/*******************************************************************************
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Copyright 2014 QLogic Corporation
* The contents of this file are subject to the terms of the
* QLogic End User License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the License at
* http://www.qlogic.com/Resources/Documents/DriverDownloadHelp/
* QLogic_End_User_Software_License.txt
* See the License for the specific language governing permissions
* and limitations under the License.
*
*
* Module Description:
* This file contains functions that deal with resource allocation and setup
*
******************************************************************************/
#include "lm5710.h"
#include "bd_chain.h"
#include "command.h"
#include "ecore_common.h"
#include "577xx_int_offsets.h"
#include "bcmtype.h"
// should be same as ceil (math.h) doesn't support u64_t
#define _ceil( _x_32, _divisor_32 ) ((_x_32 / _divisor_32) + ( (_x_32%_divisor_32) ? 1 : 0))
lm_status_t
lm_clear_chain_sb_cons_idx(
IN struct _lm_device_t *pdev,
IN u8_t sb_id,
IN struct _lm_hc_sb_info_t *hc_sb_info,
IN volatile u16_t ** hw_con_idx_ptr
)
{
u8_t port = 0;
u8_t func = 0;
u16_t rd_val = 0xFFFF;
u32_t rd_val_32 = 0xFFFFFFFF;
u8_t fw_sb_id = 0;
u8_t sb_lock_id = 0;
if (CHK_NULL(pdev) || CHK_NULL(hc_sb_info) || CHK_NULL(hw_con_idx_ptr))
{
return LM_STATUS_INVALID_PARAMETER;
}
if (IS_VFDEV(pdev))
{
return LM_STATUS_SUCCESS;
}
sb_lock_id = lm_sb_id_from_chain(pdev, sb_id);
if (sb_lock_id == DEF_STATUS_BLOCK_INDEX)
{
sb_lock_id = DEF_STATUS_BLOCK_IGU_INDEX;
}
/* make sure that the sb is not during processing while we
* clear the pointer */
MM_ACQUIRE_SB_LOCK(pdev, sb_lock_id);
*hw_con_idx_ptr = NULL;
MM_RELEASE_SB_LOCK(pdev, sb_lock_id);
if (lm_reset_is_inprogress(pdev))
{
return LM_STATUS_SUCCESS;
}
port = PORT_ID(pdev);
func = FUNC_ID(pdev);
fw_sb_id = LM_FW_SB_ID(pdev, sb_id);
switch (hc_sb_info->hc_sb) {
case STATUS_BLOCK_SP_SL_TYPE:
LM_INTMEM_WRITE16(pdev, CSTORM_SP_HC_SYNC_LINE_INDEX_OFFSET(hc_sb_info->hc_index_value,func), 0, BAR_CSTRORM_INTMEM);
LM_INTMEM_READ16(pdev, CSTORM_SP_HC_SYNC_LINE_INDEX_OFFSET(hc_sb_info->hc_index_value,func), &rd_val, BAR_CSTRORM_INTMEM);
DbgBreakIfAll(rd_val != 0);
LM_INTMEM_WRITE16(pdev, (CSTORM_SP_STATUS_BLOCK_OFFSET(func) + OFFSETOF(struct hc_sp_status_block, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), 0, BAR_CSTRORM_INTMEM);
LM_INTMEM_READ16 (pdev, (CSTORM_SP_STATUS_BLOCK_OFFSET(func) + OFFSETOF(struct hc_sp_status_block, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), &rd_val, BAR_CSTRORM_INTMEM);
DbgBreakIfAll(rd_val != 0);
break;
case STATUS_BLOCK_NORMAL_SL_TYPE:
if (!LM_SB_ID_VALID(pdev, sb_id))
{
return LM_STATUS_INVALID_PARAMETER;
}
LM_INTMEM_WRITE32(PFDEV(pdev), CSTORM_HC_SYNC_LINE_DHC_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), 0, BAR_CSTRORM_INTMEM);
LM_INTMEM_READ32(PFDEV(pdev), CSTORM_HC_SYNC_LINE_DHC_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), &rd_val_32, BAR_CSTRORM_INTMEM);
DbgBreakIfAll(rd_val_32 != 0);
//Go to zeroing index value without break
case STATUS_BLOCK_NORMAL_TYPE:
if (CHIP_IS_E1x(PFDEV(pdev))) {
LM_INTMEM_WRITE16(PFDEV(pdev), CSTORM_HC_SYNC_LINE_INDEX_E1X_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), 0, BAR_CSTRORM_INTMEM);
LM_INTMEM_READ16(PFDEV(pdev), CSTORM_HC_SYNC_LINE_INDEX_E1X_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), &rd_val, BAR_CSTRORM_INTMEM);
} else {
LM_INTMEM_WRITE16(PFDEV(pdev), CSTORM_HC_SYNC_LINE_INDEX_E2_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), 0, BAR_CSTRORM_INTMEM);
LM_INTMEM_READ16(PFDEV(pdev), CSTORM_HC_SYNC_LINE_INDEX_E2_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), &rd_val, BAR_CSTRORM_INTMEM);
}
DbgBreakIfAll(rd_val != 0);
if (CHIP_IS_E1x(pdev)) {
LM_INTMEM_WRITE16(PFDEV(pdev), (CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id) + OFFSETOF(struct hc_status_block_e1x, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), 0, BAR_CSTRORM_INTMEM);
LM_INTMEM_READ16 (PFDEV(pdev), (CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id) + OFFSETOF(struct hc_status_block_e1x, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), &rd_val, BAR_CSTRORM_INTMEM);
} else {
LM_INTMEM_WRITE16(PFDEV(pdev), (CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id) + OFFSETOF(struct hc_status_block_e2, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), 0, BAR_CSTRORM_INTMEM);
LM_INTMEM_READ16 (PFDEV(pdev), (CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id) + OFFSETOF(struct hc_status_block_e2, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), &rd_val, BAR_CSTRORM_INTMEM);
}
break;
default:
DbgMessage(NULL, FATAL, "Invalid hc_sb value: 0x%x.\n", hc_sb_info->hc_sb);
DbgBreakIf(1);
}
/* We read from the same memory and verify that it's 0 to make sure that the value was written to the grc and was not delayed in the pci */
DbgBreakIfAll(rd_val != 0);
return LM_STATUS_SUCCESS;
}
/*
* reset txq, rxq, rcq counters for L2 client connection
*
* assumption: the cid equals the chain idx
*/
/**
* @Description:
* allocate given num of coalesce buffers, and queue them in the txq chain.
* 1 buffer is allocated for LSO packets, and the rest are allocated with
* MTU size.
* @Return:
* lm_status
*/
static lm_status_t
lm_allocate_coalesce_buffers(
lm_device_t *pdev,
lm_tx_chain_t *txq,
u32_t coalesce_buf_cnt,
u32_t cid)
{
lm_coalesce_buffer_t *last_coalesce_buf = NULL;
lm_coalesce_buffer_t *coalesce_buf = NULL;
lm_address_t mem_phy = {{0}};
u8_t * mem_virt = NULL;
u32_t mem_left = 0;
u32_t mem_size = 0;
u32_t buf_size = 0;
u32_t cnt = 0;
u8_t mm_cli_idx = 0;
/* check arguments */
if(CHK_NULL(pdev) || CHK_NULL(txq))
{
return LM_STATUS_FAILURE;
}
DbgMessage(pdev, VERBOSEi | VERBOSEl2sp,
"#lm_allocate_coalesce_buffers, coalesce_buf_cnt=%d\n",
coalesce_buf_cnt);
mm_cli_idx = cid_to_resource(pdev, cid); //!!DP mm_cli_idx_to_um_idx(LM_CHAIN_IDX_CLI(pdev, idx));
if(coalesce_buf_cnt == 0)
{
return LM_STATUS_SUCCESS;
}
buf_size = MAX_L2_CLI_BUFFER_SIZE(pdev, cid);
mem_size = coalesce_buf_cnt * sizeof(lm_coalesce_buffer_t);
mem_virt = mm_alloc_mem(pdev,mem_size, mm_cli_idx);
if(ERR_IF(!mem_virt))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE;
}
mm_memset(mem_virt, 0, mem_size);
/* Create a list of frame buffer descriptors. */
coalesce_buf = (lm_coalesce_buffer_t *) mem_virt;
for(cnt = 0; cnt < coalesce_buf_cnt; cnt++)
{
coalesce_buf->frags.cnt = 1;
coalesce_buf->frags.size = 0; /* not in use */
coalesce_buf->buf_size = buf_size;
s_list_push_tail(
&txq->coalesce_buf_list,
&coalesce_buf->link);
coalesce_buf++;
}
/* Have at least one coalesce buffer large enough to copy
* an LSO frame. */
coalesce_buf = (lm_coalesce_buffer_t *) s_list_peek_head(
&txq->coalesce_buf_list);
coalesce_buf->buf_size = 0x10000; /* TBD: consider apply change here for GSO */
/* Determine the total memory for the coalesce buffers. */
mem_left = 0;
coalesce_buf = (lm_coalesce_buffer_t *) s_list_peek_head(
&txq->coalesce_buf_list);
while(coalesce_buf)
{
mem_left += coalesce_buf->buf_size;
coalesce_buf = (lm_coalesce_buffer_t *) s_list_next_entry(
&coalesce_buf->link);
}
mem_size = 0;
/* Initialize all the descriptors to point to a buffer. */
coalesce_buf = (lm_coalesce_buffer_t *) s_list_peek_head(
&txq->coalesce_buf_list);
while(coalesce_buf)
{
#define MAX_CONTIGUOUS_BLOCK (64*1024)
/* Allocate a small block of memory at a time. */
if(mem_size == 0)
{
last_coalesce_buf = coalesce_buf;
while(coalesce_buf)
{
mem_size += coalesce_buf->buf_size;
if(mem_size >= MAX_CONTIGUOUS_BLOCK) /* TBD: consider apply change here for GSO */
{
break;
}
coalesce_buf = (lm_coalesce_buffer_t *) s_list_next_entry(
&coalesce_buf->link);
}
mem_left -= mem_size;
mem_virt = mm_alloc_phys_mem( pdev, mem_size, &mem_phy, 0, mm_cli_idx);
if(ERR_IF(!mem_virt))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE;
}
mm_memset(mem_virt, 0, mem_size);
coalesce_buf = last_coalesce_buf;
}
coalesce_buf->mem_virt = mem_virt;
coalesce_buf->frags.frag_arr[0].addr = mem_phy;
coalesce_buf->frags.frag_arr[0].size = 0; /* to be set later according to actual packet size */
mem_size -= coalesce_buf->buf_size;
/* Go to the next packet buffer. */
mem_virt += coalesce_buf->buf_size;
LM_INC64(&mem_phy, coalesce_buf->buf_size);
coalesce_buf = (lm_coalesce_buffer_t *) s_list_next_entry(
&coalesce_buf->link);
}
if(mem_left || mem_size)
{
DbgBreakMsg("Memory allocation out of sync\n");
return LM_STATUS_FAILURE;
}
return LM_STATUS_SUCCESS;
} /* lm_allocate_coalesce_buffers */
lm_status_t
lm_alloc_txq(
IN struct _lm_device_t *pdev,
IN u32_t const cid, /* chain id */
IN u16_t const page_cnt,
IN u16_t const coalesce_buf_cnt)
{
lm_tx_chain_t *tx_chain = NULL ;
u32_t const mem_size = page_cnt * LM_PAGE_SIZE;
u8_t mm_cli_idx = 0 ;
DbgMessage(pdev, INFORMi | INFORMl2sp, "#lm_alloc_txq, cid=%d, page_cnt=%d\n", cid, page_cnt);
/* check arguments */
if(CHK_NULL(pdev) ||
ERR_IF((ARRSIZE(pdev->tx_info.chain) <= cid) || !page_cnt))
{
return LM_STATUS_FAILURE;
}
tx_chain = &LM_TXQ(pdev, cid);
mm_cli_idx = cid_to_resource(pdev, cid);
/* alloc the chain */
tx_chain->bd_chain.bd_chain_virt =
mm_alloc_phys_mem( pdev, mem_size, &tx_chain->bd_chain.bd_chain_phy, 0, mm_cli_idx);
if(ERR_IF(!tx_chain->bd_chain.bd_chain_virt))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE;
}
mm_mem_zero(tx_chain->bd_chain.bd_chain_virt, mem_size);
tx_chain->bd_chain.page_cnt = page_cnt;
s_list_init(&tx_chain->active_descq, NULL, NULL, 0);
s_list_init(&tx_chain->coalesce_buf_list, NULL, NULL, 0);
tx_chain->idx = cid;
tx_chain->coalesce_buf_cnt = coalesce_buf_cnt;
return lm_allocate_coalesce_buffers(
pdev,
&LM_TXQ(pdev, cid),
coalesce_buf_cnt,
cid);
} /* lm_alloc_txq */
lm_status_t
lm_alloc_rxq(
IN struct _lm_device_t *pdev,
IN u32_t const cid,
IN u16_t const page_cnt,
IN u32_t const desc_cnt)
{
lm_rx_chain_t* rxq_chain = NULL;
lm_bd_chain_t * bd_chain = NULL;
lm_rxq_chain_idx_t rx_chain_idx_max = LM_RXQ_CHAIN_IDX_MAX;
lm_rxq_chain_idx_t rx_chain_idx_cur = 0;
u32_t const mem_size = page_cnt * LM_PAGE_SIZE;
u8_t mm_cli_idx = 0 ;
/* check arguments */
if(CHK_NULL(pdev) ||
ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid) || !page_cnt))
{
return LM_STATUS_FAILURE;
}
rxq_chain = &LM_RXQ(pdev, cid);
DbgMessage(pdev, INFORMi, "#lm_alloc_rxq, cid=%d, page_cnt=%d, desc_cnt=%d\n",
cid, page_cnt, desc_cnt);
mm_cli_idx = cid_to_resource(pdev, cid);//!!DP mm_cli_idx_to_um_idx(LM_CHAIN_IDX_CLI(pdev, idx));
s_list_init(&rxq_chain->common.free_descq, NULL, NULL, 0);
s_list_init(&rxq_chain->active_descq, NULL, NULL, 0);
rxq_chain->idx = cid;
rxq_chain->common.desc_cnt = desc_cnt;
/* alloc the chain(s) */
rx_chain_idx_max = LM_RXQ_IS_CHAIN_SGE_VALID( pdev, cid ) ? LM_RXQ_CHAIN_IDX_SGE : LM_RXQ_CHAIN_IDX_BD;
for( rx_chain_idx_cur = 0; rx_chain_idx_cur <= rx_chain_idx_max; rx_chain_idx_cur++ )
{
bd_chain = &LM_RXQ_CHAIN( pdev, cid, rx_chain_idx_cur );
bd_chain->bd_chain_virt = mm_alloc_phys_mem( pdev, mem_size, &bd_chain->bd_chain_phy, 0, mm_cli_idx);
if(ERR_IF(!bd_chain->bd_chain_virt))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE;
}
mm_mem_zero(bd_chain->bd_chain_virt, mem_size);
bd_chain->page_cnt = page_cnt;
}
return LM_STATUS_SUCCESS;
} /* lm_alloc_rxq */
lm_status_t
lm_alloc_rcq(
IN struct _lm_device_t *pdev,
IN u32_t const cid,
IN u16_t const page_cnt)
{
lm_rcq_chain_t *rcq_chain = NULL;
u32_t const mem_size = page_cnt * LM_PAGE_SIZE;
u8_t mm_cli_idx = 0 ;
/* check arguments */
if(CHK_NULL(pdev) ||
ERR_IF((ARRSIZE(pdev->rx_info.rcq_chain) <= cid) || !page_cnt))
{
return LM_STATUS_FAILURE;
}
ASSERT_STATIC(sizeof(struct eth_rx_bd)*LM_RX_BD_CQ_SIZE_RATIO == sizeof(union eth_rx_cqe));
ASSERT_STATIC(sizeof(struct eth_rx_bd) == sizeof(struct eth_rx_sge) );
rcq_chain = &pdev->rx_info.rcq_chain[cid];
DbgMessage(pdev, INFORMi | INFORMl2sp,
"#lm_alloc_rcq, idx=%d, page_cnt=%d\n",
cid, page_cnt);
mm_cli_idx = cid_to_resource(pdev, cid);//!!DP mm_cli_idx_to_um_idx(LM_CHAIN_IDX_CLI(pdev, idx));
/* alloc the chain */
rcq_chain->bd_chain.bd_chain_virt =
mm_alloc_phys_mem( pdev, mem_size, &rcq_chain->bd_chain.bd_chain_phy, 0, mm_cli_idx);
if(ERR_IF(!rcq_chain->bd_chain.bd_chain_virt))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE;
}
mm_mem_zero(rcq_chain->bd_chain.bd_chain_virt, mem_size);
rcq_chain->bd_chain.page_cnt = page_cnt;
return LM_STATUS_SUCCESS;
} /* lm_alloc_rcq */
/**
* @description
* Allocte TPA chain
* @param pdev
* @param cid -chain index.
* @param page_cnt - Number of BD pages
* @param desc_cnt - Number of descriptor counts
* @param bds_per_page - Number of BDs per page.
*
* @return lm_status_t
*/
lm_status_t
lm_alloc_tpa_chain(
IN struct _lm_device_t *pdev,
IN u32_t const cid,
IN u16_t const page_cnt,
IN u32_t const desc_cnt,
IN u32_t const bds_per_page)
{
lm_tpa_chain_t* tpa_chain = NULL;
lm_bd_chain_t * bd_chain = NULL;
lm_tpa_sge_chain_t* sge_chain = NULL;
u32_t mem_size = 0;
u8_t mm_cli_idx = 0 ;
/* check arguments */
if(CHK_NULL(pdev) ||
ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid) || !page_cnt))
{
return LM_STATUS_FAILURE;
}
tpa_chain = &LM_TPA(pdev, cid);
bd_chain = &LM_TPA_CHAIN_BD( pdev, cid );
sge_chain = &LM_SGE_TPA_CHAIN( pdev, cid );
DbgMessage(pdev, INFORMi, "#lm_alloc_tpa, cid=%d, page_cnt=%d, desc_cnt=%d\n",
cid, page_cnt, desc_cnt);
mm_cli_idx = cid_to_resource(pdev, cid);
s_list_init(&tpa_chain->common.free_descq, NULL, NULL, 0);
tpa_chain->common.desc_cnt = desc_cnt;
/************ Alocate BD chain********************************/
mem_size = page_cnt * LM_PAGE_SIZE;
bd_chain->bd_chain_virt = mm_alloc_phys_mem( pdev, mem_size, &bd_chain->bd_chain_phy, 0, mm_cli_idx);
if(ERR_IF(!bd_chain->bd_chain_virt))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE;
}
mm_mem_zero(bd_chain->bd_chain_virt, mem_size);
bd_chain->page_cnt = page_cnt;
// The number of SGE bd entries
sge_chain->size = page_cnt * bds_per_page;
tpa_chain->state = lm_tpa_state_disable;
/************ Alocate active descriptor array********************************/
mem_size = LM_TPA_ACTIVE_DESCQ_ARRAY_ELEM(pdev,cid);
mem_size *= sizeof(lm_packet_t *);
sge_chain->active_descq_array = mm_alloc_mem(pdev, mem_size, mm_cli_idx);
if(CHK_NULL(sge_chain->active_descq_array))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE;
}
mm_mem_zero(sge_chain->active_descq_array, mem_size);
/************ Alocate mask_array descriptor array********************************/
ASSERT_STATIC(0 != BIT_VEC64_ELEM_SZ); //LM_TPA_MASK_LEN - divide by BIT_VEC64_ELEM_SZ
mem_size = LM_TPA_MASK_LEN(pdev, cid);
mem_size = mem_size * sizeof(u64_t);
sge_chain->mask_array = mm_alloc_mem(pdev, mem_size, mm_cli_idx);
if(CHK_NULL(sge_chain->mask_array))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE;
}
mm_mem_zero(sge_chain->mask_array, mem_size);
/************ Alocate TPA ramrod data********************************/
mem_size = sizeof(struct tpa_update_ramrod_data);
tpa_chain->ramrod_data_virt = mm_alloc_phys_mem(pdev, mem_size, &tpa_chain->ramrod_data_phys, 0, mm_cli_idx);
if(CHK_NULL(tpa_chain->ramrod_data_virt))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(tpa_chain->ramrod_data_virt, mem_size);
return LM_STATUS_SUCCESS;
} /* lm_alloc_tpa */
lm_resource_idx_t cid_to_resource(lm_device_t *pdev, u32_t cid)
{
lm_resource_idx_t resource;
if (lm_chain_type_not_cos != lm_mp_get_chain_type(pdev, cid))
{
resource = LM_RESOURCE_NDIS;
}
else if (cid == ISCSI_CID(pdev))
{
resource = LM_RESOURCE_ISCSI;
}
else if (cid == FCOE_CID(pdev))
{
resource = LM_RESOURCE_FCOE;
}
else if (cid == FWD_CID(pdev))
{
resource = LM_RESOURCE_FWD;
}
else if (cid == OOO_CID(pdev))
{
resource = LM_RESOURCE_OOO;
}
else
{
resource = LM_RESOURCE_COMMON;
}
return resource;
}
lm_status_t
lm_setup_txq(
IN struct _lm_device_t *pdev,
IN u32_t cid)
{
lm_bd_chain_t * bd_chain = NULL;
volatile struct hc_sp_status_block * sp_sb = NULL;
u16_t volatile * sb_indexes = NULL;
u8_t tx_sb_index_number =0;
/* check arguments */
if(CHK_NULL(pdev) ||
ERR_IF((ARRSIZE(pdev->tx_info.chain) <= cid)))
{
return LM_STATUS_FAILURE;
}
DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_txq, cid=%d\n",cid);
sp_sb = lm_get_default_status_block(pdev);
LM_TXQ(pdev, cid).prod_bseq = 0;
LM_TXQ(pdev, cid).pkt_idx = 0;
LM_TXQ(pdev, cid).coalesce_buf_used = 0;
LM_TXQ(pdev, cid).lso_split_used = 0;
bd_chain = &LM_TXQ(pdev, cid).bd_chain;
lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy, bd_chain->page_cnt, sizeof(struct eth_tx_bd), /* is full? */0, TRUE);
DbgMessage(pdev, INFORMi, "txq %d, bd_chain %p, bd_left %d\n",
cid,
LM_TXQ(pdev, cid).bd_chain.next_bd,
LM_TXQ(pdev, cid).bd_chain.bd_left);
DbgMessage(pdev, INFORMi, " bd_chain_phy 0x%x%08x\n",
LM_TXQ(pdev, cid).bd_chain.bd_chain_phy.as_u32.high,
LM_TXQ(pdev, cid).bd_chain.bd_chain_phy.as_u32.low);
mm_memset(&LM_TXQ(pdev, cid).eth_tx_prods.packets_prod, 0, sizeof(eth_tx_prod_t));
if (cid == FWD_CID(pdev))
{
sp_sb->index_values[HC_SP_INDEX_ETH_FW_TX_CQ_CONS] = 0;
LM_TXQ(pdev, cid).hw_con_idx_ptr =
&(sp_sb->index_values[HC_SP_INDEX_ETH_FW_TX_CQ_CONS]);
LM_TXQ(pdev, cid).hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE; // STATUS_BLOCK_SP_TYPE;
LM_TXQ(pdev, cid).hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_FW_TX_CQ_CONS;
/* iro_dhc_offste not initialized on purpose --> not expected for FWD channel */
}
else if (cid == ISCSI_CID(pdev))
{
sp_sb->index_values[HC_SP_INDEX_ETH_ISCSI_CQ_CONS] = 0;
LM_TXQ(pdev, cid).hw_con_idx_ptr = &(sp_sb->index_values[HC_SP_INDEX_ETH_ISCSI_CQ_CONS]);
LM_TXQ(pdev, cid).hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE; //STATUS_BLOCK_SP_TYPE;
LM_TXQ(pdev, cid).hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_ISCSI_CQ_CONS;
/* iro_dhc_offste not initialized on purpose --> not expected for FWD channel */
}
else if (cid == FCOE_CID(pdev))
{
sp_sb->index_values[HC_SP_INDEX_ETH_FCOE_CQ_CONS] = 0;
LM_TXQ(pdev, cid).hw_con_idx_ptr =
&(sp_sb->index_values[HC_SP_INDEX_ETH_FCOE_CQ_CONS]);
LM_TXQ(pdev, cid).hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE; //STATUS_BLOCK_SP_TYPE;
LM_TXQ(pdev, cid).hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_FCOE_CQ_CONS;
/* iro_dhc_offste not initialized on purpose --> not expected for FWD channel */
}
else if(cid == OOO_CID(pdev))
{
DbgBreakMsg("OOO doesn't have a txq");
return LM_STATUS_FAILURE;
}
else
{
u32_t sb_id = RSS_ID_TO_SB_ID(CHAIN_TO_RSS_ID(pdev,cid));
const u8_t byte_counter_id = CHIP_IS_E1x(pdev)? LM_FW_SB_ID(pdev, sb_id) : LM_FW_DHC_QZONE_ID(pdev, sb_id);
// Assign the TX chain consumer pointer to the consumer index in the status block. TBD: rename HC_INDEX_C_ETH_TX_CQ_CONS as its inappropriate
if( sb_id >= ARRSIZE(pdev->vars.status_blocks_arr) )
{
DbgBreakIf( sb_id >= ARRSIZE(pdev->vars.status_blocks_arr) ) ;
return LM_STATUS_FAILURE ;
}
sb_indexes = lm_get_sb_indexes(pdev, (u8_t)sb_id);
// This isn't realy cid it is the chain index
tx_sb_index_number =
lm_eth_tx_hc_cq_cons_cosx_from_chain(pdev, cid);
sb_indexes[tx_sb_index_number] = 0;
LM_TXQ(pdev, cid).hw_con_idx_ptr = sb_indexes + tx_sb_index_number;
LM_TXQ(pdev, cid).hc_sb_info.hc_sb = STATUS_BLOCK_NORMAL_TYPE;
LM_TXQ(pdev, cid).hc_sb_info.hc_index_value = tx_sb_index_number;
if (IS_PFDEV(pdev))
{
LM_TXQ(pdev, cid).hc_sb_info.iro_dhc_offset = CSTORM_BYTE_COUNTER_OFFSET(byte_counter_id, tx_sb_index_number);
}
else
{
DbgMessage(pdev, FATAL, "Dhc not implemented for VF yet\n");
}
}
return LM_STATUS_SUCCESS;
} /* lm_setup_txq */
lm_status_t lm_setup_rxq( IN struct _lm_device_t *pdev,
IN u32_t const cid)
{
lm_bd_chain_t * bd_chain = NULL;
lm_rx_chain_t * rxq_chain = NULL;
lm_rxq_chain_idx_t rx_chain_idx_max = LM_RXQ_CHAIN_IDX_MAX;
lm_rxq_chain_idx_t rx_chain_idx_cur = 0;
static u8_t const eth_rx_size_arr[LM_RXQ_CHAIN_IDX_MAX] = {sizeof(struct eth_rx_bd), sizeof(struct eth_rx_sge)};
u32_t sb_id = RSS_ID_TO_SB_ID(CHAIN_TO_RSS_ID(pdev,cid));
const u8_t byte_counter_id = CHIP_IS_E1x(pdev)? LM_FW_SB_ID(pdev, sb_id) : LM_FW_DHC_QZONE_ID(pdev, sb_id);
/* check arguments */
if(CHK_NULL(pdev) ||
ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid)))
{
return LM_STATUS_FAILURE;
}
DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_rxq, cid=%d\n",cid);
rxq_chain = &LM_RXQ(pdev, cid);
rxq_chain->common.prod_bseq = 0;
rxq_chain->ret_bytes = 0;
rxq_chain->ret_bytes_last_fw_update = 0;
rxq_chain->common.bd_prod_without_next = 0;
rx_chain_idx_max = LM_RXQ_IS_CHAIN_SGE_VALID( pdev, cid ) ? LM_RXQ_CHAIN_IDX_SGE : LM_RXQ_CHAIN_IDX_BD;
for( rx_chain_idx_cur = 0; rx_chain_idx_cur <= rx_chain_idx_max; rx_chain_idx_cur++ )
{
bd_chain = &LM_RXQ_CHAIN( pdev, cid, rx_chain_idx_cur );
lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy,bd_chain->page_cnt, eth_rx_size_arr[rx_chain_idx_cur], /* is full? */0, TRUE);
DbgMessage(pdev, INFORMi, "rxq[%d] bd_chain[%d] %p, bd_left %d\n", cid,
rx_chain_idx_cur,
bd_chain->next_bd,
bd_chain->bd_left);
DbgMessage(pdev, INFORMi, " bd_chain_phy[%d] 0x%x%08x\n", rx_chain_idx_cur,
bd_chain->bd_chain_phy.as_u32.high,
bd_chain->bd_chain_phy.as_u32.low);
}
/* We initilize the hc_sb_info here for completeness. The fw updates are actually done by rcq-chain, but the dynamic-host-coalescing based on rx-chain */
rxq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_NORMAL_SL_TYPE;
rxq_chain->hc_sb_info.hc_index_value = HC_INDEX_ETH_RX_CQ_CONS;
if (IS_PFDEV(pdev))
{
rxq_chain->hc_sb_info.iro_dhc_offset = CSTORM_BYTE_COUNTER_OFFSET(byte_counter_id, HC_INDEX_ETH_RX_CQ_CONS);
}
else
{
rxq_chain->hc_sb_info.iro_dhc_offset = sizeof(struct cstorm_queue_zone_data) * LM_FW_DHC_QZONE_ID(pdev, sb_id)
+ sizeof(u32_t) * HC_INDEX_ETH_RX_CQ_CONS;
DbgMessage(pdev, WARN, "Dhc offset is 0x%x for VF Q Zone %d\n",rxq_chain->hc_sb_info.iro_dhc_offset,LM_FW_DHC_QZONE_ID(pdev, sb_id));
}
return LM_STATUS_SUCCESS;
} /* lm_setup_rxq */
lm_status_t
lm_setup_rcq( IN struct _lm_device_t *pdev,
IN u32_t const cid)
{
lm_bd_chain_t * bd_chain = NULL;
lm_rcq_chain_t * rcq_chain = NULL;
lm_rx_chain_t * rxq_chain = NULL;
volatile struct hc_sp_status_block * sp_sb = NULL;
u16_t volatile * sb_indexes = NULL;
/* check arguments */
if(CHK_NULL(pdev) ||
ERR_IF((ARRSIZE(pdev->rx_info.rcq_chain) <= cid)))
{
return LM_STATUS_FAILURE;
}
rcq_chain = &LM_RCQ(pdev, cid);
rxq_chain = &LM_RXQ(pdev, cid);
DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_rcq, cid=%d\n",cid);
sp_sb = lm_get_default_status_block(pdev);
rcq_chain->prod_bseq = 0;
if (CHIP_IS_E1x(pdev))
{
rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E1X_OFFSET(PORT_ID(pdev), LM_FW_CLI_ID(pdev, cid));
}
else
{
if (IS_VFDEV(pdev))
{
rcq_chain->iro_prod_offset = LM_FW_QZONE_ID(pdev, cid)*sizeof(struct ustorm_queue_zone_data);
DbgMessage(pdev, FATAL, "iro_prod_offset for vf = %x...\n", rcq_chain->iro_prod_offset);
}
}
//if(pdev->params.l2_rx_desc_cnt[0]) /* if removed. was not required */
bd_chain = &rcq_chain->bd_chain;
lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy,bd_chain->page_cnt, sizeof(union eth_rx_cqe), /* is full? */0, TRUE);
//number of Bds left in the RCQ must be at least the same with its corresponding Rx chain.
DbgBreakIf(lm_bd_chain_avail_bds(&rxq_chain->chain_arr[LM_RXQ_CHAIN_IDX_BD]) <= lm_bd_chain_avail_bds(&rcq_chain->bd_chain));
if( LM_RXQ_IS_CHAIN_SGE_VALID(pdev, cid ) )
{
DbgBreakIf( !lm_bd_chains_are_consistent( &rxq_chain->chain_arr[LM_RXQ_CHAIN_IDX_BD], &rxq_chain->chain_arr[LM_RXQ_CHAIN_IDX_SGE]) );
}
DbgMessage(pdev, INFORMi, "rcq %d, bd_chain %p, bd_left %d\n", cid,
rcq_chain->bd_chain.next_bd,
rcq_chain->bd_chain.bd_left);
DbgMessage(pdev, INFORMi, " bd_chain_phy 0x%x%08x\n", rcq_chain->bd_chain.bd_chain_phy.as_u32.high,
rcq_chain->bd_chain.bd_chain_phy.as_u32.low);
// Assign the RCQ chain consumer pointer to the consumer index in the status block.
if (cid == ISCSI_CID(pdev))
{
if (CHIP_IS_E2E3(pdev)) {
u8_t rel_cid = cid - LM_MAX_RSS_CHAINS(pdev);
rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E2_OFFSET(LM_FW_AUX_QZONE_ID(pdev, rel_cid));
}
sp_sb->index_values[HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS] = 0;
rcq_chain->hw_con_idx_ptr = &(sp_sb->index_values[HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS]);
rcq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE;
rcq_chain->hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS;
}
else if (cid == FCOE_CID(pdev))
{
if (CHIP_IS_E2E3(pdev)) {
u8_t rel_cid = cid - LM_MAX_RSS_CHAINS(pdev);
rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E2_OFFSET(LM_FW_AUX_QZONE_ID(pdev, rel_cid));
}
sp_sb->index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS] = 0;
rcq_chain->hw_con_idx_ptr = &(sp_sb->index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS]);
rcq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE;
rcq_chain->hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
}
else if (cid == OOO_CID(pdev))
{
// Any SB that isn't RSS share the same SB.
// basically we will want the ISCSI OOO to work on the same SB that ISCSI works.(This does happen see the line above)
// Even if we want to count on ISCSI and make sure we will work on the same SB:
// 1.There is no promise on the order the ISCSI nminiport will call
// ISCSI_KWQE_OPCODE_INIT1 (lm_sc_init inits pdev->iscsi_info.l5_eq_base_chain_idx) or
// 2.OOO is general code that doesn't depend on a protocol (ISCSI).
//TODO_OOO Ask Michal regarding E2 if we need LM_FW_SB_ID
if (CHIP_IS_E2E3(pdev)) {
u8_t rel_cid = cid - LM_MAX_RSS_CHAINS(pdev);
rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E2_OFFSET(LM_FW_AUX_QZONE_ID(pdev, rel_cid));
}
sp_sb->index_values[HC_SP_INDEX_ISCSI_OOO_RX_CONS] = 0;
rcq_chain->hw_con_idx_ptr = &(sp_sb->index_values[HC_SP_INDEX_ISCSI_OOO_RX_CONS]);
rcq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE;
rcq_chain->hc_sb_info.hc_index_value = HC_SP_INDEX_ISCSI_OOO_RX_CONS;
}
else /* NDIS */
{
u32_t sb_id = RSS_ID_TO_SB_ID(CHAIN_TO_RSS_ID(pdev,cid));
const u8_t byte_counter_id = CHIP_IS_E1x(pdev)? LM_FW_SB_ID(pdev, sb_id) : LM_FW_DHC_QZONE_ID(pdev, sb_id);
if (IS_PFDEV(pdev) && CHIP_IS_E2E3(pdev)) {
rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E2_OFFSET(LM_FW_DHC_QZONE_ID(pdev, sb_id));
}
if( sb_id >= ARRSIZE(pdev->vars.status_blocks_arr) )
{
DbgBreakIf( sb_id >= ARRSIZE(pdev->vars.status_blocks_arr) ) ;
return LM_STATUS_FAILURE ;
}
sb_indexes = lm_get_sb_indexes(pdev, (u8_t)sb_id);
sb_indexes[HC_INDEX_ETH_RX_CQ_CONS] = 0;
rcq_chain->hw_con_idx_ptr = sb_indexes + HC_INDEX_ETH_RX_CQ_CONS;
rcq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_NORMAL_SL_TYPE;
rcq_chain->hc_sb_info.hc_index_value = HC_INDEX_ETH_RX_CQ_CONS;
if (IS_PFDEV(pdev))
{
rcq_chain->hc_sb_info.iro_dhc_offset = CSTORM_BYTE_COUNTER_OFFSET(byte_counter_id, HC_INDEX_ETH_RX_CQ_CONS);
}
else
{
DbgMessage(pdev, FATAL, "Dhc not implemented for VF yet\n");
}
}
return LM_STATUS_SUCCESS;
} /* lm_setup_rcq */
lm_status_t
lm_setup_client_con_resc(
IN struct _lm_device_t *pdev,
IN u32_t cid
)
{
lm_status_t lm_status = LM_STATUS_SUCCESS;
if CHK_NULL(pdev)
{
return LM_STATUS_INVALID_PARAMETER;
}
if((GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX) &&
(cid >= MAX_RX_CHAIN(pdev))) ||
(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX) &&
(cid >= MAX_TX_CHAIN(pdev))))
{
DbgBreakMsg(" invalid chain ");
return LM_STATUS_INVALID_PARAMETER;
}
if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX))
{
lm_status = lm_setup_txq(pdev, cid);
if (lm_status != LM_STATUS_SUCCESS)
{
return lm_status;
}
}
if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX))
{
lm_status = lm_setup_rxq(pdev, cid);
if (lm_status != LM_STATUS_SUCCESS)
{
return lm_status;
}
lm_status = lm_setup_rcq(pdev, cid);
if (lm_status != LM_STATUS_SUCCESS)
{
return lm_status;
}
}
if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TPA))
{
lm_status = lm_setup_tpa_chain(pdev, cid);
if (lm_status != LM_STATUS_SUCCESS)
{
return lm_status;
}
}
pdev->client_info[cid].last_set_rx_mask = 0;
return LM_STATUS_SUCCESS;
}
/*
* reset txq, rxq, rcq counters for L2 client connection
*
* assumption: the cid equals the chain idx
*/
lm_status_t lm_clear_eth_con_resc( IN struct _lm_device_t *pdev,
IN u8_t const cid )
{
u8_t sb_id = lm_sb_id_from_chain(pdev, cid);
u8_t max_eth_cid;
if CHK_NULL(pdev)
{
return LM_STATUS_INVALID_PARAMETER;
}
if (MM_DCB_MP_L2_IS_ENABLE(pdev))
{
max_eth_cid = lm_mp_max_cos_chain_used(pdev);
}
else
{
max_eth_cid = MAX_RX_CHAIN(pdev);
}
if (cid >= max_eth_cid)
{
return LM_STATUS_INVALID_PARAMETER;
}
/* Set hw consumer index pointers to null, so we won't get rx/tx completion */
/* for this connection, next time we'll load it */
// Regardless the attributes we "clean' the TX status block
if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX))
{
if (cid >= MAX_TX_CHAIN(pdev))
{
DbgBreakMsg(" Invalid TX chain index ");
return LM_STATUS_INVALID_PARAMETER;
}
/* first set the hw consumer index pointers to null, and only then clear the pkt_idx value
* to avoid a race when servicing interrupt at the same time */
lm_clear_chain_sb_cons_idx(pdev, sb_id, &LM_TXQ(pdev, cid).hc_sb_info, &LM_TXQ(pdev, cid).hw_con_idx_ptr);
LM_TXQ(pdev, cid).pkt_idx = 0;
}
if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX))
{
if (cid >= MAX_RX_CHAIN(pdev))
{
DbgBreakMsg(" Invalid RX chain index ");
return LM_STATUS_INVALID_PARAMETER;
}
lm_clear_chain_sb_cons_idx(pdev, sb_id, &LM_RCQ(pdev, cid).hc_sb_info, &LM_RCQ(pdev, cid).hw_con_idx_ptr);
}
//s_list_init(&LM_RXQ(pdev, cid).active_descq, NULL, NULL, 0);
//s_list_init(&LM_RXQ(pdev, cid).free_descq, NULL, NULL, 0);
return LM_STATUS_SUCCESS;
}
lm_status_t
lm_alloc_chain_con_resc(
IN struct _lm_device_t *pdev,
IN u32_t const cid,
IN lm_cli_idx_t const lm_cli_idx
)
{
lm_status_t lm_status = LM_STATUS_SUCCESS;
u16_t l2_rx_bd_page_cnt = 0;
u16_t l2_tpa_bd_page_cnt = 0;
u16_t bds_per_page = 0;
if CHK_NULL(pdev)
{
return LM_STATUS_INVALID_PARAMETER;
}
if((GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX) &&
(cid >= MAX_RX_CHAIN(pdev))) ||
(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX) &&
(cid >= MAX_TX_CHAIN(pdev))))
{
DbgBreakMsg(" invalid chain ");
return LM_STATUS_INVALID_PARAMETER;
}
if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX))
{
lm_status = lm_alloc_txq(pdev,
cid,
(u16_t)pdev->params.l2_tx_bd_page_cnt[lm_cli_idx],
(u16_t)pdev->params.l2_tx_coal_buf_cnt[lm_cli_idx]);
if (lm_status != LM_STATUS_SUCCESS)
{
return lm_status;
}
}
if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX))
{
l2_rx_bd_page_cnt =_ceil( pdev->params.l2_cli_con_params[cid].num_rx_desc, 500 );
lm_status = lm_alloc_rxq(pdev,
cid,
l2_rx_bd_page_cnt,
pdev->params.l2_cli_con_params[cid].num_rx_desc);
if (lm_status != LM_STATUS_SUCCESS)
{
return lm_status;
}
lm_status = lm_alloc_rcq(pdev,
cid,
(u16_t)l2_rx_bd_page_cnt * LM_RX_BD_CQ_SIZE_RATIO);
if (lm_status != LM_STATUS_SUCCESS)
{
return lm_status;
}
}
if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TPA))
{
bds_per_page = BD_PER_PAGE(LM_TPA_BD_ELEN_SIZE);
if ((0 == pdev->params.tpa_desc_cnt_per_chain) ||
(!(POWER_OF_2(bds_per_page))))
{
DbgBreakMsg(" Illegal TPA params");
return LM_STATUS_FAILURE;
}
l2_tpa_bd_page_cnt =_ceil( pdev->params.tpa_desc_cnt_per_chain,
USABLE_BDS_PER_PAGE(LM_TPA_BD_ELEN_SIZE, TRUE));
l2_tpa_bd_page_cnt = (u16_t)
upper_align_power_of_2(l2_tpa_bd_page_cnt,
sizeof(l2_tpa_bd_page_cnt) * BITS_PER_BYTE);
lm_status = lm_alloc_tpa_chain(pdev,
cid,
l2_tpa_bd_page_cnt,
pdev->params.tpa_desc_cnt_per_chain,
bds_per_page);
if (lm_status != LM_STATUS_SUCCESS)
{
return lm_status;
}
}
return LM_STATUS_SUCCESS;
}
lm_status_t
lm_setup_client_con_params( IN struct _lm_device_t *pdev,
IN u8_t const chain_idx,
IN struct _lm_client_con_params_t *cli_params )
{
lm_rx_chain_t* rxq_chain = NULL;
if (CHK_NULL(pdev) ||
CHK_NULL(cli_params) ||
ERR_IF((ARRSIZE(pdev->params.l2_cli_con_params) <= chain_idx) ||
(CHIP_IS_E1H(pdev) && (chain_idx >= ETH_MAX_RX_CLIENTS_E1H)) || /* TODO E2 add IS_E2*/
(CHIP_IS_E1(pdev) && (chain_idx >= ETH_MAX_RX_CLIENTS_E1)) ))
{
return LM_STATUS_INVALID_PARAMETER;
}
mm_memcpy(&pdev->params.l2_cli_con_params[chain_idx], cli_params, sizeof(struct _lm_client_con_params_t));
if(GET_FLAGS(pdev->params.l2_cli_con_params[chain_idx].attributes,
LM_CLIENT_ATTRIBUTES_RX))
{
// update rxq_chain strucutre
rxq_chain = &LM_RXQ(pdev, chain_idx);
rxq_chain->lah_size = pdev->params.l2_cli_con_params[chain_idx].lah_size;
}
return LM_STATUS_SUCCESS;
}
lm_status_t
lm_init_chain_con( IN struct _lm_device_t *pdev,
IN u8_t const chain_idx,
IN u8_t const b_alloc )
{
lm_status_t lm_status = LM_STATUS_SUCCESS;
u8_t lm_cli_idx = LM_CHAIN_IDX_CLI(pdev, chain_idx); // FIXME!!!
if (CHK_NULL(pdev) ||
(LM_CLI_IDX_MAX <= lm_cli_idx))
{
DbgBreakMsg(" lm_init_client_con lm_cli_idx has an invalid value");
return LM_STATUS_INVALID_PARAMETER;
}
if (b_alloc)
{
lm_status = lm_alloc_chain_con_resc(pdev, chain_idx, lm_cli_idx);
if (lm_status != LM_STATUS_SUCCESS)
{
return lm_status;
}
if(GET_FLAGS(pdev->params.l2_cli_con_params[chain_idx].attributes,LM_CLIENT_ATTRIBUTES_RX))
{
/* On allocation, init the clients objects... do this only on allocation, on setup, we'll need
* the info to reconfigure... */
ecore_init_mac_obj(pdev,
&pdev->client_info[chain_idx].mac_obj,
LM_FW_CLI_ID(pdev, chain_idx),
chain_idx,
FUNC_ID(pdev),
LM_SLOWPATH(pdev, mac_rdata)[lm_cli_idx],
LM_SLOWPATH_PHYS(pdev, mac_rdata)[lm_cli_idx],
ECORE_FILTER_MAC_PENDING,
(unsigned long *)&pdev->client_info[chain_idx].sp_mac_state,
ECORE_OBJ_TYPE_RX_TX,
&pdev->slowpath_info.macs_pool);
if (!CHIP_IS_E1(pdev))
{
ecore_init_vlan_mac_obj(pdev,
&pdev->client_info[chain_idx].mac_vlan_obj,
LM_FW_CLI_ID(pdev, chain_idx),
chain_idx,
FUNC_ID(pdev),
LM_SLOWPATH(pdev, mac_rdata)[lm_cli_idx],
LM_SLOWPATH_PHYS(pdev, mac_rdata)[lm_cli_idx],
ECORE_FILTER_VLAN_MAC_PENDING,
(unsigned long *)&pdev->client_info[chain_idx].sp_mac_state,
ECORE_OBJ_TYPE_RX_TX,
&pdev->slowpath_info.macs_pool,
&pdev->slowpath_info.vlans_pool);
}
if (!CHIP_IS_E1x(pdev))
{
ecore_init_vlan_obj(pdev,
&pdev->client_info[chain_idx].vlan_obj,
LM_FW_CLI_ID(pdev, chain_idx),
chain_idx,
FUNC_ID(pdev),
LM_SLOWPATH(pdev, mac_rdata)[lm_cli_idx],
LM_SLOWPATH_PHYS(pdev, mac_rdata)[lm_cli_idx],
ECORE_FILTER_VLAN_PENDING,
(unsigned long *)&pdev->client_info[chain_idx].sp_mac_state,
ECORE_OBJ_TYPE_RX_TX,
&pdev->slowpath_info.vlans_pool);
}
}
}
lm_status = lm_setup_client_con_resc(pdev, chain_idx);
return lm_status;
}
lm_status_t lm_alloc_sq(struct _lm_device_t *pdev)
{
lm_sq_info_t * sq_info = &pdev->sq_info;
sq_info->sq_chain.sq_chain_virt = mm_alloc_phys_mem( pdev,
LM_PAGE_SIZE,
(lm_address_t*)&(sq_info->sq_chain.bd_chain_phy),
0,
LM_CLI_IDX_MAX);
if CHK_NULL(sq_info->sq_chain.sq_chain_virt)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(sq_info->sq_chain.sq_chain_virt, LM_PAGE_SIZE);
return LM_STATUS_SUCCESS;
}
lm_status_t lm_alloc_eq(struct _lm_device_t *pdev)
{
lm_eq_chain_t *eq_chain = NULL;
u32_t mem_size = 0;
u8_t const page_cnt = 1;
/* check arguments */
if(CHK_NULL(pdev))
{
return LM_STATUS_FAILURE;
}
DbgMessage(pdev, INFORMi | INFORMl2sp, "#lm_alloc_eq\n");
mem_size = page_cnt * LM_PAGE_SIZE;
eq_chain = &pdev->eq_info.eq_chain;
/* alloc the chain */
eq_chain->bd_chain.bd_chain_virt =
mm_alloc_phys_mem( pdev, mem_size, &eq_chain->bd_chain.bd_chain_phy, 0, LM_CLI_IDX_MAX);
if(ERR_IF(!eq_chain->bd_chain.bd_chain_virt))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE;
}
mm_mem_zero(eq_chain->bd_chain.bd_chain_virt, mem_size);
eq_chain->bd_chain.page_cnt = page_cnt;
return LM_STATUS_SUCCESS;
}
lm_status_t lm_alloc_client_info(struct _lm_device_t *pdev)
{
client_init_data_t *client_init_data_virt = NULL;
const u32_t mem_size_init = sizeof(client_init_data_t);
struct client_update_ramrod_data *client_update_data_virt = NULL;
const u32_t mem_size_update = sizeof(struct client_update_ramrod_data);
u8_t i = 0;
for (i = 0; i < ARRSIZE(pdev->client_info); i++)
{
//Init data
client_init_data_virt = mm_alloc_phys_mem(pdev, mem_size_init, &pdev->client_info[i].client_init_data_phys, 0, LM_RESOURCE_COMMON);
if CHK_NULL(client_init_data_virt)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(client_init_data_virt, mem_size_init);
pdev->client_info[i].client_init_data_virt = client_init_data_virt;
//update data
client_update_data_virt = mm_alloc_phys_mem(pdev, mem_size_update, &pdev->client_info[i].update.data_phys, 0, LM_RESOURCE_COMMON);
if CHK_NULL(client_update_data_virt)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(client_update_data_virt, mem_size_update);
pdev->client_info[i].update.data_virt = client_update_data_virt;
}
return LM_STATUS_SUCCESS;
}
lm_status_t lm_setup_client_info(struct _lm_device_t *pdev)
{
client_init_data_t *client_init_data_virt = NULL;
const u32_t mem_size_init = sizeof(client_init_data_t);
struct client_update_ramrod_data *client_update_data_virt = NULL;
const u32_t mem_size_update = sizeof(struct client_update_ramrod_data);
u8_t i = 0;
for (i = 0; i < ARRSIZE(pdev->client_info); i++)
{
//Init
client_init_data_virt = pdev->client_info[i].client_init_data_virt;
if CHK_NULL(client_init_data_virt)
{
DbgMessage(pdev, FATAL, "client-init-data at this point is not expected to be null... \n");
return LM_STATUS_FAILURE ;
}
mm_mem_zero(client_init_data_virt, mem_size_init);
//update
client_update_data_virt = pdev->client_info[i].update.data_virt;
if CHK_NULL(client_update_data_virt)
{
DbgMessage(pdev, FATAL, "client-update-data at this point is not expected to be null... \n");
return LM_STATUS_FAILURE ;
}
mm_mem_zero(client_update_data_virt, mem_size_update);
}
return LM_STATUS_SUCCESS;
}
/**
* @description
* The next page entrys are static and wont be used by active
* descriptor array and mask array.
* @param pdev
* @param chain_idx
*
* @return STATIC void
*/
__inline STATIC void
lm_tpa_clear_next_page( IN lm_device_t* pdev,
IN const u32_t chain_idx)
{
lm_bd_chain_t* bd_chain = &LM_TPA_CHAIN_BD(pdev, chain_idx);
u16_t active_entry = 0;
u16_t bd_entry = 0;
u16_t i = 0;
u16_t j = 0;
for(i = 1; i <= lm_bd_chain_page_cnt(bd_chain); i++ )
{
bd_entry = (lm_bd_chain_bds_per_page(bd_chain) * i) - lm_bd_chain_bds_skip_eop(bd_chain);
/* clear page-end entries */
for(j = 0; j < lm_bd_chain_bds_skip_eop(bd_chain); j++ )
{
active_entry = LM_TPA_BD_ENTRY_TO_ACTIVE_ENTRY(pdev, chain_idx, bd_entry);
LM_TPA_MASK_CLEAR_ACTIVE_BIT(pdev, chain_idx, active_entry);
bd_entry++;
}
}
}
/**
* @description
* Clear TPA parameters. TPA can be disabled between NDIS bind
* unbind but the RX cahin will stay used.
* @param pdev
* @param cid
*/
lm_status_t
lm_tpa_chain_reset(IN lm_device_t *pdev,
IN const u32_t cid)
{
lm_tpa_chain_t * tpa_chain = NULL;
/* check arguments */
if(CHK_NULL(pdev) ||
ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid)))
{
return LM_STATUS_FAILURE;
}
DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_tpa, cid=%d\n",cid);
tpa_chain = &LM_TPA(pdev, cid);
/***************** SGE chain setup *************************************/
mm_mem_zero(tpa_chain,sizeof(lm_tpa_chain_t));
return LM_STATUS_SUCCESS;
}
/**
* @description
*
* @param pdev
* @param cid
*
* @return lm_status_t
*/
lm_status_t lm_setup_tpa_chain( IN struct _lm_device_t *pdev,
IN u32_t const cid)
{
lm_bd_chain_t * bd_chain = NULL;
lm_tpa_chain_t * tpa_chain = NULL;
u16_t i = 0;
/* check arguments */
if(CHK_NULL(pdev) ||
ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid)))
{
return LM_STATUS_FAILURE;
}
DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_tpa, cid=%d\n",cid);
tpa_chain = &LM_TPA(pdev, cid);
bd_chain = &LM_TPA_CHAIN_BD( pdev, cid );
/***************** TPA chain setup ************************************/
for(i = 0; i < ARRSIZE(tpa_chain->start_coales_bd) ; i++)
{
tpa_chain->start_coales_bd[i].is_entry_used = FALSE;
tpa_chain->start_coales_bd[i].packet = NULL;
}
/***************** SGE common setup ************************************/
tpa_chain->common.prod_bseq = 0;
tpa_chain->common.bd_prod_without_next = 0;
/***************** SGE chain setup *************************************/
lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy,bd_chain->page_cnt, LM_TPA_BD_ELEN_SIZE, /* is full? */0, TRUE);
DbgMessage(pdev, INFORMi, "rxq[%d] bd_chain[%d] %p, bd_left %d\n", cid,
bd_chain->next_bd,
bd_chain->bd_left);
DbgMessage(pdev, INFORMi, " bd_chain_phy[%d] 0x%x%08x\n", bd_chain->bd_chain_phy.as_u32.high,
bd_chain->bd_chain_phy.as_u32.low);
tpa_chain->sge_chain.last_max_con = 0;
for(i = 0; i < LM_TPA_ACTIVE_DESCQ_ARRAY_ELEM(pdev, cid) ; i++)
{
tpa_chain->sge_chain.active_descq_array[i] = NULL;
}
/***************** Mask entry prepare *************************************/
ASSERT_STATIC(0 != BIT_VEC64_ELEM_SZ); //LM_TPA_MASK_LEN - divide by BIT_VEC64_ELEM_SZ
for(i = 0; i < LM_TPA_MASK_LEN(pdev, cid) ; i++)
{
tpa_chain->sge_chain.mask_array[i] = BIT_VEC64_ELEM_ONE_MASK;
}
lm_tpa_clear_next_page(pdev,
cid);
return LM_STATUS_SUCCESS;
} /* lm_setup_tpa */
lm_status_t lm_setup_sq(struct _lm_device_t *pdev)
{
lm_sq_info_t * sq_info = &pdev->sq_info;
mm_mem_zero(sq_info->sq_chain.sq_chain_virt, LM_PAGE_SIZE);
pdev->sq_info.num_pending_normal = MAX_NORMAL_PRIORITY_SPE;
pdev->sq_info.num_pending_high = MAX_HIGH_PRIORITY_SPE;
d_list_init(&pdev->sq_info.pending_normal, 0,0,0);
d_list_init(&pdev->sq_info.pending_high, 0,0,0);
d_list_init(&pdev->sq_info.pending_complete, 0,0,0);
/* The spq dont have next bd */
pdev->sq_info.sq_chain.bd_left = USABLE_BDS_PER_PAGE(sizeof(struct slow_path_element), TRUE); /* prod == cons means empty chain */
pdev->sq_info.sq_chain.con_idx = 0;
pdev->sq_info.sq_chain.prod_bd = pdev->sq_info.sq_chain.sq_chain_virt;
pdev->sq_info.sq_chain.last_bd = pdev->sq_info.sq_chain.prod_bd + pdev->sq_info.sq_chain.bd_left ;
pdev->sq_info.sq_chain.prod_idx = 0;
return LM_STATUS_SUCCESS;
}
lm_status_t lm_setup_eq(struct _lm_device_t *pdev)
{
lm_bd_chain_t * bd_chain = NULL;
lm_eq_chain_t * eq_chain = NULL;
volatile struct hc_sp_status_block * sp_sb = NULL;
/* check arguments */
if(CHK_NULL(pdev))
{
return LM_STATUS_FAILURE;
}
DbgMessage(pdev, INFORMeq, "#lm_setup_eq\n");
eq_chain = &pdev->eq_info.eq_chain;
bd_chain = &eq_chain->bd_chain;
lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy, bd_chain->page_cnt, sizeof(union event_ring_elem), /* is full? */TRUE, TRUE);
sp_sb = lm_get_default_status_block(pdev);
sp_sb->index_values[HC_SP_INDEX_EQ_CONS] = 0;
eq_chain->hw_con_idx_ptr = &sp_sb->index_values[HC_SP_INDEX_EQ_CONS];
eq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_NORMAL_SL_TYPE;
eq_chain->hc_sb_info.hc_index_value = HC_SP_INDEX_EQ_CONS;
eq_chain->iro_prod_offset = CSTORM_EVENT_RING_PROD_OFFSET(FUNC_ID(pdev));
return LM_STATUS_SUCCESS;
}
lm_status_t lm_init_sp_objs(struct _lm_device_t *pdev)
{
u32_t lm_cli_idx = LM_CLI_IDX_MAX;
ecore_init_mac_credit_pool(pdev, &pdev->slowpath_info.macs_pool, FUNC_ID(pdev), CHIP_IS_E1x(pdev)? VNICS_PER_PORT(pdev) : VNICS_PER_PATH(pdev));
ecore_init_vlan_credit_pool(pdev, &pdev->slowpath_info.vlans_pool, FUNC_ID(pdev), CHIP_IS_E1x(pdev)? VNICS_PER_PORT(pdev) : VNICS_PER_PATH(pdev));
ecore_init_rx_mode_obj(pdev, &pdev->slowpath_info.rx_mode_obj);
for (lm_cli_idx=0; lm_cli_idx < ARRSIZE(pdev->slowpath_info.mcast_obj); lm_cli_idx++)
{
ecore_init_mcast_obj(pdev,
&pdev->slowpath_info.mcast_obj[lm_cli_idx],
LM_FW_CLI_ID(pdev, pdev->params.map_client_to_cid[lm_cli_idx]),
pdev->params.map_client_to_cid[lm_cli_idx],
FUNC_ID(pdev),
FUNC_ID(pdev),
LM_SLOWPATH(pdev, mcast_rdata)[lm_cli_idx],
LM_SLOWPATH_PHYS(pdev, mcast_rdata)[lm_cli_idx],
ECORE_FILTER_MCAST_PENDING,
(unsigned long *)&pdev->slowpath_info.sp_mcast_state[lm_cli_idx],
ECORE_OBJ_TYPE_RX_TX);
}
ecore_init_rss_config_obj(pdev,
&pdev->slowpath_info.rss_conf_obj,
LM_FW_CLI_ID(pdev, LM_SW_LEADING_RSS_CID(pdev)),
LM_SW_LEADING_RSS_CID(pdev),
FUNC_ID(pdev),
FUNC_ID(pdev),
LM_SLOWPATH(pdev, rss_rdata),
LM_SLOWPATH_PHYS(pdev, rss_rdata),
ECORE_FILTER_RSS_CONF_PENDING,
(unsigned long *)&pdev->slowpath_info.sp_rss_state,
ECORE_OBJ_TYPE_RX);
return LM_STATUS_SUCCESS;
}
/**
* Description:
* allocate slowpath resources
*/
static lm_status_t
lm_alloc_setup_slowpath_resc(struct _lm_device_t *pdev , u8_t b_alloc)
{
lm_slowpath_data_t *slowpath_data = &pdev->slowpath_info.slowpath_data;
u8_t i = 0;
ASSERT_STATIC(ARRSIZE(slowpath_data->mac_rdata) == ARRSIZE(slowpath_data->rx_mode_rdata));
ASSERT_STATIC(ARRSIZE(slowpath_data->mac_rdata) == ARRSIZE(slowpath_data->mcast_rdata));
for (i = 0; i < ARRSIZE(slowpath_data->mac_rdata); i++ )
{
if (b_alloc)
{
slowpath_data->mac_rdata[i] =
mm_alloc_phys_mem(pdev,
sizeof(*slowpath_data->mac_rdata[i]),
&slowpath_data->mac_rdata_phys[i],
0,
LM_RESOURCE_COMMON);
slowpath_data->rx_mode_rdata[i] =
mm_alloc_phys_mem(pdev,
sizeof(*slowpath_data->rx_mode_rdata[i]),
&slowpath_data->rx_mode_rdata_phys[i],
0,
LM_RESOURCE_COMMON);
slowpath_data->mcast_rdata[i] =
mm_alloc_phys_mem(pdev,
sizeof(*slowpath_data->mcast_rdata[i]),
&slowpath_data->mcast_rdata_phys[i],
0,
LM_RESOURCE_COMMON);
}
if (CHK_NULL(slowpath_data->mac_rdata[i]) ||
CHK_NULL(slowpath_data->rx_mode_rdata[i]) ||
CHK_NULL(slowpath_data->mcast_rdata[i]))
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(slowpath_data->mac_rdata[i], sizeof(*slowpath_data->mac_rdata[i]));
mm_mem_zero(slowpath_data->rx_mode_rdata[i], sizeof(*slowpath_data->rx_mode_rdata[i]));
mm_mem_zero(slowpath_data->mcast_rdata[i], sizeof(*slowpath_data->mcast_rdata[i]));
}
if (b_alloc)
{
slowpath_data->rss_rdata = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->rss_rdata), &slowpath_data->rss_rdata_phys, 0, LM_RESOURCE_COMMON);
}
if CHK_NULL(slowpath_data->rss_rdata)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(slowpath_data->rss_rdata, sizeof(*slowpath_data->rss_rdata));
if (b_alloc)
{
slowpath_data->func_start_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->func_start_data), &slowpath_data->func_start_data_phys, 0, LM_RESOURCE_COMMON);
}
if CHK_NULL(slowpath_data->func_start_data)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(slowpath_data->func_start_data, sizeof(*slowpath_data->func_start_data));
if (b_alloc)
{
slowpath_data->niv_function_update_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->niv_function_update_data), &slowpath_data->niv_function_update_data_phys, 0, LM_RESOURCE_COMMON);
}
if CHK_NULL(slowpath_data->niv_function_update_data)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(slowpath_data->niv_function_update_data, sizeof(*slowpath_data->niv_function_update_data));
if (b_alloc)
{
slowpath_data->l2mp_func_update_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->l2mp_func_update_data), &slowpath_data->l2mp_func_update_data_phys, 0, LM_RESOURCE_COMMON);
}
if CHK_NULL(slowpath_data->l2mp_func_update_data)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(slowpath_data->l2mp_func_update_data, sizeof(*slowpath_data->l2mp_func_update_data));
if (b_alloc)
{
slowpath_data->encap_function_update_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->encap_function_update_data), &slowpath_data->encap_function_update_data_phys, 0, LM_RESOURCE_COMMON);
}
if CHK_NULL(slowpath_data->encap_function_update_data)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(slowpath_data->encap_function_update_data, sizeof(*slowpath_data->encap_function_update_data));
if (b_alloc)
{
slowpath_data->ufp_function_update_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->ufp_function_update_data), &slowpath_data->ufp_function_update_data_phys, 0, LM_RESOURCE_COMMON);
}
if CHK_NULL(slowpath_data->ufp_function_update_data)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero(slowpath_data->ufp_function_update_data, sizeof(*slowpath_data->ufp_function_update_data));
pdev->slowpath_info.niv_ramrod_state = NIV_RAMROD_NOT_POSTED;
pdev->slowpath_info.l2mp_func_update_ramrod_state = L2MP_FUNC_UPDATE_RAMROD_NOT_POSTED;
pdev->slowpath_info.ufp_func_ramrod_state = UFP_RAMROD_NOT_POSTED;
return LM_STATUS_SUCCESS ;
}
static void * lm_setup_allocate_ilt_client_page( struct _lm_device_t *pdev,
lm_address_t *phys_mem,
u8_t const cli_idx )
{
void* ilt_client_page_virt_address = NULL;
if (!CHIP_IS_E1(pdev))
{
ilt_client_page_virt_address = mm_alloc_phys_mem_align( pdev,
pdev->params.ilt_client_page_size,
phys_mem,
LM_ILT_ALIGNMENT,
0,
cli_idx);
}
else
{
ilt_client_page_virt_address = mm_alloc_phys_mem_align(pdev,
pdev->params.ilt_client_page_size,
phys_mem,
pdev->params.ilt_client_page_size,
0,
cli_idx);
}
return ilt_client_page_virt_address;
}
/* Description:
* This routine contain common code for alloc/setup distinguish by flag
*/
lm_status_t lm_common_setup_alloc_resc(struct _lm_device_t *pdev, u8_t const b_is_alloc )
{
lm_params_t* params = NULL ;
lm_variables_t* vars = NULL ;
// lm_sq_info_t* sq_info = NULL ;
lm_status_t lm_status;
u32_t alloc_size = 0 ;
u32_t alloc_num = 0 ;
u32_t i = 0 ;
u32_t mem_size = 0 ;
u8_t sb_id = 0 ;
u8_t mm_cli_idx = 0 ;
lm_address_t sb_phy_address;
if CHK_NULL( pdev )
{
return LM_STATUS_INVALID_PARAMETER ;
}
DbgMessage(pdev, INFORMi , "### lm_common_setup_alloc_resc b_is_alloc=%s\n", b_is_alloc ? "TRUE" : "FALSE" );
params = &pdev->params ;
vars = &(pdev->vars) ;
// Status blocks allocation. We allocate mem both for the default and non-default status blocks
// there is 1 def sb and 16 non-def sb per port.
// non-default sb: index 0-15, default sb: index 16.
if (CHIP_IS_E1x(pdev))
{
mem_size = E1X_STATUS_BLOCK_BUFFER_SIZE;
}
else
{
mem_size = E2_STATUS_BLOCK_BUFFER_SIZE;
}
mm_cli_idx = LM_RESOURCE_COMMON;//!!DP mm_cli_idx_to_um_idx(LM_CLI_IDX_MAX);
LM_FOREACH_SB_ID(pdev, sb_id)
{
if( b_is_alloc )
{
vars->status_blocks_arr[sb_id].host_hc_status_block.e1x_sb = mm_alloc_phys_mem(pdev, mem_size, &sb_phy_address, 0, mm_cli_idx);
if (CHIP_IS_E1x(pdev))
{
vars->status_blocks_arr[sb_id].hc_status_block_data.e1x_sb_data.common.host_sb_addr.lo = sb_phy_address.as_u32.low;
vars->status_blocks_arr[sb_id].hc_status_block_data.e1x_sb_data.common.host_sb_addr.hi = sb_phy_address.as_u32.high;
}
else
{
vars->status_blocks_arr[sb_id].hc_status_block_data.e2_sb_data.common.host_sb_addr.lo = sb_phy_address.as_u32.low;
vars->status_blocks_arr[sb_id].hc_status_block_data.e2_sb_data.common.host_sb_addr.hi = sb_phy_address.as_u32.high;
}
}
if CHK_NULL(vars->status_blocks_arr[sb_id].host_hc_status_block.e1x_sb)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero((void *)(vars->status_blocks_arr[sb_id].host_hc_status_block.e1x_sb), mem_size);
}
mem_size = DEF_STATUS_BLOCK_BUFFER_SIZE;
if( b_is_alloc )
{
vars->gen_sp_status_block.hc_sp_status_blk = mm_alloc_phys_mem(pdev,
mem_size,
&(vars->gen_sp_status_block.blk_phy_address),
0,
mm_cli_idx);
}
if CHK_NULL(vars->gen_sp_status_block.hc_sp_status_blk)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero((void *)(vars->gen_sp_status_block.hc_sp_status_blk), mem_size);
/* Now reset the status-block ack values back to zero. */
lm_reset_sb_ack_values(pdev);
mm_mem_zero(pdev->debug_info.ack_dis, sizeof(pdev->debug_info.ack_dis));
mm_mem_zero(pdev->debug_info.ack_en, sizeof(pdev->debug_info.ack_en));
pdev->debug_info.ack_def_dis = pdev->debug_info.ack_def_en = 0;
mm_mem_zero(pdev->debug_info.rx_only_int, sizeof(pdev->debug_info.rx_only_int));
mm_mem_zero(pdev->debug_info.tx_only_int, sizeof(pdev->debug_info.tx_only_int));
mm_mem_zero(pdev->debug_info.both_int, sizeof(pdev->debug_info.both_int));
mm_mem_zero(pdev->debug_info.empty_int, sizeof(pdev->debug_info.empty_int));
mm_mem_zero(pdev->debug_info.false_int, sizeof(pdev->debug_info.false_int));
/* Register common and ethernet connection types completion callback. */
lm_sq_comp_cb_register(pdev, ETH_CONNECTION_TYPE, lm_eth_comp_cb);
lm_sq_comp_cb_register(pdev, NONE_CONNECTION_TYPE, lm_eq_comp_cb);
/* SlowPath Info */
lm_status = lm_alloc_setup_slowpath_resc(pdev, b_is_alloc);
if (lm_status != LM_STATUS_SUCCESS)
{
DbgMessage(pdev, FATAL, "lm_alloc_client_info failed lm-status = %d\n", lm_status);
return lm_status;
}
/* Client Info */
if( b_is_alloc )
{
lm_status = lm_alloc_client_info(pdev);
if (lm_status != LM_STATUS_SUCCESS)
{
DbgMessage(pdev, FATAL, "lm_alloc_client_info failed lm-status = %d\n", lm_status);
return lm_status;
}
}
lm_status = lm_setup_client_info(pdev);
if (lm_status != LM_STATUS_SUCCESS)
{
DbgMessage(pdev, FATAL, "lm_setup_client_info failed lm-status = %d\n", lm_status);
return lm_status;
}
// Context (roundup ( MAX_CONN / CONN_PER_PAGE) We may configure the CDU to have more than max_func_connections, specifically, we will
// configure the CDU to have max_port_connections since it is a per-port register and not per-func, but it is OK to allocate
// less for the cdu, and allocate only what will be used in practice - which is what is configured in max_func_connectinos.
alloc_num = vars->context_cdu_num_pages = (params->max_func_connections / params->num_context_in_page) +
((params->max_func_connections % params->num_context_in_page)? 1:0);
//TODO: optimize the roundup
//TODO: assert that we did not go over the limit
// allocate buffer pointers
if( b_is_alloc )
{
mem_size = alloc_num * sizeof(void *) ;
vars->context_cdu_virt_addr_table = (void **) mm_alloc_mem( pdev, mem_size, mm_cli_idx );
}
if CHK_NULL( vars->context_cdu_virt_addr_table )
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
else if ( b_is_alloc )
{
mm_mem_zero( vars->context_cdu_virt_addr_table, mem_size ) ;
}
if( b_is_alloc )
{
mem_size = alloc_num * sizeof(lm_address_t) ;
vars->context_cdu_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx );
}
if CHK_NULL( vars->context_cdu_phys_addr_table )
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
else if ( b_is_alloc )
{
mm_mem_zero(vars->context_cdu_phys_addr_table, mem_size );
}
/* TBD: for starters, we'll just allocate each page seperatly, to save space in the future, we may want */
for( i = 0 ;i < alloc_num; i++)
{
if( b_is_alloc )
{
vars->context_cdu_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev,
(lm_address_t*)&vars->context_cdu_phys_addr_table[i],
mm_cli_idx);
}
if CHK_NULL( vars->context_cdu_virt_addr_table[i] )
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero( vars->context_cdu_virt_addr_table[i], params->ilt_client_page_size ) ;
}
// Searcher T1 (roundup to log2 of 64*MAX_CONN), T2 is 1/4 of T1. The searcher has a 'per-function' register we configure
// with the number of max connections, therefore, we use the max_func_connections. It can be different per function and independent
// from what we configure for qm/timers/cdu.
alloc_size = (log2_align(max(params->max_func_connections,(u32_t)1000))*64);
alloc_num = vars->searcher_t1_num_pages = max((alloc_size / params->ilt_client_page_size),(u32_t)1);
mem_size = alloc_num * sizeof(void *) ;
if( b_is_alloc )
{
vars->searcher_t1_virt_addr_table = (void **) mm_alloc_mem(pdev, mem_size, mm_cli_idx);
}
if CHK_NULL(vars->searcher_t1_virt_addr_table)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
else if ( b_is_alloc )
{
mm_mem_zero( vars->searcher_t1_virt_addr_table, mem_size ) ;
}
mem_size = alloc_num * sizeof(lm_address_t) ;
if( b_is_alloc )
{
vars->searcher_t1_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx );
}
if CHK_NULL(vars->searcher_t1_phys_addr_table)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
else if ( b_is_alloc )
{
mm_mem_zero( vars->searcher_t1_phys_addr_table, mem_size ) ;
}
for( i = 0 ; i < alloc_num; i++ )
{
if( b_is_alloc )
{
vars->searcher_t1_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev,
(lm_address_t*)&(vars->searcher_t1_phys_addr_table[i]),
mm_cli_idx);
}
if CHK_NULL( vars->searcher_t1_virt_addr_table[i] )
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero( vars->searcher_t1_virt_addr_table[i], params->ilt_client_page_size ) ;
}
// allocate searcher T2 table
// T2 does not entered into the ILT)
alloc_size = (params->max_func_connections + 4)*64;
alloc_num = vars->searcher_t2_num_pages = alloc_size / params->ilt_client_page_size +
((alloc_size % params->ilt_client_page_size)? 1:0) ;
mem_size = alloc_num * sizeof(void *) ;
if ( b_is_alloc )
{
vars->searcher_t2_virt_addr_table = (void **) mm_alloc_mem(pdev, mem_size, mm_cli_idx) ;
}
if CHK_NULL(vars->searcher_t2_virt_addr_table)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
else if (b_is_alloc)
{
mm_mem_zero( vars->searcher_t2_virt_addr_table, mem_size ) ;
}
mem_size = alloc_num * sizeof(lm_address_t) ;
if (b_is_alloc)
{
vars->searcher_t2_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx );
}
if CHK_NULL(vars->searcher_t2_phys_addr_table)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
for( i = 0 ; i < alloc_num; i++)
{
if (b_is_alloc )
{
vars->searcher_t2_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev,
(lm_address_t*)&(vars->searcher_t2_phys_addr_table[i]),
mm_cli_idx);
}
if CHK_NULL(vars->searcher_t2_virt_addr_table[i])
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero( vars->searcher_t2_virt_addr_table[i],params->ilt_client_page_size ) ;
}
// Timer block array (MAX_CONN*8) phys uncached. Timer block has a per-port register that defines it's size, and the amount of
// memory we allocate MUST match this number, therefore we have to allocate the amount of max_port_connections.
alloc_size = ( 8 * pdev->hw_info.max_port_conns);
alloc_num = vars->timers_linear_num_pages = alloc_size / params->ilt_client_page_size +
((alloc_size % params->ilt_client_page_size)? 1:0) ;
mem_size = alloc_num * sizeof(void *) ;
if( b_is_alloc )
{
vars->timers_linear_virt_addr_table = (void **) mm_alloc_mem(pdev, mem_size, mm_cli_idx );
}
if CHK_NULL(vars->timers_linear_virt_addr_table)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
else if ( b_is_alloc )
{
mm_mem_zero( vars->timers_linear_virt_addr_table, mem_size ) ;
}
mem_size = alloc_num * sizeof(lm_address_t) ;
if ( b_is_alloc )
{
vars->timers_linear_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx );
}
if CHK_NULL(vars->timers_linear_phys_addr_table)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
else if ( b_is_alloc )
{
mm_mem_zero( vars->timers_linear_phys_addr_table, mem_size ) ;
}
for( i = 0 ;i < alloc_num; i++)
{
if( b_is_alloc )
{
vars->timers_linear_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev,
(lm_address_t*)&(vars->timers_linear_phys_addr_table[i]),
mm_cli_idx);
}
if CHK_NULL(vars->timers_linear_virt_addr_table[i])
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero( vars->timers_linear_virt_addr_table[i], params->ilt_client_page_size ) ;
}
// QM queues (128*MAX_CONN) QM has a per-port register that defines it's size, and the amount of
// memory we allocate MUST match this number, therefore we have to allocate the amount of max_port_connections.
alloc_size = ( 128 * pdev->hw_info.max_common_conns);
alloc_num = vars->qm_queues_num_pages = alloc_size / params->ilt_client_page_size +
((alloc_size % params->ilt_client_page_size)? 1:0) ;
mem_size = alloc_num * sizeof(void *) ;
if( b_is_alloc )
{
vars->qm_queues_virt_addr_table = (void **) mm_alloc_mem(pdev, mem_size, mm_cli_idx );
}
if CHK_NULL(vars->qm_queues_virt_addr_table)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
else if (b_is_alloc)
{
mm_mem_zero( vars->qm_queues_virt_addr_table, mem_size ) ;
}
mem_size = alloc_num * sizeof(lm_address_t) ;
if( b_is_alloc )
{
vars->qm_queues_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx );
}
if CHK_NULL(vars->qm_queues_phys_addr_table)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
else if (b_is_alloc)
{
mm_mem_zero( vars->qm_queues_phys_addr_table, mem_size ) ;
}
for( i=0 ;i < alloc_num; i++)
{
if (b_is_alloc)
{
vars->qm_queues_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev,
(lm_address_t*)&(vars->qm_queues_phys_addr_table[i]),
mm_cli_idx);
}
if CHK_NULL( vars->qm_queues_virt_addr_table[i] )
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
mm_mem_zero( vars->qm_queues_virt_addr_table[i],params->ilt_client_page_size ) ;
}
// common scratchpad buffer for dmae copies of less than 4 bytes
if( b_is_alloc )
{
void *virt = mm_alloc_phys_mem(pdev,
8,
&params->dmae_copy_scratchpad_phys,
0,
mm_cli_idx);
if CHK_NULL(virt)
{
DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE));
return LM_STATUS_RESOURCE ;
}
}
return LM_STATUS_SUCCESS ;
}
lm_status_t ecore_resc_alloc(struct _lm_device_t * pdev)
{
pdev->ecore_info.gunzip_buf = mm_alloc_phys_mem(pdev, FW_BUF_SIZE, &pdev->ecore_info.gunzip_phys, PHYS_MEM_TYPE_NONCACHED, LM_RESOURCE_COMMON);
if CHK_NULL(pdev->ecore_info.gunzip_buf)
{
return LM_STATUS_RESOURCE ;
}
return LM_STATUS_SUCCESS;
}
/**lm_dmae_resc_alloc
* Allocate and initialize the TOE and default DMAE contexts.
* The statistics DMAE context is set-up in lm_stats_alloc_resc.
*
* @param pdev the device to use.
*
* @return lm_status_t LM_STATUS_SUCCESS on success, some other
* failure code on failure.
*/
static lm_status_t lm_dmae_alloc_resc(struct _lm_device_t * pdev)
{
lm_status_t lm_status = LM_STATUS_FAILURE;
lm_dmae_context_info_t* default_dmae_info = lm_dmae_get(pdev, LM_DMAE_DEFAULT);
lm_dmae_context_info_t* toe_dmae_info = lm_dmae_get(pdev, LM_DMAE_TOE);
//allocate and initialize the default DMAE context (used for init, WB access etc...)
lm_status = lm_dmae_locking_policy_create( pdev,
LM_PROTECTED_RESOURCE_DMAE_DEFAULT,
LM_DMAE_LOCKING_POLICY_TYPE_PER_PF,
&default_dmae_info->locking_policy);
if( LM_STATUS_SUCCESS != lm_status )
{
return lm_status ;
}
default_dmae_info->context = lm_dmae_context_create(pdev,
DMAE_WB_ACCESS_FUNCTION_CMD(FUNC_ID(pdev)),
&default_dmae_info->locking_policy,
CHANGE_ENDIANITY);
if( NULL == default_dmae_info->context )
{
return LM_STATUS_FAILURE;
}
//allocate and initialize the TOE DMAE context
lm_status = lm_dmae_locking_policy_create( pdev,
LM_PROTECTED_RESOURCE_DMAE_TOE,
LM_DMAE_LOCKING_POLICY_TYPE_INTER_PF,
&toe_dmae_info->locking_policy);
if( LM_STATUS_SUCCESS != lm_status )
{
return lm_status ;
}
toe_dmae_info->context = lm_dmae_context_create(pdev,
DMAE_COPY_PCI_PCI_PORT_0_CMD + PORT_ID(pdev),
&toe_dmae_info->locking_policy,
TRUE);
if( NULL == toe_dmae_info->context )
{
return LM_STATUS_FAILURE;
}
return lm_status;
}
/* Description:
* This routine is called during driver initialization. It is responsible
* for allocating memory resources needed by the driver for common init.
* This routine calls the following mm routines:
* mm_alloc_mem, mm_alloc_phys_mem, and mm_init_packet_desc. */
lm_status_t lm_alloc_resc(struct _lm_device_t *pdev)
{
lm_params_t* params = NULL ;
lm_variables_t* vars = NULL ;
lm_status_t lm_status = LM_STATUS_SUCCESS ;
u8_t mm_cli_idx = 0;
if CHK_NULL( pdev )
{
return LM_STATUS_INVALID_PARAMETER ;
}
DbgMessage(pdev, INFORMi , "### lm_alloc_resc\n");
#ifdef VF_INVOLVED
if (IS_VFDEV(pdev)) {
lm_status = lm_vf_init_dev_info(pdev);
if (LM_STATUS_SUCCESS != lm_status)
return lm_status;
}
#endif
params = &pdev->params ;
vars = &(pdev->vars) ;
mm_cli_idx = LM_CLI_IDX_MAX;//!!DP mm_cli_idx_to_um_idx(LM_CLI_IDX_MAX);
// Cleaning after driver unload
pdev->context_info = NULL;
mm_mem_zero(&pdev->cid_recycled_callbacks, sizeof(pdev->cid_recycled_callbacks));
mm_mem_zero(&pdev->toe_info, sizeof(pdev->toe_info));
lm_status = lm_alloc_sq(pdev);
if(LM_STATUS_SUCCESS != lm_status)
{
return lm_status;
}
/* alloc forward chain */
pdev->tx_info.catchup_chain_idx = FWD_CID(pdev);
if (IS_PFDEV(pdev))
{
/* Allocate Event-Queue: only the pf has an event queue */
lm_status = lm_alloc_eq(pdev);
if(LM_STATUS_SUCCESS != lm_status)
{
return lm_status;
}
pdev->tx_info.catchup_chain_idx = FWD_CID(pdev);
lm_status = lm_alloc_txq(pdev, pdev->tx_info.catchup_chain_idx,
(u16_t)params->l2_tx_bd_page_cnt[LM_CLI_IDX_FWD],
(u16_t)params->l2_tx_coal_buf_cnt[LM_CLI_IDX_FWD]);
if(LM_STATUS_SUCCESS != lm_status)
{
return lm_status;
}
}
if (IS_PFDEV(pdev))
{
lm_status = lm_common_setup_alloc_resc(pdev, TRUE ) ;
}
#ifdef VF_INVOLVED
else
{
lm_status = lm_vf_setup_alloc_resc(pdev, TRUE);
}
#endif
if(LM_STATUS_SUCCESS != lm_status)
{
return lm_status;
}
if (IS_PFDEV(pdev)) {
lm_status = lm_stats_alloc_resc( pdev ) ;
if( LM_STATUS_SUCCESS != lm_status )
{
return lm_status ;
}
lm_status = lm_dmae_alloc_resc(pdev);
if( LM_STATUS_SUCCESS != lm_status )
{
DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ;
return lm_status ;
}
// Init context allocation system
lm_status = lm_alloc_context_pool(pdev);
if( LM_STATUS_SUCCESS != lm_status )
{
DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ;
return lm_status ;
}
// CAM mirror?
/* alloc for ecore */
lm_status = ecore_resc_alloc(pdev);
if( LM_STATUS_SUCCESS != lm_status )
{
DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ;
return lm_status ;
}
}
else if (IS_CHANNEL_VFDEV(pdev))
{
// Init context allocation system
lm_status = lm_alloc_context_pool(pdev);
if( LM_STATUS_SUCCESS != lm_status )
{
DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ;
return lm_status ;
}
lm_status = lm_stats_alloc_fw_resc(pdev);
if( LM_STATUS_SUCCESS != lm_status )
{
DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ;
return lm_status ;
}
}
DbgMessage(pdev, INFORMi , "### exit lm_alloc_resc\n");
/* FIXME: (MichalS : should be called by um, but this requires lm-um api, so should rethink...) */
lm_status = lm_init_sp_objs(pdev);
if( LM_STATUS_SUCCESS != lm_status )
{
DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ;
return lm_status ;
}
return lm_setup_resc(pdev);
}
/* Description:
* This routine is called during driver initialization. It is responsible
* for initilazing memory resources needed by the driver for common init.
* This routine calls the following mm routines:
* mm_alloc_mem, mm_alloc_phys_mem, and mm_init_packet_desc. */
lm_status_t lm_setup_resc(struct _lm_device_t *pdev)
{
volatile struct hc_sp_status_block * sp_sb = NULL;
lm_params_t * params = NULL ;
lm_variables_t* vars = NULL ;
lm_tx_info_t * tx_info = NULL ;
lm_rx_info_t * rx_info = NULL ;
u32_t i = 0 ;
u32_t j = 0 ;
lm_status_t lm_status = LM_STATUS_SUCCESS ;
if CHK_NULL( pdev )
{
return LM_STATUS_INVALID_PARAMETER ;
}
params = &pdev->params;
vars = &(pdev->vars);
tx_info = &pdev->tx_info;
rx_info = &pdev->rx_info;
sp_sb = lm_get_default_status_block(pdev);
mm_mem_zero(&pdev->cid_recycled_callbacks, sizeof(pdev->cid_recycled_callbacks));
mm_mem_zero(rx_info->appr_mc.mcast_add_hash_bit_array, sizeof(rx_info->appr_mc.mcast_add_hash_bit_array));
mm_mem_zero(&pdev->vars.nig_mirror, sizeof(lm_nig_mirror_t));
pdev->vars.b_is_dmae_ready = FALSE ;
if (IS_PFDEV(pdev)) {
// adjust the FWD Tx ring consumer - default sb
lm_status = lm_setup_txq(pdev, pdev->tx_info.catchup_chain_idx);
if(LM_STATUS_SUCCESS != lm_status)
{
return lm_status;
}
}
if (IS_PFDEV(pdev)) {
/* setup mac flitering to drop all for all clients */
// lm_status = lm_setup_tstorm_mac_filter(pdev); FIXME - necessary??
if(LM_STATUS_SUCCESS != lm_status)
{
return lm_status;
}
}
if (IS_PFDEV(pdev)) {
lm_status = lm_common_setup_alloc_resc(pdev, FALSE ) ;
}
#ifdef VF_INVOLVED
else {
lm_status = lm_vf_setup_alloc_resc(pdev, FALSE);
}
#endif
if(LM_STATUS_SUCCESS != lm_status)
{
return lm_status;
}
lm_status = lm_setup_sq(pdev);
if(LM_STATUS_SUCCESS != lm_status)
{
return lm_status;
}
/* Only pfdev has an event-queue */
if (IS_PFDEV(pdev))
{
lm_status = lm_setup_eq(pdev);
if(LM_STATUS_SUCCESS != lm_status)
{
return lm_status;
}
}
// Initialize T1
if (IS_PFDEV(pdev)) {
for( i = 0 ; i < vars->searcher_t1_num_pages ; i ++)
{
mm_mem_zero( vars->searcher_t1_virt_addr_table[i], params->ilt_client_page_size ) ;
}
// Initialize T2 first we make each next filed point to its address +1 then we fixup the edges
for(i=0 ; i < vars->searcher_t2_num_pages ; i ++)
{
for (j=0; j < params->ilt_client_page_size; j+=64)
{
*(u64_t*)((char*)vars->searcher_t2_virt_addr_table[i]+j+56) = vars->searcher_t2_phys_addr_table[i].as_u64+j+64; //64bit pointer
}
// now fix up the last line in the block to point to the next block
j = params->ilt_client_page_size - 8;
if (i < vars->searcher_t2_num_pages -1)
{
// this is not the last block
*(u64_t*)((char*)vars->searcher_t2_virt_addr_table[i]+j) = vars->searcher_t2_phys_addr_table[i+1].as_u64; //64bit pointer
}
}
for( i=0 ;i < vars->timers_linear_num_pages; i++)
{
mm_mem_zero(vars->timers_linear_virt_addr_table[i],params->ilt_client_page_size);
}
#if defined(EMULATION_DOORBELL_FULL_WORKAROUND)
mm_atomic_set(&vars->doorbells_cnt, DOORBELL_CHECK_FREQUENCY);
#endif
lm_status = lm_stats_hw_setup(pdev);
if(lm_status != LM_STATUS_SUCCESS)
{
DbgMessage(pdev, WARN, "lm_stats_hw_setup failed.\n");
return lm_status;
}
lm_stats_fw_setup(pdev);
// init_context
lm_status = lm_setup_context_pool(pdev) ;
if(lm_status != LM_STATUS_SUCCESS)
{
DbgMessage(pdev, WARN, "lm_setup_context_pool failed.\n");
return lm_status;
}
}
else if (IS_CHANNEL_VFDEV(pdev))
{
lm_status = lm_setup_context_pool(pdev) ;
if(lm_status != LM_STATUS_SUCCESS)
{
DbgMessage(pdev, WARN, "lm_setup_context_pool failed.\n");
return lm_status;
}
}
pdev->vars.mac_type = MAC_TYPE_NONE;
pdev->vars.is_pmf = NOT_PMF;
lm_set_int_coal_info(pdev);
mm_mem_zero(&pdev->vars.nig_mirror, sizeof(pdev->vars.nig_mirror));
return lm_status;
}
/**
* @description
* Indicate packets from the free descriptor list and the given list
* @param pdev
* @param rx_common - The chain to free RSC/RX.
* @param packet_list - A list of packets to indicate.
* @param idx - Chain index.
* @param is_stat_handle - Is updating statistic is needed.
*/
STATIC void
lm_abort_indicate_free_list( IN OUT lm_device_t* pdev,
IN lm_rx_chain_common_t* rx_common,
IN s_list_t* packet_list,
IN const u32_t idx,
IN const u8_t is_stat_handle)
{
lm_packet_t* pkt = NULL;
for(; ;)
{
// Run on all the free list
pkt = (lm_packet_t *) s_list_pop_head(&rx_common->free_descq);
if (pkt == NULL)
{
break;
}
pkt->status = LM_STATUS_ABORTED;
if(is_stat_handle)
{
LM_COMMON_DRV_STATS_ATOMIC_INC_ETH(pdev, rx_aborted);
}
#if (!defined(LINUX) && !defined(__SunOS) && !defined(UEFI) && !defined(DOS))
s_list_push_tail(packet_list, (s_list_entry_t *)pkt);
#endif
}
if (!s_list_is_empty(packet_list))
{
#if (!defined(LINUX) && !defined(__SunOS) && !defined(UEFI) && !defined(DOS))
mm_indicate_rx(pdev, idx, packet_list, LM_STATUS_ABORTED);
#endif
}
}
/*******************************************************************************
* Description:
*
* Return:
******************************************************************************/
void lm_abort( lm_device_t *pdev,
const lm_abort_op_t abort_op,
const u32_t idx)
{
lm_packet_t *pkt = NULL;
lm_rx_chain_t *rxq_chain = NULL;
lm_rx_chain_common_t *rx_common = NULL;
lm_tpa_chain_t *tpa_chain = NULL;
lm_bd_chain_t *rx_chain_bd = NULL;
lm_bd_chain_t *rx_chain_sge = NULL;
lm_tx_chain_t *tx_chain = NULL;
s_list_t packet_list = {0};
u16_t i = 0;
u16_t active_entry = 0;
DbgMessage(pdev, INFORM, "### lm_abort abort_op=%d idx=%d\n", abort_op, idx);
switch(abort_op)
{
case ABORT_OP_RX_CHAIN:
case ABORT_OP_INDICATE_RX_CHAIN:
{
rxq_chain = &LM_RXQ(pdev, idx);
rx_common = &LM_RXQ_COMMON(pdev, idx);
rx_chain_bd = &LM_RXQ_CHAIN_BD(pdev, idx);
rx_chain_sge = LM_RXQ_SGE_PTR_IF_VALID(pdev, idx);
// Verify BD's consistent
DbgBreakIfFastPath( rx_chain_sge && !lm_bd_chains_are_consistent( rx_chain_sge, rx_chain_bd ) );
/* indicate packets from the active descriptor list */
for(; ;)
{
pkt = (lm_packet_t *) s_list_pop_head(&rxq_chain->active_descq);
if(pkt == NULL)
{
break;
}
lm_bd_chain_bds_consumed(rx_chain_bd, 1);
if( rx_chain_sge )
{
lm_bd_chain_bds_consumed(rx_chain_sge, 1);
}
LM_COMMON_DRV_STATS_ATOMIC_INC_ETH(pdev, rx_aborted);
// if in shutdown flow or not if in d3 flow ?
if (abort_op == ABORT_OP_INDICATE_RX_CHAIN)
{
#if (!defined(LINUX) && !defined(__SunOS) && !defined(UEFI) && !defined(DOS))
s_list_push_tail(&packet_list, (s_list_entry_t *)pkt);
#endif
}
else
{
s_list_push_tail(&rx_common->free_descq, &pkt->link);
}
}
if ( ABORT_OP_INDICATE_RX_CHAIN == abort_op )
{
/* indicate packets from the free descriptor list */
lm_abort_indicate_free_list( pdev,
rx_common,
&packet_list,
idx,
TRUE);
}
} // ABORT_OP_INDICATE_RX_CHAIN
// Fall Through
case ABORT_OP_TPA_CHAIN:
case ABORT_OP_INDICATE_TPA_CHAIN:
{
tpa_chain = &LM_TPA(pdev, idx);
rx_chain_bd = &LM_TPA_CHAIN_BD(pdev, idx);
rx_common = &LM_TPA_COMMON(pdev, idx);
DbgBreakIf(!(s_list_is_empty(&packet_list)));
/* indicate packets from the active descriptor list */
for(i = lm_bd_chain_cons_idx(rx_chain_bd); i != lm_bd_chain_prod_idx(rx_chain_bd); i++ )
{
// Run on all the valid active descriptor
// Valid active descriptors can only be beteen the consumer to the producers
active_entry = LM_TPA_BD_ENTRY_TO_ACTIVE_ENTRY(pdev,idx,i);
LM_TPA_ACTIVE_ENTRY_BOUNDARIES_VERIFY(pdev, idx, active_entry);
if(LM_TPA_MASK_TEST_ACTIVE_BIT(pdev, idx, active_entry))
{
LM_TPA_MASK_CLEAR_ACTIVE_BIT(pdev, idx, active_entry);
pkt = tpa_chain->sge_chain.active_descq_array[active_entry];
if(NULL == pkt)
{
DbgBreakMsg(" Packet is null suppose to be null");
continue;
}
lm_bd_chain_bds_consumed(rx_chain_bd, 1);
// if in shutdown flow or not if in d3 flow ?
if ((abort_op == ABORT_OP_INDICATE_TPA_CHAIN) ||
(abort_op == ABORT_OP_INDICATE_RX_CHAIN))
{
#if (DBG)
/************start TPA debbug code******************************/
tpa_chain->dbg_params.pck_ret_abort_active++;
/************end TPA debbug code********************************/
#endif //DBG
#if (!defined(LINUX) && !defined(__SunOS) && !defined(UEFI) && !defined(DOS))
s_list_push_tail(&packet_list, (s_list_entry_t *)pkt);
#endif
}
else
{
s_list_push_tail(&rx_common->free_descq, &pkt->link);
}
}
}
if ((abort_op == ABORT_OP_INDICATE_TPA_CHAIN) ||
(abort_op == ABORT_OP_INDICATE_RX_CHAIN))
{
#if (DBG)
/************start TPA debbug code******************************/
// Total packet aborted
tpa_chain->dbg_params.pck_ret_abort += s_list_entry_cnt(&packet_list) + s_list_entry_cnt(&rx_common->free_descq);
if((tpa_chain->dbg_params.pck_ret_abort + tpa_chain->dbg_params.pck_ret_from_chip) !=
(tpa_chain->dbg_params.pck_received + tpa_chain->dbg_params.pck_received_ind) )
{
DbgBreakMsg("VBD didn't return all packets this chain ");
}
/************end TPA debbug code******************************/
#endif //DBG
/* indicate packets from the free descriptor list */
lm_abort_indicate_free_list( pdev,
rx_common,
&packet_list,
idx,
FALSE);
#if (DBG)
/************start TPA debbug code******************************/
// make sure all packets were abort
if(0 != (s_list_entry_cnt(&packet_list) + s_list_entry_cnt(&rx_common->free_descq)))
{
DbgBreakMsg("VBD didn't return all packets this chain ");
}
/************end TPA debbug code******************************/
#endif //DBG
}
break;
} // ABORT_OP_INDICATE_TPA_CHAIN
case ABORT_OP_INDICATE_TX_CHAIN:
{
tx_chain = &LM_TXQ(pdev, idx);
for(; ;)
{
pkt = (lm_packet_t *) s_list_pop_head(&tx_chain->active_descq);
if(pkt == NULL)
{
break;
}
pkt->status = LM_STATUS_ABORTED;
LM_COMMON_DRV_STATS_ATOMIC_INC_ETH(pdev, tx_aborted);
lm_bd_chain_bds_consumed(&tx_chain->bd_chain, pkt->u1.tx.bd_used);
if (pkt->u1.tx.coalesce_buf) {
/* return coalesce buffer to the chain's pool */
lm_put_coalesce_buffer(pdev, tx_chain, pkt->u1.tx.coalesce_buf);
pkt->u1.tx.coalesce_buf = NULL;
}
s_list_push_tail(&packet_list, (s_list_entry_t *)pkt);
}
if (!s_list_is_empty(&packet_list))
{
mm_indicate_tx(pdev, idx, &packet_list);
}
// changed from pdev->params.l2_tx_bd_page_cnt[idx] to pdev->params.l2_tx_bd_page_cnt[0]
DbgBreakIf(!lm_bd_chain_is_full(&tx_chain->bd_chain));
DbgBreakIf(s_list_entry_cnt(&tx_chain->coalesce_buf_list) != tx_chain->coalesce_buf_cnt);
break;
} // ABORT_OP_INDICATE_TX_CHAIN
default:
{
DbgBreakMsg("unknown abort operation.\n");
break;
}
} //switch
} /* lm_abort */
#include "57710_int_offsets.h"
#include "57711_int_offsets.h"
#include "57712_int_offsets.h"
void ecore_init_e1_firmware(struct _lm_device_t *pdev);
void ecore_init_e1h_firmware(struct _lm_device_t *pdev);
void ecore_init_e2_firmware(struct _lm_device_t *pdev);
int lm_set_init_arrs(lm_device_t *pdev)
{
u32_t const chip_num = CHIP_NUM(pdev);
switch(chip_num)
{
case CHIP_NUM_5710:
DbgBreakIf( !CHIP_IS_E1(pdev) );
ecore_init_e1_firmware(pdev);
INIT_IRO_ARRAY(pdev) = e1_iro_arr;
break;
case CHIP_NUM_5711:
case CHIP_NUM_5711E:
DbgBreakIf( !CHIP_IS_E1H(pdev) );
ecore_init_e1h_firmware(pdev);
INIT_IRO_ARRAY(pdev) = e1h_iro_arr;
break;
case CHIP_NUM_5712:
case CHIP_NUM_5713:
case CHIP_NUM_5712E:
case CHIP_NUM_5713E:
DbgBreakIf( !CHIP_IS_E2(pdev) );
case CHIP_NUM_57800:
case CHIP_NUM_57810:
case CHIP_NUM_57840_4_10:
case CHIP_NUM_57840_2_20:
case CHIP_NUM_57840_OBSOLETE:
case CHIP_NUM_57811:
DbgBreakIf( !CHIP_IS_E2(pdev) && !CHIP_IS_E3(pdev) );
ecore_init_e2_firmware(pdev);
INIT_IRO_ARRAY(pdev) = e2_iro_arr;
break;
default:
DbgMessage(pdev, FATAL, "chip-id=%x NOT SUPPORTED\n", CHIP_NUM(pdev));
return -1; // for now not supported, can't have all three...
}
return 0;
}