt *)NULL,
data_bp, cdblen, sizeof (struct scsi_arq_status),
0, PKT_CONSISTENT, NULL, NULL);
if (pktp == NULL) {
goto out;
}
bcopy(cdb, pktp->pkt_cdbp, cdblen);
pktp->pkt_flags = FLAG_NOPARITY;
if (scsi_poll(pktp) < 0) {
goto out;
}
if (((struct scsi_status *)pktp->pkt_scbp)->sts_chk) {
goto out;
}
if (resid != NULL) {
*resid = pktp->pkt_resid;
}
ret = DDI_SUCCESS;
out:
if (pktp) {
scsi_destroy_pkt(pktp);
}
if (tran_clone) {
kmem_free(tran_clone, sizeof (scsi_hba_tran_t));
}
if (tgt_private) {
kmem_free(tgt_private, sizeof (mptsas_tgt_private_t));
}
return (ret);
}
static int
mptsas_parse_address(char *name, uint64_t *wwid, uint8_t *phy, int *lun)
{
char *cp = NULL;
char *ptr = NULL;
size_t s = 0;
char *wwid_str = NULL;
char *lun_str = NULL;
long lunnum;
long phyid = -1;
int rc = DDI_FAILURE;
ptr = name;
ASSERT(ptr[0] == 'w' || ptr[0] == 'p');
ptr++;
if ((cp = strchr(ptr, ',')) == NULL) {
return (DDI_FAILURE);
}
wwid_str = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
s = (uintptr_t)cp - (uintptr_t)ptr;
bcopy(ptr, wwid_str, s);
wwid_str[s] = '\0';
ptr = ++cp;
if ((cp = strchr(ptr, '\0')) == NULL) {
goto out;
}
lun_str = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
s = (uintptr_t)cp - (uintptr_t)ptr;
bcopy(ptr, lun_str, s);
lun_str[s] = '\0';
if (name[0] == 'p') {
rc = ddi_strtol(wwid_str, NULL, 0x10, &phyid);
} else {
rc = scsi_wwnstr_to_wwn(wwid_str, wwid);
}
if (rc != DDI_SUCCESS)
goto out;
if (phyid != -1) {
ASSERT(phyid < MPTSAS_MAX_PHYS);
*phy = (uint8_t)phyid;
}
rc = ddi_strtol(lun_str, NULL, 0x10, &lunnum);
if (rc != 0)
goto out;
*lun = (int)lunnum;
rc = DDI_SUCCESS;
out:
if (wwid_str)
kmem_free(wwid_str, SCSI_MAXNAMELEN);
if (lun_str)
kmem_free(lun_str, SCSI_MAXNAMELEN);
return (rc);
}
/*
* mptsas_parse_smp_name() is to parse sas wwn string
* which format is "wWWN"
*/
static int
mptsas_parse_smp_name(char *name, uint64_t *wwn)
{
char *ptr = name;
if (*ptr != 'w') {
return (DDI_FAILURE);
}
ptr++;
if (scsi_wwnstr_to_wwn(ptr, wwn)) {
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
static int
mptsas_bus_config(dev_info_t *pdip, uint_t flag,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp)
{
int ret = NDI_FAILURE;
int circ = 0;
int circ1 = 0;
mptsas_t *mpt;
char *ptr = NULL;
char *devnm = NULL;
uint64_t wwid = 0;
uint8_t phy = 0xFF;
int lun = 0;
uint_t mflags = flag;
int bconfig = TRUE;
if (scsi_hba_iport_unit_address(pdip) == 0) {
return (DDI_FAILURE);
}
mpt = DIP2MPT(pdip);
if (!mpt) {
return (DDI_FAILURE);
}
/*
* Hold the nexus across the bus_config
*/
ndi_devi_enter(scsi_vhci_dip, &circ);
ndi_devi_enter(pdip, &circ1);
switch (op) {
case BUS_CONFIG_ONE:
/* parse wwid/target name out of name given */
if ((ptr = strchr((char *)arg, '@')) == NULL) {
ret = NDI_FAILURE;
break;
}
ptr++;
if (strncmp((char *)arg, "smp", 3) == 0) {
/*
* This is a SMP target device
*/
ret = mptsas_parse_smp_name(ptr, &wwid);
if (ret != DDI_SUCCESS) {
ret = NDI_FAILURE;
break;
}
ret = mptsas_config_smp(pdip, wwid, childp);
} else if ((ptr[0] == 'w') || (ptr[0] == 'p')) {
/*
* OBP could pass down a non-canonical form
* bootpath without LUN part when LUN is 0.
* So driver need adjust the string.
*/
if (strchr(ptr, ',') == NULL) {
devnm = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
(void) sprintf(devnm, "%s,0", (char *)arg);
ptr = strchr(devnm, '@');
ptr++;
}
/*
* The device path is wWWID format and the device
* is not SMP target device.
*/
ret = mptsas_parse_address(ptr, &wwid, &phy, &lun);
if (ret != DDI_SUCCESS) {
ret = NDI_FAILURE;
break;
}
*childp = NULL;
if (ptr[0] == 'w') {
ret = mptsas_config_one_addr(pdip, wwid,
lun, childp);
} else if (ptr[0] == 'p') {
ret = mptsas_config_one_phy(pdip, phy, lun,
childp);
}
/*
* If this is CD/DVD device in OBP path, the
* ndi_busop_bus_config can be skipped as config one
* operation is done above.
*/
if ((ret == NDI_SUCCESS) && (*childp != NULL) &&
(strcmp(ddi_node_name(*childp), "cdrom") == 0) &&
(strncmp((char *)arg, "disk", 4) == 0)) {
bconfig = FALSE;
ndi_hold_devi(*childp);
}
} else {
ret = NDI_FAILURE;
break;
}
/*
* DDI group instructed us to use this flag.
*/
mflags |= NDI_MDI_FALLBACK;
break;
case BUS_CONFIG_DRIVER:
case BUS_CONFIG_ALL:
mptsas_config_all(pdip);
ret = NDI_SUCCESS;
break;
}
if ((ret == NDI_SUCCESS) && bconfig) {
ret = ndi_busop_bus_config(pdip, mflags, op,
(devnm == NULL) ? arg : devnm, childp, 0);
}
ndi_devi_exit(pdip, circ1);
ndi_devi_exit(scsi_vhci_dip, circ);
if (devnm != NULL)
kmem_free(devnm, SCSI_MAXNAMELEN);
return (ret);
}
static int
mptsas_probe_lun(dev_info_t *pdip, int lun, dev_info_t **dip,
mptsas_target_t *ptgt)
{
int rval = DDI_FAILURE;
struct scsi_inquiry *sd_inq = NULL;
mptsas_t *mpt = DIP2MPT(pdip);
sd_inq = (struct scsi_inquiry *)kmem_alloc(SUN_INQSIZE, KM_SLEEP);
rval = mptsas_inquiry(mpt, ptgt, lun, 0, (uchar_t *)sd_inq,
SUN_INQSIZE, 0, (uchar_t)0);
if ((rval == DDI_SUCCESS) && MPTSAS_VALID_LUN(sd_inq)) {
rval = mptsas_create_lun(pdip, sd_inq, dip, ptgt, lun);
} else {
rval = DDI_FAILURE;
}
kmem_free(sd_inq, SUN_INQSIZE);
return (rval);
}
static int
mptsas_config_one_addr(dev_info_t *pdip, uint64_t sasaddr, int lun,
dev_info_t **lundip)
{
int rval;
mptsas_t *mpt = DIP2MPT(pdip);
int phymask;
mptsas_target_t *ptgt = NULL;
/*
* Get the physical port associated to the iport
*/
phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0,
"phymask", 0);
ptgt = mptsas_wwid_to_ptgt(mpt, phymask, sasaddr);
if (ptgt == NULL) {
/*
* didn't match any device by searching
*/
return (DDI_FAILURE);
}
/*
* If the LUN already exists and the status is online,
* we just return the pointer to dev_info_t directly.
* For the mdi_pathinfo node, we'll handle it in
* mptsas_create_virt_lun()
* TODO should be also in mptsas_handle_dr
*/
*lundip = mptsas_find_child_addr(pdip, sasaddr, lun);
if (*lundip != NULL) {
/*
* TODO Another senario is, we hotplug the same disk
* on the same slot, the devhdl changed, is this
* possible?
* tgt_private->t_private != ptgt
*/
if (sasaddr != ptgt->m_addr.mta_wwn) {
/*
* The device has changed although the devhdl is the
* same (Enclosure mapping mode, change drive on the
* same slot)
*/
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
if (phymask == 0) {
/*
* Configure IR volume
*/
rval = mptsas_config_raid(pdip, ptgt->m_devhdl, lundip);
return (rval);
}
rval = mptsas_probe_lun(pdip, lun, lundip, ptgt);
return (rval);
}
static int
mptsas_config_one_phy(dev_info_t *pdip, uint8_t phy, int lun,
dev_info_t **lundip)
{
int rval;
mptsas_t *mpt = DIP2MPT(pdip);
mptsas_phymask_t phymask;
mptsas_target_t *ptgt = NULL;
/*
* Get the physical port associated to the iport
*/
phymask = (mptsas_phymask_t)ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0,
"phymask", 0);
ptgt = mptsas_phy_to_tgt(mpt, phymask, phy);
if (ptgt == NULL) {
/*
* didn't match any device by searching
*/
return (DDI_FAILURE);
}
/*
* If the LUN already exists and the status is online,
* we just return the pointer to dev_info_t directly.
* For the mdi_pathinfo node, we'll handle it in
* mptsas_create_virt_lun().
*/
*lundip = mptsas_find_child_phy(pdip, phy);
if (*lundip != NULL) {
return (DDI_SUCCESS);
}
rval = mptsas_probe_lun(pdip, lun, lundip, ptgt);
return (rval);
}
static int
mptsas_retrieve_lundata(int lun_cnt, uint8_t *buf, uint16_t *lun_num,
uint8_t *lun_addr_type)
{
uint32_t lun_idx = 0;
ASSERT(lun_num != NULL);
ASSERT(lun_addr_type != NULL);
lun_idx = (lun_cnt + 1) * MPTSAS_SCSI_REPORTLUNS_ADDRESS_SIZE;
/* determine report luns addressing type */
switch (buf[lun_idx] & MPTSAS_SCSI_REPORTLUNS_ADDRESS_MASK) {
/*
* Vendors in the field have been found to be concatenating
* bus/target/lun to equal the complete lun value instead
* of switching to flat space addressing
*/
/* 00b - peripheral device addressing method */
case MPTSAS_SCSI_REPORTLUNS_ADDRESS_PERIPHERAL:
/* FALLTHRU */
/* 10b - logical unit addressing method */
case MPTSAS_SCSI_REPORTLUNS_ADDRESS_LOGICAL_UNIT:
/* FALLTHRU */
/* 01b - flat space addressing method */
case MPTSAS_SCSI_REPORTLUNS_ADDRESS_FLAT_SPACE:
/* byte0 bit0-5=msb lun byte1 bit0-7=lsb lun */
*lun_addr_type = (buf[lun_idx] &
MPTSAS_SCSI_REPORTLUNS_ADDRESS_MASK) >> 6;
*lun_num = (buf[lun_idx] & 0x3F) << 8;
*lun_num |= buf[lun_idx + 1];
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
static int
mptsas_config_luns(dev_info_t *pdip, mptsas_target_t *ptgt)
{
struct buf *repluns_bp = NULL;
struct scsi_address ap;
uchar_t cdb[CDB_GROUP5];
int ret = DDI_FAILURE;
int retry = 0;
int lun_list_len = 0;
uint16_t lun_num = 0;
uint8_t lun_addr_type = 0;
uint32_t lun_cnt = 0;
uint32_t lun_total = 0;
dev_info_t *cdip = NULL;
uint16_t *saved_repluns = NULL;
char *buffer = NULL;
int buf_len = 128;
mptsas_t *mpt = DIP2MPT(pdip);
uint64_t sas_wwn = 0;
uint8_t phy = 0xFF;
uint32_t dev_info = 0;
mutex_enter(&mpt->m_mutex);
sas_wwn = ptgt->m_addr.mta_wwn;
phy = ptgt->m_phynum;
dev_info = ptgt->m_deviceinfo;
mutex_exit(&mpt->m_mutex);
if (sas_wwn == 0) {
/*
* It's a SATA without Device Name
* So don't try multi-LUNs
*/
if (mptsas_find_child_phy(pdip, phy)) {
return (DDI_SUCCESS);
} else {
/*
* need configure and create node
*/
return (DDI_FAILURE);
}
}
/*
* WWN (SAS address or Device Name exist)
*/
if (dev_info & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE |
MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) {
/*
* SATA device with Device Name
* So don't try multi-LUNs
*/
if (mptsas_find_child_addr(pdip, sas_wwn, 0)) {
return (DDI_SUCCESS);
} else {
return (DDI_FAILURE);
}
}
do {
ap.a_target = MPTSAS_INVALID_DEVHDL;
ap.a_lun = 0;
ap.a_hba_tran = mpt->m_tran;
repluns_bp = scsi_alloc_consistent_buf(&ap,
(struct buf *)NULL, buf_len, B_READ, NULL_FUNC, NULL);
if (repluns_bp == NULL) {
retry++;
continue;
}
bzero(cdb, CDB_GROUP5);
cdb[0] = SCMD_REPORT_LUNS;
cdb[6] = (buf_len & 0xff000000) >> 24;
cdb[7] = (buf_len & 0x00ff0000) >> 16;
cdb[8] = (buf_len & 0x0000ff00) >> 8;
cdb[9] = (buf_len & 0x000000ff);
ret = mptsas_send_scsi_cmd(mpt, &ap, ptgt, &cdb[0], CDB_GROUP5,
repluns_bp, NULL);
if (ret != DDI_SUCCESS) {
scsi_free_consistent_buf(repluns_bp);
retry++;
continue;
}
lun_list_len = BE_32(*(int *)((void *)(
repluns_bp->b_un.b_addr)));
if (buf_len >= lun_list_len + 8) {
ret = DDI_SUCCESS;
break;
}
scsi_free_consistent_buf(repluns_bp);
buf_len = lun_list_len + 8;
} while (retry < 3);
if (ret != DDI_SUCCESS)
return (ret);
buffer = (char *)repluns_bp->b_un.b_addr;
/*
* find out the number of luns returned by the SCSI ReportLun call
* and allocate buffer space
*/
lun_total = lun_list_len / MPTSAS_SCSI_REPORTLUNS_ADDRESS_SIZE;
saved_repluns = kmem_zalloc(sizeof (uint16_t) * lun_total, KM_SLEEP);
if (saved_repluns == NULL) {
scsi_free_consistent_buf(repluns_bp);
return (DDI_FAILURE);
}
for (lun_cnt = 0; lun_cnt < lun_total; lun_cnt++) {
if (mptsas_retrieve_lundata(lun_cnt, (uint8_t *)(buffer),
&lun_num, &lun_addr_type) != DDI_SUCCESS) {
continue;
}
saved_repluns[lun_cnt] = lun_num;
if (cdip = mptsas_find_child_addr(pdip, sas_wwn, lun_num))
ret = DDI_SUCCESS;
else
ret = mptsas_probe_lun(pdip, lun_num, &cdip,
ptgt);
if ((ret == DDI_SUCCESS) && (cdip != NULL)) {
(void) ndi_prop_remove(DDI_DEV_T_NONE, cdip,
MPTSAS_DEV_GONE);
}
}
mptsas_offline_missed_luns(pdip, saved_repluns, lun_total, ptgt);
kmem_free(saved_repluns, sizeof (uint16_t) * lun_total);
scsi_free_consistent_buf(repluns_bp);
return (DDI_SUCCESS);
}
static int
mptsas_config_raid(dev_info_t *pdip, uint16_t target, dev_info_t **dip)
{
int rval = DDI_FAILURE;
struct scsi_inquiry *sd_inq = NULL;
mptsas_t *mpt = DIP2MPT(pdip);
mptsas_target_t *ptgt = NULL;
mutex_enter(&mpt->m_mutex);
ptgt = refhash_linear_search(mpt->m_targets,
mptsas_target_eval_devhdl, &target);
mutex_exit(&mpt->m_mutex);
if (ptgt == NULL) {
mptsas_log(mpt, CE_WARN, "Volume with VolDevHandle of 0x%x "
"not found.", target);
return (rval);
}
sd_inq = (struct scsi_inquiry *)kmem_alloc(SUN_INQSIZE, KM_SLEEP);
rval = mptsas_inquiry(mpt, ptgt, 0, 0, (uchar_t *)sd_inq,
SUN_INQSIZE, 0, (uchar_t)0);
if ((rval == DDI_SUCCESS) && MPTSAS_VALID_LUN(sd_inq)) {
rval = mptsas_create_phys_lun(pdip, sd_inq, NULL, dip, ptgt,
0);
} else {
rval = DDI_FAILURE;
}
kmem_free(sd_inq, SUN_INQSIZE);
return (rval);
}
/*
* configure all RAID volumes for virtual iport
*/
static void
mptsas_config_all_viport(dev_info_t *pdip)
{
mptsas_t *mpt = DIP2MPT(pdip);
int config, vol;
int target;
dev_info_t *lundip = NULL;
/*
* Get latest RAID info and search for any Volume DevHandles. If any
* are found, configure the volume.
*/
mutex_enter(&mpt->m_mutex);
for (config = 0; config < mpt->m_num_raid_configs; config++) {
for (vol = 0; vol < MPTSAS_MAX_RAIDVOLS; vol++) {
if (mpt->m_raidconfig[config].m_raidvol[vol].m_israid
== 1) {
target = mpt->m_raidconfig[config].
m_raidvol[vol].m_raidhandle;
mutex_exit(&mpt->m_mutex);
(void) mptsas_config_raid(pdip, target,
&lundip);
mutex_enter(&mpt->m_mutex);
}
}
}
mutex_exit(&mpt->m_mutex);
}
static void
mptsas_offline_missed_luns(dev_info_t *pdip, uint16_t *repluns,
int lun_cnt, mptsas_target_t *ptgt)
{
dev_info_t *child = NULL, *savechild = NULL;
mdi_pathinfo_t *pip = NULL, *savepip = NULL;
uint64_t sas_wwn, wwid;
uint8_t phy;
int lun;
int i;
int find;
char *addr;
char *nodename;
mptsas_t *mpt = DIP2MPT(pdip);
mutex_enter(&mpt->m_mutex);
wwid = ptgt->m_addr.mta_wwn;
mutex_exit(&mpt->m_mutex);
child = ddi_get_child(pdip);
while (child) {
find = 0;
savechild = child;
child = ddi_get_next_sibling(child);
nodename = ddi_node_name(savechild);
if (strcmp(nodename, "smp") == 0) {
continue;
}
addr = ddi_get_name_addr(savechild);
if (addr == NULL) {
continue;
}
if (mptsas_parse_address(addr, &sas_wwn, &phy, &lun) !=
DDI_SUCCESS) {
continue;
}
if (wwid == sas_wwn) {
for (i = 0; i < lun_cnt; i++) {
if (repluns[i] == lun) {
find = 1;
break;
}
}
} else {
continue;
}
if (find == 0) {
/*
* The lun has not been there already
*/
(void) mptsas_offline_lun(pdip, savechild, NULL,
NDI_DEVI_REMOVE);
}
}
pip = mdi_get_next_client_path(pdip, NULL);
while (pip) {
find = 0;
savepip = pip;
addr = MDI_PI(pip)->pi_addr;
pip = mdi_get_next_client_path(pdip, pip);
if (addr == NULL) {
continue;
}
if (mptsas_parse_address(addr, &sas_wwn, &phy,
&lun) != DDI_SUCCESS) {
continue;
}
if (sas_wwn == wwid) {
for (i = 0; i < lun_cnt; i++) {
if (repluns[i] == lun) {
find = 1;
break;
}
}
} else {
continue;
}
if (find == 0) {
/*
* The lun has not been there already
*/
(void) mptsas_offline_lun(pdip, NULL, savepip,
NDI_DEVI_REMOVE);
}
}
}
void
mptsas_update_hashtab(struct mptsas *mpt)
{
uint32_t page_address;
int rval = 0;
uint16_t dev_handle;
mptsas_target_t *ptgt = NULL;
mptsas_smp_t smp_node;
/*
* Get latest RAID info.
*/
(void) mptsas_get_raid_info(mpt);
dev_handle = mpt->m_smp_devhdl;
for (; mpt->m_done_traverse_smp == 0; ) {
page_address = (MPI2_SAS_EXPAND_PGAD_FORM_GET_NEXT_HNDL &
MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)dev_handle;
if (mptsas_get_sas_expander_page0(mpt, page_address, &smp_node)
!= DDI_SUCCESS) {
break;
}
mpt->m_smp_devhdl = dev_handle = smp_node.m_devhdl;
(void) mptsas_smp_alloc(mpt, &smp_node);
}
/*
* Config target devices
*/
dev_handle = mpt->m_dev_handle;
/*
* Do loop to get sas device page 0 by GetNextHandle till the
* the last handle. If the sas device is a SATA/SSP target,
* we try to config it.
*/
for (; mpt->m_done_traverse_dev == 0; ) {
ptgt = NULL;
page_address =
(MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) |
(uint32_t)dev_handle;
rval = mptsas_get_target_device_info(mpt, page_address,
&dev_handle, &ptgt);
if ((rval == DEV_INFO_FAIL_PAGE0) ||
(rval == DEV_INFO_FAIL_ALLOC) ||
(rval == DEV_INFO_FAIL_GUID)) {
break;
}
mpt->m_dev_handle = dev_handle;
}
}
void
mptsas_update_driver_data(struct mptsas *mpt)
{
mptsas_target_t *tp;
mptsas_smp_t *sp;
ASSERT(MUTEX_HELD(&mpt->m_mutex));
/*
* TODO after hard reset, update the driver data structures
* 1. update port/phymask mapping table mpt->m_phy_info
* 2. invalid all the entries in hash table
* m_devhdl = 0xffff and m_deviceinfo = 0
* 3. call sas_device_page/expander_page to update hash table
*/
mptsas_update_phymask(mpt);
/*
* Remove all the devhdls for existing entries but leave their
* addresses alone. In update_hashtab() below, we'll find all
* targets that are still present and reassociate them with
* their potentially new devhdls. Leaving the targets around in
* this fashion allows them to be used on the tx waitq even
* while IOC reset is occurring.
*/
for (tp = refhash_first(mpt->m_targets); tp != NULL;
tp = refhash_next(mpt->m_targets, tp)) {
tp->m_devhdl = MPTSAS_INVALID_DEVHDL;
tp->m_deviceinfo = 0;
tp->m_dr_flag = MPTSAS_DR_INACTIVE;
}
for (sp = refhash_first(mpt->m_smp_targets); sp != NULL;
sp = refhash_next(mpt->m_smp_targets, sp)) {
sp->m_devhdl = MPTSAS_INVALID_DEVHDL;
sp->m_deviceinfo = 0;
}
mpt->m_done_traverse_dev = 0;
mpt->m_done_traverse_smp = 0;
mpt->m_dev_handle = mpt->m_smp_devhdl = MPTSAS_INVALID_DEVHDL;
mptsas_update_hashtab(mpt);
}
static void
mptsas_config_all(dev_info_t *pdip)
{
dev_info_t *smpdip = NULL;
mptsas_t *mpt = DIP2MPT(pdip);
int phymask = 0;
mptsas_phymask_t phy_mask;
mptsas_target_t *ptgt = NULL;
mptsas_smp_t *psmp;
/*
* Get the phymask associated to the iport
*/
phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0,
"phymask", 0);
/*
* Enumerate RAID volumes here (phymask == 0).
*/
if (phymask == 0) {
mptsas_config_all_viport(pdip);
return;
}
mutex_enter(&mpt->m_mutex);
if (!mpt->m_done_traverse_dev || !mpt->m_done_traverse_smp) {
mptsas_update_hashtab(mpt);
}
for (psmp = refhash_first(mpt->m_smp_targets); psmp != NULL;
psmp = refhash_next(mpt->m_smp_targets, psmp)) {
phy_mask = psmp->m_addr.mta_phymask;
if (phy_mask == phymask) {
smpdip = NULL;
mutex_exit(&mpt->m_mutex);
(void) mptsas_online_smp(pdip, psmp, &smpdip);
mutex_enter(&mpt->m_mutex);
}
}
for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL;
ptgt = refhash_next(mpt->m_targets, ptgt)) {
phy_mask = ptgt->m_addr.mta_phymask;
if (phy_mask == phymask) {
mutex_exit(&mpt->m_mutex);
(void) mptsas_config_target(pdip, ptgt);
mutex_enter(&mpt->m_mutex);
}
}
mutex_exit(&mpt->m_mutex);
}
static int
mptsas_config_target(dev_info_t *pdip, mptsas_target_t *ptgt)
{
int rval = DDI_FAILURE;
dev_info_t *tdip;
rval = mptsas_config_luns(pdip, ptgt);
if (rval != DDI_SUCCESS) {
/*
* The return value means the SCMD_REPORT_LUNS
* did not execute successfully. The target maybe
* doesn't support such command.
*/
rval = mptsas_probe_lun(pdip, 0, &tdip, ptgt);
}
return (rval);
}
/*
* Return fail if not all the childs/paths are freed.
* if there is any path under the HBA, the return value will be always fail
* because we didn't call mdi_pi_free for path
*/
static int
mptsas_offline_target(dev_info_t *pdip, char *name)
{
dev_info_t *child = NULL, *prechild = NULL;
mdi_pathinfo_t *pip = NULL, *savepip = NULL;
int tmp_rval, rval = DDI_SUCCESS;
char *addr, *cp;
size_t s;
mptsas_t *mpt = DIP2MPT(pdip);
child = ddi_get_child(pdip);
while (child) {
addr = ddi_get_name_addr(child);
prechild = child;
child = ddi_get_next_sibling(child);
if (addr == NULL) {
continue;
}
if ((cp = strchr(addr, ',')) == NULL) {
continue;
}
s = (uintptr_t)cp - (uintptr_t)addr;
if (strncmp(addr, name, s) != 0) {
continue;
}
tmp_rval = mptsas_offline_lun(pdip, prechild, NULL,
NDI_DEVI_REMOVE);
if (tmp_rval != DDI_SUCCESS) {
rval = DDI_FAILURE;
if (ndi_prop_create_boolean(DDI_DEV_T_NONE,
prechild, MPTSAS_DEV_GONE) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas driver "
"unable to create property for "
"SAS %s (MPTSAS_DEV_GONE)", addr);
}
}
}
pip = mdi_get_next_client_path(pdip, NULL);
while (pip) {
addr = MDI_PI(pip)->pi_addr;
savepip = pip;
pip = mdi_get_next_client_path(pdip, pip);
if (addr == NULL) {
continue;
}
if ((cp = strchr(addr, ',')) == NULL) {
continue;
}
s = (uintptr_t)cp - (uintptr_t)addr;
if (strncmp(addr, name, s) != 0) {
continue;
}
(void) mptsas_offline_lun(pdip, NULL, savepip,
NDI_DEVI_REMOVE);
/*
* driver will not invoke mdi_pi_free, so path will not
* be freed forever, return DDI_FAILURE.
*/
rval = DDI_FAILURE;
}
return (rval);
}
static int
mptsas_offline_lun(dev_info_t *pdip, dev_info_t *rdip,
mdi_pathinfo_t *rpip, uint_t flags)
{
int rval = DDI_FAILURE;
char *devname;
dev_info_t *cdip, *parent;
if (rpip != NULL) {
parent = scsi_vhci_dip;
cdip = mdi_pi_get_client(rpip);
} else if (rdip != NULL) {
parent = pdip;
cdip = rdip;
} else {
return (DDI_FAILURE);
}
/*
* Make sure node is attached otherwise
* it won't have related cache nodes to
* clean up. i_ddi_devi_attached is
* similiar to i_ddi_node_state(cdip) >=
* DS_ATTACHED.
*/
if (i_ddi_devi_attached(cdip)) {
/* Get full devname */
devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
(void) ddi_deviname(cdip, devname);
/* Clean cache */
(void) devfs_clean(parent, devname + 1,
DV_CLEAN_FORCE);
kmem_free(devname, MAXNAMELEN + 1);
}
if (rpip != NULL) {
if (MDI_PI_IS_OFFLINE(rpip)) {
rval = DDI_SUCCESS;
} else {
rval = mdi_pi_offline(rpip, 0);
}
} else {
rval = ndi_devi_offline(cdip, flags);
}
return (rval);
}
static dev_info_t *
mptsas_find_smp_child(dev_info_t *parent, char *str_wwn)
{
dev_info_t *child = NULL;
char *smp_wwn = NULL;
child = ddi_get_child(parent);
while (child) {
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS, SMP_WWN, &smp_wwn)
!= DDI_SUCCESS) {
child = ddi_get_next_sibling(child);
continue;
}
if (strcmp(smp_wwn, str_wwn) == 0) {
ddi_prop_free(smp_wwn);
break;
}
child = ddi_get_next_sibling(child);
ddi_prop_free(smp_wwn);
}
return (child);
}
static int
mptsas_offline_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, uint_t flags)
{
int rval = DDI_FAILURE;
char *devname;
char wwn_str[MPTSAS_WWN_STRLEN];
dev_info_t *cdip;
(void) sprintf(wwn_str, "%"PRIx64, smp_node->m_addr.mta_wwn);
cdip = mptsas_find_smp_child(pdip, wwn_str);
if (cdip == NULL)
return (DDI_SUCCESS);
/*
* Make sure node is attached otherwise
* it won't have related cache nodes to
* clean up. i_ddi_devi_attached is
* similiar to i_ddi_node_state(cdip) >=
* DS_ATTACHED.
*/
if (i_ddi_devi_attached(cdip)) {
/* Get full devname */
devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
(void) ddi_deviname(cdip, devname);
/* Clean cache */
(void) devfs_clean(pdip, devname + 1,
DV_CLEAN_FORCE);
kmem_free(devname, MAXNAMELEN + 1);
}
rval = ndi_devi_offline(cdip, flags);
return (rval);
}
static dev_info_t *
mptsas_find_child(dev_info_t *pdip, char *name)
{
dev_info_t *child = NULL;
char *rname = NULL;
int rval = DDI_FAILURE;
rname = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
child = ddi_get_child(pdip);
while (child) {
rval = mptsas_name_child(child, rname, SCSI_MAXNAMELEN);
if (rval != DDI_SUCCESS) {
child = ddi_get_next_sibling(child);
bzero(rname, SCSI_MAXNAMELEN);
continue;
}
if (strcmp(rname, name) == 0) {
break;
}
child = ddi_get_next_sibling(child);
bzero(rname, SCSI_MAXNAMELEN);
}
kmem_free(rname, SCSI_MAXNAMELEN);
return (child);
}
static dev_info_t *
mptsas_find_child_addr(dev_info_t *pdip, uint64_t sasaddr, int lun)
{
dev_info_t *child = NULL;
char *name = NULL;
char *addr = NULL;
name = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
(void) sprintf(name, "%016"PRIx64, sasaddr);
(void) sprintf(addr, "w%s,%x", name, lun);
child = mptsas_find_child(pdip, addr);
kmem_free(name, SCSI_MAXNAMELEN);
kmem_free(addr, SCSI_MAXNAMELEN);
return (child);
}
static dev_info_t *
mptsas_find_child_phy(dev_info_t *pdip, uint8_t phy)
{
dev_info_t *child;
char *addr;
addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
(void) sprintf(addr, "p%x,0", phy);
child = mptsas_find_child(pdip, addr);
kmem_free(addr, SCSI_MAXNAMELEN);
return (child);
}
static mdi_pathinfo_t *
mptsas_find_path_phy(dev_info_t *pdip, uint8_t phy)
{
mdi_pathinfo_t *path;
char *addr = NULL;
addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
(void) sprintf(addr, "p%x,0", phy);
path = mdi_pi_find(pdip, NULL, addr);
kmem_free(addr, SCSI_MAXNAMELEN);
return (path);
}
static mdi_pathinfo_t *
mptsas_find_path_addr(dev_info_t *parent, uint64_t sasaddr, int lun)
{
mdi_pathinfo_t *path;
char *name = NULL;
char *addr = NULL;
name = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
(void) sprintf(name, "%016"PRIx64, sasaddr);
(void) sprintf(addr, "w%s,%x", name, lun);
path = mdi_pi_find(parent, NULL, addr);
kmem_free(name, SCSI_MAXNAMELEN);
kmem_free(addr, SCSI_MAXNAMELEN);
return (path);
}
static int
mptsas_create_lun(dev_info_t *pdip, struct scsi_inquiry *sd_inq,
dev_info_t **lun_dip, mptsas_target_t *ptgt, int lun)
{
int i = 0;
uchar_t *inq83 = NULL;
int inq83_len1 = 0xFF;
int inq83_len = 0;
int rval = DDI_FAILURE;
ddi_devid_t devid;
char *guid = NULL;
int target = ptgt->m_devhdl;
mdi_pathinfo_t *pip = NULL;
mptsas_t *mpt = DIP2MPT(pdip);
/*
* For DVD/CD ROM and tape devices and optical
* devices, we won't try to enumerate them under
* scsi_vhci, so no need to try page83
*/
if (sd_inq && (sd_inq->inq_dtype == DTYPE_RODIRECT ||
sd_inq->inq_dtype == DTYPE_OPTICAL ||
sd_inq->inq_dtype == DTYPE_ESI))
goto create_lun;
/*
* The LCA returns good SCSI status, but corrupt page 83 data the first
* time it is queried. The solution is to keep trying to request page83
* and verify the GUID is not (DDI_NOT_WELL_FORMED) in
* mptsas_inq83_retry_timeout seconds. If the timeout expires, driver
* give up to get VPD page at this stage and fail the enumeration.
*/
inq83 = kmem_zalloc(inq83_len1, KM_SLEEP);
for (i = 0; i < mptsas_inq83_retry_timeout; i++) {
rval = mptsas_inquiry(mpt, ptgt, lun, 0x83, inq83,
inq83_len1, &inq83_len, 1);
if (rval != 0) {
mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page "
"0x83 for target:%x, lun:%x failed!", target, lun);
if (mptsas_physical_bind_failed_page_83 != B_FALSE)
goto create_lun;
goto out;
}
/*
* create DEVID from inquiry data
*/
if ((rval = ddi_devid_scsi_encode(
DEVID_SCSI_ENCODE_VERSION_LATEST, NULL, (uchar_t *)sd_inq,
sizeof (struct scsi_inquiry), NULL, 0, inq83,
(size_t)inq83_len, &devid)) == DDI_SUCCESS) {
/*
* extract GUID from DEVID
*/
guid = ddi_devid_to_guid(devid);
/*
* Do not enable MPXIO if the strlen(guid) is greater
* than MPTSAS_MAX_GUID_LEN, this constrain would be
* handled by framework later.
*/
if (guid && (strlen(guid) > MPTSAS_MAX_GUID_LEN)) {
ddi_devid_free_guid(guid);
guid = NULL;
if (mpt->m_mpxio_enable == TRUE) {
mptsas_log(mpt, CE_NOTE, "!Target:%x, "
"lun:%x doesn't have a valid GUID, "
"multipathing for this drive is "
"not enabled", target, lun);
}
}
/*
* devid no longer needed
*/
ddi_devid_free(devid);
break;
} else if (rval == DDI_NOT_WELL_FORMED) {
/*
* return value of ddi_devid_scsi_encode equal to
* DDI_NOT_WELL_FORMED means DEVID_RETRY, it worth
* to retry inquiry page 0x83 and get GUID.
*/
NDBG20(("Not well formed devid, retry..."));
delay(1 * drv_usectohz(1000000));
continue;
} else {
mptsas_log(mpt, CE_WARN, "!Encode devid failed for "
"path target:%x, lun:%x", target, lun);
rval = DDI_FAILURE;
goto create_lun;
}
}
if (i == mptsas_inq83_retry_timeout) {
mptsas_log(mpt, CE_WARN, "!Repeated page83 requests timeout "
"for path target:%x, lun:%x", target, lun);
}
rval = DDI_FAILURE;
create_lun:
if ((guid != NULL) && (mpt->m_mpxio_enable == TRUE)) {
rval = mptsas_create_virt_lun(pdip, sd_inq, guid, lun_dip, &pip,
ptgt, lun);
}
if (rval != DDI_SUCCESS) {
rval = mptsas_create_phys_lun(pdip, sd_inq, guid, lun_dip,
ptgt, lun);
}
out:
if (guid != NULL) {
/*
* guid no longer needed
*/
ddi_devid_free_guid(guid);
}
if (inq83 != NULL)
kmem_free(inq83, inq83_len1);
return (rval);
}
static int
mptsas_create_virt_lun(dev_info_t *pdip, struct scsi_inquiry *inq, char *guid,
dev_info_t **lun_dip, mdi_pathinfo_t **pip, mptsas_target_t *ptgt, int lun)
{
int target;
char *nodename = NULL;
char **compatible = NULL;
int ncompatible = 0;
int mdi_rtn = MDI_FAILURE;
int rval = DDI_FAILURE;
char *old_guid = NULL;
mptsas_t *mpt = DIP2MPT(pdip);
char *lun_addr = NULL;
char *wwn_str = NULL;
char *attached_wwn_str = NULL;
char *component = NULL;
uint8_t phy = 0xFF;
uint64_t sas_wwn;
int64_t lun64 = 0;
uint32_t devinfo;
uint16_t dev_hdl;
uint16_t pdev_hdl;
uint64_t dev_sas_wwn;
uint64_t pdev_sas_wwn;
uint32_t pdev_info;
uint8_t physport;
uint8_t phy_id;
uint32_t page_address;
uint16_t bay_num, enclosure, io_flags;
char pdev_wwn_str[MPTSAS_WWN_STRLEN];
uint32_t dev_info;
mutex_enter(&mpt->m_mutex);
target = ptgt->m_devhdl;
sas_wwn = ptgt->m_addr.mta_wwn;
devinfo = ptgt->m_deviceinfo;
phy = ptgt->m_phynum;
mutex_exit(&mpt->m_mutex);
if (sas_wwn) {
*pip = mptsas_find_path_addr(pdip, sas_wwn, lun);
} else {
*pip = mptsas_find_path_phy(pdip, phy);
}
if (*pip != NULL) {
*lun_dip = MDI_PI(*pip)->pi_client->ct_dip;
ASSERT(*lun_dip != NULL);
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, *lun_dip,
(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM),
MDI_CLIENT_GUID_PROP, &old_guid) == DDI_SUCCESS) {
if (strncmp(guid, old_guid, strlen(guid)) == 0) {
/*
* Same path back online again.
*/
(void) ddi_prop_free(old_guid);
if ((!MDI_PI_IS_ONLINE(*pip)) &&
(!MDI_PI_IS_STANDBY(*pip)) &&
(ptgt->m_tgt_unconfigured == 0)) {
rval = mdi_pi_online(*pip, 0);
mutex_enter(&mpt->m_mutex);
ptgt->m_led_status = 0;
(void) mptsas_flush_led_status(mpt,
ptgt);
mutex_exit(&mpt->m_mutex);
} else {
rval = DDI_SUCCESS;
}
if (rval != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "path:target: "
"%x, lun:%x online failed!", target,
lun);
*pip = NULL;
*lun_dip = NULL;
}
return (rval);
} else {
/*
* The GUID of the LUN has changed which maybe
* because customer mapped another volume to the
* same LUN.
*/
mptsas_log(mpt, CE_WARN, "The GUID of the "
"target:%x, lun:%x was changed, maybe "
"because someone mapped another volume "
"to the same LUN", target, lun);
(void) ddi_prop_free(old_guid);
if (!MDI_PI_IS_OFFLINE(*pip)) {
rval = mdi_pi_offline(*pip, 0);
if (rval != MDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "path:"
"target:%x, lun:%x offline "
"failed!", target, lun);
*pip = NULL;
*lun_dip = NULL;
return (DDI_FAILURE);
}
}
if (mdi_pi_free(*pip, 0) != MDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "path:target:"
"%x, lun:%x free failed!", target,
lun);
*pip = NULL;
*lun_dip = NULL;
return (DDI_FAILURE);
}
}
} else {
mptsas_log(mpt, CE_WARN, "Can't get client-guid "
"property for path:target:%x, lun:%x", target, lun);
*pip = NULL;
*lun_dip = NULL;
return (DDI_FAILURE);
}
}
scsi_hba_nodename_compatible_get(inq, NULL,
inq->inq_dtype, NULL, &nodename, &compatible, &ncompatible);
/*
* if nodename can't be determined then print a message and skip it
*/
if (nodename == NULL) {
mptsas_log(mpt, CE_WARN, "mptsas driver found no compatible "
"driver for target%d lun %d dtype:0x%02x", target, lun,
inq->inq_dtype);
return (DDI_FAILURE);
}
wwn_str = kmem_zalloc(MPTSAS_WWN_STRLEN, KM_SLEEP);
/* The property is needed by MPAPI */
(void) sprintf(wwn_str, "%016"PRIx64, sas_wwn);
lun_addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP);
if (guid) {
(void) sprintf(lun_addr, "w%s,%x", wwn_str, lun);
(void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn);
} else {
(void) sprintf(lun_addr, "p%x,%x", phy, lun);
(void) sprintf(wwn_str, "p%x", phy);
}
mdi_rtn = mdi_pi_alloc_compatible(pdip, nodename,
guid, lun_addr, compatible, ncompatible,
0, pip);
if (mdi_rtn == MDI_SUCCESS) {
if (mdi_prop_update_string(*pip, MDI_GUID,
guid) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas driver unable to "
"create prop for target %d lun %d (MDI_GUID)",
target, lun);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
if (mdi_prop_update_int(*pip, LUN_PROP,
lun) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas driver unable to "
"create prop for target %d lun %d (LUN_PROP)",
target, lun);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
lun64 = (int64_t)lun;
if (mdi_prop_update_int64(*pip, LUN64_PROP,
lun64) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas driver unable to "
"create prop for target %d (LUN64_PROP)",
target);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
if (mdi_prop_update_string_array(*pip, "compatible",
compatible, ncompatible) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas driver unable to "
"create prop for target %d lun %d (COMPATIBLE)",
target, lun);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
if (sas_wwn && (mdi_prop_update_string(*pip,
SCSI_ADDR_PROP_TARGET_PORT, wwn_str) != DDI_PROP_SUCCESS)) {
mptsas_log(mpt, CE_WARN, "mptsas driver unable to "
"create prop for target %d lun %d "
"(target-port)", target, lun);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
} else if ((sas_wwn == 0) && (mdi_prop_update_int(*pip,
"sata-phy", phy) != DDI_PROP_SUCCESS)) {
/*
* Direct attached SATA device without DeviceName
*/
mptsas_log(mpt, CE_WARN, "mptsas driver unable to "
"create prop for SAS target %d lun %d "
"(sata-phy)", target, lun);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
mutex_enter(&mpt->m_mutex);
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) |
(uint32_t)ptgt->m_devhdl;
rval = mptsas_get_sas_device_page0(mpt, page_address,
&dev_hdl, &dev_sas_wwn, &dev_info, &physport,
&phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags);
if (rval != DDI_SUCCESS) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas unable to get "
"parent device for handle %d", page_address);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)pdev_hdl;
rval = mptsas_get_sas_device_page0(mpt, page_address,
&dev_hdl, &pdev_sas_wwn, &pdev_info, &physport,
&phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags);
if (rval != DDI_SUCCESS) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas unable to get"
"device info for handle %d", page_address);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
mutex_exit(&mpt->m_mutex);
/*
* If this device direct attached to the controller
* set the attached-port to the base wwid
*/
if ((ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED)
!= DEVINFO_DIRECT_ATTACHED) {
(void) sprintf(pdev_wwn_str, "w%016"PRIx64,
pdev_sas_wwn);
} else {
/*
* Update the iport's attached-port to guid
*/
if (sas_wwn == 0) {
(void) sprintf(wwn_str, "p%x", phy);
} else {
(void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn);
}
if (ddi_prop_update_string(DDI_DEV_T_NONE,
pdip, SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN,
"mptsas unable to create "
"property for iport target-port"
" %s (sas_wwn)",
wwn_str);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
(void) sprintf(pdev_wwn_str, "w%016"PRIx64,
mpt->un.m_base_wwid);
}
if (mdi_prop_update_string(*pip,
SCSI_ADDR_PROP_ATTACHED_PORT, pdev_wwn_str) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to create "
"property for iport attached-port %s (sas_wwn)",
attached_wwn_str);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
if (inq->inq_dtype == 0) {
component = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
/*
* set obp path for pathinfo
*/
(void) snprintf(component, MAXPATHLEN,
"disk@%s", lun_addr);
if (mdi_pi_pathname_obp_set(*pip, component) !=
DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mpt_sas driver "
"unable to set obp-path for object %s",
component);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
}
*lun_dip = MDI_PI(*pip)->pi_client->ct_dip;
if (devinfo & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE |
MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) {
if ((ndi_prop_update_int(DDI_DEV_T_NONE, *lun_dip,
"pm-capable", 1)) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas driver"
"failed to create pm-capable "
"property, target %d", target);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
}
/*
* Create the phy-num property
*/
if (mdi_prop_update_int(*pip, "phy-num",
ptgt->m_phynum) != DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas driver unable to "
"create phy-num property for target %d lun %d",
target, lun);
mdi_rtn = MDI_FAILURE;
goto virt_create_done;
}
NDBG20(("new path:%s onlining,", MDI_PI(*pip)->pi_addr));
mdi_rtn = mdi_pi_online(*pip, 0);
if (mdi_rtn == MDI_SUCCESS) {
mutex_enter(&mpt->m_mutex);
ptgt->m_led_status = 0;
(void) mptsas_flush_led_status(mpt, ptgt);
mutex_exit(&mpt->m_mutex);
}
if (mdi_rtn == MDI_NOT_SUPPORTED) {
mdi_rtn = MDI_FAILURE;
}
virt_create_done:
if (*pip && mdi_rtn != MDI_SUCCESS) {
(void) mdi_pi_free(*pip, 0);
*pip = NULL;
*lun_dip = NULL;
}
}
scsi_hba_nodename_compatible_free(nodename, compatible);
if (lun_addr != NULL) {
kmem_free(lun_addr, SCSI_MAXNAMELEN);
}
if (wwn_str != NULL) {
kmem_free(wwn_str, MPTSAS_WWN_STRLEN);
}
if (component != NULL) {
kmem_free(component, MAXPATHLEN);
}
return ((mdi_rtn == MDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
static int
mptsas_create_phys_lun(dev_info_t *pdip, struct scsi_inquiry *inq,
char *guid, dev_info_t **lun_dip, mptsas_target_t *ptgt, int lun)
{
int target;
int rval;
int ndi_rtn = NDI_FAILURE;
uint64_t be_sas_wwn;
char *nodename = NULL;
char **compatible = NULL;
int ncompatible = 0;
int instance = 0;
mptsas_t *mpt = DIP2MPT(pdip);
char *wwn_str = NULL;
char *component = NULL;
char *attached_wwn_str = NULL;
uint8_t phy = 0xFF;
uint64_t sas_wwn;
uint32_t devinfo;
uint16_t dev_hdl;
uint16_t pdev_hdl;
uint64_t pdev_sas_wwn;
uint64_t dev_sas_wwn;
uint32_t pdev_info;
uint8_t physport;
uint8_t phy_id;
uint32_t page_address;
uint16_t bay_num, enclosure, io_flags;
char pdev_wwn_str[MPTSAS_WWN_STRLEN];
uint32_t dev_info;
int64_t lun64 = 0;
mutex_enter(&mpt->m_mutex);
target = ptgt->m_devhdl;
sas_wwn = ptgt->m_addr.mta_wwn;
devinfo = ptgt->m_deviceinfo;
phy = ptgt->m_phynum;
mutex_exit(&mpt->m_mutex);
/*
* generate compatible property with binding-set "mpt"
*/
scsi_hba_nodename_compatible_get(inq, NULL, inq->inq_dtype, NULL,
&nodename, &compatible, &ncompatible);
/*
* if nodename can't be determined then print a message and skip it
*/
if (nodename == NULL) {
mptsas_log(mpt, CE_WARN, "mptsas found no compatible driver "
"for target %d lun %d", target, lun);
return (DDI_FAILURE);
}
ndi_rtn = ndi_devi_alloc(pdip, nodename,
DEVI_SID_NODEID, lun_dip);
/*
* if lun alloc success, set props
*/
if (ndi_rtn == NDI_SUCCESS) {
if (ndi_prop_update_int(DDI_DEV_T_NONE,
*lun_dip, LUN_PROP, lun) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to create "
"property for target %d lun %d (LUN_PROP)",
target, lun);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
lun64 = (int64_t)lun;
if (ndi_prop_update_int64(DDI_DEV_T_NONE,
*lun_dip, LUN64_PROP, lun64) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to create "
"property for target %d lun64 %d (LUN64_PROP)",
target, lun);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
if (ndi_prop_update_string_array(DDI_DEV_T_NONE,
*lun_dip, "compatible", compatible, ncompatible)
!= DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to create "
"property for target %d lun %d (COMPATIBLE)",
target, lun);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
/*
* We need the SAS WWN for non-multipath devices, so
* we'll use the same property as that multipathing
* devices need to present for MPAPI. If we don't have
* a WWN (e.g. parallel SCSI), don't create the prop.
*/
wwn_str = kmem_zalloc(MPTSAS_WWN_STRLEN, KM_SLEEP);
(void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn);
if (sas_wwn && ndi_prop_update_string(DDI_DEV_T_NONE,
*lun_dip, SCSI_ADDR_PROP_TARGET_PORT, wwn_str)
!= DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to "
"create property for SAS target %d lun %d "
"(target-port)", target, lun);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
be_sas_wwn = BE_64(sas_wwn);
if (sas_wwn && ndi_prop_update_byte_array(
DDI_DEV_T_NONE, *lun_dip, "port-wwn",
(uchar_t *)&be_sas_wwn, 8) != DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to "
"create property for SAS target %d lun %d "
"(port-wwn)", target, lun);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
} else if ((sas_wwn == 0) && (ndi_prop_update_int(
DDI_DEV_T_NONE, *lun_dip, "sata-phy", phy) !=
DDI_PROP_SUCCESS)) {
/*
* Direct attached SATA device without DeviceName
*/
mptsas_log(mpt, CE_WARN, "mptsas unable to "
"create property for SAS target %d lun %d "
"(sata-phy)", target, lun);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
if (ndi_prop_create_boolean(DDI_DEV_T_NONE,
*lun_dip, SAS_PROP) != DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to"
"create property for SAS target %d lun %d"
" (SAS_PROP)", target, lun);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
if (guid && (ndi_prop_update_string(DDI_DEV_T_NONE,
*lun_dip, NDI_GUID, guid) != DDI_SUCCESS)) {
mptsas_log(mpt, CE_WARN, "mptsas unable "
"to create guid property for target %d "
"lun %d", target, lun);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
/*
* The following code is to set properties for SM-HBA support,
* it doesn't apply to RAID volumes
*/
if (ptgt->m_addr.mta_phymask == 0)
goto phys_raid_lun;
mutex_enter(&mpt->m_mutex);
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) |
(uint32_t)ptgt->m_devhdl;
rval = mptsas_get_sas_device_page0(mpt, page_address,
&dev_hdl, &dev_sas_wwn, &dev_info,
&physport, &phy_id, &pdev_hdl,
&bay_num, &enclosure, &io_flags);
if (rval != DDI_SUCCESS) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas unable to get"
"parent device for handle %d.", page_address);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)pdev_hdl;
rval = mptsas_get_sas_device_page0(mpt, page_address,
&dev_hdl, &pdev_sas_wwn, &pdev_info, &physport,
&phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags);
if (rval != DDI_SUCCESS) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas unable to create "
"device for handle %d.", page_address);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
mutex_exit(&mpt->m_mutex);
/*
* If this device direct attached to the controller
* set the attached-port to the base wwid
*/
if ((ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED)
!= DEVINFO_DIRECT_ATTACHED) {
(void) sprintf(pdev_wwn_str, "w%016"PRIx64,
pdev_sas_wwn);
} else {
/*
* Update the iport's attached-port to guid
*/
if (sas_wwn == 0) {
(void) sprintf(wwn_str, "p%x", phy);
} else {
(void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn);
}
if (ddi_prop_update_string(DDI_DEV_T_NONE,
pdip, SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN,
"mptsas unable to create "
"property for iport target-port"
" %s (sas_wwn)",
wwn_str);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
(void) sprintf(pdev_wwn_str, "w%016"PRIx64,
mpt->un.m_base_wwid);
}
if (ndi_prop_update_string(DDI_DEV_T_NONE,
*lun_dip, SCSI_ADDR_PROP_ATTACHED_PORT, pdev_wwn_str) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN,
"mptsas unable to create "
"property for iport attached-port %s (sas_wwn)",
attached_wwn_str);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
if (IS_SATA_DEVICE(dev_info)) {
if (ndi_prop_update_string(DDI_DEV_T_NONE,
*lun_dip, MPTSAS_VARIANT, "sata") !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN,
"mptsas unable to create "
"property for device variant ");
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
}
if (IS_ATAPI_DEVICE(dev_info)) {
if (ndi_prop_update_string(DDI_DEV_T_NONE,
*lun_dip, MPTSAS_VARIANT, "atapi") !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN,
"mptsas unable to create "
"property for device variant ");
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
}
phys_raid_lun:
/*
* if this is a SAS controller, and the target is a SATA
* drive, set the 'pm-capable' property for sd and if on
* an OPL platform, also check if this is an ATAPI
* device.
*/
instance = ddi_get_instance(mpt->m_dip);
if (devinfo & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE |
MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) {
NDBG2(("mptsas%d: creating pm-capable property, "
"target %d", instance, target));
if ((ndi_prop_update_int(DDI_DEV_T_NONE,
*lun_dip, "pm-capable", 1)) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas "
"failed to create pm-capable "
"property, target %d", target);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
}
if ((inq->inq_dtype == 0) || (inq->inq_dtype == 5)) {
/*
* add 'obp-path' properties for devinfo
*/
bzero(wwn_str, sizeof (wwn_str));
(void) sprintf(wwn_str, "%016"PRIx64, sas_wwn);
component = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
if (guid) {
(void) snprintf(component, MAXPATHLEN,
"disk@w%s,%x", wwn_str, lun);
} else {
(void) snprintf(component, MAXPATHLEN,
"disk@p%x,%x", phy, lun);
}
if (ddi_pathname_obp_set(*lun_dip, component)
!= DDI_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mpt_sas driver "
"unable to set obp-path for SAS "
"object %s", component);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
}
/*
* Create the phy-num property for non-raid disk
*/
if (ptgt->m_addr.mta_phymask != 0) {
if (ndi_prop_update_int(DDI_DEV_T_NONE,
*lun_dip, "phy-num", ptgt->m_phynum) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas driver "
"failed to create phy-num property for "
"target %d", target);
ndi_rtn = NDI_FAILURE;
goto phys_create_done;
}
}
phys_create_done:
/*
* If props were setup ok, online the lun
*/
if (ndi_rtn == NDI_SUCCESS) {
/*
* Try to online the new node
*/
ndi_rtn = ndi_devi_online(*lun_dip, NDI_ONLINE_ATTACH);
}
if (ndi_rtn == NDI_SUCCESS) {
mutex_enter(&mpt->m_mutex);
ptgt->m_led_status = 0;
(void) mptsas_flush_led_status(mpt, ptgt);
mutex_exit(&mpt->m_mutex);
}
/*
* If success set rtn flag, else unwire alloc'd lun
*/
if (ndi_rtn != NDI_SUCCESS) {
NDBG12(("mptsas driver unable to online "
"target %d lun %d", target, lun));
ndi_prop_remove_all(*lun_dip);
(void) ndi_devi_free(*lun_dip);
*lun_dip = NULL;
}
}
scsi_hba_nodename_compatible_free(nodename, compatible);
if (wwn_str != NULL) {
kmem_free(wwn_str, MPTSAS_WWN_STRLEN);
}
if (component != NULL) {
kmem_free(component, MAXPATHLEN);
}
return ((ndi_rtn == NDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
static int
mptsas_probe_smp(dev_info_t *pdip, uint64_t wwn)
{
mptsas_t *mpt = DIP2MPT(pdip);
struct smp_device smp_sd;
/* XXX An HBA driver should not be allocating an smp_device. */
bzero(&smp_sd, sizeof (struct smp_device));
smp_sd.smp_sd_address.smp_a_hba_tran = mpt->m_smptran;
bcopy(&wwn, smp_sd.smp_sd_address.smp_a_wwn, SAS_WWN_BYTE_SIZE);
if (smp_probe(&smp_sd) != DDI_PROBE_SUCCESS)
return (NDI_FAILURE);
return (NDI_SUCCESS);
}
static int
mptsas_config_smp(dev_info_t *pdip, uint64_t sas_wwn, dev_info_t **smp_dip)
{
mptsas_t *mpt = DIP2MPT(pdip);
mptsas_smp_t *psmp = NULL;
int rval;
int phymask;
/*
* Get the physical port associated to the iport
* PHYMASK TODO
*/
phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0,
"phymask", 0);
/*
* Find the smp node in hash table with specified sas address and
* physical port
*/
psmp = mptsas_wwid_to_psmp(mpt, phymask, sas_wwn);
if (psmp == NULL) {
return (DDI_FAILURE);
}
rval = mptsas_online_smp(pdip, psmp, smp_dip);
return (rval);
}
static int
mptsas_online_smp(dev_info_t *pdip, mptsas_smp_t *smp_node,
dev_info_t **smp_dip)
{
char wwn_str[MPTSAS_WWN_STRLEN];
char attached_wwn_str[MPTSAS_WWN_STRLEN];
int ndi_rtn = NDI_FAILURE;
int rval = 0;
mptsas_smp_t dev_info;
uint32_t page_address;
mptsas_t *mpt = DIP2MPT(pdip);
uint16_t dev_hdl;
uint64_t sas_wwn;
uint64_t smp_sas_wwn;
uint8_t physport;
uint8_t phy_id;
uint16_t pdev_hdl;
uint8_t numphys = 0;
uint16_t i = 0;
char phymask[MPTSAS_MAX_PHYS];
char *iport = NULL;
mptsas_phymask_t phy_mask = 0;
uint16_t attached_devhdl;
uint16_t bay_num, enclosure, io_flags;
(void) sprintf(wwn_str, "%"PRIx64, smp_node->m_addr.mta_wwn);
/*
* Probe smp device, prevent the node of removed device from being
* configured succesfully
*/
if (mptsas_probe_smp(pdip, smp_node->m_addr.mta_wwn) != NDI_SUCCESS) {
return (DDI_FAILURE);
}
if ((*smp_dip = mptsas_find_smp_child(pdip, wwn_str)) != NULL) {
return (DDI_SUCCESS);
}
ndi_rtn = ndi_devi_alloc(pdip, "smp", DEVI_SID_NODEID, smp_dip);
/*
* if lun alloc success, set props
*/
if (ndi_rtn == NDI_SUCCESS) {
/*
* Set the flavor of the child to be SMP flavored
*/
ndi_flavor_set(*smp_dip, SCSA_FLAVOR_SMP);
if (ndi_prop_update_string(DDI_DEV_T_NONE,
*smp_dip, SMP_WWN, wwn_str) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to create "
"property for smp device %s (sas_wwn)",
wwn_str);
ndi_rtn = NDI_FAILURE;
goto smp_create_done;
}
(void) sprintf(wwn_str, "w%"PRIx64, smp_node->m_addr.mta_wwn);
if (ndi_prop_update_string(DDI_DEV_T_NONE,
*smp_dip, SCSI_ADDR_PROP_TARGET_PORT, wwn_str) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to create "
"property for iport target-port %s (sas_wwn)",
wwn_str);
ndi_rtn = NDI_FAILURE;
goto smp_create_done;
}
mutex_enter(&mpt->m_mutex);
page_address = (MPI2_SAS_EXPAND_PGAD_FORM_HNDL &
MPI2_SAS_EXPAND_PGAD_FORM_MASK) | smp_node->m_devhdl;
rval = mptsas_get_sas_expander_page0(mpt, page_address,
&dev_info);
if (rval != DDI_SUCCESS) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN,
"mptsas unable to get expander "
"parent device info for %x", page_address);
ndi_rtn = NDI_FAILURE;
goto smp_create_done;
}
smp_node->m_pdevhdl = dev_info.m_pdevhdl;
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) |
(uint32_t)dev_info.m_pdevhdl;
rval = mptsas_get_sas_device_page0(mpt, page_address,
&dev_hdl, &sas_wwn, &smp_node->m_pdevinfo, &physport,
&phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags);
if (rval != DDI_SUCCESS) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas unable to get "
"device info for %x", page_address);
ndi_rtn = NDI_FAILURE;
goto smp_create_done;
}
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) |
(uint32_t)dev_info.m_devhdl;
rval = mptsas_get_sas_device_page0(mpt, page_address,
&dev_hdl, &smp_sas_wwn, &smp_node->m_deviceinfo,
&physport, &phy_id, &pdev_hdl, &bay_num, &enclosure,
&io_flags);
if (rval != DDI_SUCCESS) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas unable to get "
"device info for %x", page_address);
ndi_rtn = NDI_FAILURE;
goto smp_create_done;
}
mutex_exit(&mpt->m_mutex);
/*
* If this smp direct attached to the controller
* set the attached-port to the base wwid
*/
if ((smp_node->m_deviceinfo & DEVINFO_DIRECT_ATTACHED)
!= DEVINFO_DIRECT_ATTACHED) {
(void) sprintf(attached_wwn_str, "w%016"PRIx64,
sas_wwn);
} else {
(void) sprintf(attached_wwn_str, "w%016"PRIx64,
mpt->un.m_base_wwid);
}
if (ndi_prop_update_string(DDI_DEV_T_NONE,
*smp_dip, SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwn_str) !=
DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to create "
"property for smp attached-port %s (sas_wwn)",
attached_wwn_str);
ndi_rtn = NDI_FAILURE;
goto smp_create_done;
}
if (ndi_prop_create_boolean(DDI_DEV_T_NONE,
*smp_dip, SMP_PROP) != DDI_PROP_SUCCESS) {
mptsas_log(mpt, CE_WARN, "mptsas unable to "
"create property for SMP %s (SMP_PROP) ",
wwn_str);
ndi_rtn = NDI_FAILURE;
goto smp_create_done;
}
/*
* check the smp to see whether it direct
* attached to the controller
*/
if ((smp_node->m_deviceinfo & DEVINFO_DIRECT_ATTACHED)
!= DEVINFO_DIRECT_ATTACHED) {
goto smp_create_done;
}
numphys = ddi_prop_get_int(DDI_DEV_T_ANY, pdip,
DDI_PROP_DONTPASS, MPTSAS_NUM_PHYS, -1);
if (numphys > 0) {
goto smp_create_done;
}
/*
* this iport is an old iport, we need to
* reconfig the props for it.
*/
if (ddi_prop_update_int(DDI_DEV_T_NONE, pdip,
MPTSAS_VIRTUAL_PORT, 0) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, pdip,
MPTSAS_VIRTUAL_PORT);
mptsas_log(mpt, CE_WARN, "mptsas virtual port "
"prop update failed");
goto smp_create_done;
}
mutex_enter(&mpt->m_mutex);
numphys = 0;
iport = ddi_get_name_addr(pdip);
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
bzero(phymask, sizeof (phymask));
(void) sprintf(phymask,
"%x", mpt->m_phy_info[i].phy_mask);
if (strcmp(phymask, iport) == 0) {
phy_mask = mpt->m_phy_info[i].phy_mask;
break;
}
}
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
if ((phy_mask >> i) & 0x01) {
numphys++;
}
}
/*
* Update PHY info for smhba
*/
if (mptsas_smhba_phy_init(mpt)) {
mutex_exit(&mpt->m_mutex);
mptsas_log(mpt, CE_WARN, "mptsas phy update "
"failed");
goto smp_create_done;
}
mutex_exit(&mpt->m_mutex);
mptsas_smhba_set_all_phy_props(mpt, pdip, numphys, phy_mask,
&attached_devhdl);
if (ddi_prop_update_int(DDI_DEV_T_NONE, pdip,
MPTSAS_NUM_PHYS, numphys) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, pdip,
MPTSAS_NUM_PHYS);
mptsas_log(mpt, CE_WARN, "mptsas update "
"num phys props failed");
goto smp_create_done;
}
/*
* Add parent's props for SMHBA support
*/
if (ddi_prop_update_string(DDI_DEV_T_NONE, pdip,
SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) !=
DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, pdip,
SCSI_ADDR_PROP_ATTACHED_PORT);
mptsas_log(mpt, CE_WARN, "mptsas update iport"
"attached-port failed");
goto smp_create_done;
}
smp_create_done:
/*
* If props were setup ok, online the lun
*/
if (ndi_rtn == NDI_SUCCESS) {
/*
* Try to online the new node
*/
ndi_rtn = ndi_devi_online(*smp_dip, NDI_ONLINE_ATTACH);
}
/*
* If success set rtn flag, else unwire alloc'd lun
*/
if (ndi_rtn != NDI_SUCCESS) {
NDBG12(("mptsas unable to online "
"SMP target %s", wwn_str));
ndi_prop_remove_all(*smp_dip);
(void) ndi_devi_free(*smp_dip);
}
}
return ((ndi_rtn == NDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
}
/* smp transport routine */
static int mptsas_smp_start(struct smp_pkt *smp_pkt)
{
uint64_t wwn;
Mpi2SmpPassthroughRequest_t req;
Mpi2SmpPassthroughReply_t rep;
uint32_t direction = 0;
mptsas_t *mpt;
int ret;
uint64_t tmp64;
mpt = (mptsas_t *)smp_pkt->smp_pkt_address->
smp_a_hba_tran->smp_tran_hba_private;
bcopy(smp_pkt->smp_pkt_address->smp_a_wwn, &wwn, SAS_WWN_BYTE_SIZE);
/*
* Need to compose a SMP request message
* and call mptsas_do_passthru() function
*/
bzero(&req, sizeof (req));
bzero(&rep, sizeof (rep));
req.PassthroughFlags = 0;
req.PhysicalPort = 0xff;
req.ChainOffset = 0;
req.Function = MPI2_FUNCTION_SMP_PASSTHROUGH;
if ((smp_pkt->smp_pkt_reqsize & 0xffff0000ul) != 0) {
smp_pkt->smp_pkt_reason = ERANGE;
return (DDI_FAILURE);
}
req.RequestDataLength = LE_16((uint16_t)(smp_pkt->smp_pkt_reqsize - 4));
req.MsgFlags = 0;
tmp64 = LE_64(wwn);
bcopy(&tmp64, &req.SASAddress, SAS_WWN_BYTE_SIZE);
if (smp_pkt->smp_pkt_rspsize > 0) {
direction |= MPTSAS_PASS_THRU_DIRECTION_READ;
}
if (smp_pkt->smp_pkt_reqsize > 0) {
direction |= MPTSAS_PASS_THRU_DIRECTION_WRITE;
}
mutex_enter(&mpt->m_mutex);
ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep,
(uint8_t *)smp_pkt->smp_pkt_rsp,
offsetof(Mpi2SmpPassthroughRequest_t, SGL), sizeof (rep),
smp_pkt->smp_pkt_rspsize - 4, direction,
(uint8_t *)smp_pkt->smp_pkt_req, smp_pkt->smp_pkt_reqsize - 4,
smp_pkt->smp_pkt_timeout, FKIOCTL);
mutex_exit(&mpt->m_mutex);
if (ret != 0) {
cmn_err(CE_WARN, "smp_start do passthru error %d", ret);
smp_pkt->smp_pkt_reason = (uchar_t)(ret);
return (DDI_FAILURE);
}
/* do passthrough success, check the smp status */
if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) {
switch (LE_16(rep.IOCStatus)) {
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
smp_pkt->smp_pkt_reason = ENODEV;
break;
case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
smp_pkt->smp_pkt_reason = EOVERFLOW;
break;
case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
smp_pkt->smp_pkt_reason = EIO;
break;
default:
mptsas_log(mpt, CE_NOTE, "smp_start: get unknown ioc"
"status:%x", LE_16(rep.IOCStatus));
smp_pkt->smp_pkt_reason = EIO;
break;
}
return (DDI_FAILURE);
}
if (rep.SASStatus != MPI2_SASSTATUS_SUCCESS) {
mptsas_log(mpt, CE_NOTE, "smp_start: get error SAS status:%x",
rep.SASStatus);
smp_pkt->smp_pkt_reason = EIO;
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* If we didn't get a match, we need to get sas page0 for each device, and
* untill we get a match. If failed, return NULL
*/
static mptsas_target_t *
mptsas_phy_to_tgt(mptsas_t *mpt, mptsas_phymask_t phymask, uint8_t phy)
{
int i, j = 0;
int rval = 0;
uint16_t cur_handle;
uint32_t page_address;
mptsas_target_t *ptgt = NULL;
/*
* PHY named device must be direct attached and attaches to
* narrow port, if the iport is not parent of the device which
* we are looking for.
*/
for (i = 0; i < MPTSAS_MAX_PHYS; i++) {
if ((1 << i) & phymask)
j++;
}
if (j > 1)
return (NULL);
/*
* Must be a narrow port and single device attached to the narrow port
* So the physical port num of device which is equal to the iport's
* port num is the device what we are looking for.
*/
if (mpt->m_phy_info[phy].phy_mask != phymask)
return (NULL);
mutex_enter(&mpt->m_mutex);
ptgt = refhash_linear_search(mpt->m_targets, mptsas_target_eval_nowwn,
&phy);
if (ptgt != NULL) {
mutex_exit(&mpt->m_mutex);
return (ptgt);
}
if (mpt->m_done_traverse_dev) {
mutex_exit(&mpt->m_mutex);
return (NULL);
}
/* If didn't get a match, come here */
cur_handle = mpt->m_dev_handle;
for (; ; ) {
ptgt = NULL;
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)cur_handle;
rval = mptsas_get_target_device_info(mpt, page_address,
&cur_handle, &ptgt);
if ((rval == DEV_INFO_FAIL_PAGE0) ||
(rval == DEV_INFO_FAIL_ALLOC) ||
(rval == DEV_INFO_FAIL_GUID)) {
break;
}
if ((rval == DEV_INFO_WRONG_DEVICE_TYPE) ||
(rval == DEV_INFO_PHYS_DISK)) {
continue;
}
mpt->m_dev_handle = cur_handle;
if ((ptgt->m_addr.mta_wwn == 0) && (ptgt->m_phynum == phy)) {
break;
}
}
mutex_exit(&mpt->m_mutex);
return (ptgt);
}
/*
* The ptgt->m_addr.mta_wwn contains the wwid for each disk.
* For Raid volumes, we need to check m_raidvol[x].m_raidwwid
* If we didn't get a match, we need to get sas page0 for each device, and
* untill we get a match
* If failed, return NULL
*/
static mptsas_target_t *
mptsas_wwid_to_ptgt(mptsas_t *mpt, mptsas_phymask_t phymask, uint64_t wwid)
{
int rval = 0;
uint16_t cur_handle;
uint32_t page_address;
mptsas_target_t *tmp_tgt = NULL;
mptsas_target_addr_t addr;
addr.mta_wwn = wwid;
addr.mta_phymask = phymask;
mutex_enter(&mpt->m_mutex);
tmp_tgt = refhash_lookup(mpt->m_targets, &addr);
if (tmp_tgt != NULL) {
mutex_exit(&mpt->m_mutex);
return (tmp_tgt);
}
if (phymask == 0) {
/*
* It's IR volume
*/
rval = mptsas_get_raid_info(mpt);
if (rval) {
tmp_tgt = refhash_lookup(mpt->m_targets, &addr);
}
mutex_exit(&mpt->m_mutex);
return (tmp_tgt);
}
if (mpt->m_done_traverse_dev) {
mutex_exit(&mpt->m_mutex);
return (NULL);
}
/* If didn't get a match, come here */
cur_handle = mpt->m_dev_handle;
for (;;) {
tmp_tgt = NULL;
page_address = (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE &
MPI2_SAS_DEVICE_PGAD_FORM_MASK) | cur_handle;
rval = mptsas_get_target_device_info(mpt, page_address,
&cur_handle, &tmp_tgt);
if ((rval == DEV_INFO_FAIL_PAGE0) ||
(rval == DEV_INFO_FAIL_ALLOC) ||
(rval == DEV_INFO_FAIL_GUID)) {
tmp_tgt = NULL;
break;
}
if ((rval == DEV_INFO_WRONG_DEVICE_TYPE) ||
(rval == DEV_INFO_PHYS_DISK)) {
continue;
}
mpt->m_dev_handle = cur_handle;
if ((tmp_tgt->m_addr.mta_wwn) &&
(tmp_tgt->m_addr.mta_wwn == wwid) &&
(tmp_tgt->m_addr.mta_phymask == phymask)) {
break;
}
}
mutex_exit(&mpt->m_mutex);
return (tmp_tgt);
}
static mptsas_smp_t *
mptsas_wwid_to_psmp(mptsas_t *mpt, mptsas_phymask_t phymask, uint64_t wwid)
{
int rval = 0;
uint16_t cur_handle;
uint32_t page_address;
mptsas_smp_t smp_node, *psmp = NULL;
mptsas_target_addr_t addr;
addr.mta_wwn = wwid;
addr.mta_phymask = phymask;
mutex_enter(&mpt->m_mutex);
psmp = refhash_lookup(mpt->m_smp_targets, &addr);
if (psmp != NULL) {
mutex_exit(&mpt->m_mutex);
return (psmp);
}
if (mpt->m_done_traverse_smp) {
mutex_exit(&mpt->m_mutex);
return (NULL);
}
/* If didn't get a match, come here */
cur_handle = mpt->m_smp_devhdl;
for (;;) {
psmp = NULL;
page_address = (MPI2_SAS_EXPAND_PGAD_FORM_GET_NEXT_HNDL &
MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)cur_handle;
rval = mptsas_get_sas_expander_page0(mpt, page_address,
&smp_node);
if (rval != DDI_SUCCESS) {
break;
}
mpt->m_smp_devhdl = cur_handle = smp_node.m_devhdl;
psmp = mptsas_smp_alloc(mpt, &smp_node);
ASSERT(psmp);
if ((psmp->m_addr.mta_wwn) && (psmp->m_addr.mta_wwn == wwid) &&
(psmp->m_addr.mta_phymask == phymask)) {
break;
}
}
mutex_exit(&mpt->m_mutex);
return (psmp);
}
mptsas_target_t *
mptsas_tgt_alloc(refhash_t *refhash, uint16_t devhdl, uint64_t wwid,
uint32_t devinfo, mptsas_phymask_t phymask, uint8_t phynum)
{
mptsas_target_t *tmp_tgt = NULL;
mptsas_target_addr_t addr;
addr.mta_wwn = wwid;
addr.mta_phymask = phymask;
tmp_tgt = refhash_lookup(refhash, &addr);
if (tmp_tgt != NULL) {
NDBG20(("Hash item already exist"));
tmp_tgt->m_deviceinfo = devinfo;
tmp_tgt->m_devhdl = devhdl; /* XXX - duplicate? */
return (tmp_tgt);
}
tmp_tgt = kmem_zalloc(sizeof (struct mptsas_target), KM_SLEEP);
if (tmp_tgt == NULL) {
cmn_err(CE_WARN, "Fatal, allocated tgt failed");
return (NULL);
}
tmp_tgt->m_devhdl = devhdl;
tmp_tgt->m_addr.mta_wwn = wwid;
tmp_tgt->m_deviceinfo = devinfo;
tmp_tgt->m_addr.mta_phymask = phymask;
tmp_tgt->m_phynum = phynum;
/* Initialized the tgt structure */
tmp_tgt->m_qfull_retries = QFULL_RETRIES;
tmp_tgt->m_qfull_retry_interval =
drv_usectohz(QFULL_RETRY_INTERVAL * 1000);
tmp_tgt->m_t_throttle = MAX_THROTTLE;
TAILQ_INIT(&tmp_tgt->m_active_cmdq);
refhash_insert(refhash, tmp_tgt);
return (tmp_tgt);
}
static void
mptsas_smp_target_copy(mptsas_smp_t *src, mptsas_smp_t *dst)
{
dst->m_devhdl = src->m_devhdl;
dst->m_deviceinfo = src->m_deviceinfo;
dst->m_pdevhdl = src->m_pdevhdl;
dst->m_pdevinfo = src->m_pdevinfo;
}
static mptsas_smp_t *
mptsas_smp_alloc(mptsas_t *mpt, mptsas_smp_t *data)
{
mptsas_target_addr_t addr;
mptsas_smp_t *ret_data;
addr.mta_wwn = data->m_addr.mta_wwn;
addr.mta_phymask = data->m_addr.mta_phymask;
ret_data = refhash_lookup(mpt->m_smp_targets, &addr);
/*
* If there's already a matching SMP target, update its fields
* in place. Since the address is not changing, it's safe to do
* this. We cannot just bcopy() here because the structure we've
* been given has invalid hash links.
*/
if (ret_data != NULL) {
mptsas_smp_target_copy(data, ret_data);
return (ret_data);
}
ret_data = kmem_alloc(sizeof (mptsas_smp_t), KM_SLEEP);
bcopy(data, ret_data, sizeof (mptsas_smp_t));
refhash_insert(mpt->m_smp_targets, ret_data);
return (ret_data);
}
/*
* Functions for SGPIO LED support
*/
static dev_info_t *
mptsas_get_dip_from_dev(dev_t dev, mptsas_phymask_t *phymask)
{
dev_info_t *dip;
int prop;
dip = e_ddi_hold_devi_by_dev(dev, 0);
if (dip == NULL)
return (dip);
prop = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"phymask", 0);
*phymask = (mptsas_phymask_t)prop;
ddi_release_devi(dip);
return (dip);
}
static mptsas_target_t *
mptsas_addr_to_ptgt(mptsas_t *mpt, char *addr, mptsas_phymask_t phymask)
{
uint8_t phynum;
uint64_t wwn;
int lun;
mptsas_target_t *ptgt = NULL;
if (mptsas_parse_address(addr, &wwn, &phynum, &lun) != DDI_SUCCESS) {
return (NULL);
}
if (addr[0] == 'w') {
ptgt = mptsas_wwid_to_ptgt(mpt, (int)phymask, wwn);
} else {
ptgt = mptsas_phy_to_tgt(mpt, (int)phymask, phynum);
}
return (ptgt);
}
static int
mptsas_flush_led_status(mptsas_t *mpt, mptsas_target_t *ptgt)
{
uint32_t slotstatus = 0;
/* Build an MPI2 Slot Status based on our view of the world */
if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_IDENT - 1)))
slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_IDENTIFY_REQUEST;
if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_FAIL - 1)))
slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_PREDICTED_FAULT;
if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_OK2RM - 1)))
slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_REQUEST_REMOVE;
/* Write it to the controller */
NDBG14(("mptsas_ioctl: set LED status %x for slot %x",
slotstatus, ptgt->m_slot_num));
return (mptsas_send_sep(mpt, ptgt, &slotstatus,
MPI2_SEP_REQ_ACTION_WRITE_STATUS));
}
/*
* send sep request, use enclosure/slot addressing
*/
static int
mptsas_send_sep(mptsas_t *mpt, mptsas_target_t *ptgt,
uint32_t *status, uint8_t act)
{
Mpi2SepRequest_t req;
Mpi2SepReply_t rep;
int ret;
ASSERT(mutex_owned(&mpt->m_mutex));
/*
* We only support SEP control of directly-attached targets, in which
* case the "SEP" we're talking to is a virtual one contained within
* the HBA itself. This is necessary because DA targets typically have
* no other mechanism for LED control. Targets for which a separate
* enclosure service processor exists should be controlled via ses(7d)
* or sgen(7d). Furthermore, since such requests can time out, they
* should be made in user context rather than in response to
* asynchronous fabric changes.
*
* In addition, we do not support this operation for RAID volumes,
* since there is no slot associated with them.
*/
if (!(ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) ||
ptgt->m_addr.mta_phymask == 0) {
return (ENOTTY);
}
bzero(&req, sizeof (req));
bzero(&rep, sizeof (rep));
req.Function = MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR;
req.Action = act;
req.Flags = MPI2_SEP_REQ_FLAGS_ENCLOSURE_SLOT_ADDRESS;
req.EnclosureHandle = LE_16(ptgt->m_enclosure);
req.Slot = LE_16(ptgt->m_slot_num);
if (act == MPI2_SEP_REQ_ACTION_WRITE_STATUS) {
req.SlotStatus = LE_32(*status);
}
ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, NULL,
sizeof (req), sizeof (rep), NULL, 0, NULL, 0, 60, FKIOCTL);
if (ret != 0) {
mptsas_log(mpt, CE_NOTE, "mptsas_send_sep: passthru SEP "
"Processor Request message error %d", ret);
return (ret);
}
/* do passthrough success, check the ioc status */
if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) {
mptsas_log(mpt, CE_NOTE, "send_sep act %x: ioc "
"status:%x loginfo %x", act, LE_16(rep.IOCStatus),
LE_32(rep.IOCLogInfo));
switch (LE_16(rep.IOCStatus) & MPI2_IOCSTATUS_MASK) {
case MPI2_IOCSTATUS_INVALID_FUNCTION:
case MPI2_IOCSTATUS_INVALID_VPID:
case MPI2_IOCSTATUS_INVALID_FIELD:
case MPI2_IOCSTATUS_INVALID_STATE:
case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
return (EINVAL);
case MPI2_IOCSTATUS_BUSY:
return (EBUSY);
case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
return (EAGAIN);
case MPI2_IOCSTATUS_INVALID_SGL:
case MPI2_IOCSTATUS_INTERNAL_ERROR:
case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
default:
return (EIO);
}
}
if (act != MPI2_SEP_REQ_ACTION_WRITE_STATUS) {
*status = LE_32(rep.SlotStatus);
}
return (0);
}
int
mptsas_dma_addr_create(mptsas_t *mpt, ddi_dma_attr_t dma_attr,
ddi_dma_handle_t *dma_hdp, ddi_acc_handle_t *acc_hdp, caddr_t *dma_memp,
uint32_t alloc_size, ddi_dma_cookie_t *cookiep)
{
ddi_dma_cookie_t new_cookie;
size_t alloc_len;
uint_t ncookie;
if (cookiep == NULL)
cookiep = &new_cookie;
if (ddi_dma_alloc_handle(mpt->m_dip, &dma_attr, DDI_DMA_SLEEP,
NULL, dma_hdp) != DDI_SUCCESS) {
return (FALSE);
}
if (ddi_dma_mem_alloc(*dma_hdp, alloc_size, &mpt->m_dev_acc_attr,
DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, dma_memp, &alloc_len,
acc_hdp) != DDI_SUCCESS) {
ddi_dma_free_handle(dma_hdp);
*dma_hdp = NULL;
return (FALSE);
}
if (ddi_dma_addr_bind_handle(*dma_hdp, NULL, *dma_memp, alloc_len,
(DDI_DMA_RDWR | DDI_DMA_CONSISTENT), DDI_DMA_SLEEP, NULL,
cookiep, &ncookie) != DDI_DMA_MAPPED) {
(void) ddi_dma_mem_free(acc_hdp);
ddi_dma_free_handle(dma_hdp);
*dma_hdp = NULL;
return (FALSE);
}
return (TRUE);
}
void
mptsas_dma_addr_destroy(ddi_dma_handle_t *dma_hdp, ddi_acc_handle_t *acc_hdp)
{
if (*dma_hdp == NULL)
return;
(void) ddi_dma_unbind_handle(*dma_hdp);
(void) ddi_dma_mem_free(acc_hdp);
ddi_dma_free_handle(dma_hdp);
*dma_hdp = NULL;
}