/*******************************************************************************
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright 2014 QLogic Corporation
* The contents of this file are subject to the terms of the
* QLogic End User License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the License at
* http://www.qlogic.com/Resources/Documents/DriverDownloadHelp/
* QLogic_End_User_Software_License.txt
* See the License for the specific language governing permissions
* and limitations under the License.
*
*
* Module Description:
* This file contains general LM utility functions
*
******************************************************************************/
#include "lm5710.h"
#ifdef _VBD_CMD_
#include "everest_sim.h"
#endif
#define MASK_01010101 (((unsigned int)(-1))/3)
#define MASK_00110011 (((unsigned int)(-1))/5)
#define MASK_00001111 (((unsigned int)(-1))/17)
u32_t count_bits(u32_t n)
{
n = (n & MASK_01010101) + ((n >> 1) & MASK_01010101) ;
n = (n & MASK_00110011) + ((n >> 2) & MASK_00110011) ;
n = (n & MASK_00001111) + ((n >> 4) & MASK_00001111) ;
return n % 255 ;
}
unsigned long log2_align(unsigned long n)
{
unsigned long ret = n ? 1 : 0;
unsigned long _n = n >> 1;
while (_n)
{
_n >>= 1;
ret <<= 1;
}
if (ret < n)
ret <<= 1;
return ret;
}
/**
* @description
* Should be moved to a common file.
* Calculates the lower align of power 2.
* Values lower than 0 are returned directly.
* @param n
*
* @return unsigned long
* lower align of power 2.
*/
unsigned long power2_lower_align(unsigned long n)
{
unsigned long ret = 0;
if(0 == n)
{
return 0;
}
if(TRUE == POWER_OF_2(n))
{
// The number is already a power of 2.
return n;
}
//Calculates the lower align of power 2.
ret = log2_align(n);
DbgBreakIf(FALSE == POWER_OF_2(ret));
ret >>= 1;
return ret;
}
/*
Log2
this function calculates rounded LOG2 of a certain number
e.g.: LOG2(1080) = 10 (2^10=1024)
*/
u32_t LOG2(u32_t v){
u32_t r=0;
while (v >>= 1) {
r++;
}
return r;
}
/**
* @description
* Should be moved to a common place.
* Find the next power of 2 that is larger than "num".
* @param num - The variable to find a power of 2 that is
* larger.
* @param num_bits_supported - The largest number of bits
* supported
*
* @return u32_t - The next power of 2 that is larger than
* "num".
*/
u32_t
upper_align_power_of_2(IN const u16_t num,
IN const u8_t num_bits_supported)
{
u32_t const largest_power_of_2 = 1 << (num_bits_supported - 1);
u32_t prev_power_of_2 = largest_power_of_2;
u32_t cur_power_of_2 = 0;
u8_t i = 0;
//This is not realy needed (the for also handles this case) but to avoide confusing
if(num >= largest_power_of_2)
{
DbgBreakMsg("num is larger than num_bits_supported");
return largest_power_of_2;
}
// Exception case
if(0 == num)
{
return 1;
}
// Look for a value that is smaller than prev_power_of_2 and bigger than cur_power_of_2
for (i = (num_bits_supported - 1) ; i != 0 ;i--)
{
cur_power_of_2 = 1 << (i);
if(num > cur_power_of_2)
{
break;
}
prev_power_of_2 = cur_power_of_2;
}
return prev_power_of_2;
}
/**
* General function that waits for a certain state to change,
* not protocol specific. It takes into account vbd-commander
* and reset-is-in-progress
*
* @param pdev
* @param curr_state -> what to poll on
* @param new_state -> what we're waiting for
*
* @return lm_status_t TIMEOUT if state didn't change, SUCCESS
* otherwise
*/
/**
* @param pdev
*
* @return 0 if device is ASIC.
*/
int lm_chip_is_slow(struct _lm_device_t *pdev)
{
u32_t val = 0;
lm_reg_rd_ind(pdev, MISC_REG_CHIP_REV, &val);
val = (val & 0xf) << 12;
if (val > CHIP_REV_Cx) {
DbgMessage(pdev, VERBOSEi, "Chip is slow\n");
return 1;
} else {
return 0;
}
}
lm_status_t lm_wait_state_change(struct _lm_device_t *pdev, volatile u32_t * curr_state, u32_t new_state)
{
u32_t delay_us = 0;
u32_t to_cnt = 10000 + 2360; // We'll wait 10,000 times 100us (1 second) + 2360 times 25000us (59sec) = total 60 sec
// (Winodws only note) the 25000 wait will cause wait to be without CPU stall (look in win_util.c)
lm_status_t lm_status = LM_STATUS_SUCCESS;
#ifdef _VBD_CMD_
if (!GET_FLAGS(*g_everest_sim_flags_ptr, EVEREST_SIM_RAMROD))
{
*curr_state = new_state;
return lm_status;
}
#endif
/* wait for state change */
while ((*curr_state != new_state) && to_cnt--)
{
delay_us = (to_cnt >= 2360) ? 100 : 25000 ;
mm_wait(pdev, delay_us);
#ifdef DOS
sleep(0); // rescheduling threads, since we don't have a memory barrier.
#elif defined(__LINUX)
mm_read_barrier(); // synchronize on eth_con->con_state
#endif
// in case reset in progress
// we won't get completion so no need to wait
if( lm_reset_is_inprogress(pdev) )
{
lm_status = LM_STATUS_ABORTED;
break;
}
}
if ( *curr_state != new_state)
{
DbgMessage(pdev, FATAL,
"lm_wait_state_change: state change timeout, curr state=%d, expected new state=%d!\n",
*curr_state, new_state);
if (!lm_reset_is_inprogress(pdev)) {
#if defined(_VBD_)
DbgBreak();
#endif
lm_status = LM_STATUS_TIMEOUT;
}
}
return lm_status;
}
/*******************************************************************************
* Description:
* Calculates crc 32 on a buffer
* Note: crc32_length MUST be aligned to 8
* Return:
******************************************************************************/
u32_t calc_crc32( u8_t* crc32_packet, u32_t crc32_length, u32_t crc32_seed, u8_t complement)
{
u32_t byte = 0 ;
u32_t bit = 0 ;
u8_t msb = 0 ; // 1
u32_t temp = 0 ;
u32_t shft = 0 ;
u8_t current_byte = 0 ;
u32_t crc32_result = crc32_seed;
const u32_t CRC32_POLY = 0x1edc6f41;
if( CHK_NULL( crc32_packet) || ERR_IF( 0 == crc32_length ) || ERR_IF( 0 != ( crc32_length % 8 ) ) )
{
return crc32_result ;
}
for (byte = 0; byte < crc32_length; byte = byte + 1)
{
current_byte = crc32_packet[byte];
for (bit = 0; bit < 8; bit = bit + 1)
{
msb = (u8_t)(crc32_result >> 31) ; // msb = crc32_result[31];
crc32_result = crc32_result << 1;
if ( msb != ( 0x1 & (current_byte>>bit)) ) // (msb != current_byte[bit])
{
crc32_result = crc32_result ^ CRC32_POLY;
crc32_result |= 1 ;//crc32_result[0] = 1;
}
}
}
// Last step is to "mirror" every bit, swap the 4 bytes, and then complement each bit.
//
// Mirror:
temp = crc32_result ;
shft = sizeof(crc32_result) * 8 -1 ;
for( crc32_result>>= 1; crc32_result; crc32_result>>= 1 )
{
temp <<= 1;
temp |= crc32_result & 1;
shft-- ;
}
temp <<= shft ;
//temp[31-bit] = crc32_result[bit];
// Swap:
// crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]};
{
u32_t t0, t1, t2, t3 ;
t0 = ( ( 0x000000ff ) & ( temp >> 24 ) ) ; // temp >> 24 ;
t1 = ( ( 0x0000ff00 ) & ( temp >> 8 ) ) ;
t2 = ( ( 0x00ff0000 ) & ( temp << 8 ) ) ;
t3 = ( ( 0xff000000 ) & ( temp << 24 ) ) ;
crc32_result = t0 | t1 | t2 | t3 ;
}
// Complement:
if (complement)
{
crc32_result = ~crc32_result ;
}
return crc32_result ;
}
/**
* @brief: convert 4 bytes version into 32 bit BCD formatted version
*
* 1. Format the product_version string:
* a. The "Major, "Minor, "Build and "Sub build" bytes are BCD-encoded, and each byte holds two BCD digits.
* b. The semantics of these fields follow the semantics specified in DSP4004.
* c. The value 0xF in the most-significant nibble of a BCD-encoded value indicates that the most significant nibble should be ignored and the overall field treated as a single digit value.
* d. A value of 0xFF indicates that the entire field is not present. 0xFF is not allowed as a value for the fields.
* Example: Version 3.7.10.FF --> 0xF3F710FF
*
* @param[in] CONST u8_t IN ver_arr[4]
*
* @return u32_t value
*/
u32_t
convert_to_bcd( const u8_t IN ver_arr[4] )
{
u32_t ver_32 = 0xffffffff;
u8_t idx = 0;
u8_t ver_current = 0;
if ( ver_arr )
{
ver_32 = 0;
// convert to BCD format
// We have for sure 4 digits only
// ARRSIZE(ver_arr) won't work here since in non x86 compile it is NOT 4....
for( idx = 0; idx < 4; idx++ )
{
ver_current = ver_arr[idx];
if ( 0 == ( ver_current & 0xf0 ) )
{
ver_current |= 0xf0 ;
}
ver_32 = ( ver_32<<8 ) | ver_current ;
}
}
return ver_32;
}