/* $NetBSD: if_iwn.c,v 1.78 2016/06/10 13:27:14 ozaki-r Exp $ */
/* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */
/*-
* Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Copyright 2016 Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
*/
/*
* Driver for Intel WiFi Link 4965 and 100/1000/2000/5000/6000 Series 802.11
* network adapters.
*/
/*
* TODO:
* - turn tunables into driver properties
*/
#undef IWN_HWCRYPTO /* XXX does not even compile yet */
#include <sys/modctl.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/mutex.h>
#include <sys/conf.h>
#include <sys/pci.h>
#include <sys/pcie.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <sys/dlpi.h>
#include <sys/mac_provider.h>
#include <sys/mac_wifi.h>
#include <sys/net80211.h>
#include <sys/firmload.h>
#include <sys/queue.h>
#include <sys/strsun.h>
#include <sys/strsubr.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/sdt.h>
#include "if_iwncompat.h"
#include "if_iwnreg.h"
#include "if_iwnvar.h"
#include <inet/wifi_ioctl.h>
#ifdef DEBUG
#define IWN_DEBUG
#endif
/*
* regs access attributes
*/
static ddi_device_acc_attr_t iwn_reg_accattr = {
.devacc_attr_version = DDI_DEVICE_ATTR_V0,
.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
.devacc_attr_dataorder = DDI_STRICTORDER_ACC,
.devacc_attr_access = DDI_DEFAULT_ACC
};
/*
* DMA access attributes for descriptor
*/
static ddi_device_acc_attr_t iwn_dma_descattr = {
.devacc_attr_version = DDI_DEVICE_ATTR_V0,
.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
.devacc_attr_dataorder = DDI_STRICTORDER_ACC,
.devacc_attr_access = DDI_DEFAULT_ACC
};
/*
* DMA access attributes
*/
static ddi_device_acc_attr_t iwn_dma_accattr = {
.devacc_attr_version = DDI_DEVICE_ATTR_V0,
.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC,
.devacc_attr_dataorder = DDI_STRICTORDER_ACC,
.devacc_attr_access = DDI_DEFAULT_ACC
};
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset iwn_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset iwn_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset iwn_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static void iwn_kstat_create(struct iwn_softc *, const char *, size_t,
kstat_t **, void **);
static void iwn_kstat_free(kstat_t *, void *, size_t);
static void iwn_kstat_init(struct iwn_softc *);
static void iwn_kstat_init_2000(struct iwn_softc *);
static void iwn_kstat_init_4965(struct iwn_softc *);
static void iwn_kstat_init_6000(struct iwn_softc *);
static void iwn_intr_teardown(struct iwn_softc *);
static int iwn_intr_add(struct iwn_softc *, int);
static int iwn_intr_setup(struct iwn_softc *);
static int iwn_attach(dev_info_t *, ddi_attach_cmd_t);
static int iwn4965_attach(struct iwn_softc *);
static int iwn5000_attach(struct iwn_softc *, uint16_t);
static int iwn_detach(dev_info_t *, ddi_detach_cmd_t);
static int iwn_quiesce(dev_info_t *);
static int iwn_nic_lock(struct iwn_softc *);
static int iwn_eeprom_lock(struct iwn_softc *);
static int iwn_init_otprom(struct iwn_softc *);
static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
uint_t, uint_t, void **, ddi_device_acc_attr_t *, uint_t);
static void iwn_dma_contig_free(struct iwn_dma_info *);
static int iwn_alloc_sched(struct iwn_softc *);
static void iwn_free_sched(struct iwn_softc *);
static int iwn_alloc_kw(struct iwn_softc *);
static void iwn_free_kw(struct iwn_softc *);
static int iwn_alloc_ict(struct iwn_softc *);
static void iwn_free_ict(struct iwn_softc *);
static int iwn_alloc_fwmem(struct iwn_softc *);
static void iwn_free_fwmem(struct iwn_softc *);
static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
int);
static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
static void iwn5000_ict_reset(struct iwn_softc *);
static int iwn_read_eeprom(struct iwn_softc *);
static void iwn4965_read_eeprom(struct iwn_softc *);
#ifdef IWN_DEBUG
static void iwn4965_print_power_group(struct iwn_softc *, int);
#endif
static void iwn5000_read_eeprom(struct iwn_softc *);
static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
static struct ieee80211_node *iwn_node_alloc(ieee80211com_t *);
static void iwn_node_free(ieee80211_node_t *);
static void iwn_newassoc(struct ieee80211_node *, int);
static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void iwn_iter_func(void *, struct ieee80211_node *);
static void iwn_calib_timeout(void *);
static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
#ifndef IEEE80211_NO_HT
static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
#endif
static void iwn5000_rx_calib_results(struct iwn_softc *,
struct iwn_rx_desc *, struct iwn_rx_data *);
static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
uint8_t);
static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
static void iwn_notif_intr(struct iwn_softc *);
static void iwn_wakeup_intr(struct iwn_softc *);
static void iwn_fatal_intr(struct iwn_softc *);
static uint_t iwn_intr(caddr_t, caddr_t);
static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
uint16_t);
static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
uint16_t);
#ifdef notyet
static void iwn5000_reset_sched(struct iwn_softc *, int, int);
#endif
static int iwn_send(ieee80211com_t *, mblk_t *, uint8_t);
static void iwn_watchdog(void *);
static int iwn_cmd(struct iwn_softc *, uint8_t, void *, int, int);
static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
int);
static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
int);
static int iwn_set_link_quality(struct iwn_softc *,
struct ieee80211_node *);
static int iwn_add_broadcast_node(struct iwn_softc *, int);
static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
static int iwn_set_critical_temp(struct iwn_softc *);
static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
static void iwn4965_power_calibration(struct iwn_softc *, int);
static int iwn4965_set_txpower(struct iwn_softc *, int);
static int iwn5000_set_txpower(struct iwn_softc *, int);
static int iwn4965_get_rssi(const struct iwn_rx_stat *);
static int iwn5000_get_rssi(const struct iwn_rx_stat *);
static int iwn_get_noise(const struct iwn_rx_general_stats *);
static int iwn4965_get_temperature(struct iwn_softc *);
static int iwn5000_get_temperature(struct iwn_softc *);
static int iwn_init_sensitivity(struct iwn_softc *);
static void iwn_collect_noise(struct iwn_softc *,
const struct iwn_rx_general_stats *);
static int iwn4965_init_gains(struct iwn_softc *);
static int iwn5000_init_gains(struct iwn_softc *);
static int iwn4965_set_gains(struct iwn_softc *);
static int iwn5000_set_gains(struct iwn_softc *);
static void iwn_tune_sensitivity(struct iwn_softc *,
const struct iwn_rx_stats *);
static int iwn_send_sensitivity(struct iwn_softc *);
static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
static int iwn5000_runtime_calib(struct iwn_softc *);
static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
static int iwn_config_bt_coex_adv1(struct iwn_softc *);
static int iwn_config_bt_coex_adv2(struct iwn_softc *);
static int iwn_config(struct iwn_softc *);
static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
uint8_t);
static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
static int iwn_scan(struct iwn_softc *, uint16_t);
static int iwn_auth(struct iwn_softc *);
static int iwn_run(struct iwn_softc *);
#ifdef IWN_HWCRYPTO
static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
#endif
static int iwn_wme_update(struct ieee80211com *);
#ifndef IEEE80211_NO_HT
static int iwn_ampdu_rx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwn_ampdu_rx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static int iwn_ampdu_tx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwn_ampdu_tx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwn4965_ampdu_tx_start(struct iwn_softc *,
struct ieee80211_node *, uint8_t, uint16_t);
static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
uint8_t, uint16_t);
static void iwn5000_ampdu_tx_start(struct iwn_softc *,
struct ieee80211_node *, uint8_t, uint16_t);
static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
uint8_t, uint16_t);
#endif
static int iwn5000_query_calibration(struct iwn_softc *);
static int iwn5000_send_calibration(struct iwn_softc *);
static int iwn5000_send_wimax_coex(struct iwn_softc *);
static int iwn6000_temp_offset_calib(struct iwn_softc *);
static int iwn2000_temp_offset_calib(struct iwn_softc *);
static int iwn4965_post_alive(struct iwn_softc *);
static int iwn5000_post_alive(struct iwn_softc *);
static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
int);
static int iwn4965_load_firmware(struct iwn_softc *);
static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
const uint8_t *, int);
static int iwn5000_load_firmware(struct iwn_softc *);
static int iwn_read_firmware_leg(struct iwn_softc *,
struct iwn_fw_info *);
static int iwn_read_firmware_tlv(struct iwn_softc *,
struct iwn_fw_info *, uint16_t);
static int iwn_read_firmware(struct iwn_softc *);
static int iwn_clock_wait(struct iwn_softc *);
static int iwn_apm_init(struct iwn_softc *);
static void iwn_apm_stop_master(struct iwn_softc *);
static void iwn_apm_stop(struct iwn_softc *);
static int iwn4965_nic_config(struct iwn_softc *);
static int iwn5000_nic_config(struct iwn_softc *);
static int iwn_hw_prepare(struct iwn_softc *);
static int iwn_hw_init(struct iwn_softc *);
static void iwn_hw_stop(struct iwn_softc *, boolean_t);
static int iwn_init(struct iwn_softc *);
static void iwn_abort_scan(void *);
static void iwn_periodic(void *);
static int iwn_fast_recover(struct iwn_softc *);
static uint8_t *ieee80211_add_ssid(uint8_t *, const uint8_t *, uint32_t);
static uint8_t *ieee80211_add_rates(uint8_t *,
const struct ieee80211_rateset *);
static uint8_t *ieee80211_add_xrates(uint8_t *,
const struct ieee80211_rateset *);
static void iwn_fix_channel(struct iwn_softc *, mblk_t *,
struct iwn_rx_stat *);
#ifdef IWN_DEBUG
#define IWN_DBG(...) iwn_dbg("?" __VA_ARGS__)
static int iwn_dbg_print = 0;
static void
iwn_dbg(const char *fmt, ...)
{
va_list ap;
if (iwn_dbg_print != 0) {
va_start(ap, fmt);
vcmn_err(CE_CONT, fmt, ap);
va_end(ap);
}
}
#else
#define IWN_DBG(...)
#endif
/*
* tunables
*/
/*
* enable 5GHz scanning
*/
int iwn_enable_5ghz = 1;
/*
* If more than 50 consecutive beacons are missed,
* we've probably lost our connection.
* If more than 5 consecutive beacons are missed,
* reinitialize the sensitivity state machine.
*/
int iwn_beacons_missed_disconnect = 50;
int iwn_beacons_missed_sensitivity = 5;
/*
* iwn_periodic interval, in units of msec
*/
int iwn_periodic_interval = 100;
/*
* scan timeout in sec
*/
int iwn_scan_timeout = 20;
static ether_addr_t etherbroadcastaddr = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static void *iwn_state = NULL;
/*
* Mac Call Back entries
*/
static int iwn_m_stat(void *, uint_t, uint64_t *);
static int iwn_m_start(void *);
static void iwn_m_stop(void *);
static int iwn_m_unicst(void *, const uint8_t *);
static int iwn_m_multicst(void *, boolean_t, const uint8_t *);
static int iwn_m_promisc(void *, boolean_t);
static mblk_t *iwn_m_tx(void *, mblk_t *);
static void iwn_m_ioctl(void *, queue_t *, mblk_t *);
static int iwn_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
const void *);
static int iwn_m_getprop(void *, const char *, mac_prop_id_t, uint_t,
void *);
static void iwn_m_propinfo(void *, const char *, mac_prop_id_t,
mac_prop_info_handle_t);
mac_callbacks_t iwn_m_callbacks = {
.mc_callbacks = MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
.mc_getstat = iwn_m_stat,
.mc_start = iwn_m_start,
.mc_stop = iwn_m_stop,
.mc_setpromisc = iwn_m_promisc,
.mc_multicst = iwn_m_multicst,
.mc_unicst = iwn_m_unicst,
.mc_tx = iwn_m_tx,
.mc_reserved = NULL,
.mc_ioctl = iwn_m_ioctl,
.mc_getcapab = NULL,
.mc_open = NULL,
.mc_close = NULL,
.mc_setprop = iwn_m_setprop,
.mc_getprop = iwn_m_getprop,
.mc_propinfo = iwn_m_propinfo
};
static inline uint32_t
iwn_read(struct iwn_softc *sc, int reg)
{
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
return (ddi_get32(sc->sc_regh, (uint32_t *)(sc->sc_base + reg)));
}
static inline void
iwn_write(struct iwn_softc *sc, int reg, uint32_t val)
{
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
ddi_put32(sc->sc_regh, (uint32_t *)(sc->sc_base + reg), val);
}
static inline void
iwn_write_1(struct iwn_softc *sc, int reg, uint8_t val)
{
ddi_put8(sc->sc_regh, (uint8_t *)(sc->sc_base + reg), val);
}
static void
iwn_kstat_create(struct iwn_softc *sc, const char *name, size_t size,
kstat_t **ks, void **data)
{
*ks = kstat_create(ddi_driver_name(sc->sc_dip),
ddi_get_instance(sc->sc_dip), name, "misc", KSTAT_TYPE_NAMED,
size / sizeof (kstat_named_t), 0);
if (*ks == NULL)
*data = kmem_zalloc(size, KM_SLEEP);
else
*data = (*ks)->ks_data;
}
static void
iwn_kstat_free(kstat_t *ks, void *data, size_t size)
{
if (ks != NULL)
kstat_delete(ks);
else if (data != NULL)
kmem_free(data, size);
}
static void
iwn_kstat_init(struct iwn_softc *sc)
{
if (sc->sc_ks_misc != NULL)
sc->sc_ks_misc->ks_lock = &sc->sc_mtx;
if (sc->sc_ks_ant != NULL)
sc->sc_ks_ant->ks_lock = &sc->sc_mtx;
if (sc->sc_ks_sens != NULL)
sc->sc_ks_sens->ks_lock = &sc->sc_mtx;
if (sc->sc_ks_timing != NULL)
sc->sc_ks_timing->ks_lock = &sc->sc_mtx;
if (sc->sc_ks_edca != NULL)
sc->sc_ks_edca->ks_lock = &sc->sc_mtx;
kstat_named_init(&sc->sc_misc->temp,
"temperature", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_misc->crit_temp,
"critical temperature", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_misc->pslevel,
"power saving level", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_misc->noise,
"noise", KSTAT_DATA_LONG);
kstat_named_init(&sc->sc_ant->tx_ant,
"TX mask", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_ant->rx_ant,
"RX mask", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_ant->conn_ant,
"connected mask", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_ant->gain[0],
"gain A", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_ant->gain[1],
"gain B", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_ant->gain[2],
"gain C", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_sens->ofdm_x1,
"OFDM X1", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_sens->ofdm_mrc_x1,
"OFDM MRC X1", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_sens->ofdm_x4,
"OFDM X4", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_sens->ofdm_mrc_x4,
"OFDM MRC X4", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_sens->cck_x4,
"CCK X4", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_sens->cck_mrc_x4,
"CCK MRC X4", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_sens->energy_cck,
"energy CCK", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_timing->bintval,
"bintval", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_timing->tstamp,
"timestamp", KSTAT_DATA_ULONGLONG);
kstat_named_init(&sc->sc_timing->init,
"init", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[0].cwmin,
"background cwmin", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[0].cwmax,
"background cwmax", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[0].aifsn,
"background aifsn", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[0].txop,
"background txop", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[1].cwmin,
"best effort cwmin", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[1].cwmax,
"best effort cwmax", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[1].aifsn,
"best effort aifsn", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[1].txop,
"best effort txop", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[2].cwmin,
"video cwmin", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[2].cwmax,
"video cwmax", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[2].aifsn,
"video aifsn", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[2].txop,
"video txop", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[3].cwmin,
"voice cwmin", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[3].cwmax,
"voice cwmax", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[3].aifsn,
"voice aifsn", KSTAT_DATA_ULONG);
kstat_named_init(&sc->sc_edca->ac[3].txop,
"voice txop", KSTAT_DATA_ULONG);
}
static void
iwn_kstat_init_2000(struct iwn_softc *sc)
{
if (sc->sc_ks_toff != NULL)
sc->sc_ks_toff->ks_lock = &sc->sc_mtx;
kstat_named_init(&sc->sc_toff.t2000->toff_lo,
"temperature offset low", KSTAT_DATA_LONG);
kstat_named_init(&sc->sc_toff.t2000->toff_hi,
"temperature offset high", KSTAT_DATA_LONG);
kstat_named_init(&sc->sc_toff.t2000->volt,
"reference voltage", KSTAT_DATA_LONG);
}
static void
iwn_kstat_init_4965(struct iwn_softc *sc)
{
int i, r;
if (sc->sc_ks_txpower != NULL)
sc->sc_ks_txpower->ks_lock = &sc->sc_mtx;
kstat_named_init(&sc->sc_txpower->vdiff,
"voltage comp", KSTAT_DATA_LONG);
kstat_named_init(&sc->sc_txpower->chan,
"channel", KSTAT_DATA_LONG);
kstat_named_init(&sc->sc_txpower->group,
"attenuation group", KSTAT_DATA_LONG);
kstat_named_init(&sc->sc_txpower->subband,
"sub-band", KSTAT_DATA_LONG);
for (i = 0; i != 2; i++) {
char tmp[KSTAT_STRLEN];
(void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d power", i);
kstat_named_init(&sc->sc_txpower->txchain[i].power,
tmp, KSTAT_DATA_LONG);
(void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d gain", i);
kstat_named_init(&sc->sc_txpower->txchain[i].gain,
tmp, KSTAT_DATA_LONG);
(void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d temperature", i);
kstat_named_init(&sc->sc_txpower->txchain[i].temp,
tmp, KSTAT_DATA_LONG);
(void) snprintf(tmp, KSTAT_STRLEN - 1,
"Ant %d temperature compensation", i);
kstat_named_init(&sc->sc_txpower->txchain[i].tcomp,
tmp, KSTAT_DATA_LONG);
for (r = 0; r != IWN_RIDX_MAX; r++) {
(void) snprintf(tmp, KSTAT_STRLEN - 1,
"Ant %d Rate %d RF gain", i, r);
kstat_named_init(
&sc->sc_txpower->txchain[i].rate[r].rf_gain,
tmp, KSTAT_DATA_LONG);
(void) snprintf(tmp, KSTAT_STRLEN - 1,
"Ant %d Rate %d DSP gain", i, r);
kstat_named_init(
&sc->sc_txpower->txchain[0].rate[0].dsp_gain,
tmp, KSTAT_DATA_LONG);
}
}
}
static void
iwn_kstat_init_6000(struct iwn_softc *sc)
{
if (sc->sc_ks_toff != NULL)
sc->sc_ks_toff->ks_lock = &sc->sc_mtx;
kstat_named_init(&sc->sc_toff.t6000->toff,
"temperature offset", KSTAT_DATA_LONG);
}
static void
iwn_intr_teardown(struct iwn_softc *sc)
{
if (sc->sc_intr_htable != NULL) {
if ((sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) != 0) {
(void) ddi_intr_block_disable(sc->sc_intr_htable,
sc->sc_intr_count);
} else {
(void) ddi_intr_disable(sc->sc_intr_htable[0]);
}
(void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
(void) ddi_intr_free(sc->sc_intr_htable[0]);
sc->sc_intr_htable[0] = NULL;
kmem_free(sc->sc_intr_htable, sc->sc_intr_size);
sc->sc_intr_size = 0;
sc->sc_intr_htable = NULL;
}
}
static int
iwn_intr_add(struct iwn_softc *sc, int intr_type)
{
int ni, na;
int ret;
char *func;
if (ddi_intr_get_nintrs(sc->sc_dip, intr_type, &ni) != DDI_SUCCESS)
return (DDI_FAILURE);
if (ddi_intr_get_navail(sc->sc_dip, intr_type, &na) != DDI_SUCCESS)
return (DDI_FAILURE);
sc->sc_intr_size = sizeof (ddi_intr_handle_t);
sc->sc_intr_htable = kmem_zalloc(sc->sc_intr_size, KM_SLEEP);
ret = ddi_intr_alloc(sc->sc_dip, sc->sc_intr_htable, intr_type, 0, 1,
&sc->sc_intr_count, DDI_INTR_ALLOC_STRICT);
if (ret != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_alloc() failed");
return (DDI_FAILURE);
}
ret = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_pri);
if (ret != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_get_pri() failed");
return (DDI_FAILURE);
}
ret = ddi_intr_add_handler(sc->sc_intr_htable[0], iwn_intr, (caddr_t)sc,
NULL);
if (ret != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_add_handler() failed");
return (DDI_FAILURE);
}
ret = ddi_intr_get_cap(sc->sc_intr_htable[0], &sc->sc_intr_cap);
if (ret != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_get_cap() failed");
return (DDI_FAILURE);
}
if ((sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) != 0) {
ret = ddi_intr_block_enable(sc->sc_intr_htable,
sc->sc_intr_count);
func = "ddi_intr_enable_block";
} else {
ret = ddi_intr_enable(sc->sc_intr_htable[0]);
func = "ddi_intr_enable";
}
if (ret != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!%s() failed", func);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
static int
iwn_intr_setup(struct iwn_softc *sc)
{
int intr_type;
int ret;
ret = ddi_intr_get_supported_types(sc->sc_dip, &intr_type);
if (ret != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"!ddi_intr_get_supported_types() failed");
return (DDI_FAILURE);
}
if ((intr_type & DDI_INTR_TYPE_MSIX)) {
if (iwn_intr_add(sc, DDI_INTR_TYPE_MSIX) == DDI_SUCCESS)
return (DDI_SUCCESS);
iwn_intr_teardown(sc);
}
if ((intr_type & DDI_INTR_TYPE_MSI)) {
if (iwn_intr_add(sc, DDI_INTR_TYPE_MSI) == DDI_SUCCESS)
return (DDI_SUCCESS);
iwn_intr_teardown(sc);
}
if ((intr_type & DDI_INTR_TYPE_FIXED)) {
if (iwn_intr_add(sc, DDI_INTR_TYPE_FIXED) == DDI_SUCCESS)
return (DDI_SUCCESS);
iwn_intr_teardown(sc);
}
dev_err(sc->sc_dip, CE_WARN, "!iwn_intr_setup() failed");
return (DDI_FAILURE);
}
static int
iwn_pci_get_capability(ddi_acc_handle_t pcih, int cap, int *cap_off)
{
uint8_t ptr;
uint8_t val;
for (ptr = pci_config_get8(pcih, PCI_CONF_CAP_PTR);
ptr != 0 && ptr != 0xff;
ptr = pci_config_get8(pcih, ptr + PCI_CAP_NEXT_PTR)) {
val = pci_config_get8(pcih, ptr + PCIE_CAP_ID);
if (val == 0xff)
return (DDI_FAILURE);
if (cap != val)
continue;
*cap_off = ptr;
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
static int
iwn_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int instance;
struct iwn_softc *sc;
struct ieee80211com *ic;
char strbuf[32];
wifi_data_t wd = { 0 };
mac_register_t *macp;
uint32_t reg;
int i, error;
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
instance = ddi_get_instance(dip);
sc = ddi_get_soft_state(iwn_state,
instance);
ASSERT(sc != NULL);
if (sc->sc_flags & IWN_FLAG_RUNNING) {
(void) iwn_init(sc);
}
sc->sc_flags &= ~IWN_FLAG_SUSPEND;
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
instance = ddi_get_instance(dip);
if (ddi_soft_state_zalloc(iwn_state, instance) != DDI_SUCCESS) {
dev_err(dip, CE_WARN, "!ddi_soft_state_zalloc() failed");
return (DDI_FAILURE);
}
sc = ddi_get_soft_state(iwn_state, instance);
ddi_set_driver_private(dip, (caddr_t)sc);
ic = &sc->sc_ic;
sc->sc_dip = dip;
iwn_kstat_create(sc, "hw_state", sizeof (struct iwn_ks_misc),
&sc->sc_ks_misc, (void **)&sc->sc_misc);
iwn_kstat_create(sc, "antennas", sizeof (struct iwn_ks_ant),
&sc->sc_ks_ant, (void **)&sc->sc_ant);
iwn_kstat_create(sc, "sensitivity", sizeof (struct iwn_ks_sens),
&sc->sc_ks_sens, (void **)&sc->sc_sens);
iwn_kstat_create(sc, "timing", sizeof (struct iwn_ks_timing),
&sc->sc_ks_timing, (void **)&sc->sc_timing);
iwn_kstat_create(sc, "edca", sizeof (struct iwn_ks_edca),
&sc->sc_ks_edca, (void **)&sc->sc_edca);
if (pci_config_setup(dip, &sc->sc_pcih) != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!pci_config_setup() failed");
goto fail_pci_config;
}
/*
* Get the offset of the PCI Express Capability Structure in PCI
* Configuration Space.
*/
error = iwn_pci_get_capability(sc->sc_pcih, PCI_CAP_ID_PCI_E,
&sc->sc_cap_off);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"!PCIe capability structure not found!");
goto fail_pci_capab;
}
/* Clear device-specific "PCI retry timeout" register (41h). */
reg = pci_config_get8(sc->sc_pcih, 0x41);
if (reg)
pci_config_put8(sc->sc_pcih, 0x41, 0);
error = ddi_regs_map_setup(dip, 1, &sc->sc_base, 0, 0, &iwn_reg_accattr,
&sc->sc_regh);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!ddi_regs_map_setup() failed");
goto fail_regs_map;
}
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
/* Disable all interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
/* Install interrupt handler. */
if (iwn_intr_setup(sc) != DDI_SUCCESS)
goto fail_intr;
mutex_init(&sc->sc_mtx, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(sc->sc_intr_pri));
mutex_init(&sc->sc_tx_mtx, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(sc->sc_intr_pri));
mutex_init(&sc->sc_mt_mtx, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(sc->sc_intr_pri));
cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
cv_init(&sc->sc_scan_cv, NULL, CV_DRIVER, NULL);
cv_init(&sc->sc_fhdma_cv, NULL, CV_DRIVER, NULL);
cv_init(&sc->sc_alive_cv, NULL, CV_DRIVER, NULL);
cv_init(&sc->sc_calib_cv, NULL, CV_DRIVER, NULL);
iwn_kstat_init(sc);
/* Read hardware revision and attach. */
sc->hw_type =
(IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
>> IWN_HW_REV_TYPE_SHIFT;
if (sc->hw_type == IWN_HW_REV_TYPE_4965)
error = iwn4965_attach(sc);
else
error = iwn5000_attach(sc, sc->sc_devid);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN, "!could not attach device");
goto fail_hw;
}
if ((error = iwn_hw_prepare(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN, "!hardware not ready");
goto fail_hw;
}
/* Read MAC address, channels, etc from EEPROM. */
if ((error = iwn_read_eeprom(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN, "!could not read EEPROM");
goto fail_hw;
}
/* Allocate DMA memory for firmware transfers. */
if ((error = iwn_alloc_fwmem(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not allocate memory for firmware");
goto fail_fwmem;
}
/* Allocate "Keep Warm" page. */
if ((error = iwn_alloc_kw(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not allocate keep warm page");
goto fail_kw;
}
/* Allocate ICT table for 5000 Series. */
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
(error = iwn_alloc_ict(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN, "!could not allocate ICT table");
goto fail_ict;
}
/* Allocate TX scheduler "rings". */
if ((error = iwn_alloc_sched(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not allocate TX scheduler rings");
goto fail_sched;
}
/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
for (i = 0; i < sc->ntxqs; i++) {
if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not allocate TX ring %d", i);
while (--i >= 0)
iwn_free_tx_ring(sc, &sc->txq[i]);
goto fail_txring;
}
}
/* Allocate RX ring. */
if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
dev_err(sc->sc_dip, CE_WARN, "!could not allocate RX ring");
goto fail_rxring;
}
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
/* Count the number of available chains. */
sc->ntxchains =
((sc->txchainmask >> 2) & 1) +
((sc->txchainmask >> 1) & 1) +
((sc->txchainmask >> 0) & 1);
sc->nrxchains =
((sc->rxchainmask >> 2) & 1) +
((sc->rxchainmask >> 1) & 1) +
((sc->rxchainmask >> 0) & 1);
dev_err(sc->sc_dip, CE_CONT, "!MIMO %dT%dR, %s, address %s",
sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
ieee80211_macaddr_sprintf(ic->ic_macaddr));
sc->sc_ant->tx_ant.value.ul = sc->txchainmask;
sc->sc_ant->rx_ant.value.ul = sc->rxchainmask;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
* and IEEE80211_C_PMGT too. */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode support */
IEEE80211_C_WPA | /* 802.11i */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WME; /* 802.11e */
#ifndef IEEE80211_NO_HT
if (sc->sc_flags & IWN_FLAG_HAS_11N) {
/* Set HT capabilities. */
ic->ic_htcaps =
#if IWN_RBUF_SIZE == 8192
IEEE80211_HTCAP_AMSDU7935 |
#endif
IEEE80211_HTCAP_CBW20_40 |
IEEE80211_HTCAP_SGI20 |
IEEE80211_HTCAP_SGI40;
if (sc->hw_type != IWN_HW_REV_TYPE_4965)
ic->ic_htcaps |= IEEE80211_HTCAP_GF;
if (sc->hw_type == IWN_HW_REV_TYPE_6050)
ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
else
ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
}
#endif /* !IEEE80211_NO_HT */
/* Set supported legacy rates. */
ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
}
#ifndef IEEE80211_NO_HT
if (sc->sc_flags & IWN_FLAG_HAS_11N) {
/* Set supported HT rates. */
ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
if (sc->nrxchains > 1)
ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
if (sc->nrxchains > 2)
ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
}
#endif
/* IBSS channel undefined for now. */
ic->ic_ibss_chan = &ic->ic_sup_channels[0];
ic->ic_node_newassoc = iwn_newassoc;
ic->ic_xmit = iwn_send;
#ifdef IWN_HWCRYPTO
ic->ic_crypto.cs_key_set = iwn_set_key;
ic->ic_crypto.cs_key_delete = iwn_delete_key;
#endif
ic->ic_wme.wme_update = iwn_wme_update;
#ifndef IEEE80211_NO_HT
ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
#endif
/*
* attach to 802.11 module
*/
ieee80211_attach(ic);
ieee80211_register_door(ic, ddi_driver_name(dip), ddi_get_instance(dip));
/* Override 802.11 state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwn_newstate;
ic->ic_watchdog = iwn_watchdog;
ic->ic_node_alloc = iwn_node_alloc;
ic->ic_node_free = iwn_node_free;
ieee80211_media_init(ic);
/*
* initialize default tx key
*/
ic->ic_def_txkey = 0;
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 15;
/*
* Initialize pointer to device specific functions
*/
wd.wd_secalloc = WIFI_SEC_NONE;
wd.wd_opmode = ic->ic_opmode;
IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
/*
* create relation to GLD
*/
macp = mac_alloc(MAC_VERSION);
if (NULL == macp) {
dev_err(sc->sc_dip, CE_WARN, "!mac_alloc() failed");
goto fail_mac_alloc;
}
macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
macp->m_driver = sc;
macp->m_dip = dip;
macp->m_src_addr = ic->ic_macaddr;
macp->m_callbacks = &iwn_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = IEEE80211_MTU;
macp->m_pdata = &wd;
macp->m_pdata_size = sizeof (wd);
/*
* Register the macp to mac
*/
error = mac_register(macp, &ic->ic_mach);
mac_free(macp);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!mac_register() failed");
goto fail_mac_alloc;
}
/*
* Create minor node of type DDI_NT_NET_WIFI
*/
(void) snprintf(strbuf, sizeof (strbuf), "iwn%d", instance);
error = ddi_create_minor_node(dip, strbuf, S_IFCHR,
instance + 1, DDI_NT_NET_WIFI, 0);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!ddi_create_minor_node() failed");
goto fail_minor;
}
/*
* Notify link is down now
*/
mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
sc->sc_periodic = ddi_periodic_add(iwn_periodic, sc,
iwn_periodic_interval * MICROSEC, 0);
if (sc->sc_ks_misc)
kstat_install(sc->sc_ks_misc);
if (sc->sc_ks_ant)
kstat_install(sc->sc_ks_ant);
if (sc->sc_ks_sens)
kstat_install(sc->sc_ks_sens);
if (sc->sc_ks_timing)
kstat_install(sc->sc_ks_timing);
if (sc->sc_ks_edca)
kstat_install(sc->sc_ks_edca);
if (sc->sc_ks_txpower)
kstat_install(sc->sc_ks_txpower);
if (sc->sc_ks_toff)
kstat_install(sc->sc_ks_toff);
sc->sc_flags |= IWN_FLAG_ATTACHED;
return (DDI_SUCCESS);
/* Free allocated memory if something failed during attachment. */
fail_minor:
mac_unregister(ic->ic_mach);
fail_mac_alloc:
ieee80211_detach(ic);
iwn_free_rx_ring(sc, &sc->rxq);
fail_rxring:
for (i = 0; i < sc->ntxqs; i++)
iwn_free_tx_ring(sc, &sc->txq[i]);
fail_txring:
iwn_free_sched(sc);
fail_sched:
if (sc->ict != NULL)
iwn_free_ict(sc);
fail_ict:
iwn_free_kw(sc);
fail_kw:
iwn_free_fwmem(sc);
fail_fwmem:
fail_hw:
iwn_intr_teardown(sc);
iwn_kstat_free(sc->sc_ks_txpower, sc->sc_txpower,
sizeof (struct iwn_ks_txpower));
if (sc->hw_type == IWN_HW_REV_TYPE_6005)
iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t6000,
sizeof (struct iwn_ks_toff_6000));
else
iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t2000,
sizeof (struct iwn_ks_toff_2000));
fail_intr:
ddi_regs_map_free(&sc->sc_regh);
fail_regs_map:
fail_pci_capab:
pci_config_teardown(&sc->sc_pcih);
fail_pci_config:
iwn_kstat_free(sc->sc_ks_misc, sc->sc_misc,
sizeof (struct iwn_ks_misc));
iwn_kstat_free(sc->sc_ks_ant, sc->sc_ant,
sizeof (struct iwn_ks_ant));
iwn_kstat_free(sc->sc_ks_sens, sc->sc_sens,
sizeof (struct iwn_ks_sens));
iwn_kstat_free(sc->sc_ks_timing, sc->sc_timing,
sizeof (struct iwn_ks_timing));
iwn_kstat_free(sc->sc_ks_edca, sc->sc_edca,
sizeof (struct iwn_ks_edca));
ddi_soft_state_free(iwn_state, instance);
return (DDI_FAILURE);
}
int
iwn4965_attach(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
ops->load_firmware = iwn4965_load_firmware;
ops->read_eeprom = iwn4965_read_eeprom;
ops->post_alive = iwn4965_post_alive;
ops->nic_config = iwn4965_nic_config;
ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
ops->update_sched = iwn4965_update_sched;
ops->get_temperature = iwn4965_get_temperature;
ops->get_rssi = iwn4965_get_rssi;
ops->set_txpower = iwn4965_set_txpower;
ops->init_gains = iwn4965_init_gains;
ops->set_gains = iwn4965_set_gains;
ops->add_node = iwn4965_add_node;
ops->tx_done = iwn4965_tx_done;
#ifndef IEEE80211_NO_HT
ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
#endif
sc->ntxqs = IWN4965_NTXQUEUES;
sc->ndmachnls = IWN4965_NDMACHNLS;
sc->broadcast_id = IWN4965_ID_BROADCAST;
sc->rxonsz = IWN4965_RXONSZ;
sc->schedsz = IWN4965_SCHEDSZ;
sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
sc->fwsz = IWN4965_FWSZ;
sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
sc->limits = &iwn4965_sensitivity_limits;
sc->fwname = "iwlwifi-4965-2.ucode";
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_AB;
sc->rxchainmask = IWN_ANT_ABC;
iwn_kstat_create(sc, "txpower", sizeof (struct iwn_ks_txpower),
&sc->sc_ks_txpower, (void **)&sc->sc_txpower);
iwn_kstat_init_4965(sc);
return 0;
}
int
iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
{
struct iwn_ops *ops = &sc->ops;
ops->load_firmware = iwn5000_load_firmware;
ops->read_eeprom = iwn5000_read_eeprom;
ops->post_alive = iwn5000_post_alive;
ops->nic_config = iwn5000_nic_config;
ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
ops->update_sched = iwn5000_update_sched;
ops->get_temperature = iwn5000_get_temperature;
ops->get_rssi = iwn5000_get_rssi;
ops->set_txpower = iwn5000_set_txpower;
ops->init_gains = iwn5000_init_gains;
ops->set_gains = iwn5000_set_gains;
ops->add_node = iwn5000_add_node;
ops->tx_done = iwn5000_tx_done;
#ifndef IEEE80211_NO_HT
ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
#endif
sc->ntxqs = IWN5000_NTXQUEUES;
sc->ndmachnls = IWN5000_NDMACHNLS;
sc->broadcast_id = IWN5000_ID_BROADCAST;
sc->rxonsz = IWN5000_RXONSZ;
sc->schedsz = IWN5000_SCHEDSZ;
sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
sc->fwsz = IWN5000_FWSZ;
sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
switch (sc->hw_type) {
case IWN_HW_REV_TYPE_5100:
sc->limits = &iwn5000_sensitivity_limits;
sc->fwname = "iwlwifi-5000-2.ucode";
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_B;
sc->rxchainmask = IWN_ANT_AB;
break;
case IWN_HW_REV_TYPE_5150:
sc->limits = &iwn5150_sensitivity_limits;
sc->fwname = "iwlwifi-5150-2.ucode";
break;
case IWN_HW_REV_TYPE_5300:
case IWN_HW_REV_TYPE_5350:
sc->limits = &iwn5000_sensitivity_limits;
sc->fwname = "iwlwifi-5000-2.ucode";
break;
case IWN_HW_REV_TYPE_1000:
sc->limits = &iwn1000_sensitivity_limits;
if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
sc->fwname = "iwlwifi-100-5.ucode";
else
sc->fwname = "iwlwifi-1000-3.ucode";
break;
case IWN_HW_REV_TYPE_6000:
sc->limits = &iwn6000_sensitivity_limits;
sc->fwname = "iwlwifi-6000-4.ucode";
if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_BC;
sc->rxchainmask = IWN_ANT_BC;
}
break;
case IWN_HW_REV_TYPE_6050:
sc->limits = &iwn6000_sensitivity_limits;
sc->fwname = "iwlwifi-6050-5.ucode";
break;
case IWN_HW_REV_TYPE_6005:
sc->limits = &iwn6000_sensitivity_limits;
/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 ||
pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
sc->fwname = "iwlwifi-6000g2b-6.ucode";
ops->config_bt_coex = iwn_config_bt_coex_adv1;
}
else
sc->fwname = "iwlwifi-6000g2a-6.ucode";
iwn_kstat_create(sc, "temp_offset",
sizeof (struct iwn_ks_toff_6000),
&sc->sc_ks_toff, (void **)&sc->sc_toff.t6000);
iwn_kstat_init_6000(sc);
break;
case IWN_HW_REV_TYPE_2030:
sc->limits = &iwn2000_sensitivity_limits;
sc->fwname = "iwlwifi-2030-6.ucode";
ops->config_bt_coex = iwn_config_bt_coex_adv2;
iwn_kstat_create(sc, "temp_offset",
sizeof (struct iwn_ks_toff_2000),
&sc->sc_ks_toff, (void **)&sc->sc_toff.t2000);
iwn_kstat_init_2000(sc);
break;
case IWN_HW_REV_TYPE_2000:
sc->limits = &iwn2000_sensitivity_limits;
sc->fwname = "iwlwifi-2000-6.ucode";
iwn_kstat_create(sc, "temp_offset",
sizeof (struct iwn_ks_toff_2000),
&sc->sc_ks_toff, (void **)&sc->sc_toff.t2000);
iwn_kstat_init_2000(sc);
break;
case IWN_HW_REV_TYPE_135:
sc->limits = &iwn2000_sensitivity_limits;
sc->fwname = "iwlwifi-135-6.ucode";
ops->config_bt_coex = iwn_config_bt_coex_adv2;
iwn_kstat_create(sc, "temp_offset",
sizeof (struct iwn_ks_toff_2000),
&sc->sc_ks_toff, (void **)&sc->sc_toff.t2000);
iwn_kstat_init_2000(sc);
break;
case IWN_HW_REV_TYPE_105:
sc->limits = &iwn2000_sensitivity_limits;
sc->fwname = "iwlwifi-105-6.ucode";
iwn_kstat_create(sc, "temp_offset",
sizeof (struct iwn_ks_toff_2000),
&sc->sc_ks_toff, (void **)&sc->sc_toff.t2000);
iwn_kstat_init_2000(sc);
break;
default:
dev_err(sc->sc_dip, CE_WARN, "!adapter type %d not supported",
sc->hw_type);
return ENOTSUP;
}
return 0;
}
static int
iwn_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
struct iwn_softc *sc = ddi_get_driver_private(dip);
ieee80211com_t *ic = &sc->sc_ic;
int qid, error;
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER;
sc->sc_flags &= ~IWN_FLAG_RATE_AUTO_CTL;
sc->sc_flags |= IWN_FLAG_SUSPEND;
if (sc->sc_flags & IWN_FLAG_RUNNING) {
iwn_hw_stop(sc, B_TRUE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
if (!(sc->sc_flags & IWN_FLAG_ATTACHED)) {
return (DDI_FAILURE);
}
error = mac_disable(ic->ic_mach);
if (error != DDI_SUCCESS)
return (error);
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO;
mutex_exit(&sc->sc_mtx);
if (sc->calib_to != 0)
(void) untimeout(sc->calib_to);
sc->calib_to = 0;
if (sc->scan_to != 0)
(void) untimeout(sc->scan_to);
sc->scan_to = 0;
ddi_periodic_delete(sc->sc_periodic);
/*
* stop chipset
*/
iwn_hw_stop(sc, B_TRUE);
/*
* Unregister from GLD
*/
(void) mac_unregister(ic->ic_mach);
ieee80211_detach(ic);
/* Uninstall interrupt handler. */
iwn_intr_teardown(sc);
/* Free DMA resources. */
mutex_enter(&sc->sc_mtx);
iwn_free_rx_ring(sc, &sc->rxq);
for (qid = 0; qid < sc->ntxqs; qid++)
iwn_free_tx_ring(sc, &sc->txq[qid]);
iwn_free_sched(sc);
iwn_free_kw(sc);
if (sc->ict != NULL)
iwn_free_ict(sc);
iwn_free_fwmem(sc);
mutex_exit(&sc->sc_mtx);
iwn_kstat_free(sc->sc_ks_misc, sc->sc_misc,
sizeof (struct iwn_ks_misc));
iwn_kstat_free(sc->sc_ks_ant, sc->sc_ant,
sizeof (struct iwn_ks_ant));
iwn_kstat_free(sc->sc_ks_sens, sc->sc_sens,
sizeof (struct iwn_ks_sens));
iwn_kstat_free(sc->sc_ks_timing, sc->sc_timing,
sizeof (struct iwn_ks_timing));
iwn_kstat_free(sc->sc_ks_edca, sc->sc_edca,
sizeof (struct iwn_ks_edca));
iwn_kstat_free(sc->sc_ks_txpower, sc->sc_txpower,
sizeof (struct iwn_ks_txpower));
if (sc->hw_type == IWN_HW_REV_TYPE_6005)
iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t6000,
sizeof (struct iwn_ks_toff_6000));
else
iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t2000,
sizeof (struct iwn_ks_toff_2000));
ddi_regs_map_free(&sc->sc_regh);
pci_config_teardown(&sc->sc_pcih);
ddi_remove_minor_node(dip, NULL);
ddi_soft_state_free(iwn_state, ddi_get_instance(dip));
return 0;
}
static int
iwn_quiesce(dev_info_t *dip)
{
struct iwn_softc *sc;
sc = ddi_get_soft_state(iwn_state, ddi_get_instance(dip));
if (sc == NULL)
return (DDI_FAILURE);
#ifdef IWN_DEBUG
/* bypass any messages */
iwn_dbg_print = 0;
#endif
/*
* No more blocking is allowed while we are in the
* quiesce(9E) entry point.
*/
sc->sc_flags |= IWN_FLAG_QUIESCED;
/*
* Disable and mask all interrupts.
*/
iwn_hw_stop(sc, B_FALSE);
return (DDI_SUCCESS);
}
static int
iwn_nic_lock(struct iwn_softc *sc)
{
int ntries;
/* Request exclusive access to NIC. */
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
/* Spin until we actually get the lock. */
for (ntries = 0; ntries < 1000; ntries++) {
if ((IWN_READ(sc, IWN_GP_CNTRL) &
(IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
IWN_GP_CNTRL_MAC_ACCESS_ENA)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
static __inline void
iwn_nic_unlock(struct iwn_softc *sc)
{
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
}
static __inline uint32_t
iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
IWN_BARRIER_READ_WRITE(sc);
return IWN_READ(sc, IWN_PRPH_RDATA);
}
static __inline void
iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
IWN_BARRIER_WRITE(sc);
IWN_WRITE(sc, IWN_PRPH_WDATA, data);
}
static __inline void
iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
{
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
}
static __inline void
iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
{
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
}
static __inline void
iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
const uint32_t *data, int count)
{
for (; count > 0; count--, data++, addr += 4)
iwn_prph_write(sc, addr, *data);
}
static __inline uint32_t
iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_MEM_RADDR, addr);
IWN_BARRIER_READ_WRITE(sc);
return IWN_READ(sc, IWN_MEM_RDATA);
}
static __inline void
iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_MEM_WADDR, addr);
IWN_BARRIER_WRITE(sc);
IWN_WRITE(sc, IWN_MEM_WDATA, data);
}
#ifndef IEEE80211_NO_HT
static __inline void
iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
{
uint32_t tmp;
tmp = iwn_mem_read(sc, addr & ~3);
if (addr & 3)
tmp = (tmp & 0x0000ffff) | data << 16;
else
tmp = (tmp & 0xffff0000) | data;
iwn_mem_write(sc, addr & ~3, tmp);
}
#endif
static __inline void
iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
int count)
{
for (; count > 0; count--, addr += 4)
*data++ = iwn_mem_read(sc, addr);
}
static __inline void
iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
int count)
{
for (; count > 0; count--, addr += 4)
iwn_mem_write(sc, addr, val);
}
static int
iwn_eeprom_lock(struct iwn_softc *sc)
{
int i, ntries;
for (i = 0; i < 100; i++) {
/* Request exclusive access to EEPROM. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_EEPROM_LOCKED);
/* Spin until we actually get the lock. */
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_EEPROM_LOCKED)
return 0;
DELAY(10);
}
}
return ETIMEDOUT;
}
static __inline void
iwn_eeprom_unlock(struct iwn_softc *sc)
{
IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
}
/*
* Initialize access by host to One Time Programmable ROM.
* NB: This kind of ROM can be found on 1000 or 6000 Series only.
*/
static int
iwn_init_otprom(struct iwn_softc *sc)
{
uint16_t prev = 0, base, next;
int count, error;
/* Wait for clock stabilization before accessing prph. */
if ((error = iwn_clock_wait(sc)) != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
DELAY(5);
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
iwn_nic_unlock(sc);
/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
IWN_RESET_LINK_PWR_MGMT_DIS);
}
IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
/* Clear ECC status. */
IWN_SETBITS(sc, IWN_OTP_GP,
IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
/*
* Find the block before last block (contains the EEPROM image)
* for HW without OTP shadow RAM.
*/
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
/* Switch to absolute addressing mode. */
IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
base = 0;
for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
error = iwn_read_prom_data(sc, base, &next, 2);
if (error != 0)
return error;
if (next == 0) /* End of linked-list. */
break;
prev = base;
base = le16toh(next);
}
if (count == 0 || count == IWN1000_OTP_NBLOCKS)
return EIO;
/* Skip "next" word. */
sc->prom_base = prev + 1;
}
return 0;
}
static int
iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
{
uint8_t *out = data;
uint32_t val, tmp;
int ntries;
addr += sc->prom_base;
for (; count > 0; count -= 2, addr++) {
IWN_WRITE(sc, IWN_EEPROM, addr << 2);
for (ntries = 0; ntries < 10; ntries++) {
val = IWN_READ(sc, IWN_EEPROM);
if (val & IWN_EEPROM_READ_VALID)
break;
DELAY(5);
}
if (ntries == 10) {
dev_err(sc->sc_dip, CE_WARN,
"!timeout reading ROM at 0x%x", addr);
return ETIMEDOUT;
}
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
/* OTPROM, check for ECC errors. */
tmp = IWN_READ(sc, IWN_OTP_GP);
if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
dev_err(sc->sc_dip, CE_WARN,
"!OTPROM ECC error at 0x%x", addr);
return EIO;
}
if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
/* Correctable ECC error, clear bit. */
IWN_SETBITS(sc, IWN_OTP_GP,
IWN_OTP_GP_ECC_CORR_STTS);
}
}
*out++ = val >> 16;
if (count > 1)
*out++ = val >> 24;
}
return 0;
}
static int
iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
uint_t size, uint_t flags, void **kvap, ddi_device_acc_attr_t *acc_attr,
uint_t align)
{
ddi_dma_attr_t dma_attr = {
.dma_attr_version = DMA_ATTR_V0,
.dma_attr_addr_lo = 0,
.dma_attr_addr_hi = 0xfffffffffULL,
.dma_attr_count_max = 0xfffffffffULL,
.dma_attr_align = align,
.dma_attr_burstsizes = 0x7ff,
.dma_attr_minxfer = 1,
.dma_attr_maxxfer = 0xfffffffffULL,
.dma_attr_seg = 0xfffffffffULL,
.dma_attr_sgllen = 1,
.dma_attr_granular = 1,
.dma_attr_flags = 0,
};
int error;
error = ddi_dma_alloc_handle(sc->sc_dip, &dma_attr, DDI_DMA_SLEEP, NULL,
&dma->dma_hdl);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"ddi_dma_alloc_handle() failed, error = %d", error);
goto fail;
}
error = ddi_dma_mem_alloc(dma->dma_hdl, size, acc_attr,
flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING), DDI_DMA_SLEEP, 0,
&dma->vaddr, &dma->length, &dma->acc_hdl);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"ddi_dma_mem_alloc() failed, error = %d", error);
goto fail2;
}
bzero(dma->vaddr, dma->length);
error = ddi_dma_addr_bind_handle(dma->dma_hdl, NULL, dma->vaddr,
dma->length, flags, DDI_DMA_SLEEP, NULL, &dma->cookie,
&dma->ncookies);
if (error != DDI_DMA_MAPPED) {
dma->ncookies = 0;
dev_err(sc->sc_dip, CE_WARN,
"ddi_dma_addr_bind_handle() failed, error = %d", error);
goto fail3;
}
dma->size = size;
dma->paddr = dma->cookie.dmac_laddress;
if (kvap != NULL)
*kvap = (void *)dma->vaddr;
return (DDI_SUCCESS);
fail3:
ddi_dma_mem_free(&dma->acc_hdl);
fail2:
ddi_dma_free_handle(&dma->dma_hdl);
fail:
bzero(dma, sizeof (struct iwn_dma_info));
return (DDI_FAILURE);
}
static void
iwn_dma_contig_free(struct iwn_dma_info *dma)
{
if (dma->dma_hdl != NULL) {
if (dma->ncookies)
(void) ddi_dma_unbind_handle(dma->dma_hdl);
ddi_dma_free_handle(&dma->dma_hdl);
}
if (dma->acc_hdl != NULL)
ddi_dma_mem_free(&dma->acc_hdl);
bzero(dma, sizeof (struct iwn_dma_info));
}
static int
iwn_alloc_sched(struct iwn_softc *sc)
{
/* TX scheduler rings must be aligned on a 1KB boundary. */
return iwn_dma_contig_alloc(sc, &sc->sched_dma, sc->schedsz,
DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&sc->sched,
&iwn_dma_accattr, 1024);
}
static void
iwn_free_sched(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->sched_dma);
}
static int
iwn_alloc_kw(struct iwn_softc *sc)
{
/* "Keep Warm" page must be aligned on a 4KB boundary. */
return iwn_dma_contig_alloc(sc, &sc->kw_dma, IWN_KW_SIZE,
DDI_DMA_CONSISTENT | DDI_DMA_RDWR, NULL, &iwn_dma_accattr, 4096);
}
static void
iwn_free_kw(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->kw_dma);
}
static int
iwn_alloc_ict(struct iwn_softc *sc)
{
/* ICT table must be aligned on a 4KB boundary. */
return iwn_dma_contig_alloc(sc, &sc->ict_dma, IWN_ICT_SIZE,
DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&sc->ict,
&iwn_dma_descattr, 4096);
}
static void
iwn_free_ict(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->ict_dma);
}
static int
iwn_alloc_fwmem(struct iwn_softc *sc)
{
/* Must be aligned on a 16-byte boundary. */
return iwn_dma_contig_alloc(sc, &sc->fw_dma, sc->fwsz,
DDI_DMA_CONSISTENT | DDI_DMA_RDWR, NULL, &iwn_dma_accattr, 16);
}
static void
iwn_free_fwmem(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->fw_dma);
}
static int
iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
size_t size;
int i, error;
ring->cur = 0;
/* Allocate RX descriptors (256-byte aligned). */
size = IWN_RX_RING_COUNT * sizeof (uint32_t);
error = iwn_dma_contig_alloc(sc, &ring->desc_dma, size,
DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&ring->desc,
&iwn_dma_descattr, 256);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"!could not allocate RX ring DMA memory");
goto fail;
}
/* Allocate RX status area (16-byte aligned). */
error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
sizeof (struct iwn_rx_status), DDI_DMA_CONSISTENT | DDI_DMA_RDWR,
(void **)&ring->stat, &iwn_dma_descattr, 16);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"!could not allocate RX status DMA memory");
goto fail;
}
/*
* Allocate and map RX buffers.
*/
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
struct iwn_rx_data *data = &ring->data[i];
error = iwn_dma_contig_alloc(sc, &data->dma_data, IWN_RBUF_SIZE,
DDI_DMA_CONSISTENT | DDI_DMA_READ, NULL, &iwn_dma_accattr,
256);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"!could not create RX buf DMA map");
goto fail;
}
/* Set physical address of RX buffer (256-byte aligned). */
ring->desc[i] = htole32(data->dma_data.paddr >> 8);
}
(void) ddi_dma_sync(ring->desc_dma.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
return 0;
fail: iwn_free_rx_ring(sc, ring);
return error;
}
static void
iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int ntries;
if (iwn_nic_lock(sc) == 0) {
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
for (ntries = 0; ntries < 1000; ntries++) {
if (IWN_READ(sc, IWN_FH_RX_STATUS) &
IWN_FH_RX_STATUS_IDLE)
break;
DELAY(10);
}
iwn_nic_unlock(sc);
}
ring->cur = 0;
sc->last_rx_valid = 0;
}
static void
iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
_NOTE(ARGUNUSED(sc));
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->stat_dma);
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
struct iwn_rx_data *data = &ring->data[i];
if (data->dma_data.dma_hdl)
iwn_dma_contig_free(&data->dma_data);
}
}
static int
iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
{
uintptr_t paddr;
size_t size;
int i, error;
ring->qid = qid;
ring->queued = 0;
ring->cur = 0;
/* Allocate TX descriptors (256-byte aligned). */
size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
error = iwn_dma_contig_alloc(sc, &ring->desc_dma, size,
DDI_DMA_CONSISTENT | DDI_DMA_WRITE, (void **)&ring->desc,
&iwn_dma_descattr, 256);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"!could not allocate TX ring DMA memory");
goto fail;
}
/*
* We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
* to allocate commands space for other rings.
* XXX Do we really need to allocate descriptors for other rings?
*/
if (qid > 4)
return 0;
size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, size,
DDI_DMA_CONSISTENT | DDI_DMA_WRITE, (void **)&ring->cmd,
&iwn_dma_accattr, 4);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"!could not allocate TX cmd DMA memory");
goto fail;
}
paddr = ring->cmd_dma.paddr;
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
data->cmd_paddr = paddr;
data->scratch_paddr = paddr + 12;
paddr += sizeof (struct iwn_tx_cmd);
error = iwn_dma_contig_alloc(sc, &data->dma_data, IWN_TBUF_SIZE,
DDI_DMA_CONSISTENT | DDI_DMA_WRITE, NULL, &iwn_dma_accattr,
256);
if (error != DDI_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN,
"!could not create TX buf DMA map");
goto fail;
}
}
return 0;
fail: iwn_free_tx_ring(sc, ring);
return error;
}
static void
iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
int i;
if (ring->qid < 4)
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
(void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
}
/* Clear TX descriptors. */
memset(ring->desc, 0, ring->desc_dma.size);
(void) ddi_dma_sync(ring->desc_dma.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
sc->qfullmsk &= ~(1 << ring->qid);
ring->queued = 0;
ring->cur = 0;
}
static void
iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
_NOTE(ARGUNUSED(sc));
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->cmd_dma);
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
if (data->dma_data.dma_hdl)
iwn_dma_contig_free(&data->dma_data);
}
}
static void
iwn5000_ict_reset(struct iwn_softc *sc)
{
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
/* Reset ICT table. */
memset(sc->ict, 0, IWN_ICT_SIZE);
sc->ict_cur = 0;
/* Set physical address of ICT table (4KB aligned). */
IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
/* Enable periodic RX interrupt. */
sc->int_mask |= IWN_INT_RX_PERIODIC;
/* Switch to ICT interrupt mode in driver. */
sc->sc_flags |= IWN_FLAG_USE_ICT;
/* Re-enable interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
}
static int
iwn_read_eeprom(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int error;
/* Check whether adapter has an EEPROM or an OTPROM. */
if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
(IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
IWN_DBG("%s found",
(sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
/* Adapter has to be powered on for EEPROM access to work. */
if ((error = iwn_apm_init(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not power ON adapter");
return error;
}
if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
dev_err(sc->sc_dip, CE_WARN,
"!bad ROM signature");
return EIO;
}
if ((error = iwn_eeprom_lock(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not lock ROM (error=%d)", error);
return error;
}
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
if ((error = iwn_init_otprom(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not initialize OTPROM");
return error;
}
}
iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
IWN_DBG("SKU capabilities=0x%04x", le16toh(val));
/* Check if HT support is bonded out. */
if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
sc->sc_flags |= IWN_FLAG_HAS_11N;
iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
sc->rfcfg = le16toh(val);
IWN_DBG("radio config=0x%04x", sc->rfcfg);
/* Read Tx/Rx chains from ROM unless it's known to be broken. */
if (sc->txchainmask == 0)
sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
if (sc->rxchainmask == 0)
sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
/* Read MAC address. */
iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_macaddr, 6);
/* Read adapter-specific information from EEPROM. */
ops->read_eeprom(sc);
iwn_apm_stop(sc); /* Power OFF adapter. */
iwn_eeprom_unlock(sc);
return 0;
}
static void
iwn4965_read_eeprom(struct iwn_softc *sc)
{
uint32_t addr;
uint16_t val;
int i;
/* Read regulatory domain (4 ASCII characters). */
iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
/* Read the list of authorized channels (20MHz ones only). */
for (i = 0; i < 5; i++) {
addr = iwn4965_regulatory_bands[i];
iwn_read_eeprom_channels(sc, i, addr);
}
/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
sc->maxpwr2GHz = val & 0xff;
sc->maxpwr5GHz = val >> 8;
/* Check that EEPROM values are within valid range. */
if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
sc->maxpwr5GHz = 38;
if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
sc->maxpwr2GHz = 38;
IWN_DBG("maxpwr 2GHz=%d 5GHz=%d", sc->maxpwr2GHz, sc->maxpwr5GHz);
/* Read samples for each TX power group. */
iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
sizeof sc->bands);
/* Read voltage at which samples were taken. */
iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
sc->eeprom_voltage = (int16_t)le16toh(val);
IWN_DBG("voltage=%d (in 0.3V)", sc->eeprom_voltage);
#ifdef IWN_DEBUG
/* Print samples. */
if (iwn_dbg_print != 0) {
for (i = 0; i < IWN_NBANDS; i++)
iwn4965_print_power_group(sc, i);
}
#endif
}
#ifdef IWN_DEBUG
static void
iwn4965_print_power_group(struct iwn_softc *sc, int i)
{
struct iwn4965_eeprom_band *band = &sc->bands[i];
struct iwn4965_eeprom_chan_samples *chans = band->chans;
int j, c;
dev_err(sc->sc_dip, CE_CONT, "!===band %d===", i);
dev_err(sc->sc_dip, CE_CONT, "!chan lo=%d, chan hi=%d", band->lo,
band->hi);
dev_err(sc->sc_dip, CE_CONT, "!chan1 num=%d", chans[0].num);
for (c = 0; c < 2; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
dev_err(sc->sc_dip, CE_CONT, "!chain %d, sample %d: "
"temp=%d gain=%d power=%d pa_det=%d", c, j,
chans[0].samples[c][j].temp,
chans[0].samples[c][j].gain,
chans[0].samples[c][j].power,
chans[0].samples[c][j].pa_det);
}
}
dev_err(sc->sc_dip, CE_CONT, "!chan2 num=%d", chans[1].num);
for (c = 0; c < 2; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
dev_err(sc->sc_dip, CE_CONT, "!chain %d, sample %d: "
"temp=%d gain=%d power=%d pa_det=%d", c, j,
chans[1].samples[c][j].temp,
chans[1].samples[c][j].gain,
chans[1].samples[c][j].power,
chans[1].samples[c][j].pa_det);
}
}
}
#endif
static void
iwn5000_read_eeprom(struct iwn_softc *sc)
{
struct iwn5000_eeprom_calib_hdr hdr;
int32_t volt;
uint32_t base, addr;
uint16_t val;
int i;
/* Read regulatory domain (4 ASCII characters). */
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
base = le16toh(val);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
sc->eeprom_domain, 4);
/* Read the list of authorized channels (20MHz ones only). */
for (i = 0; i < 5; i++) {
addr = base + iwn5000_regulatory_bands[i];
iwn_read_eeprom_channels(sc, i, addr);
}
/* Read enhanced TX power information for 6000 Series. */
if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
iwn_read_eeprom_enhinfo(sc);
iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
base = le16toh(val);
iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
IWN_DBG("calib version=%u pa type=%u voltage=%u",
hdr.version, hdr.pa_type, le16toh(hdr.volt));
sc->calib_ver = hdr.version;
if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
sc->hw_type == IWN_HW_REV_TYPE_2000 ||
sc->hw_type == IWN_HW_REV_TYPE_135 ||
sc->hw_type == IWN_HW_REV_TYPE_105) {
sc->eeprom_voltage = le16toh(hdr.volt);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
sc->eeprom_temp = le16toh(val);
iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
sc->eeprom_rawtemp = le16toh(val);
}
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
/* Compute temperature offset. */
iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
sc->eeprom_temp = le16toh(val);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
volt = le16toh(val);
sc->temp_off = sc->eeprom_temp - (volt / -5);
IWN_DBG("temp=%d volt=%d offset=%dK",
sc->eeprom_temp, volt, sc->temp_off);
} else {
/* Read crystal calibration. */
iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
&sc->eeprom_crystal, sizeof (uint32_t));
IWN_DBG("crystal calibration 0x%08x",
le32toh(sc->eeprom_crystal));
}
}
static void
iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct iwn_chan_band *band = &iwn_bands[n];
struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
uint8_t chan;
int i;
iwn_read_prom_data(sc, addr, channels,
band->nchan * sizeof (struct iwn_eeprom_chan));
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
continue;
chan = band->chan[i];
if (n == 0) { /* 2GHz band */
ic->ic_sup_channels[chan].ich_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_sup_channels[chan].ich_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
} else { /* 5GHz band */
/*
* Some adapters support channels 7, 8, 11 and 12
* both in the 2GHz and 4.9GHz bands.
* Because of limitations in our net80211 layer,
* we don't support them in the 4.9GHz band.
*/
if (chan <= 14)
continue;
ic->ic_sup_channels[chan].ich_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_sup_channels[chan].ich_flags =
IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM;
/* We have at least one valid 5GHz channel. */
sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
}
/* Is active scan allowed on this channel? */
if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
ic->ic_sup_channels[chan].ich_flags |=
IEEE80211_CHAN_PASSIVE;
}
/* Save maximum allowed TX power for this channel. */
sc->maxpwr[chan] = channels[i].maxpwr;
IWN_DBG("adding chan %d flags=0x%x maxpwr=%d",
chan, channels[i].flags, sc->maxpwr[chan]);
}
}
static void
iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
{
struct iwn_eeprom_enhinfo enhinfo[35];
uint16_t val, base;
int8_t maxpwr;
int i;
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
base = le16toh(val);
iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
enhinfo, sizeof enhinfo);
memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
for (i = 0; i < __arraycount(enhinfo); i++) {
if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
continue; /* Skip invalid entries. */
maxpwr = 0;
if (sc->txchainmask & IWN_ANT_A)
maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
if (sc->txchainmask & IWN_ANT_B)
maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
if (sc->txchainmask & IWN_ANT_C)
maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
if (sc->ntxchains == 2)
maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
else if (sc->ntxchains == 3)
maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
maxpwr /= 2; /* Convert half-dBm to dBm. */
IWN_DBG("enhinfo %d, maxpwr=%d", i, maxpwr);
sc->enh_maxpwr[i] = maxpwr;
}
}
static struct ieee80211_node *
iwn_node_alloc(ieee80211com_t *ic)
{
_NOTE(ARGUNUSED(ic));
return (kmem_zalloc(sizeof (struct iwn_node), KM_NOSLEEP));
}
static void
iwn_node_free(ieee80211_node_t *in)
{
ASSERT(in != NULL);
ASSERT(in->in_ic != NULL);
if (in->in_wpa_ie != NULL)
ieee80211_free(in->in_wpa_ie);
if (in->in_wme_ie != NULL)
ieee80211_free(in->in_wme_ie);
if (in->in_htcap_ie != NULL)
ieee80211_free(in->in_htcap_ie);
kmem_free(in, sizeof (struct iwn_node));
}
static void
iwn_newassoc(struct ieee80211_node *ni, int isnew)
{
_NOTE(ARGUNUSED(isnew));
struct iwn_softc *sc = (struct iwn_softc *)&ni->in_ic;
struct iwn_node *wn = (void *)ni;
uint8_t rate, ridx;
int i;
ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
/*
* Select a medium rate and depend on AMRR to raise/lower it.
*/
ni->in_txrate = ni->in_rates.ir_nrates / 2;
for (i = 0; i < ni->in_rates.ir_nrates; i++) {
rate = ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
if (iwn_rates[ridx].rate == rate)
break;
wn->ridx[i] = ridx;
}
}
static int
iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct iwn_softc *sc = (struct iwn_softc *)ic;
enum ieee80211_state ostate;
int error;
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO;
mutex_exit(&sc->sc_mtx);
(void) untimeout(sc->calib_to);
sc->calib_to = 0;
mutex_enter(&sc->sc_mtx);
ostate = ic->ic_state;
DTRACE_PROBE5(new__state, int, sc->sc_flags,
enum ieee80211_state, ostate,
const char *, ieee80211_state_name[ostate],
enum ieee80211_state, nstate,
const char *, ieee80211_state_name[nstate]);
if ((sc->sc_flags & IWN_FLAG_RADIO_OFF) && nstate != IEEE80211_S_INIT) {
mutex_exit(&sc->sc_mtx);
return (IWN_FAIL);
}
if (!(sc->sc_flags & IWN_FLAG_HW_INITED) &&
nstate != IEEE80211_S_INIT) {
mutex_exit(&sc->sc_mtx);
return (IWN_FAIL);
}
switch (nstate) {
case IEEE80211_S_SCAN:
/* XXX Do not abort a running scan. */
if (sc->sc_flags & IWN_FLAG_SCANNING) {
if (ostate != nstate)
dev_err(sc->sc_dip, CE_WARN, "!scan request(%d)"
" while scanning(%d) ignored", nstate,
ostate);
mutex_exit(&sc->sc_mtx);
return (0);
}
bcopy(&sc->rxon, &sc->rxon_save, sizeof (sc->rxon));
sc->sc_ostate = ostate;
/* XXX Not sure if call and flags are needed. */
ieee80211_node_table_reset(&ic->ic_scan);
ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
/* Make the link LED blink while we're scanning. */
iwn_set_led(sc, IWN_LED_LINK, 10, 10);
ic->ic_state = nstate;
error = iwn_scan(sc, IEEE80211_CHAN_2GHZ);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not initiate scan");
sc->sc_flags &= ~IWN_FLAG_SCANNING;
mutex_exit(&sc->sc_mtx);
return (error);
}
mutex_exit(&sc->sc_mtx);
sc->scan_to = timeout(iwn_abort_scan, sc, iwn_scan_timeout *
drv_usectohz(MICROSEC));
return (error);
case IEEE80211_S_ASSOC:
if (ostate != IEEE80211_S_RUN) {
mutex_exit(&sc->sc_mtx);
break;
}
/* FALLTHROUGH */
case IEEE80211_S_AUTH:
/* Reset state to handle reassociations correctly. */
sc->rxon.associd = 0;
sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
sc->calib.state = IWN_CALIB_STATE_INIT;
if ((error = iwn_auth(sc)) != 0) {
mutex_exit(&sc->sc_mtx);
dev_err(sc->sc_dip, CE_WARN,
"!could not move to auth state");
return error;
}
mutex_exit(&sc->sc_mtx);
break;
case IEEE80211_S_RUN:
if ((error = iwn_run(sc)) != 0) {
mutex_exit(&sc->sc_mtx);
dev_err(sc->sc_dip, CE_WARN,
"!could not move to run state");
return error;
}
mutex_exit(&sc->sc_mtx);
break;
case IEEE80211_S_INIT:
sc->sc_flags &= ~IWN_FLAG_SCANNING;
sc->calib.state = IWN_CALIB_STATE_INIT;
/*
* set LED off after init
*/
iwn_set_led(sc, IWN_LED_LINK, 1, 0);
cv_signal(&sc->sc_scan_cv);
mutex_exit(&sc->sc_mtx);
if (sc->scan_to != 0)
(void) untimeout(sc->scan_to);
sc->scan_to = 0;
break;
}
error = sc->sc_newstate(ic, nstate, arg);
if (nstate == IEEE80211_S_RUN)
ieee80211_start_watchdog(ic, 1);
return (error);
}
static void
iwn_iter_func(void *arg, struct ieee80211_node *ni)
{
struct iwn_softc *sc = arg;
struct iwn_node *wn = (struct iwn_node *)ni;
ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
}
static void
iwn_calib_timeout(void *arg)
{
struct iwn_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
mutex_enter(&sc->sc_mtx);
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
if (ic->ic_opmode == IEEE80211_M_STA)
iwn_iter_func(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
}
/* Force automatic TX power calibration every 60 secs. */
if (++sc->calib_cnt >= 120) {
uint32_t flags = 0;
DTRACE_PROBE(get__statistics);
(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
sizeof flags, 1);
sc->calib_cnt = 0;
}
/* Automatic rate control triggered every 500ms. */
if ((sc->sc_flags & IWN_FLAG_STOP_CALIB_TO) == 0)
sc->calib_to = timeout(iwn_calib_timeout, sc,
drv_usectohz(500000));
mutex_exit(&sc->sc_mtx);
}
/*
* Process an RX_PHY firmware notification. This is usually immediately
* followed by an MPDU_RX_DONE notification.
*/
static void
iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
(void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
sizeof (*stat), DDI_DMA_SYNC_FORKERNEL);
DTRACE_PROBE1(rx__phy, struct iwn_rx_stat *, stat);
/* Save RX statistics, they will be used on MPDU_RX_DONE. */
memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
sc->last_rx_valid = 1;
}
/*
* Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
* Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
*/
static void
iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_rx_ring *ring = &sc->rxq;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
mblk_t *m;
struct iwn_rx_stat *stat;
char *head;
uint32_t flags;
int len, rssi;
if (desc->type == IWN_MPDU_RX_DONE) {
/* Check for prior RX_PHY notification. */
if (!sc->last_rx_valid) {
dev_err(sc->sc_dip, CE_WARN,
"missing RX_PHY");
return;
}
sc->last_rx_valid = 0;
stat = &sc->last_rx_stat;
} else
stat = (struct iwn_rx_stat *)(desc + 1);
(void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0,
DDI_DMA_SYNC_FORKERNEL);
if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
dev_err(sc->sc_dip, CE_WARN,
"!invalid RX statistic header");
return;
}
if (desc->type == IWN_MPDU_RX_DONE) {
struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
head = (char *)(mpdu + 1);
len = le16toh(mpdu->len);
} else {
head = (char *)(stat + 1) + stat->cfg_phy_len;
len = le16toh(stat->len);
}
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
flags = le32toh(*(uint32_t *)(head + len));
/* Discard frames with a bad FCS early. */
if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
sc->sc_rx_err++;
ic->ic_stats.is_fcs_errors++;
return;
}
/* Discard frames that are too short. */
if (len < sizeof (*wh)) {
sc->sc_rx_err++;
return;
}
m = allocb(len, BPRI_MED);
if (m == NULL) {
sc->sc_rx_nobuf++;
return;
}
/* Update RX descriptor. */
ring->desc[ring->cur] =
htole32(data->dma_data.paddr >> 8);
(void) ddi_dma_sync(ring->desc_dma.dma_hdl,
ring->cur * sizeof (uint32_t), sizeof (uint32_t),
DDI_DMA_SYNC_FORDEV);
/* Grab a reference to the source node. */
wh = (struct ieee80211_frame*)head;
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame *)wh);
/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
/* NetBSD does decryption in ieee80211_input. */
rssi = ops->get_rssi(stat);
/*
* convert dBm to percentage
*/
rssi = (100 * 75 * 75 - (-20 - rssi) * (15 * 75 + 62 * (-20 - rssi)))
/ (75 * 75);
if (rssi > 100)
rssi = 100;
else if (rssi < 1)
rssi = 1;
bcopy(wh, m->b_wptr, len);
m->b_wptr += len;
/* XXX Added for NetBSD: scans never stop without it */
if (ic->ic_state == IEEE80211_S_SCAN)
iwn_fix_channel(sc, m, stat);
/* Send the frame to the 802.11 layer. */
ieee80211_input(ic, m, ni, rssi, 0);
/* Node is no longer needed. */
ieee80211_free_node(ni);
}
#ifndef IEEE80211_NO_HT
/* Process an incoming Compressed BlockAck. */
static void
iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
struct iwn_tx_ring *txq;
(void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
sizeof (*ba), DDI_DMA_SYNC_FORKERNEL);
txq = &sc->txq[le16toh(ba->qid)];
/* XXX TBD */
}
#endif
/*
* Process a CALIBRATION_RESULT notification sent by the initialization
* firmware on response to a CMD_CALIB_CONFIG command (5000 only).
*/
static void
iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
int len, idx = -1;
/* Runtime firmware should not send such a notification. */
if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
return;
len = (le32toh(desc->len) & 0x3fff) - 4;
(void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), len,
DDI_DMA_SYNC_FORKERNEL);
switch (calib->code) {
case IWN5000_PHY_CALIB_DC:
if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
sc->hw_type == IWN_HW_REV_TYPE_2030 ||
sc->hw_type == IWN_HW_REV_TYPE_2000 ||
sc->hw_type == IWN_HW_REV_TYPE_135 ||
sc->hw_type == IWN_HW_REV_TYPE_105)
idx = 0;
break;
case IWN5000_PHY_CALIB_LO:
idx = 1;
break;
case IWN5000_PHY_CALIB_TX_IQ:
idx = 2;
break;
case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
sc->hw_type != IWN_HW_REV_TYPE_5150)
idx = 3;
break;
case IWN5000_PHY_CALIB_BASE_BAND:
idx = 4;
break;
}
if (idx == -1) /* Ignore other results. */
return;
/* Save calibration result. */
if (sc->calibcmd[idx].buf != NULL)
kmem_free(sc->calibcmd[idx].buf, sc->calibcmd[idx].len);
sc->calibcmd[idx].buf = kmem_zalloc(len, KM_NOSLEEP);
if (sc->calibcmd[idx].buf == NULL) {
return;
}
sc->calibcmd[idx].len = len;
memcpy(sc->calibcmd[idx].buf, calib, len);
}
/*
* Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
* The latter is sent by the firmware after each received beacon.
*/
static void
iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_calib_state *calib = &sc->calib;
struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
int temp = 0;
/* Ignore statistics received during a scan. */
if (ic->ic_state != IEEE80211_S_RUN)
return;
(void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
sizeof (*stats), DDI_DMA_SYNC_FORKERNEL);
sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
/* Test if temperature has changed. */
if (stats->general.temp != sc->rawtemp) {
/* Convert "raw" temperature to degC. */
sc->rawtemp = stats->general.temp;
temp = ops->get_temperature(sc);
sc->sc_misc->temp.value.ul = temp;
/* Update TX power if need be (4965AGN only). */
if (sc->hw_type == IWN_HW_REV_TYPE_4965)
iwn4965_power_calibration(sc, temp);
}
DTRACE_PROBE2(rx__statistics, struct iwn_stats *, stats, int, temp);
if (desc->type != IWN_BEACON_STATISTICS)
return; /* Reply to a statistics request. */
sc->noise = iwn_get_noise(&stats->rx.general);
sc->sc_misc->noise.value.l = sc->noise;
/* Test that RSSI and noise are present in stats report. */
if (le32toh(stats->rx.general.flags) != 1) {
return;
}
/*
* XXX Differential gain calibration makes the 6005 firmware
* crap out, so skip it for now. This effectively disables
* sensitivity tuning as well.
*/
if (sc->hw_type == IWN_HW_REV_TYPE_6005)
return;
if (calib->state == IWN_CALIB_STATE_ASSOC)
iwn_collect_noise(sc, &stats->rx.general);
else if (calib->state == IWN_CALIB_STATE_RUN)
iwn_tune_sensitivity(sc, &stats->rx);
}
/*
* Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
* and 5000 adapters have different incompatible TX status formats.
*/
static void
iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
(void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
sizeof (*stat), DDI_DMA_SYNC_FORKERNEL);
iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
}
static void
iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
#ifdef notyet
/* Reset TX scheduler slot. */
iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
#endif
(void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc),
sizeof (*stat), DDI_DMA_SYNC_FORKERNEL);
iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
}
/*
* Adapter-independent backend for TX_DONE firmware notifications.
*/
static void
iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
uint8_t status)
{
struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
struct iwn_tx_data *data = &ring->data[desc->idx];
struct iwn_node *wn = (struct iwn_node *)data->ni;
/* Update rate control statistics. */
wn->amn.amn_txcnt++;
if (ackfailcnt > 0)
wn->amn.amn_retrycnt++;
if (status != 1 && status != 2)
sc->sc_tx_err++;
else
sc->sc_ic.ic_stats.is_tx_frags++;
ieee80211_free_node(data->ni);
data->ni = NULL;
mutex_enter(&sc->sc_tx_mtx);
sc->sc_tx_timer = 0;
if (--ring->queued < IWN_TX_RING_LOMARK) {
sc->qfullmsk &= ~(1 << ring->qid);
}
mac_tx_update(sc->sc_ic.ic_mach);
mutex_exit(&sc->sc_tx_mtx);
}
/*
* Process a "command done" firmware notification. This is where we wakeup
* processes waiting for a synchronous command completion.
*/
static void
iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct iwn_tx_ring *ring = &sc->txq[IWN_CMD_QUEUE_NUM];
struct iwn_tx_data *data;
if ((desc->qid & 0xf) != IWN_CMD_QUEUE_NUM)
return; /* Not a command ack. */
data = &ring->data[desc->idx];
(void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
/* If the command was mapped in an extra buffer, free it. */
if (data->cmd_dma.dma_hdl) {
(void) ddi_dma_sync(data->cmd_dma.dma_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
iwn_dma_contig_free(&data->cmd_dma);
}
mutex_enter(&sc->sc_mtx);
sc->sc_cmd_flag = SC_CMD_FLG_DONE;
cv_signal(&sc->sc_cmd_cv);
mutex_exit(&sc->sc_mtx);
}
/*
* Process an INT_FH_RX or INT_SW_RX interrupt.
*/
static void
iwn_notif_intr(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t hw;
ASSERT(sc != NULL);
(void) ddi_dma_sync(sc->rxq.stat_dma.dma_hdl, 0, 0,
DDI_DMA_SYNC_FORKERNEL);
hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
while (sc->rxq.cur != hw) {
struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct iwn_rx_desc *desc;
(void) ddi_dma_sync(data->dma_data.dma_hdl, 0, sizeof (*desc),
DDI_DMA_SYNC_FORKERNEL);
desc = (struct iwn_rx_desc *)data->dma_data.vaddr;
DTRACE_PROBE1(notification__intr, struct iwn_rx_desc *, desc);
if (!(desc->qid & 0x80)) /* Reply to a command. */
iwn_cmd_done(sc, desc);
switch (desc->type) {
case IWN_RX_PHY:
iwn_rx_phy(sc, desc, data);
break;
case IWN_RX_DONE: /* 4965AGN only. */
case IWN_MPDU_RX_DONE:
/* An 802.11 frame has been received. */
iwn_rx_done(sc, desc, data);
break;
#ifndef IEEE80211_NO_HT
case IWN_RX_COMPRESSED_BA:
/* A Compressed BlockAck has been received. */
iwn_rx_compressed_ba(sc, desc, data);
break;
#endif
case IWN_TX_DONE:
/* An 802.11 frame has been transmitted. */
ops->tx_done(sc, desc, data);
break;
case IWN_RX_STATISTICS:
case IWN_BEACON_STATISTICS:
mutex_enter(&sc->sc_mtx);
iwn_rx_statistics(sc, desc, data);
mutex_exit(&sc->sc_mtx);
break;
case IWN_BEACON_MISSED:
{
struct iwn_beacon_missed *miss =
(struct iwn_beacon_missed *)(desc + 1);
(void) ddi_dma_sync(data->dma_data.dma_hdl,
sizeof (*desc), sizeof (*miss),
DDI_DMA_SYNC_FORKERNEL);
/*
* If more than iwn_beacons_missed_disconnect
* consecutive beacons are missed, we've probably lost
* our connection.
* If more than iwn_beacons_missed_sensitivity
* consecutive beacons are missed, reinitialize the
* sensitivity state machine.
*/
DTRACE_PROBE1(beacons__missed,
struct iwn_beacon_missed *, miss);
if (ic->ic_state == IEEE80211_S_RUN) {
if (le32toh(miss->consecutive)
> iwn_beacons_missed_disconnect) {
dev_err(sc->sc_dip, CE_WARN,
"!iwn_notif_intr(): %d consecutive "
"beacons missed, disconnecting",
le32toh(miss->consecutive));
ieee80211_new_state(ic,
IEEE80211_S_INIT, -1);
} else if (le32toh(miss->consecutive)
> iwn_beacons_missed_sensitivity) {
mutex_enter(&sc->sc_mtx);
(void)iwn_init_sensitivity(sc);
mutex_exit(&sc->sc_mtx);
}
}
break;
}
case IWN_UC_READY:
{
struct iwn_ucode_info *uc =
(struct iwn_ucode_info *)(desc + 1);
/* The microcontroller is ready. */
(void) ddi_dma_sync(data->dma_data.dma_hdl,
sizeof (*desc), sizeof (*uc),
DDI_DMA_SYNC_FORKERNEL);
DTRACE_PROBE1(uc__ready, struct iwn_ucode_info *, uc)
if (le32toh(uc->valid) != 1) {
dev_err(sc->sc_dip, CE_WARN,
"!microcontroller initialization failed");
break;
}
if (uc->subtype == IWN_UCODE_INIT) {
/* Save microcontroller report. */
memcpy(&sc->ucode_info, uc, sizeof (*uc));
}
/* Save the address of the error log in SRAM. */
sc->errptr = le32toh(uc->errptr);
break;
}
case IWN_STATE_CHANGED:
{
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
uint32_t *status = (uint32_t *)(desc + 1);
/* Enabled/disabled notification. */
(void) ddi_dma_sync(data->dma_data.dma_hdl,
sizeof (*desc), sizeof (*status),
DDI_DMA_SYNC_FORKERNEL);
DTRACE_PROBE1(state__changed, uint32_t, *status);
if (le32toh(*status) & 1) {
/* The radio button has to be pushed. */
dev_err(sc->sc_dip, CE_WARN,
"!Radio transmitter is off");
/* Turn the interface down. */
mutex_enter(&sc->sc_mtx);
sc->sc_flags |=
IWN_FLAG_HW_ERR_RECOVER |
IWN_FLAG_RADIO_OFF;
mutex_exit(&sc->sc_mtx);
ieee80211_new_state(&sc->sc_ic,
IEEE80211_S_INIT, -1);
return; /* No further processing. */
}
break;
}
case IWN_START_SCAN:
{
struct iwn_start_scan *scan =
(struct iwn_start_scan *)(desc + 1);
(void) ddi_dma_sync(data->dma_data.dma_hdl,
sizeof (*desc), sizeof (*scan),
DDI_DMA_SYNC_FORKERNEL);
DTRACE_PROBE2(start__scan, uint8_t, scan->chan,
uint32_t, le32toh(scan->status));
/* Fix current channel. */
ic->ic_curchan = ic->ic_bss->in_chan =
&ic->ic_sup_channels[scan->chan];
break;
}
case IWN_STOP_SCAN:
{
struct iwn_stop_scan *scan =
(struct iwn_stop_scan *)(desc + 1);
(void) ddi_dma_sync(data->dma_data.dma_hdl,
sizeof (*desc), sizeof (*scan),
DDI_DMA_SYNC_FORKERNEL);
DTRACE_PROBE3(stop__scan, uint8_t, scan->chan,
uint32_t, le32toh(scan->status),
uint8_t, scan->nchan);
if (iwn_enable_5ghz != 0 &&
(sc->sc_flags & IWN_FLAG_SCANNING_2GHZ) &&
(sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
/*
* We just finished scanning 2GHz channels,
* start scanning 5GHz ones.
*/
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) {
mutex_exit(&sc->sc_mtx);
break;
}
mutex_exit(&sc->sc_mtx);
}
ieee80211_end_scan(ic);
mutex_enter(&sc->sc_mtx);
sc->sc_flags &= ~IWN_FLAG_SCANNING;
cv_signal(&sc->sc_scan_cv);
mutex_exit(&sc->sc_mtx);
(void) untimeout(sc->scan_to);
sc->scan_to = 0;
break;
}
case IWN5000_CALIBRATION_RESULT:
iwn5000_rx_calib_results(sc, desc, data);
break;
case IWN5000_CALIBRATION_DONE:
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_CALIB_DONE;
cv_signal(&sc->sc_calib_cv);
mutex_exit(&sc->sc_mtx);
break;
}
sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
}
/* Tell the firmware what we have processed. */
hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
}
/*
* Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
* from power-down sleep mode.
*/
static void
iwn_wakeup_intr(struct iwn_softc *sc)
{
int qid;
DTRACE_PROBE(wakeup__intr);
/* Wakeup RX and TX rings. */
IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
for (qid = 0; qid < sc->ntxqs; qid++) {
struct iwn_tx_ring *ring = &sc->txq[qid];
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
}
}
/*
* Dump the error log of the firmware when a firmware panic occurs. Although
* we can't debug the firmware because it is neither open source nor free, it
* can help us to identify certain classes of problems.
*/
static void
iwn_fatal_intr(struct iwn_softc *sc)
{
struct iwn_fw_dump dump;
int i;
/* Force a complete recalibration on next init. */
sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
/* Check that the error log address is valid. */
if (sc->errptr < IWN_FW_DATA_BASE ||
sc->errptr + sizeof (dump) >
IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
dev_err(sc->sc_dip, CE_WARN,
"!bad firmware error log address 0x%08x", sc->errptr);
return;
}
if (iwn_nic_lock(sc) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not read firmware error log");
return;
}
/* Read firmware error log from SRAM. */
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
sizeof (dump) / sizeof (uint32_t));
iwn_nic_unlock(sc);
if (dump.valid == 0) {
dev_err(sc->sc_dip, CE_WARN,
"!firmware error log is empty");
return;
}
dev_err(sc->sc_dip, CE_WARN, "!firmware error log:");
dev_err(sc->sc_dip, CE_CONT, "! error type = \"%s\" (0x%08X)",
(dump.id < __arraycount(iwn_fw_errmsg)) ?
iwn_fw_errmsg[dump.id] : "UNKNOWN",
dump.id);
dev_err(sc->sc_dip, CE_CONT, "! program counter = 0x%08X", dump.pc);
dev_err(sc->sc_dip, CE_CONT, "! source line = 0x%08X",
dump.src_line);
dev_err(sc->sc_dip, CE_CONT, "! error data = 0x%08X%08X",
dump.error_data[0], dump.error_data[1]);
dev_err(sc->sc_dip, CE_CONT, "! branch link = 0x%08X%08X",
dump.branch_link[0], dump.branch_link[1]);
dev_err(sc->sc_dip, CE_CONT, "! interrupt link = 0x%08X%08X",
dump.interrupt_link[0], dump.interrupt_link[1]);
dev_err(sc->sc_dip, CE_CONT, "! time = %u", dump.time[0]);
/* Dump driver status (TX and RX rings) while we're here. */
dev_err(sc->sc_dip, CE_WARN, "!driver status:");
for (i = 0; i < sc->ntxqs; i++) {
struct iwn_tx_ring *ring = &sc->txq[i];
dev_err(sc->sc_dip, CE_WARN,
"! tx ring %2d: qid=%2d cur=%3d queued=%3d",
i, ring->qid, ring->cur, ring->queued);
}
dev_err(sc->sc_dip, CE_WARN, "! rx ring: cur=%d", sc->rxq.cur);
dev_err(sc->sc_dip, CE_WARN, "! 802.11 state %d", sc->sc_ic.ic_state);
}
/*ARGSUSED1*/
static uint_t
iwn_intr(caddr_t arg, caddr_t unused)
{
_NOTE(ARGUNUSED(unused));
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
struct iwn_softc *sc = (struct iwn_softc *)arg;
uint32_t r1, r2, tmp;
if (sc == NULL)
return (DDI_INTR_UNCLAIMED);
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
/* Read interrupts from ICT (fast) or from registers (slow). */
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
(void) ddi_dma_sync(sc->ict_dma.dma_hdl, 0, 0,
DDI_DMA_SYNC_FORKERNEL);
tmp = 0;
while (sc->ict[sc->ict_cur] != 0) {
tmp |= sc->ict[sc->ict_cur];
sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
}
(void) ddi_dma_sync(sc->ict_dma.dma_hdl, 0, 0,
DDI_DMA_SYNC_FORDEV);
tmp = le32toh(tmp);
if (tmp == 0xffffffff) /* Shouldn't happen. */
tmp = 0;
else if (tmp & 0xc0000) /* Workaround a HW bug. */
tmp |= 0x8000;
r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
r2 = 0; /* Unused. */
} else {
r1 = IWN_READ(sc, IWN_INT);
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
return (DDI_INTR_UNCLAIMED); /* Hardware gone! */
r2 = IWN_READ(sc, IWN_FH_INT);
}
if (r1 == 0 && r2 == 0) {
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
return (DDI_INTR_UNCLAIMED); /* Interrupt not for us. */
}
/* Acknowledge interrupts. */
IWN_WRITE(sc, IWN_INT, r1);
if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
IWN_WRITE(sc, IWN_FH_INT, r2);
if (r1 & IWN_INT_RF_TOGGLED) {
tmp = IWN_READ(sc, IWN_GP_CNTRL);
dev_err(sc->sc_dip, CE_NOTE,
"!RF switch: radio %s",
(tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
}
if (r1 & IWN_INT_CT_REACHED) {
dev_err(sc->sc_dip, CE_WARN,
"!critical temperature reached!");
}
if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
dev_err(sc->sc_dip, CE_WARN,
"!fatal firmware error");
/* Dump firmware error log and stop. */
iwn_fatal_intr(sc);
iwn_hw_stop(sc, B_TRUE);
if (!IWN_CHK_FAST_RECOVER(sc))
ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER;
mutex_exit(&sc->sc_mtx);
return (DDI_INTR_CLAIMED);
}
if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
(r2 & IWN_FH_INT_RX)) {
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
int ena = (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX));
if (ena)
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
IWN_INT_PERIODIC_DIS);
iwn_notif_intr(sc);
if (ena)
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
IWN_INT_PERIODIC_ENA);
} else {
iwn_notif_intr(sc);
}
}
if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
if (sc->sc_flags & IWN_FLAG_USE_ICT)
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_FW_DMA;
cv_signal(&sc->sc_fhdma_cv);
mutex_exit(&sc->sc_mtx);
}
if (r1 & IWN_INT_ALIVE) {
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_FW_ALIVE;
cv_signal(&sc->sc_alive_cv);
mutex_exit(&sc->sc_mtx);
}
if (r1 & IWN_INT_WAKEUP)
iwn_wakeup_intr(sc);
/* Re-enable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
return (DDI_INTR_CLAIMED);
}
/*
* Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
* 5000 adapters use a slightly different format).
*/
static void
iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
uint16_t len)
{
_NOTE(ARGUNUSED(id));
int w_idx = qid * IWN4965_SCHED_COUNT + idx;
uint16_t *w = &sc->sched[w_idx];
*w = htole16(len + 8);
(void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t),
sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
(void) ddi_dma_sync(sc->sched_dma.dma_hdl,
(w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t),
sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
}
}
static void
iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
uint16_t len)
{
int w_idx = qid * IWN5000_SCHED_COUNT + idx;
uint16_t *w = &sc->sched[w_idx];
*w = htole16(id << 12 | (len + 8));
(void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t),
sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
(void) ddi_dma_sync(sc->sched_dma.dma_hdl,
(w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t),
sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
}
}
#ifdef notyet
static void
iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
{
int w_idx = qid * IWN5000_SCHED_COUNT + idx;
uint16_t *w = &sc->sched[w_idx];
*w = (*w & htole16(0xf000)) | htole16(1);
(void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t),
sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
(void) ddi_dma_sync(sc->sched_dma.dma_hdl,
(w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t),
sizeof (uint16_t), DDI_DMA_SYNC_FORDEV);
}
}
#endif
/*
* This function is only for compatibility with Net80211 module.
* iwn_qosparam_to_hw() is the actual function updating EDCA
* parameters to hardware.
*/
static int
iwn_wme_update(struct ieee80211com *ic)
{
_NOTE(ARGUNUSED(ic));
return (0);
}
static int
iwn_wme_to_qos_ac(struct iwn_softc *sc, int wme_ac)
{
int qos_ac;
switch (wme_ac) {
case WME_AC_BE:
qos_ac = QOS_AC_BK;
break;
case WME_AC_BK:
qos_ac = QOS_AC_BE;
break;
case WME_AC_VI:
qos_ac = QOS_AC_VI;
break;
case WME_AC_VO:
qos_ac = QOS_AC_VO;
break;
default:
dev_err(sc->sc_dip, CE_WARN, "!iwn_wme_to_qos_ac(): "
"WME AC index is not in suitable range.\n");
qos_ac = QOS_AC_INVALID;
break;
}
return (qos_ac);
}
static uint16_t
iwn_cw_e_to_cw(uint8_t cw_e)
{
uint16_t cw = 1;
while (cw_e > 0) {
cw <<= 1;
cw_e--;
}
cw -= 1;
return (cw);
}
static int
iwn_wmeparam_check(struct iwn_softc *sc, struct wmeParams *wmeparam)
{
int i;
for (i = 0; i < WME_NUM_AC; i++) {
if ((wmeparam[i].wmep_logcwmax > QOS_CW_RANGE_MAX) ||
(wmeparam[i].wmep_logcwmin >= wmeparam[i].wmep_logcwmax)) {
cmn_err(CE_WARN, "iwn_wmeparam_check(): "
"Contention window is not in suitable range.\n");
return (IWN_FAIL);
}
if ((wmeparam[i].wmep_aifsn < QOS_AIFSN_MIN) ||
(wmeparam[i].wmep_aifsn > QOS_AIFSN_MAX)) {
dev_err(sc->sc_dip, CE_WARN, "!iwn_wmeparam_check(): "
"Arbitration interframe space number"
"is not in suitable range.\n");
return (IWN_FAIL);
}
}
return (IWN_SUCCESS);
}
/*
* This function updates EDCA parameters into hardware.
* FIFO0-background, FIFO1-best effort, FIFO2-video, FIFO3-voice.
*/
static int
iwn_qosparam_to_hw(struct iwn_softc *sc, int async)
{
ieee80211com_t *ic = &sc->sc_ic;
ieee80211_node_t *in = ic->ic_bss;
struct wmeParams *wmeparam;
struct iwn_edca_params edcaparam;
int i, j;
int err = IWN_FAIL;
if ((in->in_flags & IEEE80211_NODE_QOS) &&
(IEEE80211_M_STA == ic->ic_opmode)) {
wmeparam = ic->ic_wme.wme_chanParams.cap_wmeParams;
} else {
return (IWN_SUCCESS);
}
(void) memset(&edcaparam, 0, sizeof (edcaparam));
err = iwn_wmeparam_check(sc, wmeparam);
if (err != IWN_SUCCESS) {
return (err);
}
if (in->in_flags & IEEE80211_NODE_QOS) {
edcaparam.flags |= QOS_PARAM_FLG_UPDATE_EDCA;
}
if (in->in_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)) {
edcaparam.flags |= QOS_PARAM_FLG_TGN;
}
for (i = 0; i < WME_NUM_AC; i++) {
j = iwn_wme_to_qos_ac(sc, i);
if (j < QOS_AC_BK || j > QOS_AC_VO) {
return (IWN_FAIL);
}
sc->sc_edca->ac[j].cwmin.value.ul = edcaparam.ac[j].cwmin =
iwn_cw_e_to_cw(wmeparam[i].wmep_logcwmin);
sc->sc_edca->ac[j].cwmax.value.ul = edcaparam.ac[j].cwmax =
iwn_cw_e_to_cw(wmeparam[i].wmep_logcwmax);
sc->sc_edca->ac[j].aifsn.value.ul = edcaparam.ac[j].aifsn =
wmeparam[i].wmep_aifsn;
sc->sc_edca->ac[j].txop.value.ul = edcaparam.ac[j].txoplimit =
(uint16_t)(wmeparam[i].wmep_txopLimit * 32);
}
err = iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &edcaparam,
sizeof (edcaparam), async);
if (err != IWN_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!iwn_qosparam_to_hw(): "
"failed to update QoS parameters into hardware.");
return (err);
}
return (err);
}
static inline int
iwn_wme_tid_qos_ac(int tid)
{
switch (tid) {
case 1:
case 2:
return (QOS_AC_BK);
case 0:
case 3:
return (QOS_AC_BE);
case 4:
case 5:
return (QOS_AC_VI);
case 6:
case 7:
return (QOS_AC_VO);
}
return (QOS_AC_BE);
}
static inline int
iwn_qos_ac_to_txq(int qos_ac)
{
switch (qos_ac) {
case QOS_AC_BK:
return (QOS_AC_BK_TO_TXQ);
case QOS_AC_BE:
return (QOS_AC_BE_TO_TXQ);
case QOS_AC_VI:
return (QOS_AC_VI_TO_TXQ);
case QOS_AC_VO:
return (QOS_AC_VO_TO_TXQ);
}
return (QOS_AC_BE_TO_TXQ);
}
static int
iwn_wme_tid_to_txq(struct iwn_softc *sc, int tid)
{
int queue_n = TXQ_FOR_AC_INVALID;
int qos_ac;
if (tid < WME_TID_MIN ||
tid > WME_TID_MAX) {
dev_err(sc->sc_dip, CE_WARN, "!wme_tid_to_txq(): "
"TID is not in suitable range.");
return (queue_n);
}
qos_ac = iwn_wme_tid_qos_ac(tid);
queue_n = iwn_qos_ac_to_txq(qos_ac);
return (queue_n);
}
static int
iwn_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
{
struct iwn_softc *sc = (struct iwn_softc *)ic;
struct iwn_node *wn;
struct iwn_tx_ring *ring;
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
ieee80211_node_t *in;
const struct iwn_rate *rinfo;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
uint32_t flags;
uint_t hdrlen;
uint8_t ridx, txant;
int i, totlen, seglen, pad;
int txq_id = NON_QOS_TXQ;
struct ieee80211_qosframe *qwh = NULL;
uint8_t tid = WME_TID_INVALID;
ddi_dma_cookie_t cookie;
mblk_t *m0, *m;
int mblen, off;
int noack = 0;
if (ic == NULL)
return (EIO);
if ((mp == NULL) || (MBLKL(mp) <= 0))
return (EIO);
if (sc->sc_flags & IWN_FLAG_SUSPEND) {
freemsg(mp);
sc->sc_tx_err++;
return(EIO);
}
wh = (struct ieee80211_frame *)mp->b_rptr;
hdrlen = ieee80211_hdrspace(ic, mp->b_rptr);
/*
* determine send which AP or station in IBSS
*/
in = ieee80211_find_txnode(ic, wh->i_addr1);
if (in == NULL) {
dev_err(sc->sc_dip, CE_WARN, "!iwn_send(): "
"failed to find tx node");
freemsg(mp);
sc->sc_tx_err++;
return(EIO);
}
wn = (struct iwn_node *)in;
/*
* Determine TX queue according to traffic ID in frame
* if working in QoS mode.
*/
if (in->in_flags & IEEE80211_NODE_QOS) {
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA) {
if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
qwh = (struct ieee80211_qosframe *)wh;
tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
txq_id = iwn_wme_tid_to_txq(sc, tid);
if (txq_id < TXQ_FOR_AC_MIN ||
(txq_id > TXQ_FOR_AC_MAX)) {
freemsg(mp);
sc->sc_tx_err++;
return(EIO);
}
} else {
txq_id = NON_QOS_TXQ;
}
} else if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
txq_id = QOS_TXQ_FOR_MGT;
} else {
txq_id = NON_QOS_TXQ;
}
} else {
txq_id = NON_QOS_TXQ;
}
if (sc->qfullmsk & (1 << txq_id)) {
sc->sc_tx_err++;
/* net80211-initiated send */
if ((type & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_DATA)
freemsg(mp);
return (EAGAIN);
}
/* Choose a TX rate index. */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA) {
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
ridx = sc->fixed_ridx;
} else
ridx = wn->ridx[in->in_txrate];
rinfo = &iwn_rates[ridx];
m = allocb(msgdsize(mp) + 32, BPRI_MED);
if (m) {
for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
mblen = MBLKL(m0);
bcopy(m0->b_rptr, m->b_rptr + off, mblen);
off += mblen;
}
m->b_wptr += off;
freemsg(mp);
mp = m;
wh = (struct ieee80211_frame *)mp->b_rptr;
} else {
dev_err(sc->sc_dip, CE_WARN, "!iwn_send(): can't copy");
/* net80211-initiated send */
if ((type & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_DATA)
freemsg(mp);
return (EAGAIN);
}
/*
* Net80211 module encapsulate outbound data frames.
* Add some fields of 80211 frame.
*/
if ((type & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_DATA)
(void) ieee80211_encap(ic, mp, in);
/* Encrypt the frame if need be. */
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, mp);
if (k == NULL) {
freemsg(mp);
return(EIO);
}
/* Packet header may have moved, reset our local pointer. */
wh = (struct ieee80211_frame *)mp->b_rptr;
}
totlen = msgdsize(mp);
mutex_enter(&sc->sc_tx_mtx);
ring = &sc->txq[txq_id];
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
/* Prepare TX firmware command. */
cmd = &ring->cmd[ring->cur];
cmd->code = IWN_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct iwn_cmd_data *)cmd->data;
/* NB: No need to clear tx, all fields are reinitialized here. */
tx->scratch = 0; /* clear "scratch" area */
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* Unicast frame, check if an ACK is expected. */
if (!noack)
flags |= IWN_TX_NEED_ACK;
}
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
ASSERT((flags & IWN_TX_IMM_BA) == 0);
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
ASSERT((flags & IWN_TX_MORE_FRAG) == 0);
/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* NB: Group frames are sent using CCK in 802.11b/g. */
if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
flags |= IWN_TX_NEED_RTS;
} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ridx >= IWN_RIDX_OFDM6) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
flags |= IWN_TX_NEED_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
flags |= IWN_TX_NEED_RTS;
}
if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
/* 5000 autoselects RTS/CTS or CTS-to-self. */
flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
flags |= IWN_TX_NEED_PROTECTION;
} else
flags |= IWN_TX_FULL_TXOP;
}
}
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA)
tx->id = sc->broadcast_id;
else
tx->id = wn->id;
if (type == IEEE80211_FC0_TYPE_MGT) {
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
#ifndef IEEE80211_STA_ONLY
/* Tell HW to set timestamp in probe responses. */
/* XXX NetBSD rev 1.11 added probe requests here but */
/* probe requests do not take timestamps (from Bergamini). */
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= IWN_TX_INSERT_TSTAMP;
#endif
/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
/* changes here. These are not needed (from Bergamini). */
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->timeout = htole16(3);
else
tx->timeout = htole16(2);
} else
tx->timeout = htole16(0);
if (hdrlen & 3) {
/* First segment length must be a multiple of 4. */
flags |= IWN_TX_NEED_PADDING;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
if (tid != WME_TID_INVALID) {
flags &= ~IWN_TX_AUTO_SEQ;
} else {
flags |= IWN_TX_AUTO_SEQ;
tid = 0;
}
tx->len = htole16(totlen);
tx->tid = tid;
tx->rts_ntries = 60;
tx->data_ntries = 15;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
tx->plcp = rinfo->plcp;
tx->rflags = rinfo->flags;
if (tx->id == sc->broadcast_id) {
/* Group or management frame. */
tx->linkq = 0;
/* XXX Alternate between antenna A and B? */
txant = IWN_LSB(sc->txchainmask);
tx->rflags |= IWN_RFLAG_ANT(txant);
} else {
tx->linkq = in->in_rates.ir_nrates - in->in_txrate - 1;
flags |= IWN_TX_LINKQ; /* enable MRR */
}
/* Set physical address of "scratch area". */
tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
/* Copy 802.11 header in TX command. */
/* XXX NetBSD changed this in rev 1.20 */
memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
mp->b_rptr += hdrlen;
bcopy(mp->b_rptr, data->dma_data.vaddr, totlen - hdrlen);
tx->security = 0;
tx->flags = htole32(flags);
data->ni = in;
DTRACE_PROBE4(tx, int, ring->qid, int, ring->cur, size_t, MBLKL(mp),
int, data->dma_data.ncookies);
/* Fill TX descriptor. */
desc->nsegs = 1 + data->dma_data.ncookies;
/* First DMA segment is used by the TX command. */
desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
(4 + sizeof (*tx) + hdrlen + pad) << 4);
/* Other DMA segments are for data payload. */
cookie = data->dma_data.cookie;
for (i = 1, seglen = totlen - hdrlen;
i <= data->dma_data.ncookies;
i++, seglen -= cookie.dmac_size) {
desc->segs[i].addr = htole32(IWN_LOADDR(cookie.dmac_laddress));
desc->segs[i].len = htole16(IWN_HIADDR(cookie.dmac_laddress) |
seglen << 4);
if (i < data->dma_data.ncookies)
ddi_dma_nextcookie(data->dma_data.dma_hdl, &cookie);
}
(void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
(void) ddi_dma_sync(ring->cmd_dma.dma_hdl, ring->cur * sizeof (*cmd),
sizeof (*cmd), DDI_DMA_SYNC_FORDEV);
(void) ddi_dma_sync(ring->desc_dma.dma_hdl, ring->cur * sizeof (*desc),
sizeof (*desc), DDI_DMA_SYNC_FORDEV);
/* Update TX scheduler. */
sc->ops.update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
/* Kick TX ring. */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
/* Mark TX ring as full if we reach a certain threshold. */
if (++ring->queued > IWN_TX_RING_HIMARK)
sc->qfullmsk |= 1 << ring->qid;
mutex_exit(&sc->sc_tx_mtx);
freemsg(mp);
ic->ic_stats.is_tx_bytes += totlen;
mutex_enter(&sc->sc_mt_mtx);
if (sc->sc_tx_timer == 0)
sc->sc_tx_timer = 5;
mutex_exit(&sc->sc_mt_mtx);
return 0;
}
static mblk_t *
iwn_m_tx(void *arg, mblk_t *mp)
{
struct iwn_softc *sc;
ieee80211com_t *ic;
mblk_t *next;
sc = (struct iwn_softc *)arg;
ASSERT(sc != NULL);
ic = &sc->sc_ic;
if (sc->sc_flags & IWN_FLAG_SUSPEND) {
freemsgchain(mp);
return (NULL);
}
if (ic->ic_state != IEEE80211_S_RUN) {
freemsgchain(mp);
return (NULL);
}
if ((sc->sc_flags & IWN_FLAG_HW_ERR_RECOVER)) {
freemsgchain(mp);
return (NULL);
}
while (mp != NULL) {
next = mp->b_next;
mp->b_next = NULL;
if (iwn_send(ic, mp, IEEE80211_FC0_TYPE_DATA) == EAGAIN) {
mp->b_next = next;
break;
}
mp = next;
}
return (mp);
}
static void
iwn_watchdog(void *arg)
{
struct iwn_softc *sc = (struct iwn_softc *)arg;
ieee80211com_t *ic = &sc->sc_ic;
timeout_id_t timeout_id = ic->ic_watchdog_timer;
ieee80211_stop_watchdog(ic);
mutex_enter(&sc->sc_mt_mtx);
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
dev_err(sc->sc_dip, CE_WARN, "!device timeout");
sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER;
sc->sc_ostate = IEEE80211_S_RUN;
DTRACE_PROBE(recover__send__fail);
}
}
mutex_exit(&sc->sc_mt_mtx);
if ((ic->ic_state != IEEE80211_S_AUTH) &&
(ic->ic_state != IEEE80211_S_ASSOC))
return;
if (ic->ic_bss->in_fails > 10) {
DTRACE_PROBE2(watchdog__reset, timeout_id_t, timeout_id,
struct ieee80211node *, ic->ic_bss);
dev_err(sc->sc_dip, CE_WARN, "!iwn_watchdog reset");
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
} else {
ic->ic_bss->in_fails++;
DTRACE_PROBE2(watchdog__timeout, timeout_id_t, timeout_id,
struct ieee80211node *, ic->ic_bss);
ieee80211_watchdog(ic);
}
}
static void
iwn_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
{
struct iwn_softc *sc;
struct ieee80211com *ic;
int error = 0;
sc = (struct iwn_softc *)arg;
ASSERT(sc != NULL);
ic = &sc->sc_ic;
mutex_enter(&sc->sc_mtx);
while (sc->sc_flags & IWN_FLAG_SCANNING)
cv_wait(&sc->sc_scan_cv, &sc->sc_mtx);
mutex_exit(&sc->sc_mtx);
error = ieee80211_ioctl(ic, wq, mp);
if (error == ENETRESET) {
/*
* This is special for the hidden AP connection.
* In any case, we should make sure only one 'scan'
* in the driver for a 'connect' CLI command. So
* when connecting to a hidden AP, the scan is just
* sent out to the air when we know the desired
* essid of the AP we want to connect.
*/
if (ic->ic_des_esslen) {
if (sc->sc_flags & IWN_FLAG_RUNNING) {
DTRACE_PROBE(netreset);
iwn_m_stop(sc);
(void) iwn_m_start(sc);
(void) ieee80211_new_state(ic,
IEEE80211_S_SCAN, -1);
}
}
}
}
/*
* Call back functions for get/set property
*/
static int
iwn_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, void *wldp_buf)
{
struct iwn_softc *sc;
sc = (struct iwn_softc *)arg;
ASSERT(sc != NULL);
return (ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
wldp_length, wldp_buf));
}
static void
iwn_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
mac_prop_info_handle_t prh)
{
struct iwn_softc *sc;
sc = (struct iwn_softc *)arg;
ASSERT(sc != NULL);
ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh);
}
static int
iwn_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
uint_t wldp_length, const void *wldp_buf)
{
struct iwn_softc *sc;
ieee80211com_t *ic;
int err = EINVAL;
sc = (struct iwn_softc *)arg;
ASSERT(sc != NULL);
ic = &sc->sc_ic;
mutex_enter(&sc->sc_mtx);
while (sc->sc_flags & IWN_FLAG_SCANNING)
cv_wait(&sc->sc_scan_cv, &sc->sc_mtx);
mutex_exit(&sc->sc_mtx);
err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length,
wldp_buf);
if (err == ENETRESET) {
if (ic->ic_des_esslen) {
if (sc->sc_flags & IWN_FLAG_RUNNING) {
DTRACE_PROBE(netreset);
iwn_m_stop(sc);
(void) iwn_m_start(sc);
(void) ieee80211_new_state(ic,
IEEE80211_S_SCAN, -1);
}
}
err = 0;
}
return (err);
}
/*
* invoked by GLD get statistics from NIC and driver
*/
static int
iwn_m_stat(void *arg, uint_t stat, uint64_t *val)
{
struct iwn_softc *sc;
ieee80211com_t *ic;
ieee80211_node_t *in;
sc = (struct iwn_softc *)arg;
ASSERT(sc != NULL);
ic = &sc->sc_ic;
mutex_enter(&sc->sc_mtx);
switch (stat) {
case MAC_STAT_IFSPEED:
in = ic->ic_bss;
*val = ((IEEE80211_FIXED_RATE_NONE == ic->ic_fixed_rate) ?
IEEE80211_RATE(in->in_txrate) :
ic->ic_fixed_rate) / 2 * 1000000;
break;
case MAC_STAT_NOXMTBUF:
*val = sc->sc_tx_nobuf;
break;
case MAC_STAT_NORCVBUF:
*val = sc->sc_rx_nobuf;
break;
case MAC_STAT_IERRORS:
*val = sc->sc_rx_err;
break;
case MAC_STAT_RBYTES:
*val = ic->ic_stats.is_rx_bytes;
break;
case MAC_STAT_IPACKETS:
*val = ic->ic_stats.is_rx_frags;
break;
case MAC_STAT_OBYTES:
*val = ic->ic_stats.is_tx_bytes;
break;
case MAC_STAT_OPACKETS:
*val = ic->ic_stats.is_tx_frags;
break;
case MAC_STAT_OERRORS:
case WIFI_STAT_TX_FAILED:
*val = sc->sc_tx_err;
break;
case WIFI_STAT_TX_RETRANS:
*val = sc->sc_tx_retries;
break;
case WIFI_STAT_FCS_ERRORS:
case WIFI_STAT_WEP_ERRORS:
case WIFI_STAT_TX_FRAGS:
case WIFI_STAT_MCAST_TX:
case WIFI_STAT_RTS_SUCCESS:
case WIFI_STAT_RTS_FAILURE:
case WIFI_STAT_ACK_FAILURE:
case WIFI_STAT_RX_FRAGS:
case WIFI_STAT_MCAST_RX:
case WIFI_STAT_RX_DUPS:
mutex_exit(&sc->sc_mtx);
return (ieee80211_stat(ic, stat, val));
default:
mutex_exit(&sc->sc_mtx);
return (ENOTSUP);
}
mutex_exit(&sc->sc_mtx);
return (0);
}
/*
* invoked by GLD to configure NIC
*/
static int
iwn_m_unicst(void *arg, const uint8_t *macaddr)
{
struct iwn_softc *sc;
ieee80211com_t *ic;
int err = IWN_SUCCESS;
sc = (struct iwn_softc *)arg;
ASSERT(sc != NULL);
ic = &sc->sc_ic;
if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
mutex_enter(&sc->sc_mtx);
IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
err = iwn_config(sc);
mutex_exit(&sc->sc_mtx);
if (err != IWN_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!iwn_m_unicst(): "
"failed to configure device");
goto fail;
}
}
return (err);
fail:
return (err);
}
/*ARGSUSED*/
static int
iwn_m_multicst(void *arg, boolean_t add, const uint8_t *m)
{
return (IWN_SUCCESS);
}
/*ARGSUSED*/
static int
iwn_m_promisc(void *arg, boolean_t on)
{
_NOTE(ARGUNUSED(on));
return (IWN_SUCCESS);
}
static void
iwn_abort_scan(void *arg)
{
struct iwn_softc *sc = (struct iwn_softc *)arg;
ieee80211com_t *ic = &sc->sc_ic;
mutex_enter(&sc->sc_mtx);
if ((sc->sc_flags & IWN_FLAG_SCANNING) == 0) {
mutex_exit(&sc->sc_mtx);
return;
}
dev_err(sc->sc_dip, CE_WARN,
"!aborting scan, flags = %x, state = %s",
sc->sc_flags, ieee80211_state_name[ic->ic_state]);
sc->sc_flags &= ~IWN_FLAG_SCANNING;
iwn_hw_stop(sc, B_FALSE);
mutex_exit(&sc->sc_mtx);
sc->scan_to = 0;
(void) iwn_init(sc);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
/*
* periodic function to deal with RF switch and HW error recovery
*/
static void
iwn_periodic(void *arg)
{
struct iwn_softc *sc = (struct iwn_softc *)arg;
ieee80211com_t *ic = &sc->sc_ic;
int err;
uint32_t tmp;
mutex_enter(&sc->sc_mtx);
tmp = IWN_READ(sc, IWN_GP_CNTRL);
if (tmp & IWN_GP_CNTRL_RFKILL) {
sc->sc_flags &= ~IWN_FLAG_RADIO_OFF;
} else {
sc->sc_flags |= IWN_FLAG_RADIO_OFF;
}
/*
* If the RF is OFF, do nothing.
*/
if (sc->sc_flags & IWN_FLAG_RADIO_OFF) {
mutex_exit(&sc->sc_mtx);
return;
}
mutex_exit(&sc->sc_mtx);
/*
* recovery fatal error
*/
if (ic->ic_mach &&
(sc->sc_flags & IWN_FLAG_HW_ERR_RECOVER)) {
dev_err(sc->sc_dip, CE_WARN,
"!trying to restore previous state");
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO;
mutex_exit(&sc->sc_mtx);
if (sc->calib_to != 0)
(void) untimeout(sc->calib_to);
sc->calib_to = 0;
if (sc->scan_to != 0)
(void) untimeout(sc->scan_to);
sc->scan_to = 0;
iwn_hw_stop(sc, B_TRUE);
if (IWN_CHK_FAST_RECOVER(sc)) {
/* save runtime configuration */
bcopy(&sc->rxon, &sc->rxon_save, sizeof (sc->rxon));
} else {
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
err = iwn_init(sc);
if (err != IWN_SUCCESS)
return;
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_RUNNING;
mutex_exit(&sc->sc_mtx);
if (!IWN_CHK_FAST_RECOVER(sc) ||
iwn_fast_recover(sc) != IWN_SUCCESS) {
mutex_enter(&sc->sc_mtx);
sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER;
mutex_exit(&sc->sc_mtx);
if (sc->sc_ostate != IEEE80211_S_INIT) {
ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
}
}
}
}
/*
* Send a command to the firmware.
*/
static int
iwn_cmd(struct iwn_softc *sc, uint8_t code, void *buf, int size, int async)
{
struct iwn_tx_ring *ring = &sc->txq[IWN_CMD_QUEUE_NUM];
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
clock_t clk;
uintptr_t paddr;
int totlen, ret;
ASSERT(mutex_owned(&sc->sc_mtx));
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
totlen = 4 + size;
if (size > sizeof (cmd->data)) {
/* Command is too large to fit in a descriptor. */
if (iwn_dma_contig_alloc(sc, &data->cmd_dma, totlen,
DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&cmd,
&iwn_dma_accattr, 1) != DDI_SUCCESS)
return ENOBUFS;
paddr = data->cmd_dma.paddr;
} else {
cmd = &ring->cmd[ring->cur];
paddr = data->cmd_paddr;
}
cmd->code = code;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
bzero(cmd->data, size);
memcpy(cmd->data, buf, size);
bzero(desc, sizeof(*desc));
desc->nsegs = 1;
desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
if (size > sizeof cmd->data) {
(void) ddi_dma_sync(data->cmd_dma.dma_hdl, 0, totlen,
DDI_DMA_SYNC_FORDEV);
} else {
(void) ddi_dma_sync(ring->cmd_dma.dma_hdl,
ring->cur * sizeof (*cmd),
totlen, DDI_DMA_SYNC_FORDEV);
}
(void) ddi_dma_sync(ring->desc_dma.dma_hdl,
ring->cur * sizeof (*desc),
sizeof (*desc), DDI_DMA_SYNC_FORDEV);
/* Update TX scheduler. */
sc->ops.update_sched(sc, ring->qid, ring->cur, 0, 0);
/* Kick command ring. */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
if (async)
return (IWN_SUCCESS);
sc->sc_cmd_flag = SC_CMD_FLG_NONE;
clk = ddi_get_lbolt() + drv_usectohz(2000000);
while (sc->sc_cmd_flag != SC_CMD_FLG_DONE)
if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_mtx, clk) < 0)
break;
ret = (sc->sc_cmd_flag == SC_CMD_FLG_DONE) ? IWN_SUCCESS : IWN_FAIL;
sc->sc_cmd_flag = SC_CMD_FLG_NONE;
return (ret);
}
static int
iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
{
struct iwn4965_node_info hnode;
char *src, *dst;
/*
* We use the node structure for 5000 Series internally (it is
* a superset of the one for 4965AGN). We thus copy the common
* fields before sending the command.
*/
src = (char *)node;
dst = (char *)&hnode;
memcpy(dst, src, 48);
/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
memcpy(dst + 48, src + 72, 20);
return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
}
static int
iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
{
/* Direct mapping. */
return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
}
static int
iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct iwn_node *wn = (void *)ni;
struct ieee80211_rateset *rs = &ni->in_rates;
struct iwn_cmd_link_quality linkq;
const struct iwn_rate *rinfo;
uint8_t txant;
int i, txrate;
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
memset(&linkq, 0, sizeof linkq);
linkq.id = wn->id;
linkq.antmsk_1stream = txant;
linkq.antmsk_2stream = IWN_ANT_AB;
linkq.ampdu_max = 31;
linkq.ampdu_threshold = 3;
linkq.ampdu_limit = htole16(4000); /* 4ms */
/* Start at highest available bit-rate. */
txrate = rs->ir_nrates - 1;
for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
rinfo = &iwn_rates[wn->ridx[txrate]];
linkq.retry[i].plcp = rinfo->plcp;
linkq.retry[i].rflags = rinfo->flags;
linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
/* Next retry at immediate lower bit-rate. */
if (txrate > 0)
txrate--;
}
return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
}
/*
* Broadcast node is used to send group-addressed and management frames.
*/
static int
iwn_add_broadcast_node(struct iwn_softc *sc, int async)
{
struct iwn_ops *ops = &sc->ops;
struct iwn_node_info node;
struct iwn_cmd_link_quality linkq;
const struct iwn_rate *rinfo;
uint8_t txant;
int i, error;
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
node.id = sc->broadcast_id;
DTRACE_PROBE(add__broadcast__node);
if ((error = ops->add_node(sc, &node, async)) != 0)
return error;
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
memset(&linkq, 0, sizeof linkq);
linkq.id = sc->broadcast_id;
linkq.antmsk_1stream = txant;
linkq.antmsk_2stream = IWN_ANT_AB;
linkq.ampdu_max = 64;
linkq.ampdu_threshold = 3;
linkq.ampdu_limit = htole16(4000); /* 4ms */
/* Use lowest mandatory bit-rate. */
rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
&iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
linkq.retry[0].plcp = rinfo->plcp;
linkq.retry[0].rflags = rinfo->flags;
linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
/* Use same bit-rate for all TX retries. */
for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
linkq.retry[i].plcp = linkq.retry[0].plcp;
linkq.retry[i].rflags = linkq.retry[0].rflags;
}
return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
}
static void
iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
{
struct iwn_cmd_led led;
/* Clear microcode LED ownership. */
IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
led.which = which;
led.unit = htole32(10000); /* on/off in unit of 100ms */
led.off = off;
led.on = on;
DTRACE_PROBE1(led__change, const char *,
(off != 0 && on != 0) ? "blinking" :
(off != 0) ? "off" : "on");
(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
}
/*
* Set the critical temperature at which the firmware will stop the radio
* and notify us.
*/
static int
iwn_set_critical_temp(struct iwn_softc *sc)
{
struct iwn_critical_temp crit;
int32_t temp;
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
if (sc->hw_type == IWN_HW_REV_TYPE_5150)
temp = (IWN_CTOK(110) - sc->temp_off) * -5;
else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
temp = IWN_CTOK(110);
else
temp = 110;
sc->sc_misc->crit_temp.value.ul = temp;
memset(&crit, 0, sizeof crit);
crit.tempR = htole32(temp);
return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
}
static int
iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct iwn_cmd_timing cmd;
uint64_t val, mod;
memset(&cmd, 0, sizeof cmd);
memcpy(&cmd.tstamp, ni->in_tstamp.data, sizeof (uint64_t));
cmd.bintval = htole16(ni->in_intval);
cmd.lintval = htole16(10);
/* Compute remaining time until next beacon. */
val = (uint64_t)ni->in_intval * 1024; /* msecs -> usecs */
mod = le64toh(cmd.tstamp) % val;
cmd.binitval = htole32((uint32_t)(val - mod));
sc->sc_timing->bintval.value.ul = ni->in_intval;
sc->sc_timing->tstamp.value.ul = ni->in_tstamp.tsf;
sc->sc_timing->init.value.ul = (uint32_t)(val - mod);
return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
}
static void
iwn4965_power_calibration(struct iwn_softc *sc, int temp)
{
/* Adjust TX power if need be (delta >= 3 degC). */
IWN_DBG("temperature %d->%d", sc->temp, temp);
if (abs(temp - sc->temp) >= 3) {
/* Record temperature of last calibration. */
sc->temp = temp;
(void)iwn4965_set_txpower(sc, 1);
}
}
/*
* Set TX power for current channel (each rate has its own power settings).
* This function takes into account the regulatory information from EEPROM,
* the current temperature and the current voltage.
*/
static int
iwn4965_set_txpower(struct iwn_softc *sc, int async)
{
/* Fixed-point arithmetic division using a n-bit fractional part. */
#define fdivround(a, b, n) \
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
/* Linear interpolation. */
#define interpolate(x, x1, y1, x2, y2, n) \
((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_ucode_info *uc = &sc->ucode_info;
struct ieee80211_channel *ch;
struct iwn4965_cmd_txpower cmd;
struct iwn4965_eeprom_chan_samples *chans;
const uint8_t *rf_gain, *dsp_gain;
int32_t vdiff, tdiff;
int i, c, grp, maxpwr;
uint8_t chan;
/* Retrieve current channel from last RXON. */
chan = sc->rxon.chan;
sc->sc_txpower->chan.value.l = chan;
ch = &ic->ic_sup_channels[chan];
memset(&cmd, 0, sizeof cmd);
cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
cmd.chan = chan;
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
maxpwr = sc->maxpwr5GHz;
rf_gain = iwn4965_rf_gain_5ghz;
dsp_gain = iwn4965_dsp_gain_5ghz;
} else {
maxpwr = sc->maxpwr2GHz;
rf_gain = iwn4965_rf_gain_2ghz;
dsp_gain = iwn4965_dsp_gain_2ghz;
}
/* Compute voltage compensation. */
vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
if (vdiff > 0)
vdiff *= 2;
if (abs(vdiff) > 2)
vdiff = 0;
sc->sc_txpower->vdiff.value.l = vdiff;
/* Get channel attenuation group. */
if (chan <= 20) /* 1-20 */
grp = 4;
else if (chan <= 43) /* 34-43 */
grp = 0;
else if (chan <= 70) /* 44-70 */
grp = 1;
else if (chan <= 124) /* 71-124 */
grp = 2;
else /* 125-200 */
grp = 3;
sc->sc_txpower->group.value.l = grp;
/* Get channel sub-band. */
for (i = 0; i < IWN_NBANDS; i++)
if (sc->bands[i].lo != 0 &&
sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
break;
if (i == IWN_NBANDS) /* Can't happen in real-life. */
return EINVAL;
chans = sc->bands[i].chans;
sc->sc_txpower->subband.value.l = i;
for (c = 0; c < 2; c++) {
uint8_t power, gain, temp;
int maxchpwr, pwr, ridx, idx;
power = interpolate(chan,
chans[0].num, chans[0].samples[c][1].power,
chans[1].num, chans[1].samples[c][1].power, 1);
gain = interpolate(chan,
chans[0].num, chans[0].samples[c][1].gain,
chans[1].num, chans[1].samples[c][1].gain, 1);
temp = interpolate(chan,
chans[0].num, chans[0].samples[c][1].temp,
chans[1].num, chans[1].samples[c][1].temp, 1);
sc->sc_txpower->txchain[c].power.value.l = power;
sc->sc_txpower->txchain[c].gain.value.l = gain;
sc->sc_txpower->txchain[c].temp.value.l = temp;
/* Compute temperature compensation. */
tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
sc->sc_txpower->txchain[c].tcomp.value.l = tdiff;
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
/* Convert dBm to half-dBm. */
maxchpwr = sc->maxpwr[chan] * 2;
if ((ridx / 8) & 1)
maxchpwr -= 6; /* MIMO 2T: -3dB */
pwr = maxpwr;
/* Adjust TX power based on rate. */
if ((ridx % 8) == 5)
pwr -= 15; /* OFDM48: -7.5dB */
else if ((ridx % 8) == 6)
pwr -= 17; /* OFDM54: -8.5dB */
else if ((ridx % 8) == 7)
pwr -= 20; /* OFDM60: -10dB */
else
pwr -= 10; /* Others: -5dB */
/* Do not exceed channel max TX power. */
if (pwr > maxchpwr)
pwr = maxchpwr;
idx = gain - (pwr - power) - tdiff - vdiff;
if ((ridx / 8) & 1) /* MIMO */
idx += (int32_t)le32toh(uc->atten[grp][c]);
if (cmd.band == 0)
idx += 9; /* 5GHz */
if (ridx == IWN_RIDX_MAX)
idx += 5; /* CCK */
/* Make sure idx stays in a valid range. */
if (idx < 0)
idx = 0;
else if (idx > IWN4965_MAX_PWR_INDEX)
idx = IWN4965_MAX_PWR_INDEX;
sc->sc_txpower->txchain[c].rate[ridx].rf_gain.value.l =
cmd.power[ridx].rf_gain[c] = rf_gain[idx];
sc->sc_txpower->txchain[c].rate[ridx].dsp_gain.value.l =
cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
}
}
return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
#undef interpolate
#undef fdivround
}
static int
iwn5000_set_txpower(struct iwn_softc *sc, int async)
{
struct iwn5000_cmd_txpower cmd;
/*
* TX power calibration is handled automatically by the firmware
* for 5000 Series.
*/
memset(&cmd, 0, sizeof cmd);
cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
cmd.srv_limit = IWN5000_TXPOWER_AUTO;
return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
}
/*
* Retrieve the maximum RSSI (in dBm) among receivers.
*/
static int
iwn4965_get_rssi(const struct iwn_rx_stat *stat)
{
const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
uint8_t mask, agc;
int rssi;
mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
agc = (le16toh(phy->agc) >> 7) & 0x7f;
rssi = 0;
if (mask & IWN_ANT_A)
rssi = MAX(rssi, phy->rssi[0]);
if (mask & IWN_ANT_B)
rssi = MAX(rssi, phy->rssi[2]);
if (mask & IWN_ANT_C)
rssi = MAX(rssi, phy->rssi[4]);
return rssi - agc - IWN_RSSI_TO_DBM;
}
static int
iwn5000_get_rssi(const struct iwn_rx_stat *stat)
{
const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
uint8_t agc;
int rssi;
agc = (le32toh(phy->agc) >> 9) & 0x7f;
rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
le16toh(phy->rssi[1]) & 0xff);
rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
return rssi - agc - IWN_RSSI_TO_DBM;
}
/*
* Retrieve the average noise (in dBm) among receivers.
*/
static int
iwn_get_noise(const struct iwn_rx_general_stats *stats)
{
int i, total, nbant, noise;
total = nbant = 0;
for (i = 0; i < 3; i++) {
if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
continue;
total += noise;
nbant++;
}
/* There should be at least one antenna but check anyway. */
return (nbant == 0) ? -127 : (total / nbant) - 107;
}
/*
* Compute temperature (in degC) from last received statistics.
*/
static int
iwn4965_get_temperature(struct iwn_softc *sc)
{
struct iwn_ucode_info *uc = &sc->ucode_info;
int32_t r1, r2, r3, r4, temp;
r1 = le32toh(uc->temp[0].chan20MHz);
r2 = le32toh(uc->temp[1].chan20MHz);
r3 = le32toh(uc->temp[2].chan20MHz);
r4 = le32toh(sc->rawtemp);
if (r1 == r3) /* Prevents division by 0 (should not happen). */
return 0;
/* Sign-extend 23-bit R4 value to 32-bit. */
r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
/* Compute temperature in Kelvin. */
temp = (259 * (r4 - r2)) / (r3 - r1);
temp = (temp * 97) / 100 + 8;
return IWN_KTOC(temp);
}
static int
iwn5000_get_temperature(struct iwn_softc *sc)
{
int32_t temp;
/*
* Temperature is not used by the driver for 5000 Series because
* TX power calibration is handled by firmware. We export it to
* users through a kstat though.
*/
temp = le32toh(sc->rawtemp);
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
temp = (temp / -5) + sc->temp_off;
temp = IWN_KTOC(temp);
}
return temp;
}
/*
* Initialize sensitivity calibration state machine.
*/
static int
iwn_init_sensitivity(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct iwn_calib_state *calib = &sc->calib;
uint32_t flags;
int error;
/* Reset calibration state machine. */
memset(calib, 0, sizeof (*calib));
calib->state = IWN_CALIB_STATE_INIT;
calib->cck_state = IWN_CCK_STATE_HIFA;
/* Set initial correlation values. */
calib->ofdm_x1 = sc->limits->min_ofdm_x1;
calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
calib->ofdm_x4 = sc->limits->min_ofdm_x4;
calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
calib->cck_x4 = 125;
calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
calib->energy_cck = sc->limits->energy_cck;
/* Write initial sensitivity. */
if ((error = iwn_send_sensitivity(sc)) != 0)
return error;
/* Write initial gains. */
if ((error = ops->init_gains(sc)) != 0)
return error;
/* Request statistics at each beacon interval. */
flags = 0;
return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
}
/*
* Collect noise and RSSI statistics for the first 20 beacons received
* after association and use them to determine connected antennas and
* to set differential gains.
*/
static void
iwn_collect_noise(struct iwn_softc *sc,
const struct iwn_rx_general_stats *stats)
{
struct iwn_ops *ops = &sc->ops;
struct iwn_calib_state *calib = &sc->calib;
uint32_t val;
int i;
/* Accumulate RSSI and noise for all 3 antennas. */
for (i = 0; i < 3; i++) {
calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
}
/* NB: We update differential gains only once after 20 beacons. */
if (++calib->nbeacons < 20)
return;
/* Determine highest average RSSI. */
val = MAX(calib->rssi[0], calib->rssi[1]);
val = MAX(calib->rssi[2], val);
/* Determine which antennas are connected. */
sc->chainmask = sc->rxchainmask;
for (i = 0; i < 3; i++)
if (val - calib->rssi[i] > 15 * 20)
sc->chainmask &= ~(1 << i);
sc->sc_ant->conn_ant.value.ul = sc->chainmask;
/* If none of the TX antennas are connected, keep at least one. */
if ((sc->chainmask & sc->txchainmask) == 0)
sc->chainmask |= IWN_LSB(sc->txchainmask);
(void)ops->set_gains(sc);
calib->state = IWN_CALIB_STATE_RUN;
#ifdef notyet
/* XXX Disable RX chains with no antennas connected. */
sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz);
(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
#endif
/* Enable power-saving mode if requested by user. */
if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
(void)iwn_set_pslevel(sc, 0, 3, 1);
}
static int
iwn4965_init_gains(struct iwn_softc *sc)
{
struct iwn_phy_calib_gain cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
/* Differential gains initially set to 0 for all 3 antennas. */
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
static int
iwn5000_init_gains(struct iwn_softc *sc)
{
struct iwn_phy_calib cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = sc->reset_noise_gain;
cmd.ngroups = 1;
cmd.isvalid = 1;
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
static int
iwn4965_set_gains(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_gain cmd;
int i, delta, noise;
/* Get minimal noise among connected antennas. */
noise = INT_MAX; /* NB: There's at least one antenna. */
for (i = 0; i < 3; i++)
if (sc->chainmask & (1 << i))
noise = MIN(calib->noise[i], noise);
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
/* Set differential gains for connected antennas. */
for (i = 0; i < 3; i++) {
if (sc->chainmask & (1 << i)) {
/* Compute attenuation (in unit of 1.5dB). */
delta = (noise - calib->noise[i]) / 30;
/* NB: delta <= 0 */
/* Limit to [-4.5dB,0]. */
cmd.gain[i] = (uint8_t)MIN(abs(delta), 3);
if (delta < 0)
cmd.gain[i] |= 1 << 2; /* sign bit */
sc->sc_ant->gain[i].value.ul = cmd.gain[i];
}
}
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
static int
iwn5000_set_gains(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_gain cmd;
int i, ant, div, delta;
/* We collected 20 beacons and !=6050 need a 1.5 factor. */
div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
memset(&cmd, 0, sizeof cmd);
cmd.code = sc->noise_gain;
cmd.ngroups = 1;
cmd.isvalid = 1;
/* Get first available RX antenna as referential. */
ant = IWN_LSB(sc->rxchainmask);
/* Set differential gains for other antennas. */
for (i = ant + 1; i < 3; i++) {
if (sc->chainmask & (1 << i)) {
/* The delta is relative to antenna "ant". */
delta = (calib->noise[ant] - calib->noise[i]) / div;
/* Limit to [-4.5dB,+4.5dB]. */
cmd.gain[i - 1] = (uint8_t)MIN(abs(delta), 3);
if (delta < 0)
cmd.gain[i - 1] |= 1 << 2; /* sign bit */
sc->sc_ant->gain[i - 1].value.ul
= cmd.gain[i - 1];
}
}
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
/*
* Tune RF RX sensitivity based on the number of false alarms detected
* during the last beacon period.
*/
static void
iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
{
#define inc(val, inc, max) \
if ((val) < (max)) { \
if ((val) < (max) - (inc)) \
(val) += (inc); \
else \
(val) = (max); \
needs_update = 1; \
}
#define dec(val, dec, min) \
if ((val) > (min)) { \
if ((val) > (min) + (dec)) \
(val) -= (dec); \
else \
(val) = (min); \
needs_update = 1; \
}
const struct iwn_sensitivity_limits *limits = sc->limits;
struct iwn_calib_state *calib = &sc->calib;
uint32_t val, rxena, fa;
uint32_t energy[3], energy_min;
uint8_t noise[3], noise_ref;
int i, needs_update = 0;
/* Check that we've been enabled long enough. */
if ((rxena = le32toh(stats->general.load)) == 0)
return;
/* Compute number of false alarms since last call for OFDM. */
fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
fa *= 200 * 1024; /* 200TU */
/* Save counters values for next call. */
calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
calib->fa_ofdm = le32toh(stats->ofdm.fa);
if (fa > 50 * rxena) {
/* High false alarm count, decrease sensitivity. */
IWN_DBG("OFDM high false alarm count: %u", fa);
inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
} else if (fa < 5 * rxena) {
/* Low false alarm count, increase sensitivity. */
IWN_DBG("OFDM low false alarm count: %u", fa);
dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
}
/* Compute maximum noise among 3 receivers. */
for (i = 0; i < 3; i++)
noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
val = MAX(noise[0], noise[1]);
val = MAX(noise[2], val);
/* Insert it into our samples table. */
calib->noise_samples[calib->cur_noise_sample] = (uint8_t)val;
calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
/* Compute maximum noise among last 20 samples. */
noise_ref = calib->noise_samples[0];
for (i = 1; i < 20; i++)
noise_ref = MAX(noise_ref, calib->noise_samples[i]);
/* Compute maximum energy among 3 receivers. */
for (i = 0; i < 3; i++)
energy[i] = le32toh(stats->general.energy[i]);
val = MIN(energy[0], energy[1]);
val = MIN(energy[2], val);
/* Insert it into our samples table. */
calib->energy_samples[calib->cur_energy_sample] = val;
calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
/* Compute minimum energy among last 10 samples. */
energy_min = calib->energy_samples[0];
for (i = 1; i < 10; i++)
energy_min = MAX(energy_min, calib->energy_samples[i]);
energy_min += 6;
/* Compute number of false alarms since last call for CCK. */
fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
fa += le32toh(stats->cck.fa) - calib->fa_cck;
fa *= 200 * 1024; /* 200TU */
/* Save counters values for next call. */
calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
calib->fa_cck = le32toh(stats->cck.fa);
if (fa > 50 * rxena) {
/* High false alarm count, decrease sensitivity. */
IWN_DBG("CCK high false alarm count: %u", fa);
calib->cck_state = IWN_CCK_STATE_HIFA;
calib->low_fa = 0;
if (calib->cck_x4 > 160) {
calib->noise_ref = noise_ref;
if (calib->energy_cck > 2)
dec(calib->energy_cck, 2, energy_min);
}
if (calib->cck_x4 < 160) {
calib->cck_x4 = 161;
needs_update = 1;
} else
inc(calib->cck_x4, 3, limits->max_cck_x4);
inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
} else if (fa < 5 * rxena) {
/* Low false alarm count, increase sensitivity. */
IWN_DBG("CCK low false alarm count: %u", fa);
calib->cck_state = IWN_CCK_STATE_LOFA;
calib->low_fa++;
if (calib->cck_state != IWN_CCK_STATE_INIT &&
(((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
calib->low_fa > 100)) {
inc(calib->energy_cck, 2, limits->min_energy_cck);
dec(calib->cck_x4, 3, limits->min_cck_x4);
dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
}
} else {
/* Not worth to increase or decrease sensitivity. */
IWN_DBG("CCK normal false alarm count: %u", fa);
calib->low_fa = 0;
calib->noise_ref = noise_ref;
if (calib->cck_state == IWN_CCK_STATE_HIFA) {
/* Previous interval had many false alarms. */
dec(calib->energy_cck, 8, energy_min);
}
calib->cck_state = IWN_CCK_STATE_INIT;
}
if (needs_update)
(void)iwn_send_sensitivity(sc);
#undef dec
#undef inc
}
static int
iwn_send_sensitivity(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_enhanced_sensitivity_cmd cmd;
int len;
memset(&cmd, 0, sizeof cmd);
len = sizeof (struct iwn_sensitivity_cmd);
cmd.which = IWN_SENSITIVITY_WORKTBL;
/* OFDM modulation. */
cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
cmd.energy_ofdm_th = htole16(62);
/* CCK modulation. */
cmd.corr_cck_x4 = htole16(calib->cck_x4);
cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
cmd.energy_cck = htole16(calib->energy_cck);
/* Barker modulation: use default values. */
cmd.corr_barker = htole16(190);
cmd.corr_barker_mrc = htole16(390);
if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
goto send;
/* Enhanced sensitivity settings. */
len = sizeof (struct iwn_enhanced_sensitivity_cmd);
cmd.ofdm_det_slope_mrc = htole16(668);
cmd.ofdm_det_icept_mrc = htole16(4);
cmd.ofdm_det_slope = htole16(486);
cmd.ofdm_det_icept = htole16(37);
cmd.cck_det_slope_mrc = htole16(853);
cmd.cck_det_icept_mrc = htole16(4);
cmd.cck_det_slope = htole16(476);
cmd.cck_det_icept = htole16(99);
send:
sc->sc_sens->ofdm_x1.value.ul = calib->ofdm_x1;
sc->sc_sens->ofdm_mrc_x1.value.ul = calib->ofdm_mrc_x1;
sc->sc_sens->ofdm_x4.value.ul = calib->ofdm_x4;
sc->sc_sens->ofdm_mrc_x4.value.ul = calib->ofdm_mrc_x4;
sc->sc_sens->cck_x4.value.ul = calib->cck_x4;
sc->sc_sens->cck_mrc_x4.value.ul = calib->cck_mrc_x4;
sc->sc_sens->energy_cck.value.ul = calib->energy_cck;
return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
}
/*
* Set STA mode power saving level (between 0 and 5).
* Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
*/
static int
iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
{
struct iwn_pmgt_cmd cmd;
const struct iwn_pmgt *pmgt;
uint32_t maxp, skip_dtim;
uint32_t reg;
int i;
/* Select which PS parameters to use. */
if (dtim <= 2)
pmgt = &iwn_pmgt[0][level];
else if (dtim <= 10)
pmgt = &iwn_pmgt[1][level];
else
pmgt = &iwn_pmgt[2][level];
memset(&cmd, 0, sizeof cmd);
if (level != 0) /* not CAM */
cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
if (level == 5)
cmd.flags |= htole16(IWN_PS_FAST_PD);
/* Retrieve PCIe Active State Power Management (ASPM). */
reg = pci_config_get32(sc->sc_pcih,
sc->sc_cap_off + PCIE_LINKCTL);
if (!(reg & PCIE_LINKCTL_ASPM_CTL_L0S)) /* L0s Entry disabled. */
cmd.flags |= htole16(IWN_PS_PCI_PMGT);
cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
if (dtim == 0) {
dtim = 1;
skip_dtim = 0;
} else
skip_dtim = pmgt->skip_dtim;
if (skip_dtim != 0) {
cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
maxp = pmgt->intval[4];
if (maxp == (uint32_t)-1)
maxp = dtim * (skip_dtim + 1);
else if (maxp > dtim)
maxp = (maxp / dtim) * dtim;
} else
maxp = dtim;
for (i = 0; i < 5; i++)
cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
sc->sc_misc->pslevel.value.ul = level;
return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
}
int
iwn5000_runtime_calib(struct iwn_softc *sc)
{
struct iwn5000_calib_config cmd;
memset(&cmd, 0, sizeof cmd);
cmd.ucode.once.enable = 0xffffffff;
cmd.ucode.once.start = IWN5000_CALIB_DC;
return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
}
static int
iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
{
struct iwn_bluetooth bluetooth;
memset(&bluetooth, 0, sizeof bluetooth);
bluetooth.flags = IWN_BT_COEX_ENABLE;
bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
}
static int
iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
{
uint8_t prio_table[16];
memset(&prio_table, 0, sizeof prio_table);
prio_table[ 0] = 6; /* init calibration 1 */
prio_table[ 1] = 7; /* init calibration 2 */
prio_table[ 2] = 2; /* periodic calib low 1 */
prio_table[ 3] = 3; /* periodic calib low 2 */
prio_table[ 4] = 4; /* periodic calib high 1 */
prio_table[ 5] = 5; /* periodic calib high 2 */
prio_table[ 6] = 6; /* dtim */
prio_table[ 7] = 8; /* scan52 */
prio_table[ 8] = 10; /* scan24 */
return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
&prio_table, sizeof prio_table, 0);
}
static int
iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
size_t len)
{
struct iwn_btcoex_prot btprot;
int error;
basic->bt.flags = IWN_BT_COEX_ENABLE;
basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
basic->bt3_lookup_table[ 9] = htole32(0x00004000);
basic->bt3_lookup_table[10] = htole32(0xf0005000);
basic->bt3_lookup_table[11] = htole32(0xf0005000);
basic->reduce_txpower = 0; /* as not implemented */
basic->valid = IWN_BT_ALL_VALID_MASK;
error = iwn_cmd(sc, IWN_CMD_BT_COEX, &basic, len, 0);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not configure advanced bluetooth coexistence");
return error;
}
error = iwn_config_bt_coex_prio_table(sc);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not configure send BT priority table");
return error;
}
/* Force BT state machine change */
memset(&btprot, 0, sizeof btprot);
btprot.open = 1;
btprot.type = 1;
error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN, "!could not open BT protcol");
return error;
}
btprot.open = 0;
error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN, "!could not close BT protcol");
return error;
}
return 0;
}
static int
iwn_config_bt_coex_adv1(struct iwn_softc *sc)
{
struct iwn_bt_adv1 d;
memset(&d, 0, sizeof d);
d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
d.tx_prio_boost = 0;
d.rx_prio_boost = 0;
return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
}
static int
iwn_config_bt_coex_adv2(struct iwn_softc *sc)
{
struct iwn_bt_adv2 d;
memset(&d, 0, sizeof d);
d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
d.tx_prio_boost = 0;
d.rx_prio_boost = 0;
return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
}
static int
iwn_config(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t txmask;
uint16_t rxchain;
int error;
error = ops->config_bt_coex(sc);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not configure bluetooth coexistence");
return error;
}
/* Set radio temperature sensor offset. */
if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
error = iwn6000_temp_offset_calib(sc);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set temperature offset");
return error;
}
}
if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
sc->hw_type == IWN_HW_REV_TYPE_2000 ||
sc->hw_type == IWN_HW_REV_TYPE_135 ||
sc->hw_type == IWN_HW_REV_TYPE_105) {
error = iwn2000_temp_offset_calib(sc);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set temperature offset");
return error;
}
}
if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
sc->hw_type == IWN_HW_REV_TYPE_6005) {
/* Configure runtime DC calibration. */
error = iwn5000_runtime_calib(sc);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not configure runtime calibration");
return error;
}
}
/* Configure valid TX chains for 5000 Series. */
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
txmask = htole32(sc->txchainmask);
error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
sizeof txmask, 0);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not configure valid TX chains");
return error;
}
}
/* Set mode, channel, RX filter and enable RX. */
memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_macaddr);
IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_macaddr);
sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
switch (ic->ic_opmode) {
case IEEE80211_M_IBSS:
sc->rxon.mode = IWN_MODE_IBSS;
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
break;
case IEEE80211_M_STA:
sc->rxon.mode = IWN_MODE_STA;
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
break;
case IEEE80211_M_MONITOR:
sc->rxon.mode = IWN_MODE_MONITOR;
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
IWN_FILTER_CTL | IWN_FILTER_PROMISC);
break;
default:
/* Should not get there. */
ASSERT(ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_opmode == IEEE80211_M_STA ||
ic->ic_opmode == IEEE80211_M_MONITOR);
break;
}
sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
sc->rxon.ht_single_mask = 0xff;
sc->rxon.ht_dual_mask = 0xff;
sc->rxon.ht_triple_mask = 0xff;
rxchain =
IWN_RXCHAIN_VALID(sc->rxchainmask) |
IWN_RXCHAIN_MIMO_COUNT(2) |
IWN_RXCHAIN_IDLE_COUNT(2);
sc->rxon.rxchain = htole16(rxchain);
DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz);
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!RXON command failed");
return error;
}
if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not add broadcast node");
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = ops->set_txpower(sc, 0)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set TX power");
return error;
}
if ((error = iwn_set_critical_temp(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set critical temperature");
return error;
}
/* Set power saving level to CAM during initialization. */
if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set power saving level");
return error;
}
return 0;
}
static uint16_t
iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
uint8_t n_probes)
{
_NOTE(ARGUNUSED(sc));
/* No channel? Default to 2GHz settings */
if (flags & IEEE80211_CHAN_2GHZ)
return IWN_ACTIVE_DWELL_TIME_2GHZ +
IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
/* 5GHz dwell time */
return IWN_ACTIVE_DWELL_TIME_5GHZ +
IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
}
/*
* Limit the total dwell time to 85% of the beacon interval.
*
* Returns the dwell time in milliseconds.
*/
static uint16_t
iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
{
_NOTE(ARGUNUSED(dwell_time));
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
int bintval = 0;
/* bintval is in TU (1.024mS) */
if (ni != NULL)
bintval = ni->in_intval;
/*
* If it's non-zero, we should calculate the minimum of
* it and the DWELL_BASE.
*
* XXX Yes, the math should take into account that bintval
* is 1.024mS, not 1mS..
*/
if (bintval > 0)
return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
/* No association context? Default */
return IWN_PASSIVE_DWELL_BASE;
}
static uint16_t
iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
{
uint16_t passive;
if (flags & IEEE80211_CHAN_2GHZ)
passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
else
passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
/* Clamp to the beacon interval if we're associated */
return iwn_limit_dwell(sc, passive);
}
static int
iwn_scan(struct iwn_softc *sc, uint16_t flags)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_scan_hdr *hdr;
struct iwn_cmd_data *tx;
struct iwn_scan_essid *essid;
struct iwn_scan_chan *chan;
struct ieee80211_frame *wh;
struct ieee80211_rateset *rs;
struct ieee80211_channel *c;
uint8_t *buf, *frm;
uint16_t rxchain, dwell_active, dwell_passive;
uint8_t txant;
int buflen, error, is_active;
buf = kmem_zalloc(IWN_SCAN_MAXSZ, KM_NOSLEEP);
if (buf == NULL) {
dev_err(sc->sc_dip, CE_WARN,
"!could not allocate buffer for scan command");
return ENOMEM;
}
hdr = (struct iwn_scan_hdr *)buf;
/*
* Move to the next channel if no frames are received within 20ms
* after sending the probe request.
*/
hdr->quiet_time = htole16(20); /* timeout in milliseconds */
hdr->quiet_threshold = htole16(1); /* min # of packets */
/* Select antennas for scanning. */
rxchain =
IWN_RXCHAIN_VALID(sc->rxchainmask) |
IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
IWN_RXCHAIN_DRIVER_FORCE;
if ((flags & IEEE80211_CHAN_5GHZ) &&
sc->hw_type == IWN_HW_REV_TYPE_4965) {
/* Ant A must be avoided in 5GHz because of an HW bug. */
rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
} else /* Use all available RX antennas. */
rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
hdr->rxchain = htole16(rxchain);
hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
tx = (struct iwn_cmd_data *)(hdr + 1);
tx->flags = htole32(IWN_TX_AUTO_SEQ);
tx->id = sc->broadcast_id;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
if (flags & IEEE80211_CHAN_5GHZ) {
/* Send probe requests at 6Mbps. */
tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
} else {
hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
/* Send probe requests at 1Mbps. */
tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
tx->rflags = IWN_RFLAG_CCK;
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
}
hdr->crc_threshold = 0xffff;
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
tx->rflags |= IWN_RFLAG_ANT(txant);
/*
* Only do active scanning if we're announcing a probe request
* for a given SSID (or more, if we ever add it to the driver.)
*/
is_active = 0;
essid = (struct iwn_scan_essid *)(tx + 1);
if (ic->ic_des_esslen != 0) {
char essidstr[IEEE80211_NWID_LEN+1];
memcpy(essidstr, ic->ic_des_essid, ic->ic_des_esslen);
essidstr[ic->ic_des_esslen] = '\0';
DTRACE_PROBE1(scan__direct, char *, essidstr);
essid[0].id = IEEE80211_ELEMID_SSID;
essid[0].len = ic->ic_des_esslen;
memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
is_active = 1;
/* hdr->crc_threshold = 0x1; */
hdr->scan_flags = htole32(IWN_SCAN_PASSIVE2ACTIVE);
}
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh = (struct ieee80211_frame *)(essid + 20);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
wh->i_dur[0] = wh->i_dur[1] = 0; /* filled by HW */
wh->i_seq[0] = wh->i_seq[1] = 0; /* filled by HW */
frm = (uint8_t *)(wh + 1);
frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen);
frm = ieee80211_add_rates(frm, rs);
#ifndef IEEE80211_NO_HT
if (ic->ic_flags & IEEE80211_F_HTON)
frm = ieee80211_add_htcaps(frm, ic);
#endif
if (rs->ir_nrates > IEEE80211_RATE_SIZE)
frm = ieee80211_add_xrates(frm, rs);
/* Set length of probe request. */
/*LINTED: E_PTRDIFF_OVERFLOW*/
tx->len = htole16(frm - (uint8_t *)wh);
/*
* If active scanning is requested but a certain channel is
* marked passive, we can do active scanning if we detect
* transmissions.
*
* There is an issue with some firmware versions that triggers
* a sysassert on a "good CRC threshold" of zero (== disabled),
* on a radar channel even though this means that we should NOT
* send probes.
*
* The "good CRC threshold" is the number of frames that we
* need to receive during our dwell time on a channel before
* sending out probes -- setting this to a huge value will
* mean we never reach it, but at the same time work around
* the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
* here instead of IWN_GOOD_CRC_TH_DISABLED.
*
* This was fixed in later versions along with some other
* scan changes, and the threshold behaves as a flag in those
* versions.
*/
/*
* If we're doing active scanning, set the crc_threshold
* to a suitable value. This is different to active veruss
* passive scanning depending upon the channel flags; the
* firmware will obey that particular check for us.
*/
if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
hdr->crc_threshold = is_active ?
IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
else
hdr->crc_threshold = is_active ?
IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
chan = (struct iwn_scan_chan *)frm;
for (c = &ic->ic_sup_channels[1];
c <= &ic->ic_sup_channels[IEEE80211_CHAN_MAX]; c++) {
if ((c->ich_flags & flags) != flags)
continue;
chan->chan = htole16(ieee80211_chan2ieee(ic, c));
chan->flags = 0;
if (!(c->ich_flags & IEEE80211_CHAN_PASSIVE))
chan->flags |= htole32(IWN_CHAN_ACTIVE);
if (ic->ic_des_esslen != 0)
chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
/*
* Calculate the active/passive dwell times.
*/
dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
dwell_passive = iwn_get_passive_dwell_time(sc, flags);
/* Make sure they're valid */
if (dwell_passive <= dwell_active)
dwell_passive = dwell_active + 1;
chan->active = htole16(dwell_active);
chan->passive = htole16(dwell_passive);
chan->dsp_gain = 0x6e;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chan->rf_gain = 0x3b;
} else {
chan->rf_gain = 0x28;
}
DTRACE_PROBE5(add__channel, uint8_t, chan->chan,
uint32_t, chan->flags, uint8_t, chan->rf_gain,
uint16_t, chan->active, uint16_t, chan->passive);
hdr->nchan++;
chan++;
}
/*LINTED: E_PTRDIFF_OVERFLOW*/
buflen = (uint8_t *)chan - buf;
hdr->len = htole16(buflen);
error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
kmem_free(buf, IWN_SCAN_MAXSZ);
return error;
}
static int
iwn_auth(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
int error;
ASSERT(ni->in_chan != NULL);
/* Update adapter configuration. */
IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->in_bssid);
sc->rxon.chan = ieee80211_chan2ieee(ic, ni->in_chan);
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
if ((ni->in_chan != IEEE80211_CHAN_ANYC) &&
IEEE80211_IS_CHAN_2GHZ(ni->in_chan))
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
switch (ic->ic_curmode) {
case IEEE80211_MODE_11A:
sc->rxon.cck_mask = 0;
sc->rxon.ofdm_mask = 0x15;
break;
case IEEE80211_MODE_11B:
sc->rxon.cck_mask = 0x03;
sc->rxon.ofdm_mask = 0;
break;
default: /* Assume 802.11b/g. */
sc->rxon.cck_mask = 0x0f;
sc->rxon.ofdm_mask = 0x15;
}
DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz);
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!RXON command failed");
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = ops->set_txpower(sc, 1)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set TX power");
return error;
}
/*
* Reconfiguring RXON clears the firmware nodes table so we must
* add the broadcast node again.
*/
if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not add broadcast node");
return error;
}
return 0;
}
static int
iwn_fast_recover(struct iwn_softc *sc)
{
int err = IWN_FAIL;
mutex_enter(&sc->sc_mtx);
/* restore runtime configuration */
bcopy(&sc->rxon_save, &sc->rxon,
sizeof (sc->rxon));
sc->rxon.associd = 0;
sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
if ((err = iwn_auth(sc)) != IWN_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!iwn_fast_recover(): "
"could not setup authentication");
mutex_exit(&sc->sc_mtx);
return (err);
}
bcopy(&sc->rxon_save, &sc->rxon, sizeof (sc->rxon));
/* update adapter's configuration */
err = iwn_run(sc);
if (err != IWN_SUCCESS) {
dev_err(sc->sc_dip, CE_WARN, "!iwn_fast_recover(): "
"failed to setup association");
mutex_exit(&sc->sc_mtx);
return (err);
}
/* set LED on */
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER;
mutex_exit(&sc->sc_mtx);
/* start queue */
DTRACE_PROBE(resume__xmit);
return (IWN_SUCCESS);
}
static int
iwn_run(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct iwn_node_info node;
int error;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Link LED blinks while monitoring. */
iwn_set_led(sc, IWN_LED_LINK, 5, 5);
return 0;
}
if ((error = iwn_set_timing(sc, ni)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set timing");
return error;
}
/* Update adapter configuration. */
IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->in_bssid);
sc->rxon.associd = htole16(IEEE80211_AID(ni->in_associd));
/* Short preamble and slot time are negotiated when associating. */
sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
sc->rxon.filter |= htole32(IWN_FILTER_BSS);
if (ic->ic_opmode != IEEE80211_M_STA &&
ic->ic_opmode != IEEE80211_M_IBSS)
sc->rxon.filter |= htole32(IWN_FILTER_BEACON);
DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz);
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not update configuration");
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = ops->set_txpower(sc, 1)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set TX power");
return error;
}
/* Fake a join to initialize the TX rate. */
((struct iwn_node *)ni)->id = IWN_ID_BSS;
iwn_newassoc(ni, 1);
/* Add BSS node. */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, ni->in_macaddr);
node.id = IWN_ID_BSS;
#ifdef notyet
node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
IWN_AMDPU_DENSITY(5)); /* 2us */
#endif
error = ops->add_node(sc, &node, 1);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not add BSS node");
return error;
}
if ((error = iwn_set_link_quality(sc, ni)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not setup link quality for node %d", node.id);
return error;
}
if ((error = iwn_init_sensitivity(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set sensitivity");
return error;
}
if ((error = iwn_qosparam_to_hw(sc, 1)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not set QoS params");
return (error);
}
/* Start periodic calibration timer. */
sc->sc_flags &= ~IWN_FLAG_STOP_CALIB_TO;
sc->calib.state = IWN_CALIB_STATE_ASSOC;
sc->calib_cnt = 0;
sc->calib_to = timeout(iwn_calib_timeout, sc, drv_usectohz(500000));
/* Link LED always on while associated. */
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
return 0;
}
#ifdef IWN_HWCRYPTO
/*
* We support CCMP hardware encryption/decryption of unicast frames only.
* HW support for TKIP really sucks. We should let TKIP die anyway.
*/
static int
iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
uint16_t kflags;
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
k->k_cipher != IEEE80211_CIPHER_CCMP)
return ieee80211_set_key(ic, ni, k);
kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
if (k->k_flags & IEEE80211_KEY_GROUP)
kflags |= IWN_KFLAG_GROUP;
memset(&node, 0, sizeof node);
node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
sc->broadcast_id : wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_KEY;
node.kflags = htole16(kflags);
node.kid = k->k_id;
memcpy(node.key, k->k_key, k->k_len);
DTRACE_PROBE2(set__key, int, k->k_id, int, node.id);
return ops->add_node(sc, &node, 1);
}
static void
iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
k->k_cipher != IEEE80211_CIPHER_CCMP) {
/* See comment about other ciphers above. */
ieee80211_delete_key(ic, ni, k);
return;
}
if (ic->ic_state != IEEE80211_S_RUN)
return; /* Nothing to do. */
memset(&node, 0, sizeof node);
node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
sc->broadcast_id : wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_KEY;
node.kflags = htole16(IWN_KFLAG_INVALID);
node.kid = 0xff;
DTRACE_PROBE1(del__key, int, node.id);
(void)ops->add_node(sc, &node, 1);
}
#endif
#ifndef IEEE80211_NO_HT
/*
* This function is called by upper layer when an ADDBA request is received
* from another STA and before the ADDBA response is sent.
*/
static int
iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_rx_ba *ba = &ni->in_rx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_ADDBA;
node.addba_tid = tid;
node.addba_ssn = htole16(ba->ba_winstart);
DTRACE_PROBE3(addba, uint8_t, wn->id, uint8_t, tid, int, ba->ba_winstart);
return ops->add_node(sc, &node, 1);
}
/*
* This function is called by upper layer on teardown of an HT-immediate
* Block Ack agreement (eg. uppon receipt of a DELBA frame).
*/
static void
iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_DELBA;
node.delba_tid = tid;
DTRACE_PROBE2(delba, uint8_t, wn->id, uint8_t, tid);
(void)ops->add_node(sc, &node, 1);
}
/*
* This function is called by upper layer when an ADDBA response is received
* from another STA.
*/
static int
iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_tx_ba *ba = &ni->in_tx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
int error;
/* Enable TX for the specified RA/TID. */
wn->disable_tid &= ~(1 << tid);
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_DISABLE_TID;
node.disable_tid = htole16(wn->disable_tid);
error = ops->add_node(sc, &node, 1);
if (error != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
iwn_nic_unlock(sc);
return 0;
}
static void
iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_tx_ba *ba = &ni->in_tx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
if (iwn_nic_lock(sc) != 0)
return;
ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
iwn_nic_unlock(sc);
}
static void
iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
uint8_t tid, uint16_t ssn)
{
struct iwn_node *wn = (void *)ni;
int qid = 7 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_CHGACT);
/* Assign RA/TID translation to the queue. */
iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
wn->id << 4 | tid);
/* Enable chain-building mode for the queue. */
iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
/* Set scheduler window size. */
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
IWN_SCHED_WINSZ);
/* Set scheduler frame limit. */
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16);
/* Enable interrupts for the queue. */
iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as active. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
iwn_tid2fifo[tid] << 1);
}
static void
iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
{
int qid = 7 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_CHGACT);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
/* Disable interrupts for the queue. */
iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as inactive. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
}
static void
iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
uint8_t tid, uint16_t ssn)
{
struct iwn_node *wn = (void *)ni;
int qid = 10 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_CHGACT);
/* Assign RA/TID translation to the queue. */
iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
wn->id << 4 | tid);
/* Enable chain-building mode for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
/* Enable aggregation for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
/* Set scheduler window size and frame limit. */
iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
/* Enable interrupts for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as active. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
}
static void
iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
{
int qid = 10 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_CHGACT);
/* Disable aggregation for the queue. */
iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
/* Disable interrupts for the queue. */
iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as inactive. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
}
#endif /* !IEEE80211_NO_HT */
/*
* Query calibration tables from the initialization firmware. We do this
* only once at first boot. Called from a process context.
*/
static int
iwn5000_query_calibration(struct iwn_softc *sc)
{
struct iwn5000_calib_config cmd;
int error;
clock_t clk;
ASSERT(mutex_owned(&sc->sc_mtx));
memset(&cmd, 0, sizeof cmd);
cmd.ucode.once.enable = 0xffffffff;
cmd.ucode.once.start = 0xffffffff;
cmd.ucode.once.send = 0xffffffff;
cmd.ucode.flags = 0xffffffff;
error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
if (error != 0)
return error;
/* Wait at most two seconds for calibration to complete. */
clk = ddi_get_lbolt() + drv_usectohz(2000000);
while (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
if (cv_timedwait(&sc->sc_calib_cv, &sc->sc_mtx, clk) < 0)
return (IWN_FAIL);
return (IWN_SUCCESS);
}
/*
* Send calibration results to the runtime firmware. These results were
* obtained on first boot from the initialization firmware.
*/
static int
iwn5000_send_calibration(struct iwn_softc *sc)
{
int idx, error;
for (idx = 0; idx < 5; idx++) {
if (sc->calibcmd[idx].buf == NULL)
continue; /* No results available. */
error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
sc->calibcmd[idx].len, 0);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not send calibration result");
return error;
}
}
return 0;
}
static int
iwn5000_send_wimax_coex(struct iwn_softc *sc)
{
struct iwn5000_wimax_coex wimax;
#ifdef notyet
if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
/* Enable WiMAX coexistence for combo adapters. */
wimax.flags =
IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
IWN_WIMAX_COEX_STA_TABLE_VALID |
IWN_WIMAX_COEX_ENABLE;
memcpy(wimax.events, iwn6050_wimax_events,
sizeof iwn6050_wimax_events);
} else
#endif
{
/* Disable WiMAX coexistence. */
wimax.flags = 0;
memset(wimax.events, 0, sizeof wimax.events);
}
return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
}
static int
iwn6000_temp_offset_calib(struct iwn_softc *sc)
{
struct iwn6000_phy_calib_temp_offset cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
cmd.ngroups = 1;
cmd.isvalid = 1;
if (sc->eeprom_temp != 0)
cmd.offset = htole16(sc->eeprom_temp);
else
cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
sc->sc_toff.t6000->toff.value.l = le16toh(cmd.offset);
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
}
static int
iwn2000_temp_offset_calib(struct iwn_softc *sc)
{
struct iwn2000_phy_calib_temp_offset cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
cmd.ngroups = 1;
cmd.isvalid = 1;
if (sc->eeprom_rawtemp != 0) {
cmd.offset_low = htole16(sc->eeprom_rawtemp);
cmd.offset_high = htole16(sc->eeprom_temp);
} else {
cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
}
cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
sc->sc_toff.t2000->toff_lo.value.l = le16toh(cmd.offset_low);
sc->sc_toff.t2000->toff_hi.value.l = le16toh(cmd.offset_high);
sc->sc_toff.t2000->volt.value.l = le16toh(cmd.burnt_voltage_ref);
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
}
/*
* This function is called after the runtime firmware notifies us of its
* readiness (called in a process context).
*/
static int
iwn4965_post_alive(struct iwn_softc *sc)
{
int error, qid;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Clear TX scheduler state in SRAM. */
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
/* Set physical address of TX scheduler rings (1KB aligned). */
iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
/* Disable chain mode for all our 16 queues. */
iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
/* Set scheduler window size. */
iwn_mem_write(sc, sc->sched_base +
IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
/* Set scheduler frame limit. */
iwn_mem_write(sc, sc->sched_base +
IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16);
}
/* Enable interrupts for all our 16 queues. */
iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
/* Identify TX FIFO rings (0-7). */
iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
for (qid = 0; qid < 7; qid++) {
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
}
iwn_nic_unlock(sc);
return 0;
}
/*
* This function is called after the initialization or runtime firmware
* notifies us of its readiness (called in a process context).
*/
static int
iwn5000_post_alive(struct iwn_softc *sc)
{
int error, qid;
/* Switch to using ICT interrupt mode. */
iwn5000_ict_reset(sc);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Clear TX scheduler state in SRAM. */
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
/* Set physical address of TX scheduler rings (1KB aligned). */
iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
/* Enable chain mode for all queues, except command queue. */
iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
iwn_mem_write(sc, sc->sched_base +
IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
/* Set scheduler window size and frame limit. */
iwn_mem_write(sc, sc->sched_base +
IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
}
/* Enable interrupts for all our 20 queues. */
iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
/* Identify TX FIFO rings (0-7). */
iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
for (qid = 0; qid < 7; qid++) {
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
}
iwn_nic_unlock(sc);
/* Configure WiMAX coexistence for combo adapters. */
error = iwn5000_send_wimax_coex(sc);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not configure WiMAX coexistence");
return error;
}
if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
struct iwn5000_phy_calib_crystal cmd;
/* Perform crystal calibration. */
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
cmd.ngroups = 1;
cmd.isvalid = 1;
cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!crystal calibration failed");
return error;
}
}
if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
/* Query calibration from the initialization firmware. */
if ((error = iwn5000_query_calibration(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not query calibration");
return error;
}
/*
* We have the calibration results now, reboot with the
* runtime firmware (call ourselves recursively!)
*/
iwn_hw_stop(sc, B_FALSE);
error = iwn_hw_init(sc);
} else {
/* Send calibration results to runtime firmware. */
error = iwn5000_send_calibration(sc);
}
return error;
}
/*
* The firmware boot code is small and is intended to be copied directy into
* the NIC internal memory (no DMA transfer).
*/
static int
iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
{
int error, ntries;
size /= sizeof (uint32_t);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Copy microcode image into NIC memory. */
iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
(const uint32_t *)ucode, size);
iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
/* Start boot load now. */
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
/* Wait for transfer to complete. */
for (ntries = 0; ntries < 1000; ntries++) {
if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
IWN_BSM_WR_CTRL_START))
break;
DELAY(10);
}
if (ntries == 1000) {
dev_err(sc->sc_dip, CE_WARN,
"!could not load boot firmware");
iwn_nic_unlock(sc);
return ETIMEDOUT;
}
/* Enable boot after power up. */
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
iwn_nic_unlock(sc);
return 0;
}
static int
iwn4965_load_firmware(struct iwn_softc *sc)
{
struct iwn_fw_info *fw = &sc->fw;
struct iwn_dma_info *dma = &sc->fw_dma;
int error;
clock_t clk;
ASSERT(mutex_owned(&sc->sc_mtx));
/* Copy initialization sections into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
fw->init.text, fw->init.textsz);
(void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
/* Tell adapter where to find initialization sections. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
iwn_nic_unlock(sc);
/* Load firmware boot code. */
error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not load boot firmware");
return error;
}
/* Now press "execute". */
IWN_WRITE(sc, IWN_RESET, 0);
/* Wait at most one second for first alive notification. */
clk = ddi_get_lbolt() + drv_usectohz(1000000);
while ((sc->sc_flags & IWN_FLAG_FW_ALIVE) == 0) {
if (cv_timedwait(&sc->sc_alive_cv, &sc->sc_mtx, clk) < 0) {
dev_err(sc->sc_dip, CE_WARN,
"!timeout waiting for adapter to initialize");
return (IWN_FAIL);
}
}
/* Retrieve current temperature for initial TX power calibration. */
sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
sc->temp = iwn4965_get_temperature(sc);
sc->sc_misc->temp.value.ul = sc->temp;
/* Copy runtime sections into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
fw->main.text, fw->main.textsz);
(void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
/* Tell adapter where to find runtime sections. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
IWN_FW_UPDATED | fw->main.textsz);
iwn_nic_unlock(sc);
return 0;
}
static int
iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
const uint8_t *section, int size)
{
struct iwn_dma_info *dma = &sc->fw_dma;
int error;
clock_t clk;
ASSERT(mutex_owned(&sc->sc_mtx));
/* Copy firmware section into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, section, size);
(void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
IWN_FH_TX_CONFIG_DMA_PAUSE);
IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
IWN_LOADDR(dma->paddr));
IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
IWN_HIADDR(dma->paddr) << 28 | size);
IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
IWN_FH_TXBUF_STATUS_TBNUM(1) |
IWN_FH_TXBUF_STATUS_TBIDX(1) |
IWN_FH_TXBUF_STATUS_TFBD_VALID);
/* Kick Flow Handler to start DMA transfer. */
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
iwn_nic_unlock(sc);
/* Wait at most five seconds for FH DMA transfer to complete. */
clk = ddi_get_lbolt() + drv_usectohz(5000000);
while ((sc->sc_flags & IWN_FLAG_FW_DMA) == 0) {
if (cv_timedwait(&sc->sc_fhdma_cv, &sc->sc_mtx, clk) < 0)
return (IWN_FAIL);
}
sc->sc_flags &= ~IWN_FLAG_FW_DMA;
return (IWN_SUCCESS);
}
static int
iwn5000_load_firmware(struct iwn_softc *sc)
{
struct iwn_fw_part *fw;
int error;
/* Load the initialization firmware on first boot only. */
fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
&sc->fw.main : &sc->fw.init;
error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
fw->text, fw->textsz);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not load firmware %s section", ".text");
return error;
}
error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
fw->data, fw->datasz);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not load firmware %s section", ".data");
return error;
}
/* Now press "execute". */
IWN_WRITE(sc, IWN_RESET, 0);
return 0;
}
/*
* Extract text and data sections from a legacy firmware image.
*/
static int
iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
{
_NOTE(ARGUNUSED(sc));
const uint32_t *ptr;
size_t hdrlen = 24;
uint32_t rev;
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
ptr = (const uint32_t *)fw->data;
rev = le32toh(*ptr++);
/* Check firmware API version. */
if (IWN_FW_API(rev) <= 1) {
dev_err(sc->sc_dip, CE_WARN,
"!bad firmware, need API version >=2");
return EINVAL;
}
if (IWN_FW_API(rev) >= 3) {
/* Skip build number (version 2 header). */
hdrlen += 4;
ptr++;
}
if (fw->size < hdrlen) {
dev_err(sc->sc_dip, CE_WARN,
"!firmware too short: %lld bytes", (longlong_t)fw->size);
return EINVAL;
}
fw->main.textsz = le32toh(*ptr++);
fw->main.datasz = le32toh(*ptr++);
fw->init.textsz = le32toh(*ptr++);
fw->init.datasz = le32toh(*ptr++);
fw->boot.textsz = le32toh(*ptr++);
/* Check that all firmware sections fit. */
if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
dev_err(sc->sc_dip, CE_WARN,
"!firmware too short: %lld bytes", (longlong_t)fw->size);
return EINVAL;
}
/* Get pointers to firmware sections. */
fw->main.text = (const uint8_t *)ptr;
fw->main.data = fw->main.text + fw->main.textsz;
fw->init.text = fw->main.data + fw->main.datasz;
fw->init.data = fw->init.text + fw->init.textsz;
fw->boot.text = fw->init.data + fw->init.datasz;
return 0;
}
/*
* Extract text and data sections from a TLV firmware image.
*/
static int
iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
uint16_t alt)
{
_NOTE(ARGUNUSED(sc));
const struct iwn_fw_tlv_hdr *hdr;
const struct iwn_fw_tlv *tlv;
const uint8_t *ptr, *end;
uint64_t altmask;
uint32_t len;
if (fw->size < sizeof (*hdr)) {
dev_err(sc->sc_dip, CE_WARN,
"!firmware too short: %lld bytes", (longlong_t)fw->size);
return EINVAL;
}
hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
dev_err(sc->sc_dip, CE_WARN,
"!bad firmware signature 0x%08x", le32toh(hdr->signature));
return EINVAL;
}
/*
* Select the closest supported alternative that is less than
* or equal to the specified one.
*/
altmask = le64toh(hdr->altmask);
while (alt > 0 && !(altmask & (1ULL << alt)))
alt--; /* Downgrade. */
IWN_DBG("using alternative %d", alt);
ptr = (const uint8_t *)(hdr + 1);
end = (const uint8_t *)(fw->data + fw->size);
/* Parse type-length-value fields. */
while (ptr + sizeof (*tlv) <= end) {
tlv = (const struct iwn_fw_tlv *)ptr;
len = le32toh(tlv->len);
ptr += sizeof (*tlv);
if (ptr + len > end) {
dev_err(sc->sc_dip, CE_WARN,
"!firmware too short: %lld bytes",
(longlong_t)fw->size);
return EINVAL;
}
/* Skip other alternatives. */
if (tlv->alt != 0 && le16toh(tlv->alt) != alt) {
IWN_DBG("skipping other alternative");
goto next;
}
switch (le16toh(tlv->type)) {
case IWN_FW_TLV_MAIN_TEXT:
fw->main.text = ptr;
fw->main.textsz = len;
break;
case IWN_FW_TLV_MAIN_DATA:
fw->main.data = ptr;
fw->main.datasz = len;
break;
case IWN_FW_TLV_INIT_TEXT:
fw->init.text = ptr;
fw->init.textsz = len;
break;
case IWN_FW_TLV_INIT_DATA:
fw->init.data = ptr;
fw->init.datasz = len;
break;
case IWN_FW_TLV_BOOT_TEXT:
fw->boot.text = ptr;
fw->boot.textsz = len;
break;
case IWN_FW_TLV_ENH_SENS:
if (len != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!TLV type %d has invalid size %u",
le16toh(tlv->type), len);
goto next;
}
sc->sc_flags |= IWN_FLAG_ENH_SENS;
break;
case IWN_FW_TLV_PHY_CALIB:
if (len != sizeof(uint32_t)) {
dev_err(sc->sc_dip, CE_WARN,
"!TLV type %d has invalid size %u",
le16toh(tlv->type), len);
goto next;
}
if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
sc->reset_noise_gain = le32toh(*ptr);
sc->noise_gain = le32toh(*ptr) + 1;
}
break;
case IWN_FW_TLV_FLAGS:
if (len < sizeof(uint32_t))
break;
if (len % sizeof(uint32_t))
break;
sc->tlv_feature_flags = le32toh(*ptr);
IWN_DBG("feature: 0x%08x", sc->tlv_feature_flags);
break;
default:
IWN_DBG("TLV type %d not handled", le16toh(tlv->type));
break;
}
next: /* TLV fields are 32-bit aligned. */
ptr += (len + 3) & ~3;
}
return 0;
}
static int
iwn_read_firmware(struct iwn_softc *sc)
{
struct iwn_fw_info *fw = &sc->fw;
firmware_handle_t fwh;
int error;
/*
* Some PHY calibration commands are firmware-dependent; these
* are the default values that will be overridden if
* necessary.
*/
sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
/* Initialize for error returns */
fw->data = NULL;
fw->size = 0;
/* Open firmware image. */
if ((error = firmware_open("iwn", sc->fwname, &fwh)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not get firmware handle %s", sc->fwname);
return error;
}
fw->size = firmware_get_size(fwh);
if (fw->size < sizeof (uint32_t)) {
dev_err(sc->sc_dip, CE_WARN,
"!firmware too short: %lld bytes", (longlong_t)fw->size);
(void) firmware_close(fwh);
return EINVAL;
}
/* Read the firmware. */
fw->data = kmem_alloc(fw->size, KM_SLEEP);
error = firmware_read(fwh, 0, fw->data, fw->size);
(void) firmware_close(fwh);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not read firmware %s", sc->fwname);
goto out;
}
/* Retrieve text and data sections. */
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
error = iwn_read_firmware_leg(sc, fw);
else
error = iwn_read_firmware_tlv(sc, fw, 1);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not read firmware sections");
goto out;
}
/* Make sure text and data sections fit in hardware memory. */
if (fw->main.textsz > sc->fw_text_maxsz ||
fw->main.datasz > sc->fw_data_maxsz ||
fw->init.textsz > sc->fw_text_maxsz ||
fw->init.datasz > sc->fw_data_maxsz ||
fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
(fw->boot.textsz & 3) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!firmware sections too large");
goto out;
}
/* We can proceed with loading the firmware. */
return 0;
out:
kmem_free(fw->data, fw->size);
fw->data = NULL;
fw->size = 0;
return error ? error : EINVAL;
}
static int
iwn_clock_wait(struct iwn_softc *sc)
{
int ntries;
/* Set "initialization complete" bit. */
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
/* Wait for clock stabilization. */
for (ntries = 0; ntries < 2500; ntries++) {
if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
return 0;
DELAY(10);
}
dev_err(sc->sc_dip, CE_WARN,
"!timeout waiting for clock stabilization");
return ETIMEDOUT;
}
static int
iwn_apm_init(struct iwn_softc *sc)
{
uint32_t reg;
int error;
/* Disable L0s exit timer (NMI bug workaround). */
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
/* Don't wait for ICH L0s (ICH bug workaround). */
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
/* Set FH wait threshold to max (HW bug under stress workaround). */
IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
/* Enable HAP INTA to move adapter from L1a to L0s. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
/* Retrieve PCIe Active State Power Management (ASPM). */
reg = pci_config_get32(sc->sc_pcih,
sc->sc_cap_off + PCIE_LINKCTL);
/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
if (reg & PCIE_LINKCTL_ASPM_CTL_L1) /* L1 Entry enabled. */
IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
else
IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
sc->hw_type <= IWN_HW_REV_TYPE_1000)
IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
/* Wait for clock stabilization before accessing prph. */
if ((error = iwn_clock_wait(sc)) != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
/* Enable DMA and BSM (Bootstrap State Machine). */
iwn_prph_write(sc, IWN_APMG_CLK_EN,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
} else {
/* Enable DMA. */
iwn_prph_write(sc, IWN_APMG_CLK_EN,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
}
DELAY(20);
/* Disable L1-Active. */
iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
iwn_nic_unlock(sc);
return 0;
}
static void
iwn_apm_stop_master(struct iwn_softc *sc)
{
int ntries;
/* Stop busmaster DMA activity. */
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
return;
DELAY(10);
}
dev_err(sc->sc_dip, CE_WARN,
"!timeout waiting for master");
}
static void
iwn_apm_stop(struct iwn_softc *sc)
{
iwn_apm_stop_master(sc);
/* Reset the entire device. */
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
DELAY(10);
/* Clear "initialization complete" bit. */
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
}
static int
iwn4965_nic_config(struct iwn_softc *sc)
{
if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
/*
* I don't believe this to be correct but this is what the
* vendor driver is doing. Probably the bits should not be
* shifted in IWN_RFCFG_*.
*/
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_RFCFG_TYPE(sc->rfcfg) |
IWN_RFCFG_STEP(sc->rfcfg) |
IWN_RFCFG_DASH(sc->rfcfg));
}
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
return 0;
}
static int
iwn5000_nic_config(struct iwn_softc *sc)
{
uint32_t tmp;
int error;
if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_RFCFG_TYPE(sc->rfcfg) |
IWN_RFCFG_STEP(sc->rfcfg) |
IWN_RFCFG_DASH(sc->rfcfg));
}
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
/*
* Select first Switching Voltage Regulator (1.32V) to
* solve a stability issue related to noisy DC2DC line
* in the silicon of 1000 Series.
*/
tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
}
iwn_nic_unlock(sc);
if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
/* Use internal power amplifier only. */
IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
}
if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
/* Indicate that ROM calibration version is >=6. */
IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
}
if (sc->hw_type == IWN_HW_REV_TYPE_6005)
IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
sc->hw_type == IWN_HW_REV_TYPE_2000 ||
sc->hw_type == IWN_HW_REV_TYPE_135 ||
sc->hw_type == IWN_HW_REV_TYPE_105)
IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
return 0;
}
/*
* Take NIC ownership over Intel Active Management Technology (AMT).
*/
static int
iwn_hw_prepare(struct iwn_softc *sc)
{
int ntries;
/* Check if hardware is ready. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
for (ntries = 0; ntries < 5; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_NIC_READY)
return 0;
DELAY(10);
}
/* Hardware not ready, force into ready state. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
for (ntries = 0; ntries < 15000; ntries++) {
if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_PREPARE_DONE))
break;
DELAY(10);
}
if (ntries == 15000)
return ETIMEDOUT;
/* Hardware should be ready now. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
for (ntries = 0; ntries < 5; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_NIC_READY)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
static int
iwn_hw_init(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
int error, chnl, qid;
clock_t clk;
uint32_t rx_config;
ASSERT(mutex_owned(&sc->sc_mtx));
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
if ((error = iwn_apm_init(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not power ON adapter");
return error;
}
/* Select VMAIN power source. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
iwn_nic_unlock(sc);
/* Perform adapter-specific initialization. */
if ((error = ops->nic_config(sc)) != 0)
return error;
/* Initialize RX ring. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
/* Set physical address of RX ring (256-byte aligned). */
IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
/* Set physical address of RX status (16-byte aligned). */
IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
/* Enable RX. */
rx_config =
IWN_FH_RX_CONFIG_ENA |
#if IWN_RBUF_SIZE == 8192
IWN_FH_RX_CONFIG_RB_SIZE_8K |
#endif
IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
IWN_FH_RX_CONFIG_IRQ_DST_HOST |
IWN_FH_RX_CONFIG_SINGLE_FRAME |
IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG);
IWN_WRITE(sc, IWN_FH_RX_CONFIG, rx_config);
iwn_nic_unlock(sc);
IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Initialize TX scheduler. */
iwn_prph_write(sc, sc->sched_txfact_addr, 0);
/* Set physical address of "keep warm" page (16-byte aligned). */
IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
/* Initialize TX rings. */
for (qid = 0; qid < sc->ntxqs; qid++) {
struct iwn_tx_ring *txq = &sc->txq[qid];
/* Set physical address of TX ring (256-byte aligned). */
IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
txq->desc_dma.paddr >> 8);
}
iwn_nic_unlock(sc);
/* Enable DMA channels. */
for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
IWN_FH_TX_CONFIG_DMA_ENA |
IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
}
/* Clear "radio off" and "commands blocked" bits. */
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
/* Enable interrupt coalescing. */
IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 32);
/* Enable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
/* _Really_ make sure "radio off" bit is cleared! */
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
/* Enable shadow registers. */
if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
if ((error = ops->load_firmware(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN,
"!could not load firmware");
return error;
}
/* Wait at most one second for firmware alive notification. */
clk = ddi_get_lbolt() + drv_usectohz(1000000);
while ((sc->sc_flags & IWN_FLAG_FW_ALIVE) == 0) {
if (cv_timedwait(&sc->sc_alive_cv, &sc->sc_mtx, clk) < 0) {
dev_err(sc->sc_dip, CE_WARN,
"!timeout waiting for adapter to initialize");
return (IWN_FAIL);
}
}
/* Do post-firmware initialization. */
return ops->post_alive(sc);
}
static void
iwn_hw_stop(struct iwn_softc *sc, boolean_t lock)
{
int chnl, qid, ntries;
if (lock) {
mutex_enter(&sc->sc_mtx);
}
IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
/* Make sure we no longer hold the NIC lock. */
iwn_nic_unlock(sc);
/* Stop TX scheduler. */
iwn_prph_write(sc, sc->sched_txfact_addr, 0);
/* Stop all DMA channels. */
if (iwn_nic_lock(sc) == 0) {
for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
for (ntries = 0; ntries < 200; ntries++) {
if (IWN_READ(sc, IWN_FH_TX_STATUS) &
IWN_FH_TX_STATUS_IDLE(chnl))
break;
DELAY(10);
}
}
iwn_nic_unlock(sc);
}
/* Stop RX ring. */
iwn_reset_rx_ring(sc, &sc->rxq);
/* Reset all TX rings. */
for (qid = 0; qid < sc->ntxqs; qid++)
iwn_reset_tx_ring(sc, &sc->txq[qid]);
if (iwn_nic_lock(sc) == 0) {
iwn_prph_write(sc, IWN_APMG_CLK_DIS,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
iwn_nic_unlock(sc);
}
DELAY(5);
/* Power OFF adapter. */
iwn_apm_stop(sc);
sc->sc_flags &= ~(IWN_FLAG_HW_INITED | IWN_FLAG_FW_ALIVE);
if (lock) {
mutex_exit(&sc->sc_mtx);
}
}
static int
iwn_init(struct iwn_softc *sc)
{
int error;
mutex_enter(&sc->sc_mtx);
if (sc->sc_flags & IWN_FLAG_HW_INITED)
goto out;
if ((error = iwn_hw_prepare(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN, "!hardware not ready");
goto fail;
}
/* Check that the radio is not disabled by hardware switch. */
if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
dev_err(sc->sc_dip, CE_WARN,
"!radio is disabled by hardware switch");
error = EPERM; /* :-) */
goto fail;
}
/* Read firmware images from the filesystem. */
if ((error = iwn_read_firmware(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN, "!could not read firmware");
goto fail;
}
/* Initialize interrupt mask to default value. */
sc->int_mask = IWN_INT_MASK_DEF;
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
/* Initialize hardware and upload firmware. */
ASSERT(sc->fw.data != NULL && sc->fw.size > 0);
error = iwn_hw_init(sc);
if (error != 0) {
dev_err(sc->sc_dip, CE_WARN, "!could not initialize hardware");
goto fail;
}
/* Configure adapter now that it is ready. */
if ((error = iwn_config(sc)) != 0) {
dev_err(sc->sc_dip, CE_WARN, "!could not configure device");
goto fail;
}
sc->sc_flags |= IWN_FLAG_HW_INITED;
out:
mutex_exit(&sc->sc_mtx);
return 0;
fail:
iwn_hw_stop(sc, B_FALSE);
mutex_exit(&sc->sc_mtx);
return error;
}
/*
* XXX code from usr/src/uts/common/io/net80211/net880211_output.c
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
* Copyright (c) 2007-2009 Damien Bergamini
* All rights reserved.
*/
/*
* Add SSID element to a frame
*/
static uint8_t *
ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, uint32_t len)
{
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = (uint8_t)len;
bcopy(ssid, frm, len);
return (frm + len);
}
/*
* Add supported rates information element to a frame.
*/
static uint8_t *
ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
{
uint8_t nrates;
*frm++ = IEEE80211_ELEMID_RATES;
nrates = rs->ir_nrates;
if (nrates > IEEE80211_RATE_SIZE)
nrates = IEEE80211_RATE_SIZE;
*frm++ = nrates;
bcopy(rs->ir_rates, frm, nrates);
return (frm + nrates);
}
/*
* Add extended supported rates element to a frame, usually for 11g mode
*/
static uint8_t *
ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
{
if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
uint8_t nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
*frm++ = IEEE80211_ELEMID_XRATES;
*frm++ = nrates;
bcopy(rs->ir_rates + IEEE80211_RATE_SIZE, frm, nrates);
frm += nrates;
}
return (frm);
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
* XXX: Duplicated from if_iwi.c
*/
static void
iwn_fix_channel(struct iwn_softc *sc, mblk_t *m,
struct iwn_rx_stat *stat)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
uint8_t subtype;
uint8_t *frm, *efrm;
wh = (struct ieee80211_frame *)m->b_rptr;
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
int chan = le16toh(stat->chan);
if (chan < __arraycount(ic->ic_sup_channels))
ic->ic_curchan = &ic->ic_sup_channels[chan];
return;
}
frm = (uint8_t *)(wh + 1);
efrm = (uint8_t *)m->b_wptr;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
ic->ic_curchan = &ic->ic_sup_channels[frm[2]];
frm += frm[1] + 2;
}
}
/*
* invoked by GLD to start or open NIC
*/
static int
iwn_m_start(void *arg)
{
struct iwn_softc *sc;
ieee80211com_t *ic;
int err = IWN_FAIL;
sc = (struct iwn_softc *)arg;
ASSERT(sc != NULL);
ic = &sc->sc_ic;
err = iwn_init(sc);
if (err != IWN_SUCCESS) {
/*
* If initialization failed because the RF switch is off,
* return success anyway to make the 'plumb' succeed.
* The iwn_thread() tries to re-init background.
*/
if (err == EPERM &&
!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER;
sc->sc_flags |= IWN_FLAG_RADIO_OFF;
mutex_exit(&sc->sc_mtx);
return (IWN_SUCCESS);
}
return (err);
}
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
mutex_enter(&sc->sc_mtx);
sc->sc_flags |= IWN_FLAG_RUNNING;
mutex_exit(&sc->sc_mtx);
return (IWN_SUCCESS);
}
/*
* invoked by GLD to stop or down NIC
*/
static void
iwn_m_stop(void *arg)
{
struct iwn_softc *sc;
ieee80211com_t *ic;
sc = (struct iwn_softc *)arg;
ASSERT(sc != NULL);
ic = &sc->sc_ic;
iwn_hw_stop(sc, B_TRUE);
/*
* release buffer for calibration
*/
ieee80211_stop_watchdog(ic);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
mutex_enter(&sc->sc_mtx);
sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER;
sc->sc_flags &= ~IWN_FLAG_RATE_AUTO_CTL;
sc->sc_flags &= ~IWN_FLAG_RUNNING;
sc->sc_flags &= ~IWN_FLAG_SCANNING;
mutex_exit(&sc->sc_mtx);
}
/*
* Module Loading Data & Entry Points
*/
DDI_DEFINE_STREAM_OPS(iwn_devops, nulldev, nulldev, iwn_attach,
iwn_detach, nodev, NULL, D_MP, NULL, iwn_quiesce);
static struct modldrv iwn_modldrv = {
&mod_driverops,
"Intel WiFi Link 4965 and 1000/5000/6000 series driver",
&iwn_devops
};
static struct modlinkage iwn_modlinkage = {
MODREV_1,
&iwn_modldrv,
NULL
};
int
_init(void)
{
int status;
status = ddi_soft_state_init(&iwn_state,
sizeof (struct iwn_softc), 1);
if (status != DDI_SUCCESS)
return (status);
mac_init_ops(&iwn_devops, "iwn");
status = mod_install(&iwn_modlinkage);
if (status != DDI_SUCCESS) {
mac_fini_ops(&iwn_devops);
ddi_soft_state_fini(&iwn_state);
}
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&iwn_modlinkage);
if (status == DDI_SUCCESS) {
mac_fini_ops(&iwn_devops);
ddi_soft_state_fini(&iwn_state);
}
return (status);
}
int
_info(struct modinfo *mip)
{
return (mod_info(&iwn_modlinkage, mip));
}