/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015 Joyent, Inc. All rights reserved.
*/
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/debug.h>
#include <sys/errno.h>
#include <sys/stropts.h>
#include <sys/cmn_err.h>
#include <sys/sysmacros.h>
#include <sys/filio.h>
#include <sys/policy.h>
#include <sys/project.h>
#include <sys/tihdr.h>
#include <sys/strsubr.h>
#include <sys/esunddi.h>
#include <sys/ddi.h>
#include <sys/sockio.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/strsun.h>
#include <netinet/sctp.h>
#include <inet/sctp_itf.h>
#include <fs/sockfs/sockcommon.h>
#include "socksctp.h"
/*
* SCTP sockfs sonode operations, 1-1 socket
*/
static int sosctp_init(struct sonode *, struct sonode *, struct cred *, int);
static int sosctp_accept(struct sonode *, int, struct cred *, struct sonode **);
static int sosctp_bind(struct sonode *, struct sockaddr *, socklen_t, int,
struct cred *);
static int sosctp_listen(struct sonode *, int, struct cred *);
static int sosctp_connect(struct sonode *, struct sockaddr *, socklen_t,
int, int, struct cred *);
static int sosctp_recvmsg(struct sonode *, struct nmsghdr *, struct uio *,
struct cred *);
static int sosctp_sendmsg(struct sonode *, struct nmsghdr *, struct uio *,
struct cred *);
static int sosctp_getpeername(struct sonode *, struct sockaddr *, socklen_t *,
boolean_t, struct cred *);
static int sosctp_getsockname(struct sonode *, struct sockaddr *, socklen_t *,
struct cred *);
static int sosctp_shutdown(struct sonode *, int, struct cred *);
static int sosctp_getsockopt(struct sonode *, int, int, void *, socklen_t *,
int, struct cred *);
static int sosctp_setsockopt(struct sonode *, int, int, const void *,
socklen_t, struct cred *);
static int sosctp_ioctl(struct sonode *, int, intptr_t, int, struct cred *,
int32_t *);
static int sosctp_close(struct sonode *, int, struct cred *);
void sosctp_fini(struct sonode *, struct cred *);
/*
* SCTP sockfs sonode operations, 1-N socket
*/
static int sosctp_seq_connect(struct sonode *, struct sockaddr *,
socklen_t, int, int, struct cred *);
static int sosctp_seq_sendmsg(struct sonode *, struct nmsghdr *, struct uio *,
struct cred *);
/*
* Socket association upcalls, 1-N socket connection
*/
sock_upper_handle_t sctp_assoc_newconn(sock_upper_handle_t,
sock_lower_handle_t, sock_downcalls_t *, struct cred *, pid_t,
sock_upcalls_t **);
static void sctp_assoc_connected(sock_upper_handle_t, sock_connid_t,
struct cred *, pid_t);
static int sctp_assoc_disconnected(sock_upper_handle_t, sock_connid_t, int);
static void sctp_assoc_disconnecting(sock_upper_handle_t, sock_opctl_action_t,
uintptr_t arg);
static ssize_t sctp_assoc_recv(sock_upper_handle_t, mblk_t *, size_t, int,
int *, boolean_t *);
static void sctp_assoc_xmitted(sock_upper_handle_t, boolean_t);
static void sctp_assoc_properties(sock_upper_handle_t,
struct sock_proto_props *);
sonodeops_t sosctp_sonodeops = {
sosctp_init, /* sop_init */
sosctp_accept, /* sop_accept */
sosctp_bind, /* sop_bind */
sosctp_listen, /* sop_listen */
sosctp_connect, /* sop_connect */
sosctp_recvmsg, /* sop_recvmsg */
sosctp_sendmsg, /* sop_sendmsg */
so_sendmblk_notsupp, /* sop_sendmblk */
sosctp_getpeername, /* sop_getpeername */
sosctp_getsockname, /* sop_getsockname */
sosctp_shutdown, /* sop_shutdown */
sosctp_getsockopt, /* sop_getsockopt */
sosctp_setsockopt, /* sop_setsockopt */
sosctp_ioctl, /* sop_ioctl */
so_poll, /* sop_poll */
sosctp_close, /* sop_close */
};
sonodeops_t sosctp_seq_sonodeops = {
sosctp_init, /* sop_init */
so_accept_notsupp, /* sop_accept */
sosctp_bind, /* sop_bind */
sosctp_listen, /* sop_listen */
sosctp_seq_connect, /* sop_connect */
sosctp_recvmsg, /* sop_recvmsg */
sosctp_seq_sendmsg, /* sop_sendmsg */
so_sendmblk_notsupp, /* sop_sendmblk */
so_getpeername_notsupp, /* sop_getpeername */
sosctp_getsockname, /* sop_getsockname */
so_shutdown_notsupp, /* sop_shutdown */
sosctp_getsockopt, /* sop_getsockopt */
sosctp_setsockopt, /* sop_setsockopt */
sosctp_ioctl, /* sop_ioctl */
so_poll, /* sop_poll */
sosctp_close, /* sop_close */
};
/* All the upcalls expect the upper handle to be sonode. */
sock_upcalls_t sosctp_sock_upcalls = {
so_newconn,
so_connected,
so_disconnected,
so_opctl,
so_queue_msg,
so_set_prop,
so_txq_full,
NULL, /* su_signal_oob */
};
/* All the upcalls expect the upper handle to be sctp_sonode/sctp_soassoc. */
sock_upcalls_t sosctp_assoc_upcalls = {
sctp_assoc_newconn,
sctp_assoc_connected,
sctp_assoc_disconnected,
sctp_assoc_disconnecting,
sctp_assoc_recv,
sctp_assoc_properties,
sctp_assoc_xmitted,
NULL, /* su_recv_space */
NULL, /* su_signal_oob */
};
/* ARGSUSED */
static int
sosctp_init(struct sonode *so, struct sonode *pso, struct cred *cr, int flags)
{
struct sctp_sonode *ss;
struct sctp_sonode *pss;
sctp_sockbuf_limits_t sbl;
int err;
ss = SOTOSSO(so);
if (pso != NULL) {
/*
* Passive open, just inherit settings from parent. We should
* not end up here for SOCK_SEQPACKET type sockets, since no
* new sonode is created in that case.
*/
ASSERT(so->so_type == SOCK_STREAM);
pss = SOTOSSO(pso);
mutex_enter(&pso->so_lock);
so->so_state |= (SS_ISBOUND | SS_ISCONNECTED |
(pso->so_state & SS_ASYNC));
sosctp_so_inherit(pss, ss);
so->so_proto_props = pso->so_proto_props;
so->so_mode = pso->so_mode;
mutex_exit(&pso->so_lock);
return (0);
}
if ((err = secpolicy_basic_net_access(cr)) != 0)
return (err);
if (so->so_type == SOCK_STREAM) {
so->so_proto_handle = (sock_lower_handle_t)sctp_create(so,
NULL, so->so_family, so->so_type, SCTP_CAN_BLOCK,
&sosctp_sock_upcalls, &sbl, cr);
so->so_mode = SM_CONNREQUIRED;
} else {
ASSERT(so->so_type == SOCK_SEQPACKET);
so->so_proto_handle = (sock_lower_handle_t)sctp_create(ss,
NULL, so->so_family, so->so_type, SCTP_CAN_BLOCK,
&sosctp_assoc_upcalls, &sbl, cr);
}
if (so->so_proto_handle == NULL)
return (ENOMEM);
so->so_rcvbuf = sbl.sbl_rxbuf;
so->so_rcvlowat = sbl.sbl_rxlowat;
so->so_sndbuf = sbl.sbl_txbuf;
so->so_sndlowat = sbl.sbl_txlowat;
return (0);
}
/*
* Accept incoming connection.
*/
/*ARGSUSED*/
static int
sosctp_accept(struct sonode *so, int fflag, struct cred *cr,
struct sonode **nsop)
{
int error = 0;
if ((so->so_state & SS_ACCEPTCONN) == 0)
return (EINVAL);
error = so_acceptq_dequeue(so, (fflag & (FNONBLOCK|FNDELAY)), nsop);
return (error);
}
/*
* Bind local endpoint.
*/
/*ARGSUSED*/
static int
sosctp_bind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
int flags, struct cred *cr)
{
int error;
if (!(flags & _SOBIND_LOCK_HELD)) {
mutex_enter(&so->so_lock);
so_lock_single(so); /* Set SOLOCKED */
} else {
ASSERT(MUTEX_HELD(&so->so_lock));
}
/*
* X/Open requires this check
*/
if (so->so_state & SS_CANTSENDMORE) {
error = EINVAL;
goto done;
}
/*
* Protocol module does address family checks.
*/
mutex_exit(&so->so_lock);
error = sctp_bind((struct sctp_s *)so->so_proto_handle, name, namelen);
mutex_enter(&so->so_lock);
if (error == 0) {
so->so_state |= SS_ISBOUND;
} else {
eprintsoline(so, error);
}
done:
if (!(flags & _SOBIND_LOCK_HELD)) {
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
} else {
/* If the caller held the lock don't release it here */
ASSERT(MUTEX_HELD(&so->so_lock));
ASSERT(so->so_flag & SOLOCKED);
}
return (error);
}
/*
* Turn socket into a listen socket.
*/
/* ARGSUSED */
static int
sosctp_listen(struct sonode *so, int backlog, struct cred *cr)
{
int error = 0;
mutex_enter(&so->so_lock);
so_lock_single(so);
/*
* If this socket is trying to do connect, or if it has
* been connected, disallow.
*/
if (so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
SS_ISDISCONNECTING | SS_CANTRCVMORE | SS_CANTSENDMORE)) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
if (backlog < 0) {
backlog = 0;
}
/*
* If listen() is only called to change backlog, we don't
* need to notify protocol module.
*/
if (so->so_state & SS_ACCEPTCONN) {
so->so_backlog = backlog;
goto done;
}
mutex_exit(&so->so_lock);
error = sctp_listen((struct sctp_s *)so->so_proto_handle);
mutex_enter(&so->so_lock);
if (error == 0) {
so->so_state |= (SS_ACCEPTCONN|SS_ISBOUND);
so->so_backlog = backlog;
} else {
eprintsoline(so, error);
}
done:
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}
/*
* Active open.
*/
/*ARGSUSED*/
static int
sosctp_connect(struct sonode *so, struct sockaddr *name,
socklen_t namelen, int fflag, int flags, struct cred *cr)
{
int error = 0;
pid_t pid = curproc->p_pid;
ASSERT(so->so_type == SOCK_STREAM);
mutex_enter(&so->so_lock);
so_lock_single(so);
/*
* Can't connect() after listen(), or if the socket is already
* connected.
*/
if (so->so_state & (SS_ACCEPTCONN|SS_ISCONNECTED|SS_ISCONNECTING)) {
if (so->so_state & SS_ISCONNECTED) {
error = EISCONN;
} else if (so->so_state & SS_ISCONNECTING) {
error = EALREADY;
} else {
error = EOPNOTSUPP;
}
eprintsoline(so, error);
goto done;
}
/*
* Check for failure of an earlier call
*/
if (so->so_error != 0) {
error = sogeterr(so, B_TRUE);
eprintsoline(so, error);
goto done;
}
/*
* Connection is closing, or closed, don't allow reconnect.
* TCP allows this to proceed, but the socket remains unwriteable.
* BSD returns EINVAL.
*/
if (so->so_state & (SS_ISDISCONNECTING|SS_CANTRCVMORE|
SS_CANTSENDMORE)) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
if (name == NULL || namelen == 0) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
soisconnecting(so);
mutex_exit(&so->so_lock);
error = sctp_connect((struct sctp_s *)so->so_proto_handle,
name, namelen, cr, pid);
mutex_enter(&so->so_lock);
if (error == 0) {
/*
* Allow other threads to access the socket
*/
error = sowaitconnected(so, fflag, 0);
}
done:
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}
/*
* Active open for 1-N sockets, create a new association and
* call connect on that.
* If there parent hasn't been bound yet (this is the first association),
* make it so.
*/
static int
sosctp_seq_connect(struct sonode *so, struct sockaddr *name,
socklen_t namelen, int fflag, int flags, struct cred *cr)
{
struct sctp_soassoc *ssa;
struct sctp_sonode *ss;
int error;
ASSERT(so->so_type == SOCK_SEQPACKET);
mutex_enter(&so->so_lock);
so_lock_single(so);
if (name == NULL || namelen == 0) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
ss = SOTOSSO(so);
error = sosctp_assoc_createconn(ss, name, namelen, NULL, 0, fflag,
cr, &ssa);
if (error != 0) {
if ((error == EHOSTUNREACH) && (flags & _SOCONNECT_XPG4_2)) {
error = ENETUNREACH;
}
}
if (ssa != NULL) {
SSA_REFRELE(ss, ssa);
}
done:
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}
/*
* Receive data.
*/
/* ARGSUSED */
static int
sosctp_recvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop,
struct cred *cr)
{
struct sctp_sonode *ss = SOTOSSO(so);
struct sctp_soassoc *ssa = NULL;
int flags, error = 0;
struct T_unitdata_ind *tind;
ssize_t orig_resid = uiop->uio_resid;
int len, count, readcnt = 0;
socklen_t controllen, namelen;
void *opt;
mblk_t *mp;
rval_t rval;
controllen = msg->msg_controllen;
namelen = msg->msg_namelen;
flags = msg->msg_flags;
msg->msg_flags = 0;
msg->msg_controllen = 0;
msg->msg_namelen = 0;
if (so->so_type == SOCK_STREAM) {
if (!(so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|
SS_CANTRCVMORE))) {
return (ENOTCONN);
}
} else {
/* NOTE: Will come here from vop_read() as well */
/* For 1-N socket, recv() cannot be used. */
if (namelen == 0)
return (EOPNOTSUPP);
/*
* If there are no associations, and no new connections are
* coming in, there's not going to be new messages coming
* in either.
*/
if (so->so_rcv_q_head == NULL && so->so_rcv_head == NULL &&
ss->ss_assoccnt == 0 && !(so->so_state & SS_ACCEPTCONN)) {
return (ENOTCONN);
}
}
/*
* out-of-band data not supported.
*/
if (flags & MSG_OOB) {
return (EOPNOTSUPP);
}
/*
* flag possibilities:
*
* MSG_PEEK Don't consume data
* MSG_WAITALL Wait for full quantity of data (ignored if MSG_PEEK)
* MSG_DONTWAIT Non-blocking (same as FNDELAY | FNONBLOCK)
*
* MSG_WAITALL can return less than the full buffer if either
*
* 1. we would block and we are non-blocking
* 2. a full message cannot be delivered
*
* Given that we always get a full message from proto below,
* MSG_WAITALL is not meaningful.
*/
mutex_enter(&so->so_lock);
/*
* Allow just one reader at a time.
*/
error = so_lock_read_intr(so,
uiop->uio_fmode | ((flags & MSG_DONTWAIT) ? FNONBLOCK : 0));
if (error) {
mutex_exit(&so->so_lock);
return (error);
}
mutex_exit(&so->so_lock);
again:
error = so_dequeue_msg(so, &mp, uiop, &rval, flags | MSG_DUPCTRL);
if (mp != NULL) {
if (so->so_type == SOCK_SEQPACKET) {
ssa = *(struct sctp_soassoc **)DB_BASE(mp);
}
tind = (struct T_unitdata_ind *)mp->b_rptr;
len = tind->SRC_length;
if (namelen > 0 && len > 0) {
opt = sogetoff(mp, tind->SRC_offset, len, 1);
ASSERT(opt != NULL);
msg->msg_name = kmem_alloc(len, KM_SLEEP);
msg->msg_namelen = len;
bcopy(opt, msg->msg_name, len);
}
len = tind->OPT_length;
if (controllen == 0) {
if (len > 0) {
msg->msg_flags |= MSG_CTRUNC;
}
} else if (len > 0) {
opt = sogetoff(mp, tind->OPT_offset, len,
__TPI_ALIGN_SIZE);
ASSERT(opt != NULL);
sosctp_pack_cmsg(opt, msg, len);
}
if (mp->b_flag & SCTP_NOTIFICATION) {
msg->msg_flags |= MSG_NOTIFICATION;
}
if (!(mp->b_flag & SCTP_PARTIAL_DATA) &&
!(rval.r_val1 & MOREDATA)) {
msg->msg_flags |= MSG_EOR;
}
freemsg(mp);
}
done:
if (!(flags & MSG_PEEK))
readcnt = orig_resid - uiop->uio_resid;
/*
* Determine if we need to update SCTP about the buffer
* space. For performance reason, we cannot update SCTP
* every time a message is read. The socket buffer low
* watermark is used as the threshold.
*/
if (ssa == NULL) {
mutex_enter(&so->so_lock);
count = so->so_rcvbuf - so->so_rcv_queued;
ASSERT(so->so_rcv_q_head != NULL ||
so->so_rcv_head != NULL ||
so->so_rcv_queued == 0);
so_unlock_read(so);
/*
* so_dequeue_msg() sets r_val2 to true if flow control was
* cleared and we need to update SCTP. so_flowctrld was
* cleared in so_dequeue_msg() via so_check_flow_control().
*/
if (rval.r_val2) {
mutex_exit(&so->so_lock);
sctp_recvd((struct sctp_s *)so->so_proto_handle, count);
} else {
mutex_exit(&so->so_lock);
}
} else {
/*
* Each association keeps track of how much data it has
* queued; we need to update the value here. Note that this
* is slightly different from SOCK_STREAM type sockets, which
* does not need to update the byte count, as it is already
* done in so_dequeue_msg().
*/
mutex_enter(&so->so_lock);
ssa->ssa_rcv_queued -= readcnt;
count = so->so_rcvbuf - ssa->ssa_rcv_queued;
so_unlock_read(so);
if (readcnt > 0 && ssa->ssa_flowctrld &&
ssa->ssa_rcv_queued < so->so_rcvlowat) {
/*
* Need to clear ssa_flowctrld, different from 1-1
* style.
*/
ssa->ssa_flowctrld = B_FALSE;
mutex_exit(&so->so_lock);
sctp_recvd(ssa->ssa_conn, count);
mutex_enter(&so->so_lock);
}
/*
* MOREDATA flag is set if all data could not be copied
*/
if (!(flags & MSG_PEEK) && !(rval.r_val1 & MOREDATA)) {
SSA_REFRELE(ss, ssa);
}
mutex_exit(&so->so_lock);
}
return (error);
}
int
sosctp_uiomove(mblk_t *hdr_mp, ssize_t count, ssize_t blk_size, int wroff,
struct uio *uiop, int flags)
{
ssize_t size;
int error;
mblk_t *mp;
dblk_t *dp;
if (blk_size == INFPSZ)
blk_size = count;
/*
* Loop until we have all data copied into mblk's.
*/
while (count > 0) {
size = MIN(count, blk_size);
/*
* As a message can be splitted up and sent in different
* packets, each mblk will have the extra space before
* data to accommodate what SCTP wants to put in there.
*/
while ((mp = allocb(size + wroff, BPRI_MED)) == NULL) {
if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
(flags & MSG_DONTWAIT)) {
return (EAGAIN);
}
if ((error = strwaitbuf(size + wroff, BPRI_MED))) {
return (error);
}
}
dp = mp->b_datap;
dp->db_cpid = curproc->p_pid;
ASSERT(wroff <= dp->db_lim - mp->b_wptr);
mp->b_rptr += wroff;
error = uiomove(mp->b_rptr, size, UIO_WRITE, uiop);
if (error != 0) {
freeb(mp);
return (error);
}
mp->b_wptr = mp->b_rptr + size;
count -= size;
hdr_mp->b_cont = mp;
hdr_mp = mp;
}
return (0);
}
/*
* Send message.
*/
static int
sosctp_sendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop,
struct cred *cr)
{
mblk_t *mctl;
struct cmsghdr *cmsg;
struct sctp_sndrcvinfo *sinfo;
int optlen, flags, fflag;
ssize_t count, msglen;
int error;
ASSERT(so->so_type == SOCK_STREAM);
flags = msg->msg_flags;
if (flags & MSG_OOB) {
/*
* No out-of-band data support.
*/
return (EOPNOTSUPP);
}
if (msg->msg_controllen != 0) {
optlen = msg->msg_controllen;
cmsg = sosctp_find_cmsg(msg->msg_control, optlen, SCTP_SNDRCV);
if (cmsg != NULL) {
if (cmsg->cmsg_len <
(sizeof (*sinfo) + sizeof (*cmsg))) {
eprintsoline(so, EINVAL);
return (EINVAL);
}
sinfo = (struct sctp_sndrcvinfo *)(cmsg + 1);
/* Both flags should not be set together. */
if ((sinfo->sinfo_flags & MSG_EOF) &&
(sinfo->sinfo_flags & MSG_ABORT)) {
eprintsoline(so, EINVAL);
return (EINVAL);
}
/* Initiate a graceful shutdown. */
if (sinfo->sinfo_flags & MSG_EOF) {
/* Can't include data in MSG_EOF message. */
if (uiop->uio_resid != 0) {
eprintsoline(so, EINVAL);
return (EINVAL);
}
/*
* This is the same sequence as done in
* shutdown(SHUT_WR).
*/
mutex_enter(&so->so_lock);
so_lock_single(so);
socantsendmore(so);
cv_broadcast(&so->so_snd_cv);
so->so_state |= SS_ISDISCONNECTING;
mutex_exit(&so->so_lock);
pollwakeup(&so->so_poll_list, POLLOUT);
sctp_recvd((struct sctp_s *)so->so_proto_handle,
so->so_rcvbuf);
error = sctp_disconnect(
(struct sctp_s *)so->so_proto_handle);
mutex_enter(&so->so_lock);
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (error);
}
}
} else {
optlen = 0;
}
mutex_enter(&so->so_lock);
for (;;) {
if (so->so_state & SS_CANTSENDMORE) {
mutex_exit(&so->so_lock);
return (EPIPE);
}
if (so->so_error != 0) {
error = sogeterr(so, B_TRUE);
mutex_exit(&so->so_lock);
return (error);
}
if (!so->so_snd_qfull)
break;
if (so->so_state & SS_CLOSING) {
mutex_exit(&so->so_lock);
return (EINTR);
}
/*
* Xmit window full in a blocking socket.
*/
if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
(flags & MSG_DONTWAIT)) {
mutex_exit(&so->so_lock);
return (EAGAIN);
} else {
/*
* Wait for space to become available and try again.
*/
error = cv_wait_sig(&so->so_snd_cv, &so->so_lock);
if (!error) { /* signal */
mutex_exit(&so->so_lock);
return (EINTR);
}
}
}
msglen = count = uiop->uio_resid;
/* Don't allow sending a message larger than the send buffer size. */
/* XXX Transport module need to enforce this */
if (msglen > so->so_sndbuf) {
mutex_exit(&so->so_lock);
return (EMSGSIZE);
}
/*
* Allow piggybacking data on handshake messages (SS_ISCONNECTING).
*/
if (!(so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED))) {
/*
* We need to check here for listener so that the
* same error will be returned as with a TCP socket.
* In this case, sosctp_connect() returns EOPNOTSUPP
* while a TCP socket returns ENOTCONN instead. Catch it
* here to have the same behavior as a TCP socket.
*
* We also need to make sure that the peer address is
* provided before we attempt to do the connect.
*/
if ((so->so_state & SS_ACCEPTCONN) ||
msg->msg_name == NULL) {
mutex_exit(&so->so_lock);
error = ENOTCONN;
goto error_nofree;
}
mutex_exit(&so->so_lock);
fflag = uiop->uio_fmode;
if (flags & MSG_DONTWAIT) {
fflag |= FNDELAY;
}
error = sosctp_connect(so, msg->msg_name, msg->msg_namelen,
fflag, (so->so_version == SOV_XPG4_2) * _SOCONNECT_XPG4_2,
cr);
if (error) {
/*
* Check for non-fatal errors, socket connected
* while the lock had been lifted.
*/
if (error != EISCONN && error != EALREADY) {
goto error_nofree;
}
error = 0;
}
} else {
mutex_exit(&so->so_lock);
}
mctl = sctp_alloc_hdr(msg->msg_name, msg->msg_namelen,
msg->msg_control, optlen, SCTP_CAN_BLOCK);
if (mctl == NULL) {
error = EINTR;
goto error_nofree;
}
/* Copy in the message. */
if ((error = sosctp_uiomove(mctl, count, so->so_proto_props.sopp_maxblk,
so->so_proto_props.sopp_wroff, uiop, flags)) != 0) {
goto error_ret;
}
error = sctp_sendmsg((struct sctp_s *)so->so_proto_handle, mctl, 0);
if (error == 0)
return (0);
error_ret:
freemsg(mctl);
error_nofree:
mutex_enter(&so->so_lock);
if ((error == EPIPE) && (so->so_state & SS_CANTSENDMORE)) {
/*
* We received shutdown between the time lock was
* lifted and call to sctp_sendmsg().
*/
mutex_exit(&so->so_lock);
return (EPIPE);
}
mutex_exit(&so->so_lock);
return (error);
}
/*
* Send message on 1-N socket. Connects automatically if there is
* no association.
*/
static int
sosctp_seq_sendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop,
struct cred *cr)
{
struct sctp_sonode *ss;
struct sctp_soassoc *ssa;
struct cmsghdr *cmsg;
struct sctp_sndrcvinfo *sinfo;
int aid = 0;
mblk_t *mctl;
int namelen, optlen, flags;
ssize_t count, msglen;
int error;
uint16_t s_flags = 0;
ASSERT(so->so_type == SOCK_SEQPACKET);
/*
* There shouldn't be problems with alignment, as the memory for
* msg_control was alloced with kmem_alloc.
*/
cmsg = sosctp_find_cmsg(msg->msg_control, msg->msg_controllen,
SCTP_SNDRCV);
if (cmsg != NULL) {
if (cmsg->cmsg_len < (sizeof (*sinfo) + sizeof (*cmsg))) {
eprintsoline(so, EINVAL);
return (EINVAL);
}
sinfo = (struct sctp_sndrcvinfo *)(cmsg + 1);
s_flags = sinfo->sinfo_flags;
aid = sinfo->sinfo_assoc_id;
}
ss = SOTOSSO(so);
namelen = msg->msg_namelen;
if (msg->msg_controllen > 0) {
optlen = msg->msg_controllen;
} else {
optlen = 0;
}
mutex_enter(&so->so_lock);
/*
* If there is no association id, connect to address specified
* in msg_name. Otherwise look up the association using the id.
*/
if (aid == 0) {
/*
* Connect and shutdown cannot be done together, so check for
* MSG_EOF.
*/
if (msg->msg_name == NULL || namelen == 0 ||
(s_flags & MSG_EOF)) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
flags = uiop->uio_fmode;
if (msg->msg_flags & MSG_DONTWAIT) {
flags |= FNDELAY;
}
so_lock_single(so);
error = sosctp_assoc_createconn(ss, msg->msg_name, namelen,
msg->msg_control, optlen, flags, cr, &ssa);
if (error) {
if ((so->so_version == SOV_XPG4_2) &&
(error == EHOSTUNREACH)) {
error = ENETUNREACH;
}
if (ssa == NULL) {
/*
* Fatal error during connect(). Bail out.
* If ssa exists, it means that the handshake
* is in progress.
*/
eprintsoline(so, error);
so_unlock_single(so, SOLOCKED);
goto done;
}
/*
* All the errors are non-fatal ones, don't return
* e.g. EINPROGRESS from sendmsg().
*/
error = 0;
}
so_unlock_single(so, SOLOCKED);
} else {
if ((error = sosctp_assoc(ss, aid, &ssa)) != 0) {
eprintsoline(so, error);
goto done;
}
}
/*
* Now we have an association.
*/
flags = msg->msg_flags;
/*
* MSG_EOF initiates graceful shutdown.
*/
if (s_flags & MSG_EOF) {
if (uiop->uio_resid) {
/*
* Can't include data in MSG_EOF message.
*/
error = EINVAL;
} else {
mutex_exit(&so->so_lock);
ssa->ssa_state |= SS_ISDISCONNECTING;
sctp_recvd(ssa->ssa_conn, so->so_rcvbuf);
error = sctp_disconnect(ssa->ssa_conn);
mutex_enter(&so->so_lock);
}
goto refrele;
}
for (;;) {
if (ssa->ssa_state & SS_CANTSENDMORE) {
SSA_REFRELE(ss, ssa);
mutex_exit(&so->so_lock);
return (EPIPE);
}
if (ssa->ssa_error != 0) {
error = ssa->ssa_error;
ssa->ssa_error = 0;
goto refrele;
}
if (!ssa->ssa_snd_qfull)
break;
if (so->so_state & SS_CLOSING) {
error = EINTR;
goto refrele;
}
if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
(flags & MSG_DONTWAIT)) {
error = EAGAIN;
goto refrele;
} else {
/*
* Wait for space to become available and try again.
*/
error = cv_wait_sig(&so->so_snd_cv, &so->so_lock);
if (!error) { /* signal */
error = EINTR;
goto refrele;
}
}
}
msglen = count = uiop->uio_resid;
/* Don't allow sending a message larger than the send buffer size. */
if (msglen > so->so_sndbuf) {
error = EMSGSIZE;
goto refrele;
}
/*
* Update TX buffer usage here so that we can lift the socket lock.
*/
mutex_exit(&so->so_lock);
mctl = sctp_alloc_hdr(msg->msg_name, namelen, msg->msg_control,
optlen, SCTP_CAN_BLOCK);
if (mctl == NULL) {
error = EINTR;
goto lock_rele;
}
/* Copy in the message. */
if ((error = sosctp_uiomove(mctl, count, ssa->ssa_wrsize,
ssa->ssa_wroff, uiop, flags)) != 0) {
goto lock_rele;
}
error = sctp_sendmsg((struct sctp_s *)ssa->ssa_conn, mctl, 0);
lock_rele:
mutex_enter(&so->so_lock);
if (error != 0) {
freemsg(mctl);
if ((error == EPIPE) && (ssa->ssa_state & SS_CANTSENDMORE)) {
/*
* We received shutdown between the time lock was
* lifted and call to sctp_sendmsg().
*/
SSA_REFRELE(ss, ssa);
mutex_exit(&so->so_lock);
return (EPIPE);
}
}
refrele:
SSA_REFRELE(ss, ssa);
done:
mutex_exit(&so->so_lock);
return (error);
}
/*
* Get address of remote node.
*/
/* ARGSUSED */
static int
sosctp_getpeername(struct sonode *so, struct sockaddr *addr, socklen_t *addrlen,
boolean_t accept, struct cred *cr)
{
return (sctp_getpeername((struct sctp_s *)so->so_proto_handle, addr,
addrlen));
}
/*
* Get local address.
*/
/* ARGSUSED */
static int
sosctp_getsockname(struct sonode *so, struct sockaddr *addr, socklen_t *addrlen,
struct cred *cr)
{
return (sctp_getsockname((struct sctp_s *)so->so_proto_handle, addr,
addrlen));
}
/*
* Called from shutdown().
*/
/* ARGSUSED */
static int
sosctp_shutdown(struct sonode *so, int how, struct cred *cr)
{
uint_t state_change;
int wakesig = 0;
int error = 0;
mutex_enter(&so->so_lock);
/*
* Record the current state and then perform any state changes.
* Then use the difference between the old and new states to
* determine which needs to be done.
*/
state_change = so->so_state;
switch (how) {
case SHUT_RD:
socantrcvmore(so);
break;
case SHUT_WR:
socantsendmore(so);
break;
case SHUT_RDWR:
socantsendmore(so);
socantrcvmore(so);
break;
default:
mutex_exit(&so->so_lock);
return (EINVAL);
}
state_change = so->so_state & ~state_change;
if (state_change & SS_CANTRCVMORE) {
if (so->so_rcv_q_head == NULL) {
cv_signal(&so->so_rcv_cv);
}
wakesig = POLLIN|POLLRDNORM;
socket_sendsig(so, SOCKETSIG_READ);
}
if (state_change & SS_CANTSENDMORE) {
cv_broadcast(&so->so_snd_cv);
wakesig |= POLLOUT;
so->so_state |= SS_ISDISCONNECTING;
}
mutex_exit(&so->so_lock);
pollwakeup(&so->so_poll_list, wakesig);
if (state_change & SS_CANTSENDMORE) {
sctp_recvd((struct sctp_s *)so->so_proto_handle, so->so_rcvbuf);
error = sctp_disconnect((struct sctp_s *)so->so_proto_handle);
}
/*
* HACK: sctp_disconnect() may return EWOULDBLOCK. But this error is
* not documented in standard socket API. Catch it here.
*/
if (error == EWOULDBLOCK)
error = 0;
return (error);
}
/*
* Get socket options.
*/
/*ARGSUSED5*/
static int
sosctp_getsockopt(struct sonode *so, int level, int option_name,
void *optval, socklen_t *optlenp, int flags, struct cred *cr)
{
socklen_t maxlen = *optlenp;
socklen_t len;
socklen_t optlen;
uint8_t buffer[4];
void *optbuf = &buffer;
int error = 0;
if (level == SOL_SOCKET) {
switch (option_name) {
/* Not supported options */
case SO_SNDTIMEO:
case SO_RCVTIMEO:
case SO_EXCLBIND:
eprintsoline(so, ENOPROTOOPT);
return (ENOPROTOOPT);
default:
error = socket_getopt_common(so, level, option_name,
optval, optlenp, flags);
if (error >= 0)
return (error);
/* Pass the request to the protocol */
break;
}
}
if (level == IPPROTO_SCTP) {
/*
* Should go through ioctl().
*/
return (EINVAL);
}
if (maxlen > sizeof (buffer)) {
optbuf = kmem_alloc(maxlen, KM_SLEEP);
}
optlen = maxlen;
/*
* If the resulting optlen is greater than the provided maxlen, then
* we sliently trucate.
*/
error = sctp_get_opt((struct sctp_s *)so->so_proto_handle, level,
option_name, optbuf, &optlen);
if (error != 0) {
eprintsoline(so, error);
goto free;
}
len = optlen;
copyout:
len = MIN(len, maxlen);
bcopy(optbuf, optval, len);
*optlenp = optlen;
free:
if (optbuf != &buffer) {
kmem_free(optbuf, maxlen);
}
return (error);
}
/*
* Set socket options
*/
/* ARGSUSED */
static int
sosctp_setsockopt(struct sonode *so, int level, int option_name,
const void *optval, t_uscalar_t optlen, struct cred *cr)
{
struct sctp_sonode *ss = SOTOSSO(so);
struct sctp_soassoc *ssa = NULL;
sctp_assoc_t id;
int error, rc;
void *conn = NULL;
mutex_enter(&so->so_lock);
/*
* For some SCTP level options, one can select the association this
* applies to.
*/
if (so->so_type == SOCK_STREAM) {
conn = so->so_proto_handle;
} else {
/*
* SOCK_SEQPACKET only
*/
id = 0;
if (level == IPPROTO_SCTP) {
switch (option_name) {
case SCTP_RTOINFO:
case SCTP_ASSOCINFO:
case SCTP_SET_PEER_PRIMARY_ADDR:
case SCTP_PRIMARY_ADDR:
case SCTP_PEER_ADDR_PARAMS:
/*
* Association ID is the first element
* params struct
*/
if (optlen < sizeof (sctp_assoc_t)) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
id = *(sctp_assoc_t *)optval;
break;
case SCTP_DEFAULT_SEND_PARAM:
if (optlen != sizeof (struct sctp_sndrcvinfo)) {
error = EINVAL;
eprintsoline(so, error);
goto done;
}
id = ((struct sctp_sndrcvinfo *)
optval)->sinfo_assoc_id;
break;
case SCTP_INITMSG:
/*
* Only applies to future associations
*/
conn = so->so_proto_handle;
break;
default:
break;
}
} else if (level == SOL_SOCKET) {
if (option_name == SO_LINGER) {
error = EOPNOTSUPP;
eprintsoline(so, error);
goto done;
}
/*
* These 2 options are applied to all associations.
* The other socket level options are only applied
* to the socket (not associations).
*/
if ((option_name != SO_RCVBUF) &&
(option_name != SO_SNDBUF)) {
conn = so->so_proto_handle;
}
} else {
conn = NULL;
}
/*
* If association ID was specified, do op on that assoc.
* Otherwise set the default setting of a socket.
*/
if (id != 0) {
if ((error = sosctp_assoc(ss, id, &ssa)) != 0) {
eprintsoline(so, error);
goto done;
}
conn = ssa->ssa_conn;
}
}
dprint(2, ("sosctp_setsockopt %p (%d) - conn %p %d %d id:%d\n",
(void *)ss, so->so_type, (void *)conn, level, option_name, id));
ASSERT(ssa == NULL || (ssa != NULL && conn != NULL));
if (conn != NULL) {
mutex_exit(&so->so_lock);
error = sctp_set_opt((struct sctp_s *)conn, level, option_name,
optval, optlen);
mutex_enter(&so->so_lock);
if (ssa != NULL)
SSA_REFRELE(ss, ssa);
} else {
/*
* 1-N socket, and we have to apply the operation to ALL
* associations. Like with anything of this sort, the
* problem is what to do if the operation fails.
* Just try to apply the setting to everyone, but store
* error number if someone returns such. And since we are
* looping through all possible aids, some of them can be
* invalid. We just ignore this kind (sosctp_assoc()) of
* errors.
*/
sctp_assoc_t aid;
mutex_exit(&so->so_lock);
error = sctp_set_opt((struct sctp_s *)so->so_proto_handle,
level, option_name, optval, optlen);
mutex_enter(&so->so_lock);
for (aid = 1; aid < ss->ss_maxassoc; aid++) {
if (sosctp_assoc(ss, aid, &ssa) != 0)
continue;
mutex_exit(&so->so_lock);
rc = sctp_set_opt((struct sctp_s *)ssa->ssa_conn, level,
option_name, optval, optlen);
mutex_enter(&so->so_lock);
SSA_REFRELE(ss, ssa);
if (error == 0) {
error = rc;
}
}
}
done:
mutex_exit(&so->so_lock);
return (error);
}
/*ARGSUSED*/
static int
sosctp_ioctl(struct sonode *so, int cmd, intptr_t arg, int mode,
struct cred *cr, int32_t *rvalp)
{
struct sctp_sonode *ss;
int32_t value;
int error;
int intval;
pid_t pid;
struct sctp_soassoc *ssa;
void *conn;
void *buf;
STRUCT_DECL(sctpopt, opt);
uint32_t optlen;
int buflen;
ss = SOTOSSO(so);
/* handle socket specific ioctls */
switch (cmd) {
case FIONBIO:
if (so_copyin((void *)arg, &value, sizeof (int32_t),
(mode & (int)FKIOCTL))) {
return (EFAULT);
}
mutex_enter(&so->so_lock);
if (value) {
so->so_state |= SS_NDELAY;
} else {
so->so_state &= ~SS_NDELAY;
}
mutex_exit(&so->so_lock);
return (0);
case FIOASYNC:
if (so_copyin((void *)arg, &value, sizeof (int32_t),
(mode & (int)FKIOCTL))) {
return (EFAULT);
}
mutex_enter(&so->so_lock);
if (value) {
/* Turn on SIGIO */
so->so_state |= SS_ASYNC;
} else {
/* Turn off SIGIO */
so->so_state &= ~SS_ASYNC;
}
mutex_exit(&so->so_lock);
return (0);
case SIOCSPGRP:
case FIOSETOWN:
if (so_copyin((void *)arg, &pid, sizeof (pid_t),
(mode & (int)FKIOCTL))) {
return (EFAULT);
}
mutex_enter(&so->so_lock);
error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0;
mutex_exit(&so->so_lock);
return (error);
case SIOCGPGRP:
case FIOGETOWN:
if (so_copyout(&so->so_pgrp, (void *)arg,
sizeof (pid_t), (mode & (int)FKIOCTL)))
return (EFAULT);
return (0);
case FIONREAD:
/* XXX: Cannot be used unless standard buffer is used */
/*
* Return number of bytes of data in all data messages
* in queue in "arg".
* For stream socket, amount of available data.
* For sock_dgram, # of available bytes + addresses.
*/
intval = (so->so_state & SS_ACCEPTCONN) ? 0 :
MIN(so->so_rcv_queued, INT_MAX);
if (so_copyout(&intval, (void *)arg, sizeof (intval),
(mode & (int)FKIOCTL)))
return (EFAULT);
return (0);
case SIOCATMARK:
/*
* No support for urgent data.
*/
intval = 0;
if (so_copyout(&intval, (void *)arg, sizeof (int),
(mode & (int)FKIOCTL)))
return (EFAULT);
return (0);
case _I_GETPEERCRED: {
int error = 0;
if ((mode & FKIOCTL) == 0)
return (EINVAL);
mutex_enter(&so->so_lock);
if ((so->so_mode & SM_CONNREQUIRED) == 0) {
error = ENOTSUP;
} else if ((so->so_state & SS_ISCONNECTED) == 0) {
error = ENOTCONN;
} else if (so->so_peercred != NULL) {
k_peercred_t *kp = (k_peercred_t *)arg;
kp->pc_cr = so->so_peercred;
kp->pc_cpid = so->so_cpid;
crhold(so->so_peercred);
} else {
error = EINVAL;
}
mutex_exit(&so->so_lock);
return (error);
}
case SIOCSCTPGOPT:
STRUCT_INIT(opt, mode);
if (so_copyin((void *)arg, STRUCT_BUF(opt), STRUCT_SIZE(opt),
(mode & (int)FKIOCTL))) {
return (EFAULT);
}
if ((optlen = STRUCT_FGET(opt, sopt_len)) > SO_MAXARGSIZE)
return (EINVAL);
/*
* Find the correct sctp_t based on whether it is 1-N socket
* or not.
*/
intval = STRUCT_FGET(opt, sopt_aid);
mutex_enter(&so->so_lock);
if ((so->so_type == SOCK_SEQPACKET) && intval) {
if ((error = sosctp_assoc(ss, intval, &ssa)) != 0) {
mutex_exit(&so->so_lock);
return (error);
}
conn = ssa->ssa_conn;
ASSERT(conn != NULL);
} else {
conn = so->so_proto_handle;
ssa = NULL;
}
mutex_exit(&so->so_lock);
/* Copyin the option buffer and then call sctp_get_opt(). */
buflen = optlen;
/* Let's allocate a buffer enough to hold an int */
if (buflen < sizeof (uint32_t))
buflen = sizeof (uint32_t);
buf = kmem_alloc(buflen, KM_SLEEP);
if (so_copyin(STRUCT_FGETP(opt, sopt_val), buf, optlen,
(mode & (int)FKIOCTL))) {
if (ssa != NULL) {
mutex_enter(&so->so_lock);
SSA_REFRELE(ss, ssa);
mutex_exit(&so->so_lock);
}
kmem_free(buf, buflen);
return (EFAULT);
}
/* The option level has to be IPPROTO_SCTP */
error = sctp_get_opt((struct sctp_s *)conn, IPPROTO_SCTP,
STRUCT_FGET(opt, sopt_name), buf, &optlen);
if (ssa != NULL) {
mutex_enter(&so->so_lock);
SSA_REFRELE(ss, ssa);
mutex_exit(&so->so_lock);
}
optlen = MIN(buflen, optlen);
/* No error, copyout the result with the correct buf len. */
if (error == 0) {
STRUCT_FSET(opt, sopt_len, optlen);
if (so_copyout(STRUCT_BUF(opt), (void *)arg,
STRUCT_SIZE(opt), (mode & (int)FKIOCTL))) {
error = EFAULT;
} else if (so_copyout(buf, STRUCT_FGETP(opt, sopt_val),
optlen, (mode & (int)FKIOCTL))) {
error = EFAULT;
}
}
kmem_free(buf, buflen);
return (error);
case SIOCSCTPSOPT:
STRUCT_INIT(opt, mode);
if (so_copyin((void *)arg, STRUCT_BUF(opt), STRUCT_SIZE(opt),
(mode & (int)FKIOCTL))) {
return (EFAULT);
}
if ((optlen = STRUCT_FGET(opt, sopt_len)) > SO_MAXARGSIZE)
return (EINVAL);
/*
* Find the correct sctp_t based on whether it is 1-N socket
* or not.
*/
intval = STRUCT_FGET(opt, sopt_aid);
mutex_enter(&so->so_lock);
if (intval != 0) {
if ((error = sosctp_assoc(ss, intval, &ssa)) != 0) {
mutex_exit(&so->so_lock);
return (error);
}
conn = ssa->ssa_conn;
ASSERT(conn != NULL);
} else {
conn = so->so_proto_handle;
ssa = NULL;
}
mutex_exit(&so->so_lock);
/* Copyin the option buffer and then call sctp_set_opt(). */
buf = kmem_alloc(optlen, KM_SLEEP);
if (so_copyin(STRUCT_FGETP(opt, sopt_val), buf, optlen,
(mode & (int)FKIOCTL))) {
if (ssa != NULL) {
mutex_enter(&so->so_lock);
SSA_REFRELE(ss, ssa);
mutex_exit(&so->so_lock);
}
kmem_free(buf, intval);
return (EFAULT);
}
/* The option level has to be IPPROTO_SCTP */
error = sctp_set_opt((struct sctp_s *)conn, IPPROTO_SCTP,
STRUCT_FGET(opt, sopt_name), buf, optlen);
if (ssa) {
mutex_enter(&so->so_lock);
SSA_REFRELE(ss, ssa);
mutex_exit(&so->so_lock);
}
kmem_free(buf, optlen);
return (error);
case SIOCSCTPPEELOFF: {
struct sonode *nso;
struct sctp_uc_swap us;
int nfd;
struct file *nfp;
struct vnode *nvp = NULL;
struct sockparams *sp;
dprint(2, ("sctppeeloff %p\n", (void *)ss));
if (so->so_type != SOCK_SEQPACKET) {
return (EOPNOTSUPP);
}
if (so_copyin((void *)arg, &intval, sizeof (intval),
(mode & (int)FKIOCTL))) {
return (EFAULT);
}
if (intval == 0) {
return (EINVAL);
}
/*
* Find sockparams. This is different from parent's entry,
* as the socket type is different.
*/
error = solookup(so->so_family, SOCK_STREAM, so->so_protocol,
&sp);
if (error != 0)
return (error);
/*
* Allocate the user fd.
*/
if ((nfd = ufalloc(0)) == -1) {
eprintsoline(so, EMFILE);
SOCKPARAMS_DEC_REF(sp);
return (EMFILE);
}
/*
* Copy the fd out.
*/
if (so_copyout(&nfd, (void *)arg, sizeof (nfd),
(mode & (int)FKIOCTL))) {
error = EFAULT;
goto err;
}
mutex_enter(&so->so_lock);
/*
* Don't use sosctp_assoc() in order to peel off disconnected
* associations.
*/
ssa = ((uint32_t)intval >= ss->ss_maxassoc) ? NULL :
ss->ss_assocs[intval].ssi_assoc;
if (ssa == NULL) {
mutex_exit(&so->so_lock);
error = EINVAL;
goto err;
}
SSA_REFHOLD(ssa);
nso = socksctp_create(sp, so->so_family, SOCK_STREAM,
so->so_protocol, so->so_version, SOCKET_NOSLEEP,
&error, cr);
if (nso == NULL) {
SSA_REFRELE(ss, ssa);
mutex_exit(&so->so_lock);
goto err;
}
nvp = SOTOV(nso);
so_lock_single(so);
mutex_exit(&so->so_lock);
/* cannot fail, only inheriting properties */
(void) sosctp_init(nso, so, CRED(), 0);
/*
* We have a single ref on the new socket. This is normally
* handled by socket_{create,newconn}, but since they are not
* used we have to do it here.
*/
nso->so_count = 1;
us.sus_handle = nso;
us.sus_upcalls = &sosctp_sock_upcalls;
/*
* Upcalls to new socket are blocked for the duration of
* downcall.
*/
mutex_enter(&nso->so_lock);
error = sctp_set_opt((struct sctp_s *)ssa->ssa_conn,
IPPROTO_SCTP, SCTP_UC_SWAP, &us, sizeof (us));
if (error) {
goto peelerr;
}
error = falloc(nvp, FWRITE|FREAD, &nfp, NULL);
if (error) {
goto peelerr;
}
/*
* fill in the entries that falloc reserved
*/
nfp->f_vnode = nvp;
mutex_exit(&nfp->f_tlock);
setf(nfd, nfp);
mutex_enter(&so->so_lock);
sosctp_assoc_move(ss, SOTOSSO(nso), ssa);
mutex_exit(&nso->so_lock);
ssa->ssa_conn = NULL;
sosctp_assoc_free(ss, ssa);
so_unlock_single(so, SOLOCKED);
mutex_exit(&so->so_lock);
return (0);
err:
SOCKPARAMS_DEC_REF(sp);
setf(nfd, NULL);
eprintsoline(so, error);
return (error);
peelerr:
mutex_exit(&nso->so_lock);
mutex_enter(&so->so_lock);
ASSERT(nso->so_count == 1);
nso->so_count = 0;
so_unlock_single(so, SOLOCKED);
SSA_REFRELE(ss, ssa);
mutex_exit(&so->so_lock);
setf(nfd, NULL);
ASSERT(nvp->v_count == 1);
socket_destroy(nso);
eprintsoline(so, error);
return (error);
}
default:
return (EINVAL);
}
}
/*ARGSUSED*/
static int
sosctp_close(struct sonode *so, int flag, struct cred *cr)
{
struct sctp_sonode *ss;
struct sctp_sa_id *ssi;
struct sctp_soassoc *ssa;
int32_t i;
ss = SOTOSSO(so);
/*
* Initiate connection shutdown. Tell SCTP if there is any data
* left unread.
*/
sctp_recvd((struct sctp_s *)so->so_proto_handle,
so->so_rcvbuf - so->so_rcv_queued);
(void) sctp_disconnect((struct sctp_s *)so->so_proto_handle);
/*
* New associations can't come in, but old ones might get
* closed in upcall. Protect against that by taking a reference
* on the association.
*/
mutex_enter(&so->so_lock);
ssi = ss->ss_assocs;
for (i = 0; i < ss->ss_maxassoc; i++, ssi++) {
if ((ssa = ssi->ssi_assoc) != NULL) {
SSA_REFHOLD(ssa);
sosctp_assoc_isdisconnected(ssa, 0);
mutex_exit(&so->so_lock);
sctp_recvd(ssa->ssa_conn, so->so_rcvbuf -
ssa->ssa_rcv_queued);
(void) sctp_disconnect(ssa->ssa_conn);
mutex_enter(&so->so_lock);
SSA_REFRELE(ss, ssa);
}
}
mutex_exit(&so->so_lock);
return (0);
}
/*
* Closes incoming connections which were never accepted, frees
* resources.
*/
/* ARGSUSED */
void
sosctp_fini(struct sonode *so, struct cred *cr)
{
struct sctp_sonode *ss;
struct sctp_sa_id *ssi;
struct sctp_soassoc *ssa;
int32_t i;
ss = SOTOSSO(so);
ASSERT(so->so_ops == &sosctp_sonodeops ||
so->so_ops == &sosctp_seq_sonodeops);
/* We are the sole owner of so now */
mutex_enter(&so->so_lock);
/* Free all pending connections */
so_acceptq_flush(so, B_TRUE);
ssi = ss->ss_assocs;
for (i = 0; i < ss->ss_maxassoc; i++, ssi++) {
if ((ssa = ssi->ssi_assoc) != NULL) {
SSA_REFHOLD(ssa);
mutex_exit(&so->so_lock);
sctp_close((struct sctp_s *)ssa->ssa_conn);
mutex_enter(&so->so_lock);
ssa->ssa_conn = NULL;
sosctp_assoc_free(ss, ssa);
}
}
if (ss->ss_assocs != NULL) {
ASSERT(ss->ss_assoccnt == 0);
kmem_free(ss->ss_assocs,
ss->ss_maxassoc * sizeof (struct sctp_sa_id));
}
mutex_exit(&so->so_lock);
if (so->so_proto_handle)
sctp_close((struct sctp_s *)so->so_proto_handle);
so->so_proto_handle = NULL;
/*
* Note until sctp_close() is called, SCTP can still send up
* messages, such as event notifications. So we should flush
* the recevie buffer after calling sctp_close().
*/
mutex_enter(&so->so_lock);
so_rcv_flush(so);
mutex_exit(&so->so_lock);
sonode_fini(so);
}
/*
* Upcalls from SCTP
*/
/*
* This is the upcall function for 1-N (SOCK_SEQPACKET) socket when a new
* association is created. Note that the first argument (handle) is of type
* sctp_sonode *, which is the one changed to a listener for new
* associations. All the other upcalls for 1-N socket take sctp_soassoc *
* as handle. The only exception is the su_properties upcall, which
* can take both types as handle.
*/
/* ARGSUSED */
sock_upper_handle_t
sctp_assoc_newconn(sock_upper_handle_t parenthandle,
sock_lower_handle_t connind, sock_downcalls_t *dc,
struct cred *peer_cred, pid_t peer_cpid, sock_upcalls_t **ucp)
{
struct sctp_sonode *lss = (struct sctp_sonode *)parenthandle;
struct sonode *lso = &lss->ss_so;
struct sctp_soassoc *ssa;
sctp_assoc_t id;
ASSERT(lss->ss_type == SOSCTP_SOCKET);
ASSERT(lso->so_state & SS_ACCEPTCONN);
ASSERT(lso->so_proto_handle != NULL); /* closed conn */
ASSERT(lso->so_type == SOCK_SEQPACKET);
mutex_enter(&lso->so_lock);
if ((id = sosctp_aid_get(lss)) == -1) {
/*
* Array not large enough; increase size.
*/
if (sosctp_aid_grow(lss, lss->ss_maxassoc, KM_NOSLEEP) < 0) {
mutex_exit(&lso->so_lock);
return (NULL);
}
id = sosctp_aid_get(lss);
ASSERT(id != -1);
}
/*
* Create soassoc for this connection
*/
ssa = sosctp_assoc_create(lss, KM_NOSLEEP);
if (ssa == NULL) {
mutex_exit(&lso->so_lock);
return (NULL);
}
sosctp_aid_reserve(lss, id, 1);
lss->ss_assocs[id].ssi_assoc = ssa;
++lss->ss_assoccnt;
ssa->ssa_id = id;
ssa->ssa_conn = (struct sctp_s *)connind;
ssa->ssa_state = (SS_ISBOUND | SS_ISCONNECTED);
ssa->ssa_wroff = lss->ss_wroff;
ssa->ssa_wrsize = lss->ss_wrsize;
mutex_exit(&lso->so_lock);
*ucp = &sosctp_assoc_upcalls;
return ((sock_upper_handle_t)ssa);
}
/* ARGSUSED */
static void
sctp_assoc_connected(sock_upper_handle_t handle, sock_connid_t id,
struct cred *peer_cred, pid_t peer_cpid)
{
struct sctp_soassoc *ssa = (struct sctp_soassoc *)handle;
struct sonode *so = &ssa->ssa_sonode->ss_so;
ASSERT(so->so_type == SOCK_SEQPACKET);
ASSERT(ssa->ssa_conn);
mutex_enter(&so->so_lock);
sosctp_assoc_isconnected(ssa);
mutex_exit(&so->so_lock);
}
/* ARGSUSED */
static int
sctp_assoc_disconnected(sock_upper_handle_t handle, sock_connid_t id, int error)
{
struct sctp_soassoc *ssa = (struct sctp_soassoc *)handle;
struct sonode *so = &ssa->ssa_sonode->ss_so;
int ret;
ASSERT(so->so_type == SOCK_SEQPACKET);
ASSERT(ssa->ssa_conn != NULL);
mutex_enter(&so->so_lock);
sosctp_assoc_isdisconnected(ssa, error);
if (ssa->ssa_refcnt == 1) {
ret = 1;
ssa->ssa_conn = NULL;
} else {
ret = 0;
}
SSA_REFRELE(SOTOSSO(so), ssa);
cv_broadcast(&so->so_snd_cv);
mutex_exit(&so->so_lock);
return (ret);
}
/* ARGSUSED */
static void
sctp_assoc_disconnecting(sock_upper_handle_t handle, sock_opctl_action_t action,
uintptr_t arg)
{
struct sctp_soassoc *ssa = (struct sctp_soassoc *)handle;
struct sonode *so = &ssa->ssa_sonode->ss_so;
ASSERT(so->so_type == SOCK_SEQPACKET);
ASSERT(ssa->ssa_conn != NULL);
ASSERT(action == SOCK_OPCTL_SHUT_SEND);
mutex_enter(&so->so_lock);
sosctp_assoc_isdisconnecting(ssa);
mutex_exit(&so->so_lock);
}
/* ARGSUSED */
static ssize_t
sctp_assoc_recv(sock_upper_handle_t handle, mblk_t *mp, size_t len, int flags,
int *errorp, boolean_t *forcepush)
{
struct sctp_soassoc *ssa = (struct sctp_soassoc *)handle;
struct sctp_sonode *ss = ssa->ssa_sonode;
struct sonode *so = &ss->ss_so;
struct T_unitdata_ind *tind;
mblk_t *mp2;
union sctp_notification *sn;
struct sctp_sndrcvinfo *sinfo;
ssize_t space_available;
ASSERT(ssa->ssa_type == SOSCTP_ASSOC);
ASSERT(so->so_type == SOCK_SEQPACKET);
ASSERT(ssa->ssa_conn != NULL); /* closed conn */
ASSERT(mp != NULL);
ASSERT(errorp != NULL);
*errorp = 0;
/*
* Should be getting T_unitdata_req's only.
* Must have address as part of packet.
*/
tind = (struct T_unitdata_ind *)mp->b_rptr;
ASSERT((DB_TYPE(mp) == M_PROTO) &&
(tind->PRIM_type == T_UNITDATA_IND));
ASSERT(tind->SRC_length);
mutex_enter(&so->so_lock);
/*
* For notify messages, need to fill in association id.
* For data messages, sndrcvinfo could be in ancillary data.
*/
if (mp->b_flag & SCTP_NOTIFICATION) {
mp2 = mp->b_cont;
sn = (union sctp_notification *)mp2->b_rptr;
switch (sn->sn_header.sn_type) {
case SCTP_ASSOC_CHANGE:
sn->sn_assoc_change.sac_assoc_id = ssa->ssa_id;
break;
case SCTP_PEER_ADDR_CHANGE:
sn->sn_paddr_change.spc_assoc_id = ssa->ssa_id;
break;
case SCTP_REMOTE_ERROR:
sn->sn_remote_error.sre_assoc_id = ssa->ssa_id;
break;
case SCTP_SEND_FAILED:
sn->sn_send_failed.ssf_assoc_id = ssa->ssa_id;
break;
case SCTP_SHUTDOWN_EVENT:
sn->sn_shutdown_event.sse_assoc_id = ssa->ssa_id;
break;
case SCTP_ADAPTATION_INDICATION:
sn->sn_adaptation_event.sai_assoc_id = ssa->ssa_id;
break;
case SCTP_PARTIAL_DELIVERY_EVENT:
sn->sn_pdapi_event.pdapi_assoc_id = ssa->ssa_id;
break;
default:
ASSERT(0);
break;
}
} else {
if (tind->OPT_length > 0) {
struct cmsghdr *cmsg;
char *cend;
cmsg = (struct cmsghdr *)
((uchar_t *)mp->b_rptr + tind->OPT_offset);
cend = (char *)cmsg + tind->OPT_length;
for (;;) {
if ((char *)(cmsg + 1) > cend ||
((char *)cmsg + cmsg->cmsg_len) > cend) {
break;
}
if ((cmsg->cmsg_level == IPPROTO_SCTP) &&
(cmsg->cmsg_type == SCTP_SNDRCV)) {
sinfo = (struct sctp_sndrcvinfo *)
(cmsg + 1);
sinfo->sinfo_assoc_id = ssa->ssa_id;
break;
}
if (cmsg->cmsg_len > 0) {
cmsg = (struct cmsghdr *)
((uchar_t *)cmsg + cmsg->cmsg_len);
} else {
break;
}
}
}
}
/*
* SCTP has reserved space in the header for storing a pointer.
* Put the pointer to assocation there, and queue the data.
*/
SSA_REFHOLD(ssa);
ASSERT((mp->b_rptr - DB_BASE(mp)) >= sizeof (ssa));
*(struct sctp_soassoc **)DB_BASE(mp) = ssa;
ssa->ssa_rcv_queued += len;
space_available = so->so_rcvbuf - ssa->ssa_rcv_queued;
if (space_available <= 0)
ssa->ssa_flowctrld = B_TRUE;
so_enqueue_msg(so, mp, len);
/* so_notify_data drops so_lock */
so_notify_data(so, len);
return (space_available);
}
static void
sctp_assoc_xmitted(sock_upper_handle_t handle, boolean_t qfull)
{
struct sctp_soassoc *ssa = (struct sctp_soassoc *)handle;
struct sctp_sonode *ss = ssa->ssa_sonode;
ASSERT(ssa->ssa_type == SOSCTP_ASSOC);
ASSERT(ss->ss_so.so_type == SOCK_SEQPACKET);
ASSERT(ssa->ssa_conn != NULL);
mutex_enter(&ss->ss_so.so_lock);
ssa->ssa_snd_qfull = qfull;
/*
* Wake blocked writers.
*/
cv_broadcast(&ss->ss_so.so_snd_cv);
mutex_exit(&ss->ss_so.so_lock);
}
static void
sctp_assoc_properties(sock_upper_handle_t handle,
struct sock_proto_props *soppp)
{
struct sctp_soassoc *ssa = (struct sctp_soassoc *)handle;
struct sonode *so;
if (ssa->ssa_type == SOSCTP_ASSOC) {
so = &ssa->ssa_sonode->ss_so;
mutex_enter(&so->so_lock);
/* Per assoc_id properties. */
if (soppp->sopp_flags & SOCKOPT_WROFF)
ssa->ssa_wroff = soppp->sopp_wroff;
if (soppp->sopp_flags & SOCKOPT_MAXBLK)
ssa->ssa_wrsize = soppp->sopp_maxblk;
} else {
so = &((struct sctp_sonode *)handle)->ss_so;
mutex_enter(&so->so_lock);
if (soppp->sopp_flags & SOCKOPT_WROFF)
so->so_proto_props.sopp_wroff = soppp->sopp_wroff;
if (soppp->sopp_flags & SOCKOPT_MAXBLK)
so->so_proto_props.sopp_maxblk = soppp->sopp_maxblk;
if (soppp->sopp_flags & SOCKOPT_RCVHIWAT) {
ssize_t lowat;
so->so_rcvbuf = soppp->sopp_rxhiwat;
/*
* The low water mark should be adjusted properly
* if the high water mark is changed. It should
* not be bigger than 1/4 of high water mark.
*/
lowat = soppp->sopp_rxhiwat >> 2;
if (so->so_rcvlowat > lowat) {
/* Sanity check... */
if (lowat == 0)
so->so_rcvlowat = soppp->sopp_rxhiwat;
else
so->so_rcvlowat = lowat;
}
}
}
mutex_exit(&so->so_lock);
}