/*
* megaraid_sas.c: source for mega_sas driver
*
* MegaRAID device driver for SAS controllers
* Copyright (c) 2005-2008, LSI Logic Corporation.
* All rights reserved.
*
* Version:
* Author:
* Rajesh Prabhakaran<Rajesh.Prabhakaran@lsil.com>
* Seokmann Ju
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the author nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
* Copyright (c) 2011 Bayard G. Bell. All rights reserved.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/cmn_err.h>
#include <sys/kmem.h>
#include <sys/stat.h>
#include <sys/mkdev.h>
#include <sys/pci.h>
#include <sys/scsi/scsi.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/atomic.h>
#include <sys/signal.h>
#include "megaraid_sas.h"
/*
* FMA header files
*/
#include <sys/ddifm.h>
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>
#include <sys/fm/io/ddi.h>
/*
* Local static data
*/
static void *megasas_state = NULL;
static int debug_level_g = CL_ANN;
#pragma weak scsi_hba_open
#pragma weak scsi_hba_close
#pragma weak scsi_hba_ioctl
static ddi_dma_attr_t megasas_generic_dma_attr = {
DMA_ATTR_V0, /* dma_attr_version */
0, /* low DMA address range */
0xFFFFFFFFU, /* high DMA address range */
0xFFFFFFFFU, /* DMA counter register */
8, /* DMA address alignment */
0x07, /* DMA burstsizes */
1, /* min DMA size */
0xFFFFFFFFU, /* max DMA size */
0xFFFFFFFFU, /* segment boundary */
MEGASAS_MAX_SGE_CNT, /* dma_attr_sglen */
512, /* granularity of device */
0 /* bus specific DMA flags */
};
int32_t megasas_max_cap_maxxfer = 0x1000000;
/*
* cb_ops contains base level routines
*/
static struct cb_ops megasas_cb_ops = {
megasas_open, /* open */
megasas_close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
megasas_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
nodev, /* cb_prop_op */
0, /* streamtab */
D_NEW | D_HOTPLUG, /* cb_flag */
CB_REV, /* cb_rev */
nodev, /* cb_aread */
nodev /* cb_awrite */
};
/*
* dev_ops contains configuration routines
*/
static struct dev_ops megasas_ops = {
DEVO_REV, /* rev, */
0, /* refcnt */
megasas_getinfo, /* getinfo */
nulldev, /* identify */
nulldev, /* probe */
megasas_attach, /* attach */
megasas_detach, /* detach */
megasas_reset, /* reset */
&megasas_cb_ops, /* char/block ops */
NULL, /* bus ops */
NULL, /* power */
ddi_quiesce_not_supported, /* devo_quiesce */
};
static struct modldrv modldrv = {
&mod_driverops, /* module type - driver */
MEGASAS_VERSION,
&megasas_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1, /* ml_rev - must be MODREV_1 */
&modldrv, /* ml_linkage */
NULL /* end of driver linkage */
};
static struct ddi_device_acc_attr endian_attr = {
DDI_DEVICE_ATTR_V1,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/*
* ************************************************************************** *
* *
* common entry points - for loadable kernel modules *
* *
* ************************************************************************** *
*/
/*
* _init - initialize a loadable module
* @void
*
* The driver should perform any one-time resource allocation or data
* initialization during driver loading in _init(). For example, the driver
* should initialize any mutexes global to the driver in this routine.
* The driver should not, however, use _init() to allocate or initialize
* anything that has to do with a particular instance of the device.
* Per-instance initialization must be done in attach().
*/
int
_init(void)
{
int ret;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
ret = ddi_soft_state_init(&megasas_state,
sizeof (struct megasas_instance), 0);
if (ret != 0) {
con_log(CL_ANN, (CE_WARN, "megaraid: could not init state"));
return (ret);
}
if ((ret = scsi_hba_init(&modlinkage)) != 0) {
con_log(CL_ANN, (CE_WARN, "megaraid: could not init scsi hba"));
ddi_soft_state_fini(&megasas_state);
return (ret);
}
ret = mod_install(&modlinkage);
if (ret != 0) {
con_log(CL_ANN, (CE_WARN, "megaraid: mod_install failed"));
scsi_hba_fini(&modlinkage);
ddi_soft_state_fini(&megasas_state);
}
return (ret);
}
/*
* _info - returns information about a loadable module.
* @void
*
* _info() is called to return module information. This is a typical entry
* point that does predefined role. It simply calls mod_info().
*/
int
_info(struct modinfo *modinfop)
{
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
return (mod_info(&modlinkage, modinfop));
}
/*
* _fini - prepare a loadable module for unloading
* @void
*
* In _fini(), the driver should release any resources that were allocated in
* _init(). The driver must remove itself from the system module list.
*/
int
_fini(void)
{
int ret;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
if ((ret = mod_remove(&modlinkage)) != 0)
return (ret);
scsi_hba_fini(&modlinkage);
ddi_soft_state_fini(&megasas_state);
return (ret);
}
/*
* ************************************************************************** *
* *
* common entry points - for autoconfiguration *
* *
* ************************************************************************** *
*/
/*
* attach - adds a device to the system as part of initialization
* @dip:
* @cmd:
*
* The kernel calls a driver's attach() entry point to attach an instance of
* a device (for MegaRAID, it is instance of a controller) or to resume
* operation for an instance of a device that has been suspended or has been
* shut down by the power management framework
* The attach() entry point typically includes the following types of
* processing:
* - allocate a soft-state structure for the device instance (for MegaRAID,
* controller instance)
* - initialize per-instance mutexes
* - initialize condition variables
* - register the device's interrupts (for MegaRAID, controller's interrupts)
* - map the registers and memory of the device instance (for MegaRAID,
* controller instance)
* - create minor device nodes for the device instance (for MegaRAID,
* controller instance)
* - report that the device instance (for MegaRAID, controller instance) has
* attached
*/
static int
megasas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int instance_no;
int nregs;
uint8_t added_isr_f = 0;
uint8_t added_soft_isr_f = 0;
uint8_t create_devctl_node_f = 0;
uint8_t create_scsi_node_f = 0;
uint8_t create_ioc_node_f = 0;
uint8_t tran_alloc_f = 0;
uint8_t irq;
uint16_t vendor_id;
uint16_t device_id;
uint16_t subsysvid;
uint16_t subsysid;
uint16_t command;
scsi_hba_tran_t *tran;
ddi_dma_attr_t tran_dma_attr;
struct megasas_instance *instance;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
/* CONSTCOND */
ASSERT(NO_COMPETING_THREADS);
instance_no = ddi_get_instance(dip);
/*
* Since we know that some instantiations of this device can be
* plugged into slave-only SBus slots, check to see whether this is
* one such.
*/
if (ddi_slaveonly(dip) == DDI_SUCCESS) {
con_log(CL_ANN, (CE_WARN,
"mega%d: Device in slave-only slot, unused", instance_no));
return (DDI_FAILURE);
}
switch (cmd) {
case DDI_ATTACH:
con_log(CL_DLEVEL1, (CE_NOTE, "megasas: DDI_ATTACH"));
/* allocate the soft state for the instance */
if (ddi_soft_state_zalloc(megasas_state, instance_no)
!= DDI_SUCCESS) {
con_log(CL_ANN, (CE_WARN,
"mega%d: Failed to allocate soft state",
instance_no));
return (DDI_FAILURE);
}
instance = (struct megasas_instance *)ddi_get_soft_state
(megasas_state, instance_no);
if (instance == NULL) {
con_log(CL_ANN, (CE_WARN,
"mega%d: Bad soft state", instance_no));
ddi_soft_state_free(megasas_state, instance_no);
return (DDI_FAILURE);
}
bzero((caddr_t)instance,
sizeof (struct megasas_instance));
instance->func_ptr = kmem_zalloc(
sizeof (struct megasas_func_ptr), KM_SLEEP);
ASSERT(instance->func_ptr);
/* Setup the PCI configuration space handles */
if (pci_config_setup(dip, &instance->pci_handle) !=
DDI_SUCCESS) {
con_log(CL_ANN, (CE_WARN,
"mega%d: pci config setup failed ",
instance_no));
kmem_free(instance->func_ptr,
sizeof (struct megasas_func_ptr));
ddi_soft_state_free(megasas_state, instance_no);
return (DDI_FAILURE);
}
if (ddi_dev_nregs(dip, &nregs) != DDI_SUCCESS) {
con_log(CL_ANN, (CE_WARN,
"megaraid: failed to get registers."));
pci_config_teardown(&instance->pci_handle);
kmem_free(instance->func_ptr,
sizeof (struct megasas_func_ptr));
ddi_soft_state_free(megasas_state, instance_no);
return (DDI_FAILURE);
}
vendor_id = pci_config_get16(instance->pci_handle,
PCI_CONF_VENID);
device_id = pci_config_get16(instance->pci_handle,
PCI_CONF_DEVID);
subsysvid = pci_config_get16(instance->pci_handle,
PCI_CONF_SUBVENID);
subsysid = pci_config_get16(instance->pci_handle,
PCI_CONF_SUBSYSID);
pci_config_put16(instance->pci_handle, PCI_CONF_COMM,
(pci_config_get16(instance->pci_handle,
PCI_CONF_COMM) | PCI_COMM_ME));
irq = pci_config_get8(instance->pci_handle,
PCI_CONF_ILINE);
con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
"0x%x:0x%x 0x%x:0x%x, irq:%d drv-ver:%s\n",
instance_no, vendor_id, device_id, subsysvid,
subsysid, irq, MEGASAS_VERSION));
/* enable bus-mastering */
command = pci_config_get16(instance->pci_handle,
PCI_CONF_COMM);
if (!(command & PCI_COMM_ME)) {
command |= PCI_COMM_ME;
pci_config_put16(instance->pci_handle,
PCI_CONF_COMM, command);
con_log(CL_ANN, (CE_CONT, "megaraid%d: "
"enable bus-mastering\n", instance_no));
} else {
con_log(CL_DLEVEL1, (CE_CONT, "megaraid%d: "
"bus-mastering already set\n", instance_no));
}
/* initialize function pointers */
if ((device_id == PCI_DEVICE_ID_LSI_1078) ||
(device_id == PCI_DEVICE_ID_LSI_1078DE)) {
con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
"1078R/DE detected\n", instance_no));
instance->func_ptr->read_fw_status_reg =
read_fw_status_reg_ppc;
instance->func_ptr->issue_cmd = issue_cmd_ppc;
instance->func_ptr->issue_cmd_in_sync_mode =
issue_cmd_in_sync_mode_ppc;
instance->func_ptr->issue_cmd_in_poll_mode =
issue_cmd_in_poll_mode_ppc;
instance->func_ptr->enable_intr =
enable_intr_ppc;
instance->func_ptr->disable_intr =
disable_intr_ppc;
instance->func_ptr->intr_ack = intr_ack_ppc;
} else {
con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
"1064/8R detected\n", instance_no));
instance->func_ptr->read_fw_status_reg =
read_fw_status_reg_xscale;
instance->func_ptr->issue_cmd =
issue_cmd_xscale;
instance->func_ptr->issue_cmd_in_sync_mode =
issue_cmd_in_sync_mode_xscale;
instance->func_ptr->issue_cmd_in_poll_mode =
issue_cmd_in_poll_mode_xscale;
instance->func_ptr->enable_intr =
enable_intr_xscale;
instance->func_ptr->disable_intr =
disable_intr_xscale;
instance->func_ptr->intr_ack =
intr_ack_xscale;
}
instance->baseaddress = pci_config_get32(
instance->pci_handle, PCI_CONF_BASE0);
instance->baseaddress &= 0x0fffc;
instance->dip = dip;
instance->vendor_id = vendor_id;
instance->device_id = device_id;
instance->subsysvid = subsysvid;
instance->subsysid = subsysid;
/* Initialize FMA */
instance->fm_capabilities = ddi_prop_get_int(
DDI_DEV_T_ANY, instance->dip, DDI_PROP_DONTPASS,
"fm-capable", DDI_FM_EREPORT_CAPABLE |
DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE
| DDI_FM_ERRCB_CAPABLE);
megasas_fm_init(instance);
/* setup the mfi based low level driver */
if (init_mfi(instance) != DDI_SUCCESS) {
con_log(CL_ANN, (CE_WARN, "megaraid: "
"could not initialize the low level driver"));
goto fail_attach;
}
/*
* Allocate the interrupt blocking cookie.
* It represents the information the framework
* needs to block interrupts. This cookie will
* be used by the locks shared accross our ISR.
* These locks must be initialized before we
* register our ISR.
* ddi_add_intr(9F)
*/
if (ddi_get_iblock_cookie(dip, 0,
&instance->iblock_cookie) != DDI_SUCCESS) {
goto fail_attach;
}
if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HIGH,
&instance->soft_iblock_cookie) != DDI_SUCCESS) {
goto fail_attach;
}
/*
* Initialize the driver mutexes common to
* normal/high level isr
*/
if (ddi_intr_hilevel(dip, 0)) {
instance->isr_level = HIGH_LEVEL_INTR;
mutex_init(&instance->cmd_pool_mtx,
"cmd_pool_mtx", MUTEX_DRIVER,
instance->soft_iblock_cookie);
mutex_init(&instance->cmd_pend_mtx,
"cmd_pend_mtx", MUTEX_DRIVER,
instance->soft_iblock_cookie);
} else {
/*
* Initialize the driver mutexes
* specific to soft-isr
*/
instance->isr_level = NORMAL_LEVEL_INTR;
mutex_init(&instance->cmd_pool_mtx,
"cmd_pool_mtx", MUTEX_DRIVER,
instance->iblock_cookie);
mutex_init(&instance->cmd_pend_mtx,
"cmd_pend_mtx", MUTEX_DRIVER,
instance->iblock_cookie);
}
mutex_init(&instance->completed_pool_mtx,
"completed_pool_mtx", MUTEX_DRIVER,
instance->iblock_cookie);
mutex_init(&instance->int_cmd_mtx, "int_cmd_mtx",
MUTEX_DRIVER, instance->iblock_cookie);
mutex_init(&instance->aen_cmd_mtx, "aen_cmd_mtx",
MUTEX_DRIVER, instance->iblock_cookie);
mutex_init(&instance->abort_cmd_mtx, "abort_cmd_mtx",
MUTEX_DRIVER, instance->iblock_cookie);
cv_init(&instance->int_cmd_cv, NULL, CV_DRIVER, NULL);
cv_init(&instance->abort_cmd_cv, NULL, CV_DRIVER, NULL);
INIT_LIST_HEAD(&instance->completed_pool_list);
/* Register our isr. */
if (ddi_add_intr(dip, 0, NULL, NULL, megasas_isr,
(caddr_t)instance) != DDI_SUCCESS) {
con_log(CL_ANN, (CE_WARN,
" ISR did not register"));
goto fail_attach;
}
added_isr_f = 1;
/* Register our soft-isr for highlevel interrupts. */
if (instance->isr_level == HIGH_LEVEL_INTR) {
if (ddi_add_softintr(dip, DDI_SOFTINT_HIGH,
&instance->soft_intr_id, NULL, NULL,
megasas_softintr, (caddr_t)instance) !=
DDI_SUCCESS) {
con_log(CL_ANN, (CE_WARN,
" Software ISR did not register"));
goto fail_attach;
}
added_soft_isr_f = 1;
}
/* Allocate a transport structure */
tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP);
if (tran == NULL) {
con_log(CL_ANN, (CE_WARN,
"scsi_hba_tran_alloc failed"));
goto fail_attach;
}
tran_alloc_f = 1;
instance->tran = tran;
tran->tran_hba_private = instance;
tran->tran_tgt_private = NULL;
tran->tran_tgt_init = megasas_tran_tgt_init;
tran->tran_tgt_probe = scsi_hba_probe;
tran->tran_tgt_free = (void (*)())NULL;
tran->tran_init_pkt = megasas_tran_init_pkt;
tran->tran_start = megasas_tran_start;
tran->tran_abort = megasas_tran_abort;
tran->tran_reset = megasas_tran_reset;
tran->tran_bus_reset = megasas_tran_bus_reset;
tran->tran_getcap = megasas_tran_getcap;
tran->tran_setcap = megasas_tran_setcap;
tran->tran_destroy_pkt = megasas_tran_destroy_pkt;
tran->tran_dmafree = megasas_tran_dmafree;
tran->tran_sync_pkt = megasas_tran_sync_pkt;
tran->tran_reset_notify = NULL;
tran->tran_quiesce = megasas_tran_quiesce;
tran->tran_unquiesce = megasas_tran_unquiesce;
tran_dma_attr = megasas_generic_dma_attr;
tran_dma_attr.dma_attr_sgllen = instance->max_num_sge;
/* Attach this instance of the hba */
if (scsi_hba_attach_setup(dip, &tran_dma_attr, tran, 0)
!= DDI_SUCCESS) {
con_log(CL_ANN, (CE_WARN,
"scsi_hba_attach failed\n"));
goto fail_attach;
}
/* create devctl node for cfgadm command */
if (ddi_create_minor_node(dip, "devctl",
S_IFCHR, INST2DEVCTL(instance_no),
DDI_NT_SCSI_NEXUS, 0) == DDI_FAILURE) {
con_log(CL_ANN, (CE_WARN,
"megaraid: failed to create devctl node."));
goto fail_attach;
}
create_devctl_node_f = 1;
/* create scsi node for cfgadm command */
if (ddi_create_minor_node(dip, "scsi", S_IFCHR,
INST2SCSI(instance_no),
DDI_NT_SCSI_ATTACHMENT_POINT, 0) ==
DDI_FAILURE) {
con_log(CL_ANN, (CE_WARN,
"megaraid: failed to create scsi node."));
goto fail_attach;
}
create_scsi_node_f = 1;
(void) sprintf(instance->iocnode, "%d:lsirdctl",
instance_no);
/*
* Create a node for applications
* for issuing ioctl to the driver.
*/
if (ddi_create_minor_node(dip, instance->iocnode,
S_IFCHR, INST2LSIRDCTL(instance_no),
DDI_PSEUDO, 0) == DDI_FAILURE) {
con_log(CL_ANN, (CE_WARN,
"megaraid: failed to create ioctl node."));
goto fail_attach;
}
create_ioc_node_f = 1;
/* enable interrupt */
instance->func_ptr->enable_intr(instance);
/* initiate AEN */
if (start_mfi_aen(instance)) {
con_log(CL_ANN, (CE_WARN,
"megaraid: failed to initiate AEN."));
goto fail_initiate_aen;
}
con_log(CL_DLEVEL1, (CE_NOTE,
"AEN started for instance %d.", instance_no));
/* Finally! We are on the air. */
ddi_report_dev(dip);
if (megasas_check_acc_handle(instance->regmap_handle) !=
DDI_SUCCESS) {
goto fail_attach;
}
if (megasas_check_acc_handle(instance->pci_handle) !=
DDI_SUCCESS) {
goto fail_attach;
}
break;
case DDI_PM_RESUME:
con_log(CL_ANN, (CE_NOTE,
"megasas: DDI_PM_RESUME"));
break;
case DDI_RESUME:
con_log(CL_ANN, (CE_NOTE,
"megasas: DDI_RESUME"));
break;
default:
con_log(CL_ANN, (CE_WARN,
"megasas: invalid attach cmd=%x", cmd));
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
fail_initiate_aen:
fail_attach:
if (create_devctl_node_f) {
ddi_remove_minor_node(dip, "devctl");
}
if (create_scsi_node_f) {
ddi_remove_minor_node(dip, "scsi");
}
if (create_ioc_node_f) {
ddi_remove_minor_node(dip, instance->iocnode);
}
if (tran_alloc_f) {
scsi_hba_tran_free(tran);
}
if (added_soft_isr_f) {
ddi_remove_softintr(instance->soft_intr_id);
}
if (added_isr_f) {
ddi_remove_intr(dip, 0, instance->iblock_cookie);
}
megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
megasas_fm_fini(instance);
pci_config_teardown(&instance->pci_handle);
ddi_soft_state_free(megasas_state, instance_no);
con_log(CL_ANN, (CE_NOTE,
"megasas: return failure from mega_attach\n"));
return (DDI_FAILURE);
}
/*
* getinfo - gets device information
* @dip:
* @cmd:
* @arg:
* @resultp:
*
* The system calls getinfo() to obtain configuration information that only
* the driver knows. The mapping of minor numbers to device instance is
* entirely under the control of the driver. The system sometimes needs to ask
* the driver which device a particular dev_t represents.
* Given the device number return the devinfo pointer from the scsi_device
* structure.
*/
/*ARGSUSED*/
static int
megasas_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp)
{
int rval;
int megasas_minor = getminor((dev_t)arg);
struct megasas_instance *instance;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
switch (cmd) {
case DDI_INFO_DEVT2DEVINFO:
instance = (struct megasas_instance *)
ddi_get_soft_state(megasas_state,
MINOR2INST(megasas_minor));
if (instance == NULL) {
*resultp = NULL;
rval = DDI_FAILURE;
} else {
*resultp = instance->dip;
rval = DDI_SUCCESS;
}
break;
case DDI_INFO_DEVT2INSTANCE:
*resultp = (void *)instance;
rval = DDI_SUCCESS;
break;
default:
*resultp = NULL;
rval = DDI_FAILURE;
}
return (rval);
}
/*
* detach - detaches a device from the system
* @dip: pointer to the device's dev_info structure
* @cmd: type of detach
*
* A driver's detach() entry point is called to detach an instance of a device
* that is bound to the driver. The entry point is called with the instance of
* the device node to be detached and with DDI_DETACH, which is specified as
* the cmd argument to the entry point.
* This routine is called during driver unload. We free all the allocated
* resources and call the corresponding LLD so that it can also release all
* its resources.
*/
static int
megasas_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
int instance_no;
struct megasas_instance *instance;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
/* CONSTCOND */
ASSERT(NO_COMPETING_THREADS);
instance_no = ddi_get_instance(dip);
instance = (struct megasas_instance *)ddi_get_soft_state(megasas_state,
instance_no);
if (!instance) {
con_log(CL_ANN, (CE_WARN,
"megasas:%d could not get instance in detach",
instance_no));
return (DDI_FAILURE);
}
con_log(CL_ANN, (CE_NOTE,
"megasas%d: detaching device 0x%4x:0x%4x:0x%4x:0x%4x\n",
instance_no, instance->vendor_id, instance->device_id,
instance->subsysvid, instance->subsysid));
switch (cmd) {
case DDI_DETACH:
con_log(CL_ANN, (CE_NOTE,
"megasas_detach: DDI_DETACH\n"));
if (scsi_hba_detach(dip) != DDI_SUCCESS) {
con_log(CL_ANN, (CE_WARN,
"megasas:%d failed to detach",
instance_no));
return (DDI_FAILURE);
}
scsi_hba_tran_free(instance->tran);
if (abort_aen_cmd(instance, instance->aen_cmd)) {
con_log(CL_ANN, (CE_WARN, "megasas_detach: "
"failed to abort prevous AEN command\n"));
return (DDI_FAILURE);
}
instance->func_ptr->disable_intr(instance);
if (instance->isr_level == HIGH_LEVEL_INTR) {
ddi_remove_softintr(instance->soft_intr_id);
}
ddi_remove_intr(dip, 0, instance->iblock_cookie);
free_space_for_mfi(instance);
megasas_fm_fini(instance);
pci_config_teardown(&instance->pci_handle);
kmem_free(instance->func_ptr,
sizeof (struct megasas_func_ptr));
ddi_soft_state_free(megasas_state, instance_no);
break;
case DDI_PM_SUSPEND:
con_log(CL_ANN, (CE_NOTE,
"megasas_detach: DDI_PM_SUSPEND\n"));
break;
case DDI_SUSPEND:
con_log(CL_ANN, (CE_NOTE,
"megasas_detach: DDI_SUSPEND\n"));
break;
default:
con_log(CL_ANN, (CE_WARN,
"invalid detach command:0x%x", cmd));
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* ************************************************************************** *
* *
* common entry points - for character driver types *
* *
* ************************************************************************** *
*/
/*
* open - gets access to a device
* @dev:
* @openflags:
* @otyp:
* @credp:
*
* Access to a device by one or more application programs is controlled
* through the open() and close() entry points. The primary function of
* open() is to verify that the open request is allowed.
*/
static int
megasas_open(dev_t *dev, int openflags, int otyp, cred_t *credp)
{
int rval = 0;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
/* Check root permissions */
if (drv_priv(credp) != 0) {
con_log(CL_ANN, (CE_WARN,
"megaraid: Non-root ioctl access tried!"));
return (EPERM);
}
/* Verify we are being opened as a character device */
if (otyp != OTYP_CHR) {
con_log(CL_ANN, (CE_WARN,
"megaraid: ioctl node must be a char node\n"));
return (EINVAL);
}
if (ddi_get_soft_state(megasas_state, MINOR2INST(getminor(*dev)))
== NULL) {
return (ENXIO);
}
if (scsi_hba_open) {
rval = scsi_hba_open(dev, openflags, otyp, credp);
}
return (rval);
}
/*
* close - gives up access to a device
* @dev:
* @openflags:
* @otyp:
* @credp:
*
* close() should perform any cleanup necessary to finish using the minor
* device, and prepare the device (and driver) to be opened again.
*/
static int
megasas_close(dev_t dev, int openflags, int otyp, cred_t *credp)
{
int rval = 0;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
/* no need for locks! */
if (scsi_hba_close) {
rval = scsi_hba_close(dev, openflags, otyp, credp);
}
return (rval);
}
/*
* ioctl - performs a range of I/O commands for character drivers
* @dev:
* @cmd:
* @arg:
* @mode:
* @credp:
* @rvalp:
*
* ioctl() routine must make sure that user data is copied into or out of the
* kernel address space explicitly using copyin(), copyout(), ddi_copyin(),
* and ddi_copyout(), as appropriate.
* This is a wrapper routine to serialize access to the actual ioctl routine.
* ioctl() should return 0 on success, or the appropriate error number. The
* driver may also set the value returned to the calling process through rvalp.
*/
static int
megasas_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
int rval = 0;
struct megasas_instance *instance;
struct megasas_ioctl ioctl;
struct megasas_aen aen;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
instance = ddi_get_soft_state(megasas_state, MINOR2INST(getminor(dev)));
if (instance == NULL) {
/* invalid minor number */
con_log(CL_ANN, (CE_WARN, "megaraid: adapter not found."));
return (ENXIO);
}
switch ((uint_t)cmd) {
case MEGASAS_IOCTL_FIRMWARE:
if (ddi_copyin((void *) arg, &ioctl,
sizeof (struct megasas_ioctl), mode)) {
con_log(CL_ANN, (CE_WARN, "megasas_ioctl: "
"ERROR IOCTL copyin"));
return (EFAULT);
}
if (ioctl.control_code == MR_DRIVER_IOCTL_COMMON) {
rval = handle_drv_ioctl(instance, &ioctl, mode);
} else {
rval = handle_mfi_ioctl(instance, &ioctl, mode);
}
if (ddi_copyout((void *) &ioctl, (void *)arg,
(sizeof (struct megasas_ioctl) - 1), mode)) {
con_log(CL_ANN, (CE_WARN,
"megasas_ioctl: copy_to_user failed\n"));
rval = 1;
}
break;
case MEGASAS_IOCTL_AEN:
if (ddi_copyin((void *) arg, &aen,
sizeof (struct megasas_aen), mode)) {
con_log(CL_ANN, (CE_WARN,
"megasas_ioctl: ERROR AEN copyin"));
return (EFAULT);
}
rval = handle_mfi_aen(instance, &aen);
if (ddi_copyout((void *) &aen, (void *)arg,
sizeof (struct megasas_aen), mode)) {
con_log(CL_ANN, (CE_WARN,
"megasas_ioctl: copy_to_user failed\n"));
rval = 1;
}
break;
default:
rval = scsi_hba_ioctl(dev, cmd, arg,
mode, credp, rvalp);
con_log(CL_DLEVEL1, (CE_NOTE, "megasas_ioctl: "
"scsi_hba_ioctl called, ret = %x.", rval));
}
return (rval);
}
/*
* ************************************************************************** *
* *
* common entry points - for block driver types *
* *
* ************************************************************************** *
*/
/*
* reset - TBD
* @dip:
* @cmd:
*
* TBD
*/
/*ARGSUSED*/
static int
megasas_reset(dev_info_t *dip, ddi_reset_cmd_t cmd)
{
int instance_no;
struct megasas_instance *instance;
instance_no = ddi_get_instance(dip);
instance = (struct megasas_instance *)ddi_get_soft_state
(megasas_state, instance_no);
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
if (!instance) {
con_log(CL_ANN, (CE_WARN,
"megaraid:%d could not get adapter in reset",
instance_no));
return (DDI_FAILURE);
}
con_log(CL_ANN, (CE_NOTE, "flushing cache for instance %d ..",
instance_no));
flush_cache(instance);
return (DDI_SUCCESS);
}
/*
* ************************************************************************** *
* *
* entry points (SCSI HBA) *
* *
* ************************************************************************** *
*/
/*
* tran_tgt_init - initialize a target device instance
* @hba_dip:
* @tgt_dip:
* @tran:
* @sd:
*
* The tran_tgt_init() entry point enables the HBA to allocate and initialize
* any per-target resources. tran_tgt_init() also enables the HBA to qualify
* the device's address as valid and supportable for that particular HBA.
* By returning DDI_FAILURE, the instance of the target driver for that device
* is not probed or attached.
*/
/*ARGSUSED*/
static int
megasas_tran_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip,
scsi_hba_tran_t *tran, struct scsi_device *sd)
{
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
return (DDI_SUCCESS);
}
/*
* tran_init_pkt - allocate & initialize a scsi_pkt structure
* @ap:
* @pkt:
* @bp:
* @cmdlen:
* @statuslen:
* @tgtlen:
* @flags:
* @callback:
*
* The tran_init_pkt() entry point allocates and initializes a scsi_pkt
* structure and DMA resources for a target driver request. The
* tran_init_pkt() entry point is called when the target driver calls the
* SCSA function scsi_init_pkt(). Each call of the tran_init_pkt() entry point
* is a request to perform one or more of three possible services:
* - allocation and initialization of a scsi_pkt structure
* - allocation of DMA resources for data transfer
* - reallocation of DMA resources for the next portion of the data transfer
*/
static struct scsi_pkt *
megasas_tran_init_pkt(struct scsi_address *ap, register struct scsi_pkt *pkt,
struct buf *bp, int cmdlen, int statuslen, int tgtlen,
int flags, int (*callback)(), caddr_t arg)
{
struct scsa_cmd *acmd;
struct megasas_instance *instance;
struct scsi_pkt *new_pkt;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
instance = ADDR2MEGA(ap);
/* step #1 : pkt allocation */
if (pkt == NULL) {
pkt = scsi_hba_pkt_alloc(instance->dip, ap, cmdlen, statuslen,
tgtlen, sizeof (struct scsa_cmd), callback, arg);
if (pkt == NULL) {
return (NULL);
}
acmd = PKT2CMD(pkt);
/*
* Initialize the new pkt - we redundantly initialize
* all the fields for illustrative purposes.
*/
acmd->cmd_pkt = pkt;
acmd->cmd_flags = 0;
acmd->cmd_scblen = statuslen;
acmd->cmd_cdblen = cmdlen;
acmd->cmd_dmahandle = NULL;
acmd->cmd_ncookies = 0;
acmd->cmd_cookie = 0;
acmd->cmd_cookiecnt = 0;
acmd->cmd_nwin = 0;
pkt->pkt_address = *ap;
pkt->pkt_comp = (void (*)())NULL;
pkt->pkt_flags = 0;
pkt->pkt_time = 0;
pkt->pkt_resid = 0;
pkt->pkt_state = 0;
pkt->pkt_statistics = 0;
pkt->pkt_reason = 0;
new_pkt = pkt;
} else {
acmd = PKT2CMD(pkt);
new_pkt = NULL;
}
/* step #2 : dma allocation/move */
if (bp && bp->b_bcount != 0) {
if (acmd->cmd_dmahandle == NULL) {
if (megasas_dma_alloc(instance, pkt, bp, flags,
callback) == -1) {
if (new_pkt) {
scsi_hba_pkt_free(ap, new_pkt);
}
return ((struct scsi_pkt *)NULL);
}
} else {
if (megasas_dma_move(instance, pkt, bp) == -1) {
return ((struct scsi_pkt *)NULL);
}
}
}
return (pkt);
}
/*
* tran_start - transport a SCSI command to the addressed target
* @ap:
* @pkt:
*
* The tran_start() entry point for a SCSI HBA driver is called to transport a
* SCSI command to the addressed target. The SCSI command is described
* entirely within the scsi_pkt structure, which the target driver allocated
* through the HBA driver's tran_init_pkt() entry point. If the command
* involves a data transfer, DMA resources must also have been allocated for
* the scsi_pkt structure.
*
* Return Values :
* TRAN_BUSY - request queue is full, no more free scbs
* TRAN_ACCEPT - pkt has been submitted to the instance
*/
static int
megasas_tran_start(struct scsi_address *ap, register struct scsi_pkt *pkt)
{
uchar_t cmd_done = 0;
struct megasas_instance *instance = ADDR2MEGA(ap);
struct megasas_cmd *cmd;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d:SCSI CDB[0]=0x%x",
__func__, __LINE__, pkt->pkt_cdbp[0]));
pkt->pkt_reason = CMD_CMPLT;
*pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */
cmd = build_cmd(instance, ap, pkt, &cmd_done);
/*
* Check if the command is already completed by the mega_build_cmd()
* routine. In which case the busy_flag would be clear and scb will be
* NULL and appropriate reason provided in pkt_reason field
*/
if (cmd_done) {
if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
scsi_hba_pkt_comp(pkt);
}
pkt->pkt_reason = CMD_CMPLT;
pkt->pkt_scbp[0] = STATUS_GOOD;
pkt->pkt_state |= STATE_GOT_BUS | STATE_GOT_TARGET
| STATE_SENT_CMD;
return (TRAN_ACCEPT);
}
if (cmd == NULL) {
return (TRAN_BUSY);
}
if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
if (instance->fw_outstanding > instance->max_fw_cmds) {
con_log(CL_ANN, (CE_CONT, "megasas:Firmware busy"));
return_mfi_pkt(instance, cmd);
return (TRAN_BUSY);
}
/* Syncronize the Cmd frame for the controller */
(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle, 0, 0,
DDI_DMA_SYNC_FORDEV);
instance->func_ptr->issue_cmd(cmd, instance);
} else {
struct megasas_header *hdr = &cmd->frame->hdr;
cmd->sync_cmd = MEGASAS_TRUE;
instance->func_ptr-> issue_cmd_in_poll_mode(instance, cmd);
pkt->pkt_reason = CMD_CMPLT;
pkt->pkt_statistics = 0;
pkt->pkt_state |= STATE_XFERRED_DATA | STATE_GOT_STATUS;
switch (hdr->cmd_status) {
case MFI_STAT_OK:
pkt->pkt_scbp[0] = STATUS_GOOD;
break;
case MFI_STAT_SCSI_DONE_WITH_ERROR:
pkt->pkt_reason = CMD_CMPLT;
pkt->pkt_statistics = 0;
((struct scsi_status *)pkt->pkt_scbp)->sts_chk = 1;
break;
case MFI_STAT_DEVICE_NOT_FOUND:
pkt->pkt_reason = CMD_DEV_GONE;
pkt->pkt_statistics = STAT_DISCON;
break;
default:
((struct scsi_status *)pkt->pkt_scbp)->sts_busy = 1;
}
return_mfi_pkt(instance, cmd);
(void) megasas_common_check(instance, cmd);
scsi_hba_pkt_comp(pkt);
}
return (TRAN_ACCEPT);
}
/*
* tran_abort - Abort any commands that are currently in transport
* @ap:
* @pkt:
*
* The tran_abort() entry point for a SCSI HBA driver is called to abort any
* commands that are currently in transport for a particular target. This entry
* point is called when a target driver calls scsi_abort(). The tran_abort()
* entry point should attempt to abort the command denoted by the pkt
* parameter. If the pkt parameter is NULL, tran_abort() should attempt to
* abort all outstanding commands in the transport layer for the particular
* target or logical unit.
*/
/*ARGSUSED*/
static int
megasas_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt)
{
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
/* aborting command not supported by H/W */
return (DDI_FAILURE);
}
/*
* tran_reset - reset either the SCSI bus or target
* @ap:
* @level:
*
* The tran_reset() entry point for a SCSI HBA driver is called to reset either
* the SCSI bus or a particular SCSI target device. This entry point is called
* when a target driver calls scsi_reset(). The tran_reset() entry point must
* reset the SCSI bus if level is RESET_ALL. If level is RESET_TARGET, just the
* particular target or logical unit must be reset.
*/
/*ARGSUSED*/
static int
megasas_tran_reset(struct scsi_address *ap, int level)
{
struct megasas_instance *instance = ADDR2MEGA(ap);
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
if (wait_for_outstanding(instance)) {
return (DDI_FAILURE);
} else {
return (DDI_SUCCESS);
}
}
/*
* tran_bus_reset - reset the SCSI bus
* @dip:
* @level:
*
* The tran_bus_reset() vector in the scsi_hba_tran structure should be
* initialized during the HBA driver's attach(). The vector should point to
* an HBA entry point that is to be called when a user initiates a bus reset.
* Implementation is hardware specific. If the HBA driver cannot reset the
* SCSI bus without affecting the targets, the driver should fail RESET_BUS
* or not initialize this vector.
*/
/*ARGSUSED*/
static int
megasas_tran_bus_reset(dev_info_t *dip, int level)
{
int instance_no = ddi_get_instance(dip);
struct megasas_instance *instance = ddi_get_soft_state(megasas_state,
instance_no);
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
if (wait_for_outstanding(instance)) {
return (DDI_FAILURE);
} else {
return (DDI_SUCCESS);
}
}
/*
* tran_getcap - get one of a set of SCSA-defined capabilities
* @ap:
* @cap:
* @whom:
*
* The target driver can request the current setting of the capability for a
* particular target by setting the whom parameter to nonzero. A whom value of
* zero indicates a request for the current setting of the general capability
* for the SCSI bus or for adapter hardware. The tran_getcap() should return -1
* for undefined capabilities or the current value of the requested capability.
*/
/*ARGSUSED*/
static int
megasas_tran_getcap(struct scsi_address *ap, char *cap, int whom)
{
int rval = 0;
struct megasas_instance *instance = ADDR2MEGA(ap);
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
/* we do allow inquiring about capabilities for other targets */
if (cap == NULL) {
return (-1);
}
switch (scsi_hba_lookup_capstr(cap)) {
case SCSI_CAP_DMA_MAX:
/* Limit to 16MB max transfer */
rval = megasas_max_cap_maxxfer;
break;
case SCSI_CAP_MSG_OUT:
rval = 1;
break;
case SCSI_CAP_DISCONNECT:
rval = 0;
break;
case SCSI_CAP_SYNCHRONOUS:
rval = 0;
break;
case SCSI_CAP_WIDE_XFER:
rval = 1;
break;
case SCSI_CAP_TAGGED_QING:
rval = 1;
break;
case SCSI_CAP_UNTAGGED_QING:
rval = 1;
break;
case SCSI_CAP_PARITY:
rval = 1;
break;
case SCSI_CAP_INITIATOR_ID:
rval = instance->init_id;
break;
case SCSI_CAP_ARQ:
rval = 1;
break;
case SCSI_CAP_LINKED_CMDS:
rval = 0;
break;
case SCSI_CAP_RESET_NOTIFICATION:
rval = 1;
break;
case SCSI_CAP_GEOMETRY:
rval = -1;
break;
default:
con_log(CL_DLEVEL2, (CE_NOTE, "Default cap coming 0x%x",
scsi_hba_lookup_capstr(cap)));
rval = -1;
break;
}
return (rval);
}
/*
* tran_setcap - set one of a set of SCSA-defined capabilities
* @ap:
* @cap:
* @value:
* @whom:
*
* The target driver might request that the new value be set for a particular
* target by setting the whom parameter to nonzero. A whom value of zero
* means that request is to set the new value for the SCSI bus or for adapter
* hardware in general.
* The tran_setcap() should return the following values as appropriate:
* - -1 for undefined capabilities
* - 0 if the HBA driver cannot set the capability to the requested value
* - 1 if the HBA driver is able to set the capability to the requested value
*/
/*ARGSUSED*/
static int
megasas_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom)
{
int rval = 1;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
/* We don't allow setting capabilities for other targets */
if (cap == NULL || whom == 0) {
return (-1);
}
switch (scsi_hba_lookup_capstr(cap)) {
case SCSI_CAP_DMA_MAX:
case SCSI_CAP_MSG_OUT:
case SCSI_CAP_PARITY:
case SCSI_CAP_LINKED_CMDS:
case SCSI_CAP_RESET_NOTIFICATION:
case SCSI_CAP_DISCONNECT:
case SCSI_CAP_SYNCHRONOUS:
case SCSI_CAP_UNTAGGED_QING:
case SCSI_CAP_WIDE_XFER:
case SCSI_CAP_INITIATOR_ID:
case SCSI_CAP_ARQ:
/*
* None of these are settable via
* the capability interface.
*/
break;
case SCSI_CAP_TAGGED_QING:
rval = 1;
break;
case SCSI_CAP_SECTOR_SIZE:
rval = 1;
break;
case SCSI_CAP_TOTAL_SECTORS:
rval = 1;
break;
default:
rval = -1;
break;
}
return (rval);
}
/*
* tran_destroy_pkt - deallocate scsi_pkt structure
* @ap:
* @pkt:
*
* The tran_destroy_pkt() entry point is the HBA driver function that
* deallocates scsi_pkt structures. The tran_destroy_pkt() entry point is
* called when the target driver calls scsi_destroy_pkt(). The
* tran_destroy_pkt() entry point must free any DMA resources that have been
* allocated for the packet. An implicit DMA synchronization occurs if the
* DMA resources are freed and any cached data remains after the completion
* of the transfer.
*/
static void
megasas_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct scsa_cmd *acmd = PKT2CMD(pkt);
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
if (acmd->cmd_flags & CFLAG_DMAVALID) {
acmd->cmd_flags &= ~CFLAG_DMAVALID;
(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
ddi_dma_free_handle(&acmd->cmd_dmahandle);
acmd->cmd_dmahandle = NULL;
}
/* free the pkt */
scsi_hba_pkt_free(ap, pkt);
}
/*
* tran_dmafree - deallocates DMA resources
* @ap:
* @pkt:
*
* The tran_dmafree() entry point deallocates DMAQ resources that have been
* allocated for a scsi_pkt structure. The tran_dmafree() entry point is
* called when the target driver calls scsi_dmafree(). The tran_dmafree() must
* free only DMA resources allocated for a scsi_pkt structure, not the
* scsi_pkt itself. When DMA resources are freed, a DMA synchronization is
* implicitly performed.
*/
/*ARGSUSED*/
static void
megasas_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt)
{
register struct scsa_cmd *acmd = PKT2CMD(pkt);
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
if (acmd->cmd_flags & CFLAG_DMAVALID) {
acmd->cmd_flags &= ~CFLAG_DMAVALID;
(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
ddi_dma_free_handle(&acmd->cmd_dmahandle);
acmd->cmd_dmahandle = NULL;
}
}
/*
* tran_sync_pkt - synchronize the DMA object allocated
* @ap:
* @pkt:
*
* The tran_sync_pkt() entry point synchronizes the DMA object allocated for
* the scsi_pkt structure before or after a DMA transfer. The tran_sync_pkt()
* entry point is called when the target driver calls scsi_sync_pkt(). If the
* data transfer direction is a DMA read from device to memory, tran_sync_pkt()
* must synchronize the CPU's view of the data. If the data transfer direction
* is a DMA write from memory to device, tran_sync_pkt() must synchronize the
* device's view of the data.
*/
/*ARGSUSED*/
static void
megasas_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
{
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
/*
* following 'ddi_dma_sync()' API call
* already called for each I/O in the ISR
*/
#if 0
int i;
register struct scsa_cmd *acmd = PKT2CMD(pkt);
if (acmd->cmd_flags & CFLAG_DMAVALID) {
(void) ddi_dma_sync(acmd->cmd_dmahandle, acmd->cmd_dma_offset,
acmd->cmd_dma_len, (acmd->cmd_flags & CFLAG_DMASEND) ?
DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU);
}
#endif
}
/*ARGSUSED*/
static int
megasas_tran_quiesce(dev_info_t *dip)
{
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
return (1);
}
/*ARGSUSED*/
static int
megasas_tran_unquiesce(dev_info_t *dip)
{
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
return (1);
}
/*
* megasas_isr(caddr_t)
*
* The Interrupt Service Routine
*
* Collect status for all completed commands and do callback
*
*/
static uint_t
megasas_isr(struct megasas_instance *instance)
{
int need_softintr;
uint32_t producer;
uint32_t consumer;
uint32_t context;
struct megasas_cmd *cmd;
con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
ASSERT(instance);
if (!instance->func_ptr->intr_ack(instance)) {
return (DDI_INTR_UNCLAIMED);
}
(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
0, 0, DDI_DMA_SYNC_FORCPU);
if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
!= DDI_SUCCESS) {
megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
return (DDI_INTR_UNCLAIMED);
}
producer = *instance->producer;
consumer = *instance->consumer;
con_log(CL_ANN1, (CE_CONT, " producer %x consumer %x ",
producer, consumer));
mutex_enter(&instance->completed_pool_mtx);
while (consumer != producer) {
context = instance->reply_queue[consumer];
cmd = instance->cmd_list[context];
mlist_add_tail(&cmd->list, &instance->completed_pool_list);
consumer++;
if (consumer == (instance->max_fw_cmds + 1)) {
consumer = 0;
}
}
mutex_exit(&instance->completed_pool_mtx);
*instance->consumer = consumer;
(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
0, 0, DDI_DMA_SYNC_FORDEV);
if (instance->softint_running) {
need_softintr = 0;
} else {
need_softintr = 1;
}
if (instance->isr_level == HIGH_LEVEL_INTR) {
if (need_softintr) {
ddi_trigger_softintr(instance->soft_intr_id);
}
} else {
/*
* Not a high-level interrupt, therefore call the soft level
* interrupt explicitly
*/
(void) megasas_softintr(instance);
}
return (DDI_INTR_CLAIMED);
}
/*
* ************************************************************************** *
* *
* libraries *
* *
* ************************************************************************** *
*/
/*
* get_mfi_pkt : Get a command from the free pool
*/
static struct megasas_cmd *
get_mfi_pkt(struct megasas_instance *instance)
{
mlist_t *head = &instance->cmd_pool_list;
struct megasas_cmd *cmd = NULL;
mutex_enter(&instance->cmd_pool_mtx);
ASSERT(mutex_owned(&instance->cmd_pool_mtx));
if (!mlist_empty(head)) {
cmd = mlist_entry(head->next, struct megasas_cmd, list);
mlist_del_init(head->next);
}
if (cmd != NULL)
cmd->pkt = NULL;
mutex_exit(&instance->cmd_pool_mtx);
return (cmd);
}
/*
* return_mfi_pkt : Return a cmd to free command pool
*/
static void
return_mfi_pkt(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
mutex_enter(&instance->cmd_pool_mtx);
ASSERT(mutex_owned(&instance->cmd_pool_mtx));
mlist_add(&cmd->list, &instance->cmd_pool_list);
mutex_exit(&instance->cmd_pool_mtx);
}
/*
* destroy_mfi_frame_pool
*/
static void
destroy_mfi_frame_pool(struct megasas_instance *instance)
{
int i;
uint32_t max_cmd = instance->max_fw_cmds;
struct megasas_cmd *cmd;
/* return all frames to pool */
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if (cmd->frame_dma_obj_status == DMA_OBJ_ALLOCATED)
(void) mega_free_dma_obj(instance, cmd->frame_dma_obj);
cmd->frame_dma_obj_status = DMA_OBJ_FREED;
}
}
/*
* create_mfi_frame_pool
*/
static int
create_mfi_frame_pool(struct megasas_instance *instance)
{
int i = 0;
int cookie_cnt;
uint16_t max_cmd;
uint16_t sge_sz;
uint32_t sgl_sz;
uint32_t tot_frame_size;
struct megasas_cmd *cmd;
max_cmd = instance->max_fw_cmds;
sge_sz = sizeof (struct megasas_sge64);
/* calculated the number of 64byte frames required for SGL */
sgl_sz = sge_sz * instance->max_num_sge;
tot_frame_size = sgl_sz + MEGAMFI_FRAME_SIZE + SENSE_LENGTH;
con_log(CL_DLEVEL3, (CE_NOTE, "create_mfi_frame_pool: "
"sgl_sz %x tot_frame_size %x", sgl_sz, tot_frame_size));
while (i < max_cmd) {
cmd = instance->cmd_list[i];
cmd->frame_dma_obj.size = tot_frame_size;
cmd->frame_dma_obj.dma_attr = megasas_generic_dma_attr;
cmd->frame_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
cmd->frame_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
cmd->frame_dma_obj.dma_attr.dma_attr_sgllen = 1;
cmd->frame_dma_obj.dma_attr.dma_attr_align = 64;
cookie_cnt = mega_alloc_dma_obj(instance, &cmd->frame_dma_obj);
if (cookie_cnt == -1 || cookie_cnt > 1) {
con_log(CL_ANN, (CE_WARN,
"create_mfi_frame_pool: could not alloc."));
return (DDI_FAILURE);
}
bzero(cmd->frame_dma_obj.buffer, tot_frame_size);
cmd->frame_dma_obj_status = DMA_OBJ_ALLOCATED;
cmd->frame = (union megasas_frame *)cmd->frame_dma_obj.buffer;
cmd->frame_phys_addr =
cmd->frame_dma_obj.dma_cookie[0].dmac_address;
cmd->sense = (uint8_t *)(((unsigned long)
cmd->frame_dma_obj.buffer) +
tot_frame_size - SENSE_LENGTH);
cmd->sense_phys_addr =
cmd->frame_dma_obj.dma_cookie[0].dmac_address +
tot_frame_size - SENSE_LENGTH;
if (!cmd->frame || !cmd->sense) {
con_log(CL_ANN, (CE_NOTE,
"megasas: pci_pool_alloc failed \n"));
return (-ENOMEM);
}
cmd->frame->io.context = cmd->index;
i++;
con_log(CL_DLEVEL3, (CE_NOTE, "[%x]-%x",
cmd->frame->io.context, cmd->frame_phys_addr));
}
return (DDI_SUCCESS);
}
/*
* free_additional_dma_buffer
*/
static void
free_additional_dma_buffer(struct megasas_instance *instance)
{
if (instance->mfi_internal_dma_obj.status == DMA_OBJ_ALLOCATED) {
(void) mega_free_dma_obj(instance,
instance->mfi_internal_dma_obj);
instance->mfi_internal_dma_obj.status = DMA_OBJ_FREED;
}
if (instance->mfi_evt_detail_obj.status == DMA_OBJ_ALLOCATED) {
(void) mega_free_dma_obj(instance,
instance->mfi_evt_detail_obj);
instance->mfi_evt_detail_obj.status = DMA_OBJ_FREED;
}
}
/*
* alloc_additional_dma_buffer
*/
static int
alloc_additional_dma_buffer(struct megasas_instance *instance)
{
uint32_t reply_q_sz;
uint32_t internal_buf_size = PAGESIZE*2;
/* max cmds plus 1 + producer & consumer */
reply_q_sz = sizeof (uint32_t) * (instance->max_fw_cmds + 1 + 2);
instance->mfi_internal_dma_obj.size = internal_buf_size;
instance->mfi_internal_dma_obj.dma_attr = megasas_generic_dma_attr;
instance->mfi_internal_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
instance->mfi_internal_dma_obj.dma_attr.dma_attr_count_max =
0xFFFFFFFFU;
instance->mfi_internal_dma_obj.dma_attr.dma_attr_sgllen = 1;
if (mega_alloc_dma_obj(instance, &instance->mfi_internal_dma_obj)
!= 1) {
con_log(CL_ANN, (CE_WARN, "megaraid: could not alloc reply Q"));
return (DDI_FAILURE);
}
bzero(instance->mfi_internal_dma_obj.buffer, internal_buf_size);
instance->mfi_internal_dma_obj.status |= DMA_OBJ_ALLOCATED;
instance->producer = (uint32_t *)((unsigned long)
instance->mfi_internal_dma_obj.buffer);
instance->consumer = (uint32_t *)((unsigned long)
instance->mfi_internal_dma_obj.buffer + 4);
instance->reply_queue = (uint32_t *)((unsigned long)
instance->mfi_internal_dma_obj.buffer + 8);
instance->internal_buf = (caddr_t)(((unsigned long)
instance->mfi_internal_dma_obj.buffer) + reply_q_sz + 8);
instance->internal_buf_dmac_add =
instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address +
reply_q_sz;
instance->internal_buf_size = internal_buf_size -
(reply_q_sz + 8);
/* allocate evt_detail */
instance->mfi_evt_detail_obj.size = sizeof (struct megasas_evt_detail);
instance->mfi_evt_detail_obj.dma_attr = megasas_generic_dma_attr;
instance->mfi_evt_detail_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
instance->mfi_evt_detail_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
instance->mfi_evt_detail_obj.dma_attr.dma_attr_sgllen = 1;
instance->mfi_evt_detail_obj.dma_attr.dma_attr_align = 1;
if (mega_alloc_dma_obj(instance, &instance->mfi_evt_detail_obj) != 1) {
con_log(CL_ANN, (CE_WARN, "alloc_additional_dma_buffer: "
"could not data transfer buffer alloc."));
return (DDI_FAILURE);
}
bzero(instance->mfi_evt_detail_obj.buffer,
sizeof (struct megasas_evt_detail));
instance->mfi_evt_detail_obj.status |= DMA_OBJ_ALLOCATED;
return (DDI_SUCCESS);
}
/*
* free_space_for_mfi
*/
static void
free_space_for_mfi(struct megasas_instance *instance)
{
int i;
uint32_t max_cmd = instance->max_fw_cmds;
/* already freed */
if (instance->cmd_list == NULL) {
return;
}
free_additional_dma_buffer(instance);
/* first free the MFI frame pool */
destroy_mfi_frame_pool(instance);
/* free all the commands in the cmd_list */
for (i = 0; i < instance->max_fw_cmds; i++) {
kmem_free(instance->cmd_list[i],
sizeof (struct megasas_cmd));
instance->cmd_list[i] = NULL;
}
/* free the cmd_list buffer itself */
kmem_free(instance->cmd_list,
sizeof (struct megasas_cmd *) * max_cmd);
instance->cmd_list = NULL;
INIT_LIST_HEAD(&instance->cmd_pool_list);
}
/*
* alloc_space_for_mfi
*/
static int
alloc_space_for_mfi(struct megasas_instance *instance)
{
int i;
uint32_t max_cmd;
size_t sz;
struct megasas_cmd *cmd;
max_cmd = instance->max_fw_cmds;
sz = sizeof (struct megasas_cmd *) * max_cmd;
/*
* instance->cmd_list is an array of struct megasas_cmd pointers.
* Allocate the dynamic array first and then allocate individual
* commands.
*/
instance->cmd_list = kmem_zalloc(sz, KM_SLEEP);
ASSERT(instance->cmd_list);
for (i = 0; i < max_cmd; i++) {
instance->cmd_list[i] = kmem_zalloc(sizeof (struct megasas_cmd),
KM_SLEEP);
ASSERT(instance->cmd_list[i]);
}
INIT_LIST_HEAD(&instance->cmd_pool_list);
/* add all the commands to command pool (instance->cmd_pool) */
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
cmd->index = i;
mlist_add_tail(&cmd->list, &instance->cmd_pool_list);
}
/* create a frame pool and assign one frame to each cmd */
if (create_mfi_frame_pool(instance)) {
con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
return (DDI_FAILURE);
}
/* create a frame pool and assign one frame to each cmd */
if (alloc_additional_dma_buffer(instance)) {
con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* get_ctrl_info
*/
static int
get_ctrl_info(struct megasas_instance *instance,
struct megasas_ctrl_info *ctrl_info)
{
int ret = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct megasas_ctrl_info *ci;
cmd = get_mfi_pkt(instance);
if (!cmd) {
con_log(CL_ANN, (CE_WARN,
"Failed to get a cmd for ctrl info\n"));
return (DDI_FAILURE);
}
dcmd = &cmd->frame->dcmd;
ci = (struct megasas_ctrl_info *)instance->internal_buf;
if (!ci) {
con_log(CL_ANN, (CE_WARN,
"Failed to alloc mem for ctrl info\n"));
return_mfi_pkt(instance, cmd);
return (DDI_FAILURE);
}
(void) memset(ci, 0, sizeof (struct megasas_ctrl_info));
/* for( i = 0; i < DCMD_MBOX_SZ; i++ ) dcmd->mbox.b[i] = 0; */
(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
dcmd->cmd = MFI_CMD_OP_DCMD;
dcmd->cmd_status = MFI_CMD_STATUS_POLL_MODE;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof (struct megasas_ctrl_info);
dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = instance->internal_buf_dmac_add;
dcmd->sgl.sge32[0].length = sizeof (struct megasas_ctrl_info);
cmd->frame_count = 1;
if (!instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
ret = 0;
(void) memcpy(ctrl_info, ci, sizeof (struct megasas_ctrl_info));
} else {
con_log(CL_ANN, (CE_WARN, "get_ctrl_info: Ctrl info failed\n"));
ret = -1;
}
return_mfi_pkt(instance, cmd);
if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
ret = -1;
}
return (ret);
}
/*
* abort_aen_cmd
*/
static int
abort_aen_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd_to_abort)
{
int ret = 0;
struct megasas_cmd *cmd;
struct megasas_abort_frame *abort_fr;
cmd = get_mfi_pkt(instance);
if (!cmd) {
con_log(CL_ANN, (CE_WARN,
"Failed to get a cmd for ctrl info\n"));
return (DDI_FAILURE);
}
abort_fr = &cmd->frame->abort;
/* prepare and issue the abort frame */
abort_fr->cmd = MFI_CMD_OP_ABORT;
abort_fr->cmd_status = MFI_CMD_STATUS_SYNC_MODE;
abort_fr->flags = 0;
abort_fr->abort_context = cmd_to_abort->index;
abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
abort_fr->abort_mfi_phys_addr_hi = 0;
instance->aen_cmd->abort_aen = 1;
cmd->sync_cmd = MEGASAS_TRUE;
cmd->frame_count = 1;
if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
con_log(CL_ANN, (CE_WARN,
"abort_aen_cmd: issue_cmd_in_sync_mode failed\n"));
ret = -1;
} else {
ret = 0;
}
instance->aen_cmd->abort_aen = 1;
instance->aen_cmd = 0;
return_mfi_pkt(instance, cmd);
(void) megasas_common_check(instance, cmd);
return (ret);
}
/*
* init_mfi
*/
static int
init_mfi(struct megasas_instance *instance)
{
off_t reglength;
struct megasas_cmd *cmd;
struct megasas_ctrl_info ctrl_info;
struct megasas_init_frame *init_frame;
struct megasas_init_queue_info *initq_info;
if ((ddi_dev_regsize(instance->dip, REGISTER_SET_IO, &reglength)
!= DDI_SUCCESS) || reglength < MINIMUM_MFI_MEM_SZ) {
return (DDI_FAILURE);
}
if (reglength > DEFAULT_MFI_MEM_SZ) {
reglength = DEFAULT_MFI_MEM_SZ;
con_log(CL_DLEVEL1, (CE_NOTE,
"mega: register length to map is 0x%lx bytes", reglength));
}
if (ddi_regs_map_setup(instance->dip, REGISTER_SET_IO,
&instance->regmap, 0, reglength, &endian_attr,
&instance->regmap_handle) != DDI_SUCCESS) {
con_log(CL_ANN, (CE_NOTE,
"megaraid: couldn't map control registers"));
goto fail_mfi_reg_setup;
}
/* we expect the FW state to be READY */
if (mfi_state_transition_to_ready(instance)) {
con_log(CL_ANN, (CE_WARN, "megaraid: F/W is not ready"));
goto fail_ready_state;
}
/* get various operational parameters from status register */
instance->max_num_sge =
(instance->func_ptr->read_fw_status_reg(instance) &
0xFF0000) >> 0x10;
/*
* Reduce the max supported cmds by 1. This is to ensure that the
* reply_q_sz (1 more than the max cmd that driver may send)
* does not exceed max cmds that the FW can support
*/
instance->max_fw_cmds =
instance->func_ptr->read_fw_status_reg(instance) & 0xFFFF;
instance->max_fw_cmds = instance->max_fw_cmds - 1;
instance->max_num_sge =
(instance->max_num_sge > MEGASAS_MAX_SGE_CNT) ?
MEGASAS_MAX_SGE_CNT : instance->max_num_sge;
/* create a pool of commands */
if (alloc_space_for_mfi(instance))
goto fail_alloc_fw_space;
/* disable interrupt for initial preparation */
instance->func_ptr->disable_intr(instance);
/*
* Prepare a init frame. Note the init frame points to queue info
* structure. Each frame has SGL allocated after first 64 bytes. For
* this frame - since we don't need any SGL - we use SGL's space as
* queue info structure
*/
cmd = get_mfi_pkt(instance);
init_frame = (struct megasas_init_frame *)cmd->frame;
initq_info = (struct megasas_init_queue_info *)
((unsigned long)init_frame + 64);
(void) memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
(void) memset(initq_info, 0, sizeof (struct megasas_init_queue_info));
initq_info->init_flags = 0;
initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
initq_info->producer_index_phys_addr_hi = 0;
initq_info->producer_index_phys_addr_lo =
instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address;
initq_info->consumer_index_phys_addr_hi = 0;
initq_info->consumer_index_phys_addr_lo =
instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 4;
initq_info->reply_queue_start_phys_addr_hi = 0;
initq_info->reply_queue_start_phys_addr_lo =
instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 8;
init_frame->cmd = MFI_CMD_OP_INIT;
init_frame->cmd_status = MFI_CMD_STATUS_POLL_MODE;
init_frame->flags = 0;
init_frame->queue_info_new_phys_addr_lo =
cmd->frame_phys_addr + 64;
init_frame->queue_info_new_phys_addr_hi = 0;
init_frame->data_xfer_len = sizeof (struct megasas_init_queue_info);
cmd->frame_count = 1;
/* issue the init frame in polled mode */
if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
con_log(CL_ANN, (CE_WARN, "failed to init firmware"));
goto fail_fw_init;
}
return_mfi_pkt(instance, cmd);
if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
goto fail_fw_init;
}
/* gather misc FW related information */
if (!get_ctrl_info(instance, &ctrl_info)) {
instance->max_sectors_per_req = ctrl_info.max_request_size;
con_log(CL_ANN1, (CE_NOTE, "product name %s ld present %d",
ctrl_info.product_name, ctrl_info.ld_present_count));
} else {
instance->max_sectors_per_req = instance->max_num_sge *
PAGESIZE / 512;
}
if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
goto fail_fw_init;
}
return (0);
fail_fw_init:
fail_alloc_fw_space:
free_space_for_mfi(instance);
fail_ready_state:
ddi_regs_map_free(&instance->regmap_handle);
fail_mfi_reg_setup:
return (DDI_FAILURE);
}
/*
* mfi_state_transition_to_ready : Move the FW to READY state
*
* @reg_set : MFI register set
*/
static int
mfi_state_transition_to_ready(struct megasas_instance *instance)
{
int i;
uint8_t max_wait;
uint32_t fw_ctrl;
uint32_t fw_state;
uint32_t cur_state;
fw_state =
instance->func_ptr->read_fw_status_reg(instance) & MFI_STATE_MASK;
con_log(CL_ANN1, (CE_NOTE,
"mfi_state_transition_to_ready:FW state = 0x%x", fw_state));
while (fw_state != MFI_STATE_READY) {
con_log(CL_ANN, (CE_NOTE,
"mfi_state_transition_to_ready:FW state%x", fw_state));
switch (fw_state) {
case MFI_STATE_FAULT:
con_log(CL_ANN, (CE_NOTE,
"megasas: FW in FAULT state!!"));
return (-ENODEV);
case MFI_STATE_WAIT_HANDSHAKE:
/* set the CLR bit in IMR0 */
con_log(CL_ANN, (CE_NOTE,
"megasas: FW waiting for HANDSHAKE"));
/*
* PCI_Hot Plug: MFI F/W requires
* (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
* to be set
*/
/* WR_IB_MSG_0(MFI_INIT_CLEAR_HANDSHAKE, instance); */
WR_IB_DOORBELL(MFI_INIT_CLEAR_HANDSHAKE |
MFI_INIT_HOTPLUG, instance);
max_wait = 2;
cur_state = MFI_STATE_WAIT_HANDSHAKE;
break;
case MFI_STATE_BOOT_MESSAGE_PENDING:
/* set the CLR bit in IMR0 */
con_log(CL_ANN, (CE_NOTE,
"megasas: FW state boot message pending"));
/*
* PCI_Hot Plug: MFI F/W requires
* (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
* to be set
*/
WR_IB_DOORBELL(MFI_INIT_HOTPLUG, instance);
max_wait = 10;
cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
break;
case MFI_STATE_OPERATIONAL:
/* bring it to READY state; assuming max wait 2 secs */
instance->func_ptr->disable_intr(instance);
con_log(CL_ANN1, (CE_NOTE,
"megasas: FW in OPERATIONAL state"));
/*
* PCI_Hot Plug: MFI F/W requires
* (MFI_INIT_READY | MFI_INIT_MFIMODE | MFI_INIT_ABORT)
* to be set
*/
/* WR_IB_DOORBELL(MFI_INIT_READY, instance); */
WR_IB_DOORBELL(MFI_RESET_FLAGS, instance);
max_wait = 10;
cur_state = MFI_STATE_OPERATIONAL;
break;
case MFI_STATE_UNDEFINED:
/* this state should not last for more than 2 seconds */
con_log(CL_ANN, (CE_NOTE, "FW state undefined\n"));
max_wait = 2;
cur_state = MFI_STATE_UNDEFINED;
break;
case MFI_STATE_BB_INIT:
max_wait = 2;
cur_state = MFI_STATE_BB_INIT;
break;
case MFI_STATE_FW_INIT:
max_wait = 2;
cur_state = MFI_STATE_FW_INIT;
break;
case MFI_STATE_DEVICE_SCAN:
max_wait = 10;
cur_state = MFI_STATE_DEVICE_SCAN;
break;
default:
con_log(CL_ANN, (CE_NOTE,
"megasas: Unknown state 0x%x\n", fw_state));
return (-ENODEV);
}
/* the cur_state should not last for more than max_wait secs */
for (i = 0; i < (max_wait * MILLISEC); i++) {
/* fw_state = RD_OB_MSG_0(instance) & MFI_STATE_MASK; */
fw_state =
instance->func_ptr->read_fw_status_reg(instance) &
MFI_STATE_MASK;
if (fw_state == cur_state) {
delay(1 * drv_usectohz(MILLISEC));
} else {
break;
}
}
/* return error if fw_state hasn't changed after max_wait */
if (fw_state == cur_state) {
con_log(CL_ANN, (CE_NOTE,
"FW state hasn't changed in %d secs\n", max_wait));
return (-ENODEV);
}
};
fw_ctrl = RD_IB_DOORBELL(instance);
con_log(CL_ANN1, (CE_NOTE,
"mfi_state_transition_to_ready:FW ctrl = 0x%x", fw_ctrl));
/*
* Write 0xF to the doorbell register to do the following.
* - Abort all outstanding commands (bit 0).
* - Transition from OPERATIONAL to READY state (bit 1).
* - Discard (possible) low MFA posted in 64-bit mode (bit-2).
* - Set to release FW to continue running (i.e. BIOS handshake
* (bit 3).
*/
WR_IB_DOORBELL(0xF, instance);
if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
return (-ENODEV);
}
return (0);
}
/*
* get_seq_num
*/
static int
get_seq_num(struct megasas_instance *instance,
struct megasas_evt_log_info *eli)
{
int ret = 0;
dma_obj_t dcmd_dma_obj;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
cmd = get_mfi_pkt(instance);
if (!cmd) {
cmn_err(CE_WARN, "megasas: failed to get a cmd\n");
return (-ENOMEM);
}
dcmd = &cmd->frame->dcmd;
/* allocate the data transfer buffer */
dcmd_dma_obj.size = sizeof (struct megasas_evt_log_info);
dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
dcmd_dma_obj.dma_attr.dma_attr_align = 1;
if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
con_log(CL_ANN, (CE_WARN,
"get_seq_num: could not data transfer buffer alloc."));
return (DDI_FAILURE);
}
(void) memset(dcmd_dma_obj.buffer, 0,
sizeof (struct megasas_evt_log_info));
(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
dcmd->cmd = MFI_CMD_OP_DCMD;
dcmd->cmd_status = 0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof (struct megasas_evt_log_info);
dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_log_info);
dcmd->sgl.sge32[0].phys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
cmd->sync_cmd = MEGASAS_TRUE;
cmd->frame_count = 1;
if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
cmn_err(CE_WARN, "get_seq_num: "
"failed to issue MR_DCMD_CTRL_EVENT_GET_INFO\n");
ret = -1;
} else {
/* copy the data back into callers buffer */
bcopy(dcmd_dma_obj.buffer, eli,
sizeof (struct megasas_evt_log_info));
ret = 0;
}
if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
ret = -1;
return_mfi_pkt(instance, cmd);
if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
ret = -1;
}
return (ret);
}
/*
* start_mfi_aen
*/
static int
start_mfi_aen(struct megasas_instance *instance)
{
int ret = 0;
struct megasas_evt_log_info eli;
union megasas_evt_class_locale class_locale;
/* get the latest sequence number from FW */
(void) memset(&eli, 0, sizeof (struct megasas_evt_log_info));
if (get_seq_num(instance, &eli)) {
cmn_err(CE_WARN, "start_mfi_aen: failed to get seq num\n");
return (-1);
}
/* register AEN with FW for latest sequence number plus 1 */
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_CRITICAL;
ret = register_mfi_aen(instance, eli.newest_seq_num + 1,
class_locale.word);
if (ret) {
cmn_err(CE_WARN, "start_mfi_aen: aen registration failed\n");
return (-1);
}
return (ret);
}
/*
* flush_cache
*/
static void
flush_cache(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
if (!(cmd = get_mfi_pkt(instance)))
return;
dcmd = &cmd->frame->dcmd;
(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
dcmd->cmd = MFI_CMD_OP_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
cmd->frame_count = 1;
if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
cmn_err(CE_WARN,
"flush_cache: failed to issue MFI_DCMD_CTRL_CACHE_FLUSH\n");
}
con_log(CL_DLEVEL1, (CE_NOTE, "done"));
return_mfi_pkt(instance, cmd);
(void) megasas_common_check(instance, cmd);
}
/*
* service_mfi_aen- Completes an AEN command
* @instance: Adapter soft state
* @cmd: Command to be completed
*
*/
static void
service_mfi_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
uint32_t seq_num;
struct megasas_evt_detail *evt_detail =
(struct megasas_evt_detail *)instance->mfi_evt_detail_obj.buffer;
cmd->cmd_status = cmd->frame->io.cmd_status;
if (cmd->cmd_status == ENODATA) {
cmd->cmd_status = 0;
}
/*
* log the MFI AEN event to the sysevent queue so that
* application will get noticed
*/
if (ddi_log_sysevent(instance->dip, DDI_VENDOR_LSI, "LSIMEGA", "SAS",
NULL, NULL, DDI_NOSLEEP) != DDI_SUCCESS) {
int instance_no = ddi_get_instance(instance->dip);
con_log(CL_ANN, (CE_WARN,
"mega%d: Failed to log AEN event", instance_no));
}
/* get copy of seq_num and class/locale for re-registration */
seq_num = evt_detail->seq_num;
seq_num++;
(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
sizeof (struct megasas_evt_detail));
cmd->frame->dcmd.cmd_status = 0x0;
cmd->frame->dcmd.mbox.w[0] = seq_num;
instance->aen_seq_num = seq_num;
cmd->frame_count = 1;
/* Issue the aen registration frame */
instance->func_ptr->issue_cmd(cmd, instance);
}
/*
* complete_cmd_in_sync_mode - Completes an internal command
* @instance: Adapter soft state
* @cmd: Command to be completed
*
* The issue_cmd_in_sync_mode() function waits for a command to complete
* after it issues a command. This function wakes up that waiting routine by
* calling wake_up() on the wait queue.
*/
static void
complete_cmd_in_sync_mode(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
cmd->cmd_status = cmd->frame->io.cmd_status;
cmd->sync_cmd = MEGASAS_FALSE;
if (cmd->cmd_status == ENODATA) {
cmd->cmd_status = 0;
}
cv_broadcast(&instance->int_cmd_cv);
}
/*
* megasas_softintr - The Software ISR
* @param arg : HBA soft state
*
* called from high-level interrupt if hi-level interrupt are not there,
* otherwise triggered as a soft interrupt
*/
static uint_t
megasas_softintr(struct megasas_instance *instance)
{
struct scsi_pkt *pkt;
struct scsa_cmd *acmd;
struct megasas_cmd *cmd;
struct mlist_head *pos, *next;
mlist_t process_list;
struct megasas_header *hdr;
struct scsi_arq_status *arqstat;
con_log(CL_ANN1, (CE_CONT, "megasas_softintr called"));
ASSERT(instance);
mutex_enter(&instance->completed_pool_mtx);
if (mlist_empty(&instance->completed_pool_list)) {
mutex_exit(&instance->completed_pool_mtx);
return (DDI_INTR_UNCLAIMED);
}
instance->softint_running = 1;
INIT_LIST_HEAD(&process_list);
mlist_splice(&instance->completed_pool_list, &process_list);
INIT_LIST_HEAD(&instance->completed_pool_list);
mutex_exit(&instance->completed_pool_mtx);
/* perform all callbacks first, before releasing the SCBs */
mlist_for_each_safe(pos, next, &process_list) {
cmd = mlist_entry(pos, struct megasas_cmd, list);
/* syncronize the Cmd frame for the controller */
(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle,
0, 0, DDI_DMA_SYNC_FORCPU);
if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
DDI_SUCCESS) {
megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
return (DDI_INTR_UNCLAIMED);
}
hdr = &cmd->frame->hdr;
/* remove the internal command from the process list */
mlist_del_init(&cmd->list);
switch (hdr->cmd) {
case MFI_CMD_OP_PD_SCSI:
case MFI_CMD_OP_LD_SCSI:
case MFI_CMD_OP_LD_READ:
case MFI_CMD_OP_LD_WRITE:
/*
* MFI_CMD_OP_PD_SCSI and MFI_CMD_OP_LD_SCSI
* could have been issued either through an
* IO path or an IOCTL path. If it was via IOCTL,
* we will send it to internal completion.
*/
if (cmd->sync_cmd == MEGASAS_TRUE) {
complete_cmd_in_sync_mode(instance, cmd);
break;
}
/* regular commands */
acmd = cmd->cmd;
pkt = CMD2PKT(acmd);
if (acmd->cmd_flags & CFLAG_DMAVALID) {
if (acmd->cmd_flags & CFLAG_CONSISTENT) {
(void) ddi_dma_sync(acmd->cmd_dmahandle,
acmd->cmd_dma_offset,
acmd->cmd_dma_len,
DDI_DMA_SYNC_FORCPU);
}
}
pkt->pkt_reason = CMD_CMPLT;
pkt->pkt_statistics = 0;
pkt->pkt_state = STATE_GOT_BUS
| STATE_GOT_TARGET | STATE_SENT_CMD
| STATE_XFERRED_DATA | STATE_GOT_STATUS;
con_log(CL_ANN1, (CE_CONT,
"CDB[0] = %x completed for %s: size %lx context %x",
pkt->pkt_cdbp[0], ((acmd->islogical) ? "LD" : "PD"),
acmd->cmd_dmacount, hdr->context));
if (pkt->pkt_cdbp[0] == SCMD_INQUIRY) {
struct scsi_inquiry *inq;
if (acmd->cmd_dmacount != 0) {
bp_mapin(acmd->cmd_buf);
inq = (struct scsi_inquiry *)
acmd->cmd_buf->b_un.b_addr;
/* don't expose physical drives to OS */
if (acmd->islogical &&
(hdr->cmd_status == MFI_STAT_OK)) {
display_scsi_inquiry(
(caddr_t)inq);
} else if ((hdr->cmd_status ==
MFI_STAT_OK) && inq->inq_dtype ==
DTYPE_DIRECT) {
display_scsi_inquiry(
(caddr_t)inq);
/* for physical disk */
hdr->cmd_status =
MFI_STAT_DEVICE_NOT_FOUND;
}
}
}
switch (hdr->cmd_status) {
case MFI_STAT_OK:
pkt->pkt_scbp[0] = STATUS_GOOD;
break;
case MFI_STAT_LD_CC_IN_PROGRESS:
case MFI_STAT_LD_RECON_IN_PROGRESS:
/* SJ - these are not correct way */
pkt->pkt_scbp[0] = STATUS_GOOD;
break;
case MFI_STAT_LD_INIT_IN_PROGRESS:
con_log(CL_ANN,
(CE_WARN, "Initialization in Progress"));
pkt->pkt_reason = CMD_TRAN_ERR;
break;
case MFI_STAT_SCSI_DONE_WITH_ERROR:
con_log(CL_ANN1, (CE_CONT, "scsi_done error"));
pkt->pkt_reason = CMD_CMPLT;
((struct scsi_status *)
pkt->pkt_scbp)->sts_chk = 1;
if (pkt->pkt_cdbp[0] == SCMD_TEST_UNIT_READY) {
con_log(CL_ANN,
(CE_WARN, "TEST_UNIT_READY fail"));
} else {
pkt->pkt_state |= STATE_ARQ_DONE;
arqstat = (void *)(pkt->pkt_scbp);
arqstat->sts_rqpkt_reason = CMD_CMPLT;
arqstat->sts_rqpkt_resid = 0;
arqstat->sts_rqpkt_state |=
STATE_GOT_BUS | STATE_GOT_TARGET
| STATE_SENT_CMD
| STATE_XFERRED_DATA;
*(uint8_t *)&arqstat->sts_rqpkt_status =
STATUS_GOOD;
bcopy(cmd->sense,
&(arqstat->sts_sensedata),
acmd->cmd_scblen -
offsetof(struct scsi_arq_status,
sts_sensedata));
}
break;
case MFI_STAT_LD_OFFLINE:
case MFI_STAT_DEVICE_NOT_FOUND:
con_log(CL_ANN1, (CE_CONT,
"device not found error"));
pkt->pkt_reason = CMD_DEV_GONE;
pkt->pkt_statistics = STAT_DISCON;
break;
case MFI_STAT_LD_LBA_OUT_OF_RANGE:
pkt->pkt_state |= STATE_ARQ_DONE;
pkt->pkt_reason = CMD_CMPLT;
((struct scsi_status *)
pkt->pkt_scbp)->sts_chk = 1;
arqstat = (void *)(pkt->pkt_scbp);
arqstat->sts_rqpkt_reason = CMD_CMPLT;
arqstat->sts_rqpkt_resid = 0;
arqstat->sts_rqpkt_state |= STATE_GOT_BUS
| STATE_GOT_TARGET | STATE_SENT_CMD
| STATE_XFERRED_DATA;
*(uint8_t *)&arqstat->sts_rqpkt_status =
STATUS_GOOD;
arqstat->sts_sensedata.es_valid = 1;
arqstat->sts_sensedata.es_key =
KEY_ILLEGAL_REQUEST;
arqstat->sts_sensedata.es_class =
CLASS_EXTENDED_SENSE;
/*
* LOGICAL BLOCK ADDRESS OUT OF RANGE:
* ASC: 0x21h; ASCQ: 0x00h;
*/
arqstat->sts_sensedata.es_add_code = 0x21;
arqstat->sts_sensedata.es_qual_code = 0x00;
break;
default:
con_log(CL_ANN, (CE_CONT, "Unknown status!"));
pkt->pkt_reason = CMD_TRAN_ERR;
break;
}
atomic_add_16(&instance->fw_outstanding, (-1));
return_mfi_pkt(instance, cmd);
(void) megasas_common_check(instance, cmd);
if (acmd->cmd_dmahandle) {
if (megasas_check_dma_handle(
acmd->cmd_dmahandle) != DDI_SUCCESS) {
ddi_fm_service_impact(instance->dip,
DDI_SERVICE_UNAFFECTED);
pkt->pkt_reason = CMD_TRAN_ERR;
pkt->pkt_statistics = 0;
}
}
/* Call the callback routine */
if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
scsi_hba_pkt_comp(pkt);
}
break;
case MFI_CMD_OP_SMP:
case MFI_CMD_OP_STP:
complete_cmd_in_sync_mode(instance, cmd);
break;
case MFI_CMD_OP_DCMD:
/* see if got an event notification */
if (cmd->frame->dcmd.opcode ==
MR_DCMD_CTRL_EVENT_WAIT) {
if ((instance->aen_cmd == cmd) &&
(instance->aen_cmd->abort_aen)) {
con_log(CL_ANN, (CE_WARN,
"megasas_softintr: "
"aborted_aen returned"));
} else {
service_mfi_aen(instance, cmd);
atomic_add_16(&instance->fw_outstanding,
(-1));
}
} else {
complete_cmd_in_sync_mode(instance, cmd);
}
break;
case MFI_CMD_OP_ABORT:
con_log(CL_ANN, (CE_WARN, "MFI_CMD_OP_ABORT complete"));
/*
* MFI_CMD_OP_ABORT successfully completed
* in the synchronous mode
*/
complete_cmd_in_sync_mode(instance, cmd);
break;
default:
megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
if (cmd->pkt != NULL) {
pkt = cmd->pkt;
if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
scsi_hba_pkt_comp(pkt);
}
}
con_log(CL_ANN, (CE_WARN, "Cmd type unknown !!"));
break;
}
}
instance->softint_running = 0;
return (DDI_INTR_CLAIMED);
}
/*
* mega_alloc_dma_obj
*
* Allocate the memory and other resources for an dma object.
*/
static int
mega_alloc_dma_obj(struct megasas_instance *instance, dma_obj_t *obj)
{
int i;
size_t alen = 0;
uint_t cookie_cnt;
struct ddi_device_acc_attr tmp_endian_attr;
tmp_endian_attr = endian_attr;
tmp_endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
i = ddi_dma_alloc_handle(instance->dip, &obj->dma_attr,
DDI_DMA_SLEEP, NULL, &obj->dma_handle);
if (i != DDI_SUCCESS) {
switch (i) {
case DDI_DMA_BADATTR :
con_log(CL_ANN, (CE_WARN,
"Failed ddi_dma_alloc_handle- Bad atrib"));
break;
case DDI_DMA_NORESOURCES :
con_log(CL_ANN, (CE_WARN,
"Failed ddi_dma_alloc_handle- No Resources"));
break;
default :
con_log(CL_ANN, (CE_WARN,
"Failed ddi_dma_alloc_handle :unknown %d", i));
break;
}
return (-1);
}
if ((ddi_dma_mem_alloc(obj->dma_handle, obj->size, &tmp_endian_attr,
DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
&obj->buffer, &alen, &obj->acc_handle) != DDI_SUCCESS) ||
alen < obj->size) {
ddi_dma_free_handle(&obj->dma_handle);
con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_mem_alloc"));
return (-1);
}
if (ddi_dma_addr_bind_handle(obj->dma_handle, NULL, obj->buffer,
obj->size, DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP,
NULL, &obj->dma_cookie[0], &cookie_cnt) != DDI_SUCCESS) {
ddi_dma_mem_free(&obj->acc_handle);
ddi_dma_free_handle(&obj->dma_handle);
con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_addr_bind_handle"));
return (-1);
}
if (megasas_check_dma_handle(obj->dma_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
return (-1);
}
if (megasas_check_acc_handle(obj->acc_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
return (-1);
}
return (cookie_cnt);
}
/*
* mega_free_dma_obj(struct megasas_instance *, dma_obj_t)
*
* De-allocate the memory and other resources for an dma object, which must
* have been alloated by a previous call to mega_alloc_dma_obj()
*/
static int
mega_free_dma_obj(struct megasas_instance *instance, dma_obj_t obj)
{
if (megasas_check_dma_handle(obj.dma_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
return (DDI_FAILURE);
}
if (megasas_check_acc_handle(obj.acc_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
return (DDI_FAILURE);
}
(void) ddi_dma_unbind_handle(obj.dma_handle);
ddi_dma_mem_free(&obj.acc_handle);
ddi_dma_free_handle(&obj.dma_handle);
return (DDI_SUCCESS);
}
/*
* megasas_dma_alloc(instance_t *, struct scsi_pkt *, struct buf *,
* int, int (*)())
*
* Allocate dma resources for a new scsi command
*/
static int
megasas_dma_alloc(struct megasas_instance *instance, struct scsi_pkt *pkt,
struct buf *bp, int flags, int (*callback)())
{
int dma_flags;
int (*cb)(caddr_t);
int i;
ddi_dma_attr_t tmp_dma_attr = megasas_generic_dma_attr;
struct scsa_cmd *acmd = PKT2CMD(pkt);
acmd->cmd_buf = bp;
if (bp->b_flags & B_READ) {
acmd->cmd_flags &= ~CFLAG_DMASEND;
dma_flags = DDI_DMA_READ;
} else {
acmd->cmd_flags |= CFLAG_DMASEND;
dma_flags = DDI_DMA_WRITE;
}
if (flags & PKT_CONSISTENT) {
acmd->cmd_flags |= CFLAG_CONSISTENT;
dma_flags |= DDI_DMA_CONSISTENT;
}
if (flags & PKT_DMA_PARTIAL) {
dma_flags |= DDI_DMA_PARTIAL;
}
dma_flags |= DDI_DMA_REDZONE;
cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;
tmp_dma_attr.dma_attr_sgllen = instance->max_num_sge;
tmp_dma_attr.dma_attr_addr_hi = 0xffffffffffffffffull;
if ((i = ddi_dma_alloc_handle(instance->dip, &tmp_dma_attr,
cb, 0, &acmd->cmd_dmahandle)) != DDI_SUCCESS) {
switch (i) {
case DDI_DMA_BADATTR:
bioerror(bp, EFAULT);
return (-1);
case DDI_DMA_NORESOURCES:
bioerror(bp, 0);
return (-1);
default:
con_log(CL_ANN, (CE_PANIC, "ddi_dma_alloc_handle: "
"0x%x impossible\n", i));
bioerror(bp, EFAULT);
return (-1);
}
}
i = ddi_dma_buf_bind_handle(acmd->cmd_dmahandle, bp, dma_flags,
cb, 0, &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies);
switch (i) {
case DDI_DMA_PARTIAL_MAP:
if ((dma_flags & DDI_DMA_PARTIAL) == 0) {
con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
"DDI_DMA_PARTIAL_MAP impossible\n"));
goto no_dma_cookies;
}
if (ddi_dma_numwin(acmd->cmd_dmahandle, &acmd->cmd_nwin) ==
DDI_FAILURE) {
con_log(CL_ANN, (CE_PANIC, "ddi_dma_numwin failed\n"));
goto no_dma_cookies;
}
if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
&acmd->cmd_dma_offset, &acmd->cmd_dma_len,
&acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
DDI_FAILURE) {
con_log(CL_ANN, (CE_PANIC, "ddi_dma_getwin failed\n"));
goto no_dma_cookies;
}
goto get_dma_cookies;
case DDI_DMA_MAPPED:
acmd->cmd_nwin = 1;
acmd->cmd_dma_len = 0;
acmd->cmd_dma_offset = 0;
get_dma_cookies:
i = 0;
acmd->cmd_dmacount = 0;
for (;;) {
acmd->cmd_dmacount +=
acmd->cmd_dmacookies[i++].dmac_size;
if (i == instance->max_num_sge ||
i == acmd->cmd_ncookies)
break;
ddi_dma_nextcookie(acmd->cmd_dmahandle,
&acmd->cmd_dmacookies[i]);
}
acmd->cmd_cookie = i;
acmd->cmd_cookiecnt = i;
acmd->cmd_flags |= CFLAG_DMAVALID;
if (bp->b_bcount >= acmd->cmd_dmacount) {
pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
} else {
pkt->pkt_resid = 0;
}
return (0);
case DDI_DMA_NORESOURCES:
bioerror(bp, 0);
break;
case DDI_DMA_NOMAPPING:
bioerror(bp, EFAULT);
break;
case DDI_DMA_TOOBIG:
bioerror(bp, EINVAL);
break;
case DDI_DMA_INUSE:
con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle:"
" DDI_DMA_INUSE impossible\n"));
break;
default:
con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
"0x%x impossible\n", i));
break;
}
no_dma_cookies:
ddi_dma_free_handle(&acmd->cmd_dmahandle);
acmd->cmd_dmahandle = NULL;
acmd->cmd_flags &= ~CFLAG_DMAVALID;
return (-1);
}
/*
* megasas_dma_move(struct megasas_instance *, struct scsi_pkt *, struct buf *)
*
* move dma resources to next dma window
*
*/
static int
megasas_dma_move(struct megasas_instance *instance, struct scsi_pkt *pkt,
struct buf *bp)
{
int i = 0;
struct scsa_cmd *acmd = PKT2CMD(pkt);
/*
* If there are no more cookies remaining in this window,
* must move to the next window first.
*/
if (acmd->cmd_cookie == acmd->cmd_ncookies) {
if (acmd->cmd_curwin == acmd->cmd_nwin && acmd->cmd_nwin == 1) {
return (0);
}
/* at last window, cannot move */
if (++acmd->cmd_curwin >= acmd->cmd_nwin) {
return (-1);
}
if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
&acmd->cmd_dma_offset, &acmd->cmd_dma_len,
&acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
DDI_FAILURE) {
return (-1);
}
acmd->cmd_cookie = 0;
} else {
/* still more cookies in this window - get the next one */
ddi_dma_nextcookie(acmd->cmd_dmahandle,
&acmd->cmd_dmacookies[0]);
}
/* get remaining cookies in this window, up to our maximum */
for (;;) {
acmd->cmd_dmacount += acmd->cmd_dmacookies[i++].dmac_size;
acmd->cmd_cookie++;
if (i == instance->max_num_sge ||
acmd->cmd_cookie == acmd->cmd_ncookies) {
break;
}
ddi_dma_nextcookie(acmd->cmd_dmahandle,
&acmd->cmd_dmacookies[i]);
}
acmd->cmd_cookiecnt = i;
if (bp->b_bcount >= acmd->cmd_dmacount) {
pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
} else {
pkt->pkt_resid = 0;
}
return (0);
}
/*
* build_cmd
*/
static struct megasas_cmd *
build_cmd(struct megasas_instance *instance, struct scsi_address *ap,
struct scsi_pkt *pkt, uchar_t *cmd_done)
{
uint16_t flags = 0;
uint32_t i;
uint32_t context;
uint32_t sge_bytes;
struct megasas_cmd *cmd;
struct megasas_sge64 *mfi_sgl;
struct scsa_cmd *acmd = PKT2CMD(pkt);
struct megasas_pthru_frame *pthru;
struct megasas_io_frame *ldio;
/* find out if this is logical or physical drive command. */
acmd->islogical = MEGADRV_IS_LOGICAL(ap);
acmd->device_id = MAP_DEVICE_ID(instance, ap);
*cmd_done = 0;
/* get the command packet */
if (!(cmd = get_mfi_pkt(instance))) {
return (NULL);
}
cmd->pkt = pkt;
cmd->cmd = acmd;
/* lets get the command directions */
if (acmd->cmd_flags & CFLAG_DMASEND) {
flags = MFI_FRAME_DIR_WRITE;
if (acmd->cmd_flags & CFLAG_CONSISTENT) {
(void) ddi_dma_sync(acmd->cmd_dmahandle,
acmd->cmd_dma_offset, acmd->cmd_dma_len,
DDI_DMA_SYNC_FORDEV);
}
} else if (acmd->cmd_flags & ~CFLAG_DMASEND) {
flags = MFI_FRAME_DIR_READ;
if (acmd->cmd_flags & CFLAG_CONSISTENT) {
(void) ddi_dma_sync(acmd->cmd_dmahandle,
acmd->cmd_dma_offset, acmd->cmd_dma_len,
DDI_DMA_SYNC_FORCPU);
}
} else {
flags = MFI_FRAME_DIR_NONE;
}
flags |= MFI_FRAME_SGL64;
switch (pkt->pkt_cdbp[0]) {
/*
* case SCMD_SYNCHRONIZE_CACHE:
* flush_cache(instance);
* return_mfi_pkt(instance, cmd);
* *cmd_done = 1;
*
* return (NULL);
*/
case SCMD_READ:
case SCMD_WRITE:
case SCMD_READ_G1:
case SCMD_WRITE_G1:
if (acmd->islogical) {
ldio = (struct megasas_io_frame *)cmd->frame;
/*
* preare the Logical IO frame:
* 2nd bit is zero for all read cmds
*/
ldio->cmd = (pkt->pkt_cdbp[0] & 0x02) ?
MFI_CMD_OP_LD_WRITE : MFI_CMD_OP_LD_READ;
ldio->cmd_status = 0x0;
ldio->scsi_status = 0x0;
ldio->target_id = acmd->device_id;
ldio->timeout = 0;
ldio->reserved_0 = 0;
ldio->pad_0 = 0;
ldio->flags = flags;
/* Initialize sense Information */
bzero(cmd->sense, SENSE_LENGTH);
ldio->sense_len = SENSE_LENGTH;
ldio->sense_buf_phys_addr_hi = 0;
ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
ldio->start_lba_hi = 0;
ldio->access_byte = (acmd->cmd_cdblen != 6) ?
pkt->pkt_cdbp[1] : 0;
ldio->sge_count = acmd->cmd_cookiecnt;
mfi_sgl = (struct megasas_sge64 *)&ldio->sgl;
context = ldio->context;
if (acmd->cmd_cdblen == CDB_GROUP0) {
ldio->lba_count = host_to_le16(
(uint16_t)(pkt->pkt_cdbp[4]));
ldio->start_lba_lo = host_to_le32(
((uint32_t)(pkt->pkt_cdbp[3])) |
((uint32_t)(pkt->pkt_cdbp[2]) << 8) |
((uint32_t)((pkt->pkt_cdbp[1]) & 0x1F)
<< 16));
} else if (acmd->cmd_cdblen == CDB_GROUP1) {
ldio->lba_count = host_to_le16(
((uint16_t)(pkt->pkt_cdbp[8])) |
((uint16_t)(pkt->pkt_cdbp[7]) << 8));
ldio->start_lba_lo = host_to_le32(
((uint32_t)(pkt->pkt_cdbp[5])) |
((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
((uint32_t)(pkt->pkt_cdbp[2]) << 24));
} else if (acmd->cmd_cdblen == CDB_GROUP2) {
ldio->lba_count = host_to_le16(
((uint16_t)(pkt->pkt_cdbp[9])) |
((uint16_t)(pkt->pkt_cdbp[8]) << 8) |
((uint16_t)(pkt->pkt_cdbp[7]) << 16) |
((uint16_t)(pkt->pkt_cdbp[6]) << 24));
ldio->start_lba_lo = host_to_le32(
((uint32_t)(pkt->pkt_cdbp[5])) |
((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
((uint32_t)(pkt->pkt_cdbp[2]) << 24));
} else if (acmd->cmd_cdblen == CDB_GROUP3) {
ldio->lba_count = host_to_le16(
((uint16_t)(pkt->pkt_cdbp[13])) |
((uint16_t)(pkt->pkt_cdbp[12]) << 8) |
((uint16_t)(pkt->pkt_cdbp[11]) << 16) |
((uint16_t)(pkt->pkt_cdbp[10]) << 24));
ldio->start_lba_lo = host_to_le32(
((uint32_t)(pkt->pkt_cdbp[9])) |
((uint32_t)(pkt->pkt_cdbp[8]) << 8) |
((uint32_t)(pkt->pkt_cdbp[7]) << 16) |
((uint32_t)(pkt->pkt_cdbp[6]) << 24));
ldio->start_lba_lo = host_to_le32(
((uint32_t)(pkt->pkt_cdbp[5])) |
((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
((uint32_t)(pkt->pkt_cdbp[2]) << 24));
}
break;
}
/* fall through For all non-rd/wr cmds */
default:
pthru = (struct megasas_pthru_frame *)cmd->frame;
/* prepare the DCDB frame */
pthru->cmd = (acmd->islogical) ?
MFI_CMD_OP_LD_SCSI : MFI_CMD_OP_PD_SCSI;
pthru->cmd_status = 0x0;
pthru->scsi_status = 0x0;
pthru->target_id = acmd->device_id;
pthru->lun = 0;
pthru->cdb_len = acmd->cmd_cdblen;
pthru->timeout = 0;
pthru->flags = flags;
pthru->data_xfer_len = acmd->cmd_dmacount;
pthru->sge_count = acmd->cmd_cookiecnt;
mfi_sgl = (struct megasas_sge64 *)&pthru->sgl;
bzero(cmd->sense, SENSE_LENGTH);
pthru->sense_len = SENSE_LENGTH;
pthru->sense_buf_phys_addr_hi = 0;
pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
context = pthru->context;
bcopy(pkt->pkt_cdbp, pthru->cdb, acmd->cmd_cdblen);
break;
}
#ifdef lint
context = context;
#endif
/* bzero(mfi_sgl, sizeof (struct megasas_sge64) * MAX_SGL); */
/* prepare the scatter-gather list for the firmware */
for (i = 0; i < acmd->cmd_cookiecnt; i++, mfi_sgl++) {
mfi_sgl->phys_addr = acmd->cmd_dmacookies[i].dmac_laddress;
mfi_sgl->length = acmd->cmd_dmacookies[i].dmac_size;
}
sge_bytes = sizeof (struct megasas_sge64)*acmd->cmd_cookiecnt;
cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
if (cmd->frame_count >= 8) {
cmd->frame_count = 8;
}
return (cmd);
}
/*
* wait_for_outstanding - Wait for all outstanding cmds
* @instance: Adapter soft state
*
* This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
* complete all its outstanding commands. Returns error if one or more IOs
* are pending after this time period.
*/
static int
wait_for_outstanding(struct megasas_instance *instance)
{
int i;
uint32_t wait_time = 90;
for (i = 0; i < wait_time; i++) {
if (!instance->fw_outstanding) {
break;
}
drv_usecwait(MILLISEC); /* wait for 1000 usecs */;
}
if (instance->fw_outstanding) {
return (1);
}
ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VERSION);
return (0);
}
/*
* issue_mfi_pthru
*/
static int
issue_mfi_pthru(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
struct megasas_cmd *cmd, int mode)
{
void *ubuf;
uint32_t kphys_addr = 0;
uint32_t xferlen = 0;
uint_t model;
dma_obj_t pthru_dma_obj;
struct megasas_pthru_frame *kpthru;
struct megasas_pthru_frame *pthru;
pthru = &cmd->frame->pthru;
kpthru = (struct megasas_pthru_frame *)&ioctl->frame[0];
model = ddi_model_convert_from(mode & FMODELS);
if (model == DDI_MODEL_ILP32) {
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
xferlen = kpthru->sgl.sge32[0].length;
/* SJ! - ubuf needs to be virtual address. */
ubuf = (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
} else {
#ifdef _ILP32
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
xferlen = kpthru->sgl.sge32[0].length;
/* SJ! - ubuf needs to be virtual address. */
ubuf = (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
#else
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP64"));
xferlen = kpthru->sgl.sge64[0].length;
/* SJ! - ubuf needs to be virtual address. */
ubuf = (void *)(ulong_t)kpthru->sgl.sge64[0].phys_addr;
#endif
}
if (xferlen) {
/* means IOCTL requires DMA */
/* allocate the data transfer buffer */
pthru_dma_obj.size = xferlen;
pthru_dma_obj.dma_attr = megasas_generic_dma_attr;
pthru_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
pthru_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
pthru_dma_obj.dma_attr.dma_attr_sgllen = 1;
pthru_dma_obj.dma_attr.dma_attr_align = 1;
/* allocate kernel buffer for DMA */
if (mega_alloc_dma_obj(instance, &pthru_dma_obj) != 1) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
"could not data transfer buffer alloc."));
return (DDI_FAILURE);
}
/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
if (kpthru->flags & MFI_FRAME_DIR_WRITE) {
if (ddi_copyin(ubuf, (void *)pthru_dma_obj.buffer,
xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
"copy from user space failed\n"));
return (1);
}
}
kphys_addr = pthru_dma_obj.dma_cookie[0].dmac_address;
}
pthru->cmd = kpthru->cmd;
pthru->sense_len = kpthru->sense_len;
pthru->cmd_status = kpthru->cmd_status;
pthru->scsi_status = kpthru->scsi_status;
pthru->target_id = kpthru->target_id;
pthru->lun = kpthru->lun;
pthru->cdb_len = kpthru->cdb_len;
pthru->sge_count = kpthru->sge_count;
pthru->timeout = kpthru->timeout;
pthru->data_xfer_len = kpthru->data_xfer_len;
pthru->sense_buf_phys_addr_hi = 0;
/* pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; */
pthru->sense_buf_phys_addr_lo = 0;
bcopy((void *)kpthru->cdb, (void *)pthru->cdb, pthru->cdb_len);
pthru->flags = kpthru->flags & ~MFI_FRAME_SGL64;
pthru->sgl.sge32[0].length = xferlen;
pthru->sgl.sge32[0].phys_addr = kphys_addr;
cmd->sync_cmd = MEGASAS_TRUE;
cmd->frame_count = 1;
if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
con_log(CL_ANN, (CE_WARN,
"issue_mfi_pthru: fw_ioctl failed\n"));
} else {
if (xferlen && (kpthru->flags & MFI_FRAME_DIR_READ)) {
if (ddi_copyout(pthru_dma_obj.buffer, ubuf,
xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
"copy to user space failed\n"));
return (1);
}
}
}
kpthru->cmd_status = pthru->cmd_status;
kpthru->scsi_status = pthru->scsi_status;
con_log(CL_ANN, (CE_NOTE, "issue_mfi_pthru: cmd_status %x, "
"scsi_status %x\n", pthru->cmd_status, pthru->scsi_status));
if (xferlen) {
/* free kernel buffer */
if (mega_free_dma_obj(instance, pthru_dma_obj) != DDI_SUCCESS)
return (1);
}
return (0);
}
/*
* issue_mfi_dcmd
*/
static int
issue_mfi_dcmd(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
struct megasas_cmd *cmd, int mode)
{
void *ubuf;
uint32_t kphys_addr = 0;
uint32_t xferlen = 0;
uint32_t model;
dma_obj_t dcmd_dma_obj;
struct megasas_dcmd_frame *kdcmd;
struct megasas_dcmd_frame *dcmd;
dcmd = &cmd->frame->dcmd;
kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
model = ddi_model_convert_from(mode & FMODELS);
if (model == DDI_MODEL_ILP32) {
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
xferlen = kdcmd->sgl.sge32[0].length;
/* SJ! - ubuf needs to be virtual address. */
ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
}
else
{
#ifdef _ILP32
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
xferlen = kdcmd->sgl.sge32[0].length;
/* SJ! - ubuf needs to be virtual address. */
ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
#else
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_LP64"));
xferlen = kdcmd->sgl.sge64[0].length;
/* SJ! - ubuf needs to be virtual address. */
ubuf = (void *)(ulong_t)dcmd->sgl.sge64[0].phys_addr;
#endif
}
if (xferlen) {
/* means IOCTL requires DMA */
/* allocate the data transfer buffer */
dcmd_dma_obj.size = xferlen;
dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
dcmd_dma_obj.dma_attr.dma_attr_align = 1;
/* allocate kernel buffer for DMA */
if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
"could not data transfer buffer alloc."));
return (DDI_FAILURE);
}
/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
if (kdcmd->flags & MFI_FRAME_DIR_WRITE) {
if (ddi_copyin(ubuf, (void *)dcmd_dma_obj.buffer,
xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
"copy from user space failed\n"));
return (1);
}
}
kphys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
}
dcmd->cmd = kdcmd->cmd;
dcmd->cmd_status = kdcmd->cmd_status;
dcmd->sge_count = kdcmd->sge_count;
dcmd->timeout = kdcmd->timeout;
dcmd->data_xfer_len = kdcmd->data_xfer_len;
dcmd->opcode = kdcmd->opcode;
bcopy((void *)kdcmd->mbox.b, (void *)dcmd->mbox.b, DCMD_MBOX_SZ);
dcmd->flags = kdcmd->flags & ~MFI_FRAME_SGL64;
dcmd->sgl.sge32[0].length = xferlen;
dcmd->sgl.sge32[0].phys_addr = kphys_addr;
cmd->sync_cmd = MEGASAS_TRUE;
cmd->frame_count = 1;
if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: fw_ioctl failed\n"));
} else {
if (xferlen && (kdcmd->flags & MFI_FRAME_DIR_READ)) {
if (ddi_copyout(dcmd_dma_obj.buffer, ubuf,
xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
"copy to user space failed\n"));
return (1);
}
}
}
kdcmd->cmd_status = dcmd->cmd_status;
if (xferlen) {
/* free kernel buffer */
if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
return (1);
}
return (0);
}
/*
* issue_mfi_smp
*/
static int
issue_mfi_smp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
struct megasas_cmd *cmd, int mode)
{
void *request_ubuf;
void *response_ubuf;
uint32_t request_xferlen = 0;
uint32_t response_xferlen = 0;
uint_t model;
dma_obj_t request_dma_obj;
dma_obj_t response_dma_obj;
struct megasas_smp_frame *ksmp;
struct megasas_smp_frame *smp;
struct megasas_sge32 *sge32;
#ifndef _ILP32
struct megasas_sge64 *sge64;
#endif
smp = &cmd->frame->smp;
ksmp = (struct megasas_smp_frame *)&ioctl->frame[0];
model = ddi_model_convert_from(mode & FMODELS);
if (model == DDI_MODEL_ILP32) {
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
sge32 = &ksmp->sgl[0].sge32[0];
response_xferlen = sge32[0].length;
request_xferlen = sge32[1].length;
con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
"response_xferlen = %x, request_xferlen = %x",
response_xferlen, request_xferlen));
/* SJ! - ubuf needs to be virtual address. */
response_ubuf = (void *)(ulong_t)sge32[0].phys_addr;
request_ubuf = (void *)(ulong_t)sge32[1].phys_addr;
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
"response_ubuf = %p, request_ubuf = %p",
response_ubuf, request_ubuf));
} else {
#ifdef _ILP32
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
sge32 = &ksmp->sgl[0].sge32[0];
response_xferlen = sge32[0].length;
request_xferlen = sge32[1].length;
con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
"response_xferlen = %x, request_xferlen = %x",
response_xferlen, request_xferlen));
/* SJ! - ubuf needs to be virtual address. */
response_ubuf = (void *)(ulong_t)sge32[0].phys_addr;
request_ubuf = (void *)(ulong_t)sge32[1].phys_addr;
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
"response_ubuf = %p, request_ubuf = %p",
response_ubuf, request_ubuf));
#else
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_LP64"));
sge64 = &ksmp->sgl[0].sge64[0];
response_xferlen = sge64[0].length;
request_xferlen = sge64[1].length;
/* SJ! - ubuf needs to be virtual address. */
response_ubuf = (void *)(ulong_t)sge64[0].phys_addr;
request_ubuf = (void *)(ulong_t)sge64[1].phys_addr;
#endif
}
if (request_xferlen) {
/* means IOCTL requires DMA */
/* allocate the data transfer buffer */
request_dma_obj.size = request_xferlen;
request_dma_obj.dma_attr = megasas_generic_dma_attr;
request_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
request_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
request_dma_obj.dma_attr.dma_attr_sgllen = 1;
request_dma_obj.dma_attr.dma_attr_align = 1;
/* allocate kernel buffer for DMA */
if (mega_alloc_dma_obj(instance, &request_dma_obj) != 1) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
"could not data transfer buffer alloc."));
return (DDI_FAILURE);
}
/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
if (ddi_copyin(request_ubuf, (void *) request_dma_obj.buffer,
request_xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
"copy from user space failed\n"));
return (1);
}
}
if (response_xferlen) {
/* means IOCTL requires DMA */
/* allocate the data transfer buffer */
response_dma_obj.size = response_xferlen;
response_dma_obj.dma_attr = megasas_generic_dma_attr;
response_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
response_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
response_dma_obj.dma_attr.dma_attr_sgllen = 1;
response_dma_obj.dma_attr.dma_attr_align = 1;
/* allocate kernel buffer for DMA */
if (mega_alloc_dma_obj(instance, &response_dma_obj) != 1) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
"could not data transfer buffer alloc."));
return (DDI_FAILURE);
}
/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
if (ddi_copyin(response_ubuf, (void *) response_dma_obj.buffer,
response_xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
"copy from user space failed\n"));
return (1);
}
}
smp->cmd = ksmp->cmd;
smp->cmd_status = ksmp->cmd_status;
smp->connection_status = ksmp->connection_status;
smp->sge_count = ksmp->sge_count;
/* smp->context = ksmp->context; */
smp->timeout = ksmp->timeout;
smp->data_xfer_len = ksmp->data_xfer_len;
bcopy((void *)&ksmp->sas_addr, (void *)&smp->sas_addr,
sizeof (uint64_t));
smp->flags = ksmp->flags & ~MFI_FRAME_SGL64;
model = ddi_model_convert_from(mode & FMODELS);
if (model == DDI_MODEL_ILP32) {
con_log(CL_ANN1, (CE_NOTE,
"handle_drv_ioctl: DDI_MODEL_ILP32"));
sge32 = &smp->sgl[0].sge32[0];
sge32[0].length = response_xferlen;
sge32[0].phys_addr =
response_dma_obj.dma_cookie[0].dmac_address;
sge32[1].length = request_xferlen;
sge32[1].phys_addr =
request_dma_obj.dma_cookie[0].dmac_address;
} else {
#ifdef _ILP32
con_log(CL_ANN1, (CE_NOTE,
"handle_drv_ioctl: DDI_MODEL_ILP32"));
sge32 = &smp->sgl[0].sge32[0];
sge32[0].length = response_xferlen;
sge32[0].phys_addr =
response_dma_obj.dma_cookie[0].dmac_address;
sge32[1].length = request_xferlen;
sge32[1].phys_addr =
request_dma_obj.dma_cookie[0].dmac_address;
#else
con_log(CL_ANN1, (CE_NOTE,
"issue_mfi_smp: DDI_MODEL_LP64"));
sge64 = &smp->sgl[0].sge64[0];
sge64[0].length = response_xferlen;
sge64[0].phys_addr =
response_dma_obj.dma_cookie[0].dmac_address;
sge64[1].length = request_xferlen;
sge64[1].phys_addr =
request_dma_obj.dma_cookie[0].dmac_address;
#endif
}
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
"smp->response_xferlen = %d, smp->request_xferlen = %d "
"smp->data_xfer_len = %d", sge32[0].length, sge32[1].length,
smp->data_xfer_len));
cmd->sync_cmd = MEGASAS_TRUE;
cmd->frame_count = 1;
if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
con_log(CL_ANN, (CE_WARN,
"issue_mfi_smp: fw_ioctl failed\n"));
} else {
con_log(CL_ANN1, (CE_NOTE,
"issue_mfi_smp: copy to user space\n"));
if (request_xferlen) {
if (ddi_copyout(request_dma_obj.buffer, request_ubuf,
request_xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
"copy to user space failed\n"));
return (1);
}
}
if (response_xferlen) {
if (ddi_copyout(response_dma_obj.buffer, response_ubuf,
response_xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
"copy to user space failed\n"));
return (1);
}
}
}
ksmp->cmd_status = smp->cmd_status;
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: smp->cmd_status = %d",
smp->cmd_status));
if (request_xferlen) {
/* free kernel buffer */
if (mega_free_dma_obj(instance, request_dma_obj) != DDI_SUCCESS)
return (1);
}
if (response_xferlen) {
/* free kernel buffer */
if (mega_free_dma_obj(instance, response_dma_obj) !=
DDI_SUCCESS)
return (1);
}
return (0);
}
/*
* issue_mfi_stp
*/
static int
issue_mfi_stp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
struct megasas_cmd *cmd, int mode)
{
void *fis_ubuf;
void *data_ubuf;
uint32_t fis_xferlen = 0;
uint32_t data_xferlen = 0;
uint_t model;
dma_obj_t fis_dma_obj;
dma_obj_t data_dma_obj;
struct megasas_stp_frame *kstp;
struct megasas_stp_frame *stp;
stp = &cmd->frame->stp;
kstp = (struct megasas_stp_frame *)&ioctl->frame[0];
model = ddi_model_convert_from(mode & FMODELS);
if (model == DDI_MODEL_ILP32) {
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
fis_xferlen = kstp->sgl.sge32[0].length;
data_xferlen = kstp->sgl.sge32[1].length;
/* SJ! - ubuf needs to be virtual address. */
fis_ubuf = (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
data_ubuf = (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
}
else
{
#ifdef _ILP32
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
fis_xferlen = kstp->sgl.sge32[0].length;
data_xferlen = kstp->sgl.sge32[1].length;
/* SJ! - ubuf needs to be virtual address. */
fis_ubuf = (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
data_ubuf = (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
#else
con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_LP64"));
fis_xferlen = kstp->sgl.sge64[0].length;
data_xferlen = kstp->sgl.sge64[1].length;
/* SJ! - ubuf needs to be virtual address. */
fis_ubuf = (void *)(ulong_t)kstp->sgl.sge64[0].phys_addr;
data_ubuf = (void *)(ulong_t)kstp->sgl.sge64[1].phys_addr;
#endif
}
if (fis_xferlen) {
con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: "
"fis_ubuf = %p fis_xferlen = %x", fis_ubuf, fis_xferlen));
/* means IOCTL requires DMA */
/* allocate the data transfer buffer */
fis_dma_obj.size = fis_xferlen;
fis_dma_obj.dma_attr = megasas_generic_dma_attr;
fis_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
fis_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
fis_dma_obj.dma_attr.dma_attr_sgllen = 1;
fis_dma_obj.dma_attr.dma_attr_align = 1;
/* allocate kernel buffer for DMA */
if (mega_alloc_dma_obj(instance, &fis_dma_obj) != 1) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
"could not data transfer buffer alloc."));
return (DDI_FAILURE);
}
/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
if (ddi_copyin(fis_ubuf, (void *)fis_dma_obj.buffer,
fis_xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
"copy from user space failed\n"));
return (1);
}
}
if (data_xferlen) {
con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: data_ubuf = %p "
"data_xferlen = %x", data_ubuf, data_xferlen));
/* means IOCTL requires DMA */
/* allocate the data transfer buffer */
data_dma_obj.size = data_xferlen;
data_dma_obj.dma_attr = megasas_generic_dma_attr;
data_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
data_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
data_dma_obj.dma_attr.dma_attr_sgllen = 1;
data_dma_obj.dma_attr.dma_attr_align = 1;
/* allocate kernel buffer for DMA */
if (mega_alloc_dma_obj(instance, &data_dma_obj) != 1) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
"could not data transfer buffer alloc."));
return (DDI_FAILURE);
}
/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
if (ddi_copyin(data_ubuf, (void *) data_dma_obj.buffer,
data_xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
"copy from user space failed\n"));
return (1);
}
}
stp->cmd = kstp->cmd;
stp->cmd_status = kstp->cmd_status;
stp->connection_status = kstp->connection_status;
stp->target_id = kstp->target_id;
stp->sge_count = kstp->sge_count;
/* stp->context = kstp->context; */
stp->timeout = kstp->timeout;
stp->data_xfer_len = kstp->data_xfer_len;
bcopy((void *)kstp->fis, (void *)stp->fis, 10);
stp->flags = kstp->flags & ~MFI_FRAME_SGL64;
stp->stp_flags = kstp->stp_flags;
stp->sgl.sge32[0].length = fis_xferlen;
stp->sgl.sge32[0].phys_addr = fis_dma_obj.dma_cookie[0].dmac_address;
stp->sgl.sge32[1].length = data_xferlen;
stp->sgl.sge32[1].phys_addr = data_dma_obj.dma_cookie[0].dmac_address;
cmd->sync_cmd = MEGASAS_TRUE;
cmd->frame_count = 1;
if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: fw_ioctl failed\n"));
} else {
if (fis_xferlen) {
if (ddi_copyout(fis_dma_obj.buffer, fis_ubuf,
fis_xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
"copy to user space failed\n"));
return (1);
}
}
if (data_xferlen) {
if (ddi_copyout(data_dma_obj.buffer, data_ubuf,
data_xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
"copy to user space failed\n"));
return (1);
}
}
}
kstp->cmd_status = stp->cmd_status;
if (fis_xferlen) {
/* free kernel buffer */
if (mega_free_dma_obj(instance, fis_dma_obj) != DDI_SUCCESS)
return (1);
}
if (data_xferlen) {
/* free kernel buffer */
if (mega_free_dma_obj(instance, data_dma_obj) != DDI_SUCCESS)
return (1);
}
return (0);
}
/*
* fill_up_drv_ver
*/
static void
fill_up_drv_ver(struct megasas_drv_ver *dv)
{
(void) memset(dv, 0, sizeof (struct megasas_drv_ver));
(void) memcpy(dv->signature, "$LSI LOGIC$", strlen("$LSI LOGIC$"));
(void) memcpy(dv->os_name, "Solaris", strlen("Solaris"));
(void) memcpy(dv->drv_name, "megaraid_sas", strlen("megaraid_sas"));
(void) memcpy(dv->drv_ver, MEGASAS_VERSION, strlen(MEGASAS_VERSION));
(void) memcpy(dv->drv_rel_date, MEGASAS_RELDATE,
strlen(MEGASAS_RELDATE));
}
/*
* handle_drv_ioctl
*/
static int
handle_drv_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
int mode)
{
int i;
int rval = 0;
int *props = NULL;
void *ubuf;
uint8_t *pci_conf_buf;
uint32_t xferlen;
uint32_t num_props;
uint_t model;
struct megasas_dcmd_frame *kdcmd;
struct megasas_drv_ver dv;
struct megasas_pci_information pi;
kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
model = ddi_model_convert_from(mode & FMODELS);
if (model == DDI_MODEL_ILP32) {
con_log(CL_ANN1, (CE_NOTE,
"handle_drv_ioctl: DDI_MODEL_ILP32"));
xferlen = kdcmd->sgl.sge32[0].length;
/* SJ! - ubuf needs to be virtual address. */
ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
} else {
#ifdef _ILP32
con_log(CL_ANN1, (CE_NOTE,
"handle_drv_ioctl: DDI_MODEL_ILP32"));
xferlen = kdcmd->sgl.sge32[0].length;
/* SJ! - ubuf needs to be virtual address. */
ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
#else
con_log(CL_ANN1, (CE_NOTE,
"handle_drv_ioctl: DDI_MODEL_LP64"));
xferlen = kdcmd->sgl.sge64[0].length;
/* SJ! - ubuf needs to be virtual address. */
ubuf = (void *)(ulong_t)kdcmd->sgl.sge64[0].phys_addr;
#endif
}
con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
"dataBuf=%p size=%d bytes", ubuf, xferlen));
switch (kdcmd->opcode) {
case MR_DRIVER_IOCTL_DRIVER_VERSION:
con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
"MR_DRIVER_IOCTL_DRIVER_VERSION"));
fill_up_drv_ver(&dv);
if (ddi_copyout(&dv, ubuf, xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
"MR_DRIVER_IOCTL_DRIVER_VERSION : "
"copy to user space failed\n"));
kdcmd->cmd_status = 1;
rval = 1;
} else {
kdcmd->cmd_status = 0;
}
break;
case MR_DRIVER_IOCTL_PCI_INFORMATION:
con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
"MR_DRIVER_IOCTL_PCI_INFORMAITON"));
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, instance->dip,
0, "reg", &props, &num_props)) {
con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
"MR_DRIVER_IOCTL_PCI_INFORMATION : "
"ddi_prop_look_int_array failed\n"));
rval = 1;
} else {
pi.busNumber = (props[0] >> 16) & 0xFF;
pi.deviceNumber = (props[0] >> 11) & 0x1f;
pi.functionNumber = (props[0] >> 8) & 0x7;
ddi_prop_free((void *)props);
}
pci_conf_buf = (uint8_t *)&pi.pciHeaderInfo;
for (i = 0; i < (sizeof (struct megasas_pci_information) -
offsetof(struct megasas_pci_information, pciHeaderInfo));
i++) {
pci_conf_buf[i] =
pci_config_get8(instance->pci_handle, i);
}
if (ddi_copyout(&pi, ubuf, xferlen, mode)) {
con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
"MR_DRIVER_IOCTL_PCI_INFORMATION : "
"copy to user space failed\n"));
kdcmd->cmd_status = 1;
rval = 1;
} else {
kdcmd->cmd_status = 0;
}
break;
default:
con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
"invalid driver specific IOCTL opcode = 0x%x",
kdcmd->opcode));
kdcmd->cmd_status = 1;
rval = 1;
break;
}
return (rval);
}
/*
* handle_mfi_ioctl
*/
static int
handle_mfi_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
int mode)
{
int rval = 0;
struct megasas_header *hdr;
struct megasas_cmd *cmd;
cmd = get_mfi_pkt(instance);
if (!cmd) {
con_log(CL_ANN, (CE_WARN, "megasas: "
"failed to get a cmd packet\n"));
return (1);
}
hdr = (struct megasas_header *)&ioctl->frame[0];
switch (hdr->cmd) {
case MFI_CMD_OP_DCMD:
rval = issue_mfi_dcmd(instance, ioctl, cmd, mode);
break;
case MFI_CMD_OP_SMP:
rval = issue_mfi_smp(instance, ioctl, cmd, mode);
break;
case MFI_CMD_OP_STP:
rval = issue_mfi_stp(instance, ioctl, cmd, mode);
break;
case MFI_CMD_OP_LD_SCSI:
case MFI_CMD_OP_PD_SCSI:
rval = issue_mfi_pthru(instance, ioctl, cmd, mode);
break;
default:
con_log(CL_ANN, (CE_WARN, "handle_mfi_ioctl: "
"invalid mfi ioctl hdr->cmd = %d\n", hdr->cmd));
rval = 1;
break;
}
return_mfi_pkt(instance, cmd);
if (megasas_common_check(instance, cmd) != DDI_SUCCESS)
rval = 1;
return (rval);
}
/*
* AEN
*/
static int
handle_mfi_aen(struct megasas_instance *instance, struct megasas_aen *aen)
{
int rval = 0;
rval = register_mfi_aen(instance, instance->aen_seq_num,
aen->class_locale_word);
aen->cmd_status = (uint8_t)rval;
return (rval);
}
static int
register_mfi_aen(struct megasas_instance *instance, uint32_t seq_num,
uint32_t class_locale_word)
{
int ret_val;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
union megasas_evt_class_locale curr_aen;
union megasas_evt_class_locale prev_aen;
/*
* If there an AEN pending already (aen_cmd), check if the
* class_locale of that pending AEN is inclusive of the new
* AEN request we currently have. If it is, then we don't have
* to do anything. In other words, whichever events the current
* AEN request is subscribing to, have already been subscribed
* to.
*
* If the old_cmd is _not_ inclusive, then we have to abort
* that command, form a class_locale that is superset of both
* old and current and re-issue to the FW
*/
curr_aen.word = class_locale_word;
if (instance->aen_cmd) {
prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
/*
* A class whose enum value is smaller is inclusive of all
* higher values. If a PROGRESS (= -1) was previously
* registered, then a new registration requests for higher
* classes need not be sent to FW. They are automatically
* included.
*
* Locale numbers don't have such hierarchy. They are bitmap
* values
*/
if ((prev_aen.members.class <= curr_aen.members.class) &&
!((prev_aen.members.locale & curr_aen.members.locale) ^
curr_aen.members.locale)) {
/*
* Previously issued event registration includes
* current request. Nothing to do.
*/
return (0);
} else {
curr_aen.members.locale |= prev_aen.members.locale;
if (prev_aen.members.class < curr_aen.members.class)
curr_aen.members.class = prev_aen.members.class;
ret_val = abort_aen_cmd(instance, instance->aen_cmd);
if (ret_val) {
con_log(CL_ANN, (CE_WARN, "register_mfi_aen: "
"failed to abort prevous AEN command\n"));
return (ret_val);
}
}
} else {
curr_aen.word = class_locale_word;
}
cmd = get_mfi_pkt(instance);
if (!cmd)
return (-ENOMEM);
dcmd = &cmd->frame->dcmd;
/* for(i = 0; i < DCMD_MBOX_SZ; i++) dcmd->mbox.b[i] = 0; */
(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
sizeof (struct megasas_evt_detail));
/* Prepare DCMD for aen registration */
dcmd->cmd = MFI_CMD_OP_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof (struct megasas_evt_detail);
dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
dcmd->mbox.w[0] = seq_num;
dcmd->mbox.w[1] = curr_aen.word;
dcmd->sgl.sge32[0].phys_addr =
instance->mfi_evt_detail_obj.dma_cookie[0].dmac_address;
dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_detail);
instance->aen_seq_num = seq_num;
/*
* Store reference to the cmd used to register for AEN. When an
* application wants us to register for AEN, we have to abort this
* cmd and re-register with a new EVENT LOCALE supplied by that app
*/
instance->aen_cmd = cmd;
cmd->frame_count = 1;
/* Issue the aen registration frame */
/* atomic_add_16 (&instance->fw_outstanding, 1); */
instance->func_ptr->issue_cmd(cmd, instance);
return (0);
}
static void
display_scsi_inquiry(caddr_t scsi_inq)
{
#define MAX_SCSI_DEVICE_CODE 14
int i;
char inquiry_buf[256] = {0};
int len;
const char *const scsi_device_types[] = {
"Direct-Access ",
"Sequential-Access",
"Printer ",
"Processor ",
"WORM ",
"CD-ROM ",
"Scanner ",
"Optical Device ",
"Medium Changer ",
"Communications ",
"Unknown ",
"Unknown ",
"Unknown ",
"Enclosure ",
};
len = 0;
len += snprintf(inquiry_buf + len, 265 - len, " Vendor: ");
for (i = 8; i < 16; i++) {
len += snprintf(inquiry_buf + len, 265 - len, "%c",
scsi_inq[i]);
}
len += snprintf(inquiry_buf + len, 265 - len, " Model: ");
for (i = 16; i < 32; i++) {
len += snprintf(inquiry_buf + len, 265 - len, "%c",
scsi_inq[i]);
}
len += snprintf(inquiry_buf + len, 265 - len, " Rev: ");
for (i = 32; i < 36; i++) {
len += snprintf(inquiry_buf + len, 265 - len, "%c",
scsi_inq[i]);
}
len += snprintf(inquiry_buf + len, 265 - len, "\n");
i = scsi_inq[0] & 0x1f;
len += snprintf(inquiry_buf + len, 265 - len, " Type: %s ",
i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] :
"Unknown ");
len += snprintf(inquiry_buf + len, 265 - len,
" ANSI SCSI revision: %02x", scsi_inq[2] & 0x07);
if ((scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1) {
len += snprintf(inquiry_buf + len, 265 - len, " CCS\n");
} else {
len += snprintf(inquiry_buf + len, 265 - len, "\n");
}
con_log(CL_ANN1, (CE_CONT, inquiry_buf));
}
static int
read_fw_status_reg_xscale(struct megasas_instance *instance)
{
return ((int)RD_OB_MSG_0(instance));
}
static int
read_fw_status_reg_ppc(struct megasas_instance *instance)
{
return ((int)RD_OB_SCRATCH_PAD_0(instance));
}
static void
issue_cmd_xscale(struct megasas_cmd *cmd, struct megasas_instance *instance)
{
atomic_inc_16(&instance->fw_outstanding);
/* Issue the command to the FW */
WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
(cmd->frame_count - 1), instance);
}
static void
issue_cmd_ppc(struct megasas_cmd *cmd, struct megasas_instance *instance)
{
atomic_inc_16(&instance->fw_outstanding);
/* Issue the command to the FW */
WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
(((cmd->frame_count - 1) << 1) | 1), instance);
}
/*
* issue_cmd_in_sync_mode
*/
static int
issue_cmd_in_sync_mode_xscale(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
int i;
uint32_t msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
cmd->cmd_status = ENODATA;
WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
(cmd->frame_count - 1), instance);
mutex_enter(&instance->int_cmd_mtx);
for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
}
mutex_exit(&instance->int_cmd_mtx);
if (i < (msecs -1)) {
return (0);
} else {
return (1);
}
}
static int
issue_cmd_in_sync_mode_ppc(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
int i;
uint32_t msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: called\n"));
cmd->cmd_status = ENODATA;
WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
(((cmd->frame_count - 1) << 1) | 1), instance);
mutex_enter(&instance->int_cmd_mtx);
for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
}
mutex_exit(&instance->int_cmd_mtx);
con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: done\n"));
if (i < (msecs -1)) {
return (0);
} else {
return (1);
}
}
/*
* issue_cmd_in_poll_mode
*/
static int
issue_cmd_in_poll_mode_xscale(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
int i;
uint32_t msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
struct megasas_header *frame_hdr;
frame_hdr = (struct megasas_header *)cmd->frame;
frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE;
frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
/* issue the frame using inbound queue port */
WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
(cmd->frame_count - 1), instance);
/* wait for cmd_status to change from 0xFF */
for (i = 0; i < msecs && (frame_hdr->cmd_status ==
MFI_CMD_STATUS_POLL_MODE); i++) {
drv_usecwait(MILLISEC); /* wait for 1000 usecs */
}
if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
"cmd polling timed out"));
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
static int
issue_cmd_in_poll_mode_ppc(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
int i;
uint32_t msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
struct megasas_header *frame_hdr;
con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_poll_mode_ppc: called\n"));
frame_hdr = (struct megasas_header *)cmd->frame;
frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE;
frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
/* issue the frame using inbound queue port */
WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
(((cmd->frame_count - 1) << 1) | 1), instance);
/* wait for cmd_status to change from 0xFF */
for (i = 0; i < msecs && (frame_hdr->cmd_status ==
MFI_CMD_STATUS_POLL_MODE); i++) {
drv_usecwait(MILLISEC); /* wait for 1000 usecs */
}
if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
"cmd polling timed out"));
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
static void
enable_intr_xscale(struct megasas_instance *instance)
{
MFI_ENABLE_INTR(instance);
}
static void
enable_intr_ppc(struct megasas_instance *instance)
{
uint32_t mask;
con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: called\n"));
/* WR_OB_DOORBELL_CLEAR(0xFFFFFFFF, instance); */
WR_OB_DOORBELL_CLEAR(OB_DOORBELL_CLEAR_MASK, instance);
/*
* As 1078DE is same as 1078 chip, the interrupt mask
* remains the same.
*/
/* WR_OB_INTR_MASK(~0x80000000, instance); */
WR_OB_INTR_MASK(~(MFI_REPLY_1078_MESSAGE_INTR), instance);
/* dummy read to force PCI flush */
mask = RD_OB_INTR_MASK(instance);
con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: "
"outbound_intr_mask = 0x%x\n", mask));
}
static void
disable_intr_xscale(struct megasas_instance *instance)
{
MFI_DISABLE_INTR(instance);
}
static void
disable_intr_ppc(struct megasas_instance *instance)
{
uint32_t mask;
con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: called\n"));
con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: before : "
"outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
/* WR_OB_INTR_MASK(0xFFFFFFFF, instance); */
WR_OB_INTR_MASK(OB_INTR_MASK, instance);
con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: after : "
"outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
/* dummy read to force PCI flush */
mask = RD_OB_INTR_MASK(instance);
#ifdef lint
mask = mask;
#endif
}
static int
intr_ack_xscale(struct megasas_instance *instance)
{
uint32_t status;
/* check if it is our interrupt */
status = RD_OB_INTR_STATUS(instance);
if (!(status & MFI_OB_INTR_STATUS_MASK)) {
return (DDI_INTR_UNCLAIMED);
}
/* clear the interrupt by writing back the same value */
WR_OB_INTR_STATUS(status, instance);
return (DDI_INTR_CLAIMED);
}
static int
intr_ack_ppc(struct megasas_instance *instance)
{
uint32_t status;
con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: called\n"));
/* check if it is our interrupt */
status = RD_OB_INTR_STATUS(instance);
con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: status = 0x%x\n", status));
/*
* As 1078DE is same as 1078 chip, the status field
* remains the same.
*/
if (!(status & MFI_REPLY_1078_MESSAGE_INTR)) {
return (DDI_INTR_UNCLAIMED);
}
/* clear the interrupt by writing back the same value */
WR_OB_DOORBELL_CLEAR(status, instance);
/* dummy READ */
status = RD_OB_INTR_STATUS(instance);
con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: interrupt cleared\n"));
return (DDI_INTR_CLAIMED);
}
static int
megasas_common_check(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
int ret = DDI_SUCCESS;
if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
DDI_SUCCESS) {
ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
if (cmd->pkt != NULL) {
cmd->pkt->pkt_reason = CMD_TRAN_ERR;
cmd->pkt->pkt_statistics = 0;
}
ret = DDI_FAILURE;
}
if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
!= DDI_SUCCESS) {
ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
if (cmd->pkt != NULL) {
cmd->pkt->pkt_reason = CMD_TRAN_ERR;
cmd->pkt->pkt_statistics = 0;
}
ret = DDI_FAILURE;
}
if (megasas_check_dma_handle(instance->mfi_evt_detail_obj.dma_handle) !=
DDI_SUCCESS) {
ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
if (cmd->pkt != NULL) {
cmd->pkt->pkt_reason = CMD_TRAN_ERR;
cmd->pkt->pkt_statistics = 0;
}
ret = DDI_FAILURE;
}
if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VER0);
if (cmd->pkt != NULL) {
cmd->pkt->pkt_reason = CMD_TRAN_ERR;
cmd->pkt->pkt_statistics = 0;
}
ret = DDI_FAILURE;
}
return (ret);
}
/*ARGSUSED*/
static int
megasas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
{
/*
* as the driver can always deal with an error in any dma or
* access handle, we can just return the fme_status value.
*/
pci_ereport_post(dip, err, NULL);
return (err->fme_status);
}
static void
megasas_fm_init(struct megasas_instance *instance)
{
/* Need to change iblock to priority for new MSI intr */
ddi_iblock_cookie_t fm_ibc;
/* Only register with IO Fault Services if we have some capability */
if (instance->fm_capabilities) {
/* Adjust access and dma attributes for FMA */
endian_attr.devacc_attr_access = DDI_FLAGERR_ACC;
megasas_generic_dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
/*
* Register capabilities with IO Fault Services.
* fm_capabilities will be updated to indicate
* capabilities actually supported (not requested.)
*/
ddi_fm_init(instance->dip, &instance->fm_capabilities, &fm_ibc);
/*
* Initialize pci ereport capabilities if ereport
* capable (should always be.)
*/
if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
pci_ereport_setup(instance->dip);
}
/*
* Register error callback if error callback capable.
*/
if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
ddi_fm_handler_register(instance->dip,
megasas_fm_error_cb, (void*) instance);
}
} else {
endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
megasas_generic_dma_attr.dma_attr_flags = 0;
}
}
static void
megasas_fm_fini(struct megasas_instance *instance)
{
/* Only unregister FMA capabilities if registered */
if (instance->fm_capabilities) {
/*
* Un-register error callback if error callback capable.
*/
if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
ddi_fm_handler_unregister(instance->dip);
}
/*
* Release any resources allocated by pci_ereport_setup()
*/
if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
pci_ereport_teardown(instance->dip);
}
/* Unregister from IO Fault Services */
ddi_fm_fini(instance->dip);
/* Adjust access and dma attributes for FMA */
endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
megasas_generic_dma_attr.dma_attr_flags = 0;
}
}
int
megasas_check_acc_handle(ddi_acc_handle_t handle)
{
ddi_fm_error_t de;
if (handle == NULL) {
return (DDI_FAILURE);
}
ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
return (de.fme_status);
}
int
megasas_check_dma_handle(ddi_dma_handle_t handle)
{
ddi_fm_error_t de;
if (handle == NULL) {
return (DDI_FAILURE);
}
ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
return (de.fme_status);
}
void
megasas_fm_ereport(struct megasas_instance *instance, char *detail)
{
uint64_t ena;
char buf[FM_MAX_CLASS];
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
ena = fm_ena_generate(0, FM_ENA_FMT1);
if (DDI_FM_EREPORT_CAP(instance->fm_capabilities)) {
ddi_fm_ereport_post(instance->dip, buf, ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERSION, NULL);
}
}