/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* IEEE 802.11i TKIP crypto support.
*
* Part of this module is derived from similar code in the Host
* AP driver. The code is used with the consent of the author and
* it's license is included below.
*/
#include <sys/byteorder.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <sys/crc32.h>
#include <sys/random.h>
#include <sys/strsun.h>
#include "net80211_impl.h"
static void *tkip_attach(struct ieee80211com *, struct ieee80211_key *);
static void tkip_detach(struct ieee80211_key *);
static int tkip_setkey(struct ieee80211_key *);
static int tkip_encap(struct ieee80211_key *, mblk_t *, uint8_t);
static int tkip_decap(struct ieee80211_key *, mblk_t *, int);
static int tkip_enmic(struct ieee80211_key *, mblk_t *, int);
static int tkip_demic(struct ieee80211_key *, mblk_t *, int);
const struct ieee80211_cipher tkip = {
"TKIP",
IEEE80211_CIPHER_TKIP,
IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
IEEE80211_WEP_EXTIVLEN,
IEEE80211_WEP_CRCLEN,
IEEE80211_WEP_MICLEN,
tkip_attach,
tkip_detach,
tkip_setkey,
tkip_encap,
tkip_decap,
tkip_enmic,
tkip_demic,
};
struct tkip_ctx {
struct ieee80211com *tc_ic; /* for diagnostics */
uint16_t tx_ttak[5];
int tx_phase1_done;
uint8_t tx_rc4key[16];
uint16_t rx_ttak[5];
int rx_phase1_done;
uint8_t rx_rc4key[16];
uint64_t rx_rsc; /* held until MIC verified */
};
static void michael_mic(struct tkip_ctx *, const uint8_t *,
mblk_t *, uint_t, size_t, uint8_t[]);
static int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
mblk_t *, int);
static int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
mblk_t *, int);
extern int rc4_init(crypto_context_t *, const uint8_t *, int);
extern int rc4_crypt(crypto_context_t, const uint8_t *, uint8_t *, int);
extern int rc4_final(crypto_context_t, uint8_t *, int);
/* ARGSUSED */
static void *
tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k)
{
struct tkip_ctx *ctx;
ctx = kmem_zalloc(sizeof (struct tkip_ctx), KM_SLEEP);
if (ctx == NULL)
return (NULL);
ctx->tc_ic = ic;
return (ctx);
}
static void
tkip_detach(struct ieee80211_key *k)
{
struct tkip_ctx *ctx = k->wk_private;
if (ctx != NULL)
kmem_free(ctx, sizeof (struct tkip_ctx));
}
static int
tkip_setkey(struct ieee80211_key *k)
{
if (k->wk_keylen != (128/NBBY))
return (0);
k->wk_keytsc = 1; /* TSC starts at 1 */
return (1);
}
/*
* Add privacy headers appropriate for the specified key.
*/
static int
tkip_encap(struct ieee80211_key *k, mblk_t *mp, uint8_t keyid)
{
struct tkip_ctx *ctx = k->wk_private;
struct ieee80211com *ic = ctx->tc_ic;
uint8_t *ivp;
int hdrlen;
/*
* Handle TKIP counter measures requirement.
*/
if (ic->ic_flags & IEEE80211_F_COUNTERM)
return (0);
hdrlen = ieee80211_hdrspace(ic, mp->b_rptr);
/*
* Copy down 802.11 header and add the IV, KeyID, and ExtIV.
*/
ivp = mp->b_rptr;
ivp += hdrlen;
ivp[0] = k->wk_keytsc >> 8; /* TSC1 */
ivp[1] = (ivp[0] | 0x20) & 0x7f; /* WEP seed */
ivp[2] = k->wk_keytsc >> 0; /* TSC0 */
ivp[3] = keyid | IEEE80211_WEP_EXTIV; /* KeyID | ExtID */
ivp[4] = k->wk_keytsc >> 16; /* TSC2 */
ivp[5] = k->wk_keytsc >> 24; /* TSC3 */
ivp[6] = k->wk_keytsc >> 32; /* TSC4 */
ivp[7] = k->wk_keytsc >> 40; /* TSC5 */
/*
* Finally, do software encrypt if neeed.
*/
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
if (!tkip_encrypt(ctx, k, mp, hdrlen))
return (0);
} else
k->wk_keytsc++; /* wrap at 48 bits */
return (1);
}
uint64_t
ieee80211_read_6(uint8_t b0, uint8_t b1, uint8_t b2,
uint8_t b3, uint8_t b4, uint8_t b5)
{
uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
uint16_t iv16 = (b4 << 0) | (b5 << 8);
return ((((uint64_t)iv16) << 32) | iv32);
}
/*
* Validate and strip privacy headers (and trailer) for a
* received frame. If necessary, decrypt the frame using
* the specified key.
*/
static int
tkip_decap(struct ieee80211_key *k, mblk_t *mp, int hdrlen)
{
struct tkip_ctx *ctx = k->wk_private;
struct ieee80211com *ic = ctx->tc_ic;
uint8_t *ivp;
uint64_t pn;
/*
* Header should have extended IV and sequence number;
* verify the former and validate the latter.
*/
ivp = mp->b_rptr + hdrlen;
if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
/*
* No extended IV; discard frame.
*/
return (0);
}
/*
* Handle TKIP counter measures requirement.
*/
if (ic->ic_flags & IEEE80211_F_COUNTERM)
return (0);
/* NB: assume IEEEE80211_WEP_MINLEN covers the extended IV */
pn = ieee80211_read_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
ctx->rx_rsc = pn;
if (ctx->rx_rsc <= k->wk_keyrsc)
return (0);
/*
* NB: We can't update the rsc in the key until MIC is verified.
*
* We assume we are not preempted between doing the check above
* and updating wk_keyrsc when stripping the MIC in tkip_demic.
* Otherwise we might process another packet and discard it as
* a replay.
*/
/*
* Check if the device handled the decrypt in hardware.
* If so we just strip the header; otherwise we need to
* handle the decrypt in software.
*/
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
if (!tkip_decrypt(ctx, k, mp, hdrlen))
return (0);
}
/*
* Copy up 802.11 header and strip crypto bits.
*/
(void) memmove(mp->b_rptr + tkip.ic_header, mp->b_rptr, hdrlen);
mp->b_rptr += tkip.ic_header;
mp->b_wptr -= tkip.ic_trailer;
return (1);
}
/*
* Add MIC to the frame as needed.
*/
static int
tkip_enmic(struct ieee80211_key *k, mblk_t *mp, int force)
{
struct tkip_ctx *ctx = k->wk_private;
if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
int hdrlen;
uint8_t *mic;
hdrlen = ieee80211_hdrspace(ctx->tc_ic, mp->b_rptr);
mic = mp->b_wptr;
mp->b_wptr += tkip.ic_miclen;
if ((int)(MBLKL(mp) -
(hdrlen + tkip.ic_header + tkip.ic_miclen)) < 0)
return (0); /* dead packet */
michael_mic(ctx, k->wk_txmic, mp, (hdrlen + tkip.ic_header),
MBLKL(mp) -
(hdrlen + tkip.ic_header + tkip.ic_miclen), mic);
}
return (1);
}
/*
* Verify and strip MIC from the frame.
*/
/* ARGSUSED */
static int
tkip_demic(struct ieee80211_key *k, mblk_t *mp, int force)
{
struct tkip_ctx *ctx = k->wk_private;
if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
int hdrlen = ieee80211_hdrspace(ctx->tc_ic, mp->b_rptr);
uint8_t mic[IEEE80211_WEP_MICLEN];
uint8_t mic0[IEEE80211_WEP_MICLEN];
michael_mic(ctx, k->wk_rxmic,
mp, hdrlen,
MBLKL(mp) - (hdrlen + tkip.ic_miclen),
mic);
bcopy(mp->b_wptr - tkip.ic_miclen, mic0, tkip.ic_miclen);
if (bcmp(mic, mic0, tkip.ic_miclen)) {
ieee80211_dbg(IEEE80211_MSG_CRYPTO,
"tkip_demic() mic mismatch\n");
return (0);
}
}
/*
* Strip MIC from the tail.
*/
mp->b_wptr -= tkip.ic_miclen;
/*
* Ok to update rsc now that MIC has been verified.
*/
k->wk_keyrsc = ctx->rx_rsc;
return (1);
}
/*
* For the avoidance of doubt, except that if any license choice other
* than GPL or LGPL is available it will apply instead, Sun elects to
* use only the General Public License version 2 (GPLv2) at this time
* for any software where a choice of GPL license versions is made
* available with the language indicating that GPLv2 or any later
* version may be used, or where a choice of which version of the GPL
* is applied is otherwise unspecified.
*/
/*
* Host AP crypt: host-based TKIP encryption implementation for Host AP driver
*
* Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. See README and COPYING for
* more details.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*/
/* Table of CRCs of all 8-bit messages */
static uint32_t crc_table[] = { CRC32_TABLE };
static uint16_t
RotR1(uint16_t val)
{
return ((val >> 1) | (val << 15));
}
static uint8_t
Lo8(uint16_t val)
{
return (val & 0xff);
}
static uint8_t
Hi8(uint16_t val)
{
return (val >> 8);
}
static uint16_t
Lo16(uint32_t val)
{
return (val & 0xffff);
}
static uint16_t
Hi16(uint32_t val)
{
return (val >> 16);
}
static uint16_t
Mk16(uint8_t hi, uint8_t lo)
{
return (lo | (((uint16_t)hi) << 8));
}
static uint16_t
Mk16_le(const uint16_t *v)
{
return (LE_16(*v));
}
static const uint16_t Sbox[256] = {
0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
};
static uint16_t
_S_(uint16_t v)
{
uint16_t t = Sbox[Hi8(v)];
return (Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8)));
}
#define PHASE1_LOOP_COUNT 8
static void
tkip_mixing_phase1(uint16_t *TTAK, const uint8_t *TK,
const uint8_t *TA, uint32_t IV32)
{
int i, j;
/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
TTAK[0] = Lo16(IV32);
TTAK[1] = Hi16(IV32);
TTAK[2] = Mk16(TA[1], TA[0]);
TTAK[3] = Mk16(TA[3], TA[2]);
TTAK[4] = Mk16(TA[5], TA[4]);
for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
j = 2 * (i & 1);
TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
}
}
static void
tkip_mixing_phase2(uint8_t *WEPSeed, const uint8_t *TK,
const uint16_t *TTAK, uint16_t IV16)
{
/*
* Make temporary area overlap WEP seed so that the final copy can be
* avoided on little endian hosts.
*/
uint16_t *PPK = (uint16_t *)&WEPSeed[4];
/* Step 1 - make copy of TTAK and bring in TSC */
PPK[0] = TTAK[0];
PPK[1] = TTAK[1];
PPK[2] = TTAK[2];
PPK[3] = TTAK[3];
PPK[4] = TTAK[4];
PPK[5] = TTAK[4] + IV16;
/* Step 2 - 96-bit bijective mixing using S-box */
PPK[0] += _S_(PPK[5] ^ Mk16_le((const uint16_t *) &TK[0]));
PPK[1] += _S_(PPK[0] ^ Mk16_le((const uint16_t *) &TK[2]));
PPK[2] += _S_(PPK[1] ^ Mk16_le((const uint16_t *) &TK[4]));
PPK[3] += _S_(PPK[2] ^ Mk16_le((const uint16_t *) &TK[6]));
PPK[4] += _S_(PPK[3] ^ Mk16_le((const uint16_t *) &TK[8]));
PPK[5] += _S_(PPK[4] ^ Mk16_le((const uint16_t *) &TK[10]));
PPK[0] += RotR1(PPK[5] ^ Mk16_le((const uint16_t *) &TK[12]));
PPK[1] += RotR1(PPK[0] ^ Mk16_le((const uint16_t *) &TK[14]));
PPK[2] += RotR1(PPK[1]);
PPK[3] += RotR1(PPK[2]);
PPK[4] += RotR1(PPK[3]);
PPK[5] += RotR1(PPK[4]);
/*
* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
* WEPSeed[0..2] is transmitted as WEP IV
*/
WEPSeed[0] = Hi8(IV16);
WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
WEPSeed[2] = Lo8(IV16);
WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const uint16_t *) &TK[0])) >> 1);
#ifdef _BIG_ENDIAN
int i;
for (i = 0; i < 6; i++)
PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
#endif
}
static int
wep_encrypt(uint8_t *key, mblk_t *mp, uint_t off, size_t data_len,
uint8_t icv[IEEE80211_WEP_CRCLEN])
{
uint8_t crcbuf[IEEE80211_WEP_CRCLEN];
uint32_t crc;
crypto_context_t ctx;
int rv;
ctx = NULL;
rv = rc4_init(&ctx, (const uint8_t *)key, 16);
if (rv != CRYPTO_SUCCESS)
return (0);
/* calculate CRC over unencrypted data */
CRC32(crc, mp->b_rptr + off, data_len, -1U, crc_table);
/* encrypt data */
(void) rc4_crypt(ctx, mp->b_rptr + off, mp->b_rptr + off, data_len);
/* tack on ICV */
*(uint32_t *)crcbuf = LE_32(~crc);
(void) rc4_crypt(ctx, crcbuf, icv, IEEE80211_WEP_CRCLEN);
(void) rc4_final(ctx, icv, IEEE80211_WEP_CRCLEN);
return (1);
}
static int
wep_decrypt(uint8_t *key, mblk_t *mp, uint_t off, size_t data_len)
{
uint8_t crcbuf[IEEE80211_WEP_CRCLEN];
uint8_t *icv;
uint32_t crc;
crypto_context_t ctx;
int rv;
ctx = NULL;
rv = rc4_init(&ctx, (const uint8_t *)key, 16);
if (rv != CRYPTO_SUCCESS)
return (0);
/* decrypt data */
(void) rc4_crypt(ctx, mp->b_rptr + off, mp->b_rptr + off, data_len);
/* calculate CRC over unencrypted data */
CRC32(crc, mp->b_rptr + off, data_len, -1U, crc_table);
/* decrypt ICV and compare to CRC */
icv = mp->b_wptr - IEEE80211_WEP_CRCLEN;
(void) rc4_crypt(ctx, icv, crcbuf, IEEE80211_WEP_CRCLEN);
(void) rc4_final(ctx, crcbuf, IEEE80211_WEP_CRCLEN);
return (crc == ~LE_32(*(uint32_t *)crcbuf));
}
static uint32_t
rotl(uint32_t val, int bits)
{
return ((val << bits) | (val >> (32 - bits)));
}
static uint32_t
rotr(uint32_t val, int bits)
{
return ((val >> bits) | (val << (32 - bits)));
}
static uint32_t
xswap(uint32_t val)
{
return (((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8));
}
#define michael_block(l, r) \
do { \
r ^= rotl(l, 17); \
l += r; \
r ^= xswap(l); \
l += r; \
r ^= rotl(l, 3); \
l += r; \
r ^= rotr(l, 2); \
l += r; \
_NOTE(CONSTANTCONDITION)\
} while (0)
static uint32_t
get_le32_split(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3)
{
return (b0 | (b1 << 8) | (b2 << 16) | (b3 << 24));
}
static uint32_t
get_le32(const uint8_t *p)
{
return (get_le32_split(p[0], p[1], p[2], p[3]));
}
static void
put_le32(uint8_t *p, uint32_t v)
{
p[0] = (uint8_t)v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
}
/*
* Craft pseudo header used to calculate the MIC.
*/
static void
michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
{
const struct ieee80211_frame_addr4 *wh =
(const struct ieee80211_frame_addr4 *)wh0;
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
break;
case IEEE80211_FC1_DIR_TODS:
IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
break;
case IEEE80211_FC1_DIR_FROMDS:
IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
break;
case IEEE80211_FC1_DIR_DSTODS:
IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
break;
}
if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
const struct ieee80211_qosframe *qwh =
(const struct ieee80211_qosframe *)wh;
hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
} else
hdr[12] = 0;
hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
}
/* ARGSUSED */
static void
michael_mic(struct tkip_ctx *ctx, const uint8_t *key,
mblk_t *mp, uint_t off, size_t data_len,
uint8_t mic[IEEE80211_WEP_MICLEN])
{
uint8_t hdr[16];
uint32_t l, r;
const uint8_t *data;
int i, blocks, last;
michael_mic_hdr((struct ieee80211_frame *)mp->b_rptr, hdr);
l = get_le32(key);
r = get_le32(key + 4);
/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
l ^= get_le32(hdr);
michael_block(l, r);
l ^= get_le32(&hdr[4]);
michael_block(l, r);
l ^= get_le32(&hdr[8]);
michael_block(l, r);
l ^= get_le32(&hdr[12]);
michael_block(l, r);
/* first buffer has special handling */
data = mp->b_rptr + off;
blocks = data_len / 4;
last = data_len % 4;
for (i = 0; i < blocks; i++) {
l ^= get_le32(&data[4 * i]);
michael_block(l, r);
}
/* Last block and padding (0x5a, 4..7 x 0) */
switch (last) {
case 0:
l ^= 0x5a;
break;
case 1:
l ^= data[4 * i] | 0x5a00;
break;
case 2:
l ^= data[4 * i] | (data[4 * i + 1] << 8) | 0x5a0000;
break;
case 3:
l ^= data[4 * i] | (data[4 * i + 1] << 8) |
(data[4 * i + 2] << 16) | 0x5a000000;
break;
}
michael_block(l, r);
/* l ^= 0; */
michael_block(l, r);
put_le32(mic, l);
put_le32(mic + 4, r);
}
static int
tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
mblk_t *mp, int hdrlen)
{
struct ieee80211_frame *wh;
uint8_t *icv;
wh = (struct ieee80211_frame *)mp->b_rptr;
if (!ctx->tx_phase1_done) {
tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
(uint32_t)(key->wk_keytsc >> 16));
ctx->tx_phase1_done = 1;
}
tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
(uint16_t)key->wk_keytsc);
icv = mp->b_wptr;
mp->b_wptr += tkip.ic_trailer;
(void) wep_encrypt(ctx->tx_rc4key,
mp, hdrlen + tkip.ic_header,
MBLKL(mp) -
(hdrlen + tkip.ic_header + tkip.ic_trailer),
icv);
key->wk_keytsc++;
if ((uint16_t)(key->wk_keytsc) == 0)
ctx->tx_phase1_done = 0;
return (1);
}
static int
tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
mblk_t *mp, int hdrlen)
{
struct ieee80211_frame *wh;
uint32_t iv32;
uint16_t iv16;
wh = (struct ieee80211_frame *)mp->b_rptr;
/* tkip_decap already verified header and left seq in rx_rsc */
iv16 = (uint16_t)ctx->rx_rsc;
iv32 = (uint32_t)(ctx->rx_rsc >> 16);
if (iv32 != (uint32_t)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) {
tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
wh->i_addr2, iv32);
ctx->rx_phase1_done = 0; /* DHCP */
}
tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
/* m is unstripped; deduct headers + ICV to get payload */
if (!wep_decrypt(ctx->rx_rc4key,
mp, hdrlen + tkip.ic_header,
MBLKL(mp) -
(hdrlen + tkip.ic_header + tkip.ic_trailer))) {
if (iv32 != (uint32_t)(key->wk_keyrsc >> 16)) {
/*
* Previously cached Phase1 result was already lost, so
* it needs to be recalculated for the next packet.
*/
ctx->rx_phase1_done = 0;
}
ieee80211_dbg(IEEE80211_MSG_CRYPTO, "tkip_decrypt() error\n");
return (0);
}
return (1);
}