/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include "nge.h"
/*
* Describes the chip's DMA engine
*/
static ddi_dma_attr_t hot_dma_attr = {
DMA_ATTR_V0, /* dma_attr version */
0x0000000000000000ull, /* dma_attr_addr_lo */
0x000000FFFFFFFFFFull, /* dma_attr_addr_hi */
0x000000007FFFFFFFull, /* dma_attr_count_max */
0x0000000000000010ull, /* dma_attr_align */
0x00000FFF, /* dma_attr_burstsizes */
0x00000001, /* dma_attr_minxfer */
0x000000000000FFFFull, /* dma_attr_maxxfer */
0x000000FFFFFFFFFFull, /* dma_attr_seg */
1, /* dma_attr_sgllen */
0x00000001, /* dma_attr_granular */
0
};
static ddi_dma_attr_t hot_tx_dma_attr = {
DMA_ATTR_V0, /* dma_attr version */
0x0000000000000000ull, /* dma_attr_addr_lo */
0x000000FFFFFFFFFFull, /* dma_attr_addr_hi */
0x0000000000003FFFull, /* dma_attr_count_max */
0x0000000000000010ull, /* dma_attr_align */
0x00000FFF, /* dma_attr_burstsizes */
0x00000001, /* dma_attr_minxfer */
0x0000000000003FFFull, /* dma_attr_maxxfer */
0x000000FFFFFFFFFFull, /* dma_attr_seg */
NGE_MAX_COOKIES, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0
};
static ddi_dma_attr_t sum_dma_attr = {
DMA_ATTR_V0, /* dma_attr version */
0x0000000000000000ull, /* dma_attr_addr_lo */
0x00000000FFFFFFFFull, /* dma_attr_addr_hi */
0x000000007FFFFFFFull, /* dma_attr_count_max */
0x0000000000000010ull, /* dma_attr_align */
0x00000FFF, /* dma_attr_burstsizes */
0x00000001, /* dma_attr_minxfer */
0x000000000000FFFFull, /* dma_attr_maxxfer */
0x00000000FFFFFFFFull, /* dma_attr_seg */
1, /* dma_attr_sgllen */
0x00000001, /* dma_attr_granular */
0
};
static ddi_dma_attr_t sum_tx_dma_attr = {
DMA_ATTR_V0, /* dma_attr version */
0x0000000000000000ull, /* dma_attr_addr_lo */
0x00000000FFFFFFFFull, /* dma_attr_addr_hi */
0x0000000000003FFFull, /* dma_attr_count_max */
0x0000000000000010ull, /* dma_attr_align */
0x00000FFF, /* dma_attr_burstsizes */
0x00000001, /* dma_attr_minxfer */
0x0000000000003FFFull, /* dma_attr_maxxfer */
0x00000000FFFFFFFFull, /* dma_attr_seg */
NGE_MAX_COOKIES, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0
};
/*
* DMA access attributes for data.
*/
ddi_device_acc_attr_t nge_data_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/*
* DMA access attributes for descriptors.
*/
static ddi_device_acc_attr_t nge_desc_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/*
* PIO access attributes for registers
*/
static ddi_device_acc_attr_t nge_reg_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/*
* NIC DESC MODE 2
*/
static const nge_desc_attr_t nge_sum_desc = {
sizeof (sum_rx_bd),
sizeof (sum_tx_bd),
&sum_dma_attr,
&sum_tx_dma_attr,
nge_sum_rxd_fill,
nge_sum_rxd_check,
nge_sum_txd_fill,
nge_sum_txd_check,
};
/*
* NIC DESC MODE 3
*/
static const nge_desc_attr_t nge_hot_desc = {
sizeof (hot_rx_bd),
sizeof (hot_tx_bd),
&hot_dma_attr,
&hot_tx_dma_attr,
nge_hot_rxd_fill,
nge_hot_rxd_check,
nge_hot_txd_fill,
nge_hot_txd_check,
};
static char nge_ident[] = "nVidia 1Gb Ethernet";
static char clsize_propname[] = "cache-line-size";
static char latency_propname[] = "latency-timer";
static char debug_propname[] = "nge-debug-flags";
static char intr_moderation[] = "intr-moderation";
static char rx_data_hw[] = "rx-data-hw";
static char rx_prd_lw[] = "rx-prd-lw";
static char rx_prd_hw[] = "rx-prd-hw";
static char sw_intr_intv[] = "sw-intr-intvl";
static char nge_desc_mode[] = "desc-mode";
static char default_mtu[] = "default_mtu";
static char low_memory_mode[] = "minimal-memory-usage";
extern kmutex_t nge_log_mutex[1];
static int nge_m_start(void *);
static void nge_m_stop(void *);
static int nge_m_promisc(void *, boolean_t);
static int nge_m_multicst(void *, boolean_t, const uint8_t *);
static int nge_m_unicst(void *, const uint8_t *);
static void nge_m_ioctl(void *, queue_t *, mblk_t *);
static boolean_t nge_m_getcapab(void *, mac_capab_t, void *);
static int nge_m_setprop(void *, const char *, mac_prop_id_t,
uint_t, const void *);
static int nge_m_getprop(void *, const char *, mac_prop_id_t,
uint_t, void *);
static void nge_m_propinfo(void *, const char *, mac_prop_id_t,
mac_prop_info_handle_t);
static int nge_set_priv_prop(nge_t *, const char *, uint_t,
const void *);
static int nge_get_priv_prop(nge_t *, const char *, uint_t,
void *);
#define NGE_M_CALLBACK_FLAGS\
(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | \
MC_PROPINFO)
static mac_callbacks_t nge_m_callbacks = {
NGE_M_CALLBACK_FLAGS,
nge_m_stat,
nge_m_start,
nge_m_stop,
nge_m_promisc,
nge_m_multicst,
nge_m_unicst,
nge_m_tx,
NULL,
nge_m_ioctl,
nge_m_getcapab,
NULL,
NULL,
nge_m_setprop,
nge_m_getprop,
nge_m_propinfo
};
char *nge_priv_props[] = {
"_tx_bcopy_threshold",
"_rx_bcopy_threshold",
"_recv_max_packet",
"_poll_quiet_time",
"_poll_busy_time",
"_rx_intr_hwater",
"_rx_intr_lwater",
NULL
};
static int nge_add_intrs(nge_t *, int);
static void nge_rem_intrs(nge_t *);
static int nge_register_intrs_and_init_locks(nge_t *);
/*
* NGE MSI tunable:
*/
boolean_t nge_enable_msi = B_FALSE;
static enum ioc_reply
nge_set_loop_mode(nge_t *ngep, uint32_t mode)
{
/*
* If the mode isn't being changed, there's nothing to do ...
*/
if (mode == ngep->param_loop_mode)
return (IOC_ACK);
/*
* Validate the requested mode and prepare a suitable message
* to explain the link down/up cycle that the change will
* probably induce ...
*/
switch (mode) {
default:
return (IOC_INVAL);
case NGE_LOOP_NONE:
case NGE_LOOP_EXTERNAL_100:
case NGE_LOOP_EXTERNAL_10:
case NGE_LOOP_INTERNAL_PHY:
break;
}
/*
* All OK; tell the caller to reprogram
* the PHY and/or MAC for the new mode ...
*/
ngep->param_loop_mode = mode;
return (IOC_RESTART_ACK);
}
#undef NGE_DBG
#define NGE_DBG NGE_DBG_INIT
/*
* Utility routine to carve a slice off a chunk of allocated memory,
* updating the chunk descriptor accordingly. The size of the slice
* is given by the product of the <qty> and <size> parameters.
*/
void
nge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
uint32_t qty, uint32_t size)
{
size_t totsize;
totsize = qty*size;
ASSERT(size > 0);
ASSERT(totsize <= chunk->alength);
*slice = *chunk;
slice->nslots = qty;
slice->size = size;
slice->alength = totsize;
chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
chunk->alength -= totsize;
chunk->offset += totsize;
chunk->cookie.dmac_laddress += totsize;
chunk->cookie.dmac_size -= totsize;
}
/*
* Allocate an area of memory and a DMA handle for accessing it
*/
int
nge_alloc_dma_mem(nge_t *ngep, size_t memsize, ddi_device_acc_attr_t *attr_p,
uint_t dma_flags, dma_area_t *dma_p)
{
int err;
caddr_t va;
NGE_TRACE(("nge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
(void *)ngep, memsize, attr_p, dma_flags, dma_p));
/*
* Allocate handle
*/
err = ddi_dma_alloc_handle(ngep->devinfo, ngep->desc_attr.dma_attr,
DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
if (err != DDI_SUCCESS)
goto fail;
/*
* Allocate memory
*/
err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength, &dma_p->acc_hdl);
if (err != DDI_SUCCESS)
goto fail;
/*
* Bind the two together
*/
dma_p->mem_va = va;
err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
&dma_p->cookie, &dma_p->ncookies);
if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
goto fail;
dma_p->nslots = ~0U;
dma_p->size = ~0U;
dma_p->offset = 0;
return (DDI_SUCCESS);
fail:
nge_free_dma_mem(dma_p);
NGE_DEBUG(("nge_alloc_dma_mem: fail to alloc dma memory!"));
return (DDI_FAILURE);
}
/*
* Free one allocated area of DMAable memory
*/
void
nge_free_dma_mem(dma_area_t *dma_p)
{
if (dma_p->dma_hdl != NULL) {
if (dma_p->ncookies) {
(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
dma_p->ncookies = 0;
}
}
if (dma_p->acc_hdl != NULL) {
ddi_dma_mem_free(&dma_p->acc_hdl);
dma_p->acc_hdl = NULL;
}
if (dma_p->dma_hdl != NULL) {
ddi_dma_free_handle(&dma_p->dma_hdl);
dma_p->dma_hdl = NULL;
}
}
#define ALLOC_TX_BUF 0x1
#define ALLOC_TX_DESC 0x2
#define ALLOC_RX_DESC 0x4
int
nge_alloc_bufs(nge_t *ngep)
{
int err;
int split;
int progress;
size_t txbuffsize;
size_t rxdescsize;
size_t txdescsize;
txbuffsize = ngep->tx_desc * ngep->buf_size;
rxdescsize = ngep->rx_desc;
txdescsize = ngep->tx_desc;
rxdescsize *= ngep->desc_attr.rxd_size;
txdescsize *= ngep->desc_attr.txd_size;
progress = 0;
NGE_TRACE(("nge_alloc_bufs($%p)", (void *)ngep));
/*
* Allocate memory & handles for TX buffers
*/
ASSERT((txbuffsize % ngep->nge_split) == 0);
for (split = 0; split < ngep->nge_split; ++split) {
err = nge_alloc_dma_mem(ngep, txbuffsize/ngep->nge_split,
&nge_data_accattr, DDI_DMA_WRITE | NGE_DMA_MODE,
&ngep->send->buf[split]);
if (err != DDI_SUCCESS)
goto fail;
}
progress |= ALLOC_TX_BUF;
/*
* Allocate memory & handles for receive return rings and
* buffer (producer) descriptor rings
*/
err = nge_alloc_dma_mem(ngep, rxdescsize, &nge_desc_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->recv->desc);
if (err != DDI_SUCCESS)
goto fail;
progress |= ALLOC_RX_DESC;
/*
* Allocate memory & handles for TX descriptor rings,
*/
err = nge_alloc_dma_mem(ngep, txdescsize, &nge_desc_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->send->desc);
if (err != DDI_SUCCESS)
goto fail;
return (DDI_SUCCESS);
fail:
if (progress & ALLOC_RX_DESC)
nge_free_dma_mem(&ngep->recv->desc);
if (progress & ALLOC_TX_BUF) {
for (split = 0; split < ngep->nge_split; ++split)
nge_free_dma_mem(&ngep->send->buf[split]);
}
return (DDI_FAILURE);
}
/*
* This routine frees the transmit and receive buffers and descriptors.
* Make sure the chip is stopped before calling it!
*/
void
nge_free_bufs(nge_t *ngep)
{
int split;
NGE_TRACE(("nge_free_bufs($%p)", (void *)ngep));
nge_free_dma_mem(&ngep->recv->desc);
nge_free_dma_mem(&ngep->send->desc);
for (split = 0; split < ngep->nge_split; ++split)
nge_free_dma_mem(&ngep->send->buf[split]);
}
/*
* Clean up initialisation done above before the memory is freed
*/
static void
nge_fini_send_ring(nge_t *ngep)
{
uint32_t slot;
size_t dmah_num;
send_ring_t *srp;
sw_tx_sbd_t *ssbdp;
srp = ngep->send;
ssbdp = srp->sw_sbds;
NGE_TRACE(("nge_fini_send_ring($%p)", (void *)ngep));
dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
for (slot = 0; slot < dmah_num; ++slot) {
if (srp->dmahndl[slot].hndl) {
(void) ddi_dma_unbind_handle(srp->dmahndl[slot].hndl);
ddi_dma_free_handle(&srp->dmahndl[slot].hndl);
srp->dmahndl[slot].hndl = NULL;
srp->dmahndl[slot].next = NULL;
}
}
srp->dmah_free.head = NULL;
srp->dmah_free.tail = NULL;
kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp));
}
/*
* Initialise the specified Send Ring, using the information in the
* <dma_area> descriptors that it contains to set up all the other
* fields. This routine should be called only once for each ring.
*/
static int
nge_init_send_ring(nge_t *ngep)
{
size_t dmah_num;
uint32_t nslots;
uint32_t err;
uint32_t slot;
uint32_t split;
send_ring_t *srp;
sw_tx_sbd_t *ssbdp;
dma_area_t desc;
dma_area_t pbuf;
srp = ngep->send;
srp->desc.nslots = ngep->tx_desc;
nslots = srp->desc.nslots;
NGE_TRACE(("nge_init_send_ring($%p)", (void *)ngep));
/*
* Other one-off initialisation of per-ring data
*/
srp->ngep = ngep;
/*
* Allocate the array of s/w Send Buffer Descriptors
*/
ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
srp->sw_sbds = ssbdp;
/*
* Now initialise each array element once and for all
*/
desc = srp->desc;
for (split = 0; split < ngep->nge_split; ++split) {
pbuf = srp->buf[split];
for (slot = 0; slot < nslots/ngep->nge_split; ++ssbdp, ++slot) {
nge_slice_chunk(&ssbdp->desc, &desc, 1,
ngep->desc_attr.txd_size);
nge_slice_chunk(&ssbdp->pbuf, &pbuf, 1,
ngep->buf_size);
}
ASSERT(pbuf.alength == 0);
}
ASSERT(desc.alength == 0);
dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
/* preallocate dma handles for tx buffer */
for (slot = 0; slot < dmah_num; ++slot) {
err = ddi_dma_alloc_handle(ngep->devinfo,
ngep->desc_attr.tx_dma_attr, DDI_DMA_DONTWAIT,
NULL, &srp->dmahndl[slot].hndl);
if (err != DDI_SUCCESS) {
nge_fini_send_ring(ngep);
nge_error(ngep,
"nge_init_send_ring: alloc dma handle fails");
return (DDI_FAILURE);
}
srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
}
srp->dmah_free.head = srp->dmahndl;
srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
srp->dmah_free.tail->next = NULL;
return (DDI_SUCCESS);
}
/*
* Intialize the tx recycle pointer and tx sending pointer of tx ring
* and set the type of tx's data descriptor by default.
*/
static void
nge_reinit_send_ring(nge_t *ngep)
{
size_t dmah_num;
uint32_t slot;
send_ring_t *srp;
sw_tx_sbd_t *ssbdp;
srp = ngep->send;
/*
* Reinitialise control variables ...
*/
srp->tx_hwmark = NGE_DESC_MIN;
srp->tx_lwmark = NGE_DESC_MIN;
srp->tx_next = 0;
srp->tx_free = srp->desc.nslots;
srp->tc_next = 0;
dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
for (slot = 0; slot - dmah_num != 0; ++slot)
srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
srp->dmah_free.head = srp->dmahndl;
srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
srp->dmah_free.tail->next = NULL;
/*
* Zero and sync all the h/w Send Buffer Descriptors
*/
for (slot = 0; slot < srp->desc.nslots; ++slot) {
ssbdp = &srp->sw_sbds[slot];
ssbdp->flags = HOST_OWN;
}
DMA_ZERO(srp->desc);
DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
}
/*
* Initialize the slot number of rx's ring
*/
static void
nge_init_recv_ring(nge_t *ngep)
{
recv_ring_t *rrp;
rrp = ngep->recv;
rrp->desc.nslots = ngep->rx_desc;
rrp->ngep = ngep;
}
/*
* Intialize the rx recycle pointer and rx sending pointer of rx ring
*/
static void
nge_reinit_recv_ring(nge_t *ngep)
{
recv_ring_t *rrp;
rrp = ngep->recv;
/*
* Reinitialise control variables ...
*/
rrp->prod_index = 0;
/*
* Zero and sync all the h/w Send Buffer Descriptors
*/
DMA_ZERO(rrp->desc);
DMA_SYNC(rrp->desc, DDI_DMA_SYNC_FORDEV);
}
/*
* Clean up initialisation done above before the memory is freed
*/
static void
nge_fini_buff_ring(nge_t *ngep)
{
uint32_t i;
buff_ring_t *brp;
dma_area_t *bufp;
sw_rx_sbd_t *bsbdp;
brp = ngep->buff;
bsbdp = brp->sw_rbds;
NGE_DEBUG(("nge_fini_buff_ring($%p)", (void *)ngep));
mutex_enter(brp->recycle_lock);
brp->buf_sign++;
mutex_exit(brp->recycle_lock);
for (i = 0; i < ngep->rx_desc; i++, ++bsbdp) {
if (bsbdp->bufp) {
if (bsbdp->bufp->mp)
freemsg(bsbdp->bufp->mp);
nge_free_dma_mem(bsbdp->bufp);
kmem_free(bsbdp->bufp, sizeof (dma_area_t));
bsbdp->bufp = NULL;
}
}
while (brp->free_list != NULL) {
bufp = brp->free_list;
brp->free_list = bufp->next;
bufp->next = NULL;
if (bufp->mp)
freemsg(bufp->mp);
nge_free_dma_mem(bufp);
kmem_free(bufp, sizeof (dma_area_t));
}
while (brp->recycle_list != NULL) {
bufp = brp->recycle_list;
brp->recycle_list = bufp->next;
bufp->next = NULL;
if (bufp->mp)
freemsg(bufp->mp);
nge_free_dma_mem(bufp);
kmem_free(bufp, sizeof (dma_area_t));
}
kmem_free(brp->sw_rbds, (ngep->rx_desc * sizeof (*bsbdp)));
brp->sw_rbds = NULL;
}
/*
* Intialize the Rx's data ring and free ring
*/
static int
nge_init_buff_ring(nge_t *ngep)
{
uint32_t err;
uint32_t slot;
uint32_t nslots_buff;
uint32_t nslots_recv;
buff_ring_t *brp;
recv_ring_t *rrp;
dma_area_t desc;
dma_area_t *bufp;
sw_rx_sbd_t *bsbdp;
rrp = ngep->recv;
brp = ngep->buff;
brp->nslots = ngep->rx_buf;
brp->rx_bcopy = B_FALSE;
nslots_recv = rrp->desc.nslots;
nslots_buff = brp->nslots;
brp->ngep = ngep;
NGE_TRACE(("nge_init_buff_ring($%p)", (void *)ngep));
/*
* Allocate the array of s/w Recv Buffer Descriptors
*/
bsbdp = kmem_zalloc(nslots_recv *sizeof (*bsbdp), KM_SLEEP);
brp->sw_rbds = bsbdp;
brp->free_list = NULL;
brp->recycle_list = NULL;
for (slot = 0; slot < nslots_buff; ++slot) {
bufp = kmem_zalloc(sizeof (dma_area_t), KM_SLEEP);
err = nge_alloc_dma_mem(ngep, (ngep->buf_size
+ NGE_HEADROOM),
&nge_data_accattr, DDI_DMA_READ | NGE_DMA_MODE, bufp);
if (err != DDI_SUCCESS) {
kmem_free(bufp, sizeof (dma_area_t));
return (DDI_FAILURE);
}
bufp->alength -= NGE_HEADROOM;
bufp->offset += NGE_HEADROOM;
bufp->private = (caddr_t)ngep;
bufp->rx_recycle.free_func = nge_recv_recycle;
bufp->rx_recycle.free_arg = (caddr_t)bufp;
bufp->signature = brp->buf_sign;
bufp->rx_delivered = B_FALSE;
bufp->mp = desballoc(DMA_VPTR(*bufp),
ngep->buf_size + NGE_HEADROOM,
0, &bufp->rx_recycle);
if (bufp->mp == NULL) {
return (DDI_FAILURE);
}
bufp->next = brp->free_list;
brp->free_list = bufp;
}
/*
* Now initialise each array element once and for all
*/
desc = rrp->desc;
for (slot = 0; slot < nslots_recv; ++slot, ++bsbdp) {
nge_slice_chunk(&bsbdp->desc, &desc, 1,
ngep->desc_attr.rxd_size);
bufp = brp->free_list;
brp->free_list = bufp->next;
bsbdp->bufp = bufp;
bsbdp->flags = CONTROLER_OWN;
bufp->next = NULL;
}
ASSERT(desc.alength == 0);
return (DDI_SUCCESS);
}
/*
* Fill the host address of data in rx' descriptor
* and initialize free pointers of rx free ring
*/
static int
nge_reinit_buff_ring(nge_t *ngep)
{
uint32_t slot;
uint32_t nslots_recv;
buff_ring_t *brp;
recv_ring_t *rrp;
sw_rx_sbd_t *bsbdp;
void *hw_bd_p;
brp = ngep->buff;
rrp = ngep->recv;
bsbdp = brp->sw_rbds;
nslots_recv = rrp->desc.nslots;
for (slot = 0; slot < nslots_recv; ++bsbdp, ++slot) {
hw_bd_p = DMA_VPTR(bsbdp->desc);
/*
* There is a scenario: When the traffic of small tcp
* packet is heavy, suspending the tcp traffic will
* cause the preallocated buffers for rx not to be
* released in time by tcp taffic and cause rx's buffer
* pointers not to be refilled in time.
*
* At this point, if we reinitialize the driver, the bufp
* pointer for rx's traffic will be NULL.
* So the result of the reinitializion fails.
*/
if (bsbdp->bufp == NULL)
return (DDI_FAILURE);
ngep->desc_attr.rxd_fill(hw_bd_p, &bsbdp->bufp->cookie,
bsbdp->bufp->alength);
}
return (DDI_SUCCESS);
}
static void
nge_init_ring_param_lock(nge_t *ngep)
{
buff_ring_t *brp;
send_ring_t *srp;
srp = ngep->send;
brp = ngep->buff;
/* Init the locks for send ring */
mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(ngep->intr_pri));
mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(ngep->intr_pri));
mutex_init(&srp->dmah_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(ngep->intr_pri));
/* Init parameters of buffer ring */
brp->free_list = NULL;
brp->recycle_list = NULL;
brp->rx_hold = 0;
brp->buf_sign = 0;
/* Init recycle list lock */
mutex_init(brp->recycle_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(ngep->intr_pri));
}
int
nge_init_rings(nge_t *ngep)
{
uint32_t err;
err = nge_init_send_ring(ngep);
if (err != DDI_SUCCESS) {
return (err);
}
nge_init_recv_ring(ngep);
err = nge_init_buff_ring(ngep);
if (err != DDI_SUCCESS) {
nge_fini_send_ring(ngep);
return (DDI_FAILURE);
}
return (err);
}
static int
nge_reinit_ring(nge_t *ngep)
{
int err;
nge_reinit_recv_ring(ngep);
nge_reinit_send_ring(ngep);
err = nge_reinit_buff_ring(ngep);
return (err);
}
void
nge_fini_rings(nge_t *ngep)
{
/*
* For receive ring, nothing need to be finished.
* So only finish buffer ring and send ring here.
*/
nge_fini_buff_ring(ngep);
nge_fini_send_ring(ngep);
}
/*
* Loopback ioctl code
*/
static lb_property_t loopmodes[] = {
{ normal, "normal", NGE_LOOP_NONE },
{ external, "100Mbps", NGE_LOOP_EXTERNAL_100 },
{ external, "10Mbps", NGE_LOOP_EXTERNAL_10 },
{ internal, "PHY", NGE_LOOP_INTERNAL_PHY },
};
enum ioc_reply
nge_loop_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
{
int cmd;
uint32_t *lbmp;
lb_info_sz_t *lbsp;
lb_property_t *lbpp;
/*
* Validate format of ioctl
*/
if (mp->b_cont == NULL)
return (IOC_INVAL);
cmd = iocp->ioc_cmd;
switch (cmd) {
default:
return (IOC_INVAL);
case LB_GET_INFO_SIZE:
if (iocp->ioc_count != sizeof (lb_info_sz_t))
return (IOC_INVAL);
lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
*lbsp = sizeof (loopmodes);
return (IOC_REPLY);
case LB_GET_INFO:
if (iocp->ioc_count != sizeof (loopmodes))
return (IOC_INVAL);
lbpp = (lb_property_t *)mp->b_cont->b_rptr;
bcopy(loopmodes, lbpp, sizeof (loopmodes));
return (IOC_REPLY);
case LB_GET_MODE:
if (iocp->ioc_count != sizeof (uint32_t))
return (IOC_INVAL);
lbmp = (uint32_t *)mp->b_cont->b_rptr;
*lbmp = ngep->param_loop_mode;
return (IOC_REPLY);
case LB_SET_MODE:
if (iocp->ioc_count != sizeof (uint32_t))
return (IOC_INVAL);
lbmp = (uint32_t *)mp->b_cont->b_rptr;
return (nge_set_loop_mode(ngep, *lbmp));
}
}
#undef NGE_DBG
#define NGE_DBG NGE_DBG_NEMO
static void
nge_check_desc_prop(nge_t *ngep)
{
if (ngep->desc_mode != DESC_HOT && ngep->desc_mode != DESC_OFFLOAD)
ngep->desc_mode = DESC_HOT;
if (ngep->desc_mode == DESC_OFFLOAD) {
ngep->desc_attr = nge_sum_desc;
} else if (ngep->desc_mode == DESC_HOT) {
ngep->desc_attr = nge_hot_desc;
}
}
/*
* nge_get_props -- get the parameters to tune the driver
*/
static void
nge_get_props(nge_t *ngep)
{
chip_info_t *infop;
dev_info_t *devinfo;
nge_dev_spec_param_t *dev_param_p;
devinfo = ngep->devinfo;
infop = (chip_info_t *)&ngep->chipinfo;
dev_param_p = &ngep->dev_spec_param;
infop->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, clsize_propname, 32);
infop->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, latency_propname, 64);
ngep->intr_moderation = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, intr_moderation, NGE_SET);
ngep->rx_datahwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, rx_data_hw, 0x20);
ngep->rx_prdlwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, rx_prd_lw, 0x4);
ngep->rx_prdhwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, rx_prd_hw, 0xc);
ngep->sw_intr_intv = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, sw_intr_intv, SWTR_ITC);
ngep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, debug_propname, NGE_DBG_CHIP);
ngep->desc_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, nge_desc_mode, dev_param_p->desc_type);
ngep->lowmem_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, low_memory_mode, 0);
if (dev_param_p->jumbo) {
ngep->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, default_mtu, ETHERMTU);
} else
ngep->default_mtu = ETHERMTU;
if (dev_param_p->tx_pause_frame)
ngep->param_link_tx_pause = B_TRUE;
else
ngep->param_link_tx_pause = B_FALSE;
if (dev_param_p->rx_pause_frame)
ngep->param_link_rx_pause = B_TRUE;
else
ngep->param_link_rx_pause = B_FALSE;
if (ngep->default_mtu > ETHERMTU &&
ngep->default_mtu <= NGE_MTU_2500) {
ngep->buf_size = NGE_JB2500_BUFSZ;
ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_256;
} else if (ngep->default_mtu > NGE_MTU_2500 &&
ngep->default_mtu <= NGE_MTU_4500) {
ngep->buf_size = NGE_JB4500_BUFSZ;
ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_256;
} else if (ngep->default_mtu > NGE_MTU_4500 &&
ngep->default_mtu <= NGE_MAX_MTU) {
ngep->buf_size = NGE_JB9000_BUFSZ;
ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_256;
} else if (ngep->default_mtu > NGE_MAX_MTU) {
ngep->default_mtu = NGE_MAX_MTU;
ngep->buf_size = NGE_JB9000_BUFSZ;
ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_256;
} else if (ngep->lowmem_mode != 0) {
ngep->default_mtu = ETHERMTU;
ngep->buf_size = NGE_STD_BUFSZ;
ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_32;
} else {
ngep->default_mtu = ETHERMTU;
ngep->buf_size = NGE_STD_BUFSZ;
ngep->tx_desc = dev_param_p->tx_desc_num;
ngep->rx_desc = dev_param_p->rx_desc_num;
ngep->rx_buf = dev_param_p->rx_desc_num * 2;
ngep->nge_split = dev_param_p->nge_split;
}
nge_check_desc_prop(ngep);
}
static int
nge_reset_dev(nge_t *ngep)
{
int err;
nge_mul_addr1 maddr1;
nge_sw_statistics_t *sw_stp;
sw_stp = &ngep->statistics.sw_statistics;
send_ring_t *srp = ngep->send;
ASSERT(mutex_owned(ngep->genlock));
mutex_enter(srp->tc_lock);
mutex_enter(srp->tx_lock);
nge_tx_recycle_all(ngep);
err = nge_reinit_ring(ngep);
if (err == DDI_FAILURE) {
mutex_exit(srp->tx_lock);
mutex_exit(srp->tc_lock);
return (err);
}
err = nge_chip_reset(ngep);
/*
* Clear the Multicast mac address table
*/
nge_reg_put32(ngep, NGE_MUL_ADDR0, 0);
maddr1.addr_val = nge_reg_get32(ngep, NGE_MUL_ADDR1);
maddr1.addr_bits.addr = 0;
nge_reg_put32(ngep, NGE_MUL_ADDR1, maddr1.addr_val);
mutex_exit(srp->tx_lock);
mutex_exit(srp->tc_lock);
if (err == DDI_FAILURE)
return (err);
ngep->watchdog = 0;
ngep->resched_needed = B_FALSE;
ngep->promisc = B_FALSE;
ngep->param_loop_mode = NGE_LOOP_NONE;
ngep->factotum_flag = 0;
ngep->resched_needed = 0;
ngep->nge_mac_state = NGE_MAC_RESET;
ngep->max_sdu = ngep->default_mtu + ETHER_HEAD_LEN + ETHERFCSL;
ngep->max_sdu += VTAG_SIZE;
ngep->rx_def = 0x16;
/* Clear the software statistics */
sw_stp->recv_count = 0;
sw_stp->xmit_count = 0;
sw_stp->rbytes = 0;
sw_stp->obytes = 0;
return (DDI_SUCCESS);
}
static void
nge_m_stop(void *arg)
{
nge_t *ngep = arg; /* private device info */
int err;
NGE_TRACE(("nge_m_stop($%p)", arg));
/*
* Just stop processing, then record new MAC state
*/
mutex_enter(ngep->genlock);
/* If suspended, the adapter is already stopped, just return. */
if (ngep->suspended) {
ASSERT(ngep->nge_mac_state == NGE_MAC_STOPPED);
mutex_exit(ngep->genlock);
return;
}
rw_enter(ngep->rwlock, RW_WRITER);
err = nge_chip_stop(ngep, B_FALSE);
if (err == DDI_FAILURE)
err = nge_chip_reset(ngep);
if (err == DDI_FAILURE)
nge_problem(ngep, "nge_m_stop: stop chip failed");
ngep->nge_mac_state = NGE_MAC_STOPPED;
/* Recycle all the TX BD */
nge_tx_recycle_all(ngep);
nge_fini_rings(ngep);
nge_free_bufs(ngep);
NGE_DEBUG(("nge_m_stop($%p) done", arg));
rw_exit(ngep->rwlock);
mutex_exit(ngep->genlock);
}
static int
nge_m_start(void *arg)
{
int err;
nge_t *ngep = arg;
NGE_TRACE(("nge_m_start($%p)", arg));
/*
* Start processing and record new MAC state
*/
mutex_enter(ngep->genlock);
/*
* If suspended, don't start, as the resume processing
* will recall this function with the suspended flag off.
*/
if (ngep->suspended) {
mutex_exit(ngep->genlock);
return (EIO);
}
rw_enter(ngep->rwlock, RW_WRITER);
err = nge_alloc_bufs(ngep);
if (err != DDI_SUCCESS) {
nge_problem(ngep, "nge_m_start: DMA buffer allocation failed");
goto finish;
}
err = nge_init_rings(ngep);
if (err != DDI_SUCCESS) {
nge_free_bufs(ngep);
nge_problem(ngep, "nge_init_rings() failed,err=%x", err);
goto finish;
}
err = nge_restart(ngep);
NGE_DEBUG(("nge_m_start($%p) done", arg));
finish:
rw_exit(ngep->rwlock);
mutex_exit(ngep->genlock);
return (err == DDI_SUCCESS ? 0 : EIO);
}
static int
nge_m_unicst(void *arg, const uint8_t *macaddr)
{
nge_t *ngep = arg;
NGE_TRACE(("nge_m_unicst($%p)", arg));
/*
* Remember the new current address in the driver state
* Sync the chip's idea of the address too ...
*/
mutex_enter(ngep->genlock);
ethaddr_copy(macaddr, ngep->cur_uni_addr.addr);
ngep->cur_uni_addr.set = 1;
/*
* If we are suspended, we want to quit now, and not update
* the chip. Doing so might put it in a bad state, but the
* resume will get the unicast address installed.
*/
if (ngep->suspended) {
mutex_exit(ngep->genlock);
return (DDI_SUCCESS);
}
nge_chip_sync(ngep);
NGE_DEBUG(("nge_m_unicst($%p) done", arg));
mutex_exit(ngep->genlock);
return (0);
}
static int
nge_m_promisc(void *arg, boolean_t on)
{
nge_t *ngep = arg;
NGE_TRACE(("nge_m_promisc($%p)", arg));
/*
* Store specified mode and pass to chip layer to update h/w
*/
mutex_enter(ngep->genlock);
/*
* If suspended, there is no need to do anything, even
* recording the promiscuious mode is not neccessary, as
* it won't be properly set on resume. Just return failing.
*/
if (ngep->suspended) {
mutex_exit(ngep->genlock);
return (DDI_FAILURE);
}
if (ngep->promisc == on) {
mutex_exit(ngep->genlock);
NGE_DEBUG(("nge_m_promisc($%p) done", arg));
return (0);
}
ngep->promisc = on;
ngep->record_promisc = ngep->promisc;
nge_chip_sync(ngep);
NGE_DEBUG(("nge_m_promisc($%p) done", arg));
mutex_exit(ngep->genlock);
return (0);
}
static void nge_mulparam(nge_t *ngep)
{
uint8_t number;
ether_addr_t pand;
ether_addr_t por;
mul_item *plist;
for (number = 0; number < ETHERADDRL; number++) {
pand[number] = 0x00;
por[number] = 0x00;
}
for (plist = ngep->pcur_mulist; plist != NULL; plist = plist->next) {
for (number = 0; number < ETHERADDRL; number++) {
pand[number] &= plist->mul_addr[number];
por[number] |= plist->mul_addr[number];
}
}
for (number = 0; number < ETHERADDRL; number++) {
ngep->cur_mul_addr.addr[number]
= pand[number] & por[number];
ngep->cur_mul_mask.addr[number]
= pand [number] | (~por[number]);
}
}
static int
nge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
{
boolean_t update;
boolean_t b_eq;
nge_t *ngep = arg;
mul_item *plist;
mul_item *plist_prev;
mul_item *pitem;
NGE_TRACE(("nge_m_multicst($%p, %s, %s)", arg,
(add) ? "add" : "remove", ether_sprintf((void *)mca)));
update = B_FALSE;
plist = plist_prev = NULL;
mutex_enter(ngep->genlock);
if (add) {
if (ngep->pcur_mulist != NULL) {
for (plist = ngep->pcur_mulist; plist != NULL;
plist = plist->next) {
b_eq = ether_eq(plist->mul_addr, mca);
if (b_eq) {
plist->ref_cnt++;
break;
}
plist_prev = plist;
}
}
if (plist == NULL) {
pitem = kmem_zalloc(sizeof (mul_item), KM_SLEEP);
ether_copy(mca, pitem->mul_addr);
pitem ->ref_cnt++;
pitem ->next = NULL;
if (plist_prev == NULL)
ngep->pcur_mulist = pitem;
else
plist_prev->next = pitem;
update = B_TRUE;
}
} else {
if (ngep->pcur_mulist != NULL) {
for (plist = ngep->pcur_mulist; plist != NULL;
plist = plist->next) {
b_eq = ether_eq(plist->mul_addr, mca);
if (b_eq) {
update = B_TRUE;
break;
}
plist_prev = plist;
}
if (update) {
if ((plist_prev == NULL) &&
(plist->next == NULL))
ngep->pcur_mulist = NULL;
else if ((plist_prev == NULL) &&
(plist->next != NULL))
ngep->pcur_mulist = plist->next;
else
plist_prev->next = plist->next;
kmem_free(plist, sizeof (mul_item));
}
}
}
if (update && !ngep->suspended) {
nge_mulparam(ngep);
nge_chip_sync(ngep);
}
NGE_DEBUG(("nge_m_multicst($%p) done", arg));
mutex_exit(ngep->genlock);
return (0);
}
static void
nge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
{
int err;
int cmd;
nge_t *ngep = arg;
struct iocblk *iocp;
enum ioc_reply status;
boolean_t need_privilege;
/*
* If suspended, we might actually be able to do some of
* these ioctls, but it is harder to make sure they occur
* without actually putting the hardware in an undesireable
* state. So just NAK it.
*/
mutex_enter(ngep->genlock);
if (ngep->suspended) {
miocnak(wq, mp, 0, EINVAL);
mutex_exit(ngep->genlock);
return;
}
mutex_exit(ngep->genlock);
/*
* Validate the command before bothering with the mutex ...
*/
iocp = (struct iocblk *)mp->b_rptr;
iocp->ioc_error = 0;
need_privilege = B_TRUE;
cmd = iocp->ioc_cmd;
NGE_DEBUG(("nge_m_ioctl: cmd 0x%x", cmd));
switch (cmd) {
default:
NGE_LDB(NGE_DBG_BADIOC,
("nge_m_ioctl: unknown cmd 0x%x", cmd));
miocnak(wq, mp, 0, EINVAL);
return;
case NGE_MII_READ:
case NGE_MII_WRITE:
case NGE_SEE_READ:
case NGE_SEE_WRITE:
case NGE_DIAG:
case NGE_PEEK:
case NGE_POKE:
case NGE_PHY_RESET:
case NGE_SOFT_RESET:
case NGE_HARD_RESET:
break;
case LB_GET_INFO_SIZE:
case LB_GET_INFO:
case LB_GET_MODE:
need_privilege = B_FALSE;
break;
case LB_SET_MODE:
break;
}
if (need_privilege) {
/*
* Check for specific net_config privilege.
*/
err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
if (err != 0) {
NGE_DEBUG(("nge_m_ioctl: rejected cmd 0x%x, err %d",
cmd, err));
miocnak(wq, mp, 0, err);
return;
}
}
mutex_enter(ngep->genlock);
switch (cmd) {
default:
_NOTE(NOTREACHED)
status = IOC_INVAL;
break;
case NGE_MII_READ:
case NGE_MII_WRITE:
case NGE_SEE_READ:
case NGE_SEE_WRITE:
case NGE_DIAG:
case NGE_PEEK:
case NGE_POKE:
case NGE_PHY_RESET:
case NGE_SOFT_RESET:
case NGE_HARD_RESET:
status = nge_chip_ioctl(ngep, mp, iocp);
break;
case LB_GET_INFO_SIZE:
case LB_GET_INFO:
case LB_GET_MODE:
case LB_SET_MODE:
status = nge_loop_ioctl(ngep, mp, iocp);
break;
}
/*
* Do we need to reprogram the PHY and/or the MAC?
* Do it now, while we still have the mutex.
*
* Note: update the PHY first, 'cos it controls the
* speed/duplex parameters that the MAC code uses.
*/
NGE_DEBUG(("nge_m_ioctl: cmd 0x%x status %d", cmd, status));
switch (status) {
case IOC_RESTART_REPLY:
case IOC_RESTART_ACK:
(*ngep->physops->phys_update)(ngep);
nge_chip_sync(ngep);
break;
default:
break;
}
mutex_exit(ngep->genlock);
/*
* Finally, decide how to reply
*/
switch (status) {
default:
case IOC_INVAL:
miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
EINVAL : iocp->ioc_error);
break;
case IOC_DONE:
break;
case IOC_RESTART_ACK:
case IOC_ACK:
miocack(wq, mp, 0, 0);
break;
case IOC_RESTART_REPLY:
case IOC_REPLY:
mp->b_datap->db_type = iocp->ioc_error == 0 ?
M_IOCACK : M_IOCNAK;
qreply(wq, mp);
break;
}
}
static boolean_t
nge_param_locked(mac_prop_id_t pr_num)
{
/*
* All adv_* parameters are locked (read-only) while
* the device is in any sort of loopback mode ...
*/
switch (pr_num) {
case MAC_PROP_ADV_1000FDX_CAP:
case MAC_PROP_EN_1000FDX_CAP:
case MAC_PROP_ADV_1000HDX_CAP:
case MAC_PROP_EN_1000HDX_CAP:
case MAC_PROP_ADV_100FDX_CAP:
case MAC_PROP_EN_100FDX_CAP:
case MAC_PROP_ADV_100HDX_CAP:
case MAC_PROP_EN_100HDX_CAP:
case MAC_PROP_ADV_10FDX_CAP:
case MAC_PROP_EN_10FDX_CAP:
case MAC_PROP_ADV_10HDX_CAP:
case MAC_PROP_EN_10HDX_CAP:
case MAC_PROP_AUTONEG:
case MAC_PROP_FLOWCTRL:
return (B_TRUE);
}
return (B_FALSE);
}
/*
* callback functions for set/get of properties
*/
static int
nge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
uint_t pr_valsize, const void *pr_val)
{
nge_t *ngep = barg;
int err = 0;
uint32_t cur_mtu, new_mtu;
link_flowctrl_t fl;
mutex_enter(ngep->genlock);
if (ngep->param_loop_mode != NGE_LOOP_NONE &&
nge_param_locked(pr_num)) {
/*
* All adv_* parameters are locked (read-only)
* while the device is in any sort of loopback mode.
*/
mutex_exit(ngep->genlock);
return (EBUSY);
}
switch (pr_num) {
case MAC_PROP_EN_1000FDX_CAP:
ngep->param_en_1000fdx = *(uint8_t *)pr_val;
ngep->param_adv_1000fdx = *(uint8_t *)pr_val;
goto reprogram;
case MAC_PROP_EN_100FDX_CAP:
ngep->param_en_100fdx = *(uint8_t *)pr_val;
ngep->param_adv_100fdx = *(uint8_t *)pr_val;
goto reprogram;
case MAC_PROP_EN_100HDX_CAP:
ngep->param_en_100hdx = *(uint8_t *)pr_val;
ngep->param_adv_100hdx = *(uint8_t *)pr_val;
goto reprogram;
case MAC_PROP_EN_10FDX_CAP:
ngep->param_en_10fdx = *(uint8_t *)pr_val;
ngep->param_adv_10fdx = *(uint8_t *)pr_val;
goto reprogram;
case MAC_PROP_EN_10HDX_CAP:
ngep->param_en_10hdx = *(uint8_t *)pr_val;
ngep->param_adv_10hdx = *(uint8_t *)pr_val;
reprogram:
(*ngep->physops->phys_update)(ngep);
nge_chip_sync(ngep);
break;
case MAC_PROP_ADV_1000FDX_CAP:
case MAC_PROP_ADV_1000HDX_CAP:
case MAC_PROP_ADV_100FDX_CAP:
case MAC_PROP_ADV_100HDX_CAP:
case MAC_PROP_ADV_10FDX_CAP:
case MAC_PROP_ADV_10HDX_CAP:
case MAC_PROP_STATUS:
case MAC_PROP_SPEED:
case MAC_PROP_DUPLEX:
case MAC_PROP_EN_1000HDX_CAP:
err = ENOTSUP; /* read-only prop. Can't set this */
break;
case MAC_PROP_AUTONEG:
ngep->param_adv_autoneg = *(uint8_t *)pr_val;
(*ngep->physops->phys_update)(ngep);
nge_chip_sync(ngep);
break;
case MAC_PROP_MTU:
cur_mtu = ngep->default_mtu;
bcopy(pr_val, &new_mtu, sizeof (new_mtu));
if (new_mtu == cur_mtu) {
err = 0;
break;
}
if (new_mtu < ETHERMTU ||
new_mtu > NGE_MAX_MTU) {
err = EINVAL;
break;
}
if ((new_mtu > ETHERMTU) &&
(!ngep->dev_spec_param.jumbo)) {
err = EINVAL;
break;
}
if (ngep->nge_mac_state == NGE_MAC_STARTED) {
err = EBUSY;
break;
}
ngep->default_mtu = new_mtu;
if (ngep->default_mtu > ETHERMTU &&
ngep->default_mtu <= NGE_MTU_2500) {
ngep->buf_size = NGE_JB2500_BUFSZ;
ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_256;
} else if (ngep->default_mtu > NGE_MTU_2500 &&
ngep->default_mtu <= NGE_MTU_4500) {
ngep->buf_size = NGE_JB4500_BUFSZ;
ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_256;
} else if (ngep->default_mtu > NGE_MTU_4500 &&
ngep->default_mtu <= NGE_MAX_MTU) {
ngep->buf_size = NGE_JB9000_BUFSZ;
ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_256;
} else if (ngep->default_mtu > NGE_MAX_MTU) {
ngep->default_mtu = NGE_MAX_MTU;
ngep->buf_size = NGE_JB9000_BUFSZ;
ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_256;
} else if (ngep->lowmem_mode != 0) {
ngep->default_mtu = ETHERMTU;
ngep->buf_size = NGE_STD_BUFSZ;
ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
ngep->nge_split = NGE_SPLIT_32;
} else {
ngep->default_mtu = ETHERMTU;
ngep->buf_size = NGE_STD_BUFSZ;
ngep->tx_desc =
ngep->dev_spec_param.tx_desc_num;
ngep->rx_desc =
ngep->dev_spec_param.rx_desc_num;
ngep->rx_buf =
ngep->dev_spec_param.rx_desc_num * 2;
ngep->nge_split =
ngep->dev_spec_param.nge_split;
}
err = mac_maxsdu_update(ngep->mh, ngep->default_mtu);
break;
case MAC_PROP_FLOWCTRL:
bcopy(pr_val, &fl, sizeof (fl));
switch (fl) {
default:
err = ENOTSUP;
break;
case LINK_FLOWCTRL_NONE:
ngep->param_adv_pause = 0;
ngep->param_adv_asym_pause = 0;
ngep->param_link_rx_pause = B_FALSE;
ngep->param_link_tx_pause = B_FALSE;
break;
case LINK_FLOWCTRL_RX:
if (!((ngep->param_lp_pause == 0) &&
(ngep->param_lp_asym_pause == 1))) {
err = EINVAL;
break;
}
ngep->param_adv_pause = 1;
ngep->param_adv_asym_pause = 1;
ngep->param_link_rx_pause = B_TRUE;
ngep->param_link_tx_pause = B_FALSE;
break;
case LINK_FLOWCTRL_TX:
if (!((ngep->param_lp_pause == 1) &&
(ngep->param_lp_asym_pause == 1))) {
err = EINVAL;
break;
}
ngep->param_adv_pause = 0;
ngep->param_adv_asym_pause = 1;
ngep->param_link_rx_pause = B_FALSE;
ngep->param_link_tx_pause = B_TRUE;
break;
case LINK_FLOWCTRL_BI:
if (ngep->param_lp_pause != 1) {
err = EINVAL;
break;
}
ngep->param_adv_pause = 1;
ngep->param_link_rx_pause = B_TRUE;
ngep->param_link_tx_pause = B_TRUE;
break;
}
if (err == 0) {
(*ngep->physops->phys_update)(ngep);
nge_chip_sync(ngep);
}
break;
case MAC_PROP_PRIVATE:
err = nge_set_priv_prop(ngep, pr_name, pr_valsize,
pr_val);
if (err == 0) {
(*ngep->physops->phys_update)(ngep);
nge_chip_sync(ngep);
}
break;
default:
err = ENOTSUP;
}
mutex_exit(ngep->genlock);
return (err);
}
static int
nge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
uint_t pr_valsize, void *pr_val)
{
nge_t *ngep = barg;
int err = 0;
link_flowctrl_t fl;
uint64_t speed;
switch (pr_num) {
case MAC_PROP_DUPLEX:
ASSERT(pr_valsize >= sizeof (link_duplex_t));
bcopy(&ngep->param_link_duplex, pr_val,
sizeof (link_duplex_t));
break;
case MAC_PROP_SPEED:
ASSERT(pr_valsize >= sizeof (uint64_t));
speed = ngep->param_link_speed * 1000000ull;
bcopy(&speed, pr_val, sizeof (speed));
break;
case MAC_PROP_AUTONEG:
*(uint8_t *)pr_val = ngep->param_adv_autoneg;
break;
case MAC_PROP_FLOWCTRL:
ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
if (ngep->param_link_rx_pause &&
!ngep->param_link_tx_pause)
fl = LINK_FLOWCTRL_RX;
if (!ngep->param_link_rx_pause &&
!ngep->param_link_tx_pause)
fl = LINK_FLOWCTRL_NONE;
if (!ngep->param_link_rx_pause &&
ngep->param_link_tx_pause)
fl = LINK_FLOWCTRL_TX;
if (ngep->param_link_rx_pause &&
ngep->param_link_tx_pause)
fl = LINK_FLOWCTRL_BI;
bcopy(&fl, pr_val, sizeof (fl));
break;
case MAC_PROP_ADV_1000FDX_CAP:
*(uint8_t *)pr_val = ngep->param_adv_1000fdx;
break;
case MAC_PROP_EN_1000FDX_CAP:
*(uint8_t *)pr_val = ngep->param_en_1000fdx;
break;
case MAC_PROP_ADV_1000HDX_CAP:
*(uint8_t *)pr_val = ngep->param_adv_1000hdx;
break;
case MAC_PROP_EN_1000HDX_CAP:
*(uint8_t *)pr_val = ngep->param_en_1000hdx;
break;
case MAC_PROP_ADV_100FDX_CAP:
*(uint8_t *)pr_val = ngep->param_adv_100fdx;
break;
case MAC_PROP_EN_100FDX_CAP:
*(uint8_t *)pr_val = ngep->param_en_100fdx;
break;
case MAC_PROP_ADV_100HDX_CAP:
*(uint8_t *)pr_val = ngep->param_adv_100hdx;
break;
case MAC_PROP_EN_100HDX_CAP:
*(uint8_t *)pr_val = ngep->param_en_100hdx;
break;
case MAC_PROP_ADV_10FDX_CAP:
*(uint8_t *)pr_val = ngep->param_adv_10fdx;
break;
case MAC_PROP_EN_10FDX_CAP:
*(uint8_t *)pr_val = ngep->param_en_10fdx;
break;
case MAC_PROP_ADV_10HDX_CAP:
*(uint8_t *)pr_val = ngep->param_adv_10hdx;
break;
case MAC_PROP_EN_10HDX_CAP:
*(uint8_t *)pr_val = ngep->param_en_10hdx;
break;
case MAC_PROP_ADV_100T4_CAP:
case MAC_PROP_EN_100T4_CAP:
*(uint8_t *)pr_val = 0;
break;
case MAC_PROP_PRIVATE:
err = nge_get_priv_prop(ngep, pr_name,
pr_valsize, pr_val);
break;
default:
err = ENOTSUP;
}
return (err);
}
static void
nge_m_propinfo(void *barg, const char *pr_name, mac_prop_id_t pr_num,
mac_prop_info_handle_t prh)
{
nge_t *ngep = barg;
switch (pr_num) {
case MAC_PROP_DUPLEX:
case MAC_PROP_SPEED:
case MAC_PROP_ADV_1000FDX_CAP:
case MAC_PROP_ADV_1000HDX_CAP:
case MAC_PROP_ADV_100FDX_CAP:
case MAC_PROP_EN_1000HDX_CAP:
case MAC_PROP_ADV_100HDX_CAP:
case MAC_PROP_ADV_10FDX_CAP:
case MAC_PROP_ADV_10HDX_CAP:
case MAC_PROP_ADV_100T4_CAP:
case MAC_PROP_EN_100T4_CAP:
mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
break;
case MAC_PROP_EN_1000FDX_CAP:
case MAC_PROP_EN_100FDX_CAP:
case MAC_PROP_EN_100HDX_CAP:
case MAC_PROP_EN_10FDX_CAP:
case MAC_PROP_EN_10HDX_CAP:
mac_prop_info_set_default_uint8(prh, 1);
break;
case MAC_PROP_AUTONEG:
mac_prop_info_set_default_uint8(prh, 1);
break;
case MAC_PROP_FLOWCTRL:
mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
break;
case MAC_PROP_MTU:
mac_prop_info_set_range_uint32(prh, ETHERMTU,
ngep->dev_spec_param.jumbo ? NGE_MAX_MTU : ETHERMTU);
break;
case MAC_PROP_PRIVATE: {
char valstr[64];
int value;
bzero(valstr, sizeof (valstr));
if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
value = NGE_TX_COPY_SIZE;
} else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
value = NGE_RX_COPY_SIZE;
} else if (strcmp(pr_name, "_recv_max_packet") == 0) {
value = 128;
} else if (strcmp(pr_name, "_poll_quiet_time") == 0) {
value = NGE_POLL_QUIET_TIME;
} else if (strcmp(pr_name, "_poll_busy_time") == 0) {
value = NGE_POLL_BUSY_TIME;
} else if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
value = 1;
} else if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
value = 8;
} else {
return;
}
(void) snprintf(valstr, sizeof (valstr), "%d", value);
}
}
}
/* ARGSUSED */
static int
nge_set_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_valsize,
const void *pr_val)
{
int err = 0;
long result;
if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
if (pr_val == NULL) {
err = EINVAL;
return (err);
}
(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
if (result < 0 || result > NGE_MAX_SDU) {
err = EINVAL;
} else {
ngep->param_txbcopy_threshold = (uint32_t)result;
goto reprogram;
}
return (err);
}
if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
if (pr_val == NULL) {
err = EINVAL;
return (err);
}
(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
if (result < 0 || result > NGE_MAX_SDU) {
err = EINVAL;
} else {
ngep->param_rxbcopy_threshold = (uint32_t)result;
goto reprogram;
}
return (err);
}
if (strcmp(pr_name, "_recv_max_packet") == 0) {
if (pr_val == NULL) {
err = EINVAL;
return (err);
}
(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
err = EINVAL;
} else {
ngep->param_recv_max_packet = (uint32_t)result;
goto reprogram;
}
return (err);
}
if (strcmp(pr_name, "_poll_quiet_time") == 0) {
if (pr_val == NULL) {
err = EINVAL;
return (err);
}
(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
if (result < 0 || result > 10000) {
err = EINVAL;
} else {
ngep->param_poll_quiet_time = (uint32_t)result;
goto reprogram;
}
return (err);
}
if (strcmp(pr_name, "_poll_busy_time") == 0) {
if (pr_val == NULL) {
err = EINVAL;
return (err);
}
(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
if (result < 0 || result > 10000) {
err = EINVAL;
} else {
ngep->param_poll_busy_time = (uint32_t)result;
goto reprogram;
}
return (err);
}
if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
if (pr_val == NULL) {
err = EINVAL;
return (err);
}
(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
err = EINVAL;
} else {
ngep->param_rx_intr_hwater = (uint32_t)result;
goto reprogram;
}
return (err);
}
if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
if (pr_val == NULL) {
err = EINVAL;
return (err);
}
(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
err = EINVAL;
} else {
ngep->param_rx_intr_lwater = (uint32_t)result;
goto reprogram;
}
return (err);
}
err = ENOTSUP;
return (err);
reprogram:
if (err == 0) {
(*ngep->physops->phys_update)(ngep);
nge_chip_sync(ngep);
}
return (err);
}
static int
nge_get_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_valsize,
void *pr_val)
{
int err = ENOTSUP;
int value;
if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
value = ngep->param_txbcopy_threshold;
err = 0;
goto done;
}
if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
value = ngep->param_rxbcopy_threshold;
err = 0;
goto done;
}
if (strcmp(pr_name, "_recv_max_packet") == 0) {
value = ngep->param_recv_max_packet;
err = 0;
goto done;
}
if (strcmp(pr_name, "_poll_quiet_time") == 0) {
value = ngep->param_poll_quiet_time;
err = 0;
goto done;
}
if (strcmp(pr_name, "_poll_busy_time") == 0) {
value = ngep->param_poll_busy_time;
err = 0;
goto done;
}
if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
value = ngep->param_rx_intr_hwater;
err = 0;
goto done;
}
if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
value = ngep->param_rx_intr_lwater;
err = 0;
goto done;
}
done:
if (err == 0) {
(void) snprintf(pr_val, pr_valsize, "%d", value);
}
return (err);
}
/* ARGSUSED */
static boolean_t
nge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
{
nge_t *ngep = arg;
nge_dev_spec_param_t *dev_param_p;
dev_param_p = &ngep->dev_spec_param;
switch (cap) {
case MAC_CAPAB_HCKSUM: {
uint32_t *hcksum_txflags = cap_data;
if (dev_param_p->tx_hw_checksum) {
*hcksum_txflags = dev_param_p->tx_hw_checksum;
} else
return (B_FALSE);
break;
}
default:
return (B_FALSE);
}
return (B_TRUE);
}
#undef NGE_DBG
#define NGE_DBG NGE_DBG_INIT /* debug flag for this code */
int
nge_restart(nge_t *ngep)
{
int err = 0;
err = nge_reset_dev(ngep);
/* write back the promisc setting */
ngep->promisc = ngep->record_promisc;
nge_chip_sync(ngep);
if (!err)
err = nge_chip_start(ngep);
if (err) {
ngep->nge_mac_state = NGE_MAC_STOPPED;
return (DDI_FAILURE);
} else {
ngep->nge_mac_state = NGE_MAC_STARTED;
return (DDI_SUCCESS);
}
}
void
nge_wake_factotum(nge_t *ngep)
{
mutex_enter(ngep->softlock);
if (ngep->factotum_flag == 0) {
ngep->factotum_flag = 1;
(void) ddi_intr_trigger_softint(ngep->factotum_hdl, NULL);
}
mutex_exit(ngep->softlock);
}
void
nge_interrupt_optimize(nge_t *ngep)
{
uint32_t tx_pkts;
tx_pkts = ngep->statistics.sw_statistics.xmit_count - ngep->tpkts_last;
ngep->tpkts_last = ngep->statistics.sw_statistics.xmit_count;
if ((tx_pkts > NGE_POLL_TUNE) &&
(tx_pkts <= NGE_POLL_MAX))
ngep->tfint_threshold = (tx_pkts / NGE_POLL_ENTER);
else
ngep->tfint_threshold = NGE_TFINT_DEFAULT;
}
/*
* High-level cyclic handler
*
* This routine schedules a (low-level) softint callback to the
* factotum.
*/
static void
nge_chip_cyclic(void *arg)
{
nge_t *ngep;
ngep = (nge_t *)arg;
switch (ngep->nge_chip_state) {
default:
return;
case NGE_CHIP_RUNNING:
nge_interrupt_optimize(ngep);
break;
case NGE_CHIP_FAULT:
case NGE_CHIP_ERROR:
break;
}
nge_wake_factotum(ngep);
}
/*
* Get/Release semaphore of SMU
* For SMU enabled chipset
* When nge driver is attached, driver should acquire
* semaphore before PHY init and accessing MAC registers.
* When nge driver is unattached, driver should release
* semaphore.
*/
static int
nge_smu_sema(nge_t *ngep, boolean_t acquire)
{
nge_tx_en tx_en;
uint32_t tries;
if (acquire) {
for (tries = 0; tries < 5; tries++) {
tx_en.val = nge_reg_get32(ngep, NGE_TX_EN);
if (tx_en.bits.smu2mac == NGE_SMU_FREE)
break;
delay(drv_usectohz(1000000));
}
if (tx_en.bits.smu2mac != NGE_SMU_FREE)
return (DDI_FAILURE);
for (tries = 0; tries < 5; tries++) {
tx_en.val = nge_reg_get32(ngep, NGE_TX_EN);
tx_en.bits.mac2smu = NGE_SMU_GET;
nge_reg_put32(ngep, NGE_TX_EN, tx_en.val);
tx_en.val = nge_reg_get32(ngep, NGE_TX_EN);
if (tx_en.bits.mac2smu == NGE_SMU_GET &&
tx_en.bits.smu2mac == NGE_SMU_FREE)
return (DDI_SUCCESS);
drv_usecwait(10);
}
return (DDI_FAILURE);
} else
nge_reg_put32(ngep, NGE_TX_EN, 0x0);
return (DDI_SUCCESS);
}
static void
nge_unattach(nge_t *ngep)
{
send_ring_t *srp;
buff_ring_t *brp;
srp = ngep->send;
brp = ngep->buff;
NGE_TRACE(("nge_unattach($%p)", (void *)ngep));
/*
* Flag that no more activity may be initiated
*/
ngep->progress &= ~PROGRESS_READY;
ngep->nge_mac_state = NGE_MAC_UNATTACH;
/*
* Quiesce the PHY and MAC (leave it reset but still powered).
* Clean up and free all NGE data structures
*/
if (ngep->periodic_id != NULL) {
ddi_periodic_delete(ngep->periodic_id);
ngep->periodic_id = NULL;
}
if (ngep->progress & PROGRESS_KSTATS)
nge_fini_kstats(ngep);
if (ngep->progress & PROGRESS_HWINT) {
mutex_enter(ngep->genlock);
nge_restore_mac_addr(ngep);
(void) nge_chip_stop(ngep, B_FALSE);
if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
(void) nge_smu_sema(ngep, B_FALSE);
}
mutex_exit(ngep->genlock);
}
if (ngep->progress & PROGRESS_SWINT)
nge_rem_intrs(ngep);
if (ngep->progress & PROGRESS_FACTOTUM)
(void) ddi_intr_remove_softint(ngep->factotum_hdl);
if (ngep->progress & PROGRESS_RESCHED)
(void) ddi_intr_remove_softint(ngep->resched_hdl);
if (ngep->progress & PROGRESS_INTR) {
mutex_destroy(srp->tx_lock);
mutex_destroy(srp->tc_lock);
mutex_destroy(&srp->dmah_lock);
mutex_destroy(brp->recycle_lock);
mutex_destroy(ngep->genlock);
mutex_destroy(ngep->softlock);
rw_destroy(ngep->rwlock);
}
if (ngep->progress & PROGRESS_REGS)
ddi_regs_map_free(&ngep->io_handle);
if (ngep->progress & PROGRESS_CFG)
pci_config_teardown(&ngep->cfg_handle);
ddi_remove_minor_node(ngep->devinfo, NULL);
kmem_free(ngep, sizeof (*ngep));
}
static int
nge_resume(dev_info_t *devinfo)
{
nge_t *ngep;
chip_info_t *infop;
int err;
ASSERT(devinfo != NULL);
ngep = ddi_get_driver_private(devinfo);
err = 0;
/*
* If there are state inconsistancies, this is bad. Returning
* DDI_FAILURE here will eventually cause the machine to panic,
* so it is best done here so that there is a possibility of
* debugging the problem.
*/
if (ngep == NULL)
cmn_err(CE_PANIC,
"nge: ngep returned from ddi_get_driver_private was NULL");
infop = (chip_info_t *)&ngep->chipinfo;
if (ngep->devinfo != devinfo)
cmn_err(CE_PANIC,
"nge: passed devinfo not the same as saved devinfo");
mutex_enter(ngep->genlock);
rw_enter(ngep->rwlock, RW_WRITER);
/*
* Fetch the config space. Even though we have most of it cached,
* some values *might* change across a suspend/resume.
*/
nge_chip_cfg_init(ngep, infop, B_FALSE);
/*
* Only in one case, this conditional branch can be executed: the port
* hasn't been plumbed.
*/
if (ngep->suspended == B_FALSE) {
rw_exit(ngep->rwlock);
mutex_exit(ngep->genlock);
return (DDI_SUCCESS);
}
nge_tx_recycle_all(ngep);
err = nge_reinit_ring(ngep);
if (!err) {
err = nge_chip_reset(ngep);
if (!err)
err = nge_chip_start(ngep);
}
if (err) {
/*
* We note the failure, but return success, as the
* system is still usable without this controller.
*/
cmn_err(CE_WARN, "nge: resume: failed to restart controller");
} else {
ngep->nge_mac_state = NGE_MAC_STARTED;
}
ngep->suspended = B_FALSE;
rw_exit(ngep->rwlock);
mutex_exit(ngep->genlock);
return (DDI_SUCCESS);
}
/*
* attach(9E) -- Attach a device to the system
*
* Called once for each board successfully probed.
*/
static int
nge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
{
int err;
int i;
int instance;
caddr_t regs;
nge_t *ngep;
chip_info_t *infop;
mac_register_t *macp;
switch (cmd) {
default:
return (DDI_FAILURE);
case DDI_RESUME:
return (nge_resume(devinfo));
case DDI_ATTACH:
break;
}
ngep = kmem_zalloc(sizeof (*ngep), KM_SLEEP);
instance = ddi_get_instance(devinfo);
ddi_set_driver_private(devinfo, ngep);
ngep->devinfo = devinfo;
(void) snprintf(ngep->ifname, sizeof (ngep->ifname), "%s%d",
NGE_DRIVER_NAME, instance);
err = pci_config_setup(devinfo, &ngep->cfg_handle);
if (err != DDI_SUCCESS) {
nge_problem(ngep, "nge_attach: pci_config_setup() failed");
goto attach_fail;
}
/*
* param_txbcopy_threshold and param_rxbcopy_threshold are tx/rx bcopy
* thresholds. Bounds: min 0, max NGE_MAX_SDU
*/
ngep->param_txbcopy_threshold = NGE_TX_COPY_SIZE;
ngep->param_rxbcopy_threshold = NGE_RX_COPY_SIZE;
/*
* param_recv_max_packet is max packet received per interupt.
* Bounds: min 0, max NGE_RECV_SLOTS_DESC_1024
*/
ngep->param_recv_max_packet = 128;
/*
* param_poll_quiet_time and param_poll_busy_time are quiet/busy time
* switch from per packet interrupt to polling interrupt.
* Bounds: min 0, max 10000
*/
ngep->param_poll_quiet_time = NGE_POLL_QUIET_TIME;
ngep->param_poll_busy_time = NGE_POLL_BUSY_TIME;
ngep->tfint_threshold = NGE_TFINT_DEFAULT;
ngep->poll = B_FALSE;
ngep->ch_intr_mode = B_FALSE;
/*
* param_rx_intr_hwater/param_rx_intr_lwater: ackets received
* to trigger the poll_quiet_time/poll_busy_time counter.
* Bounds: min 0, max NGE_RECV_SLOTS_DESC_1024.
*/
ngep->param_rx_intr_hwater = 1;
ngep->param_rx_intr_lwater = 8;
infop = (chip_info_t *)&ngep->chipinfo;
nge_chip_cfg_init(ngep, infop, B_FALSE);
nge_init_dev_spec_param(ngep);
nge_get_props(ngep);
ngep->progress |= PROGRESS_CFG;
err = ddi_regs_map_setup(devinfo, NGE_PCI_OPREGS_RNUMBER,
&regs, 0, 0, &nge_reg_accattr, &ngep->io_handle);
if (err != DDI_SUCCESS) {
nge_problem(ngep, "nge_attach: ddi_regs_map_setup() failed");
goto attach_fail;
}
ngep->io_regs = regs;
ngep->progress |= PROGRESS_REGS;
err = nge_register_intrs_and_init_locks(ngep);
if (err != DDI_SUCCESS) {
nge_problem(ngep, "nge_attach:"
" register intrs and init locks failed");
goto attach_fail;
}
nge_init_ring_param_lock(ngep);
ngep->progress |= PROGRESS_INTR;
mutex_enter(ngep->genlock);
if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
err = nge_smu_sema(ngep, B_TRUE);
if (err != DDI_SUCCESS) {
nge_problem(ngep, "nge_attach: nge_smu_sema() failed");
goto attach_fail;
}
}
/*
* Initialise link state variables
* Stop, reset & reinitialise the chip.
* Initialise the (internal) PHY.
*/
nge_phys_init(ngep);
ngep->nge_chip_state = NGE_CHIP_INITIAL;
err = nge_chip_reset(ngep);
if (err != DDI_SUCCESS) {
nge_problem(ngep, "nge_attach: nge_chip_reset() failed");
mutex_exit(ngep->genlock);
goto attach_fail;
}
nge_chip_sync(ngep);
/*
* Now that mutex locks are initialized, enable interrupts.
*/
if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_enable() for MSI interrupts */
(void) ddi_intr_block_enable(ngep->htable,
ngep->intr_actual_cnt);
} else {
/* Call ddi_intr_enable for MSI or FIXED interrupts */
for (i = 0; i < ngep->intr_actual_cnt; i++) {
(void) ddi_intr_enable(ngep->htable[i]);
}
}
ngep->link_state = LINK_STATE_UNKNOWN;
ngep->progress |= PROGRESS_HWINT;
/*
* Register NDD-tweakable parameters
*/
if (nge_nd_init(ngep)) {
nge_problem(ngep, "nge_attach: nge_nd_init() failed");
mutex_exit(ngep->genlock);
goto attach_fail;
}
ngep->progress |= PROGRESS_NDD;
/*
* Create & initialise named kstats
*/
nge_init_kstats(ngep, instance);
ngep->progress |= PROGRESS_KSTATS;
mutex_exit(ngep->genlock);
if ((macp = mac_alloc(MAC_VERSION)) == NULL)
goto attach_fail;
macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
macp->m_driver = ngep;
macp->m_dip = devinfo;
macp->m_src_addr = infop->vendor_addr.addr;
macp->m_callbacks = &nge_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = ngep->default_mtu;
macp->m_margin = VTAG_SIZE;
macp->m_priv_props = nge_priv_props;
/*
* Finally, we're ready to register ourselves with the mac
* interface; if this succeeds, we're all ready to start()
*/
err = mac_register(macp, &ngep->mh);
mac_free(macp);
if (err != 0)
goto attach_fail;
/*
* Register a periodical handler.
* nge_chip_cyclic() is invoked in kernel context.
*/
ngep->periodic_id = ddi_periodic_add(nge_chip_cyclic, ngep,
NGE_CYCLIC_PERIOD, DDI_IPL_0);
ngep->progress |= PROGRESS_READY;
return (DDI_SUCCESS);
attach_fail:
nge_unattach(ngep);
return (DDI_FAILURE);
}
static int
nge_suspend(nge_t *ngep)
{
mutex_enter(ngep->genlock);
rw_enter(ngep->rwlock, RW_WRITER);
/* if the port hasn't been plumbed, just return */
if (ngep->nge_mac_state != NGE_MAC_STARTED) {
rw_exit(ngep->rwlock);
mutex_exit(ngep->genlock);
return (DDI_SUCCESS);
}
ngep->suspended = B_TRUE;
(void) nge_chip_stop(ngep, B_FALSE);
ngep->nge_mac_state = NGE_MAC_STOPPED;
rw_exit(ngep->rwlock);
mutex_exit(ngep->genlock);
return (DDI_SUCCESS);
}
/*
* detach(9E) -- Detach a device from the system
*/
static int
nge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
{
int i;
nge_t *ngep;
mul_item *p, *nextp;
buff_ring_t *brp;
NGE_GTRACE(("nge_detach($%p, %d)", (void *)devinfo, cmd));
ngep = ddi_get_driver_private(devinfo);
brp = ngep->buff;
switch (cmd) {
default:
return (DDI_FAILURE);
case DDI_SUSPEND:
/*
* Stop the NIC
* Note: This driver doesn't currently support WOL, but
* should it in the future, it is important to
* make sure the PHY remains powered so that the
* wakeup packet can actually be recieved.
*/
return (nge_suspend(ngep));
case DDI_DETACH:
break;
}
/* Try to wait all the buffer post to upper layer be released */
for (i = 0; i < 1000; i++) {
if (brp->rx_hold == 0)
break;
drv_usecwait(1000);
}
/* If there is any posted buffer, reject to detach */
if (brp->rx_hold != 0)
return (DDI_FAILURE);
/*
* Unregister from the GLD subsystem. This can fail, in
* particular if there are DLPI style-2 streams still open -
* in which case we just return failure without shutting
* down chip operations.
*/
if (mac_unregister(ngep->mh) != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Recycle the multicast table. mac_unregister() should be called
* before it to ensure the multicast table can be used even if
* mac_unregister() fails.
*/
for (p = ngep->pcur_mulist; p != NULL; p = nextp) {
nextp = p->next;
kmem_free(p, sizeof (mul_item));
}
ngep->pcur_mulist = NULL;
/*
* All activity stopped, so we can clean up & exit
*/
nge_unattach(ngep);
return (DDI_SUCCESS);
}
/*
* quiesce(9E) entry point.
*
* This function is called when the system is single-threaded at high
* PIL with preemption disabled. Therefore, this function must not be
* blocked.
*
* This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
* DDI_FAILURE indicates an error condition and should almost never happen.
*/
static int
nge_quiesce(dev_info_t *devinfo)
{
nge_t *ngep;
ngep = ddi_get_driver_private(devinfo);
if (ngep == NULL)
return (DDI_FAILURE);
/*
* Turn off debug tracing
*/
nge_debug = 0;
ngep->debug = 0;
nge_restore_mac_addr(ngep);
(void) nge_chip_stop(ngep, B_FALSE);
return (DDI_SUCCESS);
}
/*
* ========== Module Loading Data & Entry Points ==========
*/
DDI_DEFINE_STREAM_OPS(nge_dev_ops, nulldev, nulldev, nge_attach, nge_detach,
NULL, NULL, D_MP, NULL, nge_quiesce);
static struct modldrv nge_modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
nge_ident, /* short description */
&nge_dev_ops /* driver specific ops */
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&nge_modldrv, NULL
};
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_init(void)
{
int status;
mac_init_ops(&nge_dev_ops, "nge");
status = mod_install(&modlinkage);
if (status != DDI_SUCCESS)
mac_fini_ops(&nge_dev_ops);
else
mutex_init(nge_log_mutex, NULL, MUTEX_DRIVER, NULL);
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&modlinkage);
if (status == DDI_SUCCESS) {
mac_fini_ops(&nge_dev_ops);
mutex_destroy(nge_log_mutex);
}
return (status);
}
/*
* ============ Init MSI/Fixed/SoftInterrupt routines ==============
*/
/*
* Register interrupts and initialize each mutex and condition variables
*/
static int
nge_register_intrs_and_init_locks(nge_t *ngep)
{
int err;
int intr_types;
uint_t soft_prip;
nge_msi_mask msi_mask;
nge_msi_map0_vec map0_vec;
nge_msi_map1_vec map1_vec;
/*
* Add the softint handlers:
*
* Both of these handlers are used to avoid restrictions on the
* context and/or mutexes required for some operations. In
* particular, the hardware interrupt handler and its subfunctions
* can detect a number of conditions that we don't want to handle
* in that context or with that set of mutexes held. So, these
* softints are triggered instead:
*
* the <resched> softint is triggered if if we have previously
* had to refuse to send a packet because of resource shortage
* (we've run out of transmit buffers), but the send completion
* interrupt handler has now detected that more buffers have
* become available. Its only purpose is to call gld_sched()
* to retry the pending transmits (we're not allowed to hold
* driver-defined mutexes across gld_sched()).
*
* the <factotum> is triggered if the h/w interrupt handler
* sees the <link state changed> or <error> bits in the status
* block. It's also triggered periodically to poll the link
* state, just in case we aren't getting link status change
* interrupts ...
*/
err = ddi_intr_add_softint(ngep->devinfo, &ngep->resched_hdl,
DDI_INTR_SOFTPRI_MIN, nge_reschedule, (caddr_t)ngep);
if (err != DDI_SUCCESS) {
nge_problem(ngep,
"nge_attach: add nge_reschedule softintr failed");
return (DDI_FAILURE);
}
ngep->progress |= PROGRESS_RESCHED;
err = ddi_intr_add_softint(ngep->devinfo, &ngep->factotum_hdl,
DDI_INTR_SOFTPRI_MIN, nge_chip_factotum, (caddr_t)ngep);
if (err != DDI_SUCCESS) {
nge_problem(ngep,
"nge_attach: add nge_chip_factotum softintr failed!");
return (DDI_FAILURE);
}
if (ddi_intr_get_softint_pri(ngep->factotum_hdl, &soft_prip)
!= DDI_SUCCESS) {
nge_problem(ngep, "nge_attach: get softintr priority failed\n");
return (DDI_FAILURE);
}
ngep->soft_pri = soft_prip;
ngep->progress |= PROGRESS_FACTOTUM;
/* Get supported interrupt types */
if (ddi_intr_get_supported_types(ngep->devinfo, &intr_types)
!= DDI_SUCCESS) {
nge_error(ngep, "ddi_intr_get_supported_types failed\n");
return (DDI_FAILURE);
}
NGE_DEBUG(("ddi_intr_get_supported_types() returned: %x",
intr_types));
if ((intr_types & DDI_INTR_TYPE_MSI) && nge_enable_msi) {
/* MSI Configurations for mcp55 chipset */
if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
/* Enable the 8 vectors */
msi_mask.msi_mask_val =
nge_reg_get32(ngep, NGE_MSI_MASK);
msi_mask.msi_msk_bits.vec0 = NGE_SET;
msi_mask.msi_msk_bits.vec1 = NGE_SET;
msi_mask.msi_msk_bits.vec2 = NGE_SET;
msi_mask.msi_msk_bits.vec3 = NGE_SET;
msi_mask.msi_msk_bits.vec4 = NGE_SET;
msi_mask.msi_msk_bits.vec5 = NGE_SET;
msi_mask.msi_msk_bits.vec6 = NGE_SET;
msi_mask.msi_msk_bits.vec7 = NGE_SET;
nge_reg_put32(ngep, NGE_MSI_MASK,
msi_mask.msi_mask_val);
/*
* Remapping the MSI MAP0 and MAP1. MCP55
* is default mapping all the interrupt to 0 vector.
* Software needs to remapping this.
* This mapping is same as CK804.
*/
map0_vec.msi_map0_val =
nge_reg_get32(ngep, NGE_MSI_MAP0);
map1_vec.msi_map1_val =
nge_reg_get32(ngep, NGE_MSI_MAP1);
map0_vec.vecs_bits.reint_vec = 0;
map0_vec.vecs_bits.rcint_vec = 0;
map0_vec.vecs_bits.miss_vec = 3;
map0_vec.vecs_bits.teint_vec = 5;
map0_vec.vecs_bits.tcint_vec = 5;
map0_vec.vecs_bits.stint_vec = 2;
map0_vec.vecs_bits.mint_vec = 6;
map0_vec.vecs_bits.rfint_vec = 0;
map1_vec.vecs_bits.tfint_vec = 5;
map1_vec.vecs_bits.feint_vec = 6;
map1_vec.vecs_bits.resv8_11 = 3;
map1_vec.vecs_bits.resv12_15 = 1;
map1_vec.vecs_bits.resv16_19 = 0;
map1_vec.vecs_bits.resv20_23 = 7;
map1_vec.vecs_bits.resv24_31 = 0xff;
nge_reg_put32(ngep, NGE_MSI_MAP0,
map0_vec.msi_map0_val);
nge_reg_put32(ngep, NGE_MSI_MAP1,
map1_vec.msi_map1_val);
}
if (nge_add_intrs(ngep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
NGE_DEBUG(("MSI registration failed, "
"trying FIXED interrupt type\n"));
} else {
nge_log(ngep, "Using MSI interrupt type\n");
ngep->intr_type = DDI_INTR_TYPE_MSI;
ngep->progress |= PROGRESS_SWINT;
}
}
if (!(ngep->progress & PROGRESS_SWINT) &&
(intr_types & DDI_INTR_TYPE_FIXED)) {
if (nge_add_intrs(ngep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
nge_error(ngep, "FIXED interrupt "
"registration failed\n");
return (DDI_FAILURE);
}
nge_log(ngep, "Using FIXED interrupt type\n");
ngep->intr_type = DDI_INTR_TYPE_FIXED;
ngep->progress |= PROGRESS_SWINT;
}
if (!(ngep->progress & PROGRESS_SWINT)) {
nge_error(ngep, "No interrupts registered\n");
return (DDI_FAILURE);
}
mutex_init(ngep->genlock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(ngep->intr_pri));
mutex_init(ngep->softlock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(ngep->soft_pri));
rw_init(ngep->rwlock, NULL, RW_DRIVER,
DDI_INTR_PRI(ngep->intr_pri));
return (DDI_SUCCESS);
}
/*
* nge_add_intrs:
*
* Register FIXED or MSI interrupts.
*/
static int
nge_add_intrs(nge_t *ngep, int intr_type)
{
dev_info_t *dip = ngep->devinfo;
int avail, actual, intr_size, count = 0;
int i, flag, ret;
NGE_DEBUG(("nge_add_intrs: interrupt type 0x%x\n", intr_type));
/* Get number of interrupts */
ret = ddi_intr_get_nintrs(dip, intr_type, &count);
if ((ret != DDI_SUCCESS) || (count == 0)) {
nge_error(ngep, "ddi_intr_get_nintrs() failure, ret: %d, "
"count: %d", ret, count);
return (DDI_FAILURE);
}
/* Get number of available interrupts */
ret = ddi_intr_get_navail(dip, intr_type, &avail);
if ((ret != DDI_SUCCESS) || (avail == 0)) {
nge_error(ngep, "ddi_intr_get_navail() failure, "
"ret: %d, avail: %d\n", ret, avail);
return (DDI_FAILURE);
}
if (avail < count) {
NGE_DEBUG(("nitrs() returned %d, navail returned %d\n",
count, avail));
}
flag = DDI_INTR_ALLOC_NORMAL;
/* Allocate an array of interrupt handles */
intr_size = count * sizeof (ddi_intr_handle_t);
ngep->htable = kmem_alloc(intr_size, KM_SLEEP);
/* Call ddi_intr_alloc() */
ret = ddi_intr_alloc(dip, ngep->htable, intr_type, 0,
count, &actual, flag);
if ((ret != DDI_SUCCESS) || (actual == 0)) {
nge_error(ngep, "ddi_intr_alloc() failed %d\n", ret);
kmem_free(ngep->htable, intr_size);
return (DDI_FAILURE);
}
if (actual < count) {
NGE_DEBUG(("Requested: %d, Received: %d\n",
count, actual));
}
ngep->intr_actual_cnt = actual;
ngep->intr_req_cnt = count;
/*
* Get priority for first msi, assume remaining are all the same
*/
if ((ret = ddi_intr_get_pri(ngep->htable[0], &ngep->intr_pri)) !=
DDI_SUCCESS) {
nge_error(ngep, "ddi_intr_get_pri() failed %d\n", ret);
/* Free already allocated intr */
for (i = 0; i < actual; i++) {
(void) ddi_intr_free(ngep->htable[i]);
}
kmem_free(ngep->htable, intr_size);
return (DDI_FAILURE);
}
/* Test for high level mutex */
if (ngep->intr_pri >= ddi_intr_get_hilevel_pri()) {
nge_error(ngep, "nge_add_intrs:"
"Hi level interrupt not supported");
for (i = 0; i < actual; i++)
(void) ddi_intr_free(ngep->htable[i]);
kmem_free(ngep->htable, intr_size);
return (DDI_FAILURE);
}
/* Call ddi_intr_add_handler() */
for (i = 0; i < actual; i++) {
if ((ret = ddi_intr_add_handler(ngep->htable[i], nge_chip_intr,
(caddr_t)ngep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
nge_error(ngep, "ddi_intr_add_handler() "
"failed %d\n", ret);
/* Free already allocated intr */
for (i = 0; i < actual; i++) {
(void) ddi_intr_free(ngep->htable[i]);
}
kmem_free(ngep->htable, intr_size);
return (DDI_FAILURE);
}
}
if ((ret = ddi_intr_get_cap(ngep->htable[0], &ngep->intr_cap))
!= DDI_SUCCESS) {
nge_error(ngep, "ddi_intr_get_cap() failed %d\n", ret);
for (i = 0; i < actual; i++) {
(void) ddi_intr_remove_handler(ngep->htable[i]);
(void) ddi_intr_free(ngep->htable[i]);
}
kmem_free(ngep->htable, intr_size);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* nge_rem_intrs:
*
* Unregister FIXED or MSI interrupts
*/
static void
nge_rem_intrs(nge_t *ngep)
{
int i;
NGE_DEBUG(("nge_rem_intrs\n"));
/* Disable all interrupts */
if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_disable() */
(void) ddi_intr_block_disable(ngep->htable,
ngep->intr_actual_cnt);
} else {
for (i = 0; i < ngep->intr_actual_cnt; i++) {
(void) ddi_intr_disable(ngep->htable[i]);
}
}
/* Call ddi_intr_remove_handler() */
for (i = 0; i < ngep->intr_actual_cnt; i++) {
(void) ddi_intr_remove_handler(ngep->htable[i]);
(void) ddi_intr_free(ngep->htable[i]);
}
kmem_free(ngep->htable,
ngep->intr_req_cnt * sizeof (ddi_intr_handle_t));
}