/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* The system call and DDI interface for the kernel SSL module
*/
#include <sys/types.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/kmem.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/proc.h>
#include <sys/task.h>
#include <sys/model.h>
#include <sys/sysmacros.h>
#include <sys/policy.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <c2/audit.h>
#include <sys/kstat.h>
#include "kssl.h"
#include "ksslimpl.h"
/*
* DDI entry points.
*/
static int kssl_attach(dev_info_t *, ddi_attach_cmd_t);
static int kssl_detach(dev_info_t *, ddi_detach_cmd_t);
static int kssl_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int kssl_open(dev_t *, int, int, cred_t *);
static int kssl_close(dev_t, int, int, cred_t *);
static int kssl_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
static int kssl_constructor(void *buf, void *arg, int kmflags);
static void kssl_destructor(void *buf, void *arg);
/*
* Module linkage.
*/
static struct cb_ops cbops = {
kssl_open, /* cb_open */
kssl_close, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
nodev, /* cb_read */
nodev, /* cb_write */
kssl_ioctl, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
NULL, /* cb_streamtab */
D_MP, /* cb_flag */
CB_REV, /* cb_rev */
nodev, /* cb_aread */
nodev, /* cb_awrite */
};
static struct dev_ops devops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
kssl_getinfo, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo_probe */
kssl_attach, /* devo_attach */
kssl_detach, /* devo_detach */
nodev, /* devo_reset */
&cbops, /* devo_cb_ops */
NULL, /* devo_bus_ops */
NULL, /* devo_power */
ddi_quiesce_not_needed, /* devo_quiesce */
};
static struct modldrv modldrv = {
&mod_driverops, /* drv_modops */
"Kernel SSL Interface", /* drv_linkinfo */
&devops,
};
static struct modlinkage modlinkage = {
MODREV_1, /* ml_rev */
&modldrv, /* ml_linkage */
NULL
};
static dev_info_t *kssl_dip = NULL;
crypto_mechanism_t rsa_x509_mech = {CRYPTO_MECH_INVALID, NULL, 0};
crypto_mechanism_t hmac_md5_mech = {CRYPTO_MECH_INVALID, NULL, 0};
crypto_mechanism_t hmac_sha1_mech = {CRYPTO_MECH_INVALID, NULL, 0};
crypto_call_flag_t kssl_call_flag = CRYPTO_ALWAYS_QUEUE;
KSSLCipherDef cipher_defs[] = { /* indexed by SSL3BulkCipher */
/* type bsize keysz crypto_mech_type_t */
{type_stream, 0, 0, CRYPTO_MECH_INVALID},
/* mech_type to be initialized with CKM_RC4's */
{type_stream, 0, 16, CRYPTO_MECH_INVALID},
/* mech_type to be initialized with CKM_DES_CBC's */
{type_block, 8, 8, CRYPTO_MECH_INVALID},
/* mech_type to be initialized with CKM_DES3_CBC's */
{type_block, 8, 24, CRYPTO_MECH_INVALID},
/* mech_type to be initialized with CKM_AES_CBC with 128-bit key */
{type_block, 16, 16, CRYPTO_MECH_INVALID},
/* mech_type to be initialized with CKM_AES_CBC with 256-bit key */
{type_block, 16, 32, CRYPTO_MECH_INVALID},
};
struct kmem_cache *kssl_cache;
static crypto_notify_handle_t prov_update_handle = NULL;
static void kssl_global_init();
static void kssl_global_fini();
static void kssl_init_mechs();
static void kssl_event_callback(uint32_t, void *);
/*
* DDI entry points.
*/
int
_init(void)
{
int error;
kssl_global_init();
if ((error = mod_install(&modlinkage)) != 0) {
kssl_global_fini();
return (error);
}
return (0);
}
int
_fini(void)
{
int error;
if ((error = mod_remove(&modlinkage)) != 0)
return (error);
if (prov_update_handle != NULL)
crypto_unnotify_events(prov_update_handle);
kssl_global_fini();
return (0);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/* ARGSUSED */
static int
kssl_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
{
switch (cmd) {
case DDI_INFO_DEVT2DEVINFO:
*result = kssl_dip;
return (DDI_SUCCESS);
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)0;
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
static int
kssl_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
if (cmd != DDI_ATTACH) {
return (DDI_FAILURE);
}
if (ddi_get_instance(dip) != 0) {
/* we only allow instance 0 to attach */
return (DDI_FAILURE);
}
/* create the minor node */
if (ddi_create_minor_node(dip, "kssl", S_IFCHR, 0, DDI_PSEUDO, 0) !=
DDI_SUCCESS) {
cmn_err(CE_WARN, "kssl_attach: failed creating minor node");
ddi_remove_minor_node(dip, NULL);
return (DDI_FAILURE);
}
kssl_dip = dip;
return (DDI_SUCCESS);
}
static kstat_t *kssl_ksp = NULL;
static int
kssl_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
if (cmd != DDI_DETACH)
return (DDI_FAILURE);
if (kssl_entry_tab_nentries != 0)
return (DDI_FAILURE);
kssl_dip = NULL;
ddi_remove_minor_node(dip, NULL);
return (DDI_SUCCESS);
}
/* ARGSUSED */
static int
kssl_open(dev_t *devp, int flag, int otyp, cred_t *credp)
{
if (otyp != OTYP_CHR)
return (ENXIO);
if (kssl_dip == NULL)
return (ENXIO);
/* first time here? initialize everything */
if (rsa_x509_mech.cm_type == CRYPTO_MECH_INVALID) {
kssl_init_mechs();
prov_update_handle = crypto_notify_events(
kssl_event_callback, CRYPTO_EVENT_MECHS_CHANGED);
}
/* exclusive opens are not supported */
if (flag & FEXCL)
return (ENOTSUP);
return (0);
}
/* ARGSUSED */
static int
kssl_close(dev_t dev, int flag, int otyp, cred_t *credp)
{
return (0);
}
#define KSSL_MAX_KEYANDCERTS 80000 /* max 64K plus a little margin */
/* ARGSUSED */
static int
kssl_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *c,
int *rval)
{
int error = EINVAL;
uint32_t auditing = AU_AUDITING();
#define ARG ((caddr_t)arg)
if (secpolicy_net_config(c, B_FALSE) != 0) {
return (EPERM);
}
switch (cmd) {
case KSSL_ADD_ENTRY: {
uint64_t len;
uint32_t ck_rv;
size_t off;
kssl_params_t *kssl_params;
off = offsetof(kssl_params_t, kssl_params_size);
if (copyin(ARG + off, &len, sizeof (len)) != 0) {
return (EFAULT);
}
if (len < sizeof (kssl_params_t) ||
len > KSSL_MAX_KEYANDCERTS) {
return (EINVAL);
}
kssl_params = kmem_alloc(len, KM_SLEEP);
/* Get the whole structure and parameters in one move */
if (copyin(ARG, kssl_params, len) != 0) {
kmem_free(kssl_params, len);
return (EFAULT);
}
error = kssl_add_entry(kssl_params);
if (auditing)
audit_kssl(KSSL_ADD_ENTRY, kssl_params, error);
off = offsetof(kssl_params_t, kssl_token) +
offsetof(kssl_tokinfo_t, ck_rv);
ck_rv = kssl_params->kssl_token.ck_rv;
if (copyout(&ck_rv, ARG + off, sizeof (ck_rv)) != 0) {
error = EFAULT;
}
bzero(kssl_params, len);
kmem_free(kssl_params, len);
break;
}
case KSSL_DELETE_ENTRY: {
struct sockaddr_in6 server_addr;
if (copyin(ARG, &server_addr, sizeof (server_addr)) != 0) {
return (EFAULT);
}
error = kssl_delete_entry(&server_addr);
if (auditing)
audit_kssl(KSSL_DELETE_ENTRY, &server_addr, error);
break;
}
}
return (error);
}
#define NUM_MECHS 7
static mech_to_cipher_t mech_to_cipher_tab[NUM_MECHS] = {
{CRYPTO_MECH_INVALID, SUN_CKM_RSA_X_509,
{SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_WITH_RC4_128_SHA,
SSL_RSA_WITH_DES_CBC_SHA, SSL_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA,
SSL_RSA_WITH_NULL_SHA}},
{CRYPTO_MECH_INVALID, SUN_CKM_MD5_HMAC, {SSL_RSA_WITH_RC4_128_MD5}},
{CRYPTO_MECH_INVALID, SUN_CKM_SHA1_HMAC,
{SSL_RSA_WITH_RC4_128_SHA, SSL_RSA_WITH_DES_CBC_SHA,
SSL_RSA_WITH_3DES_EDE_CBC_SHA, SSL_RSA_WITH_NULL_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA}},
{CRYPTO_MECH_INVALID, SUN_CKM_RC4,
{SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_WITH_RC4_128_SHA}},
{CRYPTO_MECH_INVALID, SUN_CKM_DES_CBC, {SSL_RSA_WITH_DES_CBC_SHA}},
{CRYPTO_MECH_INVALID, SUN_CKM_DES3_CBC,
{SSL_RSA_WITH_3DES_EDE_CBC_SHA}},
{CRYPTO_MECH_INVALID, SUN_CKM_AES_CBC,
{TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA}},
};
static void
kssl_init_mechs()
{
mech_to_cipher_tab[0].mech = rsa_x509_mech.cm_type =
crypto_mech2id(SUN_CKM_RSA_X_509);
mech_to_cipher_tab[1].mech = hmac_md5_mech.cm_type =
crypto_mech2id(SUN_CKM_MD5_HMAC);
mech_to_cipher_tab[2].mech = hmac_sha1_mech.cm_type =
crypto_mech2id(SUN_CKM_SHA1_HMAC);
mech_to_cipher_tab[3].mech = cipher_defs[cipher_rc4].mech_type =
crypto_mech2id(SUN_CKM_RC4);
mech_to_cipher_tab[4].mech = cipher_defs[cipher_des].mech_type =
crypto_mech2id(SUN_CKM_DES_CBC);
mech_to_cipher_tab[5].mech = cipher_defs[cipher_3des].mech_type =
crypto_mech2id(SUN_CKM_DES3_CBC);
mech_to_cipher_tab[6].mech = cipher_defs[cipher_aes128].mech_type =
cipher_defs[cipher_aes256].mech_type =
crypto_mech2id(SUN_CKM_AES_CBC);
}
static int
is_in_suites(uint16_t s, uint16_t *sarray)
{
int i;
for (i = 0; i < CIPHER_SUITE_COUNT; i++) {
if (s == sarray[i])
return (1);
}
return (0);
}
static int
is_in_mechlist(char *name, crypto_mech_name_t *mechs, int count)
{
int i;
for (i = 0; i < count; i++) {
if (strncmp(name, mechs[i], CRYPTO_MAX_MECH_NAME) == 0)
return (1);
}
return (0);
}
/*
* Callback function invoked by the crypto framework when a provider's
* mechanism is available/unavailable. This callback updates entries in the
* kssl_entry_tab[] to make changes to the cipher suites of an entry
* which are affected by the mechanism.
*/
static void
kssl_event_callback(uint32_t event, void *event_arg)
{
int i, j;
int cnt, rcnt;
uint16_t s;
boolean_t changed;
crypto_mech_name_t *mechs;
uint_t mech_count;
mech_to_cipher_t *mc;
kssl_entry_t *old;
kssl_entry_t *new;
uint16_t tmp_suites[CIPHER_SUITE_COUNT];
uint16_t dis_list[CIPHER_SUITE_COUNT];
crypto_notify_event_change_t *prov_change =
(crypto_notify_event_change_t *)event_arg;
/* ignore events for which we didn't register */
if (event != CRYPTO_EVENT_MECHS_CHANGED) {
return;
}
for (i = 0; i < NUM_MECHS; i++) {
mc = &(mech_to_cipher_tab[i]);
if (mc->mech == CRYPTO_MECH_INVALID)
continue;
/*
* Check if this crypto framework provider mechanism being
* added or removed affects us.
*/
if (strncmp(mc->name, prov_change->ec_mech_name,
CRYPTO_MAX_MECH_NAME) == 0)
break;
}
if (i == NUM_MECHS)
return;
mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
if (mechs == NULL)
return;
mutex_enter(&kssl_tab_mutex);
for (i = 0; i < kssl_entry_tab_size; i++) {
if ((old = kssl_entry_tab[i]) == NULL)
continue;
cnt = 0;
rcnt = 0;
changed = B_FALSE;
for (j = 0; j < CIPHER_SUITE_COUNT; j++) {
tmp_suites[j] = CIPHER_NOTSET;
dis_list[j] = CIPHER_NOTSET;
}
/*
* We start with the saved cipher suite list for the new entry.
* If a mechanism is disabled, resulting in a cipher suite being
* disabled now, we take it out from the list for the new entry.
* If a mechanism is enabled, resulting in a cipher suite being
* enabled now, we don't need to do any thing.
*/
if (!is_in_mechlist(mc->name, mechs, mech_count)) {
for (j = 0; j < CIPHER_SUITE_COUNT; j++) {
s = mc->kssl_suites[j];
if (s == 0)
break;
if (is_in_suites(s, old->kssl_saved_Suites)) {
/* Disable this cipher suite */
if (!is_in_suites(s, dis_list))
dis_list[cnt++] = s;
}
}
}
for (j = 0; j < CIPHER_SUITE_COUNT; j++) {
s = old->kssl_saved_Suites[j];
if (!is_in_suites(s, dis_list))
tmp_suites[rcnt] = s;
if (!changed &&
(tmp_suites[rcnt] != old->kssl_cipherSuites[rcnt]))
changed = B_TRUE;
rcnt++;
}
if (changed) {
new = kmem_zalloc(sizeof (kssl_entry_t), KM_NOSLEEP);
if (new == NULL)
continue;
*new = *old; /* Structure copy */
old->ke_no_freeall = B_TRUE;
new->ke_refcnt = 0;
new->kssl_cipherSuites_nentries = rcnt;
for (j = 0; j < CIPHER_SUITE_COUNT; j++)
new->kssl_cipherSuites[j] = tmp_suites[j];
KSSL_ENTRY_REFHOLD(new);
kssl_entry_tab[i] = new;
KSSL_ENTRY_REFRELE(old);
}
}
mutex_exit(&kssl_tab_mutex);
crypto_free_mech_list(mechs, mech_count);
}
kssl_stats_t *kssl_statp;
static void
kssl_global_init()
{
mutex_init(&kssl_tab_mutex, NULL, MUTEX_DRIVER, NULL);
kssl_cache = kmem_cache_create("kssl_cache", sizeof (ssl_t),
0, kssl_constructor, kssl_destructor, NULL, NULL, NULL, 0);
if ((kssl_ksp = kstat_create("kssl", 0, "kssl_stats", "crypto",
KSTAT_TYPE_NAMED, sizeof (kssl_stats_t) / sizeof (kstat_named_t),
KSTAT_FLAG_PERSISTENT)) != NULL) {
kssl_statp = kssl_ksp->ks_data;
kstat_named_init(&kssl_statp->sid_cache_lookups,
"kssl_sid_cache_lookups", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->sid_cache_hits,
"kssl_sid_cache_hits", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->sid_cached,
"kssl_sid_cached", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->sid_uncached,
"kssl_sid_uncached", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->full_handshakes,
"kssl_full_handshakes", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->resumed_sessions,
"kssl_resumed_sessions", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->fallback_connections,
"kssl_fallback_connections", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->proxy_fallback_failed,
"kssl_proxy_fallback_failed", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->appdata_record_ins,
"kssl_appdata_record_ins", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->appdata_record_outs,
"kssl_appdata_record_outs", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->alloc_fails, "kssl_alloc_fails",
KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->fatal_alerts,
"kssl_fatal_alerts", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->warning_alerts,
"kssl_warning_alerts", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->no_suite_found,
"kssl_no_suite_found", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->compute_mac_failure,
"kssl_compute_mac_failure", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->verify_mac_failure,
"kssl_verify_mac_failure", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->record_decrypt_failure,
"kssl_record_decrypt_failure", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->bad_pre_master_secret,
"kssl_bad_pre_master_secret", KSTAT_DATA_UINT64);
kstat_named_init(&kssl_statp->internal_errors,
"kssl_internal_errors", KSTAT_DATA_UINT64);
kstat_install(kssl_ksp);
};
}
static void
kssl_global_fini(void)
{
mutex_destroy(&kssl_tab_mutex);
if (kssl_cache != NULL) {
kmem_cache_destroy(kssl_cache);
kssl_cache = NULL;
}
if (kssl_ksp != NULL) {
kstat_delete(kssl_ksp);
kssl_ksp = NULL;
}
}
/*ARGSUSED*/
static int
kssl_constructor(void *buf, void *arg, int kmflags)
{
ssl_t *ssl = buf;
mutex_init(&ssl->kssl_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&ssl->async_cv, NULL, CV_DEFAULT, NULL);
return (0);
}
/*ARGSUSED*/
static void
kssl_destructor(void *buf, void *arg)
{
ssl_t *ssl = buf;
mutex_destroy(&ssl->kssl_lock);
cv_destroy(&ssl->async_cv);
}
/*
* Handler routine called by the crypto framework when a
* provider is unregistered or registered. We invalidate the
* private key handle if our provider is unregistered. We set
* a flag to reauthenticate if our provider came back.
*/
void
kssl_prov_evnt(uint32_t event, void *event_arg)
{
int i, rv;
kssl_entry_t *ep;
kssl_session_info_t *s;
crypto_provider_t prov;
crypto_provider_ext_info_t info;
if (event != CRYPTO_EVENT_PROVIDER_UNREGISTERED &&
event != CRYPTO_EVENT_PROVIDER_REGISTERED)
return;
prov = (crypto_provider_t)event_arg;
if (event == CRYPTO_EVENT_PROVIDER_REGISTERED) {
rv = crypto_get_provinfo(prov, &info);
if (rv != CRYPTO_SUCCESS)
return;
}
mutex_enter(&kssl_tab_mutex);
for (i = 0; i < kssl_entry_tab_size; i++) {
if ((ep = kssl_entry_tab[i]) == NULL)
continue;
s = ep->ke_sessinfo;
DTRACE_PROBE1(kssl_entry_cycle, kssl_entry_t *, ep);
switch (event) {
case CRYPTO_EVENT_PROVIDER_UNREGISTERED:
if (s->is_valid_handle && s->prov == prov) {
s->is_valid_handle = B_FALSE;
crypto_release_provider(s->prov);
}
break;
case CRYPTO_EVENT_PROVIDER_REGISTERED:
if (s->is_valid_handle)
break;
if (bcmp(s->toklabel, info.ei_label,
CRYPTO_EXT_SIZE_LABEL) == 0) {
s->do_reauth = B_TRUE;
}
break;
}
}
mutex_exit(&kssl_tab_mutex);
}