/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* STREAMS Packet Filter Module
*
* This module applies a filter to messages arriving on its read
* queue, passing on messages that the filter accepts adn discarding
* the others. It supports ioctls for setting the filter.
*
* On the write side, the module simply passes everything through
* unchanged.
*
* Based on SunOS 4.x version. This version has minor changes:
* - general SVR4 porting stuff
* - change name and prefixes from "nit" buffer to streams buffer
* - multithreading assumes configured as D_MTQPAIR
*/
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include <sys/time.h>
#include <sys/stropts.h>
#include <sys/stream.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/kmem.h>
#include <sys/strsun.h>
#include <sys/pfmod.h>
#include <sys/modctl.h>
/*
* Expanded version of the Packetfilt structure that includes
* some additional fields that aid filter execution efficiency.
*/
struct epacketfilt {
struct Pf_ext_packetfilt pf;
#define pf_Priority pf.Pf_Priority
#define pf_FilterLen pf.Pf_FilterLen
#define pf_Filter pf.Pf_Filter
/* pointer to word immediately past end of filter */
ushort_t *pf_FilterEnd;
/* length in bytes of packet prefix the filter examines */
ushort_t pf_PByteLen;
};
/*
* (Internal) packet descriptor for FilterPacket
*/
struct packdesc {
ushort_t *pd_hdr; /* header starting address */
uint_t pd_hdrlen; /* header length in shorts */
ushort_t *pd_body; /* body starting address */
uint_t pd_bodylen; /* body length in shorts */
};
/*
* Function prototypes.
*/
static int pfopen(queue_t *, dev_t *, int, int, cred_t *);
static int pfclose(queue_t *);
static void pfioctl(queue_t *wq, mblk_t *mp);
static int FilterPacket(struct packdesc *, struct epacketfilt *);
/*
* To save instructions, since STREAMS ignores the return value
* from these functions, they are defined as void here. Kind of icky, but...
*/
static void pfwput(queue_t *, mblk_t *);
static void pfrput(queue_t *, mblk_t *);
static struct module_info pf_minfo = {
22, /* mi_idnum */
"pfmod", /* mi_idname */
0, /* mi_minpsz */
INFPSZ, /* mi_maxpsz */
0, /* mi_hiwat */
0 /* mi_lowat */
};
static struct qinit pf_rinit = {
(int (*)())pfrput, /* qi_putp */
NULL,
pfopen, /* qi_qopen */
pfclose, /* qi_qclose */
NULL, /* qi_qadmin */
&pf_minfo, /* qi_minfo */
NULL /* qi_mstat */
};
static struct qinit pf_winit = {
(int (*)())pfwput, /* qi_putp */
NULL, /* qi_srvp */
NULL, /* qi_qopen */
NULL, /* qi_qclose */
NULL, /* qi_qadmin */
&pf_minfo, /* qi_minfo */
NULL /* qi_mstat */
};
static struct streamtab pf_info = {
&pf_rinit, /* st_rdinit */
&pf_winit, /* st_wrinit */
NULL, /* st_muxrinit */
NULL /* st_muxwinit */
};
static struct fmodsw fsw = {
"pfmod",
&pf_info,
D_MTQPAIR | D_MP
};
static struct modlstrmod modlstrmod = {
&mod_strmodops, "streams packet filter module", &fsw
};
static struct modlinkage modlinkage = {
MODREV_1, &modlstrmod, NULL
};
int
_init(void)
{
return (mod_install(&modlinkage));
}
int
_fini(void)
{
return (mod_remove(&modlinkage));
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*ARGSUSED*/
static int
pfopen(queue_t *rq, dev_t *dev, int oflag, int sflag, cred_t *crp)
{
struct epacketfilt *pfp;
ASSERT(rq);
if (sflag != MODOPEN)
return (EINVAL);
if (rq->q_ptr)
return (0);
/*
* Allocate and initialize per-Stream structure.
*/
pfp = kmem_alloc(sizeof (struct epacketfilt), KM_SLEEP);
rq->q_ptr = WR(rq)->q_ptr = (char *)pfp;
qprocson(rq);
return (0);
}
static int
pfclose(queue_t *rq)
{
struct epacketfilt *pfp = (struct epacketfilt *)rq->q_ptr;
ASSERT(pfp);
qprocsoff(rq);
kmem_free(pfp, sizeof (struct epacketfilt));
rq->q_ptr = WR(rq)->q_ptr = NULL;
return (0);
}
/*
* Write-side put procedure. Its main task is to detect ioctls.
* Other message types are passed on through.
*/
static void
pfwput(queue_t *wq, mblk_t *mp)
{
switch (mp->b_datap->db_type) {
case M_IOCTL:
pfioctl(wq, mp);
break;
default:
putnext(wq, mp);
break;
}
}
/*
* Read-side put procedure. It's responsible for applying the
* packet filter and passing upstream message on or discarding it
* depending upon the results.
*
* Upstream messages can start with zero or more M_PROTO mblks
* which are skipped over before executing the packet filter
* on any remaining M_DATA mblks.
*/
static void
pfrput(queue_t *rq, mblk_t *mp)
{
struct epacketfilt *pfp = (struct epacketfilt *)rq->q_ptr;
mblk_t *mbp, *mpp;
struct packdesc pd;
int need;
ASSERT(pfp);
switch (DB_TYPE(mp)) {
case M_PROTO:
case M_DATA:
/*
* Skip over protocol information and find the start
* of the message body, saving the overall message
* start in mpp.
*/
for (mpp = mp; mp && (DB_TYPE(mp) == M_PROTO); mp = mp->b_cont)
;
/*
* Null body (exclusive of M_PROTO blocks) ==> accept.
* Note that a null body is not the same as an empty body.
*/
if (mp == NULL) {
putnext(rq, mpp);
break;
}
/*
* Pull the packet up to the length required by
* the filter. Note that doing so destroys sharing
* relationships, which is unfortunate, since the
* results of pulling up here are likely to be useful
* for shared messages applied to a filter on a sibling
* stream.
*
* Most packet sources will provide the packet in two
* logical pieces: an initial header in a single mblk,
* and a body in a sequence of mblks hooked to the
* header. We're prepared to deal with variant forms,
* but in any case, the pullup applies only to the body
* part.
*/
mbp = mp->b_cont;
need = pfp->pf_PByteLen;
if (mbp && (MBLKL(mbp) < need)) {
int len = msgdsize(mbp);
/* XXX discard silently on pullupmsg failure */
if (pullupmsg(mbp, MIN(need, len)) == 0) {
freemsg(mpp);
break;
}
}
/*
* Misalignment (not on short boundary) ==> reject.
*/
if (((uintptr_t)mp->b_rptr & (sizeof (ushort_t) - 1)) ||
(mbp != NULL &&
((uintptr_t)mbp->b_rptr & (sizeof (ushort_t) - 1)))) {
freemsg(mpp);
break;
}
/*
* These assignments are distasteful, but necessary,
* since the packet filter wants to work in terms of
* shorts. Odd bytes at the end of header or data can't
* participate in the filtering operation.
*/
pd.pd_hdr = (ushort_t *)mp->b_rptr;
pd.pd_hdrlen = (mp->b_wptr - mp->b_rptr) / sizeof (ushort_t);
if (mbp) {
pd.pd_body = (ushort_t *)mbp->b_rptr;
pd.pd_bodylen = (mbp->b_wptr - mbp->b_rptr) /
sizeof (ushort_t);
} else {
pd.pd_body = NULL;
pd.pd_bodylen = 0;
}
/*
* Apply the filter.
*/
if (FilterPacket(&pd, pfp))
putnext(rq, mpp);
else
freemsg(mpp);
break;
default:
putnext(rq, mp);
break;
}
}
/*
* Handle write-side M_IOCTL messages.
*/
static void
pfioctl(queue_t *wq, mblk_t *mp)
{
struct epacketfilt *pfp = (struct epacketfilt *)wq->q_ptr;
struct Pf_ext_packetfilt *upfp;
struct packetfilt *opfp;
ushort_t *fwp;
int arg;
int maxoff = 0;
int maxoffreg = 0;
struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
int error;
switch (iocp->ioc_cmd) {
case PFIOCSETF:
/*
* Verify argument length. Since the size of packet filter
* got increased (ENMAXFILTERS was bumped up to 2047), to
* maintain backwards binary compatibility, we need to
* check for both possible sizes.
*/
switch (iocp->ioc_count) {
case sizeof (struct Pf_ext_packetfilt):
error = miocpullup(mp,
sizeof (struct Pf_ext_packetfilt));
if (error != 0) {
miocnak(wq, mp, 0, error);
return;
}
upfp = (struct Pf_ext_packetfilt *)mp->b_cont->b_rptr;
if (upfp->Pf_FilterLen > PF_MAXFILTERS) {
miocnak(wq, mp, 0, EINVAL);
return;
}
bcopy(upfp, pfp, sizeof (struct Pf_ext_packetfilt));
pfp->pf_FilterEnd = &pfp->pf_Filter[pfp->pf_FilterLen];
break;
case sizeof (struct packetfilt):
error = miocpullup(mp, sizeof (struct packetfilt));
if (error != 0) {
miocnak(wq, mp, 0, error);
return;
}
opfp = (struct packetfilt *)mp->b_cont->b_rptr;
/* this strange comparison keeps gcc from complaining */
if (opfp->Pf_FilterLen - 1 >= ENMAXFILTERS) {
miocnak(wq, mp, 0, EINVAL);
return;
}
pfp->pf.Pf_Priority = opfp->Pf_Priority;
pfp->pf.Pf_FilterLen = (unsigned int)opfp->Pf_FilterLen;
bcopy(opfp->Pf_Filter, pfp->pf.Pf_Filter,
sizeof (opfp->Pf_Filter));
pfp->pf_FilterEnd = &pfp->pf_Filter[pfp->pf_FilterLen];
break;
default:
miocnak(wq, mp, 0, EINVAL);
return;
}
/*
* Find and record maximum byte offset that the
* filter users. We use this when executing the
* filter to determine how much of the packet
* body to pull up. This code depends on the
* filter encoding.
*/
for (fwp = pfp->pf_Filter; fwp < pfp->pf_FilterEnd; fwp++) {
arg = *fwp & ((1 << ENF_NBPA) - 1);
switch (arg) {
default:
if ((arg -= ENF_PUSHWORD) > maxoff)
maxoff = arg;
break;
case ENF_LOAD_OFFSET:
/* Point to the offset */
fwp++;
if (*fwp > maxoffreg)
maxoffreg = *fwp;
break;
case ENF_PUSHLIT:
case ENF_BRTR:
case ENF_BRFL:
/* Skip over the literal. */
fwp++;
break;
case ENF_PUSHZERO:
case ENF_PUSHONE:
case ENF_PUSHFFFF:
case ENF_PUSHFF00:
case ENF_PUSH00FF:
case ENF_NOPUSH:
case ENF_POP:
break;
}
}
/*
* Convert word offset to length in bytes.
*/
pfp->pf_PByteLen = (maxoff + maxoffreg + 1) * sizeof (ushort_t);
miocack(wq, mp, 0, 0);
break;
default:
putnext(wq, mp);
break;
}
}
/* #define DEBUG 1 */
/* #define INNERDEBUG 1 */
#ifdef INNERDEBUG
#define enprintf(a) printf a
#else
#define enprintf(a)
#endif
/*
* Apply the packet filter given by pfp to the packet given by
* pp. Return nonzero iff the filter accepts the packet.
*
* The packet comes in two pieces, a header and a body, since
* that's the most convenient form for our caller. The header
* is in contiguous memory, whereas the body is in a mbuf.
* Our caller will have adjusted the mbuf chain so that its first
* min(MLEN, length(body)) bytes are guaranteed contiguous. For
* the sake of efficiency (and some laziness) the filter is prepared
* to examine only these two contiguous pieces. Furthermore, it
* assumes that the header length is even, so that there's no need
* to glue the last byte of header to the first byte of data.
*/
#define opx(i) ((i) >> ENF_NBPA)
static int
FilterPacket(struct packdesc *pp, struct epacketfilt *pfp)
{
int maxhdr = pp->pd_hdrlen;
int maxword = maxhdr + pp->pd_bodylen;
ushort_t *sp;
ushort_t *fp;
ushort_t *fpe;
unsigned op;
unsigned arg;
unsigned offreg = 0;
ushort_t stack[ENMAXFILTERS+1];
fp = &pfp->pf_Filter[0];
fpe = pfp->pf_FilterEnd;
enprintf(("FilterPacket(%p, %p, %p, %p):\n", pp, pfp, fp, fpe));
/*
* Push TRUE on stack to start. The stack size is chosen such
* that overflow can't occur -- each operation can push at most
* one item on the stack, and the stack size equals the maximum
* program length.
*/
sp = &stack[ENMAXFILTERS];
*sp = 1;
while (fp < fpe) {
op = *fp >> ENF_NBPA;
arg = *fp & ((1 << ENF_NBPA) - 1);
fp++;
switch (arg) {
default:
arg -= ENF_PUSHWORD;
/*
* Since arg is unsigned,
* if it were less than ENF_PUSHWORD before,
* it would now be huge.
*/
if (arg + offreg < maxhdr)
*--sp = pp->pd_hdr[arg + offreg];
else if (arg + offreg < maxword)
*--sp = pp->pd_body[arg - maxhdr + offreg];
else {
enprintf(("=>0(len)\n"));
return (0);
}
break;
case ENF_PUSHLIT:
*--sp = *fp++;
break;
case ENF_PUSHZERO:
*--sp = 0;
break;
case ENF_PUSHONE:
*--sp = 1;
break;
case ENF_PUSHFFFF:
*--sp = 0xffff;
break;
case ENF_PUSHFF00:
*--sp = 0xff00;
break;
case ENF_PUSH00FF:
*--sp = 0x00ff;
break;
case ENF_LOAD_OFFSET:
offreg = *fp++;
break;
case ENF_BRTR:
if (*sp != 0)
fp += *fp;
else
fp++;
if (fp >= fpe) {
enprintf(("BRTR: fp>=fpe\n"));
return (0);
}
break;
case ENF_BRFL:
if (*sp == 0)
fp += *fp;
else
fp++;
if (fp >= fpe) {
enprintf(("BRFL: fp>=fpe\n"));
return (0);
}
break;
case ENF_POP:
++sp;
if (sp > &stack[ENMAXFILTERS]) {
enprintf(("stack underflow\n"));
return (0);
}
break;
case ENF_NOPUSH:
break;
}
if (sp < &stack[2]) { /* check stack overflow: small yellow zone */
enprintf(("=>0(--sp)\n"));
return (0);
}
if (op == ENF_NOP)
continue;
/*
* all non-NOP operators binary, must have at least two operands
* on stack to evaluate.
*/
if (sp > &stack[ENMAXFILTERS-2]) {
enprintf(("=>0(sp++)\n"));
return (0);
}
arg = *sp++;
switch (op) {
default:
enprintf(("=>0(def)\n"));
return (0);
case opx(ENF_AND):
*sp &= arg;
break;
case opx(ENF_OR):
*sp |= arg;
break;
case opx(ENF_XOR):
*sp ^= arg;
break;
case opx(ENF_EQ):
*sp = (*sp == arg);
break;
case opx(ENF_NEQ):
*sp = (*sp != arg);
break;
case opx(ENF_LT):
*sp = (*sp < arg);
break;
case opx(ENF_LE):
*sp = (*sp <= arg);
break;
case opx(ENF_GT):
*sp = (*sp > arg);
break;
case opx(ENF_GE):
*sp = (*sp >= arg);
break;
/* short-circuit operators */
case opx(ENF_COR):
if (*sp++ == arg) {
enprintf(("=>COR %x\n", *sp));
return (1);
}
break;
case opx(ENF_CAND):
if (*sp++ != arg) {
enprintf(("=>CAND %x\n", *sp));
return (0);
}
break;
case opx(ENF_CNOR):
if (*sp++ == arg) {
enprintf(("=>COR %x\n", *sp));
return (0);
}
break;
case opx(ENF_CNAND):
if (*sp++ != arg) {
enprintf(("=>CNAND %x\n", *sp));
return (1);
}
break;
}
}
enprintf(("=>%x\n", *sp));
return (*sp);
}