/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
/* All Rights Reserved */
/*
* Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012 Milan Jurik. All rights reserved.
*/
/*
* Serial I/O driver for 8250/16450/16550A/16650/16750 chips.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/stream.h>
#include <sys/termio.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/cmn_err.h>
#include <sys/stropts.h>
#include <sys/strsubr.h>
#include <sys/strtty.h>
#include <sys/debug.h>
#include <sys/kbio.h>
#include <sys/cred.h>
#include <sys/stat.h>
#include <sys/consdev.h>
#include <sys/mkdev.h>
#include <sys/kmem.h>
#include <sys/cred.h>
#include <sys/strsun.h>
#ifdef DEBUG
#include <sys/promif.h>
#endif
#include <sys/modctl.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/pci.h>
#include <sys/asy.h>
#include <sys/policy.h>
/*
* set the RX FIFO trigger_level to half the RX FIFO size for now
* we may want to make this configurable later.
*/
static int asy_trig_level = FIFO_TRIG_8;
int asy_drain_check = 15000000; /* tunable: exit drain check time */
int asy_min_dtr_low = 500000; /* tunable: minimum DTR down time */
int asy_min_utbrk = 100000; /* tunable: minumum untimed brk time */
int asymaxchip = ASY16750; /* tunable: limit chip support we look for */
/*
* Just in case someone has a chip with broken loopback mode, we provide a
* means to disable the loopback test. By default, we only loopback test
* UARTs which look like they have FIFOs bigger than 16 bytes.
* Set to 0 to suppress test, or to 2 to enable test on any size FIFO.
*/
int asy_fifo_test = 1; /* tunable: set to 0, 1, or 2 */
/*
* Allow ability to switch off testing of the scratch register.
* Some UART emulators might not have it. This will also disable the test
* for Exar/Startech ST16C650, as that requires use of the SCR register.
*/
int asy_scr_test = 1; /* tunable: set to 0 to disable SCR reg test */
/*
* As we don't yet support on-chip flow control, it's a bad idea to put a
* large number of characters in the TX FIFO, since if other end tells us
* to stop transmitting, we can only stop filling the TX FIFO, but it will
* still carry on draining by itself, so remote end still gets what's left
* in the FIFO.
*/
int asy_max_tx_fifo = 16; /* tunable: max fill of TX FIFO */
#define async_stopc async_ttycommon.t_stopc
#define async_startc async_ttycommon.t_startc
#define ASY_INIT 1
#define ASY_NOINIT 0
/* enum value for sw and hw flow control action */
typedef enum {
FLOW_CHECK,
FLOW_STOP,
FLOW_START
} async_flowc_action;
#ifdef DEBUG
#define ASY_DEBUG_INIT 0x0001 /* Output msgs during driver initialization. */
#define ASY_DEBUG_INPUT 0x0002 /* Report characters received during int. */
#define ASY_DEBUG_EOT 0x0004 /* Output msgs when wait for xmit to finish. */
#define ASY_DEBUG_CLOSE 0x0008 /* Output msgs when driver open/close called */
#define ASY_DEBUG_HFLOW 0x0010 /* Output msgs when H/W flowcontrol is active */
#define ASY_DEBUG_PROCS 0x0020 /* Output each proc name as it is entered. */
#define ASY_DEBUG_STATE 0x0040 /* Output value of Interrupt Service Reg. */
#define ASY_DEBUG_INTR 0x0080 /* Output value of Interrupt Service Reg. */
#define ASY_DEBUG_OUT 0x0100 /* Output msgs about output events. */
#define ASY_DEBUG_BUSY 0x0200 /* Output msgs when xmit is enabled/disabled */
#define ASY_DEBUG_MODEM 0x0400 /* Output msgs about modem status & control. */
#define ASY_DEBUG_MODM2 0x0800 /* Output msgs about modem status & control. */
#define ASY_DEBUG_IOCTL 0x1000 /* Output msgs about ioctl messages. */
#define ASY_DEBUG_CHIP 0x2000 /* Output msgs about chip identification. */
#define ASY_DEBUG_SFLOW 0x4000 /* Output msgs when S/W flowcontrol is active */
#define ASY_DEBUG(x) (debug & (x))
static int debug = 0;
#else
#define ASY_DEBUG(x) B_FALSE
#endif
/* pnpISA compressed device ids */
#define pnpMTS0219 0xb6930219 /* Multitech MT5634ZTX modem */
/*
* PPS (Pulse Per Second) support.
*/
void ddi_hardpps(struct timeval *, int);
/*
* This is protected by the asy_excl_hi of the port on which PPS event
* handling is enabled. Note that only one port should have this enabled at
* any one time. Enabling PPS handling on multiple ports will result in
* unpredictable (but benign) results.
*/
static struct ppsclockev asy_ppsev;
#ifdef PPSCLOCKLED
/* XXX Use these to observe PPS latencies and jitter on a scope */
#define LED_ON
#define LED_OFF
#else
#define LED_ON
#define LED_OFF
#endif
static int max_asy_instance = -1;
static uint_t asysoftintr(caddr_t intarg);
static uint_t asyintr(caddr_t argasy);
static boolean_t abort_charseq_recognize(uchar_t ch);
/* The async interrupt entry points */
static void async_txint(struct asycom *asy);
static void async_rxint(struct asycom *asy, uchar_t lsr);
static void async_msint(struct asycom *asy);
static void async_softint(struct asycom *asy);
static void async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp);
static void async_reioctl(void *unit);
static void async_iocdata(queue_t *q, mblk_t *mp);
static void async_restart(void *arg);
static void async_start(struct asyncline *async);
static void async_nstart(struct asyncline *async, int mode);
static void async_resume(struct asyncline *async);
static void asy_program(struct asycom *asy, int mode);
static void asyinit(struct asycom *asy);
static void asy_waiteot(struct asycom *asy);
static void asyputchar(cons_polledio_arg_t, uchar_t c);
static int asygetchar(cons_polledio_arg_t);
static boolean_t asyischar(cons_polledio_arg_t);
static int asymctl(struct asycom *, int, int);
static int asytodm(int, int);
static int dmtoasy(int);
/*PRINTFLIKE2*/
static void asyerror(int level, const char *fmt, ...) __KPRINTFLIKE(2);
static void asy_parse_mode(dev_info_t *devi, struct asycom *asy);
static void asy_soft_state_free(struct asycom *);
static char *asy_hw_name(struct asycom *asy);
static void async_hold_utbrk(void *arg);
static void async_resume_utbrk(struct asyncline *async);
static void async_dtr_free(struct asyncline *async);
static int asy_identify_chip(dev_info_t *devi, struct asycom *asy);
static void asy_reset_fifo(struct asycom *asy, uchar_t flags);
static int asy_getproperty(dev_info_t *devi, struct asycom *asy,
const char *property);
static boolean_t async_flowcontrol_sw_input(struct asycom *asy,
async_flowc_action onoff, int type);
static void async_flowcontrol_sw_output(struct asycom *asy,
async_flowc_action onoff);
static void async_flowcontrol_hw_input(struct asycom *asy,
async_flowc_action onoff, int type);
static void async_flowcontrol_hw_output(struct asycom *asy,
async_flowc_action onoff);
#define GET_PROP(devi, pname, pflag, pval, plen) \
(ddi_prop_op(DDI_DEV_T_ANY, (devi), PROP_LEN_AND_VAL_BUF, \
(pflag), (pname), (caddr_t)(pval), (plen)))
kmutex_t asy_glob_lock; /* lock protecting global data manipulation */
void *asy_soft_state;
/* Standard COM port I/O addresses */
static const int standard_com_ports[] = {
COM1_IOADDR, COM2_IOADDR, COM3_IOADDR, COM4_IOADDR
};
static int *com_ports;
static uint_t num_com_ports;
#ifdef DEBUG
/*
* Set this to true to make the driver pretend to do a suspend. Useful
* for debugging suspend/resume code with a serial debugger.
*/
boolean_t asy_nosuspend = B_FALSE;
#endif
/*
* Baud rate table. Indexed by #defines found in sys/termios.h
*/
ushort_t asyspdtab[] = {
0, /* 0 baud rate */
0x900, /* 50 baud rate */
0x600, /* 75 baud rate */
0x417, /* 110 baud rate (%0.026) */
0x359, /* 134 baud rate (%0.058) */
0x300, /* 150 baud rate */
0x240, /* 200 baud rate */
0x180, /* 300 baud rate */
0x0c0, /* 600 baud rate */
0x060, /* 1200 baud rate */
0x040, /* 1800 baud rate */
0x030, /* 2400 baud rate */
0x018, /* 4800 baud rate */
0x00c, /* 9600 baud rate */
0x006, /* 19200 baud rate */
0x003, /* 38400 baud rate */
0x002, /* 57600 baud rate */
0x0, /* 76800 baud rate not supported */
0x001, /* 115200 baud rate */
0x0, /* 153600 baud rate not supported */
0x0, /* 0x8002 (SMC chip) 230400 baud rate not supported */
0x0, /* 307200 baud rate not supported */
0x0, /* 0x8001 (SMC chip) 460800 baud rate not supported */
0x0, /* unused */
0x0, /* unused */
0x0, /* unused */
0x0, /* unused */
0x0, /* unused */
0x0, /* unused */
0x0, /* unused */
0x0, /* unused */
0x0, /* unused */
};
static int asyrsrv(queue_t *q);
static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
static int asyclose(queue_t *q, int flag, cred_t *credp);
static int asywputdo(queue_t *q, mblk_t *mp, boolean_t);
static int asywput(queue_t *q, mblk_t *mp);
struct module_info asy_info = {
0,
"asy",
0,
INFPSZ,
4096,
128
};
static struct qinit asy_rint = {
putq,
asyrsrv,
asyopen,
asyclose,
NULL,
&asy_info,
NULL
};
static struct qinit asy_wint = {
asywput,
NULL,
NULL,
NULL,
NULL,
&asy_info,
NULL
};
struct streamtab asy_str_info = {
&asy_rint,
&asy_wint,
NULL,
NULL
};
static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
void **result);
static int asyprobe(dev_info_t *);
static int asyattach(dev_info_t *, ddi_attach_cmd_t);
static int asydetach(dev_info_t *, ddi_detach_cmd_t);
static int asyquiesce(dev_info_t *);
static struct cb_ops cb_asy_ops = {
nodev, /* cb_open */
nodev, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
nodev, /* cb_read */
nodev, /* cb_write */
nodev, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
&asy_str_info, /* cb_stream */
D_MP /* cb_flag */
};
struct dev_ops asy_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
asyinfo, /* devo_getinfo */
nulldev, /* devo_identify */
asyprobe, /* devo_probe */
asyattach, /* devo_attach */
asydetach, /* devo_detach */
nodev, /* devo_reset */
&cb_asy_ops, /* devo_cb_ops */
NULL, /* devo_bus_ops */
NULL, /* power */
asyquiesce, /* quiesce */
};
static struct modldrv modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
"ASY driver",
&asy_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL
};
int
_init(void)
{
int i;
i = ddi_soft_state_init(&asy_soft_state, sizeof (struct asycom), 2);
if (i == 0) {
mutex_init(&asy_glob_lock, NULL, MUTEX_DRIVER, NULL);
if ((i = mod_install(&modlinkage)) != 0) {
mutex_destroy(&asy_glob_lock);
ddi_soft_state_fini(&asy_soft_state);
} else {
DEBUGCONT2(ASY_DEBUG_INIT, "%s, debug = %x\n",
modldrv.drv_linkinfo, debug);
}
}
return (i);
}
int
_fini(void)
{
int i;
if ((i = mod_remove(&modlinkage)) == 0) {
DEBUGCONT1(ASY_DEBUG_INIT, "%s unloading\n",
modldrv.drv_linkinfo);
ASSERT(max_asy_instance == -1);
mutex_destroy(&asy_glob_lock);
/* free "motherboard-serial-ports" property if allocated */
if (com_ports != NULL && com_ports != (int *)standard_com_ports)
ddi_prop_free(com_ports);
com_ports = NULL;
ddi_soft_state_fini(&asy_soft_state);
}
return (i);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
void
async_put_suspq(struct asycom *asy, mblk_t *mp)
{
struct asyncline *async = asy->asy_priv;
ASSERT(mutex_owned(&asy->asy_excl));
if (async->async_suspqf == NULL)
async->async_suspqf = mp;
else
async->async_suspqb->b_next = mp;
async->async_suspqb = mp;
}
static mblk_t *
async_get_suspq(struct asycom *asy)
{
struct asyncline *async = asy->asy_priv;
mblk_t *mp;
ASSERT(mutex_owned(&asy->asy_excl));
if ((mp = async->async_suspqf) != NULL) {
async->async_suspqf = mp->b_next;
mp->b_next = NULL;
} else {
async->async_suspqb = NULL;
}
return (mp);
}
static void
async_process_suspq(struct asycom *asy)
{
struct asyncline *async = asy->asy_priv;
mblk_t *mp;
ASSERT(mutex_owned(&asy->asy_excl));
while ((mp = async_get_suspq(asy)) != NULL) {
queue_t *q;
q = async->async_ttycommon.t_writeq;
ASSERT(q != NULL);
mutex_exit(&asy->asy_excl);
(void) asywputdo(q, mp, B_FALSE);
mutex_enter(&asy->asy_excl);
}
async->async_flags &= ~ASYNC_DDI_SUSPENDED;
cv_broadcast(&async->async_flags_cv);
}
static int
asy_get_bus_type(dev_info_t *devinfo)
{
char parent_type[16];
int parentlen;
parentlen = sizeof (parent_type);
if (ddi_prop_op(DDI_DEV_T_ANY, devinfo, PROP_LEN_AND_VAL_BUF, 0,
"device_type", (caddr_t)parent_type, &parentlen)
!= DDI_PROP_SUCCESS && ddi_prop_op(DDI_DEV_T_ANY, devinfo,
PROP_LEN_AND_VAL_BUF, 0, "bus-type", (caddr_t)parent_type,
&parentlen) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN,
"asy: can't figure out device type for"
" parent \"%s\"",
ddi_get_name(ddi_get_parent(devinfo)));
return (ASY_BUS_UNKNOWN);
}
if (strcmp(parent_type, "isa") == 0)
return (ASY_BUS_ISA);
else if (strcmp(parent_type, "pci") == 0)
return (ASY_BUS_PCI);
else
return (ASY_BUS_UNKNOWN);
}
static int
asy_get_io_regnum_pci(dev_info_t *devi, struct asycom *asy)
{
int reglen, nregs;
int regnum, i;
uint64_t size;
struct pci_phys_spec *reglist;
if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
"reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "asy_get_io_regnum_pci: reg property"
" not found in devices property list");
return (-1);
}
/*
* PCI devices are assumed to not have broken FIFOs;
* Agere/Lucent Venus PCI modem chipsets are an example
*/
if (asy)
asy->asy_flags2 |= ASY2_NO_LOOPBACK;
regnum = -1;
nregs = reglen / sizeof (*reglist);
for (i = 0; i < nregs; i++) {
switch (reglist[i].pci_phys_hi & PCI_ADDR_MASK) {
case PCI_ADDR_IO: /* I/O bus reg property */
if (regnum == -1) /* use only the first one */
regnum = i;
break;
default:
break;
}
}
/* check for valid count of registers */
if (regnum >= 0) {
size = ((uint64_t)reglist[regnum].pci_size_low) |
((uint64_t)reglist[regnum].pci_size_hi) << 32;
if (size < 8)
regnum = -1;
}
kmem_free(reglist, reglen);
return (regnum);
}
static int
asy_get_io_regnum_isa(dev_info_t *devi, struct asycom *asy)
{
int reglen, nregs;
int regnum, i;
struct {
uint_t bustype;
int base;
int size;
} *reglist;
if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
"reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "asy_get_io_regnum: reg property not found "
"in devices property list");
return (-1);
}
regnum = -1;
nregs = reglen / sizeof (*reglist);
for (i = 0; i < nregs; i++) {
switch (reglist[i].bustype) {
case 1: /* I/O bus reg property */
if (regnum == -1) /* only use the first one */
regnum = i;
break;
case pnpMTS0219: /* Multitech MT5634ZTX modem */
/* Venus chipset can't do loopback test */
if (asy)
asy->asy_flags2 |= ASY2_NO_LOOPBACK;
break;
default:
break;
}
}
/* check for valid count of registers */
if ((regnum < 0) || (reglist[regnum].size < 8))
regnum = -1;
kmem_free(reglist, reglen);
return (regnum);
}
static int
asy_get_io_regnum(dev_info_t *devinfo, struct asycom *asy)
{
switch (asy_get_bus_type(devinfo)) {
case ASY_BUS_ISA:
return (asy_get_io_regnum_isa(devinfo, asy));
case ASY_BUS_PCI:
return (asy_get_io_regnum_pci(devinfo, asy));
default:
return (-1);
}
}
static int
asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
{
int instance;
struct asycom *asy;
struct asyncline *async;
instance = ddi_get_instance(devi); /* find out which unit */
asy = ddi_get_soft_state(asy_soft_state, instance);
if (asy == NULL)
return (DDI_FAILURE);
async = asy->asy_priv;
switch (cmd) {
case DDI_DETACH:
DEBUGNOTE2(ASY_DEBUG_INIT, "asy%d: %s shutdown.",
instance, asy_hw_name(asy));
/* cancel DTR hold timeout */
if (async->async_dtrtid != 0) {
(void) untimeout(async->async_dtrtid);
async->async_dtrtid = 0;
}
/* remove all minor device node(s) for this device */
ddi_remove_minor_node(devi, NULL);
mutex_destroy(&asy->asy_excl);
mutex_destroy(&asy->asy_excl_hi);
cv_destroy(&async->async_flags_cv);
ddi_remove_intr(devi, 0, asy->asy_iblock);
ddi_regs_map_free(&asy->asy_iohandle);
ddi_remove_softintr(asy->asy_softintr_id);
mutex_destroy(&asy->asy_soft_lock);
asy_soft_state_free(asy);
DEBUGNOTE1(ASY_DEBUG_INIT, "asy%d: shutdown complete",
instance);
break;
case DDI_SUSPEND:
{
unsigned i;
uchar_t lsr;
#ifdef DEBUG
if (asy_nosuspend)
return (DDI_SUCCESS);
#endif
mutex_enter(&asy->asy_excl);
ASSERT(async->async_ops >= 0);
while (async->async_ops > 0)
cv_wait(&async->async_ops_cv, &asy->asy_excl);
async->async_flags |= ASYNC_DDI_SUSPENDED;
/* Wait for timed break and delay to complete */
while ((async->async_flags & (ASYNC_BREAK|ASYNC_DELAY))) {
if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl)
== 0) {
async_process_suspq(asy);
mutex_exit(&asy->asy_excl);
return (DDI_FAILURE);
}
}
/* Clear untimed break */
if (async->async_flags & ASYNC_OUT_SUSPEND)
async_resume_utbrk(async);
mutex_exit(&asy->asy_excl);
mutex_enter(&asy->asy_soft_sr);
mutex_enter(&asy->asy_excl);
if (async->async_wbufcid != 0) {
bufcall_id_t bcid = async->async_wbufcid;
async->async_wbufcid = 0;
async->async_flags |= ASYNC_RESUME_BUFCALL;
mutex_exit(&asy->asy_excl);
unbufcall(bcid);
mutex_enter(&asy->asy_excl);
}
mutex_enter(&asy->asy_excl_hi);
/* Disable interrupts from chip */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
asy->asy_flags |= ASY_DDI_SUSPENDED;
/*
* Hardware interrupts are disabled we can drop our high level
* lock and proceed.
*/
mutex_exit(&asy->asy_excl_hi);
/* Process remaining RX characters and RX errors, if any */
lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
async_rxint(asy, lsr);
/* Wait for TX to drain */
for (i = 1000; i > 0; i--) {
lsr = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LSR);
if ((lsr & (XSRE | XHRE)) == (XSRE | XHRE))
break;
delay(drv_usectohz(10000));
}
if (i == 0)
cmn_err(CE_WARN,
"asy: transmitter wasn't drained before "
"driver was suspended");
mutex_exit(&asy->asy_excl);
mutex_exit(&asy->asy_soft_sr);
break;
}
default:
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* asyprobe
* We don't bother probing for the hardware, as since Solaris 2.6, device
* nodes are only created for auto-detected hardware or nodes explicitly
* created by the user, e.g. via the DCA. However, we should check the
* device node is at least vaguely usable, i.e. we have a block of 8 i/o
* ports. This prevents attempting to attach to bogus serial ports which
* some BIOSs still partially report when they are disabled in the BIOS.
*/
static int
asyprobe(dev_info_t *devi)
{
return ((asy_get_io_regnum(devi, NULL) < 0) ?
DDI_PROBE_FAILURE : DDI_PROBE_DONTCARE);
}
static int
asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{
int instance;
int mcr;
int ret;
int regnum = 0;
int i;
struct asycom *asy;
char name[ASY_MINOR_LEN];
int status;
static ddi_device_acc_attr_t ioattr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC,
};
instance = ddi_get_instance(devi); /* find out which unit */
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
{
struct asyncline *async;
#ifdef DEBUG
if (asy_nosuspend)
return (DDI_SUCCESS);
#endif
asy = ddi_get_soft_state(asy_soft_state, instance);
if (asy == NULL)
return (DDI_FAILURE);
mutex_enter(&asy->asy_soft_sr);
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
async = asy->asy_priv;
/* Disable interrupts */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
mutex_exit(&asy->asy_soft_sr);
cmn_err(CE_WARN, "!Cannot identify UART chip at %p\n",
(void *)asy->asy_ioaddr);
return (DDI_FAILURE);
}
asy->asy_flags &= ~ASY_DDI_SUSPENDED;
if (async->async_flags & ASYNC_ISOPEN) {
asy_program(asy, ASY_INIT);
/* Kick off output */
if (async->async_ocnt > 0) {
async_resume(async);
} else {
mutex_exit(&asy->asy_excl_hi);
if (async->async_xmitblk)
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
async_start(async);
mutex_enter(&asy->asy_excl_hi);
}
ASYSETSOFT(asy);
}
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
mutex_exit(&asy->asy_soft_sr);
mutex_enter(&asy->asy_excl);
if (async->async_flags & ASYNC_RESUME_BUFCALL) {
async->async_wbufcid = bufcall(async->async_wbufcds,
BPRI_HI, (void (*)(void *)) async_reioctl,
(void *)(intptr_t)async->async_common->asy_unit);
async->async_flags &= ~ASYNC_RESUME_BUFCALL;
}
async_process_suspq(asy);
mutex_exit(&asy->asy_excl);
return (DDI_SUCCESS);
}
default:
return (DDI_FAILURE);
}
ret = ddi_soft_state_zalloc(asy_soft_state, instance);
if (ret != DDI_SUCCESS)
return (DDI_FAILURE);
asy = ddi_get_soft_state(asy_soft_state, instance);
ASSERT(asy != NULL); /* can't fail - we only just allocated it */
asy->asy_unit = instance;
mutex_enter(&asy_glob_lock);
if (instance > max_asy_instance)
max_asy_instance = instance;
mutex_exit(&asy_glob_lock);
regnum = asy_get_io_regnum(devi, asy);
if (regnum < 0 ||
ddi_regs_map_setup(devi, regnum, (caddr_t *)&asy->asy_ioaddr,
(offset_t)0, (offset_t)0, &ioattr, &asy->asy_iohandle)
!= DDI_SUCCESS) {
cmn_err(CE_WARN, "asy%d: could not map UART registers @ %p",
instance, (void *)asy->asy_ioaddr);
asy_soft_state_free(asy);
return (DDI_FAILURE);
}
DEBUGCONT2(ASY_DEBUG_INIT, "asy%dattach: UART @ %p\n",
instance, (void *)asy->asy_ioaddr);
mutex_enter(&asy_glob_lock);
if (com_ports == NULL) { /* need to initialize com_ports */
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, devi, 0,
"motherboard-serial-ports", &com_ports, &num_com_ports) !=
DDI_PROP_SUCCESS) {
/* Use our built-in COM[1234] values */
com_ports = (int *)standard_com_ports;
num_com_ports = sizeof (standard_com_ports) /
sizeof (standard_com_ports[0]);
}
if (num_com_ports > 10) {
/* We run out of single digits for device properties */
num_com_ports = 10;
cmn_err(CE_WARN,
"More than %d motherboard-serial-ports",
num_com_ports);
}
}
mutex_exit(&asy_glob_lock);
/*
* Lookup the i/o address to see if this is a standard COM port
* in which case we assign it the correct tty[a-d] to match the
* COM port number, or some other i/o address in which case it
* will be assigned /dev/term/[0123...] in some rather arbitrary
* fashion.
*/
for (i = 0; i < num_com_ports; i++) {
if (asy->asy_ioaddr == (uint8_t *)(uintptr_t)com_ports[i]) {
asy->asy_com_port = i + 1;
break;
}
}
/*
* It appears that there was async hardware that on reset
* did not clear ICR. Hence when we get to
* ddi_get_iblock_cookie below, this hardware would cause
* the system to hang if there was input available.
*/
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0x00);
/* establish default usage */
asy->asy_mcr |= RTS|DTR; /* do use RTS/DTR after open */
asy->asy_lcr = STOP1|BITS8; /* default to 1 stop 8 bits */
asy->asy_bidx = B9600; /* default to 9600 */
#ifdef DEBUG
asy->asy_msint_cnt = 0; /* # of times in async_msint */
#endif
mcr = 0; /* don't enable until open */
if (asy->asy_com_port != 0) {
/*
* For motherboard ports, emulate tty eeprom properties.
* Actually, we can't tell if a port is motherboard or not,
* so for "motherboard ports", read standard DOS COM ports.
*/
switch (asy_getproperty(devi, asy, "ignore-cd")) {
case 0: /* *-ignore-cd=False */
DEBUGCONT1(ASY_DEBUG_MODEM,
"asy%dattach: clear ASY_IGNORE_CD\n", instance);
asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
break;
case 1: /* *-ignore-cd=True */
/*FALLTHRU*/
default: /* *-ignore-cd not defined */
/*
* We set rather silly defaults of soft carrier on
* and DTR/RTS raised here because it might be that
* one of the motherboard ports is the system console.
*/
DEBUGCONT1(ASY_DEBUG_MODEM,
"asy%dattach: set ASY_IGNORE_CD, set RTS & DTR\n",
instance);
mcr = asy->asy_mcr; /* rts/dtr on */
asy->asy_flags |= ASY_IGNORE_CD; /* ignore cd */
break;
}
/* Property for not raising DTR/RTS */
switch (asy_getproperty(devi, asy, "rts-dtr-off")) {
case 0: /* *-rts-dtr-off=False */
asy->asy_flags |= ASY_RTS_DTR_OFF; /* OFF */
mcr = asy->asy_mcr; /* rts/dtr on */
DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: "
"ASY_RTS_DTR_OFF set and DTR & RTS set\n",
instance);
break;
case 1: /* *-rts-dtr-off=True */
/*FALLTHRU*/
default: /* *-rts-dtr-off undefined */
break;
}
/* Parse property for tty modes */
asy_parse_mode(devi, asy);
} else {
DEBUGCONT1(ASY_DEBUG_MODEM,
"asy%dattach: clear ASY_IGNORE_CD, clear RTS & DTR\n",
instance);
asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
}
/*
* Initialize the port with default settings.
*/
asy->asy_fifo_buf = 1;
asy->asy_use_fifo = FIFO_OFF;
/*
* Get icookie for mutexes initialization
*/
if ((ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) !=
DDI_SUCCESS) ||
(ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_MED,
&asy->asy_soft_iblock) != DDI_SUCCESS)) {
ddi_regs_map_free(&asy->asy_iohandle);
cmn_err(CE_CONT,
"asy%d: could not hook interrupt for UART @ %p\n",
instance, (void *)asy->asy_ioaddr);
asy_soft_state_free(asy);
return (DDI_FAILURE);
}
/*
* Initialize mutexes before accessing the hardware
*/
mutex_init(&asy->asy_soft_lock, NULL, MUTEX_DRIVER,
(void *)asy->asy_soft_iblock);
mutex_init(&asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
mutex_init(&asy->asy_excl_hi, NULL, MUTEX_DRIVER,
(void *)asy->asy_iblock);
mutex_init(&asy->asy_soft_sr, NULL, MUTEX_DRIVER,
(void *)asy->asy_soft_iblock);
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
mutex_destroy(&asy->asy_soft_lock);
mutex_destroy(&asy->asy_excl);
mutex_destroy(&asy->asy_excl_hi);
mutex_destroy(&asy->asy_soft_sr);
ddi_regs_map_free(&asy->asy_iohandle);
cmn_err(CE_CONT, "!Cannot identify UART chip at %p\n",
(void *)asy->asy_ioaddr);
asy_soft_state_free(asy);
return (DDI_FAILURE);
}
/* disable all interrupts */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
/* select baud rate generator */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
/* Set the baud rate to 9600 */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLL),
asyspdtab[asy->asy_bidx] & 0xff);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLH),
(asyspdtab[asy->asy_bidx] >> 8) & 0xff);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, asy->asy_lcr);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
/*
* Set up the other components of the asycom structure for this port.
*/
asy->asy_dip = devi;
/*
* Install per instance software interrupt handler.
*/
if (ddi_add_softintr(devi, DDI_SOFTINT_MED,
&(asy->asy_softintr_id), NULL, 0, asysoftintr,
(caddr_t)asy) != DDI_SUCCESS) {
mutex_destroy(&asy->asy_soft_lock);
mutex_destroy(&asy->asy_excl);
mutex_destroy(&asy->asy_excl_hi);
ddi_regs_map_free(&asy->asy_iohandle);
cmn_err(CE_CONT,
"Can not set soft interrupt for ASY driver\n");
asy_soft_state_free(asy);
return (DDI_FAILURE);
}
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
/*
* Install interrupt handler for this device.
*/
if (ddi_add_intr(devi, 0, NULL, 0, asyintr,
(caddr_t)asy) != DDI_SUCCESS) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
ddi_remove_softintr(asy->asy_softintr_id);
mutex_destroy(&asy->asy_soft_lock);
mutex_destroy(&asy->asy_excl);
mutex_destroy(&asy->asy_excl_hi);
ddi_regs_map_free(&asy->asy_iohandle);
cmn_err(CE_CONT,
"Can not set device interrupt for ASY driver\n");
asy_soft_state_free(asy);
return (DDI_FAILURE);
}
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
asyinit(asy); /* initialize the asyncline structure */
/* create minor device nodes for this device */
if (asy->asy_com_port != 0) {
/*
* For DOS COM ports, add letter suffix so
* devfsadm can create correct link names.
*/
name[0] = asy->asy_com_port + 'a' - 1;
name[1] = '\0';
} else {
/*
* asy port which isn't a standard DOS COM
* port gets a numeric name based on instance
*/
(void) snprintf(name, ASY_MINOR_LEN, "%d", instance);
}
status = ddi_create_minor_node(devi, name, S_IFCHR, instance,
asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB : DDI_NT_SERIAL, NULL);
if (status == DDI_SUCCESS) {
(void) strcat(name, ",cu");
status = ddi_create_minor_node(devi, name, S_IFCHR,
OUTLINE | instance,
asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB_DO :
DDI_NT_SERIAL_DO, NULL);
}
if (status != DDI_SUCCESS) {
struct asyncline *async = asy->asy_priv;
ddi_remove_minor_node(devi, NULL);
ddi_remove_intr(devi, 0, asy->asy_iblock);
ddi_remove_softintr(asy->asy_softintr_id);
mutex_destroy(&asy->asy_soft_lock);
mutex_destroy(&asy->asy_excl);
mutex_destroy(&asy->asy_excl_hi);
cv_destroy(&async->async_flags_cv);
ddi_regs_map_free(&asy->asy_iohandle);
asy_soft_state_free(asy);
return (DDI_FAILURE);
}
/*
* Fill in the polled I/O structure.
*/
asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy;
asy->polledio.cons_polledio_putchar = asyputchar;
asy->polledio.cons_polledio_getchar = asygetchar;
asy->polledio.cons_polledio_ischar = asyischar;
asy->polledio.cons_polledio_enter = NULL;
asy->polledio.cons_polledio_exit = NULL;
ddi_report_dev(devi);
DEBUGCONT1(ASY_DEBUG_INIT, "asy%dattach: done\n", instance);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static int
asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
void **result)
{
dev_t dev = (dev_t)arg;
int instance, error;
struct asycom *asy;
instance = UNIT(dev);
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
asy = ddi_get_soft_state(asy_soft_state, instance);
if ((asy == NULL) || (asy->asy_dip == NULL))
error = DDI_FAILURE;
else {
*result = (void *) asy->asy_dip;
error = DDI_SUCCESS;
}
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)(intptr_t)instance;
error = DDI_SUCCESS;
break;
default:
error = DDI_FAILURE;
}
return (error);
}
/* asy_getproperty -- walk through all name variants until we find a match */
static int
asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property)
{
int len;
int ret;
char letter = asy->asy_com_port + 'a' - 1; /* for ttya */
char number = asy->asy_com_port + '0'; /* for COM1 */
char val[40];
char name[40];
/* Property for ignoring DCD */
(void) sprintf(name, "tty%c-%s", letter, property);
len = sizeof (val);
ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
if (ret != DDI_PROP_SUCCESS) {
(void) sprintf(name, "com%c-%s", number, property);
len = sizeof (val);
ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
}
if (ret != DDI_PROP_SUCCESS) {
(void) sprintf(name, "tty0%c-%s", number, property);
len = sizeof (val);
ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
}
if (ret != DDI_PROP_SUCCESS) {
(void) sprintf(name, "port-%c-%s", letter, property);
len = sizeof (val);
ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
}
if (ret != DDI_PROP_SUCCESS)
return (-1); /* property non-existant */
if (val[0] == 'f' || val[0] == 'F' || val[0] == '0')
return (0); /* property false/0 */
return (1); /* property true/!0 */
}
/* asy_soft_state_free - local wrapper for ddi_soft_state_free(9F) */
static void
asy_soft_state_free(struct asycom *asy)
{
mutex_enter(&asy_glob_lock);
/* If we were the max_asy_instance, work out new value */
if (asy->asy_unit == max_asy_instance) {
while (--max_asy_instance >= 0) {
if (ddi_get_soft_state(asy_soft_state,
max_asy_instance) != NULL)
break;
}
}
mutex_exit(&asy_glob_lock);
if (asy->asy_priv != NULL) {
kmem_free(asy->asy_priv, sizeof (struct asyncline));
asy->asy_priv = NULL;
}
ddi_soft_state_free(asy_soft_state, asy->asy_unit);
}
static char *
asy_hw_name(struct asycom *asy)
{
switch (asy->asy_hwtype) {
case ASY8250A:
return ("8250A/16450");
case ASY16550:
return ("16550");
case ASY16550A:
return ("16550A");
case ASY16650:
return ("16650");
case ASY16750:
return ("16750");
default:
DEBUGNOTE2(ASY_DEBUG_INIT,
"asy%d: asy_hw_name: unknown asy_hwtype: %d",
asy->asy_unit, asy->asy_hwtype);
return ("?");
}
}
static int
asy_identify_chip(dev_info_t *devi, struct asycom *asy)
{
int ret;
int mcr;
dev_t dev;
uint_t hwtype;
if (asy_scr_test) {
/* Check scratch register works. */
/* write to scratch register */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, SCRTEST);
/* make sure that pattern doesn't just linger on the bus */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, 0x00);
/* read data back from scratch register */
ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
if (ret != SCRTEST) {
/*
* Scratch register not working.
* Probably not an async chip.
* 8250 and 8250B don't have scratch registers,
* but only worked in ancient PC XT's anyway.
*/
cmn_err(CE_CONT, "!asy%d: UART @ %p "
"scratch register: expected 0x5a, got 0x%02x\n",
asy->asy_unit, (void *)asy->asy_ioaddr, ret);
return (DDI_FAILURE);
}
}
/*
* Use 16550 fifo reset sequence specified in NS application
* note. Disable fifos until chip is initialized.
*/
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + FIFOR, 0x00); /* clear */
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + FIFOR, FIFO_ON); /* enable */
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + FIFOR, FIFO_ON | FIFORXFLSH);
/* reset */
if (asymaxchip >= ASY16650 && asy_scr_test) {
/*
* Reset 16650 enhanced regs also, in case we have one of these
*/
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
EFRACCESS);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
0);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
STOP1|BITS8);
}
/*
* See what sort of FIFO we have.
* Try enabling it and see what chip makes of this.
*/
asy->asy_fifor = 0;
asy->asy_hwtype = asymaxchip; /* just for asy_reset_fifo() */
if (asymaxchip >= ASY16550A)
asy->asy_fifor |=
FIFO_ON | FIFODMA | (asy_trig_level & 0xff);
if (asymaxchip >= ASY16650)
asy->asy_fifor |= FIFOEXTRA1 | FIFOEXTRA2;
asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
DEBUGCONT4(ASY_DEBUG_CHIP,
"asy%d: probe fifo FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
asy->asy_unit, asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH,
ret, mcr);
switch (ret & 0xf0) {
case 0x40:
hwtype = ASY16550; /* 16550 with broken FIFO */
asy->asy_fifor = 0;
break;
case 0xc0:
hwtype = ASY16550A;
asy->asy_fifo_buf = 16;
asy->asy_use_fifo = FIFO_ON;
asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
break;
case 0xe0:
hwtype = ASY16650;
asy->asy_fifo_buf = 32;
asy->asy_use_fifo = FIFO_ON;
asy->asy_fifor &= ~(FIFOEXTRA1);
break;
case 0xf0:
/*
* Note we get 0xff if chip didn't return us anything,
* e.g. if there's no chip there.
*/
if (ret == 0xff) {
cmn_err(CE_CONT, "asy%d: UART @ %p "
"interrupt register: got 0xff\n",
asy->asy_unit, (void *)asy->asy_ioaddr);
return (DDI_FAILURE);
}
/*FALLTHRU*/
case 0xd0:
hwtype = ASY16750;
asy->asy_fifo_buf = 64;
asy->asy_use_fifo = FIFO_ON;
break;
default:
hwtype = ASY8250A; /* No FIFO */
asy->asy_fifor = 0;
}
if (hwtype > asymaxchip) {
cmn_err(CE_CONT, "asy%d: UART @ %p "
"unexpected probe result: "
"FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
asy->asy_unit, (void *)asy->asy_ioaddr,
asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH, ret, mcr);
return (DDI_FAILURE);
}
/*
* Now reset the FIFO operation appropriate for the chip type.
* Note we must call asy_reset_fifo() before any possible
* downgrade of the asy->asy_hwtype, or it may not disable
* the more advanced features we specifically want downgraded.
*/
asy_reset_fifo(asy, 0);
asy->asy_hwtype = hwtype;
/*
* Check for Exar/Startech ST16C650, which will still look like a
* 16550A until we enable its enhanced mode.
*/
if (asy->asy_hwtype == ASY16550A && asymaxchip >= ASY16650 &&
asy_scr_test) {
/* Enable enhanced mode register access */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
EFRACCESS);
/* zero scratch register (not scratch register if enhanced) */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, 0);
/* Disable enhanced mode register access */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
STOP1|BITS8);
/* read back scratch register */
ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
if (ret == SCRTEST) {
/* looks like we have an ST16650 -- enable it */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
EFRACCESS);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
ENHENABLE);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
STOP1|BITS8);
asy->asy_hwtype = ASY16650;
asy->asy_fifo_buf = 32;
asy->asy_fifor |= 0x10; /* 24 byte txfifo trigger */
asy_reset_fifo(asy, 0);
}
}
/*
* If we think we might have a FIFO larger than 16 characters,
* measure FIFO size and check it against expected.
*/
if (asy_fifo_test > 0 &&
!(asy->asy_flags2 & ASY2_NO_LOOPBACK) &&
(asy->asy_fifo_buf > 16 ||
(asy_fifo_test > 1 && asy->asy_use_fifo == FIFO_ON) ||
ASY_DEBUG(ASY_DEBUG_CHIP))) {
int i;
/* Set baud rate to 57600 (fairly arbitrary choice) */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
DLAB);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
asyspdtab[B57600] & 0xff);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
(asyspdtab[B57600] >> 8) & 0xff);
/* Set 8 bits, 1 stop bit */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
STOP1|BITS8);
/* Set loopback mode */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
DTR | RTS | ASY_LOOP | OUT1 | OUT2);
/* Overfill fifo */
for (i = 0; i < asy->asy_fifo_buf * 2; i++) {
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + DAT, i);
}
/*
* Now there's an interesting question here about which
* FIFO we're testing the size of, RX or TX. We just
* filled the TX FIFO much faster than it can empty,
* although it is possible one or two characters may
* have gone from it to the TX shift register.
* We wait for enough time for all the characters to
* move into the RX FIFO and any excess characters to
* have been lost, and then read all the RX FIFO. So
* the answer we finally get will be the size which is
* the MIN(RX FIFO,(TX FIFO + 1 or 2)). The critical
* one is actually the TX FIFO, because if we overfill
* it in normal operation, the excess characters are
* lost with no warning.
*/
/*
* Wait for characters to move into RX FIFO.
* In theory, 200 * asy->asy_fifo_buf * 2 should be
* enough. However, in practice it isn't always, so we
* increase to 400 so some slow 16550A's finish, and we
* increase to 3 so we spot more characters coming back
* than we sent, in case that should ever happen.
*/
delay(drv_usectohz(400 * asy->asy_fifo_buf * 3));
/* Now see how many characters we can read back */
for (i = 0; i < asy->asy_fifo_buf * 3; i++) {
ret = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LSR);
if (!(ret & RCA))
break; /* FIFO emptied */
(void) ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + DAT); /* lose another */
}
DEBUGCONT3(ASY_DEBUG_CHIP,
"asy%d FIFO size: expected=%d, measured=%d\n",
asy->asy_unit, asy->asy_fifo_buf, i);
hwtype = asy->asy_hwtype;
if (i < asy->asy_fifo_buf) {
/*
* FIFO is somewhat smaller than we anticipated.
* If we have 16 characters usable, then this
* UART will probably work well enough in
* 16550A mode. If less than 16 characters,
* then we'd better not use it at all.
* UARTs with busted FIFOs do crop up.
*/
if (i >= 16 && asy->asy_fifo_buf >= 16) {
/* fall back to a 16550A */
hwtype = ASY16550A;
asy->asy_fifo_buf = 16;
asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
} else {
/* fall back to no FIFO at all */
hwtype = ASY16550;
asy->asy_fifo_buf = 1;
asy->asy_use_fifo = FIFO_OFF;
asy->asy_fifor &=
~(FIFO_ON | FIFOEXTRA1 | FIFOEXTRA2);
}
}
/*
* We will need to reprogram the FIFO if we changed
* our mind about how to drive it above, and in any
* case, it would be a good idea to flush any garbage
* out incase the loopback test left anything behind.
* Again as earlier above, we must call asy_reset_fifo()
* before any possible downgrade of asy->asy_hwtype.
*/
if (asy->asy_hwtype >= ASY16650 && hwtype < ASY16650) {
/* Disable 16650 enhanced mode */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
EFRACCESS);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
0);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
STOP1|BITS8);
}
asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
asy->asy_hwtype = hwtype;
/* Clear loopback mode and restore DTR/RTS */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
}
DEBUGNOTE3(ASY_DEBUG_CHIP, "asy%d %s @ %p",
asy->asy_unit, asy_hw_name(asy), (void *)asy->asy_ioaddr);
/* Make UART type visible in device tree for prtconf, etc */
dev = makedevice(DDI_MAJOR_T_UNKNOWN, asy->asy_unit);
(void) ddi_prop_update_string(dev, devi, "uart", asy_hw_name(asy));
if (asy->asy_hwtype == ASY16550) /* for broken 16550's, */
asy->asy_hwtype = ASY8250A; /* drive them as 8250A */
return (DDI_SUCCESS);
}
/*
* asyinit() initializes the TTY protocol-private data for this channel
* before enabling the interrupts.
*/
static void
asyinit(struct asycom *asy)
{
struct asyncline *async;
asy->asy_priv = kmem_zalloc(sizeof (struct asyncline), KM_SLEEP);
async = asy->asy_priv;
mutex_enter(&asy->asy_excl);
async->async_common = asy;
cv_init(&async->async_flags_cv, NULL, CV_DRIVER, NULL);
mutex_exit(&asy->asy_excl);
}
/*ARGSUSED3*/
static int
asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
{
struct asycom *asy;
struct asyncline *async;
int mcr;
int unit;
int len;
struct termios *termiosp;
unit = UNIT(*dev);
DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dopen\n", unit);
asy = ddi_get_soft_state(asy_soft_state, unit);
if (asy == NULL)
return (ENXIO); /* unit not configured */
async = asy->asy_priv;
mutex_enter(&asy->asy_excl);
again:
mutex_enter(&asy->asy_excl_hi);
/*
* Block waiting for carrier to come up, unless this is a no-delay open.
*/
if (!(async->async_flags & ASYNC_ISOPEN)) {
/*
* Set the default termios settings (cflag).
* Others are set in ldterm.
*/
mutex_exit(&asy->asy_excl_hi);
if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
0, "ttymodes",
(caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS &&
len == sizeof (struct termios)) {
async->async_ttycommon.t_cflag = termiosp->c_cflag;
kmem_free(termiosp, len);
} else
cmn_err(CE_WARN,
"asy: couldn't get ttymodes property!");
mutex_enter(&asy->asy_excl_hi);
/* eeprom mode support - respect properties */
if (asy->asy_cflag)
async->async_ttycommon.t_cflag = asy->asy_cflag;
async->async_ttycommon.t_iflag = 0;
async->async_ttycommon.t_iocpending = NULL;
async->async_ttycommon.t_size.ws_row = 0;
async->async_ttycommon.t_size.ws_col = 0;
async->async_ttycommon.t_size.ws_xpixel = 0;
async->async_ttycommon.t_size.ws_ypixel = 0;
async->async_dev = *dev;
async->async_wbufcid = 0;
async->async_startc = CSTART;
async->async_stopc = CSTOP;
asy_program(asy, ASY_INIT);
} else
if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
secpolicy_excl_open(cr) != 0) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
return (EBUSY);
} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
return (EBUSY);
}
if (*dev & OUTLINE)
async->async_flags |= ASYNC_OUT;
/* Raise DTR on every open, but delay if it was just lowered. */
while (async->async_flags & ASYNC_DTR_DELAY) {
DEBUGCONT1(ASY_DEBUG_MODEM,
"asy%dopen: waiting for the ASYNC_DTR_DELAY to be clear\n",
unit);
mutex_exit(&asy->asy_excl_hi);
if (cv_wait_sig(&async->async_flags_cv,
&asy->asy_excl) == 0) {
DEBUGCONT1(ASY_DEBUG_MODEM,
"asy%dopen: interrupted by signal, exiting\n",
unit);
mutex_exit(&asy->asy_excl);
return (EINTR);
}
mutex_enter(&asy->asy_excl_hi);
}
mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
mcr|(asy->asy_mcr&DTR));
DEBUGCONT3(ASY_DEBUG_INIT,
"asy%dopen: \"Raise DTR on every open\": make mcr = %x, "
"make TS_SOFTCAR = %s\n",
unit, mcr|(asy->asy_mcr&DTR),
(asy->asy_flags & ASY_IGNORE_CD) ? "ON" : "OFF");
if (asy->asy_flags & ASY_IGNORE_CD) {
DEBUGCONT1(ASY_DEBUG_MODEM,
"asy%dopen: ASY_IGNORE_CD set, set TS_SOFTCAR\n",
unit);
async->async_ttycommon.t_flags |= TS_SOFTCAR;
}
else
async->async_ttycommon.t_flags &= ~TS_SOFTCAR;
/*
* Check carrier.
*/
asy->asy_msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
DEBUGCONT3(ASY_DEBUG_INIT, "asy%dopen: TS_SOFTCAR is %s, "
"MSR & DCD is %s\n",
unit,
(async->async_ttycommon.t_flags & TS_SOFTCAR) ? "set" : "clear",
(asy->asy_msr & DCD) ? "set" : "clear");
if (asy->asy_msr & DCD)
async->async_flags |= ASYNC_CARR_ON;
else
async->async_flags &= ~ASYNC_CARR_ON;
mutex_exit(&asy->asy_excl_hi);
/*
* If FNDELAY and FNONBLOCK are clear, block until carrier up.
* Quit on interrupt.
*/
if (!(flag & (FNDELAY|FNONBLOCK)) &&
!(async->async_ttycommon.t_cflag & CLOCAL)) {
if ((!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) &&
!(async->async_ttycommon.t_flags & TS_SOFTCAR)) ||
((async->async_flags & ASYNC_OUT) &&
!(*dev & OUTLINE))) {
async->async_flags |= ASYNC_WOPEN;
if (cv_wait_sig(&async->async_flags_cv,
&asy->asy_excl) == B_FALSE) {
async->async_flags &= ~ASYNC_WOPEN;
mutex_exit(&asy->asy_excl);
return (EINTR);
}
async->async_flags &= ~ASYNC_WOPEN;
goto again;
}
} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
mutex_exit(&asy->asy_excl);
return (EBUSY);
}
async->async_ttycommon.t_readq = rq;
async->async_ttycommon.t_writeq = WR(rq);
rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
mutex_exit(&asy->asy_excl);
/*
* Caution here -- qprocson sets the pointers that are used by canput
* called by async_softint. ASYNC_ISOPEN must *not* be set until those
* pointers are valid.
*/
qprocson(rq);
async->async_flags |= ASYNC_ISOPEN;
async->async_polltid = 0;
DEBUGCONT1(ASY_DEBUG_INIT, "asy%dopen: done\n", unit);
return (0);
}
static void
async_progress_check(void *arg)
{
struct asyncline *async = arg;
struct asycom *asy = async->async_common;
mblk_t *bp;
/*
* We define "progress" as either waiting on a timed break or delay, or
* having had at least one transmitter interrupt. If none of these are
* true, then just terminate the output and wake up that close thread.
*/
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
async->async_ocnt = 0;
async->async_flags &= ~ASYNC_BUSY;
async->async_timer = 0;
bp = async->async_xmitblk;
async->async_xmitblk = NULL;
mutex_exit(&asy->asy_excl_hi);
if (bp != NULL)
freeb(bp);
/*
* Since this timer is running, we know that we're in exit(2).
* That means that the user can't possibly be waiting on any
* valid ioctl(2) completion anymore, and we should just flush
* everything.
*/
flushq(async->async_ttycommon.t_writeq, FLUSHALL);
cv_broadcast(&async->async_flags_cv);
} else {
async->async_flags &= ~ASYNC_PROGRESS;
async->async_timer = timeout(async_progress_check, async,
drv_usectohz(asy_drain_check));
mutex_exit(&asy->asy_excl_hi);
}
mutex_exit(&asy->asy_excl);
}
/*
* Release DTR so that asyopen() can raise it.
*/
static void
async_dtr_free(struct asyncline *async)
{
struct asycom *asy = async->async_common;
DEBUGCONT0(ASY_DEBUG_MODEM,
"async_dtr_free, clearing ASYNC_DTR_DELAY\n");
mutex_enter(&asy->asy_excl);
async->async_flags &= ~ASYNC_DTR_DELAY;
async->async_dtrtid = 0;
cv_broadcast(&async->async_flags_cv);
mutex_exit(&asy->asy_excl);
}
/*
* Close routine.
*/
/*ARGSUSED2*/
static int
asyclose(queue_t *q, int flag, cred_t *credp)
{
struct asyncline *async;
struct asycom *asy;
int icr, lcr;
#ifdef DEBUG
int instance;
#endif
async = (struct asyncline *)q->q_ptr;
ASSERT(async != NULL);
#ifdef DEBUG
instance = UNIT(async->async_dev);
DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose\n", instance);
#endif
asy = async->async_common;
mutex_enter(&asy->asy_excl);
async->async_flags |= ASYNC_CLOSING;
/*
* Turn off PPS handling early to avoid events occuring during
* close. Also reset the DCD edge monitoring bit.
*/
mutex_enter(&asy->asy_excl_hi);
asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
mutex_exit(&asy->asy_excl_hi);
/*
* There are two flavors of break -- timed (M_BREAK or TCSBRK) and
* untimed (TIOCSBRK). For the timed case, these are enqueued on our
* write queue and there's a timer running, so we don't have to worry
* about them. For the untimed case, though, the user obviously made a
* mistake, because these are handled immediately. We'll terminate the
* break now and honor his implicit request by discarding the rest of
* the data.
*/
if (async->async_flags & ASYNC_OUT_SUSPEND) {
if (async->async_utbrktid != 0) {
(void) untimeout(async->async_utbrktid);
async->async_utbrktid = 0;
}
mutex_enter(&asy->asy_excl_hi);
lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + LCR, (lcr & ~SETBREAK));
mutex_exit(&asy->asy_excl_hi);
async->async_flags &= ~ASYNC_OUT_SUSPEND;
goto nodrain;
}
/*
* If the user told us not to delay the close ("non-blocking"), then
* don't bother trying to drain.
*
* If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
* getting an M_START (since these messages aren't enqueued), and the
* only other way to clear the stop condition is by loss of DCD, which
* would discard the queue data. Thus, we drop the output data if
* ASYNC_STOPPED is set.
*/
if ((flag & (FNDELAY|FNONBLOCK)) ||
(async->async_flags & ASYNC_STOPPED)) {
goto nodrain;
}
/*
* If there's any pending output, then we have to try to drain it.
* There are two main cases to be handled:
* - called by close(2): need to drain until done or until
* a signal is received. No timeout.
* - called by exit(2): need to drain while making progress
* or until a timeout occurs. No signals.
*
* If we can't rely on receiving a signal to get us out of a hung
* session, then we have to use a timer. In this case, we set a timer
* to check for progress in sending the output data -- all that we ask
* (at each interval) is that there's been some progress made. Since
* the interrupt routine grabs buffers from the write queue, we can't
* trust changes in async_ocnt. Instead, we use a progress flag.
*
* Note that loss of carrier will cause the output queue to be flushed,
* and we'll wake up again and finish normally.
*/
if (!ddi_can_receive_sig() && asy_drain_check != 0) {
async->async_flags &= ~ASYNC_PROGRESS;
async->async_timer = timeout(async_progress_check, async,
drv_usectohz(asy_drain_check));
}
while (async->async_ocnt > 0 ||
async->async_ttycommon.t_writeq->q_first != NULL ||
(async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0)
break;
}
if (async->async_timer != 0) {
(void) untimeout(async->async_timer);
async->async_timer = 0;
}
nodrain:
async->async_ocnt = 0;
if (async->async_xmitblk != NULL)
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
/*
* If line has HUPCL set or is incompletely opened fix up the modem
* lines.
*/
DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dclose: next check HUPCL flag\n",
instance);
mutex_enter(&asy->asy_excl_hi);
if ((async->async_ttycommon.t_cflag & HUPCL) ||
(async->async_flags & ASYNC_WOPEN)) {
DEBUGCONT3(ASY_DEBUG_MODEM,
"asy%dclose: HUPCL flag = %x, ASYNC_WOPEN flag = %x\n",
instance,
async->async_ttycommon.t_cflag & HUPCL,
async->async_ttycommon.t_cflag & ASYNC_WOPEN);
async->async_flags |= ASYNC_DTR_DELAY;
/* turn off DTR, RTS but NOT interrupt to 386 */
if (asy->asy_flags & (ASY_IGNORE_CD|ASY_RTS_DTR_OFF)) {
DEBUGCONT3(ASY_DEBUG_MODEM,
"asy%dclose: ASY_IGNORE_CD flag = %x, "
"ASY_RTS_DTR_OFF flag = %x\n",
instance,
asy->asy_flags & ASY_IGNORE_CD,
asy->asy_flags & ASY_RTS_DTR_OFF);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
asy->asy_mcr|OUT2);
} else {
DEBUGCONT1(ASY_DEBUG_MODEM,
"asy%dclose: Dropping DTR and RTS\n", instance);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
OUT2);
}
async->async_dtrtid =
timeout((void (*)())async_dtr_free,
(caddr_t)async, drv_usectohz(asy_min_dtr_low));
}
/*
* If nobody's using it now, turn off receiver interrupts.
*/
if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
icr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ICR);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
(icr & ~RIEN));
}
mutex_exit(&asy->asy_excl_hi);
out:
ttycommon_close(&async->async_ttycommon);
/*
* Cancel outstanding "bufcall" request.
*/
if (async->async_wbufcid != 0) {
unbufcall(async->async_wbufcid);
async->async_wbufcid = 0;
}
/* Note that qprocsoff can't be done until after interrupts are off */
qprocsoff(q);
q->q_ptr = WR(q)->q_ptr = NULL;
async->async_ttycommon.t_readq = NULL;
async->async_ttycommon.t_writeq = NULL;
/*
* Clear out device state, except persistant device property flags.
*/
async->async_flags &= (ASYNC_DTR_DELAY|ASY_RTS_DTR_OFF);
cv_broadcast(&async->async_flags_cv);
mutex_exit(&asy->asy_excl);
DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose: done\n", instance);
return (0);
}
static boolean_t
asy_isbusy(struct asycom *asy)
{
struct asyncline *async;
DEBUGCONT0(ASY_DEBUG_EOT, "asy_isbusy\n");
async = asy->asy_priv;
ASSERT(mutex_owned(&asy->asy_excl));
ASSERT(mutex_owned(&asy->asy_excl_hi));
/*
* XXXX this should be recoded
*/
return ((async->async_ocnt > 0) ||
((ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LSR) & (XSRE|XHRE)) == 0));
}
static void
asy_waiteot(struct asycom *asy)
{
/*
* Wait for the current transmission block and the
* current fifo data to transmit. Once this is done
* we may go on.
*/
DEBUGCONT0(ASY_DEBUG_EOT, "asy_waiteot\n");
ASSERT(mutex_owned(&asy->asy_excl));
ASSERT(mutex_owned(&asy->asy_excl_hi));
while (asy_isbusy(asy)) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
drv_usecwait(10000); /* wait .01 */
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
}
}
/* asy_reset_fifo -- flush fifos and [re]program fifo control register */
static void
asy_reset_fifo(struct asycom *asy, uchar_t flush)
{
uchar_t lcr;
/* On a 16750, we have to set DLAB in order to set FIFOEXTRA. */
if (asy->asy_hwtype >= ASY16750) {
lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
lcr | DLAB);
}
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR,
asy->asy_fifor | flush);
/* Clear DLAB */
if (asy->asy_hwtype >= ASY16750) {
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
}
}
/*
* Program the ASY port. Most of the async operation is based on the values
* of 'c_iflag' and 'c_cflag'.
*/
#define BAUDINDEX(cflg) (((cflg) & CBAUDEXT) ? \
(((cflg) & CBAUD) + CBAUD + 1) : ((cflg) & CBAUD))
static void
asy_program(struct asycom *asy, int mode)
{
struct asyncline *async;
int baudrate, c_flag;
int icr, lcr;
int flush_reg;
int ocflags;
#ifdef DEBUG
int instance;
#endif
ASSERT(mutex_owned(&asy->asy_excl));
ASSERT(mutex_owned(&asy->asy_excl_hi));
async = asy->asy_priv;
#ifdef DEBUG
instance = UNIT(async->async_dev);
DEBUGCONT2(ASY_DEBUG_PROCS,
"asy%d_program: mode = 0x%08X, enter\n", instance, mode);
#endif
baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
async->async_ttycommon.t_cflag &= ~(CIBAUD);
if (baudrate > CBAUD) {
async->async_ttycommon.t_cflag |= CIBAUDEXT;
async->async_ttycommon.t_cflag |=
(((baudrate - CBAUD - 1) << IBSHIFT) & CIBAUD);
} else {
async->async_ttycommon.t_cflag &= ~CIBAUDEXT;
async->async_ttycommon.t_cflag |=
((baudrate << IBSHIFT) & CIBAUD);
}
c_flag = async->async_ttycommon.t_cflag &
(CLOCAL|CREAD|CSTOPB|CSIZE|PARENB|PARODD|CBAUD|CBAUDEXT);
/* disable interrupts */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
ocflags = asy->asy_ocflag;
/* flush/reset the status registers */
(void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
(void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
asy->asy_msr = flush_reg = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + MSR);
/*
* The device is programmed in the open sequence, if we
* have to hardware handshake, then this is a good time
* to check if the device can receive any data.
*/
if ((CRTSCTS & async->async_ttycommon.t_cflag) && !(flush_reg & CTS)) {
async_flowcontrol_hw_output(asy, FLOW_STOP);
} else {
/*
* We can not use async_flowcontrol_hw_output(asy, FLOW_START)
* here, because if CRTSCTS is clear, we need clear
* ASYNC_HW_OUT_FLW bit.
*/
async->async_flags &= ~ASYNC_HW_OUT_FLW;
}
/*
* If IXON is not set, clear ASYNC_SW_OUT_FLW;
* If IXON is set, no matter what IXON flag is before this
* function call to asy_program,
* we will use the old ASYNC_SW_OUT_FLW status.
* Because of handling IXON in the driver, we also should re-calculate
* the value of ASYNC_OUT_FLW_RESUME bit, but in fact,
* the TCSET* commands which call asy_program
* are put into the write queue, so there is no output needed to
* be resumed at this point.
*/
if (!(IXON & async->async_ttycommon.t_iflag))
async->async_flags &= ~ASYNC_SW_OUT_FLW;
/* manually flush receive buffer or fifo (workaround for buggy fifos) */
if (mode == ASY_INIT)
if (asy->asy_use_fifo == FIFO_ON) {
for (flush_reg = asy->asy_fifo_buf; flush_reg-- > 0; ) {
(void) ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + DAT);
}
} else {
flush_reg = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + DAT);
}
if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
/* Set line control */
lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
if (c_flag & CSTOPB)
lcr |= STB; /* 2 stop bits */
if (c_flag & PARENB)
lcr |= PEN;
if ((c_flag & PARODD) == 0)
lcr |= EPS;
switch (c_flag & CSIZE) {
case CS5:
lcr |= BITS5;
break;
case CS6:
lcr |= BITS6;
break;
case CS7:
lcr |= BITS7;
break;
case CS8:
lcr |= BITS8;
break;
}
/* set the baud rate, unless it is "0" */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
if (baudrate != 0) {
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
asyspdtab[baudrate] & 0xff);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
(asyspdtab[baudrate] >> 8) & 0xff);
}
/* set the line control modes */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
/*
* If we have a FIFO buffer, enable/flush
* at intialize time, flush if transitioning from
* CREAD off to CREAD on.
*/
if ((ocflags & CREAD) == 0 && (c_flag & CREAD) ||
mode == ASY_INIT)
if (asy->asy_use_fifo == FIFO_ON)
asy_reset_fifo(asy, FIFORXFLSH);
/* remember the new cflags */
asy->asy_ocflag = c_flag & ~CLOCAL;
}
if (baudrate == 0)
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
(asy->asy_mcr & RTS) | OUT2);
else
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
asy->asy_mcr | OUT2);
/*
* Call the modem status interrupt handler to check for the carrier
* in case CLOCAL was turned off after the carrier came on.
* (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
*/
async_msint(asy);
/* Set interrupt control */
DEBUGCONT3(ASY_DEBUG_MODM2,
"asy%d_program: c_flag & CLOCAL = %x t_cflag & CRTSCTS = %x\n",
instance, c_flag & CLOCAL,
async->async_ttycommon.t_cflag & CRTSCTS);
if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
/*
* direct-wired line ignores DCD, so we don't enable modem
* status interrupts.
*/
icr = (TIEN | SIEN);
else
icr = (TIEN | SIEN | MIEN);
if (c_flag & CREAD)
icr |= RIEN;
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, icr);
DEBUGCONT1(ASY_DEBUG_PROCS, "asy%d_program: done\n", instance);
}
static boolean_t
asy_baudok(struct asycom *asy)
{
struct asyncline *async = asy->asy_priv;
int baudrate;
baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
if (baudrate >= sizeof (asyspdtab)/sizeof (*asyspdtab))
return (0);
return (baudrate == 0 || asyspdtab[baudrate]);
}
/*
* asyintr() is the High Level Interrupt Handler.
*
* There are four different interrupt types indexed by ISR register values:
* 0: modem
* 1: Tx holding register is empty, ready for next char
* 2: Rx register now holds a char to be picked up
* 3: error or break on line
* This routine checks the Bit 0 (interrupt-not-pending) to determine if
* the interrupt is from this port.
*/
uint_t
asyintr(caddr_t argasy)
{
struct asycom *asy = (struct asycom *)argasy;
struct asyncline *async;
int ret_status = DDI_INTR_UNCLAIMED;
uchar_t interrupt_id, lsr;
interrupt_id = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + ISR) & 0x0F;
async = asy->asy_priv;
if ((async == NULL) ||
!(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
if (interrupt_id & NOINTERRUPT)
return (DDI_INTR_UNCLAIMED);
else {
/*
* reset the device by:
* reading line status
* reading any data from data status register
* reading modem status
*/
(void) ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LSR);
(void) ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + DAT);
asy->asy_msr = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + MSR);
return (DDI_INTR_CLAIMED);
}
}
mutex_enter(&asy->asy_excl_hi);
if (asy->asy_flags & ASY_DDI_SUSPENDED) {
mutex_exit(&asy->asy_excl_hi);
return (DDI_INTR_CLAIMED);
}
/*
* We will loop until the interrupt line is pulled low. asy
* interrupt is edge triggered.
*/
/* CSTYLED */
for (;; interrupt_id =
(ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR) & 0x0F)) {
if (interrupt_id & NOINTERRUPT)
break;
ret_status = DDI_INTR_CLAIMED;
DEBUGCONT1(ASY_DEBUG_INTR, "asyintr: interrupt_id = 0x%d\n",
interrupt_id);
lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
switch (interrupt_id) {
case RxRDY:
case RSTATUS:
case FFTMOUT:
/* receiver interrupt or receiver errors */
async_rxint(asy, lsr);
break;
case TxRDY:
/* transmit interrupt */
async_txint(asy);
continue;
case MSTATUS:
/* modem status interrupt */
async_msint(asy);
break;
}
if ((lsr & XHRE) && (async->async_flags & ASYNC_BUSY) &&
(async->async_ocnt > 0))
async_txint(asy);
}
mutex_exit(&asy->asy_excl_hi);
return (ret_status);
}
/*
* Transmitter interrupt service routine.
* If there is more data to transmit in the current pseudo-DMA block,
* send the next character if output is not stopped or draining.
* Otherwise, queue up a soft interrupt.
*
* XXX - Needs review for HW FIFOs.
*/
static void
async_txint(struct asycom *asy)
{
struct asyncline *async = asy->asy_priv;
int fifo_len;
/*
* If ASYNC_BREAK or ASYNC_OUT_SUSPEND has been set, return to
* asyintr()'s context to claim the interrupt without performing
* any action. No character will be loaded into FIFO/THR until
* timed or untimed break is removed
*/
if (async->async_flags & (ASYNC_BREAK|ASYNC_OUT_SUSPEND))
return;
fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
if (fifo_len > asy_max_tx_fifo)
fifo_len = asy_max_tx_fifo;
if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
fifo_len--;
if (async->async_ocnt > 0 && fifo_len > 0 &&
!(async->async_flags &
(ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_STOPPED))) {
while (fifo_len-- > 0 && async->async_ocnt-- > 0) {
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + DAT, *async->async_optr++);
}
async->async_flags |= ASYNC_PROGRESS;
}
if (fifo_len <= 0)
return;
ASYSETSOFT(asy);
}
/*
* Interrupt on port: handle PPS event. This function is only called
* for a port on which PPS event handling has been enabled.
*/
static void
asy_ppsevent(struct asycom *asy, int msr)
{
if (asy->asy_flags & ASY_PPS_EDGE) {
/* Have seen leading edge, now look for and record drop */
if ((msr & DCD) == 0)
asy->asy_flags &= ~ASY_PPS_EDGE;
/*
* Waiting for leading edge, look for rise; stamp event and
* calibrate kernel clock.
*/
} else if (msr & DCD) {
/*
* This code captures a timestamp at the designated
* transition of the PPS signal (DCD asserted). The
* code provides a pointer to the timestamp, as well
* as the hardware counter value at the capture.
*
* Note: the kernel has nano based time values while
* NTP requires micro based, an in-line fast algorithm
* to convert nsec to usec is used here -- see hrt2ts()
* in common/os/timers.c for a full description.
*/
struct timeval *tvp = &asy_ppsev.tv;
timestruc_t ts;
long nsec, usec;
asy->asy_flags |= ASY_PPS_EDGE;
LED_OFF;
gethrestime(&ts);
LED_ON;
nsec = ts.tv_nsec;
usec = nsec + (nsec >> 2);
usec = nsec + (usec >> 1);
usec = nsec + (usec >> 2);
usec = nsec + (usec >> 4);
usec = nsec - (usec >> 3);
usec = nsec + (usec >> 2);
usec = nsec + (usec >> 3);
usec = nsec + (usec >> 4);
usec = nsec + (usec >> 1);
usec = nsec + (usec >> 6);
tvp->tv_usec = usec >> 10;
tvp->tv_sec = ts.tv_sec;
++asy_ppsev.serial;
/*
* Because the kernel keeps a high-resolution time,
* pass the current highres timestamp in tvp and zero
* in usec.
*/
ddi_hardpps(tvp, 0);
}
}
/*
* Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
* error interrupt.
* Try to put the character into the circular buffer for this line; if it
* overflows, indicate a circular buffer overrun. If this port is always
* to be serviced immediately, or the character is a STOP character, or
* more than 15 characters have arrived, queue up a soft interrupt to
* drain the circular buffer.
* XXX - needs review for hw FIFOs support.
*/
static void
async_rxint(struct asycom *asy, uchar_t lsr)
{
struct asyncline *async = asy->asy_priv;
uchar_t c;
uint_t s, needsoft = 0;
tty_common_t *tp;
int looplim = asy->asy_fifo_buf * 2;
tp = &async->async_ttycommon;
if (!(tp->t_cflag & CREAD)) {
while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
(void) (ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + DAT) & 0xff);
lsr = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LSR);
if (looplim-- < 0) /* limit loop */
break;
}
return; /* line is not open for read? */
}
while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
c = 0;
s = 0; /* reset error status */
if (lsr & RCA) {
c = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + DAT) & 0xff;
/*
* We handle XON/XOFF char if IXON is set,
* but if received char is _POSIX_VDISABLE,
* we left it to the up level module.
*/
if (tp->t_iflag & IXON) {
if ((c == async->async_stopc) &&
(c != _POSIX_VDISABLE)) {
async_flowcontrol_sw_output(asy,
FLOW_STOP);
goto check_looplim;
} else if ((c == async->async_startc) &&
(c != _POSIX_VDISABLE)) {
async_flowcontrol_sw_output(asy,
FLOW_START);
needsoft = 1;
goto check_looplim;
}
if ((tp->t_iflag & IXANY) &&
(async->async_flags & ASYNC_SW_OUT_FLW)) {
async_flowcontrol_sw_output(asy,
FLOW_START);
needsoft = 1;
}
}
}
/*
* Check for character break sequence
*/
if ((abort_enable == KIOCABORTALTERNATE) &&
(asy->asy_flags & ASY_CONSOLE)) {
if (abort_charseq_recognize(c))
abort_sequence_enter((char *)NULL);
}
/* Handle framing errors */
if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
if (lsr & PARERR) {
if (tp->t_iflag & INPCK) /* parity enabled */
s |= PERROR;
}
if (lsr & (FRMERR|BRKDET))
s |= FRERROR;
if (lsr & OVRRUN) {
async->async_hw_overrun = 1;
s |= OVERRUN;
}
}
if (s == 0)
if ((tp->t_iflag & PARMRK) &&
!(tp->t_iflag & (IGNPAR|ISTRIP)) &&
(c == 0377))
if (RING_POK(async, 2)) {
RING_PUT(async, 0377);
RING_PUT(async, c);
} else
async->async_sw_overrun = 1;
else
if (RING_POK(async, 1))
RING_PUT(async, c);
else
async->async_sw_overrun = 1;
else
if (s & FRERROR) /* Handle framing errors */
if (c == 0)
if ((asy->asy_flags & ASY_CONSOLE) &&
(abort_enable !=
KIOCABORTALTERNATE))
abort_sequence_enter((char *)0);
else
async->async_break++;
else
if (RING_POK(async, 1))
RING_MARK(async, c, s);
else
async->async_sw_overrun = 1;
else /* Parity errors are handled by ldterm */
if (RING_POK(async, 1))
RING_MARK(async, c, s);
else
async->async_sw_overrun = 1;
check_looplim:
lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
if (looplim-- < 0) /* limit loop */
break;
}
if ((RING_CNT(async) > (RINGSIZE * 3)/4) &&
!(async->async_inflow_source & IN_FLOW_RINGBUFF)) {
async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF);
(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
IN_FLOW_RINGBUFF);
}
if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
(RING_FRAC(async)) || (async->async_polltid == 0))
ASYSETSOFT(asy); /* need a soft interrupt */
}
/*
* Modem status interrupt.
*
* (Note: It is assumed that the MSR hasn't been read by asyintr().)
*/
static void
async_msint(struct asycom *asy)
{
struct asyncline *async = asy->asy_priv;
int msr, t_cflag = async->async_ttycommon.t_cflag;
#ifdef DEBUG
int instance = UNIT(async->async_dev);
#endif
async_msint_retry:
/* this resets the interrupt */
msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
DEBUGCONT10(ASY_DEBUG_STATE,
"async%d_msint call #%d:\n"
" transition: %3s %3s %3s %3s\n"
"current state: %3s %3s %3s %3s\n",
instance,
++(asy->asy_msint_cnt),
(msr & DCTS) ? "DCTS" : " ",
(msr & DDSR) ? "DDSR" : " ",
(msr & DRI) ? "DRI " : " ",
(msr & DDCD) ? "DDCD" : " ",
(msr & CTS) ? "CTS " : " ",
(msr & DSR) ? "DSR " : " ",
(msr & RI) ? "RI " : " ",
(msr & DCD) ? "DCD " : " ");
/* If CTS status is changed, do H/W output flow control */
if ((t_cflag & CRTSCTS) && (((asy->asy_msr ^ msr) & CTS) != 0))
async_flowcontrol_hw_output(asy,
msr & CTS ? FLOW_START : FLOW_STOP);
/*
* Reading MSR resets the interrupt, we save the
* value of msr so that other functions could examine MSR by
* looking at asy_msr.
*/
asy->asy_msr = (uchar_t)msr;
/* Handle PPS event */
if (asy->asy_flags & ASY_PPS)
asy_ppsevent(asy, msr);
async->async_ext++;
ASYSETSOFT(asy);
/*
* We will make sure that the modem status presented to us
* during the previous read has not changed. If the chip samples
* the modem status on the falling edge of the interrupt line,
* and uses this state as the base for detecting change of modem
* status, we would miss a change of modem status event that occured
* after we initiated a read MSR operation.
*/
msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
if (STATES(msr) != STATES(asy->asy_msr))
goto async_msint_retry;
}
/*
* Handle a second-stage interrupt.
*/
/*ARGSUSED*/
uint_t
asysoftintr(caddr_t intarg)
{
struct asycom *asy = (struct asycom *)intarg;
struct asyncline *async;
int rv;
uint_t cc;
/*
* Test and clear soft interrupt.
*/
mutex_enter(&asy->asy_soft_lock);
DEBUGCONT0(ASY_DEBUG_PROCS, "asysoftintr: enter\n");
rv = asy->asysoftpend;
if (rv != 0)
asy->asysoftpend = 0;
mutex_exit(&asy->asy_soft_lock);
if (rv) {
if (asy->asy_priv == NULL)
return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
async = (struct asyncline *)asy->asy_priv;
mutex_enter(&asy->asy_excl_hi);
if (asy->asy_flags & ASY_NEEDSOFT) {
asy->asy_flags &= ~ASY_NEEDSOFT;
mutex_exit(&asy->asy_excl_hi);
async_softint(asy);
mutex_enter(&asy->asy_excl_hi);
}
/*
* There are some instances where the softintr is not
* scheduled and hence not called. It so happens that
* causes the last few characters to be stuck in the
* ringbuffer. Hence, call the handler once again so
* the last few characters are cleared.
*/
cc = RING_CNT(async);
mutex_exit(&asy->asy_excl_hi);
if (cc > 0)
(void) async_softint(asy);
}
return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
}
/*
* Handle a software interrupt.
*/
static void
async_softint(struct asycom *asy)
{
struct asyncline *async = asy->asy_priv;
uint_t cc;
mblk_t *bp;
queue_t *q;
uchar_t val;
uchar_t c;
tty_common_t *tp;
int nb;
int instance = UNIT(async->async_dev);
DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint\n", instance);
mutex_enter(&asy->asy_excl_hi);
if (asy->asy_flags & ASY_DOINGSOFT) {
asy->asy_flags |= ASY_DOINGSOFT_RETRY;
mutex_exit(&asy->asy_excl_hi);
return;
}
asy->asy_flags |= ASY_DOINGSOFT;
begin:
asy->asy_flags &= ~ASY_DOINGSOFT_RETRY;
mutex_exit(&asy->asy_excl_hi);
mutex_enter(&asy->asy_excl);
tp = &async->async_ttycommon;
q = tp->t_readq;
if (async->async_flags & ASYNC_OUT_FLW_RESUME) {
if (async->async_ocnt > 0) {
mutex_enter(&asy->asy_excl_hi);
async_resume(async);
mutex_exit(&asy->asy_excl_hi);
} else {
if (async->async_xmitblk)
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
async_start(async);
}
async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
}
mutex_enter(&asy->asy_excl_hi);
if (async->async_ext) {
async->async_ext = 0;
/* check for carrier up */
DEBUGCONT3(ASY_DEBUG_MODM2,
"async%d_softint: asy_msr & DCD = %x, "
"tp->t_flags & TS_SOFTCAR = %x\n",
instance, asy->asy_msr & DCD, tp->t_flags & TS_SOFTCAR);
if (asy->asy_msr & DCD) {
/* carrier present */
if ((async->async_flags & ASYNC_CARR_ON) == 0) {
DEBUGCONT1(ASY_DEBUG_MODM2,
"async%d_softint: set ASYNC_CARR_ON\n",
instance);
async->async_flags |= ASYNC_CARR_ON;
if (async->async_flags & ASYNC_ISOPEN) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
(void) putctl(q, M_UNHANGUP);
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
}
cv_broadcast(&async->async_flags_cv);
}
} else {
if ((async->async_flags & ASYNC_CARR_ON) &&
!(tp->t_cflag & CLOCAL) &&
!(tp->t_flags & TS_SOFTCAR)) {
int flushflag;
DEBUGCONT1(ASY_DEBUG_MODEM,
"async%d_softint: carrier dropped, "
"so drop DTR\n",
instance);
/*
* Carrier went away.
* Drop DTR, abort any output in
* progress, indicate that output is
* not stopped, and send a hangup
* notification upstream.
*/
val = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + MCR);
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + MCR, (val & ~DTR));
if (async->async_flags & ASYNC_BUSY) {
DEBUGCONT0(ASY_DEBUG_BUSY,
"async_softint: "
"Carrier dropped. "
"Clearing async_ocnt\n");
async->async_ocnt = 0;
} /* if */
async->async_flags &= ~ASYNC_STOPPED;
if (async->async_flags & ASYNC_ISOPEN) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
(void) putctl(q, M_HANGUP);
mutex_enter(&asy->asy_excl);
DEBUGCONT1(ASY_DEBUG_MODEM,
"async%d_softint: "
"putctl(q, M_HANGUP)\n",
instance);
/*
* Flush FIFO buffers
* Any data left in there is invalid now
*/
if (asy->asy_use_fifo == FIFO_ON)
asy_reset_fifo(asy, FIFOTXFLSH);
/*
* Flush our write queue if we have one.
* If we're in the midst of close, then
* flush everything. Don't leave stale
* ioctls lying about.
*/
flushflag = (async->async_flags &
ASYNC_CLOSING) ? FLUSHALL :
FLUSHDATA;
flushq(tp->t_writeq, flushflag);
/* active msg */
bp = async->async_xmitblk;
if (bp != NULL) {
freeb(bp);
async->async_xmitblk = NULL;
}
mutex_enter(&asy->asy_excl_hi);
async->async_flags &= ~ASYNC_BUSY;
/*
* This message warns of Carrier loss
* with data left to transmit can hang
* the system.
*/
DEBUGCONT0(ASY_DEBUG_MODEM,
"async_softint: Flushing to "
"prevent HUPCL hanging\n");
} /* if (ASYNC_ISOPEN) */
} /* if (ASYNC_CARR_ON && CLOCAL) */
async->async_flags &= ~ASYNC_CARR_ON;
cv_broadcast(&async->async_flags_cv);
} /* else */
} /* if (async->async_ext) */
mutex_exit(&asy->asy_excl_hi);
/*
* If data has been added to the circular buffer, remove
* it from the buffer, and send it up the stream if there's
* somebody listening. Try to do it 16 bytes at a time. If we
* have more than 16 bytes to move, move 16 byte chunks and
* leave the rest for next time around (maybe it will grow).
*/
mutex_enter(&asy->asy_excl_hi);
if (!(async->async_flags & ASYNC_ISOPEN)) {
RING_INIT(async);
goto rv;
}
if ((cc = RING_CNT(async)) == 0)
goto rv;
mutex_exit(&asy->asy_excl_hi);
if (!canput(q)) {
mutex_enter(&asy->asy_excl_hi);
if (!(async->async_inflow_source & IN_FLOW_STREAMS)) {
async_flowcontrol_hw_input(asy, FLOW_STOP,
IN_FLOW_STREAMS);
(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
IN_FLOW_STREAMS);
}
goto rv;
}
if (async->async_inflow_source & IN_FLOW_STREAMS) {
mutex_enter(&asy->asy_excl_hi);
async_flowcontrol_hw_input(asy, FLOW_START,
IN_FLOW_STREAMS);
(void) async_flowcontrol_sw_input(asy, FLOW_START,
IN_FLOW_STREAMS);
mutex_exit(&asy->asy_excl_hi);
}
DEBUGCONT2(ASY_DEBUG_INPUT, "async%d_softint: %d char(s) in queue.\n",
instance, cc);
if (!(bp = allocb(cc, BPRI_MED))) {
mutex_exit(&asy->asy_excl);
ttycommon_qfull(&async->async_ttycommon, q);
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
goto rv;
}
mutex_enter(&asy->asy_excl_hi);
do {
if (RING_ERR(async, S_ERRORS)) {
RING_UNMARK(async);
c = RING_GET(async);
break;
} else
*bp->b_wptr++ = RING_GET(async);
} while (--cc);
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
if (bp->b_wptr > bp->b_rptr) {
if (!canput(q)) {
asyerror(CE_NOTE, "asy%d: local queue full",
instance);
freemsg(bp);
} else
(void) putq(q, bp);
} else
freemsg(bp);
/*
* If we have a parity error, then send
* up an M_BREAK with the "bad"
* character as an argument. Let ldterm
* figure out what to do with the error.
*/
if (cc) {
(void) putctl1(q, M_BREAK, c);
ASYSETSOFT(async->async_common); /* finish cc chars */
}
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
rv:
if ((RING_CNT(async) < (RINGSIZE/4)) &&
(async->async_inflow_source & IN_FLOW_RINGBUFF)) {
async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_RINGBUFF);
(void) async_flowcontrol_sw_input(asy, FLOW_START,
IN_FLOW_RINGBUFF);
}
/*
* If a transmission has finished, indicate that it's finished,
* and start that line up again.
*/
if (async->async_break > 0) {
nb = async->async_break;
async->async_break = 0;
if (async->async_flags & ASYNC_ISOPEN) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
for (; nb > 0; nb--)
(void) putctl(q, M_BREAK);
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
}
}
if (async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) {
DEBUGCONT2(ASY_DEBUG_BUSY,
"async%d_softint: Clearing ASYNC_BUSY. async_ocnt=%d\n",
instance,
async->async_ocnt);
async->async_flags &= ~ASYNC_BUSY;
mutex_exit(&asy->asy_excl_hi);
if (async->async_xmitblk)
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
async_start(async);
/*
* If the flag isn't set after doing the async_start above, we
* may have finished all the queued output. Signal any thread
* stuck in close.
*/
if (!(async->async_flags & ASYNC_BUSY))
cv_broadcast(&async->async_flags_cv);
mutex_enter(&asy->asy_excl_hi);
}
/*
* A note about these overrun bits: all they do is *tell* someone
* about an error- They do not track multiple errors. In fact,
* you could consider them latched register bits if you like.
* We are only interested in printing the error message once for
* any cluster of overrun errrors.
*/
if (async->async_hw_overrun) {
if (async->async_flags & ASYNC_ISOPEN) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
asyerror(CE_NOTE, "asy%d: silo overflow", instance);
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
}
async->async_hw_overrun = 0;
}
if (async->async_sw_overrun) {
if (async->async_flags & ASYNC_ISOPEN) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
asyerror(CE_NOTE, "asy%d: ring buffer overflow",
instance);
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
}
async->async_sw_overrun = 0;
}
if (asy->asy_flags & ASY_DOINGSOFT_RETRY) {
mutex_exit(&asy->asy_excl);
goto begin;
}
asy->asy_flags &= ~ASY_DOINGSOFT;
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint: done\n", instance);
}
/*
* Restart output on a line after a delay or break timer expired.
*/
static void
async_restart(void *arg)
{
struct asyncline *async = (struct asyncline *)arg;
struct asycom *asy = async->async_common;
uchar_t lcr;
/*
* If break timer expired, turn off the break bit.
*/
#ifdef DEBUG
int instance = UNIT(async->async_dev);
DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_restart\n", instance);
#endif
mutex_enter(&asy->asy_excl);
/*
* If ASYNC_OUT_SUSPEND is also set, we don't really
* clean the HW break, TIOCCBRK is responsible for this.
*/
if ((async->async_flags & ASYNC_BREAK) &&
!(async->async_flags & ASYNC_OUT_SUSPEND)) {
mutex_enter(&asy->asy_excl_hi);
lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
(lcr & ~SETBREAK));
mutex_exit(&asy->asy_excl_hi);
}
async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK);
cv_broadcast(&async->async_flags_cv);
async_start(async);
mutex_exit(&asy->asy_excl);
}
static void
async_start(struct asyncline *async)
{
async_nstart(async, 0);
}
/*
* Start output on a line, unless it's busy, frozen, or otherwise.
*/
/*ARGSUSED*/
static void
async_nstart(struct asyncline *async, int mode)
{
struct asycom *asy = async->async_common;
int cc;
queue_t *q;
mblk_t *bp;
uchar_t *xmit_addr;
uchar_t val;
int fifo_len = 1;
boolean_t didsome;
mblk_t *nbp;
#ifdef DEBUG
int instance = UNIT(async->async_dev);
DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_nstart\n", instance);
#endif
if (asy->asy_use_fifo == FIFO_ON) {
fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
if (fifo_len > asy_max_tx_fifo)
fifo_len = asy_max_tx_fifo;
}
ASSERT(mutex_owned(&asy->asy_excl));
/*
* If the chip is busy (i.e., we're waiting for a break timeout
* to expire, or for the current transmission to finish, or for
* output to finish draining from chip), don't grab anything new.
*/
if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY)) {
DEBUGCONT2((mode? ASY_DEBUG_OUT : 0),
"async%d_nstart: start %s.\n",
instance,
async->async_flags & ASYNC_BREAK ? "break" : "busy");
return;
}
/*
* Check only pended sw input flow control.
*/
mutex_enter(&asy->asy_excl_hi);
if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
fifo_len--;
mutex_exit(&asy->asy_excl_hi);
/*
* If we're waiting for a delay timeout to expire, don't grab
* anything new.
*/
if (async->async_flags & ASYNC_DELAY) {
DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
"async%d_nstart: start ASYNC_DELAY.\n", instance);
return;
}
if ((q = async->async_ttycommon.t_writeq) == NULL) {
DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
"async%d_nstart: start writeq is null.\n", instance);
return; /* not attached to a stream */
}
for (;;) {
if ((bp = getq(q)) == NULL)
return; /* no data to transmit */
/*
* We have a message block to work on.
* Check whether it's a break, a delay, or an ioctl (the latter
* occurs if the ioctl in question was waiting for the output
* to drain). If it's one of those, process it immediately.
*/
switch (bp->b_datap->db_type) {
case M_BREAK:
/*
* Set the break bit, and arrange for "async_restart"
* to be called in 1/4 second; it will turn the
* break bit off, and call "async_start" to grab
* the next message.
*/
mutex_enter(&asy->asy_excl_hi);
val = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LCR);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
(val | SETBREAK));
mutex_exit(&asy->asy_excl_hi);
async->async_flags |= ASYNC_BREAK;
(void) timeout(async_restart, (caddr_t)async,
drv_usectohz(1000000)/4);
freemsg(bp);
return; /* wait for this to finish */
case M_DELAY:
/*
* Arrange for "async_restart" to be called when the
* delay expires; it will turn ASYNC_DELAY off,
* and call "async_start" to grab the next message.
*/
(void) timeout(async_restart, (caddr_t)async,
(int)(*(unsigned char *)bp->b_rptr + 6));
async->async_flags |= ASYNC_DELAY;
freemsg(bp);
return; /* wait for this to finish */
case M_IOCTL:
/*
* This ioctl was waiting for the output ahead of
* it to drain; obviously, it has. Do it, and
* then grab the next message after it.
*/
mutex_exit(&asy->asy_excl);
async_ioctl(async, q, bp);
mutex_enter(&asy->asy_excl);
continue;
}
while (bp != NULL && ((cc = MBLKL(bp)) == 0)) {
nbp = bp->b_cont;
freeb(bp);
bp = nbp;
}
if (bp != NULL)
break;
}
/*
* We have data to transmit. If output is stopped, put
* it back and try again later.
*/
if (async->async_flags & (ASYNC_HW_OUT_FLW | ASYNC_SW_OUT_FLW |
ASYNC_STOPPED | ASYNC_OUT_SUSPEND)) {
(void) putbq(q, bp);
return;
}
async->async_xmitblk = bp;
xmit_addr = bp->b_rptr;
bp = bp->b_cont;
if (bp != NULL)
(void) putbq(q, bp); /* not done with this message yet */
/*
* In 5-bit mode, the high order bits are used
* to indicate character sizes less than five,
* so we need to explicitly mask before transmitting
*/
if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
unsigned char *p = xmit_addr;
int cnt = cc;
while (cnt--)
*p++ &= (unsigned char) 0x1f;
}
/*
* Set up this block for pseudo-DMA.
*/
mutex_enter(&asy->asy_excl_hi);
/*
* If the transmitter is ready, shove the first
* character out.
*/
didsome = B_FALSE;
while (--fifo_len >= 0 && cc > 0) {
if (!(ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) &
XHRE))
break;
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
*xmit_addr++);
cc--;
didsome = B_TRUE;
}
async->async_optr = xmit_addr;
async->async_ocnt = cc;
if (didsome)
async->async_flags |= ASYNC_PROGRESS;
DEBUGCONT2(ASY_DEBUG_BUSY,
"async%d_nstart: Set ASYNC_BUSY. async_ocnt=%d\n",
instance, async->async_ocnt);
async->async_flags |= ASYNC_BUSY;
mutex_exit(&asy->asy_excl_hi);
}
/*
* Resume output by poking the transmitter.
*/
static void
async_resume(struct asyncline *async)
{
struct asycom *asy = async->async_common;
#ifdef DEBUG
int instance;
#endif
ASSERT(mutex_owned(&asy->asy_excl_hi));
#ifdef DEBUG
instance = UNIT(async->async_dev);
DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_resume\n", instance);
#endif
if (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE) {
if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
return;
if (async->async_ocnt > 0 &&
!(async->async_flags &
(ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_OUT_SUSPEND))) {
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + DAT, *async->async_optr++);
async->async_ocnt--;
async->async_flags |= ASYNC_PROGRESS;
}
}
}
/*
* Hold the untimed break to last the minimum time.
*/
static void
async_hold_utbrk(void *arg)
{
struct asyncline *async = arg;
struct asycom *asy = async->async_common;
mutex_enter(&asy->asy_excl);
async->async_flags &= ~ASYNC_HOLD_UTBRK;
cv_broadcast(&async->async_flags_cv);
async->async_utbrktid = 0;
mutex_exit(&asy->asy_excl);
}
/*
* Resume the untimed break.
*/
static void
async_resume_utbrk(struct asyncline *async)
{
uchar_t val;
struct asycom *asy = async->async_common;
ASSERT(mutex_owned(&asy->asy_excl));
/*
* Because the wait time is very short,
* so we use uninterruptably wait.
*/
while (async->async_flags & ASYNC_HOLD_UTBRK) {
cv_wait(&async->async_flags_cv, &asy->asy_excl);
}
mutex_enter(&asy->asy_excl_hi);
/*
* Timed break and untimed break can exist simultaneously,
* if ASYNC_BREAK is also set at here, we don't
* really clean the HW break.
*/
if (!(async->async_flags & ASYNC_BREAK)) {
val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
(val & ~SETBREAK));
}
async->async_flags &= ~ASYNC_OUT_SUSPEND;
cv_broadcast(&async->async_flags_cv);
if (async->async_ocnt > 0) {
async_resume(async);
mutex_exit(&asy->asy_excl_hi);
} else {
async->async_flags &= ~ASYNC_BUSY;
mutex_exit(&asy->asy_excl_hi);
if (async->async_xmitblk != NULL) {
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
}
async_start(async);
}
}
/*
* Process an "ioctl" message sent down to us.
* Note that we don't need to get any locks until we are ready to access
* the hardware. Nothing we access until then is going to be altered
* outside of the STREAMS framework, so we should be safe.
*/
int asydelay = 10000;
static void
async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp)
{
struct asycom *asy = async->async_common;
tty_common_t *tp = &async->async_ttycommon;
struct iocblk *iocp;
unsigned datasize;
int error = 0;
uchar_t val;
mblk_t *datamp;
unsigned int index;
#ifdef DEBUG
int instance = UNIT(async->async_dev);
DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl\n", instance);
#endif
if (tp->t_iocpending != NULL) {
/*
* We were holding an "ioctl" response pending the
* availability of an "mblk" to hold data to be passed up;
* another "ioctl" came through, which means that "ioctl"
* must have timed out or been aborted.
*/
freemsg(async->async_ttycommon.t_iocpending);
async->async_ttycommon.t_iocpending = NULL;
}
iocp = (struct iocblk *)mp->b_rptr;
/*
* For TIOCMGET and the PPS ioctls, do NOT call ttycommon_ioctl()
* because this function frees up the message block (mp->b_cont) that
* contains the user location where we pass back the results.
*
* Similarly, CONSOPENPOLLEDIO needs ioc_count, which ttycommon_ioctl
* zaps. We know that ttycommon_ioctl doesn't know any CONS*
* ioctls, so keep the others safe too.
*/
DEBUGCONT2(ASY_DEBUG_IOCTL, "async%d_ioctl: %s\n",
instance,
iocp->ioc_cmd == TIOCMGET ? "TIOCMGET" :
iocp->ioc_cmd == TIOCMSET ? "TIOCMSET" :
iocp->ioc_cmd == TIOCMBIS ? "TIOCMBIS" :
iocp->ioc_cmd == TIOCMBIC ? "TIOCMBIC" :
"other");
switch (iocp->ioc_cmd) {
case TIOCMGET:
case TIOCGPPS:
case TIOCSPPS:
case TIOCGPPSEV:
case CONSOPENPOLLEDIO:
case CONSCLOSEPOLLEDIO:
case CONSSETABORTENABLE:
case CONSGETABORTENABLE:
error = -1; /* Do Nothing */
break;
default:
/*
* The only way in which "ttycommon_ioctl" can fail is if the
* "ioctl" requires a response containing data to be returned
* to the user, and no mblk could be allocated for the data.
* No such "ioctl" alters our state. Thus, we always go ahead
* and do any state-changes the "ioctl" calls for. If we
* couldn't allocate the data, "ttycommon_ioctl" has stashed
* the "ioctl" away safely, so we just call "bufcall" to
* request that we be called back when we stand a better
* chance of allocating the data.
*/
if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
if (async->async_wbufcid)
unbufcall(async->async_wbufcid);
async->async_wbufcid = bufcall(datasize, BPRI_HI,
(void (*)(void *)) async_reioctl,
(void *)(intptr_t)async->async_common->asy_unit);
return;
}
}
mutex_enter(&asy->asy_excl);
if (error == 0) {
/*
* "ttycommon_ioctl" did most of the work; we just use the
* data it set up.
*/
switch (iocp->ioc_cmd) {
case TCSETS:
mutex_enter(&asy->asy_excl_hi);
if (asy_baudok(asy))
asy_program(asy, ASY_NOINIT);
else
error = EINVAL;
mutex_exit(&asy->asy_excl_hi);
break;
case TCSETSF:
case TCSETSW:
case TCSETA:
case TCSETAW:
case TCSETAF:
mutex_enter(&asy->asy_excl_hi);
if (!asy_baudok(asy))
error = EINVAL;
else {
if (asy_isbusy(asy))
asy_waiteot(asy);
asy_program(asy, ASY_NOINIT);
}
mutex_exit(&asy->asy_excl_hi);
break;
}
} else if (error < 0) {
/*
* "ttycommon_ioctl" didn't do anything; we process it here.
*/
error = 0;
switch (iocp->ioc_cmd) {
case TIOCGPPS:
/*
* Get PPS on/off.
*/
if (mp->b_cont != NULL)
freemsg(mp->b_cont);
mp->b_cont = allocb(sizeof (int), BPRI_HI);
if (mp->b_cont == NULL) {
error = ENOMEM;
break;
}
if (asy->asy_flags & ASY_PPS)
*(int *)mp->b_cont->b_wptr = 1;
else
*(int *)mp->b_cont->b_wptr = 0;
mp->b_cont->b_wptr += sizeof (int);
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = sizeof (int);
break;
case TIOCSPPS:
/*
* Set PPS on/off.
*/
error = miocpullup(mp, sizeof (int));
if (error != 0)
break;
mutex_enter(&asy->asy_excl_hi);
if (*(int *)mp->b_cont->b_rptr)
asy->asy_flags |= ASY_PPS;
else
asy->asy_flags &= ~ASY_PPS;
/* Reset edge sense */
asy->asy_flags &= ~ASY_PPS_EDGE;
mutex_exit(&asy->asy_excl_hi);
mp->b_datap->db_type = M_IOCACK;
break;
case TIOCGPPSEV:
{
/*
* Get PPS event data.
*/
mblk_t *bp;
void *buf;
#ifdef _SYSCALL32_IMPL
struct ppsclockev32 p32;
#endif
struct ppsclockev ppsclockev;
if (mp->b_cont != NULL) {
freemsg(mp->b_cont);
mp->b_cont = NULL;
}
if ((asy->asy_flags & ASY_PPS) == 0) {
error = ENXIO;
break;
}
/* Protect from incomplete asy_ppsev */
mutex_enter(&asy->asy_excl_hi);
ppsclockev = asy_ppsev;
mutex_exit(&asy->asy_excl_hi);
#ifdef _SYSCALL32_IMPL
if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
p32.serial = ppsclockev.serial;
buf = &p32;
iocp->ioc_count = sizeof (struct ppsclockev32);
} else
#endif
{
buf = &ppsclockev;
iocp->ioc_count = sizeof (struct ppsclockev);
}
if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
error = ENOMEM;
break;
}
mp->b_cont = bp;
bcopy(buf, bp->b_wptr, iocp->ioc_count);
bp->b_wptr += iocp->ioc_count;
mp->b_datap->db_type = M_IOCACK;
break;
}
case TCSBRK:
error = miocpullup(mp, sizeof (int));
if (error != 0)
break;
if (*(int *)mp->b_cont->b_rptr == 0) {
/*
* XXX Arrangements to ensure that a break
* isn't in progress should be sufficient.
* This ugly delay() is the only thing
* that seems to work on the NCR Worldmark.
* It should be replaced. Note that an
* asy_waiteot() also does not work.
*/
if (asydelay)
delay(drv_usectohz(asydelay));
while (async->async_flags & ASYNC_BREAK) {
cv_wait(&async->async_flags_cv,
&asy->asy_excl);
}
mutex_enter(&asy->asy_excl_hi);
/*
* We loop until the TSR is empty and then
* set the break. ASYNC_BREAK has been set
* to ensure that no characters are
* transmitted while the TSR is being
* flushed and SOUT is being used for the
* break signal.
*
* The wait period is equal to
* clock / (baud * 16) * 16 * 2.
*/
index = BAUDINDEX(
async->async_ttycommon.t_cflag);
async->async_flags |= ASYNC_BREAK;
while ((ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LSR) & XSRE) == 0) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
drv_usecwait(
32*asyspdtab[index] & 0xfff);
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
}
/*
* Arrange for "async_restart"
* to be called in 1/4 second;
* it will turn the break bit off, and call
* "async_start" to grab the next message.
*/
val = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LCR);
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + LCR,
(val | SETBREAK));
mutex_exit(&asy->asy_excl_hi);
(void) timeout(async_restart, (caddr_t)async,
drv_usectohz(1000000)/4);
} else {
DEBUGCONT1(ASY_DEBUG_OUT,
"async%d_ioctl: wait for flush.\n",
instance);
mutex_enter(&asy->asy_excl_hi);
asy_waiteot(asy);
mutex_exit(&asy->asy_excl_hi);
DEBUGCONT1(ASY_DEBUG_OUT,
"async%d_ioctl: ldterm satisfied.\n",
instance);
}
break;
case TIOCSBRK:
if (!(async->async_flags & ASYNC_OUT_SUSPEND)) {
mutex_enter(&asy->asy_excl_hi);
async->async_flags |= ASYNC_OUT_SUSPEND;
async->async_flags |= ASYNC_HOLD_UTBRK;
index = BAUDINDEX(
async->async_ttycommon.t_cflag);
while ((ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LSR) & XSRE) == 0) {
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
drv_usecwait(
32*asyspdtab[index] & 0xfff);
mutex_enter(&asy->asy_excl);
mutex_enter(&asy->asy_excl_hi);
}
val = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LCR);
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + LCR, (val | SETBREAK));
mutex_exit(&asy->asy_excl_hi);
/* wait for 100ms to hold BREAK */
async->async_utbrktid =
timeout((void (*)())async_hold_utbrk,
(caddr_t)async,
drv_usectohz(asy_min_utbrk));
}
mioc2ack(mp, NULL, 0, 0);
break;
case TIOCCBRK:
if (async->async_flags & ASYNC_OUT_SUSPEND)
async_resume_utbrk(async);
mioc2ack(mp, NULL, 0, 0);
break;
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
if (iocp->ioc_count != TRANSPARENT) {
DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
"non-transparent\n", instance);
error = miocpullup(mp, sizeof (int));
if (error != 0)
break;
mutex_enter(&asy->asy_excl_hi);
(void) asymctl(asy,
dmtoasy(*(int *)mp->b_cont->b_rptr),
iocp->ioc_cmd);
mutex_exit(&asy->asy_excl_hi);
iocp->ioc_error = 0;
mp->b_datap->db_type = M_IOCACK;
} else {
DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
"transparent\n", instance);
mcopyin(mp, NULL, sizeof (int), NULL);
}
break;
case TIOCMGET:
datamp = allocb(sizeof (int), BPRI_MED);
if (datamp == NULL) {
error = EAGAIN;
break;
}
mutex_enter(&asy->asy_excl_hi);
*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
mutex_exit(&asy->asy_excl_hi);
if (iocp->ioc_count == TRANSPARENT) {
DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
"transparent\n", instance);
mcopyout(mp, NULL, sizeof (int), NULL, datamp);
} else {
DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
"non-transparent\n", instance);
mioc2ack(mp, datamp, sizeof (int), 0);
}
break;
case CONSOPENPOLLEDIO:
error = miocpullup(mp, sizeof (struct cons_polledio *));
if (error != 0)
break;
*(struct cons_polledio **)mp->b_cont->b_rptr =
&asy->polledio;
mp->b_datap->db_type = M_IOCACK;
break;
case CONSCLOSEPOLLEDIO:
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_error = 0;
iocp->ioc_rval = 0;
break;
case CONSSETABORTENABLE:
error = secpolicy_console(iocp->ioc_cr);
if (error != 0)
break;
if (iocp->ioc_count != TRANSPARENT) {
error = EINVAL;
break;
}
if (*(intptr_t *)mp->b_cont->b_rptr)
asy->asy_flags |= ASY_CONSOLE;
else
asy->asy_flags &= ~ASY_CONSOLE;
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_error = 0;
iocp->ioc_rval = 0;
break;
case CONSGETABORTENABLE:
/*CONSTANTCONDITION*/
ASSERT(sizeof (boolean_t) <= sizeof (boolean_t *));
/*
* Store the return value right in the payload
* we were passed. Crude.
*/
mcopyout(mp, NULL, sizeof (boolean_t), NULL, NULL);
*(boolean_t *)mp->b_cont->b_rptr =
(asy->asy_flags & ASY_CONSOLE) != 0;
break;
default:
/*
* If we don't understand it, it's an error. NAK it.
*/
error = EINVAL;
break;
}
}
if (error != 0) {
iocp->ioc_error = error;
mp->b_datap->db_type = M_IOCNAK;
}
mutex_exit(&asy->asy_excl);
qreply(wq, mp);
DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl: done\n", instance);
}
static int
asyrsrv(queue_t *q)
{
mblk_t *bp;
struct asyncline *async;
async = (struct asyncline *)q->q_ptr;
while (canputnext(q) && (bp = getq(q)))
putnext(q, bp);
ASYSETSOFT(async->async_common);
async->async_polltid = 0;
return (0);
}
/*
* The ASYWPUTDO_NOT_SUSP macro indicates to asywputdo() whether it should
* handle messages as though the driver is operating normally or is
* suspended. In the suspended case, some or all of the processing may have
* to be delayed until the driver is resumed.
*/
#define ASYWPUTDO_NOT_SUSP(async, wput) \
!((wput) && ((async)->async_flags & ASYNC_DDI_SUSPENDED))
/*
* Processing for write queue put procedure.
* Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
* set the flow control character for M_STOPI and M_STARTI messages;
* queue up M_BREAK, M_DELAY, and M_DATA messages for processing
* by the start routine, and then call the start routine; discard
* everything else. Note that this driver does not incorporate any
* mechanism to negotiate to handle the canonicalization process.
* It expects that these functions are handled in upper module(s),
* as we do in ldterm.
*/
static int
asywputdo(queue_t *q, mblk_t *mp, boolean_t wput)
{
struct asyncline *async;
struct asycom *asy;
#ifdef DEBUG
int instance;
#endif
int error;
async = (struct asyncline *)q->q_ptr;
#ifdef DEBUG
instance = UNIT(async->async_dev);
#endif
asy = async->async_common;
switch (mp->b_datap->db_type) {
case M_STOP:
/*
* Since we don't do real DMA, we can just let the
* chip coast to a stop after applying the brakes.
*/
mutex_enter(&asy->asy_excl);
async->async_flags |= ASYNC_STOPPED;
mutex_exit(&asy->asy_excl);
freemsg(mp);
break;
case M_START:
mutex_enter(&asy->asy_excl);
if (async->async_flags & ASYNC_STOPPED) {
async->async_flags &= ~ASYNC_STOPPED;
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
/*
* If an output operation is in progress,
* resume it. Otherwise, prod the start
* routine.
*/
if (async->async_ocnt > 0) {
mutex_enter(&asy->asy_excl_hi);
async_resume(async);
mutex_exit(&asy->asy_excl_hi);
} else {
async_start(async);
}
}
}
mutex_exit(&asy->asy_excl);
freemsg(mp);
break;
case M_IOCTL:
switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
case TCSBRK:
error = miocpullup(mp, sizeof (int));
if (error != 0) {
miocnak(q, mp, 0, error);
return (0);
}
if (*(int *)mp->b_cont->b_rptr != 0) {
DEBUGCONT1(ASY_DEBUG_OUT,
"async%d_ioctl: flush request.\n",
instance);
(void) putq(q, mp);
mutex_enter(&asy->asy_excl);
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
/*
* If an TIOCSBRK is in progress,
* clean it as TIOCCBRK does,
* then kick off output.
* If TIOCSBRK is not in progress,
* just kick off output.
*/
async_resume_utbrk(async);
}
mutex_exit(&asy->asy_excl);
break;
}
/*FALLTHROUGH*/
case TCSETSW:
case TCSETSF:
case TCSETAW:
case TCSETAF:
/*
* The changes do not take effect until all
* output queued before them is drained.
* Put this message on the queue, so that
* "async_start" will see it when it's done
* with the output before it. Poke the
* start routine, just in case.
*/
(void) putq(q, mp);
mutex_enter(&asy->asy_excl);
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
/*
* If an TIOCSBRK is in progress,
* clean it as TIOCCBRK does.
* then kick off output.
* If TIOCSBRK is not in progress,
* just kick off output.
*/
async_resume_utbrk(async);
}
mutex_exit(&asy->asy_excl);
break;
default:
/*
* Do it now.
*/
mutex_enter(&asy->asy_excl);
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
mutex_exit(&asy->asy_excl);
async_ioctl(async, q, mp);
break;
}
async_put_suspq(asy, mp);
mutex_exit(&asy->asy_excl);
break;
}
break;
case M_FLUSH:
if (*mp->b_rptr & FLUSHW) {
mutex_enter(&asy->asy_excl);
/*
* Abort any output in progress.
*/
mutex_enter(&asy->asy_excl_hi);
if (async->async_flags & ASYNC_BUSY) {
DEBUGCONT1(ASY_DEBUG_BUSY, "asy%dwput: "
"Clearing async_ocnt, "
"leaving ASYNC_BUSY set\n",
instance);
async->async_ocnt = 0;
async->async_flags &= ~ASYNC_BUSY;
} /* if */
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
/* Flush FIFO buffers */
if (asy->asy_use_fifo == FIFO_ON) {
asy_reset_fifo(asy, FIFOTXFLSH);
}
}
mutex_exit(&asy->asy_excl_hi);
/* Flush FIFO buffers */
if (asy->asy_use_fifo == FIFO_ON) {
asy_reset_fifo(asy, FIFOTXFLSH);
}
/*
* Flush our write queue.
*/
flushq(q, FLUSHDATA); /* XXX doesn't flush M_DELAY */
if (async->async_xmitblk != NULL) {
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
}
mutex_exit(&asy->asy_excl);
*mp->b_rptr &= ~FLUSHW; /* it has been flushed */
}
if (*mp->b_rptr & FLUSHR) {
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
/* Flush FIFO buffers */
if (asy->asy_use_fifo == FIFO_ON) {
asy_reset_fifo(asy, FIFORXFLSH);
}
}
flushq(RD(q), FLUSHDATA);
qreply(q, mp); /* give the read queues a crack at it */
} else {
freemsg(mp);
}
/*
* We must make sure we process messages that survive the
* write-side flush.
*/
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
mutex_enter(&asy->asy_excl);
async_start(async);
mutex_exit(&asy->asy_excl);
}
break;
case M_BREAK:
case M_DELAY:
case M_DATA:
/*
* Queue the message up to be transmitted,
* and poke the start routine.
*/
(void) putq(q, mp);
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
mutex_enter(&asy->asy_excl);
async_start(async);
mutex_exit(&asy->asy_excl);
}
break;
case M_STOPI:
mutex_enter(&asy->asy_excl);
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
mutex_enter(&asy->asy_excl_hi);
if (!(async->async_inflow_source & IN_FLOW_USER)) {
async_flowcontrol_hw_input(asy, FLOW_STOP,
IN_FLOW_USER);
(void) async_flowcontrol_sw_input(asy,
FLOW_STOP, IN_FLOW_USER);
}
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
freemsg(mp);
break;
}
async_put_suspq(asy, mp);
mutex_exit(&asy->asy_excl);
break;
case M_STARTI:
mutex_enter(&asy->asy_excl);
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
mutex_enter(&asy->asy_excl_hi);
if (async->async_inflow_source & IN_FLOW_USER) {
async_flowcontrol_hw_input(asy, FLOW_START,
IN_FLOW_USER);
(void) async_flowcontrol_sw_input(asy,
FLOW_START, IN_FLOW_USER);
}
mutex_exit(&asy->asy_excl_hi);
mutex_exit(&asy->asy_excl);
freemsg(mp);
break;
}
async_put_suspq(asy, mp);
mutex_exit(&asy->asy_excl);
break;
case M_CTL:
if (MBLKL(mp) >= sizeof (struct iocblk) &&
((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
mutex_enter(&asy->asy_excl);
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
((struct iocblk *)mp->b_rptr)->ioc_cmd =
MC_HAS_POSIX;
mutex_exit(&asy->asy_excl);
qreply(q, mp);
break;
} else {
async_put_suspq(asy, mp);
}
} else {
/*
* These MC_SERVICE type messages are used by upper
* modules to tell this driver to send input up
* immediately, or that it can wait for normal
* processing that may or may not be done. Sun
* requires these for the mouse module.
* (XXX - for x86?)
*/
mutex_enter(&asy->asy_excl);
switch (*mp->b_rptr) {
case MC_SERVICEIMM:
async->async_flags |= ASYNC_SERVICEIMM;
break;
case MC_SERVICEDEF:
async->async_flags &= ~ASYNC_SERVICEIMM;
break;
}
mutex_exit(&asy->asy_excl);
freemsg(mp);
}
break;
case M_IOCDATA:
mutex_enter(&asy->asy_excl);
if (ASYWPUTDO_NOT_SUSP(async, wput)) {
mutex_exit(&asy->asy_excl);
async_iocdata(q, mp);
break;
}
async_put_suspq(asy, mp);
mutex_exit(&asy->asy_excl);
break;
default:
freemsg(mp);
break;
}
return (0);
}
static int
asywput(queue_t *q, mblk_t *mp)
{
return (asywputdo(q, mp, B_TRUE));
}
/*
* Retry an "ioctl", now that "bufcall" claims we may be able to allocate
* the buffer we need.
*/
static void
async_reioctl(void *unit)
{
int instance = (uintptr_t)unit;
struct asyncline *async;
struct asycom *asy;
queue_t *q;
mblk_t *mp;
asy = ddi_get_soft_state(asy_soft_state, instance);
ASSERT(asy != NULL);
async = asy->asy_priv;
/*
* The bufcall is no longer pending.
*/
mutex_enter(&asy->asy_excl);
async->async_wbufcid = 0;
if ((q = async->async_ttycommon.t_writeq) == NULL) {
mutex_exit(&asy->asy_excl);
return;
}
if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
/* not pending any more */
async->async_ttycommon.t_iocpending = NULL;
mutex_exit(&asy->asy_excl);
async_ioctl(async, q, mp);
} else
mutex_exit(&asy->asy_excl);
}
static void
async_iocdata(queue_t *q, mblk_t *mp)
{
struct asyncline *async = (struct asyncline *)q->q_ptr;
struct asycom *asy;
struct iocblk *ip;
struct copyresp *csp;
#ifdef DEBUG
int instance = UNIT(async->async_dev);
#endif
asy = async->async_common;
ip = (struct iocblk *)mp->b_rptr;
csp = (struct copyresp *)mp->b_rptr;
if (csp->cp_rval != 0) {
if (csp->cp_private)
freemsg(csp->cp_private);
freemsg(mp);
return;
}
mutex_enter(&asy->asy_excl);
DEBUGCONT2(ASY_DEBUG_MODEM, "async%d_iocdata: case %s\n",
instance,
csp->cp_cmd == TIOCMGET ? "TIOCMGET" :
csp->cp_cmd == TIOCMSET ? "TIOCMSET" :
csp->cp_cmd == TIOCMBIS ? "TIOCMBIS" :
"TIOCMBIC");
switch (csp->cp_cmd) {
case TIOCMGET:
if (mp->b_cont) {
freemsg(mp->b_cont);
mp->b_cont = NULL;
}
mp->b_datap->db_type = M_IOCACK;
ip->ioc_error = 0;
ip->ioc_count = 0;
ip->ioc_rval = 0;
mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
break;
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
mutex_enter(&asy->asy_excl_hi);
(void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
csp->cp_cmd);
mutex_exit(&asy->asy_excl_hi);
mioc2ack(mp, NULL, 0, 0);
break;
default:
mp->b_datap->db_type = M_IOCNAK;
ip->ioc_error = EINVAL;
break;
}
qreply(q, mp);
mutex_exit(&asy->asy_excl);
}
/*
* debugger/console support routines.
*/
/*
* put a character out
* Do not use interrupts. If char is LF, put out CR, LF.
*/
static void
asyputchar(cons_polledio_arg_t arg, uchar_t c)
{
struct asycom *asy = (struct asycom *)arg;
if (c == '\n')
asyputchar(arg, '\r');
while ((ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + LSR) & XHRE) == 0) {
/* wait for xmit to finish */
drv_usecwait(10);
}
/* put the character out */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, c);
}
/*
* See if there's a character available. If no character is
* available, return 0. Run in polled mode, no interrupts.
*/
static boolean_t
asyischar(cons_polledio_arg_t arg)
{
struct asycom *asy = (struct asycom *)arg;
return ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & RCA)
!= 0);
}
/*
* Get a character. Run in polled mode, no interrupts.
*/
static int
asygetchar(cons_polledio_arg_t arg)
{
struct asycom *asy = (struct asycom *)arg;
while (!asyischar(arg))
drv_usecwait(10);
return (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT));
}
/*
* Set or get the modem control status.
*/
static int
asymctl(struct asycom *asy, int bits, int how)
{
int mcr_r, msr_r;
int instance = asy->asy_unit;
ASSERT(mutex_owned(&asy->asy_excl_hi));
ASSERT(mutex_owned(&asy->asy_excl));
/* Read Modem Control Registers */
mcr_r = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
switch (how) {
case TIOCMSET:
DEBUGCONT2(ASY_DEBUG_MODEM,
"asy%dmctl: TIOCMSET, bits = %x\n", instance, bits);
mcr_r = bits; /* Set bits */
break;
case TIOCMBIS:
DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIS, bits = %x\n",
instance, bits);
mcr_r |= bits; /* Mask in bits */
break;
case TIOCMBIC:
DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIC, bits = %x\n",
instance, bits);
mcr_r &= ~bits; /* Mask out bits */
break;
case TIOCMGET:
/* Read Modem Status Registers */
/*
* If modem interrupts are enabled, we return the
* saved value of msr. We read MSR only in async_msint()
*/
if (ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + ICR) & MIEN) {
msr_r = asy->asy_msr;
DEBUGCONT2(ASY_DEBUG_MODEM,
"asy%dmctl: TIOCMGET, read msr_r = %x\n",
instance, msr_r);
} else {
msr_r = ddi_get8(asy->asy_iohandle,
asy->asy_ioaddr + MSR);
DEBUGCONT2(ASY_DEBUG_MODEM,
"asy%dmctl: TIOCMGET, read MSR = %x\n",
instance, msr_r);
}
DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dtodm: modem_lines = %x\n",
instance, asytodm(mcr_r, msr_r));
return (asytodm(mcr_r, msr_r));
}
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr_r);
return (mcr_r);
}
static int
asytodm(int mcr_r, int msr_r)
{
int b = 0;
/* MCR registers */
if (mcr_r & RTS)
b |= TIOCM_RTS;
if (mcr_r & DTR)
b |= TIOCM_DTR;
/* MSR registers */
if (msr_r & DCD)
b |= TIOCM_CAR;
if (msr_r & CTS)
b |= TIOCM_CTS;
if (msr_r & DSR)
b |= TIOCM_DSR;
if (msr_r & RI)
b |= TIOCM_RNG;
return (b);
}
static int
dmtoasy(int bits)
{
int b = 0;
DEBUGCONT1(ASY_DEBUG_MODEM, "dmtoasy: bits = %x\n", bits);
#ifdef CAN_NOT_SET /* only DTR and RTS can be set */
if (bits & TIOCM_CAR)
b |= DCD;
if (bits & TIOCM_CTS)
b |= CTS;
if (bits & TIOCM_DSR)
b |= DSR;
if (bits & TIOCM_RNG)
b |= RI;
#endif
if (bits & TIOCM_RTS) {
DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & RTS\n");
b |= RTS;
}
if (bits & TIOCM_DTR) {
DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & DTR\n");
b |= DTR;
}
return (b);
}
static void
asyerror(int level, const char *fmt, ...)
{
va_list adx;
static time_t last;
static const char *lastfmt;
time_t now;
/*
* Don't print the same error message too often.
* Print the message only if we have not printed the
* message within the last second.
* Note: that fmt cannot be a pointer to a string
* stored on the stack. The fmt pointer
* must be in the data segment otherwise lastfmt would point
* to non-sense.
*/
now = gethrestime_sec();
if (last == now && lastfmt == fmt)
return;
last = now;
lastfmt = fmt;
va_start(adx, fmt);
vcmn_err(level, fmt, adx);
va_end(adx);
}
/*
* asy_parse_mode(dev_info_t *devi, struct asycom *asy)
* The value of this property is in the form of "9600,8,n,1,-"
* 1) speed: 9600, 4800, ...
* 2) data bits
* 3) parity: n(none), e(even), o(odd)
* 4) stop bits
* 5) handshake: -(none), h(hardware: rts/cts), s(software: xon/off)
*
* This parsing came from a SPARCstation eeprom.
*/
static void
asy_parse_mode(dev_info_t *devi, struct asycom *asy)
{
char name[40];
char val[40];
int len;
int ret;
char *p;
char *p1;
ASSERT(asy->asy_com_port != 0);
/*
* Parse the ttyx-mode property
*/
(void) sprintf(name, "tty%c-mode", asy->asy_com_port + 'a' - 1);
len = sizeof (val);
ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
if (ret != DDI_PROP_SUCCESS) {
(void) sprintf(name, "com%c-mode", asy->asy_com_port + '0');
len = sizeof (val);
ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
}
/* no property to parse */
asy->asy_cflag = 0;
if (ret != DDI_PROP_SUCCESS)
return;
p = val;
/* ---- baud rate ---- */
asy->asy_cflag = CREAD|B9600; /* initial default */
if (p && (p1 = strchr(p, ',')) != 0) {
*p1++ = '\0';
} else {
asy->asy_cflag |= BITS8; /* add default bits */
return;
}
if (strcmp(p, "110") == 0)
asy->asy_bidx = B110;
else if (strcmp(p, "150") == 0)
asy->asy_bidx = B150;
else if (strcmp(p, "300") == 0)
asy->asy_bidx = B300;
else if (strcmp(p, "600") == 0)
asy->asy_bidx = B600;
else if (strcmp(p, "1200") == 0)
asy->asy_bidx = B1200;
else if (strcmp(p, "2400") == 0)
asy->asy_bidx = B2400;
else if (strcmp(p, "4800") == 0)
asy->asy_bidx = B4800;
else if (strcmp(p, "9600") == 0)
asy->asy_bidx = B9600;
else if (strcmp(p, "19200") == 0)
asy->asy_bidx = B19200;
else if (strcmp(p, "38400") == 0)
asy->asy_bidx = B38400;
else if (strcmp(p, "57600") == 0)
asy->asy_bidx = B57600;
else if (strcmp(p, "115200") == 0)
asy->asy_bidx = B115200;
else
asy->asy_bidx = B9600;
asy->asy_cflag &= ~CBAUD;
if (asy->asy_bidx > CBAUD) { /* > 38400 uses the CBAUDEXT bit */
asy->asy_cflag |= CBAUDEXT;
asy->asy_cflag |= asy->asy_bidx - CBAUD - 1;
} else {
asy->asy_cflag |= asy->asy_bidx;
}
ASSERT(asy->asy_bidx == BAUDINDEX(asy->asy_cflag));
/* ---- Next item is data bits ---- */
p = p1;
if (p && (p1 = strchr(p, ',')) != 0) {
*p1++ = '\0';
} else {
asy->asy_cflag |= BITS8; /* add default bits */
return;
}
switch (*p) {
default:
case '8':
asy->asy_cflag |= CS8;
asy->asy_lcr = BITS8;
break;
case '7':
asy->asy_cflag |= CS7;
asy->asy_lcr = BITS7;
break;
case '6':
asy->asy_cflag |= CS6;
asy->asy_lcr = BITS6;
break;
case '5':
/* LINTED: CS5 is currently zero (but might change) */
asy->asy_cflag |= CS5;
asy->asy_lcr = BITS5;
break;
}
/* ---- Parity info ---- */
p = p1;
if (p && (p1 = strchr(p, ',')) != 0) {
*p1++ = '\0';
} else {
return;
}
switch (*p) {
default:
case 'n':
break;
case 'e':
asy->asy_cflag |= PARENB;
asy->asy_lcr |= PEN; break;
case 'o':
asy->asy_cflag |= PARENB|PARODD;
asy->asy_lcr |= PEN|EPS;
break;
}
/* ---- Find stop bits ---- */
p = p1;
if (p && (p1 = strchr(p, ',')) != 0) {
*p1++ = '\0';
} else {
return;
}
if (*p == '2') {
asy->asy_cflag |= CSTOPB;
asy->asy_lcr |= STB;
}
/* ---- handshake is next ---- */
p = p1;
if (p) {
if ((p1 = strchr(p, ',')) != 0)
*p1++ = '\0';
if (*p == 'h')
asy->asy_cflag |= CRTSCTS;
else if (*p == 's')
asy->asy_cflag |= CRTSXOFF;
}
}
/*
* Check for abort character sequence
*/
static boolean_t
abort_charseq_recognize(uchar_t ch)
{
static int state = 0;
#define CNTRL(c) ((c)&037)
static char sequence[] = { '\r', '~', CNTRL('b') };
if (ch == sequence[state]) {
if (++state >= sizeof (sequence)) {
state = 0;
return (B_TRUE);
}
} else {
state = (ch == sequence[0]) ? 1 : 0;
}
return (B_FALSE);
}
/*
* Flow control functions
*/
/*
* Software input flow control
* This function can execute software input flow control sucessfully
* at most of situations except that the line is in BREAK status
* (timed and untimed break).
* INPUT VALUE of onoff:
* FLOW_START means to send out a XON char
* and clear SW input flow control flag.
* FLOW_STOP means to send out a XOFF char
* and set SW input flow control flag.
* FLOW_CHECK means to check whether there is pending XON/XOFF
* if it is true, send it out.
* INPUT VALUE of type:
* IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
* IN_FLOW_STREAMS means flow control is due to STREAMS
* IN_FLOW_USER means flow control is due to user's commands
* RETURN VALUE: B_FALSE means no flow control char is sent
* B_TRUE means one flow control char is sent
*/
static boolean_t
async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff,
int type)
{
struct asyncline *async = asy->asy_priv;
int instance = UNIT(async->async_dev);
int rval = B_FALSE;
ASSERT(mutex_owned(&asy->asy_excl_hi));
if (!(async->async_ttycommon.t_iflag & IXOFF))
return (rval);
/*
* If we get this far, then we know IXOFF is set.
*/
switch (onoff) {
case FLOW_STOP:
async->async_inflow_source |= type;
/*
* We'll send an XOFF character for each of up to
* three different input flow control attempts to stop input.
* If we already send out one XOFF, but FLOW_STOP comes again,
* it seems that input flow control becomes more serious,
* then send XOFF again.
*/
if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
IN_FLOW_STREAMS | IN_FLOW_USER))
async->async_flags |= ASYNC_SW_IN_FLOW |
ASYNC_SW_IN_NEEDED;
DEBUGCONT2(ASY_DEBUG_SFLOW, "async%d: input sflow stop, "
"type = %x\n", instance, async->async_inflow_source);
break;
case FLOW_START:
async->async_inflow_source &= ~type;
if (async->async_inflow_source == 0) {
async->async_flags = (async->async_flags &
~ASYNC_SW_IN_FLOW) | ASYNC_SW_IN_NEEDED;
DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: "
"input sflow start\n", instance);
}
break;
default:
break;
}
if (((async->async_flags & (ASYNC_SW_IN_NEEDED | ASYNC_BREAK |
ASYNC_OUT_SUSPEND)) == ASYNC_SW_IN_NEEDED) &&
(ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE)) {
/*
* If we get this far, then we know we need to send out
* XON or XOFF char.
*/
async->async_flags = (async->async_flags &
~ASYNC_SW_IN_NEEDED) | ASYNC_BUSY;
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
async->async_flags & ASYNC_SW_IN_FLOW ?
async->async_stopc : async->async_startc);
rval = B_TRUE;
}
return (rval);
}
/*
* Software output flow control
* This function can be executed sucessfully at any situation.
* It does not handle HW, and just change the SW output flow control flag.
* INPUT VALUE of onoff:
* FLOW_START means to clear SW output flow control flag,
* also combine with HW output flow control status to
* determine if we need to set ASYNC_OUT_FLW_RESUME.
* FLOW_STOP means to set SW output flow control flag,
* also clear ASYNC_OUT_FLW_RESUME.
*/
static void
async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff)
{
struct asyncline *async = asy->asy_priv;
int instance = UNIT(async->async_dev);
ASSERT(mutex_owned(&asy->asy_excl_hi));
if (!(async->async_ttycommon.t_iflag & IXON))
return;
switch (onoff) {
case FLOW_STOP:
async->async_flags |= ASYNC_SW_OUT_FLW;
async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow stop\n",
instance);
break;
case FLOW_START:
async->async_flags &= ~ASYNC_SW_OUT_FLW;
if (!(async->async_flags & ASYNC_HW_OUT_FLW))
async->async_flags |= ASYNC_OUT_FLW_RESUME;
DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow start\n",
instance);
break;
default:
break;
}
}
/*
* Hardware input flow control
* This function can be executed sucessfully at any situation.
* It directly changes RTS depending on input parameter onoff.
* INPUT VALUE of onoff:
* FLOW_START means to clear HW input flow control flag,
* and pull up RTS if it is low.
* FLOW_STOP means to set HW input flow control flag,
* and low RTS if it is high.
* INPUT VALUE of type:
* IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
* IN_FLOW_STREAMS means flow control is due to STREAMS
* IN_FLOW_USER means flow control is due to user's commands
*/
static void
async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff,
int type)
{
uchar_t mcr;
uchar_t flag;
struct asyncline *async = asy->asy_priv;
int instance = UNIT(async->async_dev);
ASSERT(mutex_owned(&asy->asy_excl_hi));
if (!(async->async_ttycommon.t_cflag & CRTSXOFF))
return;
switch (onoff) {
case FLOW_STOP:
async->async_inflow_source |= type;
if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
IN_FLOW_STREAMS | IN_FLOW_USER))
async->async_flags |= ASYNC_HW_IN_FLOW;
DEBUGCONT2(ASY_DEBUG_HFLOW, "async%d: input hflow stop, "
"type = %x\n", instance, async->async_inflow_source);
break;
case FLOW_START:
async->async_inflow_source &= ~type;
if (async->async_inflow_source == 0) {
async->async_flags &= ~ASYNC_HW_IN_FLOW;
DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: "
"input hflow start\n", instance);
}
break;
default:
break;
}
mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
if (((mcr ^ flag) & RTS) != 0) {
ddi_put8(asy->asy_iohandle,
asy->asy_ioaddr + MCR, (mcr ^ RTS));
}
}
/*
* Hardware output flow control
* This function can execute HW output flow control sucessfully
* at any situation.
* It doesn't really change RTS, and just change
* HW output flow control flag depending on CTS status.
* INPUT VALUE of onoff:
* FLOW_START means to clear HW output flow control flag.
* also combine with SW output flow control status to
* determine if we need to set ASYNC_OUT_FLW_RESUME.
* FLOW_STOP means to set HW output flow control flag.
* also clear ASYNC_OUT_FLW_RESUME.
*/
static void
async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff)
{
struct asyncline *async = asy->asy_priv;
int instance = UNIT(async->async_dev);
ASSERT(mutex_owned(&asy->asy_excl_hi));
if (!(async->async_ttycommon.t_cflag & CRTSCTS))
return;
switch (onoff) {
case FLOW_STOP:
async->async_flags |= ASYNC_HW_OUT_FLW;
async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow stop\n",
instance);
break;
case FLOW_START:
async->async_flags &= ~ASYNC_HW_OUT_FLW;
if (!(async->async_flags & ASYNC_SW_OUT_FLW))
async->async_flags |= ASYNC_OUT_FLW_RESUME;
DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow start\n",
instance);
break;
default:
break;
}
}
/*
* quiesce(9E) entry point.
*
* This function is called when the system is single-threaded at high
* PIL with preemption disabled. Therefore, this function must not be
* blocked.
*
* This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
* DDI_FAILURE indicates an error condition and should almost never happen.
*/
static int
asyquiesce(dev_info_t *devi)
{
int instance;
struct asycom *asy;
instance = ddi_get_instance(devi); /* find out which unit */
asy = ddi_get_soft_state(asy_soft_state, instance);
if (asy == NULL)
return (DDI_FAILURE);
/* disable all interrupts */
ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
/* reset the FIFO */
asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
return (DDI_SUCCESS);
}