e1000_api.c revision 25f2d433de915875c8393f0b0dc14aa155997ad0
/*
* This file is provided under a CDDLv1 license. When using or
* redistributing this file, you may do so under this license.
* In redistributing this file this license must be included
* and no other modification of this header file is permitted.
*
* CDDL LICENSE SUMMARY
*
* Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
*
* The contents of this file are subject to the terms of Version
* 1.0 of the Common Development and Distribution License (the "License").
*
* You should have received a copy of the License with this software.
* You can obtain a copy of the License at
* http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms of the CDDLv1.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3
*/
#include "e1000_api.h"
#include "e1000_mac.h"
#include "e1000_nvm.h"
#include "e1000_phy.h"
extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
/*
* e1000_init_mac_params - Initialize MAC function pointers
* @hw: pointer to the HW structure
*
* This function initializes the function pointers for the MAC
* set of functions. Called by drivers or by e1000_setup_init_funcs.
*/
s32
e1000_init_mac_params(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
if (hw->func.init_mac_params) {
ret_val = hw->func.init_mac_params(hw);
if (ret_val) {
DEBUGOUT("MAC Initialization Error\n");
goto out;
}
} else {
DEBUGOUT("mac.init_mac_params was NULL\n");
ret_val = -E1000_ERR_CONFIG;
}
out:
return (ret_val);
}
/*
* e1000_init_nvm_params - Initialize NVM function pointers
* @hw: pointer to the HW structure
*
* This function initializes the function pointers for the NVM
* set of functions. Called by drivers or by e1000_setup_init_funcs.
*/
s32
e1000_init_nvm_params(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
if (hw->func.init_nvm_params) {
ret_val = hw->func.init_nvm_params(hw);
if (ret_val) {
DEBUGOUT("NVM Initialization Error\n");
goto out;
}
} else {
DEBUGOUT("nvm.init_nvm_params was NULL\n");
ret_val = -E1000_ERR_CONFIG;
}
out:
return (ret_val);
}
/*
* e1000_init_phy_params - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* This function initializes the function pointers for the PHY
* set of functions. Called by drivers or by e1000_setup_init_funcs.
*/
s32
e1000_init_phy_params(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
if (hw->func.init_phy_params) {
ret_val = hw->func.init_phy_params(hw);
if (ret_val) {
DEBUGOUT("PHY Initialization Error\n");
goto out;
}
} else {
DEBUGOUT("phy.init_phy_params was NULL\n");
ret_val = -E1000_ERR_CONFIG;
}
out:
return (ret_val);
}
/*
* e1000_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the mac type of the adapter based on the
* device ID stored in the hw structure.
* MUST BE FIRST FUNCTION CALLED (explicitly or through
* e1000_setup_init_funcs()).
*/
s32
e1000_set_mac_type(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_set_mac_type");
switch (hw->device_id) {
case E1000_DEV_ID_82542:
mac->type = e1000_82542;
break;
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
mac->type = e1000_82543;
break;
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
mac->type = e1000_82544;
break;
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
case E1000_DEV_ID_82540EP:
case E1000_DEV_ID_82540EP_LOM:
case E1000_DEV_ID_82540EP_LP:
mac->type = e1000_82540;
break;
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
mac->type = e1000_82545;
break;
case E1000_DEV_ID_82545GM_COPPER:
case E1000_DEV_ID_82545GM_FIBER:
case E1000_DEV_ID_82545GM_SERDES:
mac->type = e1000_82545_rev_3;
break;
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
mac->type = e1000_82546;
break;
case E1000_DEV_ID_82546GB_COPPER:
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82546GB_PCIE:
case E1000_DEV_ID_82546GB_QUAD_COPPER:
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
mac->type = e1000_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
case E1000_DEV_ID_82541ER_LOM:
mac->type = e1000_82541;
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_LF:
case E1000_DEV_ID_82541GI_MOBILE:
mac->type = e1000_82541_rev_2;
break;
case E1000_DEV_ID_82547EI:
case E1000_DEV_ID_82547EI_MOBILE:
mac->type = e1000_82547;
break;
case E1000_DEV_ID_82547GI:
mac->type = e1000_82547_rev_2;
break;
case E1000_DEV_ID_82571EB_COPPER:
case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
case E1000_DEV_ID_82571EB_QUAD_COPPER:
case E1000_DEV_ID_82571PT_QUAD_COPPER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
mac->type = e1000_82571;
break;
case E1000_DEV_ID_82572EI:
case E1000_DEV_ID_82572EI_COPPER:
case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82572EI_SERDES:
mac->type = e1000_82572;
break;
case E1000_DEV_ID_82573E:
case E1000_DEV_ID_82573E_IAMT:
case E1000_DEV_ID_82573L:
mac->type = e1000_82573;
break;
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
mac->type = e1000_80003es2lan;
break;
case E1000_DEV_ID_ICH8_IFE:
case E1000_DEV_ID_ICH8_IFE_GT:
case E1000_DEV_ID_ICH8_IFE_G:
case E1000_DEV_ID_ICH8_IGP_M:
case E1000_DEV_ID_ICH8_IGP_M_AMT:
case E1000_DEV_ID_ICH8_IGP_AMT:
case E1000_DEV_ID_ICH8_IGP_C:
mac->type = e1000_ich8lan;
break;
case E1000_DEV_ID_ICH9_IFE:
case E1000_DEV_ID_ICH9_IFE_GT:
case E1000_DEV_ID_ICH9_IFE_G:
case E1000_DEV_ID_ICH9_IGP_AMT:
case E1000_DEV_ID_ICH9_IGP_C:
mac->type = e1000_ich9lan;
break;
default:
/* Should never have loaded on this device */
ret_val = -E1000_ERR_MAC_INIT;
break;
}
return (ret_val);
}
/*
* e1000_setup_init_funcs - Initializes function pointers
* @hw: pointer to the HW structure
* @init_device: TRUE will initialize the rest of the function pointers
* getting the device ready for use. FALSE will only set
* MAC type and the function pointers for the other init
* functions. Passing FALSE will not generate any hardware
* reads or writes.
*
* This function must be called by a driver in order to use the rest
* of the 'shared' code files. Called by drivers only.
*/
s32
e1000_setup_init_funcs(struct e1000_hw *hw, boolean_t init_device)
{
s32 ret_val;
/* Can't do much good without knowing the MAC type. */
ret_val = e1000_set_mac_type(hw);
if (ret_val) {
DEBUGOUT("ERROR: MAC type could not be set properly.\n");
goto out;
}
if (!hw->hw_addr) {
DEBUGOUT("ERROR: Registers not mapped\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
/*
* Init some generic function pointers that are currently all pointing
* to generic implementations. We do this first allowing a driver
* module to override it afterwards.
*/
hw->func.config_collision_dist = e1000_config_collision_dist_generic;
hw->func.rar_set = e1000_rar_set_generic;
hw->func.validate_mdi_setting = e1000_validate_mdi_setting_generic;
hw->func.mng_host_if_write = e1000_mng_host_if_write_generic;
hw->func.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
hw->func.mng_enable_host_if = e1000_mng_enable_host_if_generic;
hw->func.wait_autoneg = e1000_wait_autoneg_generic;
hw->func.reload_nvm = e1000_reload_nvm_generic;
/*
* Set up the init function pointers. These are functions within the
* adapter family file that sets up function pointers for the rest of
* the functions in that family.
*/
switch (hw->mac.type) {
case e1000_82542:
e1000_init_function_pointers_82542(hw);
break;
case e1000_82543:
case e1000_82544:
e1000_init_function_pointers_82543(hw);
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
e1000_init_function_pointers_82540(hw);
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
e1000_init_function_pointers_82541(hw);
break;
case e1000_82571:
case e1000_82572:
case e1000_82573:
e1000_init_function_pointers_82571(hw);
break;
case e1000_80003es2lan:
e1000_init_function_pointers_80003es2lan(hw);
break;
case e1000_ich8lan:
case e1000_ich9lan:
e1000_init_function_pointers_ich8lan(hw);
break;
default:
DEBUGOUT("Hardware not supported\n");
ret_val = -E1000_ERR_CONFIG;
break;
}
/*
* Initialize the rest of the function pointers. These require some
* register reads/writes in some cases.
*/
if (!(ret_val) && init_device) {
ret_val = e1000_init_mac_params(hw);
if (ret_val)
goto out;
ret_val = e1000_init_nvm_params(hw);
if (ret_val)
goto out;
ret_val = e1000_init_phy_params(hw);
if (ret_val)
goto out;
}
out:
return (ret_val);
}
/*
* e1000_remove_device - Free device specific structure
* @hw: pointer to the HW structure
*
* If a device specific structure was allocated, this function will
* free it. This is a function pointer entry point called by drivers.
*/
void
e1000_remove_device(struct e1000_hw *hw)
{
if (hw->func.remove_device)
hw->func.remove_device(hw);
}
/*
* e1000_get_bus_info - Obtain bus information for adapter
* @hw: pointer to the HW structure
*
* This will obtain information about the HW bus for which the
* adaper is attached and stores it in the hw structure. This is a
* function pointer entry point called by drivers.
*/
s32
e1000_get_bus_info(struct e1000_hw *hw)
{
if (hw->func.get_bus_info)
return (hw->func.get_bus_info(hw));
return (E1000_SUCCESS);
}
/*
* e1000_clear_vfta - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* This clears the VLAN filter table on the adapter. This is a function
* pointer entry point called by drivers.
*/
void
e1000_clear_vfta(struct e1000_hw *hw)
{
if (hw->func.clear_vfta)
hw->func.clear_vfta(hw);
}
/*
* e1000_write_vfta - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: the 32-bit offset in which to write the value to.
* @value: the 32-bit value to write at location offset.
*
* This writes a 32-bit value to a 32-bit offset in the VLAN filter
* table. This is a function pointer entry point called by drivers.
*/
void
e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
{
if (hw->func.write_vfta)
hw->func.write_vfta(hw, offset, value);
}
/*
* e1000_mc_addr_list_update - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
* @rar_used_count: the first RAR register free to program
* @rar_count: total number of supported Receive Address Registers
*
* Updates the Receive Address Registers and Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
* The parameter rar_count will usually be hw->mac.rar_entry_count
* unless there are workarounds that change this. Currently no func pointer
* exists and all implementations are handled in the generic version of this
* function.
*/
void
e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
u32 mc_addr_count, u32 rar_used_count, u32 rar_count)
{
if (hw->func.mc_addr_list_update)
hw->func.mc_addr_list_update(hw,
mc_addr_list,
mc_addr_count,
rar_used_count,
rar_count);
}
/*
* e1000_force_mac_fc - Force MAC flow control
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Currently no func pointer exists
* and all implementations are handled in the generic version of this
* function.
*/
s32
e1000_force_mac_fc(struct e1000_hw *hw)
{
return (e1000_force_mac_fc_generic(hw));
}
/*
* e1000_check_for_link - Check/Store link connection
* @hw: pointer to the HW structure
*
* This checks the link condition of the adapter and stores the
* results in the hw->mac structure. This is a function pointer entry
* point called by drivers.
*/
s32
e1000_check_for_link(struct e1000_hw *hw)
{
if (hw->func.check_for_link)
return (hw->func.check_for_link(hw));
return (-E1000_ERR_CONFIG);
}
/*
* e1000_check_mng_mode - Check management mode
* @hw: pointer to the HW structure
*
* This checks if the adapter has manageability enabled.
* This is a function pointer entry point called by drivers.
*/
boolean_t
e1000_check_mng_mode(struct e1000_hw *hw)
{
if (hw->func.check_mng_mode)
return (hw->func.check_mng_mode(hw));
return (FALSE);
}
/*
* e1000_mng_write_dhcp_info - Writes DHCP info to host interface
* @hw: pointer to the HW structure
* @buffer: pointer to the host interface
* @length: size of the buffer
*
* Writes the DHCP information to the host interface.
*/
s32
e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 * buffer, u16 length)
{
return (e1000_mng_write_dhcp_info_generic(hw, buffer, length));
}
/*
* e1000_reset_hw - Reset hardware
* @hw: pointer to the HW structure
*
* This resets the hardware into a known state. This is a function pointer
* entry point called by drivers.
*/
s32
e1000_reset_hw(struct e1000_hw *hw)
{
if (hw->func.reset_hw)
return (hw->func.reset_hw(hw));
return (-E1000_ERR_CONFIG);
}
/*
* e1000_init_hw - Initialize hardware
* @hw: pointer to the HW structure
*
* This inits the hardware readying it for operation. This is a function
* pointer entry point called by drivers.
*/
s32
e1000_init_hw(struct e1000_hw *hw)
{
if (hw->func.init_hw)
return (hw->func.init_hw(hw));
return (-E1000_ERR_CONFIG);
}
/*
* e1000_setup_link - Configures link and flow control
* @hw: pointer to the HW structure
*
* This configures link and flow control settings for the adapter. This
* is a function pointer entry point called by drivers. While modules can
* also call this, they probably call their own version of this function.
*/
s32
e1000_setup_link(struct e1000_hw *hw)
{
if (hw->func.setup_link)
return (hw->func.setup_link(hw));
return (-E1000_ERR_CONFIG);
}
/*
* e1000_get_speed_and_duplex - Returns current speed and duplex
* @hw: pointer to the HW structure
* @speed: pointer to a 16-bit value to store the speed
* @duplex: pointer to a 16-bit value to store the duplex.
*
* This returns the speed and duplex of the adapter in the two 'out'
* variables passed in. This is a function pointer entry point called
* by drivers.
*/
s32
e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex)
{
if (hw->func.get_link_up_info)
return (hw->func.get_link_up_info(hw, speed, duplex));
return (-E1000_ERR_CONFIG);
}
/*
* e1000_setup_led - Configures SW controllable LED
* @hw: pointer to the HW structure
*
* This prepares the SW controllable LED for use and saves the current state
* of the LED so it can be later restored. This is a function pointer entry
* point called by drivers.
*/
s32
e1000_setup_led(struct e1000_hw *hw)
{
if (hw->func.setup_led)
return (hw->func.setup_led(hw));
return (E1000_SUCCESS);
}
/*
* e1000_cleanup_led - Restores SW controllable LED
* @hw: pointer to the HW structure
*
* This restores the SW controllable LED to the value saved off by
* e1000_setup_led. This is a function pointer entry point called by drivers.
*/
s32
e1000_cleanup_led(struct e1000_hw *hw)
{
if (hw->func.cleanup_led)
return (hw->func.cleanup_led(hw));
return (E1000_SUCCESS);
}
/*
* e1000_blink_led - Blink SW controllable LED
* @hw: pointer to the HW structure
*
* This starts the adapter LED blinking. Request the LED to be setup first
* and cleaned up after. This is a function pointer entry point called by
* drivers.
*/
s32
e1000_blink_led(struct e1000_hw *hw)
{
if (hw->func.blink_led)
return (hw->func.blink_led(hw));
return (E1000_SUCCESS);
}
/*
* e1000_led_on - Turn on SW controllable LED
* @hw: pointer to the HW structure
*
* Turns the SW defined LED on. This is a function pointer entry point
* called by drivers.
*/
s32
e1000_led_on(struct e1000_hw *hw)
{
if (hw->func.led_on)
return (hw->func.led_on(hw));
return (E1000_SUCCESS);
}
/*
* e1000_led_off - Turn off SW controllable LED
* @hw: pointer to the HW structure
*
* Turns the SW defined LED off. This is a function pointer entry point
* called by drivers.
*/
s32
e1000_led_off(struct e1000_hw *hw)
{
if (hw->func.led_off)
return (hw->func.led_off(hw));
return (E1000_SUCCESS);
}
/*
* e1000_reset_adaptive - Reset adaptive IFS
* @hw: pointer to the HW structure
*
* Resets the adaptive IFS. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
*/
void
e1000_reset_adaptive(struct e1000_hw *hw)
{
e1000_reset_adaptive_generic(hw);
}
/*
* e1000_update_adaptive - Update adaptive IFS
* @hw: pointer to the HW structure
*
* Updates adapter IFS. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
*/
void
e1000_update_adaptive(struct e1000_hw *hw)
{
e1000_update_adaptive_generic(hw);
}
/*
* e1000_disable_pcie_master - Disable PCI-Express master access
* @hw: pointer to the HW structure
*
* Disables PCI-Express master access and verifies there are no pending
* requests. Currently no func pointer exists and all implementations are
* handled in the generic version of this function.
*/
s32
e1000_disable_pcie_master(struct e1000_hw *hw)
{
return (e1000_disable_pcie_master_generic(hw));
}
/*
* e1000_config_collision_dist - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup.
*/
void
e1000_config_collision_dist(struct e1000_hw *hw)
{
if (hw->func.config_collision_dist)
hw->func.config_collision_dist(hw);
}
/*
* e1000_rar_set - Sets a receive address register
* @hw: pointer to the HW structure
* @addr: address to set the RAR to
* @index: the RAR to set
*
* Sets a Receive Address Register (RAR) to the specified address.
*/
void
e1000_rar_set(struct e1000_hw *hw, u8 * addr, u32 index)
{
if (hw->func.rar_set)
hw->func.rar_set(hw, addr, index);
}
/*
* e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
* @hw: pointer to the HW structure
*
* Ensures that the MDI/MDIX SW state is valid.
*/
s32
e1000_validate_mdi_setting(struct e1000_hw *hw)
{
if (hw->func.validate_mdi_setting)
return (hw->func.validate_mdi_setting(hw));
return (E1000_SUCCESS);
}
/*
* e1000_mta_set - Sets multicast table bit
* @hw: pointer to the HW structure
* @hash_value: Multicast hash value.
*
* This sets the bit in the multicast table corresponding to the
* hash value. This is a function pointer entry point called by drivers.
*/
void
e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
{
if (hw->func.mta_set)
hw->func.mta_set(hw, hash_value);
}
/*
* e1000_hash_mc_addr - Determines address location in multicast table
* @hw: pointer to the HW structure
* @mc_addr: Multicast address to hash.
*
* This hashes an address to determine its location in the multicast
* table. Currently no func pointer exists and all implementations
* are handled in the generic version of this function.
*/
u32
e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
return (e1000_hash_mc_addr_generic(hw, mc_addr));
}
/*
* e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
* @hw: pointer to the HW structure
*
* Enables packet filtering on transmit packets if manageability is enabled
* and host interface is enabled.
* Currently no func pointer exists and all implementations are handled in the
* generic version of this function.
*/
boolean_t
e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
{
return (e1000_enable_tx_pkt_filtering_generic(hw));
}
/*
* e1000_mng_host_if_write - Writes to the manageability host interface
* @hw: pointer to the HW structure
* @buffer: pointer to the host interface buffer
* @length: size of the buffer
* @offset: location in the buffer to write to
* @sum: sum of the data (not checksum)
*
* This function writes the buffer content at the offset given on the host if.
* It also does alignment considerations to do the writes in most efficient
* way. Also fills up the sum of the buffer in *buffer parameter.
*/
s32
e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
u16 offset, u8 *sum)
{
if (hw->func.mng_host_if_write)
return (hw->func.mng_host_if_write(hw, buffer, length, offset,
sum));
return (E1000_NOT_IMPLEMENTED);
}
/*
* e1000_mng_write_cmd_header - Writes manageability command header
* @hw: pointer to the HW structure
* @hdr: pointer to the host interface command header
*
* Writes the command header after does the checksum calculation.
*/
s32
e1000_mng_write_cmd_header(struct e1000_hw *hw,
struct e1000_host_mng_command_header *hdr)
{
if (hw->func.mng_write_cmd_header)
return (hw->func.mng_write_cmd_header(hw, hdr));
return (E1000_NOT_IMPLEMENTED);
}
/*
* e1000_mng_enable_host_if - Checks host interface is enabled
* @hw: pointer to the HW structure
*
* Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
*
* This function checks whether the HOST IF is enabled for command operaton
* and also checks whether the previous command is completed. It busy waits
* in case of previous command is not completed.
*/
s32
e1000_mng_enable_host_if(struct e1000_hw *hw)
{
if (hw->func.mng_enable_host_if)
return (hw->func.mng_enable_host_if(hw));
return (E1000_NOT_IMPLEMENTED);
}
/*
* e1000_wait_autoneg - Waits for autonegotiation completion
* @hw: pointer to the HW structure
*
* Waits for autoneg to complete. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
*/
s32
e1000_wait_autoneg(struct e1000_hw *hw)
{
if (hw->func.wait_autoneg)
return (hw->func.wait_autoneg(hw));
return (E1000_SUCCESS);
}
/*
* e1000_check_reset_block - Verifies PHY can be reset
* @hw: pointer to the HW structure
*
* Checks if the PHY is in a state that can be reset or if manageability
* has it tied up. This is a function pointer entry point called by drivers.
*/
s32
e1000_check_reset_block(struct e1000_hw *hw)
{
if (hw->func.check_reset_block)
return (hw->func.check_reset_block(hw));
return (E1000_SUCCESS);
}
/*
* e1000_read_phy_reg - Reads PHY register
* @hw: pointer to the HW structure
* @offset: the register to read
* @data: the buffer to store the 16-bit read.
*
* Reads the PHY register and returns the value in data.
* This is a function pointer entry point called by drivers.
*/
s32
e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
if (hw->func.read_phy_reg)
return (hw->func.read_phy_reg(hw, offset, data));
return (E1000_SUCCESS);
}
/*
* e1000_write_phy_reg - Writes PHY register
* @hw: pointer to the HW structure
* @offset: the register to write
* @data: the value to write.
*
* Writes the PHY register at offset with the value in data.
* This is a function pointer entry point called by drivers.
*/
s32
e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
if (hw->func.write_phy_reg)
return (hw->func.write_phy_reg(hw, offset, data));
return (E1000_SUCCESS);
}
/*
* e1000_read_kmrn_reg - Reads register using Kumeran interface
* @hw: pointer to the HW structure
* @offset: the register to read
* @data: the location to store the 16-bit value read.
*
* Reads a register out of the Kumeran interface. Currently no func pointer
* exists and all implementations are handled in the generic version of
* this function.
*/
s32
e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
return (e1000_read_kmrn_reg_generic(hw, offset, data));
}
/*
* e1000_write_kmrn_reg - Writes register using Kumeran interface
* @hw: pointer to the HW structure
* @offset: the register to write
* @data: the value to write.
*
* Writes a register to the Kumeran interface. Currently no func pointer
* exists and all implementations are handled in the generic version of
* this function.
*/
s32
e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
return (e1000_write_kmrn_reg_generic(hw, offset, data));
}
/*
* e1000_get_cable_length - Retrieves cable length estimation
* @hw: pointer to the HW structure
*
* This function estimates the cable length and stores them in
* hw->phy.min_length and hw->phy.max_length. This is a function pointer
* entry point called by drivers.
*/
s32
e1000_get_cable_length(struct e1000_hw *hw)
{
if (hw->func.get_cable_length)
return (hw->func.get_cable_length(hw));
return (E1000_SUCCESS);
}
/*
* e1000_get_phy_info - Retrieves PHY information from registers
* @hw: pointer to the HW structure
*
* This function gets some information from various PHY registers and
* populates hw->phy values with it. This is a function pointer entry
* point called by drivers.
*/
s32
e1000_get_phy_info(struct e1000_hw *hw)
{
if (hw->func.get_phy_info)
return (hw->func.get_phy_info(hw));
return (E1000_SUCCESS);
}
/*
* e1000_phy_hw_reset - Hard PHY reset
* @hw: pointer to the HW structure
*
* Performs a hard PHY reset. This is a function pointer entry point called
* by drivers.
*/
s32
e1000_phy_hw_reset(struct e1000_hw *hw)
{
if (hw->func.reset_phy)
return (hw->func.reset_phy(hw));
return (E1000_SUCCESS);
}
/*
* e1000_phy_commit - Soft PHY reset
* @hw: pointer to the HW structure
*
* Performs a soft PHY reset on those that apply. This is a function pointer
* entry point called by drivers.
*/
s32
e1000_phy_commit(struct e1000_hw *hw)
{
if (hw->func.commit_phy)
return (hw->func.commit_phy(hw));
return (E1000_SUCCESS);
}
/*
* e1000_set_d3_lplu_state - Sets low power link up state for D0
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D0
* and SmartSpeed is disabled when active is true, else clear lplu for D0
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained. This is a function pointer entry point called by drivers.
*/
s32
e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
{
if (hw->func.set_d0_lplu_state)
return (hw->func.set_d0_lplu_state(hw, active));
return (E1000_SUCCESS);
}
/*
* e1000_set_d3_lplu_state - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D3
* and SmartSpeed is disabled when active is true, else clear lplu for D3
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained. This is a function pointer entry point called by drivers.
*/
s32
e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
{
if (hw->func.set_d3_lplu_state)
return (hw->func.set_d3_lplu_state(hw, active));
return (E1000_SUCCESS);
}
/*
* e1000_read_mac_addr - Reads MAC address
* @hw: pointer to the HW structure
*
* Reads the MAC address out of the adapter and stores it in the HW structure.
* Currently no func pointer exists and all implementations are handled in the
* generic version of this function.
*/
s32
e1000_read_mac_addr(struct e1000_hw *hw)
{
return (e1000_read_mac_addr_generic(hw));
}
/*
* e1000_read_part_num - Read device part number
* @hw: pointer to the HW structure
* @part_num: pointer to device part number
*
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in part_num.
* Currently no func pointer exists and all implementations are handled in the
* generic version of this function.
*/
s32
e1000_read_part_num(struct e1000_hw *hw, u32 * part_num)
{
return (e1000_read_part_num_generic(hw, part_num));
}
/*
* e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
* @hw: pointer to the HW structure
*
* Validates the NVM checksum is correct. This is a function pointer entry
* point called by drivers.
*/
s32
e1000_validate_nvm_checksum(struct e1000_hw *hw)
{
if (hw->func.validate_nvm)
return (hw->func.validate_nvm(hw));
return (-E1000_ERR_CONFIG);
}
/*
* e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
* @hw: pointer to the HW structure
*
* Updates the NVM checksum. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
*/
s32
e1000_update_nvm_checksum(struct e1000_hw *hw)
{
if (hw->func.update_nvm)
return (hw->func.update_nvm(hw));
return (-E1000_ERR_CONFIG);
}
/*
* e1000_reload_nvm - Reloads EEPROM
* @hw: pointer to the HW structure
*
* Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
* extended control register.
*/
void
e1000_reload_nvm(struct e1000_hw *hw)
{
if (hw->func.reload_nvm)
hw->func.reload_nvm(hw);
}
/*
* e1000_read_nvm - Reads NVM (EEPROM)
* @hw: pointer to the HW structure
* @offset: the word offset to read
* @words: number of 16-bit words to read
* @data: pointer to the properly sized buffer for the data.
*
* Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
* pointer entry point called by drivers.
*/
s32
e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
if (hw->func.read_nvm)
return (hw->func.read_nvm(hw, offset, words, data));
return (-E1000_ERR_CONFIG);
}
/*
* e1000_write_nvm - Writes to NVM (EEPROM)
* @hw: pointer to the HW structure
* @offset: the word offset to read
* @words: number of 16-bit words to write
* @data: pointer to the properly sized buffer for the data.
*
* Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
* pointer entry point called by drivers.
*/
s32
e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
if (hw->func.write_nvm)
return (hw->func.write_nvm(hw, offset, words, data));
return (E1000_SUCCESS);
}
/*
* e1000_write_8bit_ctrl_reg - Writes 8bit Control register
* @hw: pointer to the HW structure
* @reg: 32bit register offset
* @offset: the register to write
* @data: the value to write.
*
* Writes the PHY register at offset with the value in data.
* This is a function pointer entry point called by drivers.
*/
s32
e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data)
{
return (e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data));
}