e1000_nvm.c revision d5c3073dbbd835e1e9b7dca0c6c770cf3cc20afa
/*
* This file is provided under a CDDLv1 license. When using or
* redistributing this file, you may do so under this license.
* In redistributing this file this license must be included
* and no other modification of this header file is permitted.
*
* CDDL LICENSE SUMMARY
*
* Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
*
* The contents of this file are subject to the terms of Version
* 1.0 of the Common Development and Distribution License (the "License").
*
* You should have received a copy of the License with this software.
* You can obtain a copy of the License at
* http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms of the CDDLv1.
*/
/*
* IntelVersion: 1.46 sol_anvik_patch
*/
#include "e1000_api.h"
static void e1000_reload_nvm_generic(struct e1000_hw *hw);
/*
* e1000_init_nvm_ops_generic - Initialize NVM function pointers
* @hw: pointer to the HW structure
*
* Setups up the function pointers to no-op functions
*/
void
e1000_init_nvm_ops_generic(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
DEBUGFUNC("e1000_init_nvm_ops_generic");
/* Initialize function pointers */
nvm->ops.init_params = e1000_null_ops_generic;
nvm->ops.acquire = e1000_null_ops_generic;
nvm->ops.read = e1000_null_read_nvm;
nvm->ops.release = e1000_null_nvm_generic;
nvm->ops.reload = e1000_reload_nvm_generic;
nvm->ops.update = e1000_null_ops_generic;
nvm->ops.valid_led_default = e1000_null_led_default;
nvm->ops.validate = e1000_null_ops_generic;
nvm->ops.write = e1000_null_write_nvm;
}
/*
* e1000_null_nvm_read - No-op function, return 0
* @hw: pointer to the HW structure
*/
s32
e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
{
DEBUGFUNC("e1000_null_read_nvm");
UNREFERENCED_4PARAMETER(hw, a, b, c);
return (E1000_SUCCESS);
}
/*
* e1000_null_nvm_generic - No-op function, return void
* @hw: pointer to the HW structure
*/
void
e1000_null_nvm_generic(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_null_nvm_generic");
UNREFERENCED_1PARAMETER(hw);
}
/*
* e1000_null_led_default - No-op function, return 0
* @hw: pointer to the HW structure
*/
s32
e1000_null_led_default(struct e1000_hw *hw, u16 *data)
{
DEBUGFUNC("e1000_null_led_default");
UNREFERENCED_2PARAMETER(hw, data);
return (E1000_SUCCESS);
}
/*
* e1000_null_write_nvm - No-op function, return 0
* @hw: pointer to the HW structure
*/
s32
e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
{
DEBUGFUNC("e1000_null_write_nvm");
UNREFERENCED_4PARAMETER(hw, a, b, c);
return (E1000_SUCCESS);
}
/*
* e1000_raise_eec_clk - Raise EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Enable/Raise the EEPROM clock bit.
*/
static void
e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
*eecd = *eecd | E1000_EECD_SK;
E1000_WRITE_REG(hw, E1000_EECD, *eecd);
E1000_WRITE_FLUSH(hw);
usec_delay(hw->nvm.delay_usec);
}
/*
* e1000_lower_eec_clk - Lower EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Clear/Lower the EEPROM clock bit.
*/
static void
e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
*eecd = *eecd & ~E1000_EECD_SK;
E1000_WRITE_REG(hw, E1000_EECD, *eecd);
E1000_WRITE_FLUSH(hw);
usec_delay(hw->nvm.delay_usec);
}
/*
* e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
* @hw: pointer to the HW structure
* @data: data to send to the EEPROM
* @count: number of bits to shift out
*
* We need to shift 'count' bits out to the EEPROM. So, the value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
*/
static void
e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
u32 mask;
DEBUGFUNC("e1000_shift_out_eec_bits");
mask = 0x01 << (count - 1);
if (nvm->type == e1000_nvm_eeprom_microwire)
eecd &= ~E1000_EECD_DO;
else if (nvm->type == e1000_nvm_eeprom_spi)
eecd |= E1000_EECD_DO;
do {
eecd &= ~E1000_EECD_DI;
if (data & mask)
eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
E1000_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
e1000_raise_eec_clk(hw, &eecd);
e1000_lower_eec_clk(hw, &eecd);
mask >>= 1;
} while (mask);
eecd &= ~E1000_EECD_DI;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
}
/*
* e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
* @hw: pointer to the HW structure
* @count: number of bits to shift in
*
* In order to read a register from the EEPROM, we need to shift 'count' bits
* in from the EEPROM. Bits are "shifted in" by raising the clock input to
* the EEPROM (setting the SK bit), and then reading the value of the data out
* "DO" bit. During this "shifting in" process the data in "DI" bit should
* always be clear.
*/
static u16
e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
{
u32 eecd;
u32 i;
u16 data;
DEBUGFUNC("e1000_shift_in_eec_bits");
eecd = E1000_READ_REG(hw, E1000_EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for (i = 0; i < count; i++) {
data <<= 1;
e1000_raise_eec_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, E1000_EECD);
eecd &= ~E1000_EECD_DI;
if (eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_eec_clk(hw, &eecd);
}
return (data);
}
/*
* e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
* @hw: pointer to the HW structure
* @ee_reg: EEPROM flag for polling
*
* Polls the EEPROM status bit for either read or write completion based
* upon the value of 'ee_reg'.
*/
s32
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
{
u32 attempts = 100000;
u32 i, reg = 0;
s32 ret_val = -E1000_ERR_NVM;
DEBUGFUNC("e1000_poll_eerd_eewr_done");
for (i = 0; i < attempts; i++) {
if (ee_reg == E1000_NVM_POLL_READ)
reg = E1000_READ_REG(hw, E1000_EERD);
else
reg = E1000_READ_REG(hw, E1000_EEWR);
if (reg & E1000_NVM_RW_REG_DONE) {
ret_val = E1000_SUCCESS;
break;
}
usec_delay(5);
}
return (ret_val);
}
/*
* e1000_acquire_nvm_generic - Generic request for access to EEPROM
* @hw: pointer to the HW structure
*
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -E1000_ERR_NVM (-1).
*/
s32
e1000_acquire_nvm_generic(struct e1000_hw *hw)
{
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_acquire_nvm_generic");
E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
eecd = E1000_READ_REG(hw, E1000_EECD);
while (timeout) {
if (eecd & E1000_EECD_GNT)
break;
usec_delay(5);
eecd = E1000_READ_REG(hw, E1000_EECD);
timeout--;
}
if (!timeout) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
DEBUGOUT("Could not acquire NVM grant\n");
ret_val = -E1000_ERR_NVM;
}
return (ret_val);
}
/*
* e1000_standby_nvm - Return EEPROM to standby state
* @hw: pointer to the HW structure
*
* Return the EEPROM to a standby state.
*/
static void
e1000_standby_nvm(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
DEBUGFUNC("e1000_standby_nvm");
if (nvm->type == e1000_nvm_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, E1000_EECD, eecd);
E1000_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
e1000_raise_eec_clk(hw, &eecd);
/* Select EEPROM */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
E1000_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
e1000_lower_eec_clk(hw, &eecd);
} else if (nvm->type == e1000_nvm_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
E1000_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
eecd &= ~E1000_EECD_CS;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
E1000_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
}
}
/*
* e1000_stop_nvm - Terminate EEPROM command
* @hw: pointer to the HW structure
*
* Terminates the current command by inverting the EEPROM's chip select pin.
*/
void
e1000_stop_nvm(struct e1000_hw *hw)
{
u32 eecd;
DEBUGFUNC("e1000_stop_nvm");
eecd = E1000_READ_REG(hw, E1000_EECD);
if (hw->nvm.type == e1000_nvm_eeprom_spi) {
/* Pull CS high */
eecd |= E1000_EECD_CS;
e1000_lower_eec_clk(hw, &eecd);
} else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
/* CS on Microwire is active-high */
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
E1000_WRITE_REG(hw, E1000_EECD, eecd);
e1000_raise_eec_clk(hw, &eecd);
e1000_lower_eec_clk(hw, &eecd);
}
}
/*
* e1000_release_nvm_generic - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
*/
void
e1000_release_nvm_generic(struct e1000_hw *hw)
{
u32 eecd;
DEBUGFUNC("e1000_release_nvm_generic");
e1000_stop_nvm(hw);
eecd = E1000_READ_REG(hw, E1000_EECD);
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
}
/*
* e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
* @hw: pointer to the HW structure
*
* Setups the EEPROM for reading and writing.
*/
static s32
e1000_ready_nvm_eeprom(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
s32 ret_val = E1000_SUCCESS;
u16 timeout = 0;
u8 spi_stat_reg;
DEBUGFUNC("e1000_ready_nvm_eeprom");
if (nvm->type == e1000_nvm_eeprom_microwire) {
/* Clear SK and DI */
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
E1000_WRITE_REG(hw, E1000_EECD, eecd);
/* Set CS */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
} else if (nvm->type == e1000_nvm_eeprom_spi) {
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, E1000_EECD, eecd);
usec_delay(1);
timeout = NVM_MAX_RETRY_SPI;
/*
* Read "Status Register" repeatedly until the LSB is cleared.
* The EEPROM will signal that the command has been completed
* by clearing bit 0 of the internal status register. If it's
* not cleared within 'timeout', then error out.
*/
while (timeout) {
e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
hw->nvm.opcode_bits);
spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
break;
usec_delay(5);
e1000_standby_nvm(hw);
timeout--;
}
if (!timeout) {
DEBUGOUT("SPI NVM Status error\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
}
out:
return (ret_val);
}
/*
* e1000_read_nvm_spi - Read EEPROM's using SPI
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM.
*/
s32
e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 * data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i = 0;
s32 ret_val;
u16 word_in;
u8 read_opcode = NVM_READ_OPCODE_SPI;
DEBUGFUNC("e1000_read_nvm_spi");
/*
* A check for invalid values: offset too large, too many words, and
* not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
goto out;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
e1000_standby_nvm(hw);
if ((nvm->address_bits == 8) && (offset >= 128))
read_opcode |= NVM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)(offset * 2), nvm->address_bits);
/*
* Read the data. SPI NVMs increment the address with each byte read
* and will roll over if reading beyond the end. This allows us to
* read the whole NVM from any offset
*/
for (i = 0; i < words; i++) {
word_in = e1000_shift_in_eec_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
release:
nvm->ops.release(hw);
out:
return (ret_val);
}
/*
* e1000_read_nvm_microwire - Reads EEPROM's using microwire
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM.
*/
s32
e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i = 0;
s32 ret_val;
u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
DEBUGFUNC("e1000_read_nvm_microwire");
/*
* A check for invalid values: offset too large, too many words, and
* not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
goto out;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)(offset + i),
nvm->address_bits);
/*
* Read the data. For microwire, each word requires the
* overhead of setup and tear-down.
*/
data[i] = e1000_shift_in_eec_bits(hw, 16);
e1000_standby_nvm(hw);
}
release:
nvm->ops.release(hw);
out:
return (ret_val);
}
/*
* e1000_read_nvm_eerd - Reads EEPROM using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
*/
s32
e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i, eerd = 0;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_read_nvm_eerd");
/*
* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
for (i = 0; i < words; i++) {
eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
E1000_NVM_RW_REG_START;
E1000_WRITE_REG(hw, E1000_EERD, eerd);
ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
if (ret_val)
break;
data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
E1000_NVM_RW_REG_DATA);
}
out:
return (ret_val);
}
/*
* e1000_write_nvm_spi - Write to EEPROM using SPI
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* Writes data to EEPROM at offset using SPI interface.
*
* If e1000_update_nvm_checksum is not called after this function , the
* EEPROM will most likely contain an invalid checksum.
*/
s32
e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
s32 ret_val;
u16 widx = 0;
DEBUGFUNC("e1000_write_nvm_spi");
/*
* A check for invalid values: offset too large, too many words, and
* not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
goto out;
while (widx < words) {
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
e1000_standby_nvm(hw);
/* Send the WRITE ENABLE command (8 bit opcode) */
e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
nvm->opcode_bits);
e1000_standby_nvm(hw);
/*
* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((nvm->address_bits == 8) && (offset >= 128))
write_opcode |= NVM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
nvm->address_bits);
/* Loop to allow for up to whole page write of eeprom */
while (widx < words) {
u16 word_out = data[widx];
word_out = (word_out >> 8) | (word_out << 8);
e1000_shift_out_eec_bits(hw, word_out, 16);
widx++;
if ((((offset + widx) * 2) % nvm->page_size) == 0) {
e1000_standby_nvm(hw);
break;
}
}
}
msec_delay(10);
release:
nvm->ops.release(hw);
out:
return (ret_val);
}
/*
* e1000_write_nvm_microwire - Writes EEPROM using microwire
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* Writes data to EEPROM at offset using microwire interface.
*
* If e1000_update_nvm_checksum is not called after this function , the
* EEPROM will most likely contain an invalid checksum.
*/
s32
e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
s32 ret_val;
u32 eecd;
u16 words_written = 0;
u16 widx = 0;
DEBUGFUNC("e1000_write_nvm_microwire");
/*
* A check for invalid values: offset too large, too many words, and
* not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
goto out;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
(u16)(nvm->opcode_bits + 2));
e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
e1000_standby_nvm(hw);
while (words_written < words) {
e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
nvm->address_bits);
e1000_shift_out_eec_bits(hw, data[words_written], 16);
e1000_standby_nvm(hw);
for (widx = 0; widx < 200; widx++) {
eecd = E1000_READ_REG(hw, E1000_EECD);
if (eecd & E1000_EECD_DO)
break;
usec_delay(50);
}
if (widx == 200) {
DEBUGOUT("NVM Write did not complete\n");
ret_val = -E1000_ERR_NVM;
goto release;
}
e1000_standby_nvm(hw);
words_written++;
}
e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
(u16)(nvm->opcode_bits + 2));
e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
release:
nvm->ops.release(hw);
out:
return (ret_val);
}
/*
* e1000_read_pba_num_generic - Read device part number
* @hw: pointer to the HW structure
* @pba_num: pointer to device part number
*
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in pba_num.
*/
s32
e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
{
s32 ret_val;
u16 nvm_data;
DEBUGFUNC("e1000_read_pba_num_generic");
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
goto out;
}
*pba_num = (u32)(nvm_data << 16);
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
goto out;
}
*pba_num |= nvm_data;
out:
return (ret_val);
}
/*
* e1000_read_mac_addr_generic - Read device MAC address
* @hw: pointer to the HW structure
*
* Reads the device MAC address from the EEPROM and stores the value.
* Since devices with two ports use the same EEPROM, we increment the
* last bit in the MAC address for the second port.
*/
s32
e1000_read_mac_addr_generic(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
u16 offset, nvm_data, i;
DEBUGFUNC("e1000_read_mac_addr");
for (i = 0; i < ETH_ADDR_LEN; i += 2) {
offset = i >> 1;
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
goto out;
}
hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
hw->mac.perm_addr[i + 1] = (u8)(nvm_data >> 8);
}
/* Flip last bit of mac address if we're on second port */
if (hw->bus.func == E1000_FUNC_1)
hw->mac.perm_addr[5] ^= 1;
for (i = 0; i < ETH_ADDR_LEN; i++)
hw->mac.addr[i] = hw->mac.perm_addr[i];
out:
return (ret_val);
}
/*
* e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
*/
s32
e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
u16 checksum = 0;
u16 i, nvm_data;
DEBUGFUNC("e1000_validate_nvm_checksum_generic");
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
goto out;
}
checksum += nvm_data;
}
if (checksum != (u16)NVM_SUM) {
DEBUGOUT("NVM Checksum Invalid\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
out:
return (ret_val);
}
/*
* e1000_update_nvm_checksum_generic - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
*/
s32
e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
DEBUGFUNC("e1000_update_nvm_checksum");
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (u16)NVM_SUM - checksum;
ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
if (ret_val)
DEBUGOUT("NVM Write Error while updating checksum.\n");
out:
return (ret_val);
}
/*
* e1000_reload_nvm_generic - Reloads EEPROM
* @hw: pointer to the HW structure
*
* Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
* extended control register.
*/
void
e1000_reload_nvm_generic(struct e1000_hw *hw)
{
u32 ctrl_ext;
DEBUGFUNC("e1000_reload_nvm_generic");
usec_delay(10);
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
}