/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Intel Pro/100B Ethernet Driver
*/
#include <sys/types.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/ksynch.h>
#include <sys/cmn_err.h>
#include <sys/note.h>
#include <sys/pci.h>
#include <sys/pci_cap.h>
#include <sys/ethernet.h>
#include <sys/mii.h>
#include <sys/miiregs.h>
#include <sys/mac.h>
#include <sys/mac_ether.h>
#include <sys/ethernet.h>
#include <sys/vlan.h>
#include <sys/list.h>
#include <sys/sysmacros.h>
#include <sys/varargs.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include "iprb.h"
#include "rcvbundl.h"
/*
* Intel has openly documented the programming interface for these
* parts in the "Intel 8255x 10/100 Mbps Ethernet Controller Family
* Open Source Software Developer Manual".
*
* While some open source systems have utilized many of the features
* of some models in this family (especially scatter gather and IP
* checksum support), we have elected to offer only the basic
* functionality. These are only 10/100 parts, and the additional
* complexity is not justified by the minimal performance benefit.
* KISS. So, we are only supporting the simple 82557 features.
*/
static uint16_t iprb_mii_read(void *, uint8_t, uint8_t);
static void iprb_mii_write(void *, uint8_t, uint8_t, uint16_t);
static void iprb_mii_notify(void *, link_state_t);
static int iprb_attach(dev_info_t *);
static int iprb_detach(dev_info_t *);
static int iprb_quiesce(dev_info_t *);
static int iprb_suspend(dev_info_t *);
static int iprb_resume(dev_info_t *);
static int iprb_m_stat(void *, uint_t, uint64_t *);
static int iprb_m_start(void *);
static void iprb_m_stop(void *);
static int iprb_m_promisc(void *, boolean_t);
static int iprb_m_multicst(void *, boolean_t, const uint8_t *);
static int iprb_m_unicst(void *, const uint8_t *);
static mblk_t *iprb_m_tx(void *, mblk_t *);
static void iprb_m_ioctl(void *, queue_t *, mblk_t *);
static int iprb_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
const void *);
static int iprb_m_getprop(void *, const char *, mac_prop_id_t, uint_t,
void *);
static void iprb_m_propinfo(void *, const char *, mac_prop_id_t,
mac_prop_info_handle_t);
static void iprb_destroy(iprb_t *);
static int iprb_configure(iprb_t *);
static void iprb_eeprom_sendbits(iprb_t *, uint32_t, uint8_t);
static uint16_t iprb_eeprom_read(iprb_t *, uint16_t);
static void iprb_identify(iprb_t *);
static int iprb_cmd_submit(iprb_t *, uint16_t);
static void iprb_cmd_reclaim(iprb_t *);
static int iprb_cmd_ready(iprb_t *);
static int iprb_cmd_drain(iprb_t *);
static void iprb_rx_add(iprb_t *);
static void iprb_rx_init(iprb_t *);
static mblk_t *iprb_rx(iprb_t *);
static mblk_t *iprb_send(iprb_t *, mblk_t *);
static uint_t iprb_intr(caddr_t, caddr_t);
static void iprb_periodic(void *);
static int iprb_add_intr(iprb_t *);
static int iprb_dma_alloc(iprb_t *, iprb_dma_t *, size_t);
static void iprb_dma_free(iprb_dma_t *);
static iprb_dma_t *iprb_cmd_next(iprb_t *);
static int iprb_set_config(iprb_t *);
static int iprb_set_unicast(iprb_t *);
static int iprb_set_multicast(iprb_t *);
static int iprb_set_ucode(iprb_t *);
static void iprb_update_stats(iprb_t *);
static int iprb_start(iprb_t *);
static void iprb_stop(iprb_t *);
static int iprb_ddi_attach(dev_info_t *, ddi_attach_cmd_t);
static int iprb_ddi_detach(dev_info_t *, ddi_detach_cmd_t);
static void iprb_error(iprb_t *, const char *, ...);
static mii_ops_t iprb_mii_ops = {
MII_OPS_VERSION,
iprb_mii_read,
iprb_mii_write,
iprb_mii_notify,
NULL, /* reset */
};
static mac_callbacks_t iprb_m_callbacks = {
MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
iprb_m_stat,
iprb_m_start,
iprb_m_stop,
iprb_m_promisc,
iprb_m_multicst,
iprb_m_unicst,
iprb_m_tx,
NULL,
iprb_m_ioctl, /* mc_ioctl */
NULL, /* mc_getcapab */
NULL, /* mc_open */
NULL, /* mc_close */
iprb_m_setprop,
iprb_m_getprop,
iprb_m_propinfo
};
/*
* Stream information
*/
DDI_DEFINE_STREAM_OPS(iprb_devops, nulldev, nulldev,
iprb_ddi_attach, iprb_ddi_detach, nodev, NULL, D_MP, NULL, iprb_quiesce);
static struct modldrv iprb_modldrv = {
&mod_driverops, /* drv_modops */
"Intel 8255x Ethernet", /* drv_linkinfo */
&iprb_devops /* drv_dev_ops */
};
static struct modlinkage iprb_modlinkage = {
MODREV_1, /* ml_rev */
{ &iprb_modldrv, NULL } /* ml_linkage */
};
static ddi_device_acc_attr_t acc_attr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC
};
static ddi_device_acc_attr_t buf_attr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STORECACHING_OK_ACC
};
/*
* The 8225x is a 32-bit addressing engine, but it can only address up
* to 31 bits on a single transaction. (Far less in reality it turns
* out.) Statistics buffers have to be 16-byte aligned, and as we
* allocate individual data pieces for other things, there is no
* compelling reason to use another attribute with support for less
* strict alignment.
*/
static ddi_dma_attr_t dma_attr = {
DMA_ATTR_V0, /* dma_attr_version */
0, /* dma_attr_addr_lo */
0xFFFFFFFFU, /* dma_attr_addr_hi */
0x7FFFFFFFU, /* dma_attr_count_max */
16, /* dma_attr_align */
0x100, /* dma_attr_burstsizes */
1, /* dma_attr_minxfer */
0xFFFFFFFFU, /* dma_attr_maxxfer */
0xFFFFFFFFU, /* dma_attr_seg */
1, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0 /* dma_attr_flags */
};
#define DECL_UCODE(x) \
static const uint32_t x ## _WORDS[] = x ## _RCVBUNDLE_UCODE
DECL_UCODE(D101_A);
DECL_UCODE(D101_B0);
DECL_UCODE(D101M_B);
DECL_UCODE(D101S);
DECL_UCODE(D102_B);
DECL_UCODE(D102_C);
DECL_UCODE(D102_E);
static uint8_t iprb_bcast[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
/*
* We don't bother allowing for tuning of the CPU saver algorithm.
* The ucode has reasonable defaults built-in. However, some variants
* apparently have bug fixes delivered via this ucode, so we still
* need to support the ucode upload.
*/
typedef struct {
uint8_t rev;
uint8_t length;
const uint32_t *ucode;
} iprb_ucode_t;
#define UCODE(x) \
sizeof (x ## _WORDS) / sizeof (uint32_t), x ## _WORDS
static const iprb_ucode_t iprb_ucode[] = {
{ REV_82558_A4, UCODE(D101_A) },
{ REV_82558_B0, UCODE(D101_B0) },
{ REV_82559_A0, UCODE(D101M_B) },
{ REV_82559S_A, UCODE(D101S) },
{ REV_82550, UCODE(D102_B) },
{ REV_82550_C, UCODE(D102_C) },
{ REV_82551_F, UCODE(D102_E) },
{ 0 },
};
int
_init(void)
{
int rv;
mac_init_ops(&iprb_devops, "iprb");
if ((rv = mod_install(&iprb_modlinkage)) != DDI_SUCCESS) {
mac_fini_ops(&iprb_devops);
}
return (rv);
}
int
_fini(void)
{
int rv;
if ((rv = mod_remove(&iprb_modlinkage)) == DDI_SUCCESS) {
mac_fini_ops(&iprb_devops);
}
return (rv);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&iprb_modlinkage, modinfop));
}
int
iprb_attach(dev_info_t *dip)
{
iprb_t *ip;
uint16_t w;
int i;
mac_register_t *macp;
ip = kmem_zalloc(sizeof (*ip), KM_SLEEP);
ddi_set_driver_private(dip, ip);
ip->dip = dip;
list_create(&ip->mcast, sizeof (struct iprb_mcast),
offsetof(struct iprb_mcast, node));
/* we don't support high level interrupts, so we don't need cookies */
mutex_init(&ip->culock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&ip->rulock, NULL, MUTEX_DRIVER, NULL);
if (pci_config_setup(dip, &ip->pcih) != DDI_SUCCESS) {
iprb_error(ip, "unable to map configuration space");
iprb_destroy(ip);
return (DDI_FAILURE);
}
if (ddi_regs_map_setup(dip, 1, &ip->regs, 0, 0, &acc_attr,
&ip->regsh) != DDI_SUCCESS) {
iprb_error(ip, "unable to map device registers");
iprb_destroy(ip);
return (DDI_FAILURE);
}
/* Reset, but first go into idle state */
PUT32(ip, CSR_PORT, PORT_SEL_RESET);
drv_usecwait(10);
PUT32(ip, CSR_PORT, PORT_SW_RESET);
drv_usecwait(10);
PUT8(ip, CSR_INTCTL, INTCTL_MASK);
(void) GET8(ip, CSR_INTCTL);
/*
* Precalculate watchdog times.
*/
ip->tx_timeout = TX_WATCHDOG;
ip->rx_timeout = RX_WATCHDOG;
iprb_identify(ip);
/* Obtain our factory MAC address */
w = iprb_eeprom_read(ip, 0);
ip->factaddr[0] = w & 0xff;
ip->factaddr[1] = w >> 8;
w = iprb_eeprom_read(ip, 1);
ip->factaddr[2] = w & 0xff;
ip->factaddr[3] = w >> 8;
w = iprb_eeprom_read(ip, 2);
ip->factaddr[4] = w & 0xff;
ip->factaddr[5] = w >> 8;
bcopy(ip->factaddr, ip->curraddr, 6);
if (ip->resumebug) {
/*
* Generally, most devices we will ever see will
* already have fixed firmware. Since I can't verify
* the validity of the fix (no suitably downrev
* hardware), we'll just do our best to avoid it for
* devices that exhibit this behavior.
*/
if ((iprb_eeprom_read(ip, 10) & 0x02) == 0) {
/* EEPROM fix was already applied, assume safe. */
ip->resumebug = B_FALSE;
}
}
if ((iprb_eeprom_read(ip, 3) & 0x3) != 0x3) {
cmn_err(CE_CONT, "?Enabling RX errata workaround.\n");
ip->rxhangbug = B_TRUE;
}
/* Determine whether we have an MII or a legacy 80c24 */
w = iprb_eeprom_read(ip, 6);
if ((w & 0x3f00) != 0x0600) {
if ((ip->miih = mii_alloc(ip, dip, &iprb_mii_ops)) == NULL) {
iprb_error(ip, "unable to allocate MII ops vector");
iprb_destroy(ip);
return (DDI_FAILURE);
}
if (ip->canpause) {
mii_set_pauseable(ip->miih, B_TRUE, B_FALSE);
}
}
/* Allocate cmds and tx region */
for (i = 0; i < NUM_TX; i++) {
/* Command blocks */
if (iprb_dma_alloc(ip, &ip->cmds[i], CB_SIZE) != DDI_SUCCESS) {
iprb_destroy(ip);
return (DDI_FAILURE);
}
}
for (i = 0; i < NUM_TX; i++) {
iprb_dma_t *cb = &ip->cmds[i];
/* Link the command blocks into a ring */
PUTCB32(cb, CB_LNK_OFFSET, (ip->cmds[(i + 1) % NUM_TX].paddr));
}
for (i = 0; i < NUM_RX; i++) {
/* Rx packet buffers */
if (iprb_dma_alloc(ip, &ip->rxb[i], RFD_SIZE) != DDI_SUCCESS) {
iprb_destroy(ip);
return (DDI_FAILURE);
}
}
if (iprb_dma_alloc(ip, &ip->stats, STATS_SIZE) != DDI_SUCCESS) {
iprb_destroy(ip);
return (DDI_FAILURE);
}
if (iprb_add_intr(ip) != DDI_SUCCESS) {
iprb_destroy(ip);
return (DDI_FAILURE);
}
if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
iprb_error(ip, "unable to allocate mac structure");
iprb_destroy(ip);
return (DDI_FAILURE);
}
macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
macp->m_driver = ip;
macp->m_dip = dip;
macp->m_src_addr = ip->curraddr;
macp->m_callbacks = &iprb_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = ETHERMTU;
macp->m_margin = VLAN_TAGSZ;
if (mac_register(macp, &ip->mach) != 0) {
iprb_error(ip, "unable to register mac with framework");
mac_free(macp);
iprb_destroy(ip);
return (DDI_FAILURE);
}
mac_free(macp);
return (DDI_SUCCESS);
}
int
iprb_detach(dev_info_t *dip)
{
iprb_t *ip;
ip = ddi_get_driver_private(dip);
ASSERT(ip != NULL);
if (mac_disable(ip->mach) != 0)
return (DDI_FAILURE);
(void) mac_unregister(ip->mach);
iprb_destroy(ip);
return (DDI_SUCCESS);
}
int
iprb_add_intr(iprb_t *ip)
{
int actual;
if (ddi_intr_alloc(ip->dip, &ip->intrh, DDI_INTR_TYPE_FIXED, 0, 1,
&actual, DDI_INTR_ALLOC_STRICT) != DDI_SUCCESS) {
iprb_error(ip, "failed allocating interrupt handle");
return (DDI_FAILURE);
}
if (ddi_intr_add_handler(ip->intrh, iprb_intr, ip, NULL) !=
DDI_SUCCESS) {
(void) ddi_intr_free(ip->intrh);
ip->intrh = NULL;
iprb_error(ip, "failed adding interrupt handler");
return (DDI_FAILURE);
}
if (ddi_intr_enable(ip->intrh) != DDI_SUCCESS) {
(void) ddi_intr_remove_handler(ip->intrh);
(void) ddi_intr_free(ip->intrh);
ip->intrh = NULL;
iprb_error(ip, "failed enabling interrupt");
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
int
iprb_dma_alloc(iprb_t *ip, iprb_dma_t *h, size_t size)
{
size_t rlen;
ddi_dma_cookie_t dmac;
uint_t ndmac;
if (ddi_dma_alloc_handle(ip->dip, &dma_attr, DDI_DMA_SLEEP, NULL,
&h->dmah) != DDI_SUCCESS) {
iprb_error(ip, "unable to allocate dma handle");
return (DDI_FAILURE);
}
if (ddi_dma_mem_alloc(h->dmah, size, &buf_attr, DDI_DMA_CONSISTENT,
DDI_DMA_SLEEP, NULL, &h->vaddr, &rlen, &h->acch) != DDI_SUCCESS) {
iprb_error(ip, "unable to allocate dma memory");
return (DDI_FAILURE);
}
bzero(h->vaddr, size);
if (ddi_dma_addr_bind_handle(h->dmah, NULL, h->vaddr, size,
DDI_DMA_CONSISTENT | DDI_DMA_RDWR, DDI_DMA_SLEEP, NULL,
&dmac, &ndmac) != DDI_DMA_MAPPED) {
iprb_error(ip, "unable to map command memory");
return (DDI_FAILURE);
}
h->paddr = dmac.dmac_address;
return (DDI_SUCCESS);
}
void
iprb_dma_free(iprb_dma_t *h)
{
if (h->paddr != 0)
(void) ddi_dma_unbind_handle(h->dmah);
h->paddr = 0;
if (h->acch != NULL)
ddi_dma_mem_free(&h->acch);
h->acch = NULL;
if (h->dmah != NULL)
ddi_dma_free_handle(&h->dmah);
h->dmah = NULL;
}
void
iprb_destroy(iprb_t *ip)
{
int i;
iprb_mcast_t *mc;
/* shut down interrupts */
if (ip->intrh != NULL) {
(void) ddi_intr_disable(ip->intrh);
(void) ddi_intr_remove_handler(ip->intrh);
(void) ddi_intr_free(ip->intrh);
}
/* release DMA resources */
for (i = 0; i < NUM_TX; i++) {
iprb_dma_free(&ip->cmds[i]);
}
for (i = 0; i < NUM_RX; i++) {
iprb_dma_free(&ip->rxb[i]);
}
iprb_dma_free(&ip->stats);
if (ip->miih)
mii_free(ip->miih);
/* clean up the multicast list */
while ((mc = list_head(&ip->mcast)) != NULL) {
list_remove(&ip->mcast, mc);
kmem_free(mc, sizeof (*mc));
}
/* tear down register mappings */
if (ip->pcih)
pci_config_teardown(&ip->pcih);
if (ip->regsh)
ddi_regs_map_free(&ip->regsh);
/* clean the dip */
ddi_set_driver_private(ip->dip, NULL);
list_destroy(&ip->mcast);
mutex_destroy(&ip->culock);
mutex_destroy(&ip->rulock);
/* and finally toss the structure itself */
kmem_free(ip, sizeof (*ip));
}
void
iprb_identify(iprb_t *ip)
{
ip->devid = pci_config_get16(ip->pcih, PCI_CONF_DEVID);
ip->revid = pci_config_get8(ip->pcih, PCI_CONF_REVID);
switch (ip->devid) {
case 0x1229: /* 8255x family */
case 0x1030: /* Intel InBusiness */
if (ip->revid >= REV_82558_A4) {
ip->canpause = B_TRUE;
ip->canmwi = B_TRUE;
} else {
ip->is557 = B_TRUE;
}
if (ip->revid >= REV_82559_A0)
ip->resumebug = B_TRUE;
break;
case 0x1209: /* Embedded 82559ER */
ip->canpause = B_TRUE;
ip->resumebug = B_TRUE;
ip->canmwi = B_TRUE;
break;
case 0x2449: /* ICH2 */
case 0x1031: /* Pro/100 VE (ICH3) */
case 0x1032: /* Pro/100 VE (ICH3) */
case 0x1033: /* Pro/100 VM (ICH3) */
case 0x1034: /* Pro/100 VM (ICH3) */
case 0x1038: /* Pro/100 VM (ICH3) */
ip->resumebug = B_TRUE;
if (ip->revid >= REV_82558_A4)
ip->canpause = B_TRUE;
break;
default:
if (ip->revid >= REV_82558_A4)
ip->canpause = B_TRUE;
break;
}
/* Allow property override MWI support - not normally needed. */
if (ddi_prop_get_int(DDI_DEV_T_ANY, ip->dip, 0, "MWIEnable", 1) == 0) {
ip->canmwi = B_FALSE;
}
}
void
iprb_eeprom_sendbits(iprb_t *ip, uint32_t val, uint8_t nbits)
{
uint32_t mask;
uint16_t x;
mask = 1U << (nbits - 1);
while (mask) {
x = (mask & val) ? EEPROM_EEDI : 0;
PUT16(ip, CSR_EECTL, x | EEPROM_EECS);
drv_usecwait(100);
PUT16(ip, CSR_EECTL, x | EEPROM_EESK | EEPROM_EECS);
drv_usecwait(100);
PUT16(ip, CSR_EECTL, x | EEPROM_EECS);
drv_usecwait(100);
mask >>= 1;
}
}
uint16_t
iprb_eeprom_read(iprb_t *ip, uint16_t address)
{
uint16_t val;
int mask;
uint16_t n;
uint16_t bits;
/* if we don't know the address size yet call again to determine it */
if ((address != 0) && (ip->eeprom_bits == 0))
(void) iprb_eeprom_read(ip, 0);
if ((bits = ip->eeprom_bits) == 0) {
bits = 8;
ASSERT(address == 0);
}
/* enable the EEPROM chip select */
PUT16(ip, CSR_EECTL, EEPROM_EECS);
drv_usecwait(100);
/* send a read command */
iprb_eeprom_sendbits(ip, 6, 3);
n = 0;
for (mask = (1U << (bits - 1)); mask != 0; mask >>= 1) {
uint16_t x = (mask & address) ? EEPROM_EEDI : 0;
PUT16(ip, CSR_EECTL, x | EEPROM_EECS);
drv_usecwait(100);
PUT16(ip, CSR_EECTL, x | EEPROM_EESK | EEPROM_EECS);
drv_usecwait(100);
PUT16(ip, CSR_EECTL, x | EEPROM_EECS);
drv_usecwait(100);
n++;
/* check the dummy 0 bit */
if ((GET16(ip, CSR_EECTL) & EEPROM_EEDO) == 0) {
if (ip->eeprom_bits == 0) {
ip->eeprom_bits = n;
cmn_err(CE_CONT, "?EEPROM size %d words.\n",
1U << ip->eeprom_bits);
}
break;
}
}
if (n != ip->eeprom_bits) {
iprb_error(ip, "cannot determine EEPROM size (%d, %d)",
ip->eeprom_bits, n);
}
/* shift out a 16-bit word */
val = 0;
for (mask = 0x8000; mask; mask >>= 1) {
PUT16(ip, CSR_EECTL, EEPROM_EECS | EEPROM_EESK);
drv_usecwait(100);
if (GET16(ip, CSR_EECTL) & EEPROM_EEDO)
val |= mask;
drv_usecwait(100);
PUT16(ip, CSR_EECTL, EEPROM_EECS);
drv_usecwait(100);
}
/* and disable the eeprom */
PUT16(ip, CSR_EECTL, 0);
drv_usecwait(100);
return (val);
}
int
iprb_cmd_ready(iprb_t *ip)
{
/* wait for pending SCB commands to be accepted */
for (int cnt = 1000000; cnt != 0; cnt -= 10) {
if (GET8(ip, CSR_CMD) == 0) {
return (DDI_SUCCESS);
}
drv_usecwait(10);
}
iprb_error(ip, "timeout waiting for chip to become ready");
return (DDI_FAILURE);
}
void
iprb_cmd_reclaim(iprb_t *ip)
{
while (ip->cmd_count) {
iprb_dma_t *cb = &ip->cmds[ip->cmd_tail];
SYNCCB(cb, CB_STS_OFFSET, 2, DDI_DMA_SYNC_FORKERNEL);
if ((GETCB16(cb, CB_STS_OFFSET) & CB_STS_C) == 0) {
break;
}
ip->cmd_tail++;
ip->cmd_tail %= NUM_TX;
ip->cmd_count--;
if (ip->cmd_count == 0) {
ip->tx_wdog = 0;
} else {
ip->tx_wdog = gethrtime();
}
}
}
int
iprb_cmd_drain(iprb_t *ip)
{
for (int i = 1000000; i; i -= 10) {
iprb_cmd_reclaim(ip);
if (ip->cmd_count == 0)
return (DDI_SUCCESS);
drv_usecwait(10);
}
iprb_error(ip, "time out waiting for commands to drain");
return (DDI_FAILURE);
}
int
iprb_cmd_submit(iprb_t *ip, uint16_t cmd)
{
iprb_dma_t *ncb = &ip->cmds[ip->cmd_head];
iprb_dma_t *lcb = &ip->cmds[ip->cmd_last];
/* If this command will consume the last CB, interrupt when done */
ASSERT((ip->cmd_count) < NUM_TX);
if (ip->cmd_count == (NUM_TX - 1)) {
cmd |= CB_CMD_I;
}
/* clear the status entry */
PUTCB16(ncb, CB_STS_OFFSET, 0);
/* suspend upon completion of this new command */
cmd |= CB_CMD_S;
PUTCB16(ncb, CB_CMD_OFFSET, cmd);
SYNCCB(ncb, 0, 0, DDI_DMA_SYNC_FORDEV);
/* clear the suspend flag from the last submitted command */
SYNCCB(lcb, CB_CMD_OFFSET, 2, DDI_DMA_SYNC_FORKERNEL);
PUTCB16(lcb, CB_CMD_OFFSET, GETCB16(lcb, CB_CMD_OFFSET) & ~CB_CMD_S);
SYNCCB(lcb, CB_CMD_OFFSET, 2, DDI_DMA_SYNC_FORDEV);
/*
* If the chip has a resume bug, then we need to try this as a work
* around. Some anecdotal evidence is that this will help solve
* the resume bug. Its a performance hit, but only if the EEPROM
* is not updated. (In theory we could do this only for 10Mbps HDX,
* but since it should just about never get used, we keep it simple.)
*/
if (ip->resumebug) {
if (iprb_cmd_ready(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
PUT8(ip, CSR_CMD, CUC_NOP);
(void) GET8(ip, CSR_CMD);
drv_usecwait(1);
}
/* wait for the SCB to be ready to accept a new command */
if (iprb_cmd_ready(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Finally we can resume the CU. Note that if this the first
* command in the sequence (i.e. if the CU is IDLE), or if the
* CU is already busy working, then this CU resume command
* will not have any effect.
*/
PUT8(ip, CSR_CMD, CUC_RESUME);
(void) GET8(ip, CSR_CMD); /* flush CSR */
ip->tx_wdog = gethrtime();
ip->cmd_last = ip->cmd_head;
ip->cmd_head++;
ip->cmd_head %= NUM_TX;
ip->cmd_count++;
return (DDI_SUCCESS);
}
iprb_dma_t *
iprb_cmd_next(iprb_t *ip)
{
if (ip->cmd_count == NUM_TX) {
return (NULL);
}
ASSERT(ip->cmd_count < NUM_TX);
return (&ip->cmds[ip->cmd_head]);
}
int
iprb_set_unicast(iprb_t *ip)
{
iprb_dma_t *cb;
ASSERT(mutex_owned(&ip->culock));
if ((cb = iprb_cmd_next(ip)) == NULL)
return (DDI_FAILURE);
PUTCBEA(cb, CB_IAS_ADR_OFFSET, ip->curraddr);
return (iprb_cmd_submit(ip, CB_CMD_IAS));
}
int
iprb_set_multicast(iprb_t *ip)
{
iprb_dma_t *cb;
iprb_mcast_t *mc;
int i;
list_t *l;
ASSERT(mutex_owned(&ip->culock));
if ((ip->nmcast <= 0) || (ip->nmcast > CB_MCS_CNT_MAX)) {
/*
* Only send the list if the total number of multicast
* address is nonzero and small enough to fit. We
* don't error out if it is too big, because in that
* case we will use the "allmulticast" support
* via iprb_set_config instead.
*/
return (DDI_SUCCESS);
}
if ((cb = iprb_cmd_next(ip)) == NULL) {
return (DDI_FAILURE);
}
l = &ip->mcast;
for (mc = list_head(l), i = 0; mc; mc = list_next(l, mc), i++) {
PUTCBEA(cb, CB_MCS_ADR_OFFSET + (i * 6), mc->addr);
}
ASSERT(i == ip->nmcast);
PUTCB16(cb, CB_MCS_CNT_OFFSET, i);
return (iprb_cmd_submit(ip, CB_CMD_MCS));
}
int
iprb_set_config(iprb_t *ip)
{
iprb_dma_t *cb;
ASSERT(mutex_owned(&ip->culock));
if ((cb = iprb_cmd_next(ip)) == NULL) {
return (DDI_FAILURE);
}
PUTCB8(cb, CB_CONFIG_OFFSET + 0, 0x16);
PUTCB8(cb, CB_CONFIG_OFFSET + 1, 0x8);
PUTCB8(cb, CB_CONFIG_OFFSET + 2, 0);
PUTCB8(cb, CB_CONFIG_OFFSET + 3, (ip->canmwi ? 1 : 0));
PUTCB8(cb, CB_CONFIG_OFFSET + 4, 0);
PUTCB8(cb, CB_CONFIG_OFFSET + 5, 0);
PUTCB8(cb, CB_CONFIG_OFFSET + 6, (ip->promisc ? 0x80 : 0) | 0x3a);
PUTCB8(cb, CB_CONFIG_OFFSET + 7, (ip->promisc ? 0 : 0x1) | 2);
PUTCB8(cb, CB_CONFIG_OFFSET + 8, (ip->miih ? 0x1 : 0));
PUTCB8(cb, CB_CONFIG_OFFSET + 9, 0);
PUTCB8(cb, CB_CONFIG_OFFSET + 10, 0x2e);
PUTCB8(cb, CB_CONFIG_OFFSET + 11, 0);
PUTCB8(cb, CB_CONFIG_OFFSET + 12, (ip->is557 ? 0 : 1) | 0x60);
PUTCB8(cb, CB_CONFIG_OFFSET + 13, 0);
PUTCB8(cb, CB_CONFIG_OFFSET + 14, 0xf2);
PUTCB8(cb, CB_CONFIG_OFFSET + 15,
(ip->miih ? 0x80 : 0) | (ip->promisc ? 0x1 : 0) | 0x48);
PUTCB8(cb, CB_CONFIG_OFFSET + 16, 0);
PUTCB8(cb, CB_CONFIG_OFFSET + 17, (ip->canpause ? 0x40 : 0));
PUTCB8(cb, CB_CONFIG_OFFSET + 18, (ip->is557 ? 0 : 0x8) | 0xf2);
PUTCB8(cb, CB_CONFIG_OFFSET + 19,
((ip->revid < REV_82558_B0) ? 0 : 0x80) |
(ip->canpause ? 0x18 : 0));
PUTCB8(cb, CB_CONFIG_OFFSET + 20, 0x3f);
PUTCB8(cb, CB_CONFIG_OFFSET + 21,
((ip->nmcast >= CB_MCS_CNT_MAX) ? 0x8 : 0) | 0x5);
return (iprb_cmd_submit(ip, CB_CMD_CONFIG));
}
int
iprb_set_ucode(iprb_t *ip)
{
iprb_dma_t *cb;
const iprb_ucode_t *uc = NULL;
int i;
for (i = 0; iprb_ucode[i].length; i++) {
if (iprb_ucode[i].rev == ip->revid) {
uc = &iprb_ucode[i];
break;
}
}
if (uc == NULL) {
/* no matching firmware found, assume success */
return (DDI_SUCCESS);
}
ASSERT(mutex_owned(&ip->culock));
if ((cb = iprb_cmd_next(ip)) == NULL) {
return (DDI_FAILURE);
}
for (i = 0; i < uc->length; i++) {
PUTCB32(cb, (CB_UCODE_OFFSET + i * 4), uc->ucode[i]);
}
return (iprb_cmd_submit(ip, CB_CMD_UCODE));
}
int
iprb_configure(iprb_t *ip)
{
ASSERT(mutex_owned(&ip->culock));
if (iprb_cmd_drain(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
if (iprb_set_config(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
if (iprb_set_unicast(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
if (iprb_set_multicast(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
return (DDI_SUCCESS);
}
void
iprb_stop(iprb_t *ip)
{
/* go idle */
PUT32(ip, CSR_PORT, PORT_SEL_RESET);
(void) GET32(ip, CSR_PORT);
drv_usecwait(50);
/* shut off device interrupts */
PUT8(ip, CSR_INTCTL, INTCTL_MASK);
}
int
iprb_start(iprb_t *ip)
{
iprb_dma_t *cb;
ASSERT(mutex_owned(&ip->rulock));
ASSERT(mutex_owned(&ip->culock));
/* Reset, but first go into idle state */
PUT32(ip, CSR_PORT, PORT_SEL_RESET);
(void) GET32(ip, CSR_PORT);
drv_usecwait(50);
PUT32(ip, CSR_PORT, PORT_SW_RESET);
(void) GET32(ip, CSR_PORT);
drv_usecwait(10);
PUT8(ip, CSR_INTCTL, INTCTL_MASK);
/* Reset pointers */
ip->cmd_head = ip->cmd_tail = 0;
ip->cmd_last = NUM_TX - 1;
if (iprb_cmd_ready(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
PUT32(ip, CSR_GEN_PTR, 0);
PUT8(ip, CSR_CMD, CUC_CUBASE);
(void) GET8(ip, CSR_CMD);
if (iprb_cmd_ready(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
PUT32(ip, CSR_GEN_PTR, 0);
PUT8(ip, CSR_CMD, RUC_RUBASE);
(void) GET8(ip, CSR_CMD);
/* Send a NOP. This will be the first command seen by the device. */
cb = iprb_cmd_next(ip);
ASSERT(cb);
if (iprb_cmd_submit(ip, CB_CMD_NOP) != DDI_SUCCESS)
return (DDI_FAILURE);
/* as that was the first command, go ahead and submit a CU start */
if (iprb_cmd_ready(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
PUT32(ip, CSR_GEN_PTR, cb->paddr);
PUT8(ip, CSR_CMD, CUC_START);
(void) GET8(ip, CSR_CMD);
/* Upload firmware. */
if (iprb_set_ucode(ip) != DDI_SUCCESS)
return (DDI_FAILURE);
/* Set up RFDs */
iprb_rx_init(ip);
PUT32(ip, CSR_GEN_PTR, ip->rxb[0].paddr);
/* wait for the SCB */
(void) iprb_cmd_ready(ip);
PUT8(ip, CSR_CMD, RUC_START);
(void) GET8(ip, CSR_CMD); /* flush CSR */
/* Enable device interrupts */
PUT8(ip, CSR_INTCTL, 0);
(void) GET8(ip, CSR_INTCTL);
return (DDI_SUCCESS);
}
void
iprb_update_stats(iprb_t *ip)
{
iprb_dma_t *sp = &ip->stats;
hrtime_t tstamp;
int i;
ASSERT(mutex_owned(&ip->culock));
/* Collect the hardware stats, but don't keep redoing it */
tstamp = gethrtime();
if (tstamp / NANOSEC == ip->stats_time / NANOSEC)
return;
PUTSTAT(sp, STATS_DONE_OFFSET, 0);
SYNCSTATS(sp, 0, 0, DDI_DMA_SYNC_FORDEV);
if (iprb_cmd_ready(ip) != DDI_SUCCESS)
return;
PUT32(ip, CSR_GEN_PTR, sp->paddr);
PUT8(ip, CSR_CMD, CUC_STATSBASE);
(void) GET8(ip, CSR_CMD);
if (iprb_cmd_ready(ip) != DDI_SUCCESS)
return;
PUT8(ip, CSR_CMD, CUC_STATS_RST);
(void) GET8(ip, CSR_CMD); /* flush wb */
for (i = 10000; i; i -= 10) {
SYNCSTATS(sp, 0, 0, DDI_DMA_SYNC_FORKERNEL);
if (GETSTAT(sp, STATS_DONE_OFFSET) == STATS_RST_DONE) {
/* yay stats are updated */
break;
}
drv_usecwait(10);
}
if (i == 0) {
iprb_error(ip, "time out acquiring hardware statistics");
return;
}
ip->ex_coll += GETSTAT(sp, STATS_TX_MAXCOL_OFFSET);
ip->late_coll += GETSTAT(sp, STATS_TX_LATECOL_OFFSET);
ip->uflo += GETSTAT(sp, STATS_TX_UFLO_OFFSET);
ip->defer_xmt += GETSTAT(sp, STATS_TX_DEFER_OFFSET);
ip->one_coll += GETSTAT(sp, STATS_TX_ONECOL_OFFSET);
ip->multi_coll += GETSTAT(sp, STATS_TX_MULTCOL_OFFSET);
ip->collisions += GETSTAT(sp, STATS_TX_TOTCOL_OFFSET);
ip->fcs_errs += GETSTAT(sp, STATS_RX_FCS_OFFSET);
ip->align_errs += GETSTAT(sp, STATS_RX_ALIGN_OFFSET);
ip->norcvbuf += GETSTAT(sp, STATS_RX_NOBUF_OFFSET);
ip->oflo += GETSTAT(sp, STATS_RX_OFLO_OFFSET);
ip->runt += GETSTAT(sp, STATS_RX_SHORT_OFFSET);
ip->stats_time = tstamp;
}
mblk_t *
iprb_send(iprb_t *ip, mblk_t *mp)
{
iprb_dma_t *cb;
size_t sz;
ASSERT(mutex_owned(&ip->culock));
/* possibly reclaim some CBs */
iprb_cmd_reclaim(ip);
cb = iprb_cmd_next(ip);
if (cb == NULL) {
/* flow control */
ip->wantw = B_TRUE;
return (mp);
}
if ((sz = msgsize(mp)) > (ETHERMAX + VLAN_TAGSZ)) {
/* Generally this should never occur */
ip->macxmt_errs++;
freemsg(mp);
return (NULL);
}
ip->opackets++;
ip->obytes += sz;
PUTCB32(cb, CB_TX_TBD_OFFSET, 0xffffffffU);
PUTCB16(cb, CB_TX_COUNT_OFFSET, (sz & 0x3fff) | CB_TX_EOF);
PUTCB8(cb, CB_TX_THRESH_OFFSET, (sz / 8) & 0xff);
PUTCB8(cb, CB_TX_NUMBER_OFFSET, 0);
mcopymsg(mp, cb->vaddr + CB_TX_DATA_OFFSET);
if (cb->vaddr[CB_TX_DATA_OFFSET] & 0x1) {
if (bcmp(cb->vaddr + CB_TX_DATA_OFFSET, &iprb_bcast, 6) != 0) {
ip->multixmt++;
} else {
ip->brdcstxmt++;
}
}
SYNCCB(cb, 0, CB_TX_DATA_OFFSET + sz, DDI_DMA_SYNC_FORDEV);
if (iprb_cmd_submit(ip, CB_CMD_TX) != DDI_SUCCESS) {
ip->macxmt_errs++;
}
return (NULL);
}
void
iprb_rx_add(iprb_t *ip)
{
uint16_t last, curr, next;
iprb_dma_t *rfd, *nfd, *lfd;
ASSERT(mutex_owned(&ip->rulock));
curr = ip->rx_index;
last = ip->rx_last;
next = (curr + 1) % NUM_RX;
ip->rx_last = curr;
ip->rx_index = next;
lfd = &ip->rxb[last];
rfd = &ip->rxb[curr];
nfd = &ip->rxb[next];
PUTRFD32(rfd, RFD_LNK_OFFSET, nfd->paddr);
PUTRFD16(rfd, RFD_CTL_OFFSET, RFD_CTL_EL);
PUTRFD16(rfd, RFD_SIZ_OFFSET, RFD_SIZE - RFD_PKT_OFFSET);
PUTRFD16(rfd, RFD_CNT_OFFSET, 0);
SYNCRFD(rfd, 0, RFD_PKT_OFFSET, DDI_DMA_SYNC_FORDEV);
/* clear the suspend & EL bits from the previous RFD */
PUTRFD16(lfd, RFD_CTL_OFFSET, 0);
SYNCRFD(rfd, RFD_CTL_OFFSET, 2, DDI_DMA_SYNC_FORDEV);
}
void
iprb_rx_init(iprb_t *ip)
{
ip->rx_index = 0;
ip->rx_last = NUM_RX - 1;
for (int i = 0; i < NUM_RX; i++)
iprb_rx_add(ip);
ip->rx_index = 0;
ip->rx_last = NUM_RX - 1;
}
mblk_t *
iprb_rx(iprb_t *ip)
{
iprb_dma_t *rfd;
uint16_t cnt;
uint16_t sts;
int i;
mblk_t *mplist;
mblk_t **mpp;
mblk_t *mp;
mplist = NULL;
mpp = &mplist;
for (i = 0; i < NUM_RX; i++) {
rfd = &ip->rxb[ip->rx_index];
SYNCRFD(rfd, RFD_STS_OFFSET, 2, DDI_DMA_SYNC_FORKERNEL);
if ((GETRFD16(rfd, RFD_STS_OFFSET) & RFD_STS_C) == 0) {
break;
}
ip->rx_wdog = gethrtime();
SYNCRFD(rfd, 0, 0, DDI_DMA_SYNC_FORKERNEL);
cnt = GETRFD16(rfd, RFD_CNT_OFFSET);
cnt &= ~(RFD_CNT_EOF | RFD_CNT_F);
sts = GETRFD16(rfd, RFD_STS_OFFSET);
if (cnt > (ETHERMAX + VLAN_TAGSZ)) {
ip->toolong++;
iprb_rx_add(ip);
continue;
}
if (((sts & RFD_STS_OK) == 0) && (sts & RFD_STS_ERRS)) {
iprb_rx_add(ip);
continue;
}
if ((mp = allocb(cnt, BPRI_MED)) == NULL) {
ip->norcvbuf++;
iprb_rx_add(ip);
continue;
}
bcopy(rfd->vaddr + RFD_PKT_OFFSET, mp->b_wptr, cnt);
/* return it to the RFD list */
iprb_rx_add(ip);
mp->b_wptr += cnt;
ip->ipackets++;
ip->rbytes += cnt;
if (mp->b_rptr[0] & 0x1) {
if (bcmp(mp->b_rptr, &iprb_bcast, 6) != 0) {
ip->multircv++;
} else {
ip->brdcstrcv++;
}
}
*mpp = mp;
mpp = &mp->b_next;
}
return (mplist);
}
int
iprb_m_promisc(void *arg, boolean_t on)
{
iprb_t *ip = arg;
mutex_enter(&ip->culock);
ip->promisc = on;
if (ip->running && !ip->suspended)
(void) iprb_configure(ip);
mutex_exit(&ip->culock);
return (0);
}
int
iprb_m_unicst(void *arg, const uint8_t *macaddr)
{
iprb_t *ip = arg;
mutex_enter(&ip->culock);
bcopy(macaddr, ip->curraddr, 6);
if (ip->running && !ip->suspended)
(void) iprb_configure(ip);
mutex_exit(&ip->culock);
return (0);
}
int
iprb_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr)
{
iprb_t *ip = arg;
list_t *l = &ip->mcast;
iprb_mcast_t *mc;
if (add) {
mc = kmem_alloc(sizeof (*mc), KM_NOSLEEP);
if (mc == NULL) {
return (ENOMEM);
}
bcopy(macaddr, mc->addr, 6);
mutex_enter(&ip->culock);
list_insert_head(l, mc);
ip->nmcast++;
if (ip->running && !ip->suspended)
(void) iprb_configure(ip);
mutex_exit(&ip->culock);
} else {
mutex_enter(&ip->culock);
for (mc = list_head(l); mc != NULL; mc = list_next(l, mc)) {
if (bcmp(macaddr, mc->addr, 6) == 0) {
list_remove(&ip->mcast, mc);
ip->nmcast--;
if (ip->running && !ip->suspended)
(void) iprb_configure(ip);
break;
}
}
mutex_exit(&ip->culock);
if (mc)
kmem_free(mc, sizeof (*mc));
}
return (0);
}
int
iprb_m_start(void *arg)
{
int rv;
iprb_t *ip = arg;
mutex_enter(&ip->rulock);
mutex_enter(&ip->culock);
rv = ip->suspended ? 0 : iprb_start(ip);
if (rv == 0)
ip->running = B_TRUE;
ip->perh = ddi_periodic_add(iprb_periodic, ip, 5000000000, 0);
mutex_exit(&ip->culock);
mutex_exit(&ip->rulock);
if (rv == 0) {
if (ip->miih)
mii_start(ip->miih);
else
/* might be a lie. */
mac_link_update(ip->mach, LINK_STATE_UP);
}
return (rv ? EIO : 0);
}
void
iprb_m_stop(void *arg)
{
iprb_t *ip = arg;
if (ip->miih) {
mii_stop(ip->miih);
} else {
mac_link_update(ip->mach, LINK_STATE_DOWN);
}
ddi_periodic_delete(ip->perh);
ip->perh = 0;
mutex_enter(&ip->rulock);
mutex_enter(&ip->culock);
if (!ip->suspended) {
iprb_update_stats(ip);
iprb_stop(ip);
}
ip->running = B_FALSE;
mutex_exit(&ip->culock);
mutex_exit(&ip->rulock);
}
int
iprb_m_stat(void *arg, uint_t stat, uint64_t *val)
{
iprb_t *ip = arg;
if (ip->miih && (mii_m_getstat(ip->miih, stat, val) == 0)) {
return (0);
}
mutex_enter(&ip->culock);
if ((!ip->suspended) && (ip->running)) {
iprb_update_stats(ip);
}
mutex_exit(&ip->culock);
switch (stat) {
case MAC_STAT_IFSPEED:
if (ip->miih == NULL) {
*val = 10000000; /* 10 Mbps */
}
break;
case ETHER_STAT_LINK_DUPLEX:
if (ip->miih == NULL) {
*val = LINK_DUPLEX_UNKNOWN;
}
break;
case MAC_STAT_MULTIRCV:
*val = ip->multircv;
break;
case MAC_STAT_BRDCSTRCV:
*val = ip->brdcstrcv;
break;
case MAC_STAT_MULTIXMT:
*val = ip->multixmt;
break;
case MAC_STAT_BRDCSTXMT:
*val = ip->brdcstxmt;
break;
case MAC_STAT_IPACKETS:
* val = ip->ipackets;
break;
case MAC_STAT_RBYTES:
*val = ip->rbytes;
break;
case MAC_STAT_OPACKETS:
*val = ip->opackets;
break;
case MAC_STAT_OBYTES:
*val = ip->obytes;
break;
case MAC_STAT_NORCVBUF:
*val = ip->norcvbuf;
break;
case MAC_STAT_COLLISIONS:
*val = ip->collisions;
break;
case MAC_STAT_IERRORS:
*val = ip->align_errs +
ip->fcs_errs +
ip->norcvbuf +
ip->runt +
ip->toolong +
ip->macrcv_errs;
break;
case MAC_STAT_OERRORS:
*val = ip->ex_coll +
ip->late_coll +
ip->uflo +
ip->macxmt_errs +
ip->nocarrier;
break;
case ETHER_STAT_ALIGN_ERRORS:
*val = ip->align_errs;
break;
case ETHER_STAT_FCS_ERRORS:
*val = ip->fcs_errs;
break;
case ETHER_STAT_DEFER_XMTS:
*val = ip->defer_xmt;
break;
case ETHER_STAT_FIRST_COLLISIONS:
*val = ip->one_coll + ip->multi_coll + ip->ex_coll;
break;
case ETHER_STAT_MULTI_COLLISIONS:
*val = ip->multi_coll;
break;
case ETHER_STAT_TX_LATE_COLLISIONS:
*val = ip->late_coll;
break;
case ETHER_STAT_EX_COLLISIONS:
*val = ip->ex_coll;
break;
case MAC_STAT_OVERFLOWS:
*val = ip->oflo;
break;
case MAC_STAT_UNDERFLOWS:
*val = ip->uflo;
break;
case ETHER_STAT_TOOSHORT_ERRORS:
*val = ip->runt;
break;
case ETHER_STAT_TOOLONG_ERRORS:
*val = ip->toolong;
break;
case ETHER_STAT_CARRIER_ERRORS:
*val = ip->nocarrier; /* reported only for "suspend" */
break;
case ETHER_STAT_MACXMT_ERRORS:
*val = ip->macxmt_errs;
break;
case ETHER_STAT_MACRCV_ERRORS:
*val = ip->macrcv_errs;
break;
default:
return (ENOTSUP);
}
return (0);
}
void
iprb_m_propinfo(void *arg, const char *name, mac_prop_id_t id,
mac_prop_info_handle_t pih)
{
iprb_t *ip = arg;
if (ip->miih != NULL) {
mii_m_propinfo(ip->miih, name, id, pih);
return;
}
switch (id) {
case MAC_PROP_DUPLEX:
case MAC_PROP_SPEED:
mac_prop_info_set_perm(pih, MAC_PROP_PERM_READ);
break;
}
}
int
iprb_m_getprop(void *arg, const char *name, mac_prop_id_t id, uint_t sz,
void *val)
{
iprb_t *ip = arg;
uint64_t x;
if (ip->miih != NULL) {
return (mii_m_getprop(ip->miih, name, id, sz, val));
}
switch (id) {
case MAC_PROP_SPEED:
x = 10000000;
bcopy(&x, val, sizeof (x));
return (0);
case MAC_PROP_DUPLEX:
x = LINK_DUPLEX_UNKNOWN;
bcopy(&x, val, sizeof (x));
return (0);
}
return (ENOTSUP);
}
int
iprb_m_setprop(void *arg, const char *name, mac_prop_id_t id, uint_t sz,
const void *val)
{
iprb_t *ip = arg;
if (ip->miih != NULL) {
return (mii_m_setprop(ip->miih, name, id, sz, val));
}
return (ENOTSUP);
}
mblk_t *
iprb_m_tx(void *arg, mblk_t *mp)
{
iprb_t *ip = arg;
mblk_t *nmp;
mutex_enter(&ip->culock);
while (mp != NULL) {
nmp = mp->b_next;
mp->b_next = NULL;
if (ip->suspended) {
freemsg(mp);
ip->nocarrier++;
mp = nmp;
continue;
}
if ((mp = iprb_send(ip, mp)) != NULL) {
mp->b_next = nmp;
break;
}
mp = nmp;
}
mutex_exit(&ip->culock);
return (mp);
}
void
iprb_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
{
iprb_t *ip = arg;
if ((ip->miih != NULL) && (mii_m_loop_ioctl(ip->miih, wq, mp)))
return;
miocnak(wq, mp, 0, EINVAL);
}
uint16_t
iprb_mii_read(void *arg, uint8_t phy, uint8_t reg)
{
iprb_t *ip = arg;
uint32_t mdi;
/*
* NB: we are guaranteed by the MII layer not to be suspended.
* Furthermore, we have an independent MII register.
*/
mdi = MDI_OP_RD |
((uint32_t)phy << MDI_PHYAD_SHIFT) |
((uint32_t)reg << MDI_REGAD_SHIFT);
PUT32(ip, CSR_MDICTL, mdi);
for (int i = 0; i < 100; i++) {
mdi = GET32(ip, CSR_MDICTL);
if (mdi & MDI_R) {
return (mdi & 0xffff);
}
drv_usecwait(1);
}
return (0xffff);
}
void
iprb_mii_write(void *arg, uint8_t phy, uint8_t reg, uint16_t data)
{
iprb_t *ip = arg;
uint32_t mdi;
mdi = MDI_OP_WR |
((uint32_t)phy << MDI_PHYAD_SHIFT) |
((uint32_t)reg << MDI_REGAD_SHIFT) |
(data);
PUT32(ip, CSR_MDICTL, mdi);
for (int i = 0; i < 100; i++) {
if (GET32(ip, CSR_MDICTL) & MDI_R)
break;
}
}
void
iprb_mii_notify(void *arg, link_state_t link)
{
iprb_t *ip = arg;
mac_link_update(ip->mach, link);
}
uint_t
iprb_intr(caddr_t arg1, caddr_t arg2)
{
iprb_t *ip = (void *)arg1;
uint8_t sts;
mblk_t *mp = NULL;
_NOTE(ARGUNUSED(arg2));
mutex_enter(&ip->rulock);
if (ip->suspended) {
mutex_exit(&ip->rulock);
return (DDI_INTR_UNCLAIMED);
}
sts = GET8(ip, CSR_STS);
if (sts == 0) {
/* No interrupt status! */
mutex_exit(&ip->rulock);
return (DDI_INTR_UNCLAIMED);
}
/* acknowledge the interrupts */
PUT8(ip, CSR_STS, sts);
if (sts & (STS_RNR | STS_FR)) {
mp = iprb_rx(ip);
if ((sts & STS_RNR) &&
((GET8(ip, CSR_STATE) & STATE_RUS) == STATE_RUS_NORES)) {
iprb_rx_init(ip);
mutex_enter(&ip->culock);
PUT32(ip, CSR_GEN_PTR, ip->rxb[0].paddr);
/* wait for the SCB */
(void) iprb_cmd_ready(ip);
PUT8(ip, CSR_CMD, RUC_START);
(void) GET8(ip, CSR_CMD); /* flush CSR */
mutex_exit(&ip->culock);
}
}
mutex_exit(&ip->rulock);
if (mp) {
mac_rx(ip->mach, NULL, mp);
}
if ((sts & (STS_CNA | STS_CX)) && ip->wantw) {
ip->wantw = B_FALSE;
mac_tx_update(ip->mach);
}
return (DDI_INTR_CLAIMED);
}
void
iprb_periodic(void *arg)
{
iprb_t *ip = arg;
boolean_t reset = B_FALSE;
mutex_enter(&ip->rulock);
if (ip->suspended || !ip->running) {
mutex_exit(&ip->rulock);
return;
}
/*
* If we haven't received a packet in a while, and if the link
* is up, then it might be a hung chip. This problem
* reportedly only occurs at 10 Mbps.
*/
if (ip->rxhangbug &&
((ip->miih == NULL) || (mii_get_speed(ip->miih) == 10000000)) &&
((gethrtime() - ip->rx_wdog) > ip->rx_timeout)) {
cmn_err(CE_CONT, "?Possible RU hang, resetting.\n");
reset = B_TRUE;
}
/* update the statistics */
mutex_enter(&ip->culock);
if (ip->tx_wdog && ((gethrtime() - ip->tx_wdog) > ip->tx_timeout)) {
/* transmit/CU hang? */
cmn_err(CE_CONT, "?CU stalled, resetting.\n");
reset = B_TRUE;
}
if (reset) {
/* We want to reconfigure */
iprb_stop(ip);
if (iprb_start(ip) != DDI_SUCCESS) {
iprb_error(ip, "unable to restart chip");
}
}
iprb_update_stats(ip);
mutex_exit(&ip->culock);
mutex_exit(&ip->rulock);
}
int
iprb_quiesce(dev_info_t *dip)
{
iprb_t *ip = ddi_get_driver_private(dip);
/* Reset, but first go into idle state */
PUT32(ip, CSR_PORT, PORT_SEL_RESET);
drv_usecwait(50);
PUT32(ip, CSR_PORT, PORT_SW_RESET);
drv_usecwait(10);
PUT8(ip, CSR_INTCTL, INTCTL_MASK);
return (DDI_SUCCESS);
}
int
iprb_suspend(dev_info_t *dip)
{
iprb_t *ip = ddi_get_driver_private(dip);
if (ip->miih)
mii_suspend(ip->miih);
mutex_enter(&ip->rulock);
mutex_enter(&ip->culock);
if (!ip->suspended) {
ip->suspended = B_TRUE;
if (ip->running) {
iprb_update_stats(ip);
iprb_stop(ip);
}
}
mutex_exit(&ip->culock);
mutex_exit(&ip->rulock);
return (DDI_SUCCESS);
}
int
iprb_resume(dev_info_t *dip)
{
iprb_t *ip = ddi_get_driver_private(dip);
mutex_enter(&ip->rulock);
mutex_enter(&ip->culock);
ip->suspended = B_FALSE;
if (ip->running) {
if (iprb_start(ip) != DDI_SUCCESS) {
iprb_error(ip, "unable to restart chip!");
ip->suspended = B_TRUE;
mutex_exit(&ip->culock);
mutex_exit(&ip->rulock);
return (DDI_FAILURE);
}
}
mutex_exit(&ip->culock);
mutex_exit(&ip->rulock);
if (ip->miih)
mii_resume(ip->miih);
return (DDI_SUCCESS);
}
int
iprb_ddi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
switch (cmd) {
case DDI_ATTACH:
return (iprb_attach(dip));
case DDI_RESUME:
return (iprb_resume(dip));
default:
return (DDI_FAILURE);
}
}
int
iprb_ddi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
switch (cmd) {
case DDI_DETACH:
return (iprb_detach(dip));
case DDI_SUSPEND:
return (iprb_suspend(dip));
default:
return (DDI_FAILURE);
}
}
void
iprb_error(iprb_t *ip, const char *fmt, ...)
{
va_list ap;
char buf[256];
va_start(ap, fmt);
(void) vsnprintf(buf, sizeof (buf), fmt, ap);
va_end(ap);
cmn_err(CE_WARN, "%s%d: %s",
ddi_driver_name(ip->dip), ddi_get_instance(ip->dip), buf);
}