/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Multidata, as described in the following papers:
*
* Adi Masputra,
* Multidata V.2: VA-Disjoint Packet Extents Framework Interface
* Design Specification. August 2004.
* Available as http://sac.sfbay/PSARC/2004/594/materials/mmd2.pdf.
*
* Adi Masputra,
* Multidata Interface Design Specification. Sep 2002.
* Available as http://sac.sfbay/PSARC/2002/276/materials/mmd.pdf.
*
* Adi Masputra, Frank DiMambro, Kacheong Poon,
* An Efficient Networking Transmit Mechanism for Solaris:
* Multidata Transmit (MDT). May 2002.
* Available as http://sac.sfbay/PSARC/2002/276/materials/mdt.pdf.
*/
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/dlpi.h>
#include <sys/stropts.h>
#include <sys/strsun.h>
#include <sys/strlog.h>
#include <sys/strsubr.h>
#include <sys/sysmacros.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/kmem.h>
#include <sys/atomic.h>
#include <sys/multidata.h>
#include <sys/multidata_impl.h>
static int mmd_constructor(void *, void *, int);
static void mmd_destructor(void *, void *);
static int pdslab_constructor(void *, void *, int);
static void pdslab_destructor(void *, void *);
static int pattbl_constructor(void *, void *, int);
static void pattbl_destructor(void *, void *);
static void mmd_esballoc_free(caddr_t);
static int mmd_copy_pattbl(patbkt_t *, multidata_t *, pdesc_t *, int);
static boolean_t pbuf_ref_valid(multidata_t *, pdescinfo_t *);
#pragma inline(pbuf_ref_valid)
static boolean_t pdi_in_range(pdescinfo_t *, pdescinfo_t *);
#pragma inline(pdi_in_range)
static pdesc_t *mmd_addpdesc_int(multidata_t *, pdescinfo_t *, int *, int);
#pragma inline(mmd_addpdesc_int)
static void mmd_destroy_pattbl(patbkt_t **);
#pragma inline(mmd_destroy_pattbl)
static pattr_t *mmd_find_pattr(patbkt_t *, uint_t);
#pragma inline(mmd_find_pattr)
static pdesc_t *mmd_destroy_pdesc(multidata_t *, pdesc_t *);
#pragma inline(mmd_destroy_pdesc)
static pdesc_t *mmd_getpdesc(multidata_t *, pdesc_t *, pdescinfo_t *, uint_t,
boolean_t);
#pragma inline(mmd_getpdesc)
static struct kmem_cache *mmd_cache;
static struct kmem_cache *pd_slab_cache;
static struct kmem_cache *pattbl_cache;
int mmd_debug = 1;
#define MMD_DEBUG(s) if (mmd_debug > 0) cmn_err s
/*
* Set to this to true to bypass pdesc bounds checking.
*/
boolean_t mmd_speed_over_safety = B_FALSE;
/*
* Patchable kmem_cache flags.
*/
int mmd_kmem_flags = 0;
int pdslab_kmem_flags = 0;
int pattbl_kmem_flags = 0;
/*
* Alignment (in bytes) of our kmem caches.
*/
#define MULTIDATA_CACHE_ALIGN 64
/*
* Default number of packet descriptors per descriptor slab. Making
* this too small will trigger more descriptor slab allocation; making
* it too large will create too many unclaimed descriptors.
*/
#define PDSLAB_SZ 15
uint_t pdslab_sz = PDSLAB_SZ;
/*
* Default attribute hash table size. It's okay to set this to a small
* value (even to 1) because there aren't that many attributes currently
* defined, and because we assume there won't be many attributes associated
* with a Multidata at a given time. Increasing the size will reduce
* attribute search time (given a large number of attributes in a Multidata),
* and decreasing it will reduce the memory footprints and the overhead
* associated with managing the table.
*/
#define PATTBL_SZ 1
uint_t pattbl_sz = PATTBL_SZ;
/*
* Attribute hash key.
*/
#define PATTBL_HASH(x, sz) ((x) % (sz))
/*
* Structure that precedes each Multidata metadata.
*/
struct mmd_buf_info {
frtn_t frp; /* free routine */
uint_t buf_len; /* length of kmem buffer */
};
/*
* The size of each metadata buffer.
*/
#define MMD_CACHE_SIZE \
(sizeof (struct mmd_buf_info) + sizeof (multidata_t))
/*
* Called during startup in order to create the Multidata kmem caches.
*/
void
mmd_init(void)
{
pdslab_sz = MAX(1, pdslab_sz); /* at least 1 descriptor */
pattbl_sz = MAX(1, pattbl_sz); /* at least 1 bucket */
mmd_cache = kmem_cache_create("multidata", MMD_CACHE_SIZE,
MULTIDATA_CACHE_ALIGN, mmd_constructor, mmd_destructor,
NULL, NULL, NULL, mmd_kmem_flags);
pd_slab_cache = kmem_cache_create("multidata_pdslab",
PDESC_SLAB_SIZE(pdslab_sz), MULTIDATA_CACHE_ALIGN,
pdslab_constructor, pdslab_destructor, NULL,
(void *)(uintptr_t)pdslab_sz, NULL, pdslab_kmem_flags);
pattbl_cache = kmem_cache_create("multidata_pattbl",
sizeof (patbkt_t) * pattbl_sz, MULTIDATA_CACHE_ALIGN,
pattbl_constructor, pattbl_destructor, NULL,
(void *)(uintptr_t)pattbl_sz, NULL, pattbl_kmem_flags);
}
/*
* Create a Multidata message block.
*/
multidata_t *
mmd_alloc(mblk_t *hdr_mp, mblk_t **mmd_mp, int kmflags)
{
uchar_t *buf;
multidata_t *mmd;
uint_t mmd_mplen;
struct mmd_buf_info *buf_info;
ASSERT(hdr_mp != NULL);
ASSERT(mmd_mp != NULL);
/*
* Caller should never pass in a chain of mblks since we
* only care about the first one, hence the assertions.
*/
ASSERT(hdr_mp->b_cont == NULL);
if ((buf = kmem_cache_alloc(mmd_cache, kmflags)) == NULL)
return (NULL);
buf_info = (struct mmd_buf_info *)buf;
buf_info->frp.free_arg = (caddr_t)buf;
mmd = (multidata_t *)(buf_info + 1);
mmd_mplen = sizeof (*mmd);
if ((*mmd_mp = desballoc((uchar_t *)mmd, mmd_mplen, BPRI_HI,
&(buf_info->frp))) == NULL) {
kmem_cache_free(mmd_cache, buf);
return (NULL);
}
DB_TYPE(*mmd_mp) = M_MULTIDATA;
(*mmd_mp)->b_wptr += mmd_mplen;
mmd->mmd_dp = (*mmd_mp)->b_datap;
mmd->mmd_hbuf = hdr_mp;
return (mmd);
}
/*
* Associate additional payload buffer to the Multidata.
*/
int
mmd_addpldbuf(multidata_t *mmd, mblk_t *pld_mp)
{
int i;
ASSERT(mmd != NULL);
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
ASSERT(pld_mp != NULL);
mutex_enter(&mmd->mmd_pd_slab_lock);
for (i = 0; i < MULTIDATA_MAX_PBUFS &&
mmd->mmd_pbuf_cnt < MULTIDATA_MAX_PBUFS; i++) {
if (mmd->mmd_pbuf[i] == pld_mp) {
/* duplicate entry */
MMD_DEBUG((CE_WARN, "mmd_addpldbuf: error adding "
"pld 0x%p to mmd 0x%p since it has been "
"previously added into slot %d (total %d)\n",
(void *)pld_mp, (void *)mmd, i, mmd->mmd_pbuf_cnt));
mutex_exit(&mmd->mmd_pd_slab_lock);
return (-1);
} else if (mmd->mmd_pbuf[i] == NULL) {
mmd->mmd_pbuf[i] = pld_mp;
mmd->mmd_pbuf_cnt++;
mutex_exit(&mmd->mmd_pd_slab_lock);
return (i);
}
}
/* all slots are taken */
MMD_DEBUG((CE_WARN, "mmd_addpldbuf: error adding pld 0x%p to mmd 0x%p "
"since no slot space is left (total %d max %d)\n", (void *)pld_mp,
(void *)mmd, mmd->mmd_pbuf_cnt, MULTIDATA_MAX_PBUFS));
mutex_exit(&mmd->mmd_pd_slab_lock);
return (-1);
}
/*
* Multidata metadata kmem cache constructor routine.
*/
/* ARGSUSED */
static int
mmd_constructor(void *buf, void *cdrarg, int kmflags)
{
struct mmd_buf_info *buf_info;
multidata_t *mmd;
bzero((void *)buf, MMD_CACHE_SIZE);
buf_info = (struct mmd_buf_info *)buf;
buf_info->frp.free_func = mmd_esballoc_free;
buf_info->buf_len = MMD_CACHE_SIZE;
mmd = (multidata_t *)(buf_info + 1);
mmd->mmd_magic = MULTIDATA_MAGIC;
mutex_init(&(mmd->mmd_pd_slab_lock), NULL, MUTEX_DRIVER, NULL);
QL_INIT(&(mmd->mmd_pd_slab_q));
QL_INIT(&(mmd->mmd_pd_q));
return (0);
}
/*
* Multidata metadata kmem cache destructor routine.
*/
/* ARGSUSED */
static void
mmd_destructor(void *buf, void *cdrarg)
{
multidata_t *mmd;
#ifdef DEBUG
int i;
#endif
mmd = (multidata_t *)((uchar_t *)buf + sizeof (struct mmd_buf_info));
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
ASSERT(mmd->mmd_dp == NULL);
ASSERT(mmd->mmd_hbuf == NULL);
ASSERT(mmd->mmd_pbuf_cnt == 0);
#ifdef DEBUG
for (i = 0; i < MULTIDATA_MAX_PBUFS; i++)
ASSERT(mmd->mmd_pbuf[i] == NULL);
#endif
ASSERT(mmd->mmd_pattbl == NULL);
mutex_destroy(&(mmd->mmd_pd_slab_lock));
ASSERT(mmd->mmd_pd_slab_q.ql_next == &(mmd->mmd_pd_slab_q));
ASSERT(mmd->mmd_slab_cnt == 0);
ASSERT(mmd->mmd_pd_q.ql_next == &(mmd->mmd_pd_q));
ASSERT(mmd->mmd_pd_cnt == 0);
ASSERT(mmd->mmd_hbuf_ref == 0);
ASSERT(mmd->mmd_pbuf_ref == 0);
}
/*
* Multidata message block free callback routine.
*/
static void
mmd_esballoc_free(caddr_t buf)
{
multidata_t *mmd;
pdesc_t *pd;
pdesc_slab_t *slab;
int i;
ASSERT(buf != NULL);
ASSERT(((struct mmd_buf_info *)buf)->buf_len == MMD_CACHE_SIZE);
mmd = (multidata_t *)(buf + sizeof (struct mmd_buf_info));
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
ASSERT(mmd->mmd_dp != NULL);
ASSERT(mmd->mmd_dp->db_ref == 1);
/* remove all packet descriptors and private attributes */
pd = Q2PD(mmd->mmd_pd_q.ql_next);
while (pd != Q2PD(&(mmd->mmd_pd_q)))
pd = mmd_destroy_pdesc(mmd, pd);
ASSERT(mmd->mmd_pd_q.ql_next == &(mmd->mmd_pd_q));
ASSERT(mmd->mmd_pd_cnt == 0);
ASSERT(mmd->mmd_hbuf_ref == 0);
ASSERT(mmd->mmd_pbuf_ref == 0);
/* remove all global attributes */
if (mmd->mmd_pattbl != NULL)
mmd_destroy_pattbl(&(mmd->mmd_pattbl));
/* remove all descriptor slabs */
slab = Q2PDSLAB(mmd->mmd_pd_slab_q.ql_next);
while (slab != Q2PDSLAB(&(mmd->mmd_pd_slab_q))) {
pdesc_slab_t *slab_next = Q2PDSLAB(slab->pds_next);
remque(&(slab->pds_next));
slab->pds_next = NULL;
slab->pds_prev = NULL;
slab->pds_mmd = NULL;
slab->pds_used = 0;
kmem_cache_free(pd_slab_cache, slab);
ASSERT(mmd->mmd_slab_cnt > 0);
mmd->mmd_slab_cnt--;
slab = slab_next;
}
ASSERT(mmd->mmd_pd_slab_q.ql_next == &(mmd->mmd_pd_slab_q));
ASSERT(mmd->mmd_slab_cnt == 0);
mmd->mmd_dp = NULL;
/* finally, free all associated message blocks */
if (mmd->mmd_hbuf != NULL) {
freeb(mmd->mmd_hbuf);
mmd->mmd_hbuf = NULL;
}
for (i = 0; i < MULTIDATA_MAX_PBUFS; i++) {
if (mmd->mmd_pbuf[i] != NULL) {
freeb(mmd->mmd_pbuf[i]);
mmd->mmd_pbuf[i] = NULL;
ASSERT(mmd->mmd_pbuf_cnt > 0);
mmd->mmd_pbuf_cnt--;
}
}
ASSERT(mmd->mmd_pbuf_cnt == 0);
ASSERT(MUTEX_NOT_HELD(&(mmd->mmd_pd_slab_lock)));
kmem_cache_free(mmd_cache, buf);
}
/*
* Multidata message block copy routine, called by copyb() when it
* encounters a M_MULTIDATA data block type. This routine should
* not be called by anyone other than copyb(), since it may go away
* (read: become static to this module) once some sort of copy callback
* routine is made available.
*/
mblk_t *
mmd_copy(mblk_t *bp, int kmflags)
{
multidata_t *mmd, *n_mmd;
mblk_t *n_hbuf = NULL, *n_pbuf[MULTIDATA_MAX_PBUFS];
mblk_t **pmp_last = &n_pbuf[MULTIDATA_MAX_PBUFS - 1];
mblk_t **pmp;
mblk_t *n_bp = NULL;
pdesc_t *pd;
uint_t n_pbuf_cnt = 0;
int idx, i;
#define FREE_PBUFS() { \
for (pmp = &n_pbuf[0]; pmp <= pmp_last; pmp++) \
if (*pmp != NULL) freeb(*pmp); \
}
#define REL_OFF(p, base, n_base) \
((uchar_t *)(n_base) + ((uchar_t *)(p) - (uchar_t *)base))
ASSERT(bp != NULL && DB_TYPE(bp) == M_MULTIDATA);
mmd = mmd_getmultidata(bp);
/* copy the header buffer */
if (mmd->mmd_hbuf != NULL && (n_hbuf = copyb(mmd->mmd_hbuf)) == NULL)
return (NULL);
/* copy the payload buffer(s) */
mutex_enter(&mmd->mmd_pd_slab_lock);
bzero((void *)&n_pbuf[0], sizeof (mblk_t *) * MULTIDATA_MAX_PBUFS);
n_pbuf_cnt = mmd->mmd_pbuf_cnt;
for (i = 0; i < n_pbuf_cnt; i++) {
ASSERT(mmd->mmd_pbuf[i] != NULL);
n_pbuf[i] = copyb(mmd->mmd_pbuf[i]);
if (n_pbuf[i] == NULL) {
FREE_PBUFS();
mutex_exit(&mmd->mmd_pd_slab_lock);
return (NULL);
}
}
/* allocate new Multidata */
n_mmd = mmd_alloc(n_hbuf, &n_bp, kmflags);
if (n_mmd == NULL) {
if (n_hbuf != NULL)
freeb(n_hbuf);
if (n_pbuf_cnt != 0)
FREE_PBUFS();
mutex_exit(&mmd->mmd_pd_slab_lock);
return (NULL);
}
/*
* Add payload buffer(s); upon success, leave n_pbuf array
* alone, as the newly-created Multidata had already contained
* the mblk pointers stored in the array. These will be freed
* along with the Multidata itself.
*/
for (i = 0, pmp = &n_pbuf[0]; i < n_pbuf_cnt; i++, pmp++) {
idx = mmd_addpldbuf(n_mmd, *pmp);
if (idx < 0) {
FREE_PBUFS();
freeb(n_bp);
mutex_exit(&mmd->mmd_pd_slab_lock);
return (NULL);
}
}
/* copy over global attributes */
if (mmd->mmd_pattbl != NULL &&
mmd_copy_pattbl(mmd->mmd_pattbl, n_mmd, NULL, kmflags) < 0) {
freeb(n_bp);
mutex_exit(&mmd->mmd_pd_slab_lock);
return (NULL);
}
/* copy over packet descriptors and their atttributes */
pd = mmd_getpdesc(mmd, NULL, NULL, 1, B_TRUE); /* first pdesc */
while (pd != NULL) {
pdesc_t *n_pd;
pdescinfo_t *pdi, n_pdi;
uchar_t *n_base, *base;
pdesc_t *pd_next;
/* next pdesc */
pd_next = mmd_getpdesc(pd->pd_slab->pds_mmd, pd, NULL,
1, B_TRUE);
/* skip if already removed */
if (pd->pd_flags & PDESC_REM_DEFER) {
pd = pd_next;
continue;
}
pdi = &(pd->pd_pdi);
bzero(&n_pdi, sizeof (n_pdi));
/*
* Calculate new descriptor values based on the offset of
* each pointer relative to the associated buffer(s).
*/
ASSERT(pdi->flags & PDESC_HAS_REF);
if (pdi->flags & PDESC_HBUF_REF) {
n_base = n_mmd->mmd_hbuf->b_rptr;
base = mmd->mmd_hbuf->b_rptr;
n_pdi.flags |= PDESC_HBUF_REF;
n_pdi.hdr_base = REL_OFF(pdi->hdr_base, base, n_base);
n_pdi.hdr_rptr = REL_OFF(pdi->hdr_rptr, base, n_base);
n_pdi.hdr_wptr = REL_OFF(pdi->hdr_wptr, base, n_base);
n_pdi.hdr_lim = REL_OFF(pdi->hdr_lim, base, n_base);
}
if (pdi->flags & PDESC_PBUF_REF) {
n_pdi.flags |= PDESC_PBUF_REF;
n_pdi.pld_cnt = pdi->pld_cnt;
for (i = 0; i < pdi->pld_cnt; i++) {
idx = pdi->pld_ary[i].pld_pbuf_idx;
ASSERT(idx < MULTIDATA_MAX_PBUFS);
ASSERT(n_mmd->mmd_pbuf[idx] != NULL);
ASSERT(mmd->mmd_pbuf[idx] != NULL);
n_base = n_mmd->mmd_pbuf[idx]->b_rptr;
base = mmd->mmd_pbuf[idx]->b_rptr;
n_pdi.pld_ary[i].pld_pbuf_idx = idx;
/*
* We can't copy the pointers just like that,
* so calculate the relative offset.
*/
n_pdi.pld_ary[i].pld_rptr =
REL_OFF(pdi->pld_ary[i].pld_rptr,
base, n_base);
n_pdi.pld_ary[i].pld_wptr =
REL_OFF(pdi->pld_ary[i].pld_wptr,
base, n_base);
}
}
/* add the new descriptor to the new Multidata */
n_pd = mmd_addpdesc_int(n_mmd, &n_pdi, NULL, kmflags);
if (n_pd == NULL || (pd->pd_pattbl != NULL &&
mmd_copy_pattbl(pd->pd_pattbl, n_mmd, n_pd, kmflags) < 0)) {
freeb(n_bp);
mutex_exit(&mmd->mmd_pd_slab_lock);
return (NULL);
}
pd = pd_next;
}
#undef REL_OFF
#undef FREE_PBUFS
mutex_exit(&mmd->mmd_pd_slab_lock);
return (n_bp);
}
/*
* Given a Multidata message block, return the Multidata metadata handle.
*/
multidata_t *
mmd_getmultidata(mblk_t *mp)
{
multidata_t *mmd;
ASSERT(mp != NULL);
if (DB_TYPE(mp) != M_MULTIDATA)
return (NULL);
mmd = (multidata_t *)mp->b_rptr;
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
return (mmd);
}
/*
* Return the start and end addresses of the associated buffer(s).
*/
void
mmd_getregions(multidata_t *mmd, mbufinfo_t *mbi)
{
int i;
ASSERT(mmd != NULL);
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
ASSERT(mbi != NULL);
bzero((void *)mbi, sizeof (mbufinfo_t));
if (mmd->mmd_hbuf != NULL) {
mbi->hbuf_rptr = mmd->mmd_hbuf->b_rptr;
mbi->hbuf_wptr = mmd->mmd_hbuf->b_wptr;
}
mutex_enter(&mmd->mmd_pd_slab_lock);
for (i = 0; i < mmd->mmd_pbuf_cnt; i++) {
ASSERT(mmd->mmd_pbuf[i] != NULL);
mbi->pbuf_ary[i].pbuf_rptr = mmd->mmd_pbuf[i]->b_rptr;
mbi->pbuf_ary[i].pbuf_wptr = mmd->mmd_pbuf[i]->b_wptr;
}
mbi->pbuf_cnt = mmd->mmd_pbuf_cnt;
mutex_exit(&mmd->mmd_pd_slab_lock);
}
/*
* Return the Multidata statistics.
*/
uint_t
mmd_getcnt(multidata_t *mmd, uint_t *hbuf_ref, uint_t *pbuf_ref)
{
uint_t pd_cnt;
ASSERT(mmd != NULL);
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
mutex_enter(&(mmd->mmd_pd_slab_lock));
if (hbuf_ref != NULL)
*hbuf_ref = mmd->mmd_hbuf_ref;
if (pbuf_ref != NULL)
*pbuf_ref = mmd->mmd_pbuf_ref;
pd_cnt = mmd->mmd_pd_cnt;
mutex_exit(&(mmd->mmd_pd_slab_lock));
return (pd_cnt);
}
#define HBUF_REF_VALID(mmd, pdi) \
((mmd)->mmd_hbuf != NULL && (pdi)->hdr_rptr != NULL && \
(pdi)->hdr_wptr != NULL && (pdi)->hdr_base != NULL && \
(pdi)->hdr_lim != NULL && (pdi)->hdr_lim >= (pdi)->hdr_base && \
(pdi)->hdr_wptr >= (pdi)->hdr_rptr && \
(pdi)->hdr_base <= (pdi)->hdr_rptr && \
(pdi)->hdr_lim >= (pdi)->hdr_wptr && \
(pdi)->hdr_base >= (mmd)->mmd_hbuf->b_rptr && \
MBLKIN((mmd)->mmd_hbuf, \
(pdi->hdr_base - (mmd)->mmd_hbuf->b_rptr), \
PDESC_HDRSIZE(pdi)))
/*
* Bounds check payload area(s).
*/
static boolean_t
pbuf_ref_valid(multidata_t *mmd, pdescinfo_t *pdi)
{
int i = 0, idx;
boolean_t valid = B_TRUE;
struct pld_ary_s *pa;
mutex_enter(&mmd->mmd_pd_slab_lock);
if (pdi->pld_cnt == 0 || pdi->pld_cnt > mmd->mmd_pbuf_cnt) {
mutex_exit(&mmd->mmd_pd_slab_lock);
return (B_FALSE);
}
pa = &pdi->pld_ary[0];
while (valid && i < pdi->pld_cnt) {
valid = (((idx = pa->pld_pbuf_idx) < mmd->mmd_pbuf_cnt) &&
pa->pld_rptr != NULL && pa->pld_wptr != NULL &&
pa->pld_wptr >= pa->pld_rptr &&
pa->pld_rptr >= mmd->mmd_pbuf[idx]->b_rptr &&
MBLKIN(mmd->mmd_pbuf[idx], (pa->pld_rptr -
mmd->mmd_pbuf[idx]->b_rptr),
PDESC_PLD_SPAN_SIZE(pdi, i)));
if (!valid) {
MMD_DEBUG((CE_WARN,
"pbuf_ref_valid: pdi 0x%p pld out of bound; "
"index %d has pld_cnt %d pbuf_idx %d "
"(mmd_pbuf_cnt %d), "
"pld_rptr 0x%p pld_wptr 0x%p len %d "
"(valid 0x%p-0x%p len %d)\n", (void *)pdi,
i, pdi->pld_cnt, idx, mmd->mmd_pbuf_cnt,
(void *)pa->pld_rptr,
(void *)pa->pld_wptr,
(int)PDESC_PLD_SPAN_SIZE(pdi, i),
(void *)mmd->mmd_pbuf[idx]->b_rptr,
(void *)mmd->mmd_pbuf[idx]->b_wptr,
(int)MBLKL(mmd->mmd_pbuf[idx])));
}
/* advance to next entry */
i++;
pa++;
}
mutex_exit(&mmd->mmd_pd_slab_lock);
return (valid);
}
/*
* Add a packet descriptor to the Multidata.
*/
pdesc_t *
mmd_addpdesc(multidata_t *mmd, pdescinfo_t *pdi, int *err, int kmflags)
{
ASSERT(mmd != NULL);
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
ASSERT(pdi != NULL);
ASSERT(pdi->flags & PDESC_HAS_REF);
/* do the references refer to invalid memory regions? */
if (!mmd_speed_over_safety &&
(((pdi->flags & PDESC_HBUF_REF) && !HBUF_REF_VALID(mmd, pdi)) ||
((pdi->flags & PDESC_PBUF_REF) && !pbuf_ref_valid(mmd, pdi)))) {
if (err != NULL)
*err = EINVAL;
return (NULL);
}
return (mmd_addpdesc_int(mmd, pdi, err, kmflags));
}
/*
* Internal routine to add a packet descriptor, called when mmd_addpdesc
* or mmd_copy tries to allocate and add a descriptor to a Multidata.
*/
static pdesc_t *
mmd_addpdesc_int(multidata_t *mmd, pdescinfo_t *pdi, int *err, int kmflags)
{
pdesc_slab_t *slab, *slab_last;
pdesc_t *pd;
ASSERT(pdi->flags & PDESC_HAS_REF);
ASSERT(!(pdi->flags & PDESC_HBUF_REF) || HBUF_REF_VALID(mmd, pdi));
ASSERT(!(pdi->flags & PDESC_PBUF_REF) || pbuf_ref_valid(mmd, pdi));
if (err != NULL)
*err = 0;
mutex_enter(&(mmd->mmd_pd_slab_lock));
/*
* Is slab list empty or the last-added slab is full? If so,
* allocate new slab for the descriptor; otherwise, use the
* last-added slab instead.
*/
slab_last = Q2PDSLAB(mmd->mmd_pd_slab_q.ql_prev);
if (mmd->mmd_pd_slab_q.ql_next == &(mmd->mmd_pd_slab_q) ||
slab_last->pds_used == slab_last->pds_sz) {
slab = kmem_cache_alloc(pd_slab_cache, kmflags);
if (slab == NULL) {
if (err != NULL)
*err = ENOMEM;
mutex_exit(&(mmd->mmd_pd_slab_lock));
return (NULL);
}
slab->pds_mmd = mmd;
ASSERT(slab->pds_used == 0);
ASSERT(slab->pds_next == NULL && slab->pds_prev == NULL);
/* insert slab at end of list */
insque(&(slab->pds_next), mmd->mmd_pd_slab_q.ql_prev);
mmd->mmd_slab_cnt++;
} else {
slab = slab_last;
}
ASSERT(slab->pds_used < slab->pds_sz);
pd = &(slab->pds_free_desc[slab->pds_used++]);
ASSERT(pd->pd_magic == PDESC_MAGIC);
pd->pd_next = NULL;
pd->pd_prev = NULL;
pd->pd_slab = slab;
pd->pd_pattbl = NULL;
/* copy over the descriptor info from caller */
PDI_COPY(pdi, &(pd->pd_pdi));
if (pd->pd_flags & PDESC_HBUF_REF)
mmd->mmd_hbuf_ref++;
if (pd->pd_flags & PDESC_PBUF_REF)
mmd->mmd_pbuf_ref += pd->pd_pdi.pld_cnt;
mmd->mmd_pd_cnt++;
/* insert descriptor at end of list */
insque(&(pd->pd_next), mmd->mmd_pd_q.ql_prev);
mutex_exit(&(mmd->mmd_pd_slab_lock));
return (pd);
}
/*
* Packet descriptor slab kmem cache constructor routine.
*/
/* ARGSUSED */
static int
pdslab_constructor(void *buf, void *cdrarg, int kmflags)
{
pdesc_slab_t *slab;
uint_t cnt = (uint_t)(uintptr_t)cdrarg;
int i;
ASSERT(cnt > 0); /* slab size can't be zero */
slab = (pdesc_slab_t *)buf;
slab->pds_next = NULL;
slab->pds_prev = NULL;
slab->pds_mmd = NULL;
slab->pds_used = 0;
slab->pds_sz = cnt;
for (i = 0; i < cnt; i++) {
pdesc_t *pd = &(slab->pds_free_desc[i]);
pd->pd_magic = PDESC_MAGIC;
}
return (0);
}
/*
* Packet descriptor slab kmem cache destructor routine.
*/
/* ARGSUSED */
static void
pdslab_destructor(void *buf, void *cdrarg)
{
pdesc_slab_t *slab;
slab = (pdesc_slab_t *)buf;
ASSERT(slab->pds_next == NULL);
ASSERT(slab->pds_prev == NULL);
ASSERT(slab->pds_mmd == NULL);
ASSERT(slab->pds_used == 0);
ASSERT(slab->pds_sz > 0);
}
/*
* Remove a packet descriptor from the in-use descriptor list,
* called by mmd_rempdesc or during free.
*/
static pdesc_t *
mmd_destroy_pdesc(multidata_t *mmd, pdesc_t *pd)
{
pdesc_t *pd_next;
pd_next = Q2PD(pd->pd_next);
remque(&(pd->pd_next));
/* remove all local attributes */
if (pd->pd_pattbl != NULL)
mmd_destroy_pattbl(&(pd->pd_pattbl));
/* don't decrease counts for a removed descriptor */
if (!(pd->pd_flags & PDESC_REM_DEFER)) {
if (pd->pd_flags & PDESC_HBUF_REF) {
ASSERT(mmd->mmd_hbuf_ref > 0);
mmd->mmd_hbuf_ref--;
}
if (pd->pd_flags & PDESC_PBUF_REF) {
ASSERT(mmd->mmd_pbuf_ref > 0);
mmd->mmd_pbuf_ref -= pd->pd_pdi.pld_cnt;
}
ASSERT(mmd->mmd_pd_cnt > 0);
mmd->mmd_pd_cnt--;
}
return (pd_next);
}
/*
* Remove a packet descriptor from the Multidata.
*/
void
mmd_rempdesc(pdesc_t *pd)
{
multidata_t *mmd;
ASSERT(pd->pd_magic == PDESC_MAGIC);
ASSERT(pd->pd_slab != NULL);
mmd = pd->pd_slab->pds_mmd;
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
mutex_enter(&(mmd->mmd_pd_slab_lock));
/*
* We can't deallocate the associated resources if the Multidata
* is shared with other threads, because it's possible that the
* descriptor handle value is held by those threads. That's why
* we simply mark the entry as "removed" and decrement the counts.
* If there are no other threads, then we free the descriptor.
*/
if (mmd->mmd_dp->db_ref > 1) {
pd->pd_flags |= PDESC_REM_DEFER;
if (pd->pd_flags & PDESC_HBUF_REF) {
ASSERT(mmd->mmd_hbuf_ref > 0);
mmd->mmd_hbuf_ref--;
}
if (pd->pd_flags & PDESC_PBUF_REF) {
ASSERT(mmd->mmd_pbuf_ref > 0);
mmd->mmd_pbuf_ref -= pd->pd_pdi.pld_cnt;
}
ASSERT(mmd->mmd_pd_cnt > 0);
mmd->mmd_pd_cnt--;
} else {
(void) mmd_destroy_pdesc(mmd, pd);
}
mutex_exit(&(mmd->mmd_pd_slab_lock));
}
/*
* A generic routine to traverse the packet descriptor in-use list.
*/
static pdesc_t *
mmd_getpdesc(multidata_t *mmd, pdesc_t *pd, pdescinfo_t *pdi, uint_t forw,
boolean_t mutex_held)
{
pdesc_t *pd_head;
ASSERT(pd == NULL || pd->pd_slab->pds_mmd == mmd);
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
ASSERT(!mutex_held || MUTEX_HELD(&(mmd->mmd_pd_slab_lock)));
if (!mutex_held)
mutex_enter(&(mmd->mmd_pd_slab_lock));
pd_head = Q2PD(&(mmd->mmd_pd_q));
if (pd == NULL) {
/*
* We're called by mmd_get{first,last}pdesc, and so
* return either the first or last list element.
*/
pd = forw ? Q2PD(mmd->mmd_pd_q.ql_next) :
Q2PD(mmd->mmd_pd_q.ql_prev);
} else {
/*
* We're called by mmd_get{next,prev}pdesc, and so
* return either the next or previous list element.
*/
pd = forw ? Q2PD(pd->pd_next) : Q2PD(pd->pd_prev);
}
while (pd != pd_head) {
/* skip element if it has been removed */
if (!(pd->pd_flags & PDESC_REM_DEFER))
break;
pd = forw ? Q2PD(pd->pd_next) : Q2PD(pd->pd_prev);
}
if (!mutex_held)
mutex_exit(&(mmd->mmd_pd_slab_lock));
/* return NULL if we're back at the beginning */
if (pd == pd_head)
pd = NULL;
/* got an entry; copy descriptor info to caller */
if (pd != NULL && pdi != NULL)
PDI_COPY(&(pd->pd_pdi), pdi);
ASSERT(pd == NULL || pd->pd_magic == PDESC_MAGIC);
return (pd);
}
/*
* Return the first packet descriptor in the in-use list.
*/
pdesc_t *
mmd_getfirstpdesc(multidata_t *mmd, pdescinfo_t *pdi)
{
return (mmd_getpdesc(mmd, NULL, pdi, 1, B_FALSE));
}
/*
* Return the last packet descriptor in the in-use list.
*/
pdesc_t *
mmd_getlastpdesc(multidata_t *mmd, pdescinfo_t *pdi)
{
return (mmd_getpdesc(mmd, NULL, pdi, 0, B_FALSE));
}
/*
* Return the next packet descriptor in the in-use list.
*/
pdesc_t *
mmd_getnextpdesc(pdesc_t *pd, pdescinfo_t *pdi)
{
return (mmd_getpdesc(pd->pd_slab->pds_mmd, pd, pdi, 1, B_FALSE));
}
/*
* Return the previous packet descriptor in the in-use list.
*/
pdesc_t *
mmd_getprevpdesc(pdesc_t *pd, pdescinfo_t *pdi)
{
return (mmd_getpdesc(pd->pd_slab->pds_mmd, pd, pdi, 0, B_FALSE));
}
/*
* Check to see if pdi stretches over c_pdi; used to ensure that a packet
* descriptor's header and payload span may not be extended beyond the
* current boundaries.
*/
static boolean_t
pdi_in_range(pdescinfo_t *pdi, pdescinfo_t *c_pdi)
{
int i;
struct pld_ary_s *pa = &pdi->pld_ary[0];
struct pld_ary_s *c_pa = &c_pdi->pld_ary[0];
if (pdi->hdr_base < c_pdi->hdr_base || pdi->hdr_lim > c_pdi->hdr_lim)
return (B_FALSE);
/*
* We don't allow the number of span to be reduced, for the sake
* of simplicity. Instead, we provide PDESC_PLD_SPAN_CLEAR() to
* clear a packet descriptor. Note that we allow the span count to
* be increased, and the bounds check for the new one happens
* in pbuf_ref_valid.
*/
if (pdi->pld_cnt < c_pdi->pld_cnt)
return (B_FALSE);
/* compare only those which are currently defined */
for (i = 0; i < c_pdi->pld_cnt; i++, pa++, c_pa++) {
if (pa->pld_pbuf_idx != c_pa->pld_pbuf_idx ||
pa->pld_rptr < c_pa->pld_rptr ||
pa->pld_wptr > c_pa->pld_wptr)
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Modify the layout of a packet descriptor.
*/
pdesc_t *
mmd_adjpdesc(pdesc_t *pd, pdescinfo_t *pdi)
{
multidata_t *mmd;
pdescinfo_t *c_pdi;
ASSERT(pd != NULL);
ASSERT(pdi != NULL);
ASSERT(pd->pd_magic == PDESC_MAGIC);
mmd = pd->pd_slab->pds_mmd;
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
/* entry has been removed */
if (pd->pd_flags & PDESC_REM_DEFER)
return (NULL);
/* caller doesn't intend to specify any buffer reference? */
if (!(pdi->flags & PDESC_HAS_REF))
return (NULL);
/* do the references refer to invalid memory regions? */
if (!mmd_speed_over_safety &&
(((pdi->flags & PDESC_HBUF_REF) && !HBUF_REF_VALID(mmd, pdi)) ||
((pdi->flags & PDESC_PBUF_REF) && !pbuf_ref_valid(mmd, pdi))))
return (NULL);
/* they're not subsets of current references? */
c_pdi = &(pd->pd_pdi);
if (!pdi_in_range(pdi, c_pdi))
return (NULL);
/* copy over the descriptor info from caller */
PDI_COPY(pdi, c_pdi);
return (pd);
}
/*
* Copy the contents of a packet descriptor into a new buffer. If the
* descriptor points to more than one buffer fragments, the contents
* of both fragments will be joined, with the header buffer fragment
* preceding the payload buffer fragment(s).
*/
mblk_t *
mmd_transform(pdesc_t *pd)
{
multidata_t *mmd;
pdescinfo_t *pdi;
mblk_t *mp;
int h_size = 0, p_size = 0;
int i, len;
ASSERT(pd != NULL);
ASSERT(pd->pd_magic == PDESC_MAGIC);
mmd = pd->pd_slab->pds_mmd;
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
/* entry has been removed */
if (pd->pd_flags & PDESC_REM_DEFER)
return (NULL);
mutex_enter(&mmd->mmd_pd_slab_lock);
pdi = &(pd->pd_pdi);
if (pdi->flags & PDESC_HBUF_REF)
h_size = PDESC_HDRL(pdi);
if (pdi->flags & PDESC_PBUF_REF) {
for (i = 0; i < pdi->pld_cnt; i++)
p_size += PDESC_PLD_SPAN_SIZE(pdi, i);
}
/* allocate space large enough to hold the fragment(s) */
ASSERT(h_size + p_size >= 0);
if ((mp = allocb(h_size + p_size, BPRI_HI)) == NULL) {
mutex_exit(&mmd->mmd_pd_slab_lock);
return (NULL);
}
/* copy over the header fragment */
if ((pdi->flags & PDESC_HBUF_REF) && h_size > 0) {
bcopy(pdi->hdr_rptr, mp->b_wptr, h_size);
mp->b_wptr += h_size;
}
/* copy over the payload fragment */
if ((pdi->flags & PDESC_PBUF_REF) && p_size > 0) {
for (i = 0; i < pdi->pld_cnt; i++) {
len = PDESC_PLD_SPAN_SIZE(pdi, i);
if (len > 0) {
bcopy(pdi->pld_ary[i].pld_rptr,
mp->b_wptr, len);
mp->b_wptr += len;
}
}
}
mutex_exit(&mmd->mmd_pd_slab_lock);
return (mp);
}
/*
* Return a chain of mblks representing the Multidata packet.
*/
mblk_t *
mmd_transform_link(pdesc_t *pd)
{
multidata_t *mmd;
pdescinfo_t *pdi;
mblk_t *nmp = NULL;
ASSERT(pd != NULL);
ASSERT(pd->pd_magic == PDESC_MAGIC);
mmd = pd->pd_slab->pds_mmd;
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
/* entry has been removed */
if (pd->pd_flags & PDESC_REM_DEFER)
return (NULL);
pdi = &(pd->pd_pdi);
/* duplicate header buffer */
if ((pdi->flags & PDESC_HBUF_REF)) {
if ((nmp = dupb(mmd->mmd_hbuf)) == NULL)
return (NULL);
nmp->b_rptr = pdi->hdr_rptr;
nmp->b_wptr = pdi->hdr_wptr;
}
/* duplicate payload buffer(s) */
if (pdi->flags & PDESC_PBUF_REF) {
int i;
mblk_t *mp;
struct pld_ary_s *pa = &pdi->pld_ary[0];
mutex_enter(&mmd->mmd_pd_slab_lock);
for (i = 0; i < pdi->pld_cnt; i++, pa++) {
ASSERT(mmd->mmd_pbuf[pa->pld_pbuf_idx] != NULL);
/* skip empty ones */
if (PDESC_PLD_SPAN_SIZE(pdi, i) == 0)
continue;
mp = dupb(mmd->mmd_pbuf[pa->pld_pbuf_idx]);
if (mp == NULL) {
if (nmp != NULL)
freemsg(nmp);
mutex_exit(&mmd->mmd_pd_slab_lock);
return (NULL);
}
mp->b_rptr = pa->pld_rptr;
mp->b_wptr = pa->pld_wptr;
if (nmp == NULL)
nmp = mp;
else
linkb(nmp, mp);
}
mutex_exit(&mmd->mmd_pd_slab_lock);
}
return (nmp);
}
/*
* Return duplicate message block(s) of the associated buffer(s).
*/
int
mmd_dupbufs(multidata_t *mmd, mblk_t **hmp, mblk_t **pmp)
{
ASSERT(mmd != NULL);
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
if (hmp != NULL) {
*hmp = NULL;
if (mmd->mmd_hbuf != NULL &&
(*hmp = dupb(mmd->mmd_hbuf)) == NULL)
return (-1);
}
if (pmp != NULL) {
int i;
mblk_t *mp;
mutex_enter(&mmd->mmd_pd_slab_lock);
*pmp = NULL;
for (i = 0; i < mmd->mmd_pbuf_cnt; i++) {
ASSERT(mmd->mmd_pbuf[i] != NULL);
mp = dupb(mmd->mmd_pbuf[i]);
if (mp == NULL) {
if (hmp != NULL && *hmp != NULL)
freeb(*hmp);
if (*pmp != NULL)
freemsg(*pmp);
mutex_exit(&mmd->mmd_pd_slab_lock);
return (-1);
}
if (*pmp == NULL)
*pmp = mp;
else
linkb(*pmp, mp);
}
mutex_exit(&mmd->mmd_pd_slab_lock);
}
return (0);
}
/*
* Return the layout of a packet descriptor.
*/
int
mmd_getpdescinfo(pdesc_t *pd, pdescinfo_t *pdi)
{
ASSERT(pd != NULL);
ASSERT(pd->pd_magic == PDESC_MAGIC);
ASSERT(pd->pd_slab != NULL);
ASSERT(pd->pd_slab->pds_mmd->mmd_magic == MULTIDATA_MAGIC);
ASSERT(pdi != NULL);
/* entry has been removed */
if (pd->pd_flags & PDESC_REM_DEFER)
return (-1);
/* copy descriptor info to caller */
PDI_COPY(&(pd->pd_pdi), pdi);
return (0);
}
/*
* Add a global or local attribute to a Multidata. Global attribute
* association is specified by a NULL packet descriptor.
*/
pattr_t *
mmd_addpattr(multidata_t *mmd, pdesc_t *pd, pattrinfo_t *pai,
boolean_t persistent, int kmflags)
{
patbkt_t **tbl_p;
patbkt_t *tbl, *o_tbl;
patbkt_t *bkt;
pattr_t *pa;
uint_t size;
ASSERT(mmd != NULL);
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
ASSERT(pd == NULL || pd->pd_magic == PDESC_MAGIC);
ASSERT(pai != NULL);
/* pointer to the attribute hash table (local or global) */
tbl_p = pd != NULL ? &(pd->pd_pattbl) : &(mmd->mmd_pattbl);
/*
* See if the hash table has not yet been created; if so,
* we create the table and store its address atomically.
*/
if ((tbl = *tbl_p) == NULL) {
tbl = kmem_cache_alloc(pattbl_cache, kmflags);
if (tbl == NULL)
return (NULL);
/* if someone got there first, use his table instead */
if ((o_tbl = atomic_cas_ptr(tbl_p, NULL, tbl)) != NULL) {
kmem_cache_free(pattbl_cache, tbl);
tbl = o_tbl;
}
}
ASSERT(tbl->pbkt_tbl_sz > 0);
bkt = &(tbl[PATTBL_HASH(pai->type, tbl->pbkt_tbl_sz)]);
/* attribute of the same type already exists? */
if ((pa = mmd_find_pattr(bkt, pai->type)) != NULL)
return (NULL);
size = sizeof (*pa) + pai->len;
if ((pa = kmem_zalloc(size, kmflags)) == NULL)
return (NULL);
pa->pat_magic = PATTR_MAGIC;
pa->pat_lock = &(bkt->pbkt_lock);
pa->pat_mmd = mmd;
pa->pat_buflen = size;
pa->pat_type = pai->type;
pai->buf = pai->len > 0 ? ((uchar_t *)(pa + 1)) : NULL;
if (persistent)
pa->pat_flags = PATTR_PERSIST;
/* insert attribute at end of hash chain */
mutex_enter(&(bkt->pbkt_lock));
insque(&(pa->pat_next), bkt->pbkt_pattr_q.ql_prev);
mutex_exit(&(bkt->pbkt_lock));
return (pa);
}
/*
* Attribute hash table kmem cache constructor routine.
*/
/* ARGSUSED */
static int
pattbl_constructor(void *buf, void *cdrarg, int kmflags)
{
patbkt_t *bkt;
uint_t tbl_sz = (uint_t)(uintptr_t)cdrarg;
uint_t i;
ASSERT(tbl_sz > 0); /* table size can't be zero */
for (i = 0, bkt = (patbkt_t *)buf; i < tbl_sz; i++, bkt++) {
mutex_init(&(bkt->pbkt_lock), NULL, MUTEX_DRIVER, NULL);
QL_INIT(&(bkt->pbkt_pattr_q));
/* first bucket contains the table size */
bkt->pbkt_tbl_sz = i == 0 ? tbl_sz : 0;
}
return (0);
}
/*
* Attribute hash table kmem cache destructor routine.
*/
/* ARGSUSED */
static void
pattbl_destructor(void *buf, void *cdrarg)
{
patbkt_t *bkt;
uint_t tbl_sz = (uint_t)(uintptr_t)cdrarg;
uint_t i;
ASSERT(tbl_sz > 0); /* table size can't be zero */
for (i = 0, bkt = (patbkt_t *)buf; i < tbl_sz; i++, bkt++) {
mutex_destroy(&(bkt->pbkt_lock));
ASSERT(bkt->pbkt_pattr_q.ql_next == &(bkt->pbkt_pattr_q));
ASSERT(i > 0 || bkt->pbkt_tbl_sz == tbl_sz);
}
}
/*
* Destroy an attribute hash table, called by mmd_rempdesc or during free.
*/
static void
mmd_destroy_pattbl(patbkt_t **tbl)
{
patbkt_t *bkt;
pattr_t *pa, *pa_next;
uint_t i, tbl_sz;
ASSERT(tbl != NULL);
bkt = *tbl;
tbl_sz = bkt->pbkt_tbl_sz;
/* make sure caller passes in the first bucket */
ASSERT(tbl_sz > 0);
/* destroy the contents of each bucket */
for (i = 0; i < tbl_sz; i++, bkt++) {
/* we ought to be exclusive at this point */
ASSERT(MUTEX_NOT_HELD(&(bkt->pbkt_lock)));
pa = Q2PATTR(bkt->pbkt_pattr_q.ql_next);
while (pa != Q2PATTR(&(bkt->pbkt_pattr_q))) {
ASSERT(pa->pat_magic == PATTR_MAGIC);
pa_next = Q2PATTR(pa->pat_next);
remque(&(pa->pat_next));
kmem_free(pa, pa->pat_buflen);
pa = pa_next;
}
}
kmem_cache_free(pattbl_cache, *tbl);
*tbl = NULL;
/* commit all previous stores */
membar_producer();
}
/*
* Copy the contents of an attribute hash table, called by mmd_copy.
*/
static int
mmd_copy_pattbl(patbkt_t *src_tbl, multidata_t *n_mmd, pdesc_t *n_pd,
int kmflags)
{
patbkt_t *bkt;
pattr_t *pa;
pattrinfo_t pai;
uint_t i, tbl_sz;
ASSERT(src_tbl != NULL);
bkt = src_tbl;
tbl_sz = bkt->pbkt_tbl_sz;
/* make sure caller passes in the first bucket */
ASSERT(tbl_sz > 0);
for (i = 0; i < tbl_sz; i++, bkt++) {
mutex_enter(&(bkt->pbkt_lock));
pa = Q2PATTR(bkt->pbkt_pattr_q.ql_next);
while (pa != Q2PATTR(&(bkt->pbkt_pattr_q))) {
pattr_t *pa_next = Q2PATTR(pa->pat_next);
/* skip if it's removed */
if (pa->pat_flags & PATTR_REM_DEFER) {
pa = pa_next;
continue;
}
pai.type = pa->pat_type;
pai.len = pa->pat_buflen - sizeof (*pa);
if (mmd_addpattr(n_mmd, n_pd, &pai, (pa->pat_flags &
PATTR_PERSIST) != 0, kmflags) == NULL) {
mutex_exit(&(bkt->pbkt_lock));
return (-1);
}
/* copy over the contents */
if (pai.buf != NULL)
bcopy(pa + 1, pai.buf, pai.len);
pa = pa_next;
}
mutex_exit(&(bkt->pbkt_lock));
}
return (0);
}
/*
* Search for an attribute type within an attribute hash bucket.
*/
static pattr_t *
mmd_find_pattr(patbkt_t *bkt, uint_t type)
{
pattr_t *pa_head, *pa;
mutex_enter(&(bkt->pbkt_lock));
pa_head = Q2PATTR(&(bkt->pbkt_pattr_q));
pa = Q2PATTR(bkt->pbkt_pattr_q.ql_next);
while (pa != pa_head) {
ASSERT(pa->pat_magic == PATTR_MAGIC);
/* return a match; we treat removed entry as non-existent */
if (pa->pat_type == type && !(pa->pat_flags & PATTR_REM_DEFER))
break;
pa = Q2PATTR(pa->pat_next);
}
mutex_exit(&(bkt->pbkt_lock));
return (pa == pa_head ? NULL : pa);
}
/*
* Remove an attribute from a Multidata.
*/
void
mmd_rempattr(pattr_t *pa)
{
kmutex_t *pat_lock = pa->pat_lock;
ASSERT(pa->pat_magic == PATTR_MAGIC);
/* ignore if attribute was marked as persistent */
if ((pa->pat_flags & PATTR_PERSIST) != 0)
return;
mutex_enter(pat_lock);
/*
* We can't deallocate the associated resources if the Multidata
* is shared with other threads, because it's possible that the
* attribute handle value is held by those threads. That's why
* we simply mark the entry as "removed". If there are no other
* threads, then we free the attribute.
*/
if (pa->pat_mmd->mmd_dp->db_ref > 1) {
pa->pat_flags |= PATTR_REM_DEFER;
} else {
remque(&(pa->pat_next));
kmem_free(pa, pa->pat_buflen);
}
mutex_exit(pat_lock);
}
/*
* Find an attribute (according to its type) and return its handle.
*/
pattr_t *
mmd_getpattr(multidata_t *mmd, pdesc_t *pd, pattrinfo_t *pai)
{
patbkt_t *tbl, *bkt;
pattr_t *pa;
ASSERT(mmd != NULL);
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
ASSERT(pai != NULL);
/* get the right attribute hash table (local or global) */
tbl = pd != NULL ? pd->pd_pattbl : mmd->mmd_pattbl;
/* attribute hash table doesn't exist? */
if (tbl == NULL)
return (NULL);
ASSERT(tbl->pbkt_tbl_sz > 0);
bkt = &(tbl[PATTBL_HASH(pai->type, tbl->pbkt_tbl_sz)]);
if ((pa = mmd_find_pattr(bkt, pai->type)) != NULL) {
ASSERT(pa->pat_buflen >= sizeof (*pa));
pai->len = pa->pat_buflen - sizeof (*pa);
pai->buf = pai->len > 0 ?
(uchar_t *)pa + sizeof (pattr_t) : NULL;
}
ASSERT(pa == NULL || pa->pat_magic == PATTR_MAGIC);
return (pa);
}
/*
* Return total size of buffers and total size of areas referenced
* by all in-use (unremoved) packet descriptors.
*/
void
mmd_getsize(multidata_t *mmd, uint_t *ptotal, uint_t *pinuse)
{
pdesc_t *pd;
pdescinfo_t *pdi;
int i;
ASSERT(mmd != NULL);
ASSERT(mmd->mmd_magic == MULTIDATA_MAGIC);
mutex_enter(&mmd->mmd_pd_slab_lock);
if (ptotal != NULL) {
*ptotal = 0;
if (mmd->mmd_hbuf != NULL)
*ptotal += MBLKL(mmd->mmd_hbuf);
for (i = 0; i < mmd->mmd_pbuf_cnt; i++) {
ASSERT(mmd->mmd_pbuf[i] != NULL);
*ptotal += MBLKL(mmd->mmd_pbuf[i]);
}
}
if (pinuse != NULL) {
*pinuse = 0;
/* first pdesc */
pd = mmd_getpdesc(mmd, NULL, NULL, 1, B_TRUE);
while (pd != NULL) {
pdi = &pd->pd_pdi;
/* next pdesc */
pd = mmd_getpdesc(mmd, pd, NULL, 1, B_TRUE);
/* skip over removed descriptor */
if (pdi->flags & PDESC_REM_DEFER)
continue;
if (pdi->flags & PDESC_HBUF_REF)
*pinuse += PDESC_HDRL(pdi);
if (pdi->flags & PDESC_PBUF_REF) {
for (i = 0; i < pdi->pld_cnt; i++)
*pinuse += PDESC_PLDL(pdi, i);
}
}
}
mutex_exit(&mmd->mmd_pd_slab_lock);
}