/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <hxge_impl.h>
#include <hxge_rxdma.h>
#include <hpi.h>
#include <hpi_vir.h>
/*
* Number of blocks to accumulate before re-enabling DMA
* when we get RBR empty.
*/
#define HXGE_RBR_EMPTY_THRESHOLD 64
/*
* Globals: tunable parameters (/etc/system or adb)
*
*/
extern uint32_t hxge_rbr_size;
extern uint32_t hxge_rcr_size;
extern uint32_t hxge_rbr_spare_size;
extern uint32_t hxge_mblks_pending;
/*
* Tunables to manage the receive buffer blocks.
*
* hxge_rx_threshold_hi: copy all buffers.
* hxge_rx_bcopy_size_type: receive buffer block size type.
* hxge_rx_threshold_lo: copy only up to tunable block size type.
*/
extern hxge_rxbuf_threshold_t hxge_rx_threshold_hi;
extern hxge_rxbuf_type_t hxge_rx_buf_size_type;
extern hxge_rxbuf_threshold_t hxge_rx_threshold_lo;
/*
* Static local functions.
*/
static hxge_status_t hxge_map_rxdma(p_hxge_t hxgep);
static void hxge_unmap_rxdma(p_hxge_t hxgep);
static hxge_status_t hxge_rxdma_hw_start_common(p_hxge_t hxgep);
static hxge_status_t hxge_rxdma_hw_start(p_hxge_t hxgep);
static void hxge_rxdma_hw_stop(p_hxge_t hxgep);
static hxge_status_t hxge_map_rxdma_channel(p_hxge_t hxgep, uint16_t channel,
p_hxge_dma_common_t *dma_buf_p, p_rx_rbr_ring_t *rbr_p,
uint32_t num_chunks, p_hxge_dma_common_t *dma_rbr_cntl_p,
p_hxge_dma_common_t *dma_rcr_cntl_p, p_hxge_dma_common_t *dma_mbox_cntl_p,
p_rx_rcr_ring_t *rcr_p, p_rx_mbox_t *rx_mbox_p);
static void hxge_unmap_rxdma_channel(p_hxge_t hxgep, uint16_t channel,
p_rx_rbr_ring_t rbr_p, p_rx_rcr_ring_t rcr_p, p_rx_mbox_t rx_mbox_p);
static hxge_status_t hxge_map_rxdma_channel_cfg_ring(p_hxge_t hxgep,
uint16_t dma_channel, p_hxge_dma_common_t *dma_rbr_cntl_p,
p_hxge_dma_common_t *dma_rcr_cntl_p, p_hxge_dma_common_t *dma_mbox_cntl_p,
p_rx_rbr_ring_t *rbr_p, p_rx_rcr_ring_t *rcr_p, p_rx_mbox_t *rx_mbox_p);
static void hxge_unmap_rxdma_channel_cfg_ring(p_hxge_t hxgep,
p_rx_rcr_ring_t rcr_p, p_rx_mbox_t rx_mbox_p);
static hxge_status_t hxge_map_rxdma_channel_buf_ring(p_hxge_t hxgep,
uint16_t channel, p_hxge_dma_common_t *dma_buf_p,
p_rx_rbr_ring_t *rbr_p, uint32_t num_chunks);
static void hxge_unmap_rxdma_channel_buf_ring(p_hxge_t hxgep,
p_rx_rbr_ring_t rbr_p);
static hxge_status_t hxge_rxdma_start_channel(p_hxge_t hxgep, uint16_t channel,
p_rx_rbr_ring_t rbr_p, p_rx_rcr_ring_t rcr_p, p_rx_mbox_t mbox_p,
int n_init_kick);
static hxge_status_t hxge_rxdma_stop_channel(p_hxge_t hxgep, uint16_t channel);
static mblk_t *hxge_rx_pkts(p_hxge_t hxgep, uint_t vindex, p_hxge_ldv_t ldvp,
p_rx_rcr_ring_t rcr_p, rdc_stat_t cs, int bytes_to_read);
static uint32_t hxge_scan_for_last_eop(p_rx_rcr_ring_t rcr_p,
p_rcr_entry_t rcr_desc_rd_head_p, uint32_t num_rcrs);
static void hxge_receive_packet(p_hxge_t hxgep, p_rx_rcr_ring_t rcr_p,
p_rcr_entry_t rcr_desc_rd_head_p, boolean_t *multi_p,
mblk_t ** mp, mblk_t ** mp_cont, uint32_t *invalid_rcr_entry);
static hxge_status_t hxge_disable_rxdma_channel(p_hxge_t hxgep,
uint16_t channel);
static p_rx_msg_t hxge_allocb(size_t, uint32_t, p_hxge_dma_common_t);
static void hxge_freeb(p_rx_msg_t);
static hxge_status_t hxge_rx_err_evnts(p_hxge_t hxgep, uint_t index,
p_hxge_ldv_t ldvp, rdc_stat_t cs);
static hxge_status_t hxge_rxbuf_index_info_init(p_hxge_t hxgep,
p_rx_rbr_ring_t rx_dmap);
static hxge_status_t hxge_rxdma_fatal_err_recover(p_hxge_t hxgep,
uint16_t channel);
static hxge_status_t hxge_rx_port_fatal_err_recover(p_hxge_t hxgep);
static void hxge_rbr_empty_restore(p_hxge_t hxgep,
p_rx_rbr_ring_t rx_rbr_p);
hxge_status_t
hxge_init_rxdma_channels(p_hxge_t hxgep)
{
hxge_status_t status = HXGE_OK;
block_reset_t reset_reg;
int i;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_init_rxdma_channels"));
for (i = 0; i < HXGE_MAX_RDCS; i++)
hxgep->rdc_first_intr[i] = B_TRUE;
/* Reset RDC block from PEU to clear any previous state */
reset_reg.value = 0;
reset_reg.bits.rdc_rst = 1;
HXGE_REG_WR32(hxgep->hpi_handle, BLOCK_RESET, reset_reg.value);
HXGE_DELAY(1000);
status = hxge_map_rxdma(hxgep);
if (status != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"<== hxge_init_rxdma: status 0x%x", status));
return (status);
}
status = hxge_rxdma_hw_start_common(hxgep);
if (status != HXGE_OK) {
hxge_unmap_rxdma(hxgep);
}
status = hxge_rxdma_hw_start(hxgep);
if (status != HXGE_OK) {
hxge_unmap_rxdma(hxgep);
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"<== hxge_init_rxdma_channels: status 0x%x", status));
return (status);
}
void
hxge_uninit_rxdma_channels(p_hxge_t hxgep)
{
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_uninit_rxdma_channels"));
hxge_rxdma_hw_stop(hxgep);
hxge_unmap_rxdma(hxgep);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "<== hxge_uinit_rxdma_channels"));
}
hxge_status_t
hxge_init_rxdma_channel_cntl_stat(p_hxge_t hxgep, uint16_t channel,
rdc_stat_t *cs_p)
{
hpi_handle_t handle;
hpi_status_t rs = HPI_SUCCESS;
hxge_status_t status = HXGE_OK;
HXGE_DEBUG_MSG((hxgep, DMA_CTL,
"<== hxge_init_rxdma_channel_cntl_stat"));
handle = HXGE_DEV_HPI_HANDLE(hxgep);
rs = hpi_rxdma_control_status(handle, OP_SET, channel, cs_p);
if (rs != HPI_SUCCESS) {
status = HXGE_ERROR | rs;
}
return (status);
}
hxge_status_t
hxge_enable_rxdma_channel(p_hxge_t hxgep, uint16_t channel,
p_rx_rbr_ring_t rbr_p, p_rx_rcr_ring_t rcr_p, p_rx_mbox_t mbox_p,
int n_init_kick)
{
hpi_handle_t handle;
rdc_desc_cfg_t rdc_desc;
rdc_rcr_cfg_b_t *cfgb_p;
hpi_status_t rs = HPI_SUCCESS;
HXGE_DEBUG_MSG((hxgep, DMA_CTL, "==> hxge_enable_rxdma_channel"));
handle = HXGE_DEV_HPI_HANDLE(hxgep);
/*
* Use configuration data composed at init time. Write to hardware the
* receive ring configurations.
*/
rdc_desc.mbox_enable = 1;
rdc_desc.mbox_addr = mbox_p->mbox_addr;
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> hxge_enable_rxdma_channel: mboxp $%p($%p)",
mbox_p->mbox_addr, rdc_desc.mbox_addr));
rdc_desc.rbr_len = rbr_p->rbb_max;
rdc_desc.rbr_addr = rbr_p->rbr_addr;
switch (hxgep->rx_bksize_code) {
case RBR_BKSIZE_4K:
rdc_desc.page_size = SIZE_4KB;
break;
case RBR_BKSIZE_8K:
rdc_desc.page_size = SIZE_8KB;
break;
}
rdc_desc.size0 = rbr_p->hpi_pkt_buf_size0;
rdc_desc.valid0 = 1;
rdc_desc.size1 = rbr_p->hpi_pkt_buf_size1;
rdc_desc.valid1 = 1;
rdc_desc.size2 = rbr_p->hpi_pkt_buf_size2;
rdc_desc.valid2 = 1;
rdc_desc.full_hdr = rcr_p->full_hdr_flag;
rdc_desc.offset = rcr_p->sw_priv_hdr_len;
rdc_desc.rcr_len = rcr_p->comp_size;
rdc_desc.rcr_addr = rcr_p->rcr_addr;
cfgb_p = &(rcr_p->rcr_cfgb);
rdc_desc.rcr_threshold = cfgb_p->bits.pthres;
rdc_desc.rcr_timeout = cfgb_p->bits.timeout;
rdc_desc.rcr_timeout_enable = cfgb_p->bits.entout;
HXGE_DEBUG_MSG((hxgep, DMA_CTL, "==> hxge_enable_rxdma_channel: "
"rbr_len qlen %d pagesize code %d rcr_len %d",
rdc_desc.rbr_len, rdc_desc.page_size, rdc_desc.rcr_len));
HXGE_DEBUG_MSG((hxgep, DMA_CTL, "==> hxge_enable_rxdma_channel: "
"size 0 %d size 1 %d size 2 %d",
rbr_p->hpi_pkt_buf_size0, rbr_p->hpi_pkt_buf_size1,
rbr_p->hpi_pkt_buf_size2));
rs = hpi_rxdma_cfg_rdc_ring(handle, rbr_p->rdc, &rdc_desc);
if (rs != HPI_SUCCESS) {
return (HXGE_ERROR | rs);
}
/*
* Enable the timeout and threshold.
*/
rs = hpi_rxdma_cfg_rdc_rcr_threshold(handle, channel,
rdc_desc.rcr_threshold);
if (rs != HPI_SUCCESS) {
return (HXGE_ERROR | rs);
}
rs = hpi_rxdma_cfg_rdc_rcr_timeout(handle, channel,
rdc_desc.rcr_timeout);
if (rs != HPI_SUCCESS) {
return (HXGE_ERROR | rs);
}
/* Kick the DMA engine */
hpi_rxdma_rdc_rbr_kick(handle, channel, n_init_kick);
/* Clear the rbr empty bit */
(void) hpi_rxdma_channel_rbr_empty_clear(handle, channel);
/*
* Enable the DMA
*/
rs = hpi_rxdma_cfg_rdc_enable(handle, channel);
if (rs != HPI_SUCCESS) {
return (HXGE_ERROR | rs);
}
HXGE_DEBUG_MSG((hxgep, DMA_CTL, "<== hxge_enable_rxdma_channel"));
return (HXGE_OK);
}
static hxge_status_t
hxge_disable_rxdma_channel(p_hxge_t hxgep, uint16_t channel)
{
hpi_handle_t handle;
hpi_status_t rs = HPI_SUCCESS;
HXGE_DEBUG_MSG((hxgep, DMA_CTL, "==> hxge_disable_rxdma_channel"));
handle = HXGE_DEV_HPI_HANDLE(hxgep);
/* disable the DMA */
rs = hpi_rxdma_cfg_rdc_disable(handle, channel);
if (rs != HPI_SUCCESS) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_disable_rxdma_channel:failed (0x%x)", rs));
return (HXGE_ERROR | rs);
}
HXGE_DEBUG_MSG((hxgep, DMA_CTL, "<== hxge_disable_rxdma_channel"));
return (HXGE_OK);
}
hxge_status_t
hxge_rxdma_channel_rcrflush(p_hxge_t hxgep, uint8_t channel)
{
hpi_handle_t handle;
hxge_status_t status = HXGE_OK;
HXGE_DEBUG_MSG((hxgep, DMA_CTL,
"==> hxge_rxdma_channel_rcrflush"));
handle = HXGE_DEV_HPI_HANDLE(hxgep);
hpi_rxdma_rdc_rcr_flush(handle, channel);
HXGE_DEBUG_MSG((hxgep, DMA_CTL,
"<== hxge_rxdma_channel_rcrflush"));
return (status);
}
#define MID_INDEX(l, r) ((r + l + 1) >> 1)
#define TO_LEFT -1
#define TO_RIGHT 1
#define BOTH_RIGHT (TO_RIGHT + TO_RIGHT)
#define BOTH_LEFT (TO_LEFT + TO_LEFT)
#define IN_MIDDLE (TO_RIGHT + TO_LEFT)
#define NO_HINT 0xffffffff
/*ARGSUSED*/
hxge_status_t
hxge_rxbuf_pp_to_vp(p_hxge_t hxgep, p_rx_rbr_ring_t rbr_p,
uint8_t pktbufsz_type, uint64_t *pkt_buf_addr_pp,
uint64_t **pkt_buf_addr_p, uint32_t *bufoffset, uint32_t *msg_index)
{
int bufsize;
uint64_t pktbuf_pp;
uint64_t dvma_addr;
rxring_info_t *ring_info;
int base_side, end_side;
int r_index, l_index, anchor_index;
int found, search_done;
uint32_t offset, chunk_size, block_size, page_size_mask;
uint32_t chunk_index, block_index, total_index;
int max_iterations, iteration;
rxbuf_index_info_t *bufinfo;
HXGE_DEBUG_MSG((hxgep, RX2_CTL, "==> hxge_rxbuf_pp_to_vp"));
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: buf_pp $%p btype %d",
pkt_buf_addr_pp, pktbufsz_type));
#if defined(__i386)
pktbuf_pp = (uint64_t)(uint32_t)pkt_buf_addr_pp;
#else
pktbuf_pp = (uint64_t)pkt_buf_addr_pp;
#endif
switch (pktbufsz_type) {
case 0:
bufsize = rbr_p->pkt_buf_size0;
break;
case 1:
bufsize = rbr_p->pkt_buf_size1;
break;
case 2:
bufsize = rbr_p->pkt_buf_size2;
break;
case RCR_SINGLE_BLOCK:
bufsize = 0;
anchor_index = 0;
break;
default:
return (HXGE_ERROR);
}
if (rbr_p->num_blocks == 1) {
anchor_index = 0;
ring_info = rbr_p->ring_info;
bufinfo = (rxbuf_index_info_t *)ring_info->buffer;
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: (found, 1 block) "
"buf_pp $%p btype %d anchor_index %d bufinfo $%p",
pkt_buf_addr_pp, pktbufsz_type, anchor_index, bufinfo));
goto found_index;
}
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: buf_pp $%p btype %d anchor_index %d",
pkt_buf_addr_pp, pktbufsz_type, anchor_index));
ring_info = rbr_p->ring_info;
found = B_FALSE;
bufinfo = (rxbuf_index_info_t *)ring_info->buffer;
iteration = 0;
max_iterations = ring_info->max_iterations;
/*
* First check if this block have been seen recently. This is indicated
* by a hint which is initialized when the first buffer of the block is
* seen. The hint is reset when the last buffer of the block has been
* processed. As three block sizes are supported, three hints are kept.
* The idea behind the hints is that once the hardware uses a block
* for a buffer of that size, it will use it exclusively for that size
* and will use it until it is exhausted. It is assumed that there
* would a single block being used for the same buffer sizes at any
* given time.
*/
if (ring_info->hint[pktbufsz_type] != NO_HINT) {
anchor_index = ring_info->hint[pktbufsz_type];
dvma_addr = bufinfo[anchor_index].dvma_addr;
chunk_size = bufinfo[anchor_index].buf_size;
if ((pktbuf_pp >= dvma_addr) &&
(pktbuf_pp < (dvma_addr + chunk_size))) {
found = B_TRUE;
/*
* check if this is the last buffer in the block If so,
* then reset the hint for the size;
*/
if ((pktbuf_pp + bufsize) >= (dvma_addr + chunk_size))
ring_info->hint[pktbufsz_type] = NO_HINT;
}
}
if (found == B_FALSE) {
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: (!found)"
"buf_pp $%p btype %d anchor_index %d",
pkt_buf_addr_pp, pktbufsz_type, anchor_index));
/*
* This is the first buffer of the block of this size. Need to
* search the whole information array. the search algorithm
* uses a binary tree search algorithm. It assumes that the
* information is already sorted with increasing order info[0]
* < info[1] < info[2] .... < info[n-1] where n is the size of
* the information array
*/
r_index = rbr_p->num_blocks - 1;
l_index = 0;
search_done = B_FALSE;
anchor_index = MID_INDEX(r_index, l_index);
while (search_done == B_FALSE) {
if ((r_index == l_index) ||
(iteration >= max_iterations))
search_done = B_TRUE;
end_side = TO_RIGHT; /* to the right */
base_side = TO_LEFT; /* to the left */
/* read the DVMA address information and sort it */
dvma_addr = bufinfo[anchor_index].dvma_addr;
chunk_size = bufinfo[anchor_index].buf_size;
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: (searching)"
"buf_pp $%p btype %d "
"anchor_index %d chunk_size %d dvmaaddr $%p",
pkt_buf_addr_pp, pktbufsz_type, anchor_index,
chunk_size, dvma_addr));
if (pktbuf_pp >= dvma_addr)
base_side = TO_RIGHT; /* to the right */
if (pktbuf_pp < (dvma_addr + chunk_size))
end_side = TO_LEFT; /* to the left */
switch (base_side + end_side) {
case IN_MIDDLE:
/* found */
found = B_TRUE;
search_done = B_TRUE;
if ((pktbuf_pp + bufsize) <
(dvma_addr + chunk_size))
ring_info->hint[pktbufsz_type] =
bufinfo[anchor_index].buf_index;
break;
case BOTH_RIGHT:
/* not found: go to the right */
l_index = anchor_index + 1;
anchor_index = MID_INDEX(r_index, l_index);
break;
case BOTH_LEFT:
/* not found: go to the left */
r_index = anchor_index - 1;
anchor_index = MID_INDEX(r_index, l_index);
break;
default: /* should not come here */
return (HXGE_ERROR);
}
iteration++;
}
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: (search done)"
"buf_pp $%p btype %d anchor_index %d",
pkt_buf_addr_pp, pktbufsz_type, anchor_index));
}
if (found == B_FALSE) {
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: (search failed)"
"buf_pp $%p btype %d anchor_index %d",
pkt_buf_addr_pp, pktbufsz_type, anchor_index));
return (HXGE_ERROR);
}
found_index:
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: (FOUND1)"
"buf_pp $%p btype %d bufsize %d anchor_index %d",
pkt_buf_addr_pp, pktbufsz_type, bufsize, anchor_index));
/* index of the first block in this chunk */
chunk_index = bufinfo[anchor_index].start_index;
dvma_addr = bufinfo[anchor_index].dvma_addr;
page_size_mask = ring_info->block_size_mask;
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: (FOUND3), get chunk)"
"buf_pp $%p btype %d bufsize %d "
"anchor_index %d chunk_index %d dvma $%p",
pkt_buf_addr_pp, pktbufsz_type, bufsize,
anchor_index, chunk_index, dvma_addr));
offset = pktbuf_pp - dvma_addr; /* offset within the chunk */
block_size = rbr_p->block_size; /* System block(page) size */
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: (FOUND4), get chunk)"
"buf_pp $%p btype %d bufsize %d "
"anchor_index %d chunk_index %d dvma $%p "
"offset %d block_size %d",
pkt_buf_addr_pp, pktbufsz_type, bufsize, anchor_index,
chunk_index, dvma_addr, offset, block_size));
HXGE_DEBUG_MSG((hxgep, RX2_CTL, "==> getting total index"));
block_index = (offset / block_size); /* index within chunk */
total_index = chunk_index + block_index;
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: "
"total_index %d dvma_addr $%p "
"offset %d block_size %d "
"block_index %d ",
total_index, dvma_addr, offset, block_size, block_index));
#if defined(__i386)
*pkt_buf_addr_p = (uint64_t *)((uint32_t)bufinfo[anchor_index].kaddr +
(uint32_t)offset);
#else
*pkt_buf_addr_p = (uint64_t *)((uint64_t)bufinfo[anchor_index].kaddr +
offset);
#endif
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: "
"total_index %d dvma_addr $%p "
"offset %d block_size %d "
"block_index %d "
"*pkt_buf_addr_p $%p",
total_index, dvma_addr, offset, block_size,
block_index, *pkt_buf_addr_p));
*msg_index = total_index;
*bufoffset = (offset & page_size_mask);
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_rxbuf_pp_to_vp: get msg index: "
"msg_index %d bufoffset_index %d",
*msg_index, *bufoffset));
HXGE_DEBUG_MSG((hxgep, RX2_CTL, "<== hxge_rxbuf_pp_to_vp"));
return (HXGE_OK);
}
/*
* used by quick sort (qsort) function
* to perform comparison
*/
static int
hxge_sort_compare(const void *p1, const void *p2)
{
rxbuf_index_info_t *a, *b;
a = (rxbuf_index_info_t *)p1;
b = (rxbuf_index_info_t *)p2;
if (a->dvma_addr > b->dvma_addr)
return (1);
if (a->dvma_addr < b->dvma_addr)
return (-1);
return (0);
}
/*
* Grabbed this sort implementation from common/syscall/avl.c
*
* Generic shellsort, from K&R (1st ed, p 58.), somewhat modified.
* v = Ptr to array/vector of objs
* n = # objs in the array
* s = size of each obj (must be multiples of a word size)
* f = ptr to function to compare two objs
* returns (-1 = less than, 0 = equal, 1 = greater than
*/
void
hxge_ksort(caddr_t v, int n, int s, int (*f) ())
{
int g, i, j, ii;
unsigned int *p1, *p2;
unsigned int tmp;
/* No work to do */
if (v == NULL || n <= 1)
return;
/* Sanity check on arguments */
ASSERT(((uintptr_t)v & 0x3) == 0 && (s & 0x3) == 0);
ASSERT(s > 0);
for (g = n / 2; g > 0; g /= 2) {
for (i = g; i < n; i++) {
for (j = i - g; j >= 0 &&
(*f) (v + j * s, v + (j + g) * s) == 1; j -= g) {
p1 = (unsigned *)(v + j * s);
p2 = (unsigned *)(v + (j + g) * s);
for (ii = 0; ii < s / 4; ii++) {
tmp = *p1;
*p1++ = *p2;
*p2++ = tmp;
}
}
}
}
}
/*
* Initialize data structures required for rxdma
* buffer dvma->vmem address lookup
*/
/*ARGSUSED*/
static hxge_status_t
hxge_rxbuf_index_info_init(p_hxge_t hxgep, p_rx_rbr_ring_t rbrp)
{
int index;
rxring_info_t *ring_info;
int max_iteration = 0, max_index = 0;
HXGE_DEBUG_MSG((hxgep, DMA_CTL, "==> hxge_rxbuf_index_info_init"));
ring_info = rbrp->ring_info;
ring_info->hint[0] = NO_HINT;
ring_info->hint[1] = NO_HINT;
ring_info->hint[2] = NO_HINT;
ring_info->hint[3] = NO_HINT;
max_index = rbrp->num_blocks;
/* read the DVMA address information and sort it */
/* do init of the information array */
HXGE_DEBUG_MSG((hxgep, DMA2_CTL,
" hxge_rxbuf_index_info_init Sort ptrs"));
/* sort the array */
hxge_ksort((void *) ring_info->buffer, max_index,
sizeof (rxbuf_index_info_t), hxge_sort_compare);
for (index = 0; index < max_index; index++) {
HXGE_DEBUG_MSG((hxgep, DMA2_CTL,
" hxge_rxbuf_index_info_init: sorted chunk %d "
" ioaddr $%p kaddr $%p size %x",
index, ring_info->buffer[index].dvma_addr,
ring_info->buffer[index].kaddr,
ring_info->buffer[index].buf_size));
}
max_iteration = 0;
while (max_index >= (1ULL << max_iteration))
max_iteration++;
ring_info->max_iterations = max_iteration + 1;
HXGE_DEBUG_MSG((hxgep, DMA2_CTL,
" hxge_rxbuf_index_info_init Find max iter %d",
ring_info->max_iterations));
HXGE_DEBUG_MSG((hxgep, DMA_CTL, "<== hxge_rxbuf_index_info_init"));
return (HXGE_OK);
}
/*ARGSUSED*/
void
hxge_dump_rcr_entry(p_hxge_t hxgep, p_rcr_entry_t entry_p)
{
#ifdef HXGE_DEBUG
uint32_t bptr;
uint64_t pp;
bptr = entry_p->bits.pkt_buf_addr;
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"\trcr entry $%p "
"\trcr entry 0x%0llx "
"\trcr entry 0x%08x "
"\trcr entry 0x%08x "
"\tvalue 0x%0llx\n"
"\tmulti = %d\n"
"\tpkt_type = 0x%x\n"
"\terror = 0x%04x\n"
"\tl2_len = %d\n"
"\tpktbufsize = %d\n"
"\tpkt_buf_addr = $%p\n"
"\tpkt_buf_addr (<< 6) = $%p\n",
entry_p,
*(int64_t *)entry_p,
*(int32_t *)entry_p,
*(int32_t *)((char *)entry_p + 32),
entry_p->value,
entry_p->bits.multi,
entry_p->bits.pkt_type,
entry_p->bits.error,
entry_p->bits.l2_len,
entry_p->bits.pktbufsz,
bptr,
entry_p->bits.pkt_buf_addr_l));
pp = (entry_p->value & RCR_PKT_BUF_ADDR_MASK) <<
RCR_PKT_BUF_ADDR_SHIFT;
HXGE_DEBUG_MSG((hxgep, RX_CTL, "rcr pp 0x%llx l2 len %d",
pp, (*(int64_t *)entry_p >> 40) & 0x3fff));
#endif
}
/*ARGSUSED*/
void
hxge_rxdma_stop(p_hxge_t hxgep)
{
HXGE_DEBUG_MSG((hxgep, RX_CTL, "==> hxge_rxdma_stop"));
MUTEX_ENTER(&hxgep->vmac_lock);
(void) hxge_rx_vmac_disable(hxgep);
(void) hxge_rxdma_hw_mode(hxgep, HXGE_DMA_STOP);
MUTEX_EXIT(&hxgep->vmac_lock);
HXGE_DEBUG_MSG((hxgep, RX_CTL, "<== hxge_rxdma_stop"));
}
void
hxge_rxdma_stop_reinit(p_hxge_t hxgep)
{
HXGE_DEBUG_MSG((hxgep, RX_CTL, "==> hxge_rxdma_stop_reinit"));
(void) hxge_rxdma_stop(hxgep);
(void) hxge_uninit_rxdma_channels(hxgep);
(void) hxge_init_rxdma_channels(hxgep);
MUTEX_ENTER(&hxgep->vmac_lock);
(void) hxge_rx_vmac_enable(hxgep);
MUTEX_EXIT(&hxgep->vmac_lock);
HXGE_DEBUG_MSG((hxgep, RX_CTL, "<== hxge_rxdma_stop_reinit"));
}
hxge_status_t
hxge_rxdma_hw_mode(p_hxge_t hxgep, boolean_t enable)
{
int i, ndmas;
uint16_t channel;
p_rx_rbr_rings_t rx_rbr_rings;
p_rx_rbr_ring_t *rbr_rings;
hpi_handle_t handle;
hpi_status_t rs = HPI_SUCCESS;
hxge_status_t status = HXGE_OK;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_hw_mode: mode %d", enable));
if (!(hxgep->drv_state & STATE_HW_INITIALIZED)) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_rxdma_mode: not initialized"));
return (HXGE_ERROR);
}
rx_rbr_rings = hxgep->rx_rbr_rings;
if (rx_rbr_rings == NULL) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_rxdma_mode: NULL ring pointer"));
return (HXGE_ERROR);
}
if (rx_rbr_rings->rbr_rings == NULL) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_rxdma_mode: NULL rbr rings pointer"));
return (HXGE_ERROR);
}
ndmas = rx_rbr_rings->ndmas;
if (!ndmas) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_rxdma_mode: no channel"));
return (HXGE_ERROR);
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_mode (ndmas %d)", ndmas));
rbr_rings = rx_rbr_rings->rbr_rings;
handle = HXGE_DEV_HPI_HANDLE(hxgep);
for (i = 0; i < ndmas; i++) {
if (rbr_rings == NULL || rbr_rings[i] == NULL) {
continue;
}
channel = rbr_rings[i]->rdc;
if (enable) {
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_hw_mode: channel %d (enable)",
channel));
rs = hpi_rxdma_cfg_rdc_enable(handle, channel);
} else {
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_hw_mode: channel %d (disable)",
channel));
rs = hpi_rxdma_cfg_rdc_disable(handle, channel);
}
}
status = ((rs == HPI_SUCCESS) ? HXGE_OK : HXGE_ERROR | rs);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"<== hxge_rxdma_hw_mode: status 0x%x", status));
return (status);
}
/*
* Static functions start here.
*/
static p_rx_msg_t
hxge_allocb(size_t size, uint32_t pri, p_hxge_dma_common_t dmabuf_p)
{
p_rx_msg_t hxge_mp = NULL;
p_hxge_dma_common_t dmamsg_p;
uchar_t *buffer;
hxge_mp = KMEM_ZALLOC(sizeof (rx_msg_t), KM_NOSLEEP);
if (hxge_mp == NULL) {
HXGE_ERROR_MSG((NULL, HXGE_ERR_CTL,
"Allocation of a rx msg failed."));
goto hxge_allocb_exit;
}
hxge_mp->use_buf_pool = B_FALSE;
if (dmabuf_p) {
hxge_mp->use_buf_pool = B_TRUE;
dmamsg_p = (p_hxge_dma_common_t)&hxge_mp->buf_dma;
*dmamsg_p = *dmabuf_p;
dmamsg_p->nblocks = 1;
dmamsg_p->block_size = size;
dmamsg_p->alength = size;
buffer = (uchar_t *)dmabuf_p->kaddrp;
dmabuf_p->kaddrp = (void *)((char *)dmabuf_p->kaddrp + size);
dmabuf_p->ioaddr_pp = (void *)
((char *)dmabuf_p->ioaddr_pp + size);
dmabuf_p->alength -= size;
dmabuf_p->offset += size;
dmabuf_p->dma_cookie.dmac_laddress += size;
dmabuf_p->dma_cookie.dmac_size -= size;
} else {
buffer = KMEM_ALLOC(size, KM_NOSLEEP);
if (buffer == NULL) {
HXGE_ERROR_MSG((NULL, HXGE_ERR_CTL,
"Allocation of a receive page failed."));
goto hxge_allocb_fail1;
}
}
hxge_mp->rx_mblk_p = desballoc(buffer, size, pri, &hxge_mp->freeb);
if (hxge_mp->rx_mblk_p == NULL) {
HXGE_ERROR_MSG((NULL, HXGE_ERR_CTL, "desballoc failed."));
goto hxge_allocb_fail2;
}
hxge_mp->buffer = buffer;
hxge_mp->block_size = size;
hxge_mp->freeb.free_func = (void (*) ()) hxge_freeb;
hxge_mp->freeb.free_arg = (caddr_t)hxge_mp;
hxge_mp->ref_cnt = 1;
hxge_mp->free = B_TRUE;
hxge_mp->rx_use_bcopy = B_FALSE;
atomic_inc_32(&hxge_mblks_pending);
goto hxge_allocb_exit;
hxge_allocb_fail2:
if (!hxge_mp->use_buf_pool) {
KMEM_FREE(buffer, size);
}
hxge_allocb_fail1:
KMEM_FREE(hxge_mp, sizeof (rx_msg_t));
hxge_mp = NULL;
hxge_allocb_exit:
return (hxge_mp);
}
p_mblk_t
hxge_dupb(p_rx_msg_t hxge_mp, uint_t offset, size_t size)
{
p_mblk_t mp;
HXGE_DEBUG_MSG((NULL, MEM_CTL, "==> hxge_dupb"));
HXGE_DEBUG_MSG((NULL, MEM_CTL, "hxge_mp = $%p "
"offset = 0x%08X " "size = 0x%08X", hxge_mp, offset, size));
mp = desballoc(&hxge_mp->buffer[offset], size, 0, &hxge_mp->freeb);
if (mp == NULL) {
HXGE_DEBUG_MSG((NULL, RX_CTL, "desballoc failed"));
goto hxge_dupb_exit;
}
atomic_inc_32(&hxge_mp->ref_cnt);
hxge_dupb_exit:
HXGE_DEBUG_MSG((NULL, MEM_CTL, "<== hxge_dupb mp = $%p", hxge_mp));
return (mp);
}
p_mblk_t
hxge_dupb_bcopy(p_rx_msg_t hxge_mp, uint_t offset, size_t size)
{
p_mblk_t mp;
uchar_t *dp;
mp = allocb(size + HXGE_RXBUF_EXTRA, 0);
if (mp == NULL) {
HXGE_DEBUG_MSG((NULL, RX_CTL, "desballoc failed"));
goto hxge_dupb_bcopy_exit;
}
dp = mp->b_rptr = mp->b_rptr + HXGE_RXBUF_EXTRA;
bcopy((void *) &hxge_mp->buffer[offset], dp, size);
mp->b_wptr = dp + size;
hxge_dupb_bcopy_exit:
HXGE_DEBUG_MSG((NULL, MEM_CTL, "<== hxge_dupb mp = $%p", hxge_mp));
return (mp);
}
void hxge_post_page(p_hxge_t hxgep, p_rx_rbr_ring_t rx_rbr_p,
p_rx_msg_t rx_msg_p);
void
hxge_post_page(p_hxge_t hxgep, p_rx_rbr_ring_t rx_rbr_p, p_rx_msg_t rx_msg_p)
{
HXGE_DEBUG_MSG((hxgep, RX_CTL, "==> hxge_post_page"));
/* Reuse this buffer */
rx_msg_p->free = B_FALSE;
rx_msg_p->cur_usage_cnt = 0;
rx_msg_p->max_usage_cnt = 0;
rx_msg_p->pkt_buf_size = 0;
if (rx_rbr_p->rbr_use_bcopy) {
rx_msg_p->rx_use_bcopy = B_FALSE;
atomic_dec_32(&rx_rbr_p->rbr_consumed);
}
atomic_dec_32(&rx_rbr_p->rbr_used);
/*
* Get the rbr header pointer and its offset index.
*/
rx_rbr_p->rbr_wr_index = ((rx_rbr_p->rbr_wr_index + 1) &
rx_rbr_p->rbr_wrap_mask);
rx_rbr_p->rbr_desc_vp[rx_rbr_p->rbr_wr_index] = rx_msg_p->shifted_addr;
/*
* Accumulate some buffers in the ring before re-enabling the
* DMA channel, if rbr empty was signaled.
*/
hpi_rxdma_rdc_rbr_kick(HXGE_DEV_HPI_HANDLE(hxgep), rx_rbr_p->rdc, 1);
if (rx_rbr_p->rbr_is_empty && (rx_rbr_p->rbb_max -
rx_rbr_p->rbr_used) >= HXGE_RBR_EMPTY_THRESHOLD) {
hxge_rbr_empty_restore(hxgep, rx_rbr_p);
}
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_post_page (channel %d post_next_index %d)",
rx_rbr_p->rdc, rx_rbr_p->rbr_wr_index));
HXGE_DEBUG_MSG((hxgep, RX_CTL, "<== hxge_post_page"));
}
void
hxge_freeb(p_rx_msg_t rx_msg_p)
{
size_t size;
uchar_t *buffer = NULL;
int ref_cnt;
boolean_t free_state = B_FALSE;
rx_rbr_ring_t *ring = rx_msg_p->rx_rbr_p;
HXGE_DEBUG_MSG((NULL, MEM2_CTL, "==> hxge_freeb"));
HXGE_DEBUG_MSG((NULL, MEM2_CTL,
"hxge_freeb:rx_msg_p = $%p (block pending %d)",
rx_msg_p, hxge_mblks_pending));
if (ring == NULL)
return;
/*
* This is to prevent posting activities while we are recovering
* from fatal errors. This should not be a performance drag since
* ref_cnt != 0 most times.
*/
if (ring->rbr_state == RBR_POSTING)
MUTEX_ENTER(&ring->post_lock);
/*
* First we need to get the free state, then
* atomic decrement the reference count to prevent
* the race condition with the interrupt thread that
* is processing a loaned up buffer block.
*/
free_state = rx_msg_p->free;
ref_cnt = atomic_dec_32_nv(&rx_msg_p->ref_cnt);
if (!ref_cnt) {
atomic_dec_32(&hxge_mblks_pending);
buffer = rx_msg_p->buffer;
size = rx_msg_p->block_size;
HXGE_DEBUG_MSG((NULL, MEM2_CTL, "hxge_freeb: "
"will free: rx_msg_p = $%p (block pending %d)",
rx_msg_p, hxge_mblks_pending));
if (!rx_msg_p->use_buf_pool) {
KMEM_FREE(buffer, size);
}
KMEM_FREE(rx_msg_p, sizeof (rx_msg_t));
/*
* Decrement the receive buffer ring's reference
* count, too.
*/
atomic_dec_32(&ring->rbr_ref_cnt);
/*
* Free the receive buffer ring, iff
* 1. all the receive buffers have been freed
* 2. and we are in the proper state (that is,
* we are not UNMAPPING).
*/
if (ring->rbr_ref_cnt == 0 &&
ring->rbr_state == RBR_UNMAPPED) {
KMEM_FREE(ring, sizeof (*ring));
/* post_lock has been destroyed already */
return;
}
}
/*
* Repost buffer.
*/
if (free_state && (ref_cnt == 1)) {
HXGE_DEBUG_MSG((NULL, RX_CTL,
"hxge_freeb: post page $%p:", rx_msg_p));
if (ring->rbr_state == RBR_POSTING)
hxge_post_page(rx_msg_p->hxgep, ring, rx_msg_p);
}
if (ring->rbr_state == RBR_POSTING)
MUTEX_EXIT(&ring->post_lock);
HXGE_DEBUG_MSG((NULL, MEM2_CTL, "<== hxge_freeb"));
}
uint_t
hxge_rx_intr(caddr_t arg1, caddr_t arg2)
{
p_hxge_ring_handle_t rhp;
p_hxge_ldv_t ldvp = (p_hxge_ldv_t)arg1;
p_hxge_t hxgep = (p_hxge_t)arg2;
p_hxge_ldg_t ldgp;
uint8_t channel;
hpi_handle_t handle;
rdc_stat_t cs;
p_rx_rcr_ring_t ring;
p_rx_rbr_ring_t rbrp;
mblk_t *mp = NULL;
if (ldvp == NULL) {
HXGE_DEBUG_MSG((NULL, RX_INT_CTL,
"<== hxge_rx_intr: arg2 $%p arg1 $%p", hxgep, ldvp));
return (DDI_INTR_UNCLAIMED);
}
if (arg2 == NULL || (void *) ldvp->hxgep != arg2) {
hxgep = ldvp->hxgep;
}
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL,
"==> hxge_rx_intr: arg2 $%p arg1 $%p", hxgep, ldvp));
/*
* This interrupt handler is for a specific receive dma channel.
*/
handle = HXGE_DEV_HPI_HANDLE(hxgep);
/*
* Get the control and status for this channel.
*/
channel = ldvp->vdma_index;
ring = hxgep->rx_rcr_rings->rcr_rings[channel];
rhp = &hxgep->rx_ring_handles[channel];
ldgp = ldvp->ldgp;
ASSERT(ring != NULL);
#if defined(DEBUG)
if (rhp->started) {
ASSERT(ring->ldgp == ldgp);
ASSERT(ring->ldvp == ldvp);
}
#endif
MUTEX_ENTER(&ring->lock);
if (!ring->poll_flag) {
RXDMA_REG_READ64(handle, RDC_STAT, channel, &cs.value);
cs.bits.ptrread = 0;
cs.bits.pktread = 0;
RXDMA_REG_WRITE64(handle, RDC_STAT, channel, cs.value);
/*
* Process packets, if we are not in polling mode, the ring is
* started and the interface is started. The MAC layer under
* load will be operating in polling mode for RX traffic.
*/
if ((rhp->started) &&
(hxgep->hxge_mac_state == HXGE_MAC_STARTED)) {
mp = hxge_rx_pkts(hxgep, ldvp->vdma_index,
ldvp, ring, cs, -1);
}
/* Process error events. */
if (cs.value & RDC_STAT_ERROR) {
MUTEX_EXIT(&ring->lock);
(void) hxge_rx_err_evnts(hxgep, channel, ldvp, cs);
MUTEX_ENTER(&ring->lock);
}
/*
* Enable the mailbox update interrupt if we want to use
* mailbox. We probably don't need to use mailbox as it only
* saves us one pio read. Also write 1 to rcrthres and
* rcrto to clear these two edge triggered bits.
*/
rbrp = hxgep->rx_rbr_rings->rbr_rings[channel];
MUTEX_ENTER(&rbrp->post_lock);
if (!rbrp->rbr_is_empty) {
cs.value = 0;
cs.bits.mex = 1;
cs.bits.ptrread = 0;
cs.bits.pktread = 0;
RXDMA_REG_WRITE64(handle, RDC_STAT, channel, cs.value);
}
MUTEX_EXIT(&rbrp->post_lock);
if (ldgp->nldvs == 1) {
/*
* Re-arm the group.
*/
(void) hpi_intr_ldg_mgmt_set(handle, ldgp->ldg, B_TRUE,
ldgp->ldg_timer);
}
} else if ((ldgp->nldvs == 1) && (ring->poll_flag)) {
/*
* Disarm the group, if we are not a shared interrupt.
*/
(void) hpi_intr_ldg_mgmt_set(handle, ldgp->ldg, B_FALSE, 0);
} else if (ring->poll_flag) {
/*
* Mask-off this device from the group.
*/
(void) hpi_intr_mask_set(handle, ldvp->ldv, 1);
}
MUTEX_EXIT(&ring->lock);
/*
* Send the packets up the stack.
*/
if (mp != NULL) {
mac_rx_ring(hxgep->mach, ring->rcr_mac_handle, mp,
ring->rcr_gen_num);
}
HXGE_DEBUG_MSG((NULL, RX_INT_CTL, "<== hxge_rx_intr"));
return (DDI_INTR_CLAIMED);
}
/*
* Enable polling for a ring. Interrupt for the ring is disabled when
* the hxge interrupt comes (see hxge_rx_intr).
*/
int
hxge_enable_poll(void *arg)
{
p_hxge_ring_handle_t ring_handle = (p_hxge_ring_handle_t)arg;
p_rx_rcr_ring_t ringp;
p_hxge_t hxgep;
p_hxge_ldg_t ldgp;
if (ring_handle == NULL) {
ASSERT(ring_handle != NULL);
return (1);
}
hxgep = ring_handle->hxgep;
ringp = hxgep->rx_rcr_rings->rcr_rings[ring_handle->index];
MUTEX_ENTER(&ringp->lock);
/*
* Are we already polling ?
*/
if (ringp->poll_flag) {
MUTEX_EXIT(&ringp->lock);
return (1);
}
ldgp = ringp->ldgp;
if (ldgp == NULL) {
MUTEX_EXIT(&ringp->lock);
return (1);
}
/*
* Enable polling
*/
ringp->poll_flag = B_TRUE;
MUTEX_EXIT(&ringp->lock);
return (0);
}
/*
* Disable polling for a ring and enable its interrupt.
*/
int
hxge_disable_poll(void *arg)
{
p_hxge_ring_handle_t ring_handle = (p_hxge_ring_handle_t)arg;
p_rx_rcr_ring_t ringp;
p_hxge_t hxgep;
if (ring_handle == NULL) {
ASSERT(ring_handle != NULL);
return (0);
}
hxgep = ring_handle->hxgep;
ringp = hxgep->rx_rcr_rings->rcr_rings[ring_handle->index];
MUTEX_ENTER(&ringp->lock);
/*
* Disable polling: enable interrupt
*/
if (ringp->poll_flag) {
hpi_handle_t handle;
rdc_stat_t cs;
p_hxge_ldg_t ldgp;
/*
* Get the control and status for this channel.
*/
handle = HXGE_DEV_HPI_HANDLE(hxgep);
/*
* Rearm this logical group if this is a single device
* group.
*/
ldgp = ringp->ldgp;
if (ldgp == NULL) {
MUTEX_EXIT(&ringp->lock);
return (1);
}
ringp->poll_flag = B_FALSE;
/*
* Enable mailbox update, to start interrupts again.
*/
cs.value = 0ULL;
cs.bits.mex = 1;
cs.bits.pktread = 0;
cs.bits.ptrread = 0;
RXDMA_REG_WRITE64(handle, RDC_STAT, ringp->rdc, cs.value);
if (ldgp->nldvs == 1) {
/*
* Re-arm the group, since it is the only member
* of the group.
*/
(void) hpi_intr_ldg_mgmt_set(handle, ldgp->ldg, B_TRUE,
ldgp->ldg_timer);
} else {
/*
* Mask-on interrupts for the device and re-arm
* the group.
*/
(void) hpi_intr_mask_set(handle, ringp->ldvp->ldv, 0);
(void) hpi_intr_ldg_mgmt_set(handle, ldgp->ldg, B_TRUE,
ldgp->ldg_timer);
}
}
MUTEX_EXIT(&ringp->lock);
return (0);
}
/*
* Poll 'bytes_to_pickup' bytes of message from the rx ring.
*/
mblk_t *
hxge_rx_poll(void *arg, int bytes_to_pickup)
{
p_hxge_ring_handle_t rhp = (p_hxge_ring_handle_t)arg;
p_rx_rcr_ring_t ring;
p_hxge_t hxgep;
hpi_handle_t handle;
rdc_stat_t cs;
mblk_t *mblk;
p_hxge_ldv_t ldvp;
hxgep = rhp->hxgep;
/*
* Get the control and status for this channel.
*/
handle = HXGE_DEV_HPI_HANDLE(hxgep);
ring = hxgep->rx_rcr_rings->rcr_rings[rhp->index];
MUTEX_ENTER(&ring->lock);
ASSERT(ring->poll_flag == B_TRUE);
ASSERT(rhp->started);
if (!ring->poll_flag) {
MUTEX_EXIT(&ring->lock);
return ((mblk_t *)NULL);
}
/*
* Get the control and status bits for the ring.
*/
RXDMA_REG_READ64(handle, RDC_STAT, rhp->index, &cs.value);
cs.bits.ptrread = 0;
cs.bits.pktread = 0;
RXDMA_REG_WRITE64(handle, RDC_STAT, rhp->index, cs.value);
/*
* Process packets.
*/
mblk = hxge_rx_pkts(hxgep, ring->ldvp->vdma_index,
ring->ldvp, ring, cs, bytes_to_pickup);
ldvp = ring->ldvp;
/*
* Process Error Events.
*/
if (ldvp && (cs.value & RDC_STAT_ERROR)) {
/*
* Recovery routines will grab the RCR ring lock.
*/
MUTEX_EXIT(&ring->lock);
(void) hxge_rx_err_evnts(hxgep, ldvp->vdma_index, ldvp, cs);
MUTEX_ENTER(&ring->lock);
}
MUTEX_EXIT(&ring->lock);
return (mblk);
}
/*ARGSUSED*/
mblk_t *
hxge_rx_pkts(p_hxge_t hxgep, uint_t vindex, p_hxge_ldv_t ldvp,
p_rx_rcr_ring_t rcrp, rdc_stat_t cs, int bytes_to_read)
{
hpi_handle_t handle;
uint8_t channel;
uint32_t comp_rd_index;
p_rcr_entry_t rcr_desc_rd_head_p;
p_rcr_entry_t rcr_desc_rd_head_pp;
p_mblk_t nmp, mp_cont, head_mp, *tail_mp;
uint16_t qlen, nrcr_read, npkt_read;
uint32_t qlen_hw, npkts, num_rcrs;
uint32_t invalid_rcr_entry;
boolean_t multi;
rdc_stat_t pktcs;
rdc_rcr_cfg_b_t rcr_cfg_b;
uint64_t rcr_head_index, rcr_tail_index;
uint64_t rcr_tail;
rdc_rcr_tail_t rcr_tail_reg;
p_hxge_rx_ring_stats_t rdc_stats;
int totallen = 0;
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL, "==> hxge_rx_pkts:vindex %d "
"channel %d", vindex, ldvp->channel));
handle = HXGE_DEV_HPI_HANDLE(hxgep);
channel = rcrp->rdc;
if (channel != ldvp->channel) {
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL, "==> hxge_rx_pkts:index %d "
"channel %d, and rcr channel %d not matched.",
vindex, ldvp->channel, channel));
return (NULL);
}
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL,
"==> hxge_rx_pkts: START: rcr channel %d "
"head_p $%p head_pp $%p index %d ",
channel, rcrp->rcr_desc_rd_head_p,
rcrp->rcr_desc_rd_head_pp, rcrp->comp_rd_index));
(void) hpi_rxdma_rdc_rcr_qlen_get(handle, channel, &qlen);
RXDMA_REG_READ64(handle, RDC_RCR_TAIL, channel, &rcr_tail_reg.value);
rcr_tail = rcr_tail_reg.bits.tail;
if (!qlen) {
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL,
"<== hxge_rx_pkts:rcr channel %d qlen %d (no pkts)",
channel, qlen));
return (NULL);
}
HXGE_DEBUG_MSG((hxgep, RX_CTL, "==> hxge_rx_pkts:rcr channel %d "
"qlen %d", channel, qlen));
comp_rd_index = rcrp->comp_rd_index;
rcr_desc_rd_head_p = rcrp->rcr_desc_rd_head_p;
rcr_desc_rd_head_pp = rcrp->rcr_desc_rd_head_pp;
nrcr_read = npkt_read = 0;
if (hxgep->rdc_first_intr[channel])
qlen_hw = qlen;
else
qlen_hw = qlen - 1;
head_mp = NULL;
tail_mp = &head_mp;
nmp = mp_cont = NULL;
multi = B_FALSE;
rcr_head_index = rcrp->rcr_desc_rd_head_p - rcrp->rcr_desc_first_p;
rcr_tail_index = rcr_tail - rcrp->rcr_tail_begin;
if (rcr_tail_index >= rcr_head_index) {
num_rcrs = rcr_tail_index - rcr_head_index;
} else {
/* rcr_tail has wrapped around */
num_rcrs = (rcrp->comp_size - rcr_head_index) + rcr_tail_index;
}
npkts = hxge_scan_for_last_eop(rcrp, rcr_desc_rd_head_p, num_rcrs);
if (!npkts)
return (NULL);
if (qlen_hw > npkts) {
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL,
"Channel %d, rcr_qlen from reg %d and from rcr_tail %d\n",
channel, qlen_hw, qlen_sw));
qlen_hw = npkts;
}
while (qlen_hw) {
#ifdef HXGE_DEBUG
hxge_dump_rcr_entry(hxgep, rcr_desc_rd_head_p);
#endif
/*
* Process one completion ring entry.
*/
invalid_rcr_entry = 0;
hxge_receive_packet(hxgep,
rcrp, rcr_desc_rd_head_p, &multi, &nmp, &mp_cont,
&invalid_rcr_entry);
if (invalid_rcr_entry != 0) {
rdc_stats = rcrp->rdc_stats;
rdc_stats->rcr_invalids++;
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL,
"Channel %d could only read 0x%x packets, "
"but 0x%x pending\n", channel, npkt_read, qlen_hw));
break;
}
/*
* message chaining modes (nemo msg chaining)
*/
if (nmp) {
nmp->b_next = NULL;
if (!multi && !mp_cont) { /* frame fits a partition */
*tail_mp = nmp;
tail_mp = &nmp->b_next;
nmp = NULL;
} else if (multi && !mp_cont) { /* first segment */
*tail_mp = nmp;
tail_mp = &nmp->b_cont;
} else if (multi && mp_cont) { /* mid of multi segs */
*tail_mp = mp_cont;
tail_mp = &mp_cont->b_cont;
} else if (!multi && mp_cont) { /* last segment */
*tail_mp = mp_cont;
tail_mp = &nmp->b_next;
totallen += MBLKL(mp_cont);
nmp = NULL;
}
}
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL,
"==> hxge_rx_pkts: loop: rcr channel %d "
"before updating: multi %d "
"nrcr_read %d "
"npk read %d "
"head_pp $%p index %d ",
channel, multi,
nrcr_read, npkt_read, rcr_desc_rd_head_pp, comp_rd_index));
if (!multi) {
qlen_hw--;
npkt_read++;
}
/*
* Update the next read entry.
*/
comp_rd_index = NEXT_ENTRY(comp_rd_index,
rcrp->comp_wrap_mask);
rcr_desc_rd_head_p = NEXT_ENTRY_PTR(rcr_desc_rd_head_p,
rcrp->rcr_desc_first_p, rcrp->rcr_desc_last_p);
nrcr_read++;
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL,
"<== hxge_rx_pkts: (SAM, process one packet) "
"nrcr_read %d", nrcr_read));
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL,
"==> hxge_rx_pkts: loop: rcr channel %d "
"multi %d nrcr_read %d npk read %d head_pp $%p index %d ",
channel, multi, nrcr_read, npkt_read, rcr_desc_rd_head_pp,
comp_rd_index));
if ((bytes_to_read != -1) &&
(totallen >= bytes_to_read)) {
break;
}
}
rcrp->rcr_desc_rd_head_pp = rcr_desc_rd_head_pp;
rcrp->comp_rd_index = comp_rd_index;
rcrp->rcr_desc_rd_head_p = rcr_desc_rd_head_p;
if ((hxgep->intr_timeout != rcrp->intr_timeout) ||
(hxgep->intr_threshold != rcrp->intr_threshold)) {
rcrp->intr_timeout = hxgep->intr_timeout;
rcrp->intr_threshold = hxgep->intr_threshold;
rcr_cfg_b.value = 0x0ULL;
if (rcrp->intr_timeout)
rcr_cfg_b.bits.entout = 1;
rcr_cfg_b.bits.timeout = rcrp->intr_timeout;
rcr_cfg_b.bits.pthres = rcrp->intr_threshold;
RXDMA_REG_WRITE64(handle, RDC_RCR_CFG_B,
channel, rcr_cfg_b.value);
}
pktcs.value = 0;
if (hxgep->rdc_first_intr[channel] && (npkt_read > 0)) {
hxgep->rdc_first_intr[channel] = B_FALSE;
pktcs.bits.pktread = npkt_read - 1;
} else
pktcs.bits.pktread = npkt_read;
pktcs.bits.ptrread = nrcr_read;
RXDMA_REG_WRITE64(handle, RDC_STAT, channel, pktcs.value);
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL,
"==> hxge_rx_pkts: EXIT: rcr channel %d "
"head_pp $%p index %016llx ",
channel, rcrp->rcr_desc_rd_head_pp, rcrp->comp_rd_index));
HXGE_DEBUG_MSG((hxgep, RX_INT_CTL, "<== hxge_rx_pkts"));
return (head_mp);
}
#define RCR_ENTRY_PATTERN 0x5a5a6b6b7c7c8d8dULL
#define NO_PORT_BIT 0x20
#define L4_CS_EQ_BIT 0x40
static uint32_t hxge_scan_for_last_eop(p_rx_rcr_ring_t rcrp,
p_rcr_entry_t rcr_desc_rd_head_p, uint32_t num_rcrs)
{
uint64_t rcr_entry;
uint32_t rcrs = 0;
uint32_t pkts = 0;
while (rcrs < num_rcrs) {
rcr_entry = *((uint64_t *)rcr_desc_rd_head_p);
if ((rcr_entry == 0x0) || (rcr_entry == RCR_ENTRY_PATTERN))
break;
if (!(rcr_entry & RCR_MULTI_MASK))
pkts++;
rcr_desc_rd_head_p = NEXT_ENTRY_PTR(rcr_desc_rd_head_p,
rcrp->rcr_desc_first_p, rcrp->rcr_desc_last_p);
rcrs++;
}
return (pkts);
}
/*ARGSUSED*/
void
hxge_receive_packet(p_hxge_t hxgep, p_rx_rcr_ring_t rcr_p,
p_rcr_entry_t rcr_desc_rd_head_p, boolean_t *multi_p, mblk_t **mp,
mblk_t **mp_cont, uint32_t *invalid_rcr_entry)
{
p_mblk_t nmp = NULL;
uint64_t multi;
uint8_t channel;
boolean_t first_entry = B_TRUE;
boolean_t is_tcp_udp = B_FALSE;
boolean_t buffer_free = B_FALSE;
boolean_t error_send_up = B_FALSE;
uint8_t error_type;
uint16_t l2_len;
uint16_t skip_len;
uint8_t pktbufsz_type;
uint64_t rcr_entry;
uint64_t *pkt_buf_addr_pp;
uint64_t *pkt_buf_addr_p;
uint32_t buf_offset;
uint32_t bsize;
uint32_t msg_index;
p_rx_rbr_ring_t rx_rbr_p;
p_rx_msg_t *rx_msg_ring_p;
p_rx_msg_t rx_msg_p;
uint16_t sw_offset_bytes = 0, hdr_size = 0;
hxge_status_t status = HXGE_OK;
boolean_t is_valid = B_FALSE;
p_hxge_rx_ring_stats_t rdc_stats;
uint32_t bytes_read;
uint8_t header0 = 0;
uint8_t header1 = 0;
uint64_t pkt_type;
uint8_t no_port_bit = 0;
uint8_t l4_cs_eq_bit = 0;
channel = rcr_p->rdc;
HXGE_DEBUG_MSG((hxgep, RX2_CTL, "==> hxge_receive_packet"));
first_entry = (*mp == NULL) ? B_TRUE : B_FALSE;
rcr_entry = *((uint64_t *)rcr_desc_rd_head_p);
/* Verify the content of the rcr_entry for a hardware bug workaround */
if ((rcr_entry == 0x0) || (rcr_entry == RCR_ENTRY_PATTERN)) {
*invalid_rcr_entry = 1;
HXGE_DEBUG_MSG((hxgep, RX2_CTL, "hxge_receive_packet "
"Channel %d invalid RCR entry 0x%llx found, returning\n",
channel, (long long) rcr_entry));
return;
}
*((uint64_t *)rcr_desc_rd_head_p) = RCR_ENTRY_PATTERN;
multi = (rcr_entry & RCR_MULTI_MASK);
pkt_type = (rcr_entry & RCR_PKT_TYPE_MASK);
error_type = ((rcr_entry & RCR_ERROR_MASK) >> RCR_ERROR_SHIFT);
l2_len = ((rcr_entry & RCR_L2_LEN_MASK) >> RCR_L2_LEN_SHIFT);
/*
* Hardware does not strip the CRC due bug ID 11451 where
* the hardware mis handles minimum size packets.
*/
l2_len -= ETHERFCSL;
pktbufsz_type = ((rcr_entry & RCR_PKTBUFSZ_MASK) >>
RCR_PKTBUFSZ_SHIFT);
#if defined(__i386)
pkt_buf_addr_pp = (uint64_t *)(uint32_t)((rcr_entry &
RCR_PKT_BUF_ADDR_MASK) << RCR_PKT_BUF_ADDR_SHIFT);
#else
pkt_buf_addr_pp = (uint64_t *)((rcr_entry & RCR_PKT_BUF_ADDR_MASK) <<
RCR_PKT_BUF_ADDR_SHIFT);
#endif
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: entryp $%p entry 0x%0llx "
"pkt_buf_addr_pp $%p l2_len %d multi %d "
"error_type 0x%x pktbufsz_type %d ",
rcr_desc_rd_head_p, rcr_entry, pkt_buf_addr_pp, l2_len,
multi, error_type, pktbufsz_type));
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: entryp $%p entry 0x%0llx "
"pkt_buf_addr_pp $%p l2_len %d multi %d "
"error_type 0x%x ", rcr_desc_rd_head_p,
rcr_entry, pkt_buf_addr_pp, l2_len, multi, error_type));
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> (rbr) hxge_receive_packet: entry 0x%0llx "
"full pkt_buf_addr_pp $%p l2_len %d",
rcr_entry, pkt_buf_addr_pp, l2_len));
/* get the stats ptr */
rdc_stats = rcr_p->rdc_stats;
if (!l2_len) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_receive_packet: failed: l2 length is 0."));
return;
}
/* shift 6 bits to get the full io address */
#if defined(__i386)
pkt_buf_addr_pp = (uint64_t *)((uint32_t)pkt_buf_addr_pp <<
RCR_PKT_BUF_ADDR_SHIFT_FULL);
#else
pkt_buf_addr_pp = (uint64_t *)((uint64_t)pkt_buf_addr_pp <<
RCR_PKT_BUF_ADDR_SHIFT_FULL);
#endif
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> (rbr) hxge_receive_packet: entry 0x%0llx "
"full pkt_buf_addr_pp $%p l2_len %d",
rcr_entry, pkt_buf_addr_pp, l2_len));
rx_rbr_p = rcr_p->rx_rbr_p;
rx_msg_ring_p = rx_rbr_p->rx_msg_ring;
if (first_entry) {
hdr_size = (rcr_p->full_hdr_flag ? RXDMA_HDR_SIZE_FULL :
RXDMA_HDR_SIZE_DEFAULT);
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> hxge_receive_packet: first entry 0x%016llx "
"pkt_buf_addr_pp $%p l2_len %d hdr %d",
rcr_entry, pkt_buf_addr_pp, l2_len, hdr_size));
}
MUTEX_ENTER(&rx_rbr_p->lock);
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> (rbr 1) hxge_receive_packet: entry 0x%0llx "
"full pkt_buf_addr_pp $%p l2_len %d",
rcr_entry, pkt_buf_addr_pp, l2_len));
/*
* Packet buffer address in the completion entry points to the starting
* buffer address (offset 0). Use the starting buffer address to locate
* the corresponding kernel address.
*/
status = hxge_rxbuf_pp_to_vp(hxgep, rx_rbr_p,
pktbufsz_type, pkt_buf_addr_pp, &pkt_buf_addr_p,
&buf_offset, &msg_index);
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> (rbr 2) hxge_receive_packet: entry 0x%0llx "
"full pkt_buf_addr_pp $%p l2_len %d",
rcr_entry, pkt_buf_addr_pp, l2_len));
if (status != HXGE_OK) {
MUTEX_EXIT(&rx_rbr_p->lock);
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_receive_packet: found vaddr failed %d", status));
return;
}
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> (rbr 3) hxge_receive_packet: entry 0x%0llx "
"full pkt_buf_addr_pp $%p l2_len %d",
rcr_entry, pkt_buf_addr_pp, l2_len));
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> (rbr 4 msgindex %d) hxge_receive_packet: entry 0x%0llx "
"full pkt_buf_addr_pp $%p l2_len %d",
msg_index, rcr_entry, pkt_buf_addr_pp, l2_len));
if (msg_index >= rx_rbr_p->tnblocks) {
MUTEX_EXIT(&rx_rbr_p->lock);
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: FATAL msg_index (%d) "
"should be smaller than tnblocks (%d)\n",
msg_index, rx_rbr_p->tnblocks));
return;
}
rx_msg_p = rx_msg_ring_p[msg_index];
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> (rbr 4 msgindex %d) hxge_receive_packet: entry 0x%0llx "
"full pkt_buf_addr_pp $%p l2_len %d",
msg_index, rcr_entry, pkt_buf_addr_pp, l2_len));
switch (pktbufsz_type) {
case RCR_PKTBUFSZ_0:
bsize = rx_rbr_p->pkt_buf_size0_bytes;
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: 0 buf %d", bsize));
break;
case RCR_PKTBUFSZ_1:
bsize = rx_rbr_p->pkt_buf_size1_bytes;
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: 1 buf %d", bsize));
break;
case RCR_PKTBUFSZ_2:
bsize = rx_rbr_p->pkt_buf_size2_bytes;
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> hxge_receive_packet: 2 buf %d", bsize));
break;
case RCR_SINGLE_BLOCK:
bsize = rx_msg_p->block_size;
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: single %d", bsize));
break;
default:
MUTEX_EXIT(&rx_rbr_p->lock);
return;
}
DMA_COMMON_SYNC_OFFSET(rx_msg_p->buf_dma,
(buf_offset + sw_offset_bytes), (hdr_size + l2_len),
DDI_DMA_SYNC_FORCPU);
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: after first dump:usage count"));
if (rx_msg_p->cur_usage_cnt == 0) {
atomic_inc_32(&rx_rbr_p->rbr_used);
if (rx_rbr_p->rbr_use_bcopy) {
atomic_inc_32(&rx_rbr_p->rbr_consumed);
if (rx_rbr_p->rbr_consumed <
rx_rbr_p->rbr_threshold_hi) {
if (rx_rbr_p->rbr_threshold_lo == 0 ||
((rx_rbr_p->rbr_consumed >=
rx_rbr_p->rbr_threshold_lo) &&
(rx_rbr_p->rbr_bufsize_type >=
pktbufsz_type))) {
rx_msg_p->rx_use_bcopy = B_TRUE;
}
} else {
rx_msg_p->rx_use_bcopy = B_TRUE;
}
}
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: buf %d (new block) ", bsize));
rx_msg_p->pkt_buf_size_code = pktbufsz_type;
rx_msg_p->pkt_buf_size = bsize;
rx_msg_p->cur_usage_cnt = 1;
if (pktbufsz_type == RCR_SINGLE_BLOCK) {
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: buf %d (single block) ",
bsize));
/*
* Buffer can be reused once the free function is
* called.
*/
rx_msg_p->max_usage_cnt = 1;
buffer_free = B_TRUE;
} else {
rx_msg_p->max_usage_cnt = rx_msg_p->block_size / bsize;
if (rx_msg_p->max_usage_cnt == 1) {
buffer_free = B_TRUE;
}
}
} else {
rx_msg_p->cur_usage_cnt++;
if (rx_msg_p->cur_usage_cnt == rx_msg_p->max_usage_cnt) {
buffer_free = B_TRUE;
}
}
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"msgbuf index = %d l2len %d bytes usage %d max_usage %d ",
msg_index, l2_len,
rx_msg_p->cur_usage_cnt, rx_msg_p->max_usage_cnt));
if (error_type) {
rdc_stats->ierrors++;
/* Update error stats */
rdc_stats->errlog.compl_err_type = error_type;
HXGE_FM_REPORT_ERROR(hxgep, NULL, HXGE_FM_EREPORT_RDMC_RCR_ERR);
if (error_type & RCR_CTRL_FIFO_DED) {
rdc_stats->ctrl_fifo_ecc_err++;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
" hxge_receive_packet: "
" channel %d RCR ctrl_fifo_ded error", channel));
} else if (error_type & RCR_DATA_FIFO_DED) {
rdc_stats->data_fifo_ecc_err++;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
" hxge_receive_packet: channel %d"
" RCR data_fifo_ded error", channel));
}
/*
* Update and repost buffer block if max usage count is
* reached.
*/
if (error_send_up == B_FALSE) {
atomic_inc_32(&rx_msg_p->ref_cnt);
if (buffer_free == B_TRUE) {
rx_msg_p->free = B_TRUE;
}
MUTEX_EXIT(&rx_rbr_p->lock);
hxge_freeb(rx_msg_p);
return;
}
}
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: DMA sync second "));
bytes_read = rcr_p->rcvd_pkt_bytes;
skip_len = sw_offset_bytes + hdr_size;
if (first_entry) {
header0 = rx_msg_p->buffer[buf_offset];
no_port_bit = header0 & NO_PORT_BIT;
header1 = rx_msg_p->buffer[buf_offset + 1];
l4_cs_eq_bit = header1 & L4_CS_EQ_BIT;
}
if (!rx_msg_p->rx_use_bcopy) {
/*
* For loaned up buffers, the driver reference count
* will be incremented first and then the free state.
*/
if ((nmp = hxge_dupb(rx_msg_p, buf_offset, bsize)) != NULL) {
if (first_entry) {
nmp->b_rptr = &nmp->b_rptr[skip_len];
if (l2_len < bsize - skip_len) {
nmp->b_wptr = &nmp->b_rptr[l2_len];
} else {
nmp->b_wptr = &nmp->b_rptr[bsize
- skip_len];
}
} else {
if (l2_len - bytes_read < bsize) {
nmp->b_wptr =
&nmp->b_rptr[l2_len - bytes_read];
} else {
nmp->b_wptr = &nmp->b_rptr[bsize];
}
}
}
} else {
if (first_entry) {
nmp = hxge_dupb_bcopy(rx_msg_p, buf_offset + skip_len,
l2_len < bsize - skip_len ?
l2_len : bsize - skip_len);
} else {
nmp = hxge_dupb_bcopy(rx_msg_p, buf_offset,
l2_len - bytes_read < bsize ?
l2_len - bytes_read : bsize);
}
}
if (nmp != NULL) {
if (first_entry)
bytes_read = nmp->b_wptr - nmp->b_rptr;
else
bytes_read += nmp->b_wptr - nmp->b_rptr;
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> hxge_receive_packet after dupb: "
"rbr consumed %d "
"pktbufsz_type %d "
"nmp $%p rptr $%p wptr $%p "
"buf_offset %d bzise %d l2_len %d skip_len %d",
rx_rbr_p->rbr_consumed,
pktbufsz_type,
nmp, nmp->b_rptr, nmp->b_wptr,
buf_offset, bsize, l2_len, skip_len));
} else {
cmn_err(CE_WARN, "!hxge_receive_packet: update stats (error)");
atomic_inc_32(&rx_msg_p->ref_cnt);
if (buffer_free == B_TRUE) {
rx_msg_p->free = B_TRUE;
}
MUTEX_EXIT(&rx_rbr_p->lock);
hxge_freeb(rx_msg_p);
return;
}
if (buffer_free == B_TRUE) {
rx_msg_p->free = B_TRUE;
}
/*
* ERROR, FRAG and PKT_TYPE are only reported in the first entry. If a
* packet is not fragmented and no error bit is set, then L4 checksum
* is OK.
*/
is_valid = (nmp != NULL);
if (first_entry) {
rdc_stats->ipackets++; /* count only 1st seg for jumbo */
if (l2_len > (STD_FRAME_SIZE - ETHERFCSL))
rdc_stats->jumbo_pkts++;
rdc_stats->ibytes += skip_len + l2_len < bsize ?
l2_len : bsize;
} else {
/*
* Add the current portion of the packet to the kstats.
* The current portion of the packet is calculated by using
* length of the packet and the previously received portion.
*/
rdc_stats->ibytes += l2_len - rcr_p->rcvd_pkt_bytes < bsize ?
l2_len - rcr_p->rcvd_pkt_bytes : bsize;
}
rcr_p->rcvd_pkt_bytes = bytes_read;
if (rx_msg_p->free && rx_msg_p->rx_use_bcopy) {
atomic_inc_32(&rx_msg_p->ref_cnt);
MUTEX_EXIT(&rx_rbr_p->lock);
hxge_freeb(rx_msg_p);
} else
MUTEX_EXIT(&rx_rbr_p->lock);
if (is_valid) {
nmp->b_cont = NULL;
if (first_entry) {
*mp = nmp;
*mp_cont = NULL;
} else {
*mp_cont = nmp;
}
}
/*
* Update stats and hardware checksuming.
*/
if (is_valid && !multi) {
is_tcp_udp = ((pkt_type == RCR_PKT_IS_TCP ||
pkt_type == RCR_PKT_IS_UDP) ? B_TRUE : B_FALSE);
if (!no_port_bit && l4_cs_eq_bit && is_tcp_udp && !error_type) {
mac_hcksum_set(nmp, 0, 0, 0, 0, HCK_FULLCKSUM_OK);
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> hxge_receive_packet: Full tcp/udp cksum "
"is_valid 0x%x multi %d error %d",
is_valid, multi, error_type));
}
}
HXGE_DEBUG_MSG((hxgep, RX2_CTL,
"==> hxge_receive_packet: *mp 0x%016llx", *mp));
*multi_p = (multi == RCR_MULTI_MASK);
HXGE_DEBUG_MSG((hxgep, RX_CTL, "<== hxge_receive_packet: "
"multi %d nmp 0x%016llx *mp 0x%016llx *mp_cont 0x%016llx",
*multi_p, nmp, *mp, *mp_cont));
}
static void
hxge_rx_rbr_empty_recover(p_hxge_t hxgep, uint8_t channel)
{
hpi_handle_t handle;
p_rx_rcr_ring_t rcrp;
p_rx_rbr_ring_t rbrp;
rcrp = hxgep->rx_rcr_rings->rcr_rings[channel];
rbrp = rcrp->rx_rbr_p;
handle = HXGE_DEV_HPI_HANDLE(hxgep);
/*
* Wait for the channel to be quiet
*/
(void) hpi_rxdma_cfg_rdc_wait_for_qst(handle, channel);
/*
* Post page will accumulate some buffers before re-enabling
* the DMA channel.
*/
MUTEX_ENTER(&rbrp->post_lock);
if ((rbrp->rbb_max - rbrp->rbr_used) >= HXGE_RBR_EMPTY_THRESHOLD) {
hxge_rbr_empty_restore(hxgep, rbrp);
} else {
rbrp->rbr_is_empty = B_TRUE;
}
MUTEX_EXIT(&rbrp->post_lock);
}
/*ARGSUSED*/
static hxge_status_t
hxge_rx_err_evnts(p_hxge_t hxgep, uint_t index, p_hxge_ldv_t ldvp,
rdc_stat_t cs)
{
p_hxge_rx_ring_stats_t rdc_stats;
hpi_handle_t handle;
boolean_t rxchan_fatal = B_FALSE;
uint8_t channel;
hxge_status_t status = HXGE_OK;
HXGE_DEBUG_MSG((hxgep, INT_CTL, "==> hxge_rx_err_evnts"));
handle = HXGE_DEV_HPI_HANDLE(hxgep);
channel = ldvp->channel;
rdc_stats = &hxgep->statsp->rdc_stats[ldvp->vdma_index];
if (cs.bits.rbr_cpl_to) {
rdc_stats->rbr_tmout++;
HXGE_FM_REPORT_ERROR(hxgep, channel,
HXGE_FM_EREPORT_RDMC_RBR_CPL_TO);
rxchan_fatal = B_TRUE;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rx_err_evnts(channel %d): "
"fatal error: rx_rbr_timeout", channel));
}
if ((cs.bits.rcr_shadow_par_err) || (cs.bits.rbr_prefetch_par_err)) {
(void) hpi_rxdma_ring_perr_stat_get(handle,
&rdc_stats->errlog.pre_par, &rdc_stats->errlog.sha_par);
}
if (cs.bits.rcr_shadow_par_err) {
rdc_stats->rcr_sha_par++;
HXGE_FM_REPORT_ERROR(hxgep, channel,
HXGE_FM_EREPORT_RDMC_RCR_SHA_PAR);
rxchan_fatal = B_TRUE;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rx_err_evnts(channel %d): "
"fatal error: rcr_shadow_par_err", channel));
}
if (cs.bits.rbr_prefetch_par_err) {
rdc_stats->rbr_pre_par++;
HXGE_FM_REPORT_ERROR(hxgep, channel,
HXGE_FM_EREPORT_RDMC_RBR_PRE_PAR);
rxchan_fatal = B_TRUE;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rx_err_evnts(channel %d): "
"fatal error: rbr_prefetch_par_err", channel));
}
if (cs.bits.rbr_pre_empty) {
rdc_stats->rbr_pre_empty++;
HXGE_FM_REPORT_ERROR(hxgep, channel,
HXGE_FM_EREPORT_RDMC_RBR_PRE_EMPTY);
rxchan_fatal = B_TRUE;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rx_err_evnts(channel %d): "
"fatal error: rbr_pre_empty", channel));
}
if (cs.bits.peu_resp_err) {
rdc_stats->peu_resp_err++;
HXGE_FM_REPORT_ERROR(hxgep, channel,
HXGE_FM_EREPORT_RDMC_PEU_RESP_ERR);
rxchan_fatal = B_TRUE;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rx_err_evnts(channel %d): "
"fatal error: peu_resp_err", channel));
}
if (cs.bits.rcr_thres) {
rdc_stats->rcr_thres++;
}
if (cs.bits.rcr_to) {
rdc_stats->rcr_to++;
}
if (cs.bits.rcr_shadow_full) {
rdc_stats->rcr_shadow_full++;
HXGE_FM_REPORT_ERROR(hxgep, channel,
HXGE_FM_EREPORT_RDMC_RCR_SHA_FULL);
rxchan_fatal = B_TRUE;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rx_err_evnts(channel %d): "
"fatal error: rcr_shadow_full", channel));
}
if (cs.bits.rcr_full) {
rdc_stats->rcrfull++;
HXGE_FM_REPORT_ERROR(hxgep, channel,
HXGE_FM_EREPORT_RDMC_RCRFULL);
rxchan_fatal = B_TRUE;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rx_err_evnts(channel %d): "
"fatal error: rcrfull error", channel));
}
if (cs.bits.rbr_empty) {
rdc_stats->rbr_empty++;
hxge_rx_rbr_empty_recover(hxgep, channel);
}
if (cs.bits.rbr_full) {
rdc_stats->rbrfull++;
HXGE_FM_REPORT_ERROR(hxgep, channel,
HXGE_FM_EREPORT_RDMC_RBRFULL);
rxchan_fatal = B_TRUE;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rx_err_evnts(channel %d): "
"fatal error: rbr_full error", channel));
}
if (rxchan_fatal) {
p_rx_rcr_ring_t rcrp;
p_rx_rbr_ring_t rbrp;
rcrp = hxgep->rx_rcr_rings->rcr_rings[channel];
rbrp = rcrp->rx_rbr_p;
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
" hxge_rx_err_evnts: fatal error on Channel #%d\n",
channel));
MUTEX_ENTER(&rbrp->post_lock);
/* This function needs to be inside the post_lock */
status = hxge_rxdma_fatal_err_recover(hxgep, channel);
MUTEX_EXIT(&rbrp->post_lock);
if (status == HXGE_OK) {
FM_SERVICE_RESTORED(hxgep);
}
}
HXGE_DEBUG_MSG((hxgep, INT_CTL, "<== hxge_rx_err_evnts"));
return (status);
}
static hxge_status_t
hxge_map_rxdma(p_hxge_t hxgep)
{
int i, ndmas;
uint16_t channel;
p_rx_rbr_rings_t rx_rbr_rings;
p_rx_rbr_ring_t *rbr_rings;
p_rx_rcr_rings_t rx_rcr_rings;
p_rx_rcr_ring_t *rcr_rings;
p_rx_mbox_areas_t rx_mbox_areas_p;
p_rx_mbox_t *rx_mbox_p;
p_hxge_dma_pool_t dma_buf_poolp;
p_hxge_dma_common_t *dma_buf_p;
p_hxge_dma_pool_t dma_rbr_cntl_poolp;
p_hxge_dma_common_t *dma_rbr_cntl_p;
p_hxge_dma_pool_t dma_rcr_cntl_poolp;
p_hxge_dma_common_t *dma_rcr_cntl_p;
p_hxge_dma_pool_t dma_mbox_cntl_poolp;
p_hxge_dma_common_t *dma_mbox_cntl_p;
uint32_t *num_chunks;
hxge_status_t status = HXGE_OK;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_map_rxdma"));
dma_buf_poolp = hxgep->rx_buf_pool_p;
dma_rbr_cntl_poolp = hxgep->rx_rbr_cntl_pool_p;
dma_rcr_cntl_poolp = hxgep->rx_rcr_cntl_pool_p;
dma_mbox_cntl_poolp = hxgep->rx_mbox_cntl_pool_p;
if (!dma_buf_poolp->buf_allocated ||
!dma_rbr_cntl_poolp->buf_allocated ||
!dma_rcr_cntl_poolp->buf_allocated ||
!dma_mbox_cntl_poolp->buf_allocated) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"<== hxge_map_rxdma: buf not allocated"));
return (HXGE_ERROR);
}
ndmas = dma_buf_poolp->ndmas;
if (!ndmas) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_map_rxdma: no dma allocated"));
return (HXGE_ERROR);
}
num_chunks = dma_buf_poolp->num_chunks;
dma_buf_p = dma_buf_poolp->dma_buf_pool_p;
dma_rbr_cntl_p = dma_rbr_cntl_poolp->dma_buf_pool_p;
dma_rcr_cntl_p = dma_rcr_cntl_poolp->dma_buf_pool_p;
dma_mbox_cntl_p = dma_mbox_cntl_poolp->dma_buf_pool_p;
rx_rbr_rings = (p_rx_rbr_rings_t)
KMEM_ZALLOC(sizeof (rx_rbr_rings_t), KM_SLEEP);
rbr_rings = (p_rx_rbr_ring_t *)KMEM_ZALLOC(
sizeof (p_rx_rbr_ring_t) * ndmas, KM_SLEEP);
rx_rcr_rings = (p_rx_rcr_rings_t)
KMEM_ZALLOC(sizeof (rx_rcr_rings_t), KM_SLEEP);
rcr_rings = (p_rx_rcr_ring_t *)KMEM_ZALLOC(
sizeof (p_rx_rcr_ring_t) * ndmas, KM_SLEEP);
rx_mbox_areas_p = (p_rx_mbox_areas_t)
KMEM_ZALLOC(sizeof (rx_mbox_areas_t), KM_SLEEP);
rx_mbox_p = (p_rx_mbox_t *)KMEM_ZALLOC(
sizeof (p_rx_mbox_t) * ndmas, KM_SLEEP);
/*
* Timeout should be set based on the system clock divider.
* The following timeout value of 1 assumes that the
* granularity (1000) is 3 microseconds running at 300MHz.
*/
hxgep->intr_threshold = RXDMA_RCR_PTHRES_DEFAULT;
hxgep->intr_timeout = RXDMA_RCR_TO_DEFAULT;
/*
* Map descriptors from the buffer polls for each dam channel.
*/
for (i = 0; i < ndmas; i++) {
if (((p_hxge_dma_common_t)dma_buf_p[i]) == NULL) {
status = HXGE_ERROR;
goto hxge_map_rxdma_fail1;
}
/*
* Set up and prepare buffer blocks, descriptors and mailbox.
*/
channel = ((p_hxge_dma_common_t)dma_buf_p[i])->dma_channel;
status = hxge_map_rxdma_channel(hxgep, channel,
(p_hxge_dma_common_t *)&dma_buf_p[i],
(p_rx_rbr_ring_t *)&rbr_rings[i],
num_chunks[i],
(p_hxge_dma_common_t *)&dma_rbr_cntl_p[i],
(p_hxge_dma_common_t *)&dma_rcr_cntl_p[i],
(p_hxge_dma_common_t *)&dma_mbox_cntl_p[i],
(p_rx_rcr_ring_t *)&rcr_rings[i],
(p_rx_mbox_t *)&rx_mbox_p[i]);
if (status != HXGE_OK) {
goto hxge_map_rxdma_fail1;
}
rbr_rings[i]->index = (uint16_t)i;
rcr_rings[i]->index = (uint16_t)i;
rcr_rings[i]->rdc_stats = &hxgep->statsp->rdc_stats[i];
}
rx_rbr_rings->ndmas = rx_rcr_rings->ndmas = ndmas;
rx_rbr_rings->rbr_rings = rbr_rings;
hxgep->rx_rbr_rings = rx_rbr_rings;
rx_rcr_rings->rcr_rings = rcr_rings;
hxgep->rx_rcr_rings = rx_rcr_rings;
rx_mbox_areas_p->rxmbox_areas = rx_mbox_p;
hxgep->rx_mbox_areas_p = rx_mbox_areas_p;
goto hxge_map_rxdma_exit;
hxge_map_rxdma_fail1:
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_map_rxdma: unmap rbr,rcr (status 0x%x channel %d i %d)",
status, channel, i));
i--;
for (; i >= 0; i--) {
channel = ((p_hxge_dma_common_t)dma_buf_p[i])->dma_channel;
hxge_unmap_rxdma_channel(hxgep, channel,
rbr_rings[i], rcr_rings[i], rx_mbox_p[i]);
}
KMEM_FREE(rbr_rings, sizeof (p_rx_rbr_ring_t) * ndmas);
KMEM_FREE(rx_rbr_rings, sizeof (rx_rbr_rings_t));
KMEM_FREE(rcr_rings, sizeof (p_rx_rcr_ring_t) * ndmas);
KMEM_FREE(rx_rcr_rings, sizeof (rx_rcr_rings_t));
KMEM_FREE(rx_mbox_p, sizeof (p_rx_mbox_t) * ndmas);
KMEM_FREE(rx_mbox_areas_p, sizeof (rx_mbox_areas_t));
hxge_map_rxdma_exit:
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"<== hxge_map_rxdma: (status 0x%x channel %d)", status, channel));
return (status);
}
static void
hxge_unmap_rxdma(p_hxge_t hxgep)
{
int i, ndmas;
uint16_t channel;
p_rx_rbr_rings_t rx_rbr_rings;
p_rx_rbr_ring_t *rbr_rings;
p_rx_rcr_rings_t rx_rcr_rings;
p_rx_rcr_ring_t *rcr_rings;
p_rx_mbox_areas_t rx_mbox_areas_p;
p_rx_mbox_t *rx_mbox_p;
p_hxge_dma_pool_t dma_buf_poolp;
p_hxge_dma_pool_t dma_rbr_cntl_poolp;
p_hxge_dma_pool_t dma_rcr_cntl_poolp;
p_hxge_dma_pool_t dma_mbox_cntl_poolp;
p_hxge_dma_common_t *dma_buf_p;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_unmap_rxdma"));
dma_buf_poolp = hxgep->rx_buf_pool_p;
dma_rbr_cntl_poolp = hxgep->rx_rbr_cntl_pool_p;
dma_rcr_cntl_poolp = hxgep->rx_rcr_cntl_pool_p;
dma_mbox_cntl_poolp = hxgep->rx_mbox_cntl_pool_p;
if (!dma_buf_poolp->buf_allocated ||
!dma_rbr_cntl_poolp->buf_allocated ||
!dma_rcr_cntl_poolp->buf_allocated ||
!dma_mbox_cntl_poolp->buf_allocated) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"<== hxge_unmap_rxdma: NULL buf pointers"));
return;
}
rx_rbr_rings = hxgep->rx_rbr_rings;
rx_rcr_rings = hxgep->rx_rcr_rings;
if (rx_rbr_rings == NULL || rx_rcr_rings == NULL) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"<== hxge_unmap_rxdma: NULL pointers"));
return;
}
ndmas = rx_rbr_rings->ndmas;
if (!ndmas) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"<== hxge_unmap_rxdma: no channel"));
return;
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_unmap_rxdma (ndmas %d)", ndmas));
rbr_rings = rx_rbr_rings->rbr_rings;
rcr_rings = rx_rcr_rings->rcr_rings;
rx_mbox_areas_p = hxgep->rx_mbox_areas_p;
rx_mbox_p = rx_mbox_areas_p->rxmbox_areas;
dma_buf_p = dma_buf_poolp->dma_buf_pool_p;
for (i = 0; i < ndmas; i++) {
channel = ((p_hxge_dma_common_t)dma_buf_p[i])->dma_channel;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_unmap_rxdma (ndmas %d) channel %d",
ndmas, channel));
(void) hxge_unmap_rxdma_channel(hxgep, channel,
(p_rx_rbr_ring_t)rbr_rings[i],
(p_rx_rcr_ring_t)rcr_rings[i],
(p_rx_mbox_t)rx_mbox_p[i]);
}
KMEM_FREE(rx_rbr_rings, sizeof (rx_rbr_rings_t));
KMEM_FREE(rbr_rings, sizeof (p_rx_rbr_ring_t) * ndmas);
KMEM_FREE(rx_rcr_rings, sizeof (rx_rcr_rings_t));
KMEM_FREE(rcr_rings, sizeof (p_rx_rcr_ring_t) * ndmas);
KMEM_FREE(rx_mbox_areas_p, sizeof (rx_mbox_areas_t));
KMEM_FREE(rx_mbox_p, sizeof (p_rx_mbox_t) * ndmas);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "<== hxge_unmap_rxdma"));
}
hxge_status_t
hxge_map_rxdma_channel(p_hxge_t hxgep, uint16_t channel,
p_hxge_dma_common_t *dma_buf_p, p_rx_rbr_ring_t *rbr_p,
uint32_t num_chunks, p_hxge_dma_common_t *dma_rbr_cntl_p,
p_hxge_dma_common_t *dma_rcr_cntl_p, p_hxge_dma_common_t *dma_mbox_cntl_p,
p_rx_rcr_ring_t *rcr_p, p_rx_mbox_t *rx_mbox_p)
{
int status = HXGE_OK;
/*
* Set up and prepare buffer blocks, descriptors and mailbox.
*/
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_map_rxdma_channel (channel %d)", channel));
/*
* Receive buffer blocks
*/
status = hxge_map_rxdma_channel_buf_ring(hxgep, channel,
dma_buf_p, rbr_p, num_chunks);
if (status != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_map_rxdma_channel (channel %d): "
"map buffer failed 0x%x", channel, status));
goto hxge_map_rxdma_channel_exit;
}
/*
* Receive block ring, completion ring and mailbox.
*/
status = hxge_map_rxdma_channel_cfg_ring(hxgep, channel,
dma_rbr_cntl_p, dma_rcr_cntl_p, dma_mbox_cntl_p,
rbr_p, rcr_p, rx_mbox_p);
if (status != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_map_rxdma_channel (channel %d): "
"map config failed 0x%x", channel, status));
goto hxge_map_rxdma_channel_fail2;
}
goto hxge_map_rxdma_channel_exit;
hxge_map_rxdma_channel_fail3:
/* Free rbr, rcr */
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_map_rxdma_channel: free rbr/rcr (status 0x%x channel %d)",
status, channel));
hxge_unmap_rxdma_channel_cfg_ring(hxgep, *rcr_p, *rx_mbox_p);
hxge_map_rxdma_channel_fail2:
/* Free buffer blocks */
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_map_rxdma_channel: free rx buffers"
"(hxgep 0x%x status 0x%x channel %d)",
hxgep, status, channel));
hxge_unmap_rxdma_channel_buf_ring(hxgep, *rbr_p);
status = HXGE_ERROR;
hxge_map_rxdma_channel_exit:
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"<== hxge_map_rxdma_channel: (hxgep 0x%x status 0x%x channel %d)",
hxgep, status, channel));
return (status);
}
/*ARGSUSED*/
static void
hxge_unmap_rxdma_channel(p_hxge_t hxgep, uint16_t channel,
p_rx_rbr_ring_t rbr_p, p_rx_rcr_ring_t rcr_p, p_rx_mbox_t rx_mbox_p)
{
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_unmap_rxdma_channel (channel %d)", channel));
/*
* unmap receive block ring, completion ring and mailbox.
*/
(void) hxge_unmap_rxdma_channel_cfg_ring(hxgep, rcr_p, rx_mbox_p);
/* unmap buffer blocks */
(void) hxge_unmap_rxdma_channel_buf_ring(hxgep, rbr_p);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "<== hxge_unmap_rxdma_channel"));
}
/*ARGSUSED*/
static hxge_status_t
hxge_map_rxdma_channel_cfg_ring(p_hxge_t hxgep, uint16_t dma_channel,
p_hxge_dma_common_t *dma_rbr_cntl_p, p_hxge_dma_common_t *dma_rcr_cntl_p,
p_hxge_dma_common_t *dma_mbox_cntl_p, p_rx_rbr_ring_t *rbr_p,
p_rx_rcr_ring_t *rcr_p, p_rx_mbox_t *rx_mbox_p)
{
p_rx_rbr_ring_t rbrp;
p_rx_rcr_ring_t rcrp;
p_rx_mbox_t mboxp;
p_hxge_dma_common_t cntl_dmap;
p_hxge_dma_common_t dmap;
p_rx_msg_t *rx_msg_ring;
p_rx_msg_t rx_msg_p;
rdc_rbr_cfg_a_t *rcfga_p;
rdc_rbr_cfg_b_t *rcfgb_p;
rdc_rcr_cfg_a_t *cfga_p;
rdc_rcr_cfg_b_t *cfgb_p;
rdc_rx_cfg1_t *cfig1_p;
rdc_rx_cfg2_t *cfig2_p;
rdc_rbr_kick_t *kick_p;
uint32_t dmaaddrp;
uint32_t *rbr_vaddrp;
uint32_t bkaddr;
hxge_status_t status = HXGE_OK;
int i;
uint32_t hxge_port_rcr_size;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_map_rxdma_channel_cfg_ring"));
cntl_dmap = *dma_rbr_cntl_p;
/*
* Map in the receive block ring
*/
rbrp = *rbr_p;
dmap = (p_hxge_dma_common_t)&rbrp->rbr_desc;
hxge_setup_dma_common(dmap, cntl_dmap, rbrp->rbb_max, 4);
/*
* Zero out buffer block ring descriptors.
*/
bzero((caddr_t)dmap->kaddrp, dmap->alength);
rcfga_p = &(rbrp->rbr_cfga);
rcfgb_p = &(rbrp->rbr_cfgb);
kick_p = &(rbrp->rbr_kick);
rcfga_p->value = 0;
rcfgb_p->value = 0;
kick_p->value = 0;
rbrp->rbr_addr = dmap->dma_cookie.dmac_laddress;
rcfga_p->value = (rbrp->rbr_addr &
(RBR_CFIG_A_STDADDR_MASK | RBR_CFIG_A_STDADDR_BASE_MASK));
rcfga_p->value |= ((uint64_t)rbrp->rbb_max << RBR_CFIG_A_LEN_SHIFT);
/* XXXX: how to choose packet buffer sizes */
rcfgb_p->bits.bufsz0 = rbrp->pkt_buf_size0;
rcfgb_p->bits.vld0 = 1;
rcfgb_p->bits.bufsz1 = rbrp->pkt_buf_size1;
rcfgb_p->bits.vld1 = 1;
rcfgb_p->bits.bufsz2 = rbrp->pkt_buf_size2;
rcfgb_p->bits.vld2 = 1;
rcfgb_p->bits.bksize = hxgep->rx_bksize_code;
/*
* For each buffer block, enter receive block address to the ring.
*/
rbr_vaddrp = (uint32_t *)dmap->kaddrp;
rbrp->rbr_desc_vp = (uint32_t *)dmap->kaddrp;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_map_rxdma_channel_cfg_ring: channel %d "
"rbr_vaddrp $%p", dma_channel, rbr_vaddrp));
rx_msg_ring = rbrp->rx_msg_ring;
for (i = 0; i < rbrp->tnblocks; i++) {
rx_msg_p = rx_msg_ring[i];
rx_msg_p->hxgep = hxgep;
rx_msg_p->rx_rbr_p = rbrp;
bkaddr = (uint32_t)
((rx_msg_p->buf_dma.dma_cookie.dmac_laddress >>
RBR_BKADDR_SHIFT));
rx_msg_p->free = B_FALSE;
rx_msg_p->max_usage_cnt = 0xbaddcafe;
*rbr_vaddrp++ = bkaddr;
}
kick_p->bits.bkadd = rbrp->rbb_max;
rbrp->rbr_wr_index = (rbrp->rbb_max - 1);
rbrp->rbr_rd_index = 0;
rbrp->rbr_consumed = 0;
rbrp->rbr_used = 0;
rbrp->rbr_use_bcopy = B_TRUE;
rbrp->rbr_bufsize_type = RCR_PKTBUFSZ_0;
/*
* Do bcopy on packets greater than bcopy size once the lo threshold is
* reached. This lo threshold should be less than the hi threshold.
*
* Do bcopy on every packet once the hi threshold is reached.
*/
if (hxge_rx_threshold_lo >= hxge_rx_threshold_hi) {
/* default it to use hi */
hxge_rx_threshold_lo = hxge_rx_threshold_hi;
}
if (hxge_rx_buf_size_type > HXGE_RBR_TYPE2) {
hxge_rx_buf_size_type = HXGE_RBR_TYPE2;
}
rbrp->rbr_bufsize_type = hxge_rx_buf_size_type;
switch (hxge_rx_threshold_hi) {
default:
case HXGE_RX_COPY_NONE:
/* Do not do bcopy at all */
rbrp->rbr_use_bcopy = B_FALSE;
rbrp->rbr_threshold_hi = rbrp->rbb_max;
break;
case HXGE_RX_COPY_1:
case HXGE_RX_COPY_2:
case HXGE_RX_COPY_3:
case HXGE_RX_COPY_4:
case HXGE_RX_COPY_5:
case HXGE_RX_COPY_6:
case HXGE_RX_COPY_7:
rbrp->rbr_threshold_hi =
rbrp->rbb_max * (hxge_rx_threshold_hi) /
HXGE_RX_BCOPY_SCALE;
break;
case HXGE_RX_COPY_ALL:
rbrp->rbr_threshold_hi = 0;
break;
}
switch (hxge_rx_threshold_lo) {
default:
case HXGE_RX_COPY_NONE:
/* Do not do bcopy at all */
if (rbrp->rbr_use_bcopy) {
rbrp->rbr_use_bcopy = B_FALSE;
}
rbrp->rbr_threshold_lo = rbrp->rbb_max;
break;
case HXGE_RX_COPY_1:
case HXGE_RX_COPY_2:
case HXGE_RX_COPY_3:
case HXGE_RX_COPY_4:
case HXGE_RX_COPY_5:
case HXGE_RX_COPY_6:
case HXGE_RX_COPY_7:
rbrp->rbr_threshold_lo =
rbrp->rbb_max * (hxge_rx_threshold_lo) /
HXGE_RX_BCOPY_SCALE;
break;
case HXGE_RX_COPY_ALL:
rbrp->rbr_threshold_lo = 0;
break;
}
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"hxge_map_rxdma_channel_cfg_ring: channel %d rbb_max %d "
"rbrp->rbr_bufsize_type %d rbb_threshold_hi %d "
"rbb_threshold_lo %d",
dma_channel, rbrp->rbb_max, rbrp->rbr_bufsize_type,
rbrp->rbr_threshold_hi, rbrp->rbr_threshold_lo));
/* Map in the receive completion ring */
rcrp = (p_rx_rcr_ring_t)KMEM_ZALLOC(sizeof (rx_rcr_ring_t), KM_SLEEP);
MUTEX_INIT(&rcrp->lock, NULL, MUTEX_DRIVER,
(void *) hxgep->interrupt_cookie);
rcrp->rdc = dma_channel;
rcrp->hxgep = hxgep;
hxge_port_rcr_size = hxgep->hxge_port_rcr_size;
rcrp->comp_size = hxge_port_rcr_size;
rcrp->comp_wrap_mask = hxge_port_rcr_size - 1;
cntl_dmap = *dma_rcr_cntl_p;
dmap = (p_hxge_dma_common_t)&rcrp->rcr_desc;
hxge_setup_dma_common(dmap, cntl_dmap, rcrp->comp_size,
sizeof (rcr_entry_t));
rcrp->comp_rd_index = 0;
rcrp->comp_wt_index = 0;
rcrp->rcr_desc_rd_head_p = rcrp->rcr_desc_first_p =
(p_rcr_entry_t)DMA_COMMON_VPTR(rcrp->rcr_desc);
#if defined(__i386)
rcrp->rcr_desc_rd_head_pp = rcrp->rcr_desc_first_pp =
(p_rcr_entry_t)(uint32_t)DMA_COMMON_IOADDR(rcrp->rcr_desc);
#else
rcrp->rcr_desc_rd_head_pp = rcrp->rcr_desc_first_pp =
(p_rcr_entry_t)DMA_COMMON_IOADDR(rcrp->rcr_desc);
#endif
rcrp->rcr_desc_last_p = rcrp->rcr_desc_rd_head_p +
(hxge_port_rcr_size - 1);
rcrp->rcr_desc_last_pp = rcrp->rcr_desc_rd_head_pp +
(hxge_port_rcr_size - 1);
rcrp->rcr_tail_begin = DMA_COMMON_IOADDR(rcrp->rcr_desc);
rcrp->rcr_tail_begin = (rcrp->rcr_tail_begin & 0x7ffffULL) >> 3;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_map_rxdma_channel_cfg_ring: channel %d "
"rbr_vaddrp $%p rcr_desc_rd_head_p $%p "
"rcr_desc_rd_head_pp $%p rcr_desc_rd_last_p $%p "
"rcr_desc_rd_last_pp $%p ",
dma_channel, rbr_vaddrp, rcrp->rcr_desc_rd_head_p,
rcrp->rcr_desc_rd_head_pp, rcrp->rcr_desc_last_p,
rcrp->rcr_desc_last_pp));
/*
* Zero out buffer block ring descriptors.
*/
bzero((caddr_t)dmap->kaddrp, dmap->alength);
rcrp->intr_timeout = hxgep->intr_timeout;
rcrp->intr_threshold = hxgep->intr_threshold;
rcrp->full_hdr_flag = B_FALSE;
rcrp->sw_priv_hdr_len = 0;
cfga_p = &(rcrp->rcr_cfga);
cfgb_p = &(rcrp->rcr_cfgb);
cfga_p->value = 0;
cfgb_p->value = 0;
rcrp->rcr_addr = dmap->dma_cookie.dmac_laddress;
cfga_p->value = (rcrp->rcr_addr &
(RCRCFIG_A_STADDR_MASK | RCRCFIG_A_STADDR_BASE_MASK));
cfga_p->value |= ((uint64_t)rcrp->comp_size << RCRCFIG_A_LEN_SHIF);
/*
* Timeout should be set based on the system clock divider. The
* following timeout value of 1 assumes that the granularity (1000) is
* 3 microseconds running at 300MHz.
*/
cfgb_p->bits.pthres = rcrp->intr_threshold;
cfgb_p->bits.timeout = rcrp->intr_timeout;
cfgb_p->bits.entout = 1;
/* Map in the mailbox */
cntl_dmap = *dma_mbox_cntl_p;
mboxp = (p_rx_mbox_t)KMEM_ZALLOC(sizeof (rx_mbox_t), KM_SLEEP);
dmap = (p_hxge_dma_common_t)&mboxp->rx_mbox;
hxge_setup_dma_common(dmap, cntl_dmap, 1, sizeof (rxdma_mailbox_t));
cfig1_p = (rdc_rx_cfg1_t *)&mboxp->rx_cfg1;
cfig2_p = (rdc_rx_cfg2_t *)&mboxp->rx_cfg2;
cfig1_p->value = cfig2_p->value = 0;
mboxp->mbox_addr = dmap->dma_cookie.dmac_laddress;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_map_rxdma_channel_cfg_ring: "
"channel %d cfg1 0x%016llx cfig2 0x%016llx cookie 0x%016llx",
dma_channel, cfig1_p->value, cfig2_p->value,
mboxp->mbox_addr));
dmaaddrp = (uint32_t)((dmap->dma_cookie.dmac_laddress >> 32) & 0xfff);
cfig1_p->bits.mbaddr_h = dmaaddrp;
dmaaddrp = (uint32_t)(dmap->dma_cookie.dmac_laddress & 0xffffffff);
dmaaddrp = (uint32_t)(dmap->dma_cookie.dmac_laddress &
RXDMA_CFIG2_MBADDR_L_MASK);
cfig2_p->bits.mbaddr_l = (dmaaddrp >> RXDMA_CFIG2_MBADDR_L_SHIFT);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_map_rxdma_channel_cfg_ring: channel %d damaddrp $%p "
"cfg1 0x%016llx cfig2 0x%016llx",
dma_channel, dmaaddrp, cfig1_p->value, cfig2_p->value));
cfig2_p->bits.full_hdr = rcrp->full_hdr_flag;
cfig2_p->bits.offset = rcrp->sw_priv_hdr_len;
rbrp->rx_rcr_p = rcrp;
rcrp->rx_rbr_p = rbrp;
*rcr_p = rcrp;
*rx_mbox_p = mboxp;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"<== hxge_map_rxdma_channel_cfg_ring status 0x%08x", status));
return (status);
}
/*ARGSUSED*/
static void
hxge_unmap_rxdma_channel_cfg_ring(p_hxge_t hxgep,
p_rx_rcr_ring_t rcr_p, p_rx_mbox_t rx_mbox_p)
{
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_unmap_rxdma_channel_cfg_ring: channel %d", rcr_p->rdc));
MUTEX_DESTROY(&rcr_p->lock);
KMEM_FREE(rcr_p, sizeof (rx_rcr_ring_t));
KMEM_FREE(rx_mbox_p, sizeof (rx_mbox_t));
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"<== hxge_unmap_rxdma_channel_cfg_ring"));
}
static hxge_status_t
hxge_map_rxdma_channel_buf_ring(p_hxge_t hxgep, uint16_t channel,
p_hxge_dma_common_t *dma_buf_p,
p_rx_rbr_ring_t *rbr_p, uint32_t num_chunks)
{
p_rx_rbr_ring_t rbrp;
p_hxge_dma_common_t dma_bufp, tmp_bufp;
p_rx_msg_t *rx_msg_ring;
p_rx_msg_t rx_msg_p;
p_mblk_t mblk_p;
rxring_info_t *ring_info;
hxge_status_t status = HXGE_OK;
int i, j, index;
uint32_t size, bsize, nblocks, nmsgs;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_map_rxdma_channel_buf_ring: channel %d", channel));
dma_bufp = tmp_bufp = *dma_buf_p;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
" hxge_map_rxdma_channel_buf_ring: channel %d to map %d "
"chunks bufp 0x%016llx", channel, num_chunks, dma_bufp));
nmsgs = 0;
for (i = 0; i < num_chunks; i++, tmp_bufp++) {
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_map_rxdma_channel_buf_ring: channel %d "
"bufp 0x%016llx nblocks %d nmsgs %d",
channel, tmp_bufp, tmp_bufp->nblocks, nmsgs));
nmsgs += tmp_bufp->nblocks;
}
if (!nmsgs) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"<== hxge_map_rxdma_channel_buf_ring: channel %d "
"no msg blocks", channel));
status = HXGE_ERROR;
goto hxge_map_rxdma_channel_buf_ring_exit;
}
rbrp = (p_rx_rbr_ring_t)KMEM_ZALLOC(sizeof (rx_rbr_ring_t), KM_SLEEP);
size = nmsgs * sizeof (p_rx_msg_t);
rx_msg_ring = KMEM_ZALLOC(size, KM_SLEEP);
ring_info = (rxring_info_t *)KMEM_ZALLOC(sizeof (rxring_info_t),
KM_SLEEP);
MUTEX_INIT(&rbrp->lock, NULL, MUTEX_DRIVER,
(void *) hxgep->interrupt_cookie);
MUTEX_INIT(&rbrp->post_lock, NULL, MUTEX_DRIVER,
(void *) hxgep->interrupt_cookie);
rbrp->rdc = channel;
rbrp->num_blocks = num_chunks;
rbrp->tnblocks = nmsgs;
rbrp->rbb_max = nmsgs;
rbrp->rbr_max_size = nmsgs;
rbrp->rbr_wrap_mask = (rbrp->rbb_max - 1);
/*
* Buffer sizes: 256, 1K, and 2K.
*
* Blk 0 size.
*/
rbrp->pkt_buf_size0 = RBR_BUFSZ0_256B;
rbrp->pkt_buf_size0_bytes = RBR_BUFSZ0_256_BYTES;
rbrp->hpi_pkt_buf_size0 = SIZE_256B;
/*
* Blk 1 size.
*/
rbrp->pkt_buf_size1 = RBR_BUFSZ1_1K;
rbrp->pkt_buf_size1_bytes = RBR_BUFSZ1_1K_BYTES;
rbrp->hpi_pkt_buf_size1 = SIZE_1KB;
/*
* Blk 2 size.
*/
rbrp->pkt_buf_size2 = RBR_BUFSZ2_2K;
rbrp->pkt_buf_size2_bytes = RBR_BUFSZ2_2K_BYTES;
rbrp->hpi_pkt_buf_size2 = SIZE_2KB;
rbrp->block_size = hxgep->rx_default_block_size;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_map_rxdma_channel_buf_ring: channel %d "
"actual rbr max %d rbb_max %d nmsgs %d "
"rbrp->block_size %d default_block_size %d "
"(config hxge_rbr_size %d hxge_rbr_spare_size %d)",
channel, rbrp->rbr_max_size, rbrp->rbb_max, nmsgs,
rbrp->block_size, hxgep->rx_default_block_size,
hxge_rbr_size, hxge_rbr_spare_size));
/*
* Map in buffers from the buffer pool.
* Note that num_blocks is the num_chunks. For Sparc, there is likely
* only one chunk. For x86, there will be many chunks.
* Loop over chunks.
*/
index = 0;
for (i = 0; i < rbrp->num_blocks; i++, dma_bufp++) {
bsize = dma_bufp->block_size;
nblocks = dma_bufp->nblocks;
#if defined(__i386)
ring_info->buffer[i].dvma_addr = (uint32_t)dma_bufp->ioaddr_pp;
#else
ring_info->buffer[i].dvma_addr = (uint64_t)dma_bufp->ioaddr_pp;
#endif
ring_info->buffer[i].buf_index = i;
ring_info->buffer[i].buf_size = dma_bufp->alength;
ring_info->buffer[i].start_index = index;
#if defined(__i386)
ring_info->buffer[i].kaddr = (uint32_t)dma_bufp->kaddrp;
#else
ring_info->buffer[i].kaddr = (uint64_t)dma_bufp->kaddrp;
#endif
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
" hxge_map_rxdma_channel_buf_ring: map channel %d "
"chunk %d nblocks %d chunk_size %x block_size 0x%x "
"dma_bufp $%p dvma_addr $%p", channel, i,
dma_bufp->nblocks,
ring_info->buffer[i].buf_size, bsize, dma_bufp,
ring_info->buffer[i].dvma_addr));
/* loop over blocks within a chunk */
for (j = 0; j < nblocks; j++) {
if ((rx_msg_p = hxge_allocb(bsize, BPRI_LO,
dma_bufp)) == NULL) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"allocb failed (index %d i %d j %d)",
index, i, j));
goto hxge_map_rxdma_channel_buf_ring_fail1;
}
rx_msg_ring[index] = rx_msg_p;
rx_msg_p->block_index = index;
rx_msg_p->shifted_addr = (uint32_t)
((rx_msg_p->buf_dma.dma_cookie.dmac_laddress >>
RBR_BKADDR_SHIFT));
/*
* Too much output
* HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
* "index %d j %d rx_msg_p $%p mblk %p",
* index, j, rx_msg_p, rx_msg_p->rx_mblk_p));
*/
mblk_p = rx_msg_p->rx_mblk_p;
mblk_p->b_wptr = mblk_p->b_rptr + bsize;
rbrp->rbr_ref_cnt++;
index++;
rx_msg_p->buf_dma.dma_channel = channel;
}
}
if (i < rbrp->num_blocks) {
goto hxge_map_rxdma_channel_buf_ring_fail1;
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"hxge_map_rxdma_channel_buf_ring: done buf init "
"channel %d msg block entries %d", channel, index));
ring_info->block_size_mask = bsize - 1;
rbrp->rx_msg_ring = rx_msg_ring;
rbrp->dma_bufp = dma_buf_p;
rbrp->ring_info = ring_info;
status = hxge_rxbuf_index_info_init(hxgep, rbrp);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, " hxge_map_rxdma_channel_buf_ring: "
"channel %d done buf info init", channel));
/*
* Finally, permit hxge_freeb() to call hxge_post_page().
*/
rbrp->rbr_state = RBR_POSTING;
*rbr_p = rbrp;
goto hxge_map_rxdma_channel_buf_ring_exit;
hxge_map_rxdma_channel_buf_ring_fail1:
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
" hxge_map_rxdma_channel_buf_ring: failed channel (0x%x)",
channel, status));
index--;
for (; index >= 0; index--) {
rx_msg_p = rx_msg_ring[index];
if (rx_msg_p != NULL) {
freeb(rx_msg_p->rx_mblk_p);
rx_msg_ring[index] = NULL;
}
}
hxge_map_rxdma_channel_buf_ring_fail:
MUTEX_DESTROY(&rbrp->post_lock);
MUTEX_DESTROY(&rbrp->lock);
KMEM_FREE(ring_info, sizeof (rxring_info_t));
KMEM_FREE(rx_msg_ring, size);
KMEM_FREE(rbrp, sizeof (rx_rbr_ring_t));
status = HXGE_ERROR;
hxge_map_rxdma_channel_buf_ring_exit:
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"<== hxge_map_rxdma_channel_buf_ring status 0x%08x", status));
return (status);
}
/*ARGSUSED*/
static void
hxge_unmap_rxdma_channel_buf_ring(p_hxge_t hxgep,
p_rx_rbr_ring_t rbr_p)
{
p_rx_msg_t *rx_msg_ring;
p_rx_msg_t rx_msg_p;
rxring_info_t *ring_info;
int i;
uint32_t size;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_unmap_rxdma_channel_buf_ring"));
if (rbr_p == NULL) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_unmap_rxdma_channel_buf_ring: NULL rbrp"));
return;
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_unmap_rxdma_channel_buf_ring: channel %d", rbr_p->rdc));
rx_msg_ring = rbr_p->rx_msg_ring;
ring_info = rbr_p->ring_info;
if (rx_msg_ring == NULL || ring_info == NULL) {
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"<== hxge_unmap_rxdma_channel_buf_ring: "
"rx_msg_ring $%p ring_info $%p", rx_msg_p, ring_info));
return;
}
size = rbr_p->tnblocks * sizeof (p_rx_msg_t);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
" hxge_unmap_rxdma_channel_buf_ring: channel %d chunks %d "
"tnblocks %d (max %d) size ptrs %d ", rbr_p->rdc, rbr_p->num_blocks,
rbr_p->tnblocks, rbr_p->rbr_max_size, size));
for (i = 0; i < rbr_p->tnblocks; i++) {
rx_msg_p = rx_msg_ring[i];
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
" hxge_unmap_rxdma_channel_buf_ring: "
"rx_msg_p $%p", rx_msg_p));
if (rx_msg_p != NULL) {
freeb(rx_msg_p->rx_mblk_p);
rx_msg_ring[i] = NULL;
}
}
/*
* We no longer may use the mutex <post_lock>. By setting
* <rbr_state> to anything but POSTING, we prevent
* hxge_post_page() from accessing a dead mutex.
*/
rbr_p->rbr_state = RBR_UNMAPPING;
MUTEX_DESTROY(&rbr_p->post_lock);
MUTEX_DESTROY(&rbr_p->lock);
KMEM_FREE(ring_info, sizeof (rxring_info_t));
KMEM_FREE(rx_msg_ring, size);
if (rbr_p->rbr_ref_cnt == 0) {
/* This is the normal state of affairs. */
KMEM_FREE(rbr_p, sizeof (*rbr_p));
} else {
/*
* Some of our buffers are still being used.
* Therefore, tell hxge_freeb() this ring is
* unmapped, so it may free <rbr_p> for us.
*/
rbr_p->rbr_state = RBR_UNMAPPED;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"unmap_rxdma_buf_ring: %d %s outstanding.",
rbr_p->rbr_ref_cnt,
rbr_p->rbr_ref_cnt == 1 ? "msg" : "msgs"));
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"<== hxge_unmap_rxdma_channel_buf_ring"));
}
static hxge_status_t
hxge_rxdma_hw_start_common(p_hxge_t hxgep)
{
hxge_status_t status = HXGE_OK;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_hw_start_common"));
/*
* Load the sharable parameters by writing to the function zero control
* registers. These FZC registers should be initialized only once for
* the entire chip.
*/
(void) hxge_init_fzc_rx_common(hxgep);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_hw_start_common"));
return (status);
}
static hxge_status_t
hxge_rxdma_hw_start(p_hxge_t hxgep)
{
int i, ndmas;
uint16_t channel;
p_rx_rbr_rings_t rx_rbr_rings;
p_rx_rbr_ring_t *rbr_rings;
p_rx_rcr_rings_t rx_rcr_rings;
p_rx_rcr_ring_t *rcr_rings;
p_rx_mbox_areas_t rx_mbox_areas_p;
p_rx_mbox_t *rx_mbox_p;
hxge_status_t status = HXGE_OK;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_hw_start"));
rx_rbr_rings = hxgep->rx_rbr_rings;
rx_rcr_rings = hxgep->rx_rcr_rings;
if (rx_rbr_rings == NULL || rx_rcr_rings == NULL) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_rxdma_hw_start: NULL ring pointers"));
return (HXGE_ERROR);
}
ndmas = rx_rbr_rings->ndmas;
if (ndmas == 0) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_rxdma_hw_start: no dma channel allocated"));
return (HXGE_ERROR);
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_hw_start (ndmas %d)", ndmas));
/*
* Scrub the RDC Rx DMA Prefetch Buffer Command.
*/
for (i = 0; i < 128; i++) {
HXGE_REG_WR64(hxgep->hpi_handle, RDC_PREF_CMD, i);
}
/*
* Scrub Rx DMA Shadow Tail Command.
*/
for (i = 0; i < 64; i++) {
HXGE_REG_WR64(hxgep->hpi_handle, RDC_SHADOW_CMD, i);
}
/*
* Scrub Rx DMA Control Fifo Command.
*/
for (i = 0; i < 512; i++) {
HXGE_REG_WR64(hxgep->hpi_handle, RDC_CTRL_FIFO_CMD, i);
}
/*
* Scrub Rx DMA Data Fifo Command.
*/
for (i = 0; i < 1536; i++) {
HXGE_REG_WR64(hxgep->hpi_handle, RDC_DATA_FIFO_CMD, i);
}
/*
* Reset the FIFO Error Stat.
*/
HXGE_REG_WR64(hxgep->hpi_handle, RDC_FIFO_ERR_STAT, 0xFF);
/* Set the error mask to receive interrupts */
HXGE_REG_WR64(hxgep->hpi_handle, RDC_FIFO_ERR_INT_MASK, 0x0);
rbr_rings = rx_rbr_rings->rbr_rings;
rcr_rings = rx_rcr_rings->rcr_rings;
rx_mbox_areas_p = hxgep->rx_mbox_areas_p;
if (rx_mbox_areas_p) {
rx_mbox_p = rx_mbox_areas_p->rxmbox_areas;
}
for (i = 0; i < ndmas; i++) {
channel = rbr_rings[i]->rdc;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_hw_start (ndmas %d) channel %d",
ndmas, channel));
status = hxge_rxdma_start_channel(hxgep, channel,
(p_rx_rbr_ring_t)rbr_rings[i],
(p_rx_rcr_ring_t)rcr_rings[i],
(p_rx_mbox_t)rx_mbox_p[i], rbr_rings[i]->rbb_max);
if (status != HXGE_OK) {
goto hxge_rxdma_hw_start_fail1;
}
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_hw_start: "
"rx_rbr_rings 0x%016llx rings 0x%016llx",
rx_rbr_rings, rx_rcr_rings));
goto hxge_rxdma_hw_start_exit;
hxge_rxdma_hw_start_fail1:
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_hw_start: disable "
"(status 0x%x channel %d i %d)", status, channel, i));
for (; i >= 0; i--) {
channel = rbr_rings[i]->rdc;
(void) hxge_rxdma_stop_channel(hxgep, channel);
}
hxge_rxdma_hw_start_exit:
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_hw_start: (status 0x%x)", status));
return (status);
}
static void
hxge_rxdma_hw_stop(p_hxge_t hxgep)
{
int i, ndmas;
uint16_t channel;
p_rx_rbr_rings_t rx_rbr_rings;
p_rx_rbr_ring_t *rbr_rings;
p_rx_rcr_rings_t rx_rcr_rings;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_hw_stop"));
rx_rbr_rings = hxgep->rx_rbr_rings;
rx_rcr_rings = hxgep->rx_rcr_rings;
if (rx_rbr_rings == NULL || rx_rcr_rings == NULL) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_rxdma_hw_stop: NULL ring pointers"));
return;
}
ndmas = rx_rbr_rings->ndmas;
if (!ndmas) {
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"<== hxge_rxdma_hw_stop: no dma channel allocated"));
return;
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_hw_stop (ndmas %d)", ndmas));
rbr_rings = rx_rbr_rings->rbr_rings;
for (i = 0; i < ndmas; i++) {
channel = rbr_rings[i]->rdc;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_hw_stop (ndmas %d) channel %d",
ndmas, channel));
(void) hxge_rxdma_stop_channel(hxgep, channel);
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_hw_stop: "
"rx_rbr_rings 0x%016llx rings 0x%016llx",
rx_rbr_rings, rx_rcr_rings));
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "<== hxge_rxdma_hw_stop"));
}
static hxge_status_t
hxge_rxdma_start_channel(p_hxge_t hxgep, uint16_t channel,
p_rx_rbr_ring_t rbr_p, p_rx_rcr_ring_t rcr_p, p_rx_mbox_t mbox_p,
int n_init_kick)
{
hpi_handle_t handle;
hpi_status_t rs = HPI_SUCCESS;
rdc_stat_t cs;
rdc_int_mask_t ent_mask;
hxge_status_t status = HXGE_OK;
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_start_channel"));
handle = HXGE_DEV_HPI_HANDLE(hxgep);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "hxge_rxdma_start_channel: "
"hpi handle addr $%p acc $%p",
hxgep->hpi_handle.regp, hxgep->hpi_handle.regh));
/* Reset RXDMA channel */
rs = hpi_rxdma_cfg_rdc_reset(handle, channel);
if (rs != HPI_SUCCESS) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_start_channel: "
"reset rxdma failed (0x%08x channel %d)",
status, channel));
return (HXGE_ERROR | rs);
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_start_channel: reset done: channel %d", channel));
/*
* Initialize the RXDMA channel specific FZC control configurations.
* These FZC registers are pertaining to each RX channel (logical
* pages).
*/
status = hxge_init_fzc_rxdma_channel(hxgep,
channel, rbr_p, rcr_p, mbox_p);
if (status != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_start_channel: "
"init fzc rxdma failed (0x%08x channel %d)",
status, channel));
return (status);
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_start_channel: fzc done"));
/*
* Zero out the shadow and prefetch ram.
*/
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_start_channel: ram done"));
/* Set up the interrupt event masks. */
ent_mask.value = 0;
rs = hpi_rxdma_event_mask(handle, OP_SET, channel, &ent_mask);
if (rs != HPI_SUCCESS) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_start_channel: "
"init rxdma event masks failed (0x%08x channel %d)",
status, channel));
return (HXGE_ERROR | rs);
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_start_channel: "
"event done: channel %d (mask 0x%016llx)",
channel, ent_mask.value));
/*
* Load RXDMA descriptors, buffers, mailbox, initialise the receive DMA
* channels and enable each DMA channel.
*/
status = hxge_enable_rxdma_channel(hxgep,
channel, rbr_p, rcr_p, mbox_p, n_init_kick);
if (status != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
" hxge_rxdma_start_channel: "
" init enable rxdma failed (0x%08x channel %d)",
status, channel));
return (status);
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_start_channel: "
"control done - channel %d cs 0x%016llx", channel, cs.value));
/*
* Initialize the receive DMA control and status register
* Note that rdc_stat HAS to be set after RBR and RCR rings are set
*/
cs.value = 0;
cs.bits.mex = 1;
cs.bits.rcr_thres = 1;
cs.bits.rcr_to = 1;
cs.bits.rbr_empty = 1;
status = hxge_init_rxdma_channel_cntl_stat(hxgep, channel, &cs);
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_start_channel: "
"channel %d rx_dma_cntl_stat 0x%0016llx", channel, cs.value));
if (status != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_start_channel: "
"init rxdma control register failed (0x%08x channel %d",
status, channel));
return (status);
}
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "==> hxge_rxdma_start_channel: "
"control done - channel %d cs 0x%016llx", channel, cs.value));
HXGE_DEBUG_MSG((hxgep, MEM2_CTL,
"==> hxge_rxdma_start_channel: enable done"));
HXGE_DEBUG_MSG((hxgep, MEM2_CTL, "<== hxge_rxdma_start_channel"));
return (HXGE_OK);
}
static hxge_status_t
hxge_rxdma_stop_channel(p_hxge_t hxgep, uint16_t channel)
{
hpi_handle_t handle;
hpi_status_t rs = HPI_SUCCESS;
rdc_stat_t cs;
rdc_int_mask_t ent_mask;
hxge_status_t status = HXGE_OK;
HXGE_DEBUG_MSG((hxgep, RX_CTL, "==> hxge_rxdma_stop_channel"));
handle = HXGE_DEV_HPI_HANDLE(hxgep);
HXGE_DEBUG_MSG((hxgep, RX_CTL, "hxge_rxdma_stop_channel: "
"hpi handle addr $%p acc $%p",
hxgep->hpi_handle.regp, hxgep->hpi_handle.regh));
/* Reset RXDMA channel */
rs = hpi_rxdma_cfg_rdc_reset(handle, channel);
if (rs != HPI_SUCCESS) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
" hxge_rxdma_stop_channel: "
" reset rxdma failed (0x%08x channel %d)",
rs, channel));
return (HXGE_ERROR | rs);
}
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> hxge_rxdma_stop_channel: reset done"));
/* Set up the interrupt event masks. */
ent_mask.value = RDC_INT_MASK_ALL;
rs = hpi_rxdma_event_mask(handle, OP_SET, channel, &ent_mask);
if (rs != HPI_SUCCESS) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_stop_channel: "
"set rxdma event masks failed (0x%08x channel %d)",
rs, channel));
return (HXGE_ERROR | rs);
}
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> hxge_rxdma_stop_channel: event done"));
/* Initialize the receive DMA control and status register */
cs.value = 0;
status = hxge_init_rxdma_channel_cntl_stat(hxgep, channel, &cs);
HXGE_DEBUG_MSG((hxgep, RX_CTL, "==> hxge_rxdma_stop_channel: control "
" to default (all 0s) 0x%08x", cs.value));
if (status != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
" hxge_rxdma_stop_channel: init rxdma"
" control register failed (0x%08x channel %d",
status, channel));
return (status);
}
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> hxge_rxdma_stop_channel: control done"));
/* disable dma channel */
status = hxge_disable_rxdma_channel(hxgep, channel);
if (status != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
" hxge_rxdma_stop_channel: "
" init enable rxdma failed (0x%08x channel %d)",
status, channel));
return (status);
}
HXGE_DEBUG_MSG((hxgep, RX_CTL,
"==> hxge_rxdma_stop_channel: disable done"));
HXGE_DEBUG_MSG((hxgep, RX_CTL, "<== hxge_rxdma_stop_channel"));
return (HXGE_OK);
}
hxge_status_t
hxge_rxdma_handle_sys_errors(p_hxge_t hxgep)
{
hpi_handle_t handle;
p_hxge_rdc_sys_stats_t statsp;
rdc_fifo_err_stat_t stat;
hxge_status_t status = HXGE_OK;
handle = hxgep->hpi_handle;
statsp = (p_hxge_rdc_sys_stats_t)&hxgep->statsp->rdc_sys_stats;
/* Get the error status and clear the register */
HXGE_REG_RD64(handle, RDC_FIFO_ERR_STAT, &stat.value);
HXGE_REG_WR64(handle, RDC_FIFO_ERR_STAT, stat.value);
if (stat.bits.rx_ctrl_fifo_sec) {
statsp->ctrl_fifo_sec++;
if (statsp->ctrl_fifo_sec == 1)
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_handle_sys_errors: "
"rx_ctrl_fifo_sec"));
}
if (stat.bits.rx_ctrl_fifo_ded) {
/* Global fatal error encountered */
statsp->ctrl_fifo_ded++;
HXGE_FM_REPORT_ERROR(hxgep, NULL,
HXGE_FM_EREPORT_RDMC_CTRL_FIFO_DED);
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_handle_sys_errors: "
"fatal error: rx_ctrl_fifo_ded error"));
}
if (stat.bits.rx_data_fifo_sec) {
statsp->data_fifo_sec++;
if (statsp->data_fifo_sec == 1)
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_handle_sys_errors: "
"rx_data_fifo_sec"));
}
if (stat.bits.rx_data_fifo_ded) {
/* Global fatal error encountered */
statsp->data_fifo_ded++;
HXGE_FM_REPORT_ERROR(hxgep, NULL,
HXGE_FM_EREPORT_RDMC_DATA_FIFO_DED);
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"==> hxge_rxdma_handle_sys_errors: "
"fatal error: rx_data_fifo_ded error"));
}
if (stat.bits.rx_ctrl_fifo_ded || stat.bits.rx_data_fifo_ded) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
" hxge_rxdma_handle_sys_errors: fatal error\n"));
status = hxge_rx_port_fatal_err_recover(hxgep);
if (status == HXGE_OK) {
FM_SERVICE_RESTORED(hxgep);
}
}
return (HXGE_OK);
}
static hxge_status_t
hxge_rxdma_fatal_err_recover(p_hxge_t hxgep, uint16_t channel)
{
hpi_handle_t handle;
hpi_status_t rs = HPI_SUCCESS;
p_rx_rbr_ring_t rbrp;
p_rx_rcr_ring_t rcrp;
p_rx_mbox_t mboxp;
rdc_int_mask_t ent_mask;
p_hxge_dma_common_t dmap;
p_rx_msg_t rx_msg_p;
int i;
uint32_t hxge_port_rcr_size;
uint64_t tmp;
int n_init_kick = 0;
HXGE_DEBUG_MSG((hxgep, RX_CTL, "==> hxge_rxdma_fatal_err_recover"));
/*
* Stop the dma channel waits for the stop done. If the stop done bit
* is not set, then create an error.
*/
handle = HXGE_DEV_HPI_HANDLE(hxgep);
HXGE_DEBUG_MSG((hxgep, RX_CTL, "Rx DMA stop..."));
rbrp = (p_rx_rbr_ring_t)hxgep->rx_rbr_rings->rbr_rings[channel];
rcrp = (p_rx_rcr_ring_t)hxgep->rx_rcr_rings->rcr_rings[channel];
MUTEX_ENTER(&rcrp->lock);
MUTEX_ENTER(&rbrp->lock);
HXGE_DEBUG_MSG((hxgep, RX_CTL, "Disable RxDMA channel..."));
rs = hpi_rxdma_cfg_rdc_disable(handle, channel);
if (rs != HPI_SUCCESS) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"hxge_disable_rxdma_channel:failed"));
goto fail;
}
HXGE_DEBUG_MSG((hxgep, RX_CTL, "Disable RxDMA interrupt..."));
/* Disable interrupt */
ent_mask.value = RDC_INT_MASK_ALL;
rs = hpi_rxdma_event_mask(handle, OP_SET, channel, &ent_mask);
if (rs != HPI_SUCCESS) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"Set rxdma event masks failed (channel %d)", channel));
}
HXGE_DEBUG_MSG((hxgep, RX_CTL, "RxDMA channel reset..."));
/* Reset RXDMA channel */
rs = hpi_rxdma_cfg_rdc_reset(handle, channel);
if (rs != HPI_SUCCESS) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"Reset rxdma failed (channel %d)", channel));
goto fail;
}
hxge_port_rcr_size = hxgep->hxge_port_rcr_size;
mboxp = (p_rx_mbox_t)hxgep->rx_mbox_areas_p->rxmbox_areas[channel];
rbrp->rbr_wr_index = (rbrp->rbb_max - 1);
rbrp->rbr_rd_index = 0;
rcrp->comp_rd_index = 0;
rcrp->comp_wt_index = 0;
rcrp->rcr_desc_rd_head_p = rcrp->rcr_desc_first_p =
(p_rcr_entry_t)DMA_COMMON_VPTR(rcrp->rcr_desc);
#if defined(__i386)
rcrp->rcr_desc_rd_head_pp = rcrp->rcr_desc_first_pp =
(p_rcr_entry_t)(uint32_t)DMA_COMMON_IOADDR(rcrp->rcr_desc);
#else
rcrp->rcr_desc_rd_head_pp = rcrp->rcr_desc_first_pp =
(p_rcr_entry_t)DMA_COMMON_IOADDR(rcrp->rcr_desc);
#endif
rcrp->rcr_desc_last_p = rcrp->rcr_desc_rd_head_p +
(hxge_port_rcr_size - 1);
rcrp->rcr_desc_last_pp = rcrp->rcr_desc_rd_head_pp +
(hxge_port_rcr_size - 1);
rcrp->rcr_tail_begin = DMA_COMMON_IOADDR(rcrp->rcr_desc);
rcrp->rcr_tail_begin = (rcrp->rcr_tail_begin & 0x7ffffULL) >> 3;
dmap = (p_hxge_dma_common_t)&rcrp->rcr_desc;
bzero((caddr_t)dmap->kaddrp, dmap->alength);
HXGE_DEBUG_MSG((hxgep, RX_CTL, "rbr entries = %d\n",
rbrp->rbr_max_size));
/* Count the number of buffers owned by the hardware at this moment */
for (i = 0; i < rbrp->rbr_max_size; i++) {
rx_msg_p = rbrp->rx_msg_ring[i];
if (rx_msg_p->ref_cnt == 1) {
n_init_kick++;
}
}
HXGE_DEBUG_MSG((hxgep, RX_CTL, "RxDMA channel re-start..."));
/*
* This is error recover! Some buffers are owned by the hardware and
* the rest are owned by the apps. We should only kick in those
* owned by the hardware initially. The apps will post theirs
* eventually.
*/
(void) hxge_rxdma_start_channel(hxgep, channel, rbrp, rcrp, mboxp,
n_init_kick);
/*
* The DMA channel may disable itself automatically.
* The following is a work-around.
*/
HXGE_REG_RD64(handle, RDC_RX_CFG1, &tmp);
rs = hpi_rxdma_cfg_rdc_enable(handle, channel);
if (rs != HPI_SUCCESS) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"hpi_rxdma_cfg_rdc_enable (channel %d)", channel));
}
/*
* Delay a bit of time by doing reads.
*/
for (i = 0; i < 1024; i++) {
uint64_t value;
RXDMA_REG_READ64(HXGE_DEV_HPI_HANDLE(hxgep),
RDC_INT_MASK, i & 3, &value);
}
MUTEX_EXIT(&rbrp->lock);
MUTEX_EXIT(&rcrp->lock);
HXGE_DEBUG_MSG((hxgep, RX_CTL, "<== hxge_rxdma_fatal_err_recover"));
return (HXGE_OK);
fail:
MUTEX_EXIT(&rbrp->lock);
MUTEX_EXIT(&rcrp->lock);
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"Error Recovery failed for channel(%d)", channel));
return (HXGE_ERROR | rs);
}
static hxge_status_t
hxge_rx_port_fatal_err_recover(p_hxge_t hxgep)
{
hxge_status_t status = HXGE_OK;
p_hxge_dma_common_t *dma_buf_p;
uint16_t channel;
int ndmas;
int i;
block_reset_t reset_reg;
p_rx_rcr_ring_t rcrp;
p_rx_rbr_ring_t rbrp;
HXGE_DEBUG_MSG((hxgep, RX_CTL, "==> hxge_rx_port_fatal_err_recover"));
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL, "Recovering from RDC error ..."));
/* Disable RxMAC */
HXGE_DEBUG_MSG((hxgep, RX_CTL, "Disable RxMAC...\n"));
MUTEX_ENTER(&hxgep->vmac_lock);
if (hxge_rx_vmac_disable(hxgep) != HXGE_OK)
goto fail;
HXGE_DELAY(1000);
/*
* Reset RDC block from PEU for this fatal error
*/
reset_reg.value = 0;
reset_reg.bits.rdc_rst = 1;
HXGE_REG_WR32(hxgep->hpi_handle, BLOCK_RESET, reset_reg.value);
HXGE_DELAY(1000);
/* Restore any common settings after PEU reset */
if (hxge_rxdma_hw_start_common(hxgep) != HXGE_OK)
goto fail;
HXGE_DEBUG_MSG((hxgep, RX_CTL, "Stop all RxDMA channels..."));
ndmas = hxgep->rx_buf_pool_p->ndmas;
dma_buf_p = hxgep->rx_buf_pool_p->dma_buf_pool_p;
for (i = 0; i < ndmas; i++) {
channel = ((p_hxge_dma_common_t)dma_buf_p[i])->dma_channel;
rcrp = hxgep->rx_rcr_rings->rcr_rings[channel];
rbrp = rcrp->rx_rbr_p;
MUTEX_ENTER(&rbrp->post_lock);
/*
* This function needs to be inside the post_lock
*/
if (hxge_rxdma_fatal_err_recover(hxgep, channel) != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"Could not recover channel %d", channel));
}
MUTEX_EXIT(&rbrp->post_lock);
}
HXGE_DEBUG_MSG((hxgep, RX_CTL, "Reset RxMAC..."));
/* Reset RxMAC */
if (hxge_rx_vmac_reset(hxgep) != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"hxge_rx_port_fatal_err_recover: Failed to reset RxMAC"));
goto fail;
}
HXGE_DEBUG_MSG((hxgep, RX_CTL, "Re-initialize RxMAC..."));
/* Re-Initialize RxMAC */
if ((status = hxge_rx_vmac_init(hxgep)) != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"hxge_rx_port_fatal_err_recover: Failed to reset RxMAC"));
goto fail;
}
HXGE_DEBUG_MSG((hxgep, RX_CTL, "Re-enable RxMAC..."));
/* Re-enable RxMAC */
if ((status = hxge_rx_vmac_enable(hxgep)) != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"hxge_rx_port_fatal_err_recover: Failed to enable RxMAC"));
goto fail;
}
MUTEX_EXIT(&hxgep->vmac_lock);
/* Reset the error mask since PEU reset cleared it */
HXGE_REG_WR64(hxgep->hpi_handle, RDC_FIFO_ERR_INT_MASK, 0x0);
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"Recovery Successful, RxPort Restored"));
HXGE_DEBUG_MSG((hxgep, RX_CTL, "<== hxge_rx_port_fatal_err_recover"));
return (HXGE_OK);
fail:
MUTEX_EXIT(&hxgep->vmac_lock);
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"Error Recovery failed for hxge(%d)", hxgep->instance));
return (status);
}
static void
hxge_rbr_empty_restore(p_hxge_t hxgep, p_rx_rbr_ring_t rx_rbr_p)
{
hpi_status_t hpi_status;
hxge_status_t status;
rdc_stat_t cs;
p_hxge_rx_ring_stats_t rdc_stats;
rdc_stats = &hxgep->statsp->rdc_stats[rx_rbr_p->rdc];
/*
* Complete the processing for the RBR Empty by:
* 0) kicking back HXGE_RBR_EMPTY_THRESHOLD
* packets.
* 1) Disable the RX vmac.
* 2) Re-enable the affected DMA channel.
* 3) Re-enable the RX vmac.
*/
/*
* Disable the RX VMAC, but setting the framelength
* to 0, since there is a hardware bug when disabling
* the vmac.
*/
MUTEX_ENTER(&hxgep->vmac_lock);
(void) hxge_rx_vmac_disable(hxgep);
/*
* Re-arm the mex bit for interrupts to be enabled.
*/
cs.value = 0;
cs.bits.mex = 1;
RXDMA_REG_WRITE64(HXGE_DEV_HPI_HANDLE(hxgep), RDC_STAT,
rx_rbr_p->rdc, cs.value);
hpi_status = hpi_rxdma_cfg_rdc_enable(
HXGE_DEV_HPI_HANDLE(hxgep), rx_rbr_p->rdc);
if (hpi_status != HPI_SUCCESS) {
rdc_stats->rbr_empty_fail++;
/* Assume we are already inside the post_lock */
status = hxge_rxdma_fatal_err_recover(hxgep, rx_rbr_p->rdc);
if (status != HXGE_OK) {
HXGE_ERROR_MSG((hxgep, HXGE_ERR_CTL,
"hxge(%d): channel(%d) is empty.",
hxgep->instance, rx_rbr_p->rdc));
}
}
/*
* Re-enable the RX VMAC.
*/
(void) hxge_rx_vmac_enable(hxgep);
MUTEX_EXIT(&hxgep->vmac_lock);
rdc_stats->rbr_empty_restore++;
rx_rbr_p->rbr_is_empty = B_FALSE;
}