rum.c revision 0dc2366f7b9f9f36e10909b1e95edbf2a261c2ac
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Ralink Technology RT2501USB/RT2601USB chipset driver
* http://www.ralinktech.com.tw/
*/
#include <sys/types.h>
#include <sys/cmn_err.h>
#include <sys/strsubr.h>
#include <sys/modctl.h>
#include <sys/devops.h>
#include <sys/mac_provider.h>
#include <sys/mac_wifi.h>
#include <sys/net80211.h>
#include <sys/byteorder.h>
#define USBDRV_MAJOR_VER 2
#define USBDRV_MINOR_VER 0
#include <sys/usb/usba.h>
#include <sys/usb/usba/usba_types.h>
#include "rum_reg.h"
#include "rum_var.h"
#include "rt2573_ucode.h"
static void *rum_soft_state_p = NULL;
#define RAL_TXBUF_SIZE (IEEE80211_MAX_LEN)
#define RAL_RXBUF_SIZE (IEEE80211_MAX_LEN)
/* quickly determine if a given rate is CCK or OFDM */
#define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
#define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
#define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
#define RUM_N(a) (sizeof (a) / sizeof ((a)[0]))
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset rum_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset rum_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset rum_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct {
uint32_t reg;
uint32_t val;
} rum_def_mac[] = {
{ RT2573_TXRX_CSR0, 0x025fb032 },
{ RT2573_TXRX_CSR1, 0x9eaa9eaf },
{ RT2573_TXRX_CSR2, 0x8a8b8c8d },
{ RT2573_TXRX_CSR3, 0x00858687 },
{ RT2573_TXRX_CSR7, 0x2e31353b },
{ RT2573_TXRX_CSR8, 0x2a2a2a2c },
{ RT2573_TXRX_CSR15, 0x0000000f },
{ RT2573_MAC_CSR6, 0x00000fff },
{ RT2573_MAC_CSR8, 0x016c030a },
{ RT2573_MAC_CSR10, 0x00000718 },
{ RT2573_MAC_CSR12, 0x00000004 },
{ RT2573_MAC_CSR13, 0x00007f00 },
{ RT2573_SEC_CSR0, 0x00000000 },
{ RT2573_SEC_CSR1, 0x00000000 },
{ RT2573_SEC_CSR5, 0x00000000 },
{ RT2573_PHY_CSR1, 0x000023b0 },
{ RT2573_PHY_CSR5, 0x00040a06 },
{ RT2573_PHY_CSR6, 0x00080606 },
{ RT2573_PHY_CSR7, 0x00000408 },
{ RT2573_AIFSN_CSR, 0x00002273 },
{ RT2573_CWMIN_CSR, 0x00002344 },
{ RT2573_CWMAX_CSR, 0x000034aa }
};
static const struct {
uint8_t reg;
uint8_t val;
} rum_def_bbp[] = {
{ 3, 0x80 },
{ 15, 0x30 },
{ 17, 0x20 },
{ 21, 0xc8 },
{ 22, 0x38 },
{ 23, 0x06 },
{ 24, 0xfe },
{ 25, 0x0a },
{ 26, 0x0d },
{ 32, 0x0b },
{ 34, 0x12 },
{ 37, 0x07 },
{ 39, 0xf8 },
{ 41, 0x60 },
{ 53, 0x10 },
{ 54, 0x18 },
{ 60, 0x10 },
{ 61, 0x04 },
{ 62, 0x04 },
{ 75, 0xfe },
{ 86, 0xfe },
{ 88, 0xfe },
{ 90, 0x0f },
{ 99, 0x00 },
{ 102, 0x16 },
{ 107, 0x04 }
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rum_rf5226[] = {
{ 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
{ 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
{ 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
{ 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
{ 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
{ 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
{ 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
{ 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
{ 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
{ 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
{ 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
{ 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
{ 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
{ 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
{ 34, 0x00b03, 0x20266, 0x36014, 0x30282 },
{ 38, 0x00b03, 0x20267, 0x36014, 0x30284 },
{ 42, 0x00b03, 0x20268, 0x36014, 0x30286 },
{ 46, 0x00b03, 0x20269, 0x36014, 0x30288 },
{ 36, 0x00b03, 0x00266, 0x26014, 0x30288 },
{ 40, 0x00b03, 0x00268, 0x26014, 0x30280 },
{ 44, 0x00b03, 0x00269, 0x26014, 0x30282 },
{ 48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
{ 52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
{ 56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
{ 60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
{ 64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
}, rum_rf5225[] = {
{ 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
{ 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
{ 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
{ 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
{ 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
{ 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
{ 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
{ 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
{ 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
{ 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
{ 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
{ 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
{ 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
{ 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
{ 34, 0x00b33, 0x01266, 0x26014, 0x30282 },
{ 38, 0x00b33, 0x01267, 0x26014, 0x30284 },
{ 42, 0x00b33, 0x01268, 0x26014, 0x30286 },
{ 46, 0x00b33, 0x01269, 0x26014, 0x30288 },
{ 36, 0x00b33, 0x01266, 0x26014, 0x30288 },
{ 40, 0x00b33, 0x01268, 0x26014, 0x30280 },
{ 44, 0x00b33, 0x01269, 0x26014, 0x30282 },
{ 48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
{ 52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
{ 56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
{ 60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
{ 64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
};
/*
* device operations
*/
static int rum_attach(dev_info_t *, ddi_attach_cmd_t);
static int rum_detach(dev_info_t *, ddi_detach_cmd_t);
/*
* Module Loading Data & Entry Points
*/
DDI_DEFINE_STREAM_OPS(rum_dev_ops, nulldev, nulldev, rum_attach,
rum_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_needed);
static struct modldrv rum_modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
"rum driver v1.2", /* short description */
&rum_dev_ops /* driver specific ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&rum_modldrv,
NULL
};
static int rum_m_stat(void *, uint_t, uint64_t *);
static int rum_m_start(void *);
static void rum_m_stop(void *);
static int rum_m_promisc(void *, boolean_t);
static int rum_m_multicst(void *, boolean_t, const uint8_t *);
static int rum_m_unicst(void *, const uint8_t *);
static mblk_t *rum_m_tx(void *, mblk_t *);
static void rum_m_ioctl(void *, queue_t *, mblk_t *);
static int rum_m_setprop(void *, const char *, mac_prop_id_t,
uint_t, const void *);
static int rum_m_getprop(void *, const char *, mac_prop_id_t,
uint_t, void *);
static void rum_m_propinfo(void *, const char *, mac_prop_id_t,
mac_prop_info_handle_t);
static mac_callbacks_t rum_m_callbacks = {
MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
rum_m_stat,
rum_m_start,
rum_m_stop,
rum_m_promisc,
rum_m_multicst,
rum_m_unicst,
rum_m_tx,
NULL,
rum_m_ioctl,
NULL, /* mc_getcapab */
NULL,
NULL,
rum_m_setprop,
rum_m_getprop,
rum_m_propinfo
};
static void rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
static int rum_tx_trigger(struct rum_softc *, mblk_t *);
static int rum_rx_trigger(struct rum_softc *);
uint32_t rum_dbg_flags = 0;
void
ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
{
va_list args;
if (dbg_flags & rum_dbg_flags) {
va_start(args, fmt);
vcmn_err(CE_CONT, fmt, args);
va_end(args);
}
}
static void
rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
{
usb_ctrl_setup_t req;
usb_cr_t cr;
usb_cb_flags_t cf;
mblk_t *mp;
int err;
bzero(&req, sizeof (req));
req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
req.bRequest = RT2573_READ_MULTI_MAC;
req.wValue = 0;
req.wIndex = reg;
req.wLength = (uint16_t)len;
req.attrs = USB_ATTRS_AUTOCLEARING;
mp = NULL;
err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
&cr, &cf, 0);
if (err != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR,
"rum_read_multi(): could not read MAC register:"
"cr:%s(%d), cf:(%x)\n",
usb_str_cr(cr), cr, cf);
return;
}
bcopy(mp->b_rptr, buf, len);
freemsg(mp);
}
static uint32_t
rum_read(struct rum_softc *sc, uint16_t reg)
{
uint32_t val;
rum_read_multi(sc, reg, &val, sizeof (val));
return (LE_32(val));
}
static void
rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
{
usb_ctrl_setup_t req;
usb_cr_t cr;
usb_cb_flags_t cf;
mblk_t *mp;
int err;
bzero(&req, sizeof (req));
req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
req.bRequest = RT2573_WRITE_MULTI_MAC;
req.wValue = 0;
req.wIndex = reg;
req.wLength = (uint16_t)len;
req.attrs = USB_ATTRS_NONE;
if ((mp = allocb(len, BPRI_HI)) == NULL) {
ral_debug(RAL_DBG_ERR, "rum_write_multi(): failed alloc mblk.");
return;
}
bcopy(buf, mp->b_wptr, len);
mp->b_wptr += len;
err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
&cr, &cf, 0);
if (err != USB_SUCCESS) {
ral_debug(RAL_DBG_USB,
"rum_write_multi(): could not write MAC register:"
"cr:%s(%d), cf:(%x)\n",
usb_str_cr(cr), cr, cf);
}
freemsg(mp);
}
static void
rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
{
uint32_t tmp = LE_32(val);
rum_write_multi(sc, reg, &tmp, sizeof (tmp));
}
#define UGETDW(w) ((w)[0] | ((w)[1] << 8) | ((w)[2] << 16) | ((w)[3] << 24))
static int
rum_load_microcode(struct rum_softc *sc)
{
usb_ctrl_setup_t req;
usb_cr_t cr;
usb_cb_flags_t cf;
int err;
const uint8_t *ucode;
int size;
uint16_t reg = RT2573_MCU_CODE_BASE;
ucode = rt2573_ucode;
size = sizeof (rt2573_ucode);
/* copy firmware image into NIC */
for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
rum_write(sc, reg, UGETDW(ucode));
/* rum_write(sc, reg, *(uint32_t *)(ucode)); */
}
bzero(&req, sizeof (req));
req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
req.bRequest = RT2573_MCU_CNTL;
req.wValue = RT2573_MCU_RUN;
req.wIndex = 0;
req.wLength = 0;
req.attrs = USB_ATTRS_NONE;
err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL,
&cr, &cf, 0);
if (err != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR,
"rum_load_microcode(): could not run firmware: "
"cr:%s(%d), cf:(%x)\n",
usb_str_cr(cr), cr, cf);
}
ral_debug(RAL_DBG_MSG,
"rum_load_microcode(%d): done\n", sizeof (rt2573_ucode));
return (err);
}
static void
rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
{
usb_ctrl_setup_t req;
usb_cr_t cr;
usb_cb_flags_t cf;
mblk_t *mp;
int err;
bzero(&req, sizeof (req));
req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
req.bRequest = RT2573_READ_EEPROM;
req.wValue = 0;
req.wIndex = addr;
req.wLength = (uint16_t)len;
mp = NULL;
err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
&cr, &cf, 0);
if (err != USB_SUCCESS) {
ral_debug(RAL_DBG_USB,
"rum_eeprom_read(): could not read EEPROM:"
"cr:%s(%d), cf:(%x)\n",
usb_str_cr(cr), cr, cf);
return;
}
bcopy(mp->b_rptr, buf, len);
freemsg(mp);
}
/* ARGSUSED */
static void
rum_txeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
{
struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private;
struct ieee80211com *ic = &sc->sc_ic;
ral_debug(RAL_DBG_TX,
"rum_txeof(): cr:%s(%d), flags:0x%x, tx_queued:%d",
usb_str_cr(req->bulk_completion_reason),
req->bulk_completion_reason,
req->bulk_cb_flags,
sc->tx_queued);
if (req->bulk_completion_reason != USB_CR_OK)
sc->sc_tx_err++;
mutex_enter(&sc->tx_lock);
sc->tx_queued--;
sc->sc_tx_timer = 0;
if (sc->sc_need_sched) {
sc->sc_need_sched = 0;
mac_tx_update(ic->ic_mach);
}
mutex_exit(&sc->tx_lock);
usb_free_bulk_req(req);
}
/* ARGSUSED */
static void
rum_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
{
struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private;
struct ieee80211com *ic = &sc->sc_ic;
struct rum_rx_desc *desc;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
mblk_t *m, *mp;
int len, pktlen;
char *rxbuf;
mp = req->bulk_data;
req->bulk_data = NULL;
ral_debug(RAL_DBG_RX,
"rum_rxeof(): cr:%s(%d), flags:0x%x, rx_queued:%d",
usb_str_cr(req->bulk_completion_reason),
req->bulk_completion_reason,
req->bulk_cb_flags,
sc->rx_queued);
if (req->bulk_completion_reason != USB_CR_OK) {
sc->sc_rx_err++;
goto fail;
}
len = msgdsize(mp);
rxbuf = (char *)mp->b_rptr;
if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
ral_debug(RAL_DBG_ERR,
"rum_rxeof(): xfer too short %d\n", len);
sc->sc_rx_err++;
goto fail;
}
/* rx descriptor is located at the head, different from RT2500USB */
desc = (struct rum_rx_desc *)rxbuf;
if (LE_32(desc->flags) & RT2573_RX_CRC_ERROR) {
/*
* This should not happen since we did not request to receive
* those frames when we filled RT2573_TXRX_CSR0.
*/
ral_debug(RAL_DBG_ERR, "CRC error\n");
sc->sc_rx_err++;
goto fail;
}
pktlen = (LE_32(desc->flags) >> 16) & 0xfff;
if (pktlen > (len - RT2573_RX_DESC_SIZE)) {
ral_debug(RAL_DBG_ERR,
"rum_rxeof(): pktlen mismatch <%d, %d>.\n", pktlen, len);
goto fail;
}
if ((m = allocb(pktlen, BPRI_MED)) == NULL) {
ral_debug(RAL_DBG_ERR,
"rum_rxeof(): allocate mblk failed.\n");
sc->sc_rx_nobuf++;
goto fail;
}
bcopy(rxbuf + RT2573_RX_DESC_SIZE, m->b_rptr, pktlen);
m->b_wptr += pktlen;
wh = (struct ieee80211_frame *)m->b_rptr;
ni = ieee80211_find_rxnode(ic, wh);
/* send the frame to the 802.11 layer */
(void) ieee80211_input(ic, m, ni, desc->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
fail:
mutex_enter(&sc->rx_lock);
sc->rx_queued--;
mutex_exit(&sc->rx_lock);
freemsg(mp);
usb_free_bulk_req(req);
if (RAL_IS_RUNNING(sc))
(void) rum_rx_trigger(sc);
}
/*
* Return the expected ack rate for a frame transmitted at rate `rate'.
*/
static int
rum_ack_rate(struct ieee80211com *ic, int rate)
{
switch (rate) {
/* CCK rates */
case 2:
return (2);
case 4:
case 11:
case 22:
return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate);
/* OFDM rates */
case 12:
case 18:
return (12);
case 24:
case 36:
return (24);
case 48:
case 72:
case 96:
case 108:
return (48);
}
/* default to 1Mbps */
return (2);
}
/*
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
* The function automatically determines the operating mode depending on the
* given rate. `flags' indicates whether short preamble is in use or not.
*/
static uint16_t
rum_txtime(int len, int rate, uint32_t flags)
{
uint16_t txtime;
if (RUM_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11a-1999, pp. 37 */
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
txtime = 16 + 4 + 4 * txtime + 6;
} else {
/* IEEE Std 802.11b-1999, pp. 28 */
txtime = (16 * len + rate - 1) / rate;
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
}
return (txtime);
}
static uint8_t
rum_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return (0x0);
case 4: return (0x1);
case 11: return (0x2);
case 22: return (0x3);
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return (0xb);
case 18: return (0xf);
case 24: return (0xa);
case 36: return (0xe);
case 48: return (0x9);
case 72: return (0xd);
case 96: return (0x8);
case 108: return (0xc);
/* unsupported rates (should not get there) */
default: return (0xff);
}
}
static void
rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
uint32_t flags, uint16_t xflags, int len, int rate)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t plcp_length;
int remainder;
desc->flags = LE_32(flags);
desc->flags |= LE_32(RT2573_TX_VALID);
desc->flags |= LE_32(len << 16);
desc->xflags = LE_16(xflags);
desc->wme = LE_16(RT2573_QID(0) | RT2573_AIFSN(2) |
RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
/* setup PLCP fields */
desc->plcp_signal = rum_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (RUM_RATE_IS_OFDM(rate)) {
desc->flags |= LE_32(RT2573_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2573_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
}
#define RUM_TX_TIMEOUT 5
static int
rum_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
{
struct rum_softc *sc = (struct rum_softc *)ic;
struct rum_tx_desc *desc;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint16_t dur;
uint32_t flags = 0;
int rate, err = DDI_SUCCESS, rv;
struct ieee80211_node *ni = NULL;
mblk_t *m, *m0;
int off, mblen, pktlen, xferlen;
/* discard packets while suspending or not inited */
if (!RAL_IS_RUNNING(sc)) {
freemsg(mp);
return (ENXIO);
}
mutex_enter(&sc->tx_lock);
if (sc->tx_queued > RAL_TX_LIST_COUNT) {
ral_debug(RAL_DBG_TX, "rum_send(): "
"no TX buffer available!\n");
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) {
sc->sc_need_sched = 1;
}
sc->sc_tx_nobuf++;
err = ENOMEM;
goto fail;
}
m = allocb(RAL_TXBUF_SIZE + RT2573_TX_DESC_SIZE, BPRI_MED);
if (m == NULL) {
ral_debug(RAL_DBG_ERR, "rum_send(): can't alloc mblk.\n");
err = DDI_FAILURE;
goto fail;
}
m->b_rptr += RT2573_TX_DESC_SIZE; /* skip TX descriptor */
m->b_wptr += RT2573_TX_DESC_SIZE;
for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
mblen = (uintptr_t)m0->b_wptr - (uintptr_t)m0->b_rptr;
(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
off += mblen;
}
m->b_wptr += off;
wh = (struct ieee80211_frame *)m->b_rptr;
ni = ieee80211_find_txnode(ic, wh->i_addr1);
if (ni == NULL) {
err = DDI_FAILURE;
sc->sc_tx_err++;
freemsg(m);
goto fail;
}
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) {
(void) ieee80211_encap(ic, m, ni);
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, m);
if (k == NULL) {
sc->sc_tx_err++;
err = DDI_FAILURE;
freemsg(m);
goto fail;
}
/* packet header may have moved, reset our local pointer */
wh = (struct ieee80211_frame *)m->b_rptr;
}
m->b_rptr -= RT2573_TX_DESC_SIZE; /* restore */
desc = (struct rum_tx_desc *)m->b_rptr;
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) { /* DATA */
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
rate = ic->ic_bss->in_rates.ir_rates[ic->ic_fixed_rate];
else
rate = ni->in_rates.ir_rates[ni->in_txrate];
rate &= IEEE80211_RATE_VAL;
if (rate <= 0) {
rate = 2; /* basic rate */
}
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2573_TX_NEED_ACK;
flags |= RT2573_TX_MORE_FRAG;
dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
ic->ic_flags) + sc->sifs;
*(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
}
} else { /* MGMT */
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2573_TX_NEED_ACK;
dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
ic->ic_flags) + sc->sifs;
*(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK |
IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_RESP))
flags |= RT2573_TX_TIMESTAMP;
}
}
pktlen = msgdsize(m) - RT2573_TX_DESC_SIZE;
rum_setup_tx_desc(sc, desc, flags, 0, pktlen, rate);
/* align end on a 4-bytes boundary */
xferlen = (RT2573_TX_DESC_SIZE + pktlen + 3) & ~3;
/*
* No space left in the last URB to store the extra 4 bytes, force
* sending of another URB.
*/
if ((xferlen % 64) == 0)
xferlen += 4;
m->b_wptr = m->b_rptr + xferlen;
ral_debug(RAL_DBG_TX, "sending data frame len=%u rate=%u xfer len=%u\n",
pktlen, rate, xferlen);
rv = rum_tx_trigger(sc, m);
if (rv == 0) {
ic->ic_stats.is_tx_frags++;
ic->ic_stats.is_tx_bytes += pktlen;
}
fail:
if (ni != NULL)
ieee80211_free_node(ni);
if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
err == 0) {
freemsg(mp);
}
mutex_exit(&sc->tx_lock);
return (err);
}
static mblk_t *
rum_m_tx(void *arg, mblk_t *mp)
{
struct rum_softc *sc = (struct rum_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
mblk_t *next;
/*
* No data frames go out unless we're associated; this
* should not happen as the 802.11 layer does not enable
* the xmit queue until we enter the RUN state.
*/
if (ic->ic_state != IEEE80211_S_RUN) {
ral_debug(RAL_DBG_ERR, "rum_m_tx(): "
"discard, state %u\n", ic->ic_state);
freemsgchain(mp);
return (NULL);
}
while (mp != NULL) {
next = mp->b_next;
mp->b_next = NULL;
if (rum_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != DDI_SUCCESS) {
mp->b_next = next;
freemsgchain(mp);
return (NULL);
}
mp = next;
}
return (mp);
}
static void
rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
break;
}
if (ntries == 5) {
ral_debug(RAL_DBG_ERR,
"rum_bbp_write(): could not write to BBP\n");
return;
}
tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
rum_write(sc, RT2573_PHY_CSR3, tmp);
}
static uint8_t
rum_bbp_read(struct rum_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
break;
}
if (ntries == 5) {
ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n");
return (0);
}
val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
rum_write(sc, RT2573_PHY_CSR3, val);
for (ntries = 0; ntries < 100; ntries++) {
val = rum_read(sc, RT2573_PHY_CSR3);
if (!(val & RT2573_BBP_BUSY))
return (val & 0xff);
drv_usecwait(1);
}
ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n");
return (0);
}
static void
rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
break;
}
if (ntries == 5) {
ral_debug(RAL_DBG_ERR,
"rum_rf_write(): could not write to RF\n");
return;
}
tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
(reg & 3);
rum_write(sc, RT2573_PHY_CSR4, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
ral_debug(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
}
static void
rum_select_antenna(struct rum_softc *sc)
{
uint8_t bbp4, bbp77;
uint32_t tmp;
bbp4 = rum_bbp_read(sc, 4);
bbp77 = rum_bbp_read(sc, 77);
/* make sure Rx is disabled before switching antenna */
tmp = rum_read(sc, RT2573_TXRX_CSR0);
rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
rum_bbp_write(sc, 4, bbp4);
rum_bbp_write(sc, 77, bbp77);
rum_write(sc, RT2573_TXRX_CSR0, tmp);
}
/*
* Enable multi-rate retries for frames sent at OFDM rates.
* In 802.11b/g mode, allow fallback to CCK rates.
*/
static void
rum_enable_mrr(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR4);
tmp &= ~RT2573_MRR_CCK_FALLBACK;
if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
tmp |= RT2573_MRR_CCK_FALLBACK;
tmp |= RT2573_MRR_ENABLED;
rum_write(sc, RT2573_TXRX_CSR4, tmp);
}
static void
rum_set_txpreamble(struct rum_softc *sc)
{
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR4);
tmp &= ~RT2573_SHORT_PREAMBLE;
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2573_SHORT_PREAMBLE;
rum_write(sc, RT2573_TXRX_CSR4, tmp);
}
static void
rum_set_basicrates(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* update basic rate set */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
/* 11b basic rates: 1, 2Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x3);
} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->in_chan)) {
/* 11a basic rates: 6, 12, 24Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x150);
} else {
/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0xf);
}
}
/*
* Reprogram MAC/BBP to switch to a new band. Values taken from the reference
* driver.
*/
static void
rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
{
uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
uint32_t tmp;
/* update all BBP registers that depend on the band */
bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
}
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
}
sc->bbp17 = bbp17;
rum_bbp_write(sc, 17, bbp17);
rum_bbp_write(sc, 96, bbp96);
rum_bbp_write(sc, 104, bbp104);
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
rum_bbp_write(sc, 75, 0x80);
rum_bbp_write(sc, 86, 0x80);
rum_bbp_write(sc, 88, 0x80);
}
rum_bbp_write(sc, 35, bbp35);
rum_bbp_write(sc, 97, bbp97);
rum_bbp_write(sc, 98, bbp98);
tmp = rum_read(sc, RT2573_PHY_CSR0);
tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
if (IEEE80211_IS_CHAN_2GHZ(c))
tmp |= RT2573_PA_PE_2GHZ;
else
tmp |= RT2573_PA_PE_5GHZ;
rum_write(sc, RT2573_PHY_CSR0, tmp);
/* 802.11a uses a 16 microseconds short interframe space */
sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
}
static void
rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct rfprog *rfprog;
uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
int8_t power;
uint_t i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
/* select the appropriate RF settings based on what EEPROM says */
rfprog = (sc->rf_rev == RT2573_RF_5225 ||
sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++) {
}
power = sc->txpow[i];
if (power < 0) {
bbp94 += power;
power = 0;
} else if (power > 31) {
bbp94 += power - 31;
power = 31;
}
/*
* If we are switching from the 2GHz band to the 5GHz band or
* vice-versa, BBP registers need to be reprogrammed.
*/
if (c->ich_flags != ic->ic_curchan->ich_flags) {
rum_select_band(sc, c);
rum_select_antenna(sc);
}
ic->ic_curchan = c;
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
drv_usecwait(10);
/* enable smart mode for MIMO-capable RFs */
bbp3 = rum_bbp_read(sc, 3);
bbp3 &= ~RT2573_SMART_MODE;
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
bbp3 |= RT2573_SMART_MODE;
rum_bbp_write(sc, 3, bbp3);
if (bbp94 != RT2573_BBPR94_DEFAULT)
rum_bbp_write(sc, 94, bbp94);
}
/*
* Enable TSF synchronization and tell h/w to start sending beacons for IBSS
* and HostAP operating modes.
*/
static void
rum_enable_tsf_sync(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
if (ic->ic_opmode != IEEE80211_M_STA) {
/*
* Change default 16ms TBTT adjustment to 8ms.
* Must be done before enabling beacon generation.
*/
rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
}
tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
/* set beacon interval (in 1/16ms unit) */
tmp |= ic->ic_bss->in_intval * 16;
tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2573_TSF_MODE(1);
else
tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
rum_write(sc, RT2573_TXRX_CSR9, tmp);
}
/* ARGSUSED */
static void
rum_update_slot(struct ieee80211com *ic, int onoff)
{
struct rum_softc *sc = (struct rum_softc *)ic;
uint8_t slottime;
uint32_t tmp;
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
tmp = rum_read(sc, RT2573_MAC_CSR9);
tmp = (tmp & ~0xff) | slottime;
rum_write(sc, RT2573_MAC_CSR9, tmp);
ral_debug(RAL_DBG_HW, "setting slot time to %uus\n", slottime);
}
static void
rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
rum_write(sc, RT2573_MAC_CSR4, tmp);
tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
rum_write(sc, RT2573_MAC_CSR5, tmp);
}
static void
rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
rum_write(sc, RT2573_MAC_CSR2, tmp);
tmp = addr[4] | addr[5] << 8 | 0xff << 16;
rum_write(sc, RT2573_MAC_CSR3, tmp);
ral_debug(RAL_DBG_HW,
"setting MAC address to " MACSTR "\n", MAC2STR(addr));
}
static void
rum_update_promisc(struct rum_softc *sc)
{
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR0);
tmp &= ~RT2573_DROP_NOT_TO_ME;
if (!(sc->sc_rcr & RAL_RCR_PROMISC))
tmp |= RT2573_DROP_NOT_TO_ME;
rum_write(sc, RT2573_TXRX_CSR0, tmp);
ral_debug(RAL_DBG_HW, "%s promiscuous mode\n",
(sc->sc_rcr & RAL_RCR_PROMISC) ? "entering" : "leaving");
}
static const char *
rum_get_rf(int rev)
{
switch (rev) {
case RT2573_RF_2527: return ("RT2527 (MIMO XR)");
case RT2573_RF_2528: return ("RT2528");
case RT2573_RF_5225: return ("RT5225 (MIMO XR)");
case RT2573_RF_5226: return ("RT5226");
default: return ("unknown");
}
}
static void
rum_read_eeprom(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
/* read MAC address */
rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_macaddr, 6);
rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
val = LE_16(val);
sc->rf_rev = (val >> 11) & 0x1f;
sc->hw_radio = (val >> 10) & 0x1;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
ral_debug(RAL_DBG_HW, "RF revision=%d\n", sc->rf_rev);
rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
val = LE_16(val);
sc->ext_5ghz_lna = (val >> 6) & 0x1;
sc->ext_2ghz_lna = (val >> 4) & 0x1;
ral_debug(RAL_DBG_HW, "External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
sc->ext_2ghz_lna, sc->ext_5ghz_lna);
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
val = LE_16(val);
if ((val & 0xff) != 0xff)
sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
val = LE_16(val);
if ((val & 0xff) != 0xff)
sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
ral_debug(RAL_DBG_HW, "RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
val = LE_16(val);
if ((val & 0xff) != 0xff)
sc->rffreq = val & 0xff;
ral_debug(RAL_DBG_HW, "RF freq=%d\n", sc->rffreq);
/* read Tx power for all a/b/g channels */
rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
/* default Tx power for 802.11a channels */
(void) memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
/* read default values for BBP registers */
rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
}
static int
rum_bbp_init(struct rum_softc *sc)
{
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
const uint8_t val = rum_bbp_read(sc, 0);
if (val != 0 && val != 0xff)
break;
drv_usecwait(1000);
}
if (ntries == 100) {
ral_debug(RAL_DBG_ERR, "timeout waiting for BBP\n");
return (EIO);
}
/* initialize BBP registers to default values */
for (i = 0; i < RUM_N(rum_def_bbp); i++)
rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
continue;
rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
return (0);
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
static void
rum_next_scan(void *arg)
{
struct rum_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
}
static int
rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rum_softc *sc = (struct rum_softc *)ic;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
int err;
uint32_t tmp;
RAL_LOCK(sc);
ostate = ic->ic_state;
if (sc->sc_scan_id != 0) {
(void) untimeout(sc->sc_scan_id);
sc->sc_scan_id = 0;
}
if (sc->sc_amrr_id != 0) {
(void) untimeout(sc->sc_amrr_id);
sc->sc_amrr_id = 0;
}
switch (nstate) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
tmp = rum_read(sc, RT2573_TXRX_CSR9);
rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
}
break;
case IEEE80211_S_SCAN:
rum_set_chan(sc, ic->ic_curchan);
sc->sc_scan_id = timeout(rum_next_scan, (void *)sc,
drv_usectohz(sc->dwelltime * 1000));
break;
case IEEE80211_S_AUTH:
rum_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_ASSOC:
rum_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
rum_set_chan(sc, ic->ic_curchan);
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rum_update_slot(ic, 1);
rum_enable_mrr(sc);
rum_set_txpreamble(sc);
rum_set_basicrates(sc);
rum_set_bssid(sc, ni->in_bssid);
}
if (ic->ic_opmode != IEEE80211_M_MONITOR)
rum_enable_tsf_sync(sc);
/* enable automatic rate adaptation in STA mode */
if (ic->ic_opmode == IEEE80211_M_STA &&
ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
rum_amrr_start(sc, ni);
break;
}
RAL_UNLOCK(sc);
err = sc->sc_newstate(ic, nstate, arg);
/*
* Finally, start any timers.
*/
if (nstate == IEEE80211_S_RUN)
ieee80211_start_watchdog(ic, 1);
return (err);
}
static void
rum_close_pipes(struct rum_softc *sc)
{
usb_flags_t flags = USB_FLAGS_SLEEP;
if (sc->sc_rx_pipeh != NULL) {
usb_pipe_reset(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
sc->sc_rx_pipeh = NULL;
}
if (sc->sc_tx_pipeh != NULL) {
usb_pipe_reset(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
sc->sc_tx_pipeh = NULL;
}
}
static int
rum_open_pipes(struct rum_softc *sc)
{
usb_ep_data_t *ep_node;
usb_pipe_policy_t policy;
int err;
ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
USB_EP_ATTR_BULK, USB_EP_DIR_OUT);
bzero(&policy, sizeof (usb_pipe_policy_t));
policy.pp_max_async_reqs = RAL_TX_LIST_COUNT;
if ((err = usb_pipe_open(sc->sc_dev,
&ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
&sc->sc_tx_pipeh)) != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR,
"rum_open_pipes(): %x failed to open tx pipe\n", err);
goto fail;
}
ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
USB_EP_ATTR_BULK, USB_EP_DIR_IN);
bzero(&policy, sizeof (usb_pipe_policy_t));
policy.pp_max_async_reqs = RAL_RX_LIST_COUNT + 32;
if ((err = usb_pipe_open(sc->sc_dev,
&ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
&sc->sc_rx_pipeh)) != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR,
"rum_open_pipes(): %x failed to open rx pipe\n", err);
goto fail;
}
return (USB_SUCCESS);
fail:
if (sc->sc_rx_pipeh != NULL) {
usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh,
USB_FLAGS_SLEEP, NULL, 0);
sc->sc_rx_pipeh = NULL;
}
if (sc->sc_tx_pipeh != NULL) {
usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh,
USB_FLAGS_SLEEP, NULL, 0);
sc->sc_tx_pipeh = NULL;
}
return (USB_FAILURE);
}
static int
rum_tx_trigger(struct rum_softc *sc, mblk_t *mp)
{
usb_bulk_req_t *req;
int err;
sc->sc_tx_timer = RUM_TX_TIMEOUT;
req = usb_alloc_bulk_req(sc->sc_dev, 0, USB_FLAGS_SLEEP);
if (req == NULL) {
ral_debug(RAL_DBG_ERR,
"rum_tx_trigger(): failed to allocate req");
freemsg(mp);
return (-1);
}
req->bulk_len = msgdsize(mp);
req->bulk_data = mp;
req->bulk_client_private = (usb_opaque_t)sc;
req->bulk_timeout = RUM_TX_TIMEOUT;
req->bulk_attributes = USB_ATTRS_AUTOCLEARING;
req->bulk_cb = rum_txeof;
req->bulk_exc_cb = rum_txeof;
req->bulk_completion_reason = 0;
req->bulk_cb_flags = 0;
if ((err = usb_pipe_bulk_xfer(sc->sc_tx_pipeh, req, 0))
!= USB_SUCCESS) {
ral_debug(RAL_DBG_ERR, "rum_tx_trigger(): "
"failed to do tx xfer, %d", err);
usb_free_bulk_req(req);
return (-1);
}
sc->tx_queued++;
return (0);
}
static int
rum_rx_trigger(struct rum_softc *sc)
{
usb_bulk_req_t *req;
int err;
req = usb_alloc_bulk_req(sc->sc_dev, RAL_RXBUF_SIZE, USB_FLAGS_SLEEP);
if (req == NULL) {
ral_debug(RAL_DBG_ERR,
"rum_rx_trigger(): failed to allocate req");
return (-1);
}
req->bulk_len = RAL_RXBUF_SIZE;
req->bulk_client_private = (usb_opaque_t)sc;
req->bulk_timeout = 0;
req->bulk_attributes = USB_ATTRS_SHORT_XFER_OK
| USB_ATTRS_AUTOCLEARING;
req->bulk_cb = rum_rxeof;
req->bulk_exc_cb = rum_rxeof;
req->bulk_completion_reason = 0;
req->bulk_cb_flags = 0;
err = usb_pipe_bulk_xfer(sc->sc_rx_pipeh, req, 0);
if (err != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR, "rum_rx_trigger(): "
"failed to do rx xfer, %d", err);
usb_free_bulk_req(req);
return (-1);
}
mutex_enter(&sc->rx_lock);
sc->rx_queued++;
mutex_exit(&sc->rx_lock);
return (0);
}
static void
rum_init_tx_queue(struct rum_softc *sc)
{
sc->tx_queued = 0;
}
static int
rum_init_rx_queue(struct rum_softc *sc)
{
int i;
sc->rx_queued = 0;
for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
if (rum_rx_trigger(sc) != 0) {
return (USB_FAILURE);
}
}
return (USB_SUCCESS);
}
static void
rum_stop(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
ieee80211_stop_watchdog(ic); /* stop the watchdog */
RAL_LOCK(sc);
sc->sc_tx_timer = 0;
sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
/* disable Rx */
tmp = rum_read(sc, RT2573_TXRX_CSR0);
rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
/* reset ASIC */
rum_write(sc, RT2573_MAC_CSR1, 3);
rum_write(sc, RT2573_MAC_CSR1, 0);
rum_close_pipes(sc);
RAL_UNLOCK(sc);
}
static int
rum_init(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int i, ntries;
rum_stop(sc);
/* initialize MAC registers to default values */
for (i = 0; i < RUM_N(rum_def_mac); i++)
rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
/* set host ready */
rum_write(sc, RT2573_MAC_CSR1, 3);
rum_write(sc, RT2573_MAC_CSR1, 0);
/* wait for BBP/RF to wakeup */
for (ntries = 0; ntries < 1000; ntries++) {
if (rum_read(sc, RT2573_MAC_CSR12) & 8)
break;
rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
drv_usecwait(1000);
}
if (ntries == 1000) {
ral_debug(RAL_DBG_ERR,
"rum_init(): timeout waiting for BBP/RF to wakeup\n");
goto fail;
}
if (rum_bbp_init(sc) != 0)
goto fail;
/* select default channel */
rum_select_band(sc, ic->ic_curchan);
rum_select_antenna(sc);
rum_set_chan(sc, ic->ic_curchan);
/* clear STA registers */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta));
rum_set_macaddr(sc, ic->ic_macaddr);
/* initialize ASIC */
rum_write(sc, RT2573_MAC_CSR1, 4);
if (rum_open_pipes(sc) != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR, "rum_init(): "
"could not open pipes.\n");
goto fail;
}
rum_init_tx_queue(sc);
if (rum_init_rx_queue(sc) != USB_SUCCESS)
goto fail;
/* update Rx filter */
tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
RT2573_DROP_ACKCTS;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RT2573_DROP_TODS;
if (!(sc->sc_rcr & RAL_RCR_PROMISC))
tmp |= RT2573_DROP_NOT_TO_ME;
}
rum_write(sc, RT2573_TXRX_CSR0, tmp);
sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */
return (DDI_SUCCESS);
fail:
rum_stop(sc);
return (DDI_FAILURE);
}
static int
rum_disconnect(dev_info_t *devinfo)
{
struct rum_softc *sc;
struct ieee80211com *ic;
/*
* We can't call rum_stop() here, since the hardware is removed,
* we can't access the register anymore.
*/
sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo));
ASSERT(sc != NULL);
if (!RAL_IS_RUNNING(sc)) /* different device or not inited */
return (DDI_SUCCESS);
ic = &sc->sc_ic;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
ieee80211_stop_watchdog(ic); /* stop the watchdog */
RAL_LOCK(sc);
sc->sc_tx_timer = 0;
sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
rum_close_pipes(sc);
RAL_UNLOCK(sc);
return (DDI_SUCCESS);
}
static int
rum_reconnect(dev_info_t *devinfo)
{
struct rum_softc *sc;
int err;
sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo));
ASSERT(sc != NULL);
/* check device changes after disconnect */
if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1,
USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR, "different device connected\n");
return (DDI_FAILURE);
}
err = rum_load_microcode(sc);
if (err != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n");
goto fail;
}
err = rum_init(sc);
fail:
return (err);
}
static void
rum_resume(struct rum_softc *sc)
{
int err;
/* check device changes after suspend */
if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1,
USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR, "no or different device connected\n");
return;
}
err = rum_load_microcode(sc);
if (err != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n");
return;
}
(void) rum_init(sc);
}
#define RUM_AMRR_MIN_SUCCESS_THRESHOLD 1
#define RUM_AMRR_MAX_SUCCESS_THRESHOLD 10
/*
* Naive implementation of the Adaptive Multi Rate Retry algorithm:
* "IEEE 802.11 Rate Adaptation: A Practical Approach"
* Mathieu Lacage, Hossein Manshaei, Thierry Turletti
* INRIA Sophia - Projet Planete
* http://www-sop.inria.fr/rapports/sophia/RR-5208.html
*
* This algorithm is particularly well suited for rum since it does not
* require per-frame retry statistics. Note however that since h/w does
* not provide per-frame stats, we can't do per-node rate adaptation and
* thus automatic rate adaptation is only enabled in STA operating mode.
*/
#define is_success(amrr) \
((amrr)->retrycnt < (amrr)->txcnt / 10)
#define is_failure(amrr) \
((amrr)->retrycnt > (amrr)->txcnt / 3)
#define is_enough(amrr) \
((amrr)->txcnt > 10)
#define is_min_rate(ni) \
((ni)->in_txrate == 0)
#define is_max_rate(ni) \
((ni)->in_txrate == (ni)->in_rates.ir_nrates - 1)
#define increase_rate(ni) \
((ni)->in_txrate++)
#define decrease_rate(ni) \
((ni)->in_txrate--)
#define reset_cnt(amrr) do { \
(amrr)->txcnt = (amrr)->retrycnt = 0; \
_NOTE(CONSTCOND) \
} while (/* CONSTCOND */0)
static void
rum_ratectl(struct rum_amrr *amrr, struct ieee80211_node *ni)
{
int need_change = 0;
if (is_success(amrr) && is_enough(amrr)) {
amrr->success++;
if (amrr->success >= amrr->success_threshold &&
!is_max_rate(ni)) {
amrr->recovery = 1;
amrr->success = 0;
increase_rate(ni);
need_change = 1;
} else {
amrr->recovery = 0;
}
} else if (is_failure(amrr)) {
amrr->success = 0;
if (!is_min_rate(ni)) {
if (amrr->recovery) {
amrr->success_threshold *= 2;
if (amrr->success_threshold >
RUM_AMRR_MAX_SUCCESS_THRESHOLD)
amrr->success_threshold =
RUM_AMRR_MAX_SUCCESS_THRESHOLD;
} else {
amrr->success_threshold =
RUM_AMRR_MIN_SUCCESS_THRESHOLD;
}
decrease_rate(ni);
need_change = 1;
}
amrr->recovery = 0; /* original paper was incorrect */
}
if (is_enough(amrr) || need_change)
reset_cnt(amrr);
}
static void
rum_amrr_timeout(void *arg)
{
struct rum_softc *sc = (struct rum_softc *)arg;
struct rum_amrr *amrr = &sc->amrr;
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta));
/* count TX retry-fail as Tx errors */
sc->sc_tx_err += LE_32(sc->sta[5]) >> 16;
sc->sc_tx_retries += ((LE_32(sc->sta[4]) >> 16) +
(LE_32(sc->sta[5]) & 0xffff));
amrr->retrycnt =
(LE_32(sc->sta[4]) >> 16) + /* TX one-retry ok count */
(LE_32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
(LE_32(sc->sta[5]) >> 16); /* TX retry-fail count */
amrr->txcnt =
amrr->retrycnt +
(LE_32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
rum_ratectl(amrr, sc->sc_ic.ic_bss);
sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc,
drv_usectohz(1000 * 1000)); /* 1 second */
}
static void
rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
{
struct rum_amrr *amrr = &sc->amrr;
int i;
/* clear statistic registers (STA_CSR0 to STA_CSR5) */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta));
amrr->success = 0;
amrr->recovery = 0;
amrr->txcnt = amrr->retrycnt = 0;
amrr->success_threshold = RUM_AMRR_MIN_SUCCESS_THRESHOLD;
/* set rate to some reasonable initial value */
for (i = ni->in_rates.ir_nrates - 1;
i > 0 && (ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL) > 72;
i--) {
}
ni->in_txrate = i;
sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc,
drv_usectohz(1000 * 1000)); /* 1 second */
}
void
rum_watchdog(void *arg)
{
struct rum_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int ntimer = 0;
RAL_LOCK(sc);
ic->ic_watchdog_timer = 0;
if (!RAL_IS_RUNNING(sc)) {
RAL_UNLOCK(sc);
return;
}
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
ral_debug(RAL_DBG_ERR, "tx timer timeout\n");
RAL_UNLOCK(sc);
(void) rum_init(sc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return;
}
}
if (ic->ic_state == IEEE80211_S_RUN)
ntimer = 1;
RAL_UNLOCK(sc);
ieee80211_watchdog(ic);
if (ntimer)
ieee80211_start_watchdog(ic, ntimer);
}
static int
rum_m_start(void *arg)
{
struct rum_softc *sc = (struct rum_softc *)arg;
int err;
/*
* initialize RT2501USB hardware
*/
err = rum_init(sc);
if (err != DDI_SUCCESS) {
ral_debug(RAL_DBG_ERR, "device configuration failed\n");
goto fail;
}
sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */
return (err);
fail:
rum_stop(sc);
return (err);
}
static void
rum_m_stop(void *arg)
{
struct rum_softc *sc = (struct rum_softc *)arg;
(void) rum_stop(sc);
sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
}
static int
rum_m_unicst(void *arg, const uint8_t *macaddr)
{
struct rum_softc *sc = (struct rum_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
ral_debug(RAL_DBG_MSG, "rum_m_unicst(): " MACSTR "\n",
MAC2STR(macaddr));
IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
(void) rum_set_macaddr(sc, (uint8_t *)macaddr);
(void) rum_init(sc);
return (0);
}
/*ARGSUSED*/
static int
rum_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
{
return (0);
}
static int
rum_m_promisc(void *arg, boolean_t on)
{
struct rum_softc *sc = (struct rum_softc *)arg;
if (on) {
sc->sc_rcr |= RAL_RCR_PROMISC;
sc->sc_rcr |= RAL_RCR_MULTI;
} else {
sc->sc_rcr &= ~RAL_RCR_PROMISC;
sc->sc_rcr &= ~RAL_RCR_MULTI;
}
rum_update_promisc(sc);
return (0);
}
/*
* callback functions for /get/set properties
*/
static int
rum_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, const void *wldp_buf)
{
struct rum_softc *sc = (struct rum_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
int err;
err = ieee80211_setprop(ic, pr_name, wldp_pr_num,
wldp_length, wldp_buf);
RAL_LOCK(sc);
if (err == ENETRESET) {
if (RAL_IS_RUNNING(sc)) {
RAL_UNLOCK(sc);
(void) rum_init(sc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
RAL_LOCK(sc);
}
err = 0;
}
RAL_UNLOCK(sc);
return (err);
}
static int
rum_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, void *wldp_buf)
{
struct rum_softc *sc = (struct rum_softc *)arg;
int err;
err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
wldp_length, wldp_buf);
return (err);
}
static void
rum_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
mac_prop_info_handle_t prh)
{
struct rum_softc *sc = (struct rum_softc *)arg;
ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh);
}
static void
rum_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
{
struct rum_softc *sc = (struct rum_softc *)arg;
struct ieee80211com *ic = &sc->sc_ic;
int err;
err = ieee80211_ioctl(ic, wq, mp);
RAL_LOCK(sc);
if (err == ENETRESET) {
if (RAL_IS_RUNNING(sc)) {
RAL_UNLOCK(sc);
(void) rum_init(sc);
(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
RAL_LOCK(sc);
}
}
RAL_UNLOCK(sc);
}
static int
rum_m_stat(void *arg, uint_t stat, uint64_t *val)
{
struct rum_softc *sc = (struct rum_softc *)arg;
ieee80211com_t *ic = &sc->sc_ic;
ieee80211_node_t *ni;
struct ieee80211_rateset *rs;
RAL_LOCK(sc);
ni = ic->ic_bss;
rs = &ni->in_rates;
switch (stat) {
case MAC_STAT_IFSPEED:
*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
(rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
: ic->ic_fixed_rate) * 500000ull;
break;
case MAC_STAT_NOXMTBUF:
*val = sc->sc_tx_nobuf;
break;
case MAC_STAT_NORCVBUF:
*val = sc->sc_rx_nobuf;
break;
case MAC_STAT_IERRORS:
*val = sc->sc_rx_err;
break;
case MAC_STAT_RBYTES:
*val = ic->ic_stats.is_rx_bytes;
break;
case MAC_STAT_IPACKETS:
*val = ic->ic_stats.is_rx_frags;
break;
case MAC_STAT_OBYTES:
*val = ic->ic_stats.is_tx_bytes;
break;
case MAC_STAT_OPACKETS:
*val = ic->ic_stats.is_tx_frags;
break;
case MAC_STAT_OERRORS:
case WIFI_STAT_TX_FAILED:
*val = sc->sc_tx_err;
break;
case WIFI_STAT_TX_RETRANS:
*val = sc->sc_tx_retries;
break;
case WIFI_STAT_FCS_ERRORS:
case WIFI_STAT_WEP_ERRORS:
case WIFI_STAT_TX_FRAGS:
case WIFI_STAT_MCAST_TX:
case WIFI_STAT_RTS_SUCCESS:
case WIFI_STAT_RTS_FAILURE:
case WIFI_STAT_ACK_FAILURE:
case WIFI_STAT_RX_FRAGS:
case WIFI_STAT_MCAST_RX:
case WIFI_STAT_RX_DUPS:
RAL_UNLOCK(sc);
return (ieee80211_stat(ic, stat, val));
default:
RAL_UNLOCK(sc);
return (ENOTSUP);
}
RAL_UNLOCK(sc);
return (0);
}
static int
rum_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
{
struct rum_softc *sc;
struct ieee80211com *ic;
int err, i, ntries;
uint32_t tmp;
int instance;
char strbuf[32];
wifi_data_t wd = { 0 };
mac_register_t *macp;
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
sc = ddi_get_soft_state(rum_soft_state_p,
ddi_get_instance(devinfo));
ASSERT(sc != NULL);
rum_resume(sc);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
instance = ddi_get_instance(devinfo);
if (ddi_soft_state_zalloc(rum_soft_state_p, instance) != DDI_SUCCESS) {
ral_debug(RAL_DBG_MSG, "rum_attach(): "
"unable to alloc soft_state_p\n");
return (DDI_FAILURE);
}
sc = ddi_get_soft_state(rum_soft_state_p, instance);
ic = (ieee80211com_t *)&sc->sc_ic;
sc->sc_dev = devinfo;
if (usb_client_attach(devinfo, USBDRV_VERSION, 0) != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR,
"rum_attach(): usb_client_attach failed\n");
goto fail1;
}
if (usb_get_dev_data(devinfo, &sc->sc_udev,
USB_PARSE_LVL_ALL, 0) != USB_SUCCESS) {
sc->sc_udev = NULL;
goto fail2;
}
mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->tx_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&sc->rx_lock, NULL, MUTEX_DRIVER, NULL);
/* retrieve RT2573 rev. no */
for (ntries = 0; ntries < 1000; ntries++) {
if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
break;
drv_usecwait(1000);
}
if (ntries == 1000) {
ral_debug(RAL_DBG_ERR,
"rum_attach(): timeout waiting for chip to settle\n");
goto fail3;
}
/* retrieve MAC address and various other things from EEPROM */
rum_read_eeprom(sc);
ral_debug(RAL_DBG_MSG, "rum: MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
tmp, rum_get_rf(sc->rf_rev));
err = rum_load_microcode(sc);
if (err != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n");
goto fail3;
}
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
ic->ic_maxrssi = 63;
ic->ic_set_shortslot = rum_update_slot;
ic->ic_xmit = rum_send;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT; /* short slot time supported */
ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
#define IEEE80211_CHAN_A \
(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
/* set supported .11a channels */
for (i = 34; i <= 46; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
for (i = 36; i <= 64; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
for (i = 100; i <= 140; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 165; i += 4) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_sup_channels[i].ich_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_sup_channels[i].ich_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ieee80211_attach(ic);
/* register WPA door */
ieee80211_register_door(ic, ddi_driver_name(devinfo),
ddi_get_instance(devinfo));
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rum_newstate;
ic->ic_watchdog = rum_watchdog;
ieee80211_media_init(ic);
ic->ic_def_txkey = 0;
sc->sc_rcr = 0;
sc->dwelltime = 300;
sc->sc_flags = 0;
/*
* Provide initial settings for the WiFi plugin; whenever this
* information changes, we need to call mac_plugindata_update()
*/
wd.wd_opmode = ic->ic_opmode;
wd.wd_secalloc = WIFI_SEC_NONE;
IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
ral_debug(RAL_DBG_ERR, "rum_attach(): "
"MAC version mismatch\n");
goto fail3;
}
macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
macp->m_driver = sc;
macp->m_dip = devinfo;
macp->m_src_addr = ic->ic_macaddr;
macp->m_callbacks = &rum_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = IEEE80211_MTU;
macp->m_pdata = &wd;
macp->m_pdata_size = sizeof (wd);
err = mac_register(macp, &ic->ic_mach);
mac_free(macp);
if (err != 0) {
ral_debug(RAL_DBG_ERR, "rum_attach(): "
"mac_register() err %x\n", err);
goto fail3;
}
if (usb_register_hotplug_cbs(devinfo, rum_disconnect,
rum_reconnect) != USB_SUCCESS) {
ral_debug(RAL_DBG_ERR,
"rum_attach() failed to register events");
goto fail4;
}
/*
* Create minor node of type DDI_NT_NET_WIFI
*/
(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
"rum", instance);
err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
instance + 1, DDI_NT_NET_WIFI, 0);
if (err != DDI_SUCCESS)
ral_debug(RAL_DBG_ERR, "ddi_create_minor_node() failed\n");
/*
* Notify link is down now
*/
mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
return (DDI_SUCCESS);
fail4:
(void) mac_unregister(ic->ic_mach);
fail3:
mutex_destroy(&sc->sc_genlock);
mutex_destroy(&sc->tx_lock);
mutex_destroy(&sc->rx_lock);
fail2:
usb_client_detach(sc->sc_dev, sc->sc_udev);
fail1:
ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo));
return (DDI_FAILURE);
}
static int
rum_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
{
struct rum_softc *sc;
sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo));
ASSERT(sc != NULL);
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
if (RAL_IS_RUNNING(sc))
(void) rum_stop(sc);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
rum_stop(sc);
usb_unregister_hotplug_cbs(devinfo);
/*
* Unregister from the MAC layer subsystem
*/
if (mac_unregister(sc->sc_ic.ic_mach) != 0)
return (DDI_FAILURE);
/*
* detach ieee80211 layer
*/
ieee80211_detach(&sc->sc_ic);
mutex_destroy(&sc->sc_genlock);
mutex_destroy(&sc->tx_lock);
mutex_destroy(&sc->rx_lock);
/* pipes will be closed in rum_stop() */
usb_client_detach(devinfo, sc->sc_udev);
sc->sc_udev = NULL;
ddi_remove_minor_node(devinfo, NULL);
ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo));
return (DDI_SUCCESS);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_init(void)
{
int status;
status = ddi_soft_state_init(&rum_soft_state_p,
sizeof (struct rum_softc), 1);
if (status != 0)
return (status);
mac_init_ops(&rum_dev_ops, "rum");
status = mod_install(&modlinkage);
if (status != 0) {
mac_fini_ops(&rum_dev_ops);
ddi_soft_state_fini(&rum_soft_state_p);
}
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&modlinkage);
if (status == 0) {
mac_fini_ops(&rum_dev_ops);
ddi_soft_state_fini(&rum_soft_state_p);
}
return (status);
}