/*
* Copyright (C) 1993-2001, 2003 by Darren Reed.
*
* See the IPFILTER.LICENCE file for details on licencing.
*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*
* Copyright (c) 2015, Joyent, Inc. All rights reserved.
*/
#if !defined(lint)
static const char sccsid[] = "@(#)ip_fil_solaris.c 1.7 07/22/06 (C) 1993-2000 Darren Reed";
static const char rcsid[] = "@(#)$Id: ip_fil_solaris.c,v 2.62.2.19 2005/07/13 21:40:46 darrenr Exp $";
#endif
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/param.h>
#include <sys/cpuvar.h>
#include <sys/open.h>
#include <sys/ioctl.h>
#include <sys/filio.h>
#include <sys/systm.h>
#include <sys/strsubr.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ksynch.h>
#include <sys/kmem.h>
#include <sys/mkdev.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/dditypes.h>
#include <sys/cmn_err.h>
#include <sys/zone.h>
#include <net/if.h>
#include <net/af.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/tcpip.h>
#include <netinet/ip_icmp.h>
#include "netinet/ip_compat.h"
#ifdef USE_INET6
# include <netinet/icmp6.h>
#endif
#include "netinet/ip_fil.h"
#include "netinet/ip_nat.h"
#include "netinet/ip_frag.h"
#include "netinet/ip_state.h"
#include "netinet/ip_auth.h"
#include "netinet/ip_proxy.h"
#include "netinet/ipf_stack.h"
#ifdef IPFILTER_LOOKUP
# include "netinet/ip_lookup.h"
#endif
#include <inet/ip_ire.h>
#include <sys/md5.h>
#include <sys/neti.h>
static int frzerostats __P((caddr_t, ipf_stack_t *));
static int fr_setipfloopback __P((int, ipf_stack_t *));
static int fr_enableipf __P((ipf_stack_t *, int));
static int fr_send_ip __P((fr_info_t *fin, mblk_t *m, mblk_t **mp));
static int ipf_nic_event_v4 __P((hook_event_token_t, hook_data_t, void *));
static int ipf_nic_event_v6 __P((hook_event_token_t, hook_data_t, void *));
static int ipf_hook __P((hook_data_t, int, int, void *));
static int ipf_hook4_in __P((hook_event_token_t, hook_data_t, void *));
static int ipf_hook4_out __P((hook_event_token_t, hook_data_t, void *));
static int ipf_hook4_loop_out __P((hook_event_token_t, hook_data_t,
void *));
static int ipf_hook4_loop_in __P((hook_event_token_t, hook_data_t, void *));
static int ipf_hook4 __P((hook_data_t, int, int, void *));
static int ipf_hook6_out __P((hook_event_token_t, hook_data_t, void *));
static int ipf_hook6_in __P((hook_event_token_t, hook_data_t, void *));
static int ipf_hook6_loop_out __P((hook_event_token_t, hook_data_t,
void *));
static int ipf_hook6_loop_in __P((hook_event_token_t, hook_data_t,
void *));
static int ipf_hook6 __P((hook_data_t, int, int, void *));
extern int ipf_geniter __P((ipftoken_t *, ipfgeniter_t *, ipf_stack_t *));
extern int ipf_frruleiter __P((void *, int, void *, ipf_stack_t *));
#if SOLARIS2 < 10
#if SOLARIS2 >= 7
u_int *ip_ttl_ptr = NULL;
u_int *ip_mtudisc = NULL;
# if SOLARIS2 >= 8
int *ip_forwarding = NULL;
u_int *ip6_forwarding = NULL;
# else
u_int *ip_forwarding = NULL;
# endif
#else
u_long *ip_ttl_ptr = NULL;
u_long *ip_mtudisc = NULL;
u_long *ip_forwarding = NULL;
#endif
#endif
vmem_t *ipf_minor; /* minor number arena */
void *ipf_state; /* DDI state */
/*
* GZ-controlled and per-zone stacks:
*
* For each non-global zone, we create two ipf stacks: the per-zone stack and
* the GZ-controlled stack. The per-zone stack can be controlled and observed
* from inside the zone or from the global zone. The GZ-controlled stack can
* only be controlled and observed from the global zone (though the rules
* still only affect that non-global zone).
*
* The two hooks are always arranged so that the GZ-controlled stack is always
* "outermost" with respect to the zone. The traffic flow then looks like
* this:
*
* Inbound:
*
* nic ---> [ GZ-controlled rules ] ---> [ per-zone rules ] ---> zone
*
* Outbound:
*
* nic <--- [ GZ-controlled rules ] <--- [ per-zone rules ] <--- zone
*/
/* IPv4 hook names */
char *hook4_nicevents = "ipfilter_hook4_nicevents";
char *hook4_nicevents_gz = "ipfilter_hook4_nicevents_gz";
char *hook4_in = "ipfilter_hook4_in";
char *hook4_in_gz = "ipfilter_hook4_in_gz";
char *hook4_out = "ipfilter_hook4_out";
char *hook4_out_gz = "ipfilter_hook4_out_gz";
char *hook4_loop_in = "ipfilter_hook4_loop_in";
char *hook4_loop_in_gz = "ipfilter_hook4_loop_in_gz";
char *hook4_loop_out = "ipfilter_hook4_loop_out";
char *hook4_loop_out_gz = "ipfilter_hook4_loop_out_gz";
/* IPv6 hook names */
char *hook6_nicevents = "ipfilter_hook6_nicevents";
char *hook6_nicevents_gz = "ipfilter_hook6_nicevents_gz";
char *hook6_in = "ipfilter_hook6_in";
char *hook6_in_gz = "ipfilter_hook6_in_gz";
char *hook6_out = "ipfilter_hook6_out";
char *hook6_out_gz = "ipfilter_hook6_out_gz";
char *hook6_loop_in = "ipfilter_hook6_loop_in";
char *hook6_loop_in_gz = "ipfilter_hook6_loop_in_gz";
char *hook6_loop_out = "ipfilter_hook6_loop_out";
char *hook6_loop_out_gz = "ipfilter_hook6_loop_out_gz";
/* ------------------------------------------------------------------------ */
/* Function: ipldetach */
/* Returns: int - 0 == success, else error. */
/* Parameters: Nil */
/* */
/* This function is responsible for undoing anything that might have been */
/* done in a call to iplattach(). It must be able to clean up from a call */
/* to iplattach() that did not succeed. Why might that happen? Someone */
/* configures a table to be so large that we cannot allocate enough memory */
/* for it. */
/* ------------------------------------------------------------------------ */
int ipldetach(ifs)
ipf_stack_t *ifs;
{
ASSERT(RW_WRITE_HELD(&ifs->ifs_ipf_global.ipf_lk));
#if SOLARIS2 < 10
if (ifs->ifs_fr_control_forwarding & 2) {
if (ip_forwarding != NULL)
*ip_forwarding = 0;
#if SOLARIS2 >= 8
if (ip6_forwarding != NULL)
*ip6_forwarding = 0;
#endif
}
#endif
/*
* This lock needs to be dropped around the net_hook_unregister calls
* because we can deadlock here with:
* W(ipf_global)->R(hook_family)->W(hei_lock) (this code path) vs
* R(hook_family)->R(hei_lock)->R(ipf_global) (active hook running)
*/
RWLOCK_EXIT(&ifs->ifs_ipf_global);
#define UNDO_HOOK(_f, _b, _e, _h) \
do { \
if (ifs->_f != NULL) { \
if (ifs->_b) { \
int tmp = net_hook_unregister(ifs->_f, \
_e, ifs->_h); \
ifs->_b = (tmp != 0 && tmp != ENXIO); \
if (!ifs->_b && ifs->_h != NULL) { \
hook_free(ifs->_h); \
ifs->_h = NULL; \
} \
} else if (ifs->_h != NULL) { \
hook_free(ifs->_h); \
ifs->_h = NULL; \
} \
} \
_NOTE(CONSTCOND) \
} while (0)
/*
* Remove IPv6 Hooks
*/
if (ifs->ifs_ipf_ipv6 != NULL) {
UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_physical_in,
NH_PHYSICAL_IN, ifs_ipfhook6_in);
UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_physical_out,
NH_PHYSICAL_OUT, ifs_ipfhook6_out);
UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_nic_events,
NH_NIC_EVENTS, ifs_ipfhook6_nicevents);
UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_loopback_in,
NH_LOOPBACK_IN, ifs_ipfhook6_loop_in);
UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_loopback_out,
NH_LOOPBACK_OUT, ifs_ipfhook6_loop_out);
if (net_protocol_release(ifs->ifs_ipf_ipv6) != 0)
goto detach_failed;
ifs->ifs_ipf_ipv6 = NULL;
}
/*
* Remove IPv4 Hooks
*/
if (ifs->ifs_ipf_ipv4 != NULL) {
UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_physical_in,
NH_PHYSICAL_IN, ifs_ipfhook4_in);
UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_physical_out,
NH_PHYSICAL_OUT, ifs_ipfhook4_out);
UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_nic_events,
NH_NIC_EVENTS, ifs_ipfhook4_nicevents);
UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_loopback_in,
NH_LOOPBACK_IN, ifs_ipfhook4_loop_in);
UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_loopback_out,
NH_LOOPBACK_OUT, ifs_ipfhook4_loop_out);
if (net_protocol_release(ifs->ifs_ipf_ipv4) != 0)
goto detach_failed;
ifs->ifs_ipf_ipv4 = NULL;
}
#undef UNDO_HOOK
#ifdef IPFDEBUG
cmn_err(CE_CONT, "ipldetach()\n");
#endif
WRITE_ENTER(&ifs->ifs_ipf_global);
fr_deinitialise(ifs);
(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs);
if (ifs->ifs_ipf_locks_done == 1) {
MUTEX_DESTROY(&ifs->ifs_ipf_timeoutlock);
MUTEX_DESTROY(&ifs->ifs_ipf_rw);
RW_DESTROY(&ifs->ifs_ipf_tokens);
RW_DESTROY(&ifs->ifs_ipf_ipidfrag);
ifs->ifs_ipf_locks_done = 0;
}
if (ifs->ifs_hook4_physical_in || ifs->ifs_hook4_physical_out ||
ifs->ifs_hook4_nic_events || ifs->ifs_hook4_loopback_in ||
ifs->ifs_hook4_loopback_out || ifs->ifs_hook6_nic_events ||
ifs->ifs_hook6_physical_in || ifs->ifs_hook6_physical_out ||
ifs->ifs_hook6_loopback_in || ifs->ifs_hook6_loopback_out)
return -1;
return 0;
detach_failed:
WRITE_ENTER(&ifs->ifs_ipf_global);
return -1;
}
int iplattach(ifs)
ipf_stack_t *ifs;
{
#if SOLARIS2 < 10
int i;
#endif
netid_t id = ifs->ifs_netid;
#ifdef IPFDEBUG
cmn_err(CE_CONT, "iplattach()\n");
#endif
ASSERT(RW_WRITE_HELD(&ifs->ifs_ipf_global.ipf_lk));
ifs->ifs_fr_flags = IPF_LOGGING;
#ifdef _KERNEL
ifs->ifs_fr_update_ipid = 0;
#else
ifs->ifs_fr_update_ipid = 1;
#endif
ifs->ifs_fr_minttl = 4;
ifs->ifs_fr_icmpminfragmtu = 68;
#if defined(IPFILTER_DEFAULT_BLOCK)
ifs->ifs_fr_pass = FR_BLOCK|FR_NOMATCH;
#else
ifs->ifs_fr_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
#endif
bzero((char *)ifs->ifs_frcache, sizeof(ifs->ifs_frcache));
MUTEX_INIT(&ifs->ifs_ipf_rw, "ipf rw mutex");
MUTEX_INIT(&ifs->ifs_ipf_timeoutlock, "ipf timeout lock mutex");
RWLOCK_INIT(&ifs->ifs_ipf_ipidfrag, "ipf IP NAT-Frag rwlock");
RWLOCK_INIT(&ifs->ifs_ipf_tokens, "ipf token rwlock");
ifs->ifs_ipf_locks_done = 1;
if (fr_initialise(ifs) < 0)
return -1;
/*
* For incoming packets, we want the GZ-controlled hooks to run before
* the per-zone hooks, regardless of what order they're are installed.
* See the "GZ-controlled and per-zone stacks" comment block at the top
* of this file.
*/
#define HOOK_INIT_GZ_BEFORE(x, fn, n, gzn, a) \
HOOK_INIT(x, fn, ifs->ifs_gz_controlled ? gzn : n, ifs); \
(x)->h_hint = ifs->ifs_gz_controlled ? HH_BEFORE : HH_AFTER; \
(x)->h_hintvalue = (uintptr_t) (ifs->ifs_gz_controlled ? n : gzn);
HOOK_INIT_GZ_BEFORE(ifs->ifs_ipfhook4_nicevents, ipf_nic_event_v4,
hook4_nicevents, hook4_nicevents_gz, ifs);
HOOK_INIT_GZ_BEFORE(ifs->ifs_ipfhook4_in, ipf_hook4_in,
hook4_in, hook4_in_gz, ifs);
HOOK_INIT_GZ_BEFORE(ifs->ifs_ipfhook4_loop_in, ipf_hook4_loop_in,
hook4_loop_in, hook4_loop_in_gz, ifs);
/*
* For outgoing packets, we want the GZ-controlled hooks to run after
* the per-zone hooks, regardless of what order they're are installed.
* See the "GZ-controlled and per-zone stacks" comment block at the top
* of this file.
*/
#define HOOK_INIT_GZ_AFTER(x, fn, n, gzn, a) \
HOOK_INIT(x, fn, ifs->ifs_gz_controlled ? gzn : n, ifs); \
(x)->h_hint = ifs->ifs_gz_controlled ? HH_AFTER : HH_BEFORE; \
(x)->h_hintvalue = (uintptr_t) (ifs->ifs_gz_controlled ? n : gzn);
HOOK_INIT_GZ_AFTER(ifs->ifs_ipfhook4_out, ipf_hook4_out,
hook4_out, hook4_out_gz, ifs);
HOOK_INIT_GZ_AFTER(ifs->ifs_ipfhook4_loop_out, ipf_hook4_loop_out,
hook4_loop_out, hook4_loop_out_gz, ifs);
/*
* If we hold this lock over all of the net_hook_register calls, we
* can cause a deadlock to occur with the following lock ordering:
* W(ipf_global)->R(hook_family)->W(hei_lock) (this code path) vs
* R(hook_family)->R(hei_lock)->R(ipf_global) (packet path)
*/
RWLOCK_EXIT(&ifs->ifs_ipf_global);
/*
* Add IPv4 hooks
*/
ifs->ifs_ipf_ipv4 = net_protocol_lookup(id, NHF_INET);
if (ifs->ifs_ipf_ipv4 == NULL)
goto hookup_failed;
ifs->ifs_hook4_nic_events = (net_hook_register(ifs->ifs_ipf_ipv4,
NH_NIC_EVENTS, ifs->ifs_ipfhook4_nicevents) == 0);
if (!ifs->ifs_hook4_nic_events)
goto hookup_failed;
ifs->ifs_hook4_physical_in = (net_hook_register(ifs->ifs_ipf_ipv4,
NH_PHYSICAL_IN, ifs->ifs_ipfhook4_in) == 0);
if (!ifs->ifs_hook4_physical_in)
goto hookup_failed;
ifs->ifs_hook4_physical_out = (net_hook_register(ifs->ifs_ipf_ipv4,
NH_PHYSICAL_OUT, ifs->ifs_ipfhook4_out) == 0);
if (!ifs->ifs_hook4_physical_out)
goto hookup_failed;
if (ifs->ifs_ipf_loopback) {
ifs->ifs_hook4_loopback_in = (net_hook_register(
ifs->ifs_ipf_ipv4, NH_LOOPBACK_IN,
ifs->ifs_ipfhook4_loop_in) == 0);
if (!ifs->ifs_hook4_loopback_in)
goto hookup_failed;
ifs->ifs_hook4_loopback_out = (net_hook_register(
ifs->ifs_ipf_ipv4, NH_LOOPBACK_OUT,
ifs->ifs_ipfhook4_loop_out) == 0);
if (!ifs->ifs_hook4_loopback_out)
goto hookup_failed;
}
/*
* Add IPv6 hooks
*/
ifs->ifs_ipf_ipv6 = net_protocol_lookup(id, NHF_INET6);
if (ifs->ifs_ipf_ipv6 == NULL)
goto hookup_failed;
HOOK_INIT_GZ_BEFORE(ifs->ifs_ipfhook6_nicevents, ipf_nic_event_v6,
hook6_nicevents, hook6_nicevents_gz, ifs);
HOOK_INIT_GZ_BEFORE(ifs->ifs_ipfhook6_in, ipf_hook6_in,
hook6_in, hook6_in_gz, ifs);
HOOK_INIT_GZ_BEFORE(ifs->ifs_ipfhook6_loop_in, ipf_hook6_loop_in,
hook6_loop_in, hook6_loop_in_gz, ifs);
HOOK_INIT_GZ_AFTER(ifs->ifs_ipfhook6_out, ipf_hook6_out,
hook6_out, hook6_out_gz, ifs);
HOOK_INIT_GZ_AFTER(ifs->ifs_ipfhook6_loop_out, ipf_hook6_loop_out,
hook6_loop_out, hook6_loop_out_gz, ifs);
ifs->ifs_hook6_nic_events = (net_hook_register(ifs->ifs_ipf_ipv6,
NH_NIC_EVENTS, ifs->ifs_ipfhook6_nicevents) == 0);
if (!ifs->ifs_hook6_nic_events)
goto hookup_failed;
ifs->ifs_hook6_physical_in = (net_hook_register(ifs->ifs_ipf_ipv6,
NH_PHYSICAL_IN, ifs->ifs_ipfhook6_in) == 0);
if (!ifs->ifs_hook6_physical_in)
goto hookup_failed;
ifs->ifs_hook6_physical_out = (net_hook_register(ifs->ifs_ipf_ipv6,
NH_PHYSICAL_OUT, ifs->ifs_ipfhook6_out) == 0);
if (!ifs->ifs_hook6_physical_out)
goto hookup_failed;
if (ifs->ifs_ipf_loopback) {
ifs->ifs_hook6_loopback_in = (net_hook_register(
ifs->ifs_ipf_ipv6, NH_LOOPBACK_IN,
ifs->ifs_ipfhook6_loop_in) == 0);
if (!ifs->ifs_hook6_loopback_in)
goto hookup_failed;
ifs->ifs_hook6_loopback_out = (net_hook_register(
ifs->ifs_ipf_ipv6, NH_LOOPBACK_OUT,
ifs->ifs_ipfhook6_loop_out) == 0);
if (!ifs->ifs_hook6_loopback_out)
goto hookup_failed;
}
/*
* Reacquire ipf_global, now it is safe.
*/
WRITE_ENTER(&ifs->ifs_ipf_global);
/* Do not use private interface ip_params_arr[] in Solaris 10 */
#if SOLARIS2 < 10
#if SOLARIS2 >= 8
ip_forwarding = &ip_g_forward;
#endif
/*
* XXX - There is no terminator for this array, so it is not possible
* to tell if what we are looking for is missing and go off the end
* of the array.
*/
#if SOLARIS2 <= 8
for (i = 0; ; i++) {
if (!strcmp(ip_param_arr[i].ip_param_name, "ip_def_ttl")) {
ip_ttl_ptr = &ip_param_arr[i].ip_param_value;
} else if (!strcmp(ip_param_arr[i].ip_param_name,
"ip_path_mtu_discovery")) {
ip_mtudisc = &ip_param_arr[i].ip_param_value;
}
#if SOLARIS2 < 8
else if (!strcmp(ip_param_arr[i].ip_param_name,
"ip_forwarding")) {
ip_forwarding = &ip_param_arr[i].ip_param_value;
}
#else
else if (!strcmp(ip_param_arr[i].ip_param_name,
"ip6_forwarding")) {
ip6_forwarding = &ip_param_arr[i].ip_param_value;
}
#endif
if (ip_mtudisc != NULL && ip_ttl_ptr != NULL &&
#if SOLARIS2 >= 8
ip6_forwarding != NULL &&
#endif
ip_forwarding != NULL)
break;
}
#endif
if (ifs->ifs_fr_control_forwarding & 1) {
if (ip_forwarding != NULL)
*ip_forwarding = 1;
#if SOLARIS2 >= 8
if (ip6_forwarding != NULL)
*ip6_forwarding = 1;
#endif
}
#endif
return 0;
hookup_failed:
WRITE_ENTER(&ifs->ifs_ipf_global);
return -1;
}
static int fr_setipfloopback(set, ifs)
int set;
ipf_stack_t *ifs;
{
if (ifs->ifs_ipf_ipv4 == NULL || ifs->ifs_ipf_ipv6 == NULL)
return EFAULT;
if (set && !ifs->ifs_ipf_loopback) {
ifs->ifs_ipf_loopback = 1;
ifs->ifs_hook4_loopback_in = (net_hook_register(
ifs->ifs_ipf_ipv4, NH_LOOPBACK_IN,
ifs->ifs_ipfhook4_loop_in) == 0);
if (!ifs->ifs_hook4_loopback_in)
return EINVAL;
ifs->ifs_hook4_loopback_out = (net_hook_register(
ifs->ifs_ipf_ipv4, NH_LOOPBACK_OUT,
ifs->ifs_ipfhook4_loop_out) == 0);
if (!ifs->ifs_hook4_loopback_out)
return EINVAL;
ifs->ifs_hook6_loopback_in = (net_hook_register(
ifs->ifs_ipf_ipv6, NH_LOOPBACK_IN,
ifs->ifs_ipfhook6_loop_in) == 0);
if (!ifs->ifs_hook6_loopback_in)
return EINVAL;
ifs->ifs_hook6_loopback_out = (net_hook_register(
ifs->ifs_ipf_ipv6, NH_LOOPBACK_OUT,
ifs->ifs_ipfhook6_loop_out) == 0);
if (!ifs->ifs_hook6_loopback_out)
return EINVAL;
} else if (!set && ifs->ifs_ipf_loopback) {
ifs->ifs_ipf_loopback = 0;
ifs->ifs_hook4_loopback_in =
(net_hook_unregister(ifs->ifs_ipf_ipv4,
NH_LOOPBACK_IN, ifs->ifs_ipfhook4_loop_in) != 0);
if (ifs->ifs_hook4_loopback_in)
return EBUSY;
ifs->ifs_hook4_loopback_out =
(net_hook_unregister(ifs->ifs_ipf_ipv4,
NH_LOOPBACK_OUT, ifs->ifs_ipfhook4_loop_out) != 0);
if (ifs->ifs_hook4_loopback_out)
return EBUSY;
ifs->ifs_hook6_loopback_in =
(net_hook_unregister(ifs->ifs_ipf_ipv6,
NH_LOOPBACK_IN, ifs->ifs_ipfhook4_loop_in) != 0);
if (ifs->ifs_hook6_loopback_in)
return EBUSY;
ifs->ifs_hook6_loopback_out =
(net_hook_unregister(ifs->ifs_ipf_ipv6,
NH_LOOPBACK_OUT, ifs->ifs_ipfhook6_loop_out) != 0);
if (ifs->ifs_hook6_loopback_out)
return EBUSY;
}
return 0;
}
/*
* Filter ioctl interface.
*/
/*ARGSUSED*/
int iplioctl(dev, cmd, data, mode, cp, rp)
dev_t dev;
int cmd;
#if SOLARIS2 >= 7
intptr_t data;
#else
int *data;
#endif
int mode;
cred_t *cp;
int *rp;
{
int error = 0, tmp;
friostat_t fio;
minor_t unit;
u_int enable;
ipf_stack_t *ifs;
zoneid_t zid;
ipf_devstate_t *isp;
#ifdef IPFDEBUG
cmn_err(CE_CONT, "iplioctl(%x,%x,%x,%d,%x,%d)\n",
dev, cmd, data, mode, cp, rp);
#endif
unit = getminor(dev);
isp = ddi_get_soft_state(ipf_state, unit);
if (isp == NULL)
return ENXIO;
unit = isp->ipfs_minor;
zid = crgetzoneid(cp);
if (cmd == SIOCIPFZONESET) {
if (zid == GLOBAL_ZONEID)
return fr_setzoneid(isp, (caddr_t) data);
return EACCES;
}
/*
* ipf_find_stack returns with a read lock on ifs_ipf_global
*/
ifs = ipf_find_stack(zid, isp);
if (ifs == NULL)
return ENXIO;
if (ifs->ifs_fr_running <= 0) {
if (unit != IPL_LOGIPF) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return EIO;
}
if (cmd != SIOCIPFGETNEXT && cmd != SIOCIPFGET &&
cmd != SIOCIPFSET && cmd != SIOCFRENB &&
cmd != SIOCGETFS && cmd != SIOCGETFF) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return EIO;
}
}
if (ifs->ifs_fr_enable_active != 0) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return EBUSY;
}
error = fr_ioctlswitch(unit, (caddr_t)data, cmd, mode, crgetuid(cp),
curproc, ifs);
if (error != -1) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return error;
}
error = 0;
switch (cmd)
{
case SIOCFRENB :
if (!(mode & FWRITE))
error = EPERM;
else {
error = COPYIN((caddr_t)data, (caddr_t)&enable,
sizeof(enable));
if (error != 0) {
error = EFAULT;
break;
}
RWLOCK_EXIT(&ifs->ifs_ipf_global);
WRITE_ENTER(&ifs->ifs_ipf_global);
/*
* We must recheck fr_enable_active here, since we've
* dropped ifs_ipf_global from R in order to get it
* exclusively.
*/
if (ifs->ifs_fr_enable_active == 0) {
ifs->ifs_fr_enable_active = 1;
error = fr_enableipf(ifs, enable);
ifs->ifs_fr_enable_active = 0;
}
}
break;
case SIOCIPFSET :
if (!(mode & FWRITE)) {
error = EPERM;
break;
}
/* FALLTHRU */
case SIOCIPFGETNEXT :
case SIOCIPFGET :
error = fr_ipftune(cmd, (void *)data, ifs);
break;
case SIOCSETFF :
if (!(mode & FWRITE))
error = EPERM;
else {
error = COPYIN((caddr_t)data,
(caddr_t)&ifs->ifs_fr_flags,
sizeof(ifs->ifs_fr_flags));
if (error != 0)
error = EFAULT;
}
break;
case SIOCIPFLP :
error = COPYIN((caddr_t)data, (caddr_t)&tmp,
sizeof(tmp));
if (error != 0)
error = EFAULT;
else
error = fr_setipfloopback(tmp, ifs);
break;
case SIOCGETFF :
error = COPYOUT((caddr_t)&ifs->ifs_fr_flags, (caddr_t)data,
sizeof(ifs->ifs_fr_flags));
if (error != 0)
error = EFAULT;
break;
case SIOCFUNCL :
error = fr_resolvefunc((void *)data);
break;
case SIOCINAFR :
case SIOCRMAFR :
case SIOCADAFR :
case SIOCZRLST :
if (!(mode & FWRITE))
error = EPERM;
else
error = frrequest(unit, cmd, (caddr_t)data,
ifs->ifs_fr_active, 1, ifs);
break;
case SIOCINIFR :
case SIOCRMIFR :
case SIOCADIFR :
if (!(mode & FWRITE))
error = EPERM;
else
error = frrequest(unit, cmd, (caddr_t)data,
1 - ifs->ifs_fr_active, 1, ifs);
break;
case SIOCSWAPA :
if (!(mode & FWRITE))
error = EPERM;
else {
WRITE_ENTER(&ifs->ifs_ipf_mutex);
bzero((char *)ifs->ifs_frcache,
sizeof (ifs->ifs_frcache));
error = COPYOUT((caddr_t)&ifs->ifs_fr_active,
(caddr_t)data,
sizeof(ifs->ifs_fr_active));
if (error != 0)
error = EFAULT;
else
ifs->ifs_fr_active = 1 - ifs->ifs_fr_active;
RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
}
break;
case SIOCGETFS :
fr_getstat(&fio, ifs);
error = fr_outobj((void *)data, &fio, IPFOBJ_IPFSTAT);
break;
case SIOCFRZST :
if (!(mode & FWRITE))
error = EPERM;
else
error = fr_zerostats((caddr_t)data, ifs);
break;
case SIOCIPFFL :
if (!(mode & FWRITE))
error = EPERM;
else {
error = COPYIN((caddr_t)data, (caddr_t)&tmp,
sizeof(tmp));
if (!error) {
tmp = frflush(unit, 4, tmp, ifs);
error = COPYOUT((caddr_t)&tmp, (caddr_t)data,
sizeof(tmp));
if (error != 0)
error = EFAULT;
} else
error = EFAULT;
}
break;
#ifdef USE_INET6
case SIOCIPFL6 :
if (!(mode & FWRITE))
error = EPERM;
else {
error = COPYIN((caddr_t)data, (caddr_t)&tmp,
sizeof(tmp));
if (!error) {
tmp = frflush(unit, 6, tmp, ifs);
error = COPYOUT((caddr_t)&tmp, (caddr_t)data,
sizeof(tmp));
if (error != 0)
error = EFAULT;
} else
error = EFAULT;
}
break;
#endif
case SIOCSTLCK :
error = COPYIN((caddr_t)data, (caddr_t)&tmp, sizeof(tmp));
if (error == 0) {
ifs->ifs_fr_state_lock = tmp;
ifs->ifs_fr_nat_lock = tmp;
ifs->ifs_fr_frag_lock = tmp;
ifs->ifs_fr_auth_lock = tmp;
} else
error = EFAULT;
break;
#ifdef IPFILTER_LOG
case SIOCIPFFB :
if (!(mode & FWRITE))
error = EPERM;
else {
tmp = ipflog_clear(unit, ifs);
error = COPYOUT((caddr_t)&tmp, (caddr_t)data,
sizeof(tmp));
if (error)
error = EFAULT;
}
break;
#endif /* IPFILTER_LOG */
case SIOCFRSYN :
if (!(mode & FWRITE))
error = EPERM;
else {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
WRITE_ENTER(&ifs->ifs_ipf_global);
frsync(IPFSYNC_RESYNC, 0, NULL, NULL, ifs);
fr_natifpsync(IPFSYNC_RESYNC, 0, NULL, NULL, ifs);
fr_nataddrsync(0, NULL, NULL, ifs);
fr_statesync(IPFSYNC_RESYNC, 0, NULL, NULL, ifs);
error = 0;
}
break;
case SIOCGFRST :
error = fr_outobj((void *)data, fr_fragstats(ifs),
IPFOBJ_FRAGSTAT);
break;
case FIONREAD :
#ifdef IPFILTER_LOG
tmp = (int)ifs->ifs_iplused[IPL_LOGIPF];
error = COPYOUT((caddr_t)&tmp, (caddr_t)data, sizeof(tmp));
if (error != 0)
error = EFAULT;
#endif
break;
case SIOCIPFITER :
error = ipf_frruleiter((caddr_t)data, crgetuid(cp),
curproc, ifs);
break;
case SIOCGENITER :
error = ipf_genericiter((caddr_t)data, crgetuid(cp),
curproc, ifs);
break;
case SIOCIPFDELTOK :
error = BCOPYIN((caddr_t)data, (caddr_t)&tmp, sizeof(tmp));
if (error != 0) {
error = EFAULT;
} else {
error = ipf_deltoken(tmp, crgetuid(cp), curproc, ifs);
}
break;
default :
#ifdef IPFDEBUG
cmn_err(CE_NOTE, "Unknown: cmd 0x%x data %p",
cmd, (void *)data);
#endif
error = EINVAL;
break;
}
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return error;
}
static int fr_enableipf(ifs, enable)
ipf_stack_t *ifs;
int enable;
{
int error;
if (!enable) {
error = ipldetach(ifs);
if (error == 0)
ifs->ifs_fr_running = -1;
return error;
}
if (ifs->ifs_fr_running > 0)
return 0;
error = iplattach(ifs);
if (error == 0) {
if (ifs->ifs_fr_timer_id == NULL) {
int hz = drv_usectohz(500000);
ifs->ifs_fr_timer_id = timeout(fr_slowtimer,
(void *)ifs,
hz);
}
ifs->ifs_fr_running = 1;
} else {
(void) ipldetach(ifs);
}
return error;
}
phy_if_t get_unit(name, v, ifs)
char *name;
int v;
ipf_stack_t *ifs;
{
net_handle_t nif;
if (v == 4)
nif = ifs->ifs_ipf_ipv4;
else if (v == 6)
nif = ifs->ifs_ipf_ipv6;
else
return 0;
return (net_phylookup(nif, name));
}
/*
* routines below for saving IP headers to buffer
*/
/*ARGSUSED*/
int iplopen(devp, flags, otype, cred)
dev_t *devp;
int flags, otype;
cred_t *cred;
{
ipf_devstate_t *isp;
minor_t min = getminor(*devp);
minor_t minor;
#ifdef IPFDEBUG
cmn_err(CE_CONT, "iplopen(%x,%x,%x,%x)\n", devp, flags, otype, cred);
#endif
if (!(otype & OTYP_CHR))
return ENXIO;
if (IPL_LOGMAX < min)
return ENXIO;
minor = (minor_t)(uintptr_t)vmem_alloc(ipf_minor, 1,
VM_BESTFIT | VM_SLEEP);
if (ddi_soft_state_zalloc(ipf_state, minor) != 0) {
vmem_free(ipf_minor, (void *)(uintptr_t)minor, 1);
return ENXIO;
}
*devp = makedevice(getmajor(*devp), minor);
isp = ddi_get_soft_state(ipf_state, minor);
VERIFY(isp != NULL);
isp->ipfs_minor = min;
isp->ipfs_zoneid = IPFS_ZONE_UNSET;
return 0;
}
/*ARGSUSED*/
int iplclose(dev, flags, otype, cred)
dev_t dev;
int flags, otype;
cred_t *cred;
{
minor_t min = getminor(dev);
#ifdef IPFDEBUG
cmn_err(CE_CONT, "iplclose(%x,%x,%x,%x)\n", dev, flags, otype, cred);
#endif
if (IPL_LOGMAX < min)
return ENXIO;
ddi_soft_state_free(ipf_state, min);
vmem_free(ipf_minor, (void *)(uintptr_t)min, 1);
return 0;
}
#ifdef IPFILTER_LOG
/*
* iplread/ipllog
* both of these must operate with at least splnet() lest they be
* called during packet processing and cause an inconsistancy to appear in
* the filter lists.
*/
/*ARGSUSED*/
int iplread(dev, uio, cp)
dev_t dev;
register struct uio *uio;
cred_t *cp;
{
ipf_stack_t *ifs;
int ret;
minor_t unit;
ipf_devstate_t *isp;
unit = getminor(dev);
isp = ddi_get_soft_state(ipf_state, unit);
if (isp == NULL)
return ENXIO;
unit = isp->ipfs_minor;
/*
* ipf_find_stack returns with a read lock on ifs_ipf_global
*/
ifs = ipf_find_stack(crgetzoneid(cp), isp);
if (ifs == NULL)
return ENXIO;
# ifdef IPFDEBUG
cmn_err(CE_CONT, "iplread(%x,%x,%x)\n", dev, uio, cp);
# endif
if (ifs->ifs_fr_running < 1) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return EIO;
}
# ifdef IPFILTER_SYNC
if (unit == IPL_LOGSYNC) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return ipfsync_read(uio);
}
# endif
ret = ipflog_read(unit, uio, ifs);
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return ret;
}
#endif /* IPFILTER_LOG */
/*
* iplread/ipllog
* both of these must operate with at least splnet() lest they be
* called during packet processing and cause an inconsistancy to appear in
* the filter lists.
*/
int iplwrite(dev, uio, cp)
dev_t dev;
register struct uio *uio;
cred_t *cp;
{
ipf_stack_t *ifs;
minor_t unit;
ipf_devstate_t *isp;
unit = getminor(dev);
isp = ddi_get_soft_state(ipf_state, unit);
if (isp == NULL)
return ENXIO;
unit = isp->ipfs_minor;
/*
* ipf_find_stack returns with a read lock on ifs_ipf_global
*/
ifs = ipf_find_stack(crgetzoneid(cp), isp);
if (ifs == NULL)
return ENXIO;
#ifdef IPFDEBUG
cmn_err(CE_CONT, "iplwrite(%x,%x,%x)\n", dev, uio, cp);
#endif
if (ifs->ifs_fr_running < 1) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return EIO;
}
#ifdef IPFILTER_SYNC
if (getminor(dev) == IPL_LOGSYNC) {
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return ipfsync_write(uio);
}
#endif /* IPFILTER_SYNC */
dev = dev; /* LINT */
uio = uio; /* LINT */
cp = cp; /* LINT */
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return ENXIO;
}
/*
* fr_send_reset - this could conceivably be a call to tcp_respond(), but that
* requires a large amount of setting up and isn't any more efficient.
*/
int fr_send_reset(fin)
fr_info_t *fin;
{
tcphdr_t *tcp, *tcp2;
int tlen, hlen;
mblk_t *m;
#ifdef USE_INET6
ip6_t *ip6;
#endif
ip_t *ip;
tcp = fin->fin_dp;
if (tcp->th_flags & TH_RST)
return -1;
#ifndef IPFILTER_CKSUM
if (fr_checkl4sum(fin) == -1)
return -1;
#endif
tlen = (tcp->th_flags & (TH_SYN|TH_FIN)) ? 1 : 0;
#ifdef USE_INET6
if (fin->fin_v == 6)
hlen = sizeof(ip6_t);
else
#endif
hlen = sizeof(ip_t);
hlen += sizeof(*tcp2);
if ((m = (mblk_t *)allocb(hlen + 64, BPRI_HI)) == NULL)
return -1;
m->b_rptr += 64;
MTYPE(m) = M_DATA;
m->b_wptr = m->b_rptr + hlen;
ip = (ip_t *)m->b_rptr;
bzero((char *)ip, hlen);
tcp2 = (struct tcphdr *)(m->b_rptr + hlen - sizeof(*tcp2));
tcp2->th_dport = tcp->th_sport;
tcp2->th_sport = tcp->th_dport;
if (tcp->th_flags & TH_ACK) {
tcp2->th_seq = tcp->th_ack;
tcp2->th_flags = TH_RST;
} else {
tcp2->th_ack = ntohl(tcp->th_seq);
tcp2->th_ack += tlen;
tcp2->th_ack = htonl(tcp2->th_ack);
tcp2->th_flags = TH_RST|TH_ACK;
}
tcp2->th_off = sizeof(struct tcphdr) >> 2;
ip->ip_v = fin->fin_v;
#ifdef USE_INET6
if (fin->fin_v == 6) {
ip6 = (ip6_t *)m->b_rptr;
ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow;
ip6->ip6_src = fin->fin_dst6.in6;
ip6->ip6_dst = fin->fin_src6.in6;
ip6->ip6_plen = htons(sizeof(*tcp));
ip6->ip6_nxt = IPPROTO_TCP;
tcp2->th_sum = fr_cksum(m, (ip_t *)ip6, IPPROTO_TCP, tcp2);
} else
#endif
{
ip->ip_src.s_addr = fin->fin_daddr;
ip->ip_dst.s_addr = fin->fin_saddr;
ip->ip_id = fr_nextipid(fin);
ip->ip_hl = sizeof(*ip) >> 2;
ip->ip_p = IPPROTO_TCP;
ip->ip_len = sizeof(*ip) + sizeof(*tcp);
ip->ip_tos = fin->fin_ip->ip_tos;
tcp2->th_sum = fr_cksum(m, ip, IPPROTO_TCP, tcp2);
}
return fr_send_ip(fin, m, &m);
}
/*
* Function: fr_send_ip
* Returns: 0: success
* -1: failed
* Parameters:
* fin: packet information
* m: the message block where ip head starts
*
* Send a new packet through the IP stack.
*
* For IPv4 packets, ip_len must be in host byte order, and ip_v,
* ip_ttl, ip_off, and ip_sum are ignored (filled in by this
* function).
*
* For IPv6 packets, ip6_flow, ip6_vfc, and ip6_hlim are filled
* in by this function.
*
* All other portions of the packet must be in on-the-wire format.
*/
/*ARGSUSED*/
static int fr_send_ip(fin, m, mpp)
fr_info_t *fin;
mblk_t *m, **mpp;
{
qpktinfo_t qpi, *qpip;
fr_info_t fnew;
ip_t *ip;
int i, hlen;
ipf_stack_t *ifs = fin->fin_ifs;
ip = (ip_t *)m->b_rptr;
bzero((char *)&fnew, sizeof(fnew));
#ifdef USE_INET6
if (fin->fin_v == 6) {
ip6_t *ip6;
ip6 = (ip6_t *)ip;
ip6->ip6_vfc = 0x60;
ip6->ip6_hlim = 127;
fnew.fin_v = 6;
hlen = sizeof(*ip6);
fnew.fin_plen = ntohs(ip6->ip6_plen) + hlen;
} else
#endif
{
fnew.fin_v = 4;
#if SOLARIS2 >= 10
ip->ip_ttl = 255;
if (net_getpmtuenabled(ifs->ifs_ipf_ipv4) == 1)
ip->ip_off = htons(IP_DF);
#else
if (ip_ttl_ptr != NULL)
ip->ip_ttl = (u_char)(*ip_ttl_ptr);
else
ip->ip_ttl = 63;
if (ip_mtudisc != NULL)
ip->ip_off = htons(*ip_mtudisc ? IP_DF : 0);
else
ip->ip_off = htons(IP_DF);
#endif
/*
* The dance with byte order and ip_len/ip_off is because in
* fr_fastroute, it expects them to be in host byte order but
* ipf_cksum expects them to be in network byte order.
*/
ip->ip_len = htons(ip->ip_len);
ip->ip_sum = ipf_cksum((u_short *)ip, sizeof(*ip));
ip->ip_len = ntohs(ip->ip_len);
ip->ip_off = ntohs(ip->ip_off);
hlen = sizeof(*ip);
fnew.fin_plen = ip->ip_len;
}
qpip = fin->fin_qpi;
qpi.qpi_off = 0;
qpi.qpi_ill = qpip->qpi_ill;
qpi.qpi_m = m;
qpi.qpi_data = ip;
fnew.fin_qpi = &qpi;
fnew.fin_ifp = fin->fin_ifp;
fnew.fin_flx = FI_NOCKSUM;
fnew.fin_m = m;
fnew.fin_qfm = m;
fnew.fin_ip = ip;
fnew.fin_mp = mpp;
fnew.fin_hlen = hlen;
fnew.fin_dp = (char *)ip + hlen;
fnew.fin_ifs = fin->fin_ifs;
(void) fr_makefrip(hlen, ip, &fnew);
i = fr_fastroute(m, mpp, &fnew, NULL);
return i;
}
int fr_send_icmp_err(type, fin, dst)
int type;
fr_info_t *fin;
int dst;
{
struct in_addr dst4;
struct icmp *icmp;
qpktinfo_t *qpi;
int hlen, code;
phy_if_t phy;
u_short sz;
#ifdef USE_INET6
mblk_t *mb;
#endif
mblk_t *m;
#ifdef USE_INET6
ip6_t *ip6;
#endif
ip_t *ip;
ipf_stack_t *ifs = fin->fin_ifs;
if ((type < 0) || (type > ICMP_MAXTYPE))
return -1;
code = fin->fin_icode;
#ifdef USE_INET6
if ((code < 0) || (code >= ICMP_MAX_UNREACH))
return -1;
#endif
#ifndef IPFILTER_CKSUM
if (fr_checkl4sum(fin) == -1)
return -1;
#endif
qpi = fin->fin_qpi;
#ifdef USE_INET6
mb = fin->fin_qfm;
if (fin->fin_v == 6) {
sz = sizeof(ip6_t);
sz += MIN(mb->b_wptr - mb->b_rptr, 512);
hlen = sizeof(ip6_t);
type = icmptoicmp6types[type];
if (type == ICMP6_DST_UNREACH)
code = icmptoicmp6unreach[code];
} else
#endif
{
if ((fin->fin_p == IPPROTO_ICMP) &&
!(fin->fin_flx & FI_SHORT))
switch (ntohs(fin->fin_data[0]) >> 8)
{
case ICMP_ECHO :
case ICMP_TSTAMP :
case ICMP_IREQ :
case ICMP_MASKREQ :
break;
default :
return 0;
}
sz = sizeof(ip_t) * 2;
sz += 8; /* 64 bits of data */
hlen = sizeof(ip_t);
}
sz += offsetof(struct icmp, icmp_ip);
if ((m = (mblk_t *)allocb((size_t)sz + 64, BPRI_HI)) == NULL)
return -1;
MTYPE(m) = M_DATA;
m->b_rptr += 64;
m->b_wptr = m->b_rptr + sz;
bzero((char *)m->b_rptr, (size_t)sz);
ip = (ip_t *)m->b_rptr;
ip->ip_v = fin->fin_v;
icmp = (struct icmp *)(m->b_rptr + hlen);
icmp->icmp_type = type & 0xff;
icmp->icmp_code = code & 0xff;
phy = (phy_if_t)qpi->qpi_ill;
if (type == ICMP_UNREACH && (phy != 0) &&
fin->fin_icode == ICMP_UNREACH_NEEDFRAG)
icmp->icmp_nextmtu = net_getmtu(ifs->ifs_ipf_ipv4, phy,0 );
#ifdef USE_INET6
if (fin->fin_v == 6) {
struct in6_addr dst6;
int csz;
if (dst == 0) {
ipf_stack_t *ifs = fin->fin_ifs;
if (fr_ifpaddr(6, FRI_NORMAL, (void *)phy,
(void *)&dst6, NULL, ifs) == -1) {
FREE_MB_T(m);
return -1;
}
} else
dst6 = fin->fin_dst6.in6;
csz = sz;
sz -= sizeof(ip6_t);
ip6 = (ip6_t *)m->b_rptr;
ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow;
ip6->ip6_plen = htons((u_short)sz);
ip6->ip6_nxt = IPPROTO_ICMPV6;
ip6->ip6_src = dst6;
ip6->ip6_dst = fin->fin_src6.in6;
sz -= offsetof(struct icmp, icmp_ip);
bcopy((char *)mb->b_rptr, (char *)&icmp->icmp_ip, sz);
icmp->icmp_cksum = csz - sizeof(ip6_t);
} else
#endif
{
ip->ip_hl = sizeof(*ip) >> 2;
ip->ip_p = IPPROTO_ICMP;
ip->ip_id = fin->fin_ip->ip_id;
ip->ip_tos = fin->fin_ip->ip_tos;
ip->ip_len = (u_short)sz;
if (dst == 0) {
ipf_stack_t *ifs = fin->fin_ifs;
if (fr_ifpaddr(4, FRI_NORMAL, (void *)phy,
(void *)&dst4, NULL, ifs) == -1) {
FREE_MB_T(m);
return -1;
}
} else {
dst4 = fin->fin_dst;
}
ip->ip_src = dst4;
ip->ip_dst = fin->fin_src;
bcopy((char *)fin->fin_ip, (char *)&icmp->icmp_ip,
sizeof(*fin->fin_ip));
bcopy((char *)fin->fin_ip + fin->fin_hlen,
(char *)&icmp->icmp_ip + sizeof(*fin->fin_ip), 8);
icmp->icmp_ip.ip_len = htons(icmp->icmp_ip.ip_len);
icmp->icmp_ip.ip_off = htons(icmp->icmp_ip.ip_off);
icmp->icmp_cksum = ipf_cksum((u_short *)icmp,
sz - sizeof(ip_t));
}
/*
* Need to exit out of these so we don't recursively call rw_enter
* from fr_qout.
*/
return fr_send_ip(fin, m, &m);
}
#include <sys/time.h>
#include <sys/varargs.h>
#ifndef _KERNEL
#include <stdio.h>
#endif
/*
* Return the first IP Address associated with an interface
* For IPv6, we walk through the list of logical interfaces and return
* the address of the first one that isn't a link-local interface.
* We can't assume that it is :1 because another link-local address
* may have been assigned there.
*/
/*ARGSUSED*/
int fr_ifpaddr(v, atype, ifptr, inp, inpmask, ifs)
int v, atype;
void *ifptr;
struct in_addr *inp, *inpmask;
ipf_stack_t *ifs;
{
struct sockaddr_in6 v6addr[2];
struct sockaddr_in v4addr[2];
net_ifaddr_t type[2];
net_handle_t net_data;
phy_if_t phyif;
void *array;
switch (v)
{
case 4:
net_data = ifs->ifs_ipf_ipv4;
array = v4addr;
break;
case 6:
net_data = ifs->ifs_ipf_ipv6;
array = v6addr;
break;
default:
net_data = NULL;
break;
}
if (net_data == NULL)
return -1;
phyif = (phy_if_t)ifptr;
switch (atype)
{
case FRI_PEERADDR :
type[0] = NA_PEER;
break;
case FRI_BROADCAST :
type[0] = NA_BROADCAST;
break;
default :
type[0] = NA_ADDRESS;
break;
}
type[1] = NA_NETMASK;
if (v == 6) {
lif_if_t idx = 0;
do {
idx = net_lifgetnext(net_data, phyif, idx);
if (net_getlifaddr(net_data, phyif, idx, 2, type,
array) < 0)
return -1;
if (!IN6_IS_ADDR_LINKLOCAL(&v6addr[0].sin6_addr) &&
!IN6_IS_ADDR_MULTICAST(&v6addr[0].sin6_addr))
break;
} while (idx != 0);
if (idx == 0)
return -1;
return fr_ifpfillv6addr(atype, &v6addr[0], &v6addr[1],
inp, inpmask);
}
if (net_getlifaddr(net_data, phyif, 0, 2, type, array) < 0)
return -1;
return fr_ifpfillv4addr(atype, &v4addr[0], &v4addr[1], inp, inpmask);
}
u_32_t fr_newisn(fin)
fr_info_t *fin;
{
static int iss_seq_off = 0;
u_char hash[16];
u_32_t newiss;
MD5_CTX ctx;
ipf_stack_t *ifs = fin->fin_ifs;
/*
* Compute the base value of the ISS. It is a hash
* of (saddr, sport, daddr, dport, secret).
*/
MD5Init(&ctx);
MD5Update(&ctx, (u_char *) &fin->fin_fi.fi_src,
sizeof(fin->fin_fi.fi_src));
MD5Update(&ctx, (u_char *) &fin->fin_fi.fi_dst,
sizeof(fin->fin_fi.fi_dst));
MD5Update(&ctx, (u_char *) &fin->fin_dat, sizeof(fin->fin_dat));
MD5Update(&ctx, ifs->ifs_ipf_iss_secret, sizeof(ifs->ifs_ipf_iss_secret));
MD5Final(hash, &ctx);
bcopy(hash, &newiss, sizeof(newiss));
/*
* Now increment our "timer", and add it in to
* the computed value.
*
* XXX Use `addin'?
* XXX TCP_ISSINCR too large to use?
*/
iss_seq_off += 0x00010000;
newiss += iss_seq_off;
return newiss;
}
/* ------------------------------------------------------------------------ */
/* Function: fr_nextipid */
/* Returns: int - 0 == success, -1 == error (packet should be droppped) */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Returns the next IPv4 ID to use for this packet. */
/* ------------------------------------------------------------------------ */
u_short fr_nextipid(fin)
fr_info_t *fin;
{
static u_short ipid = 0;
u_short id;
ipf_stack_t *ifs = fin->fin_ifs;
MUTEX_ENTER(&ifs->ifs_ipf_rw);
if (fin->fin_pktnum != 0) {
id = fin->fin_pktnum & 0xffff;
} else {
id = ipid++;
}
MUTEX_EXIT(&ifs->ifs_ipf_rw);
return id;
}
#ifndef IPFILTER_CKSUM
/* ARGSUSED */
#endif
INLINE void fr_checkv4sum(fin)
fr_info_t *fin;
{
#ifdef IPFILTER_CKSUM
if (fr_checkl4sum(fin) == -1)
fin->fin_flx |= FI_BAD;
#endif
}
#ifdef USE_INET6
# ifndef IPFILTER_CKSUM
/* ARGSUSED */
# endif
INLINE void fr_checkv6sum(fin)
fr_info_t *fin;
{
# ifdef IPFILTER_CKSUM
if (fr_checkl4sum(fin) == -1)
fin->fin_flx |= FI_BAD;
# endif
}
#endif /* USE_INET6 */
#if (SOLARIS2 < 7)
void fr_slowtimer()
#else
/*ARGSUSED*/
void fr_slowtimer __P((void *arg))
#endif
{
ipf_stack_t *ifs = arg;
READ_ENTER(&ifs->ifs_ipf_global);
if (ifs->ifs_fr_running != 1) {
ifs->ifs_fr_timer_id = NULL;
RWLOCK_EXIT(&ifs->ifs_ipf_global);
return;
}
ipf_expiretokens(ifs);
fr_fragexpire(ifs);
fr_timeoutstate(ifs);
fr_natexpire(ifs);
fr_authexpire(ifs);
ifs->ifs_fr_ticks++;
if (ifs->ifs_fr_running == 1)
ifs->ifs_fr_timer_id = timeout(fr_slowtimer, arg,
drv_usectohz(500000));
else
ifs->ifs_fr_timer_id = NULL;
RWLOCK_EXIT(&ifs->ifs_ipf_global);
}
/* ------------------------------------------------------------------------ */
/* Function: fr_pullup */
/* Returns: NULL == pullup failed, else pointer to protocol header */
/* Parameters: m(I) - pointer to buffer where data packet starts */
/* fin(I) - pointer to packet information */
/* len(I) - number of bytes to pullup */
/* */
/* Attempt to move at least len bytes (from the start of the buffer) into a */
/* single buffer for ease of access. Operating system native functions are */
/* used to manage buffers - if necessary. If the entire packet ends up in */
/* a single buffer, set the FI_COALESCE flag even though fr_coalesce() has */
/* not been called. Both fin_ip and fin_dp are updated before exiting _IF_ */
/* and ONLY if the pullup succeeds. */
/* */
/* We assume that 'min' is a pointer to a buffer that is part of the chain */
/* of buffers that starts at *fin->fin_mp. */
/* ------------------------------------------------------------------------ */
void *fr_pullup(min, fin, len)
mb_t *min;
fr_info_t *fin;
int len;
{
qpktinfo_t *qpi = fin->fin_qpi;
int out = fin->fin_out, dpoff, ipoff;
mb_t *m = min, *m1, *m2;
char *ip;
uint32_t start, stuff, end, value, flags;
ipf_stack_t *ifs = fin->fin_ifs;
if (m == NULL)
return NULL;
ip = (char *)fin->fin_ip;
if ((fin->fin_flx & FI_COALESCE) != 0)
return ip;
ipoff = fin->fin_ipoff;
if (fin->fin_dp != NULL)
dpoff = (char *)fin->fin_dp - (char *)ip;
else
dpoff = 0;
if (M_LEN(m) < len + ipoff) {
/*
* pfil_precheck ensures the IP header is on a 32bit
* aligned address so simply fail if that isn't currently
* the case (should never happen).
*/
int inc = 0;
if (ipoff > 0) {
if ((ipoff & 3) != 0) {
inc = 4 - (ipoff & 3);
if (m->b_rptr - inc >= m->b_datap->db_base)
m->b_rptr -= inc;
else
inc = 0;
}
}
/*
* XXX This is here as a work around for a bug with DEBUG
* XXX Solaris kernels. The problem is b_prev is used by IP
* XXX code as a way to stash the phyint_index for a packet,
* XXX this doesn't get reset by IP but freeb does an ASSERT()
* XXX for both of these to be NULL. See 6442390.
*/
m1 = m;
m2 = m->b_prev;
do {
m1->b_next = NULL;
m1->b_prev = NULL;
m1 = m1->b_cont;
} while (m1);
/*
* Need to preserve checksum information by copying them
* to newmp which heads the pulluped message.
*/
hcksum_retrieve(m, NULL, NULL, &start, &stuff, &end,
&value, &flags);
if (pullupmsg(m, len + ipoff + inc) == 0) {
ATOMIC_INCL(ifs->ifs_frstats[out].fr_pull[1]);
FREE_MB_T(*fin->fin_mp);
*fin->fin_mp = NULL;
fin->fin_m = NULL;
fin->fin_ip = NULL;
fin->fin_dp = NULL;
qpi->qpi_data = NULL;
return NULL;
}
(void) hcksum_assoc(m, NULL, NULL, start, stuff, end,
value, flags, 0);
m->b_prev = m2;
m->b_rptr += inc;
fin->fin_m = m;
ip = MTOD(m, char *) + ipoff;
qpi->qpi_data = ip;
}
ATOMIC_INCL(ifs->ifs_frstats[out].fr_pull[0]);
fin->fin_ip = (ip_t *)ip;
if (fin->fin_dp != NULL)
fin->fin_dp = (char *)fin->fin_ip + dpoff;
if (len == fin->fin_plen)
fin->fin_flx |= FI_COALESCE;
return ip;
}
/*
* Function: fr_verifysrc
* Returns: int (really boolean)
* Parameters: fin - packet information
*
* Check whether the packet has a valid source address for the interface on
* which the packet arrived, implementing the "fr_chksrc" feature.
* Returns true iff the packet's source address is valid.
*/
int fr_verifysrc(fin)
fr_info_t *fin;
{
net_handle_t net_data_p;
phy_if_t phy_ifdata_routeto;
struct sockaddr sin;
ipf_stack_t *ifs = fin->fin_ifs;
if (fin->fin_v == 4) {
net_data_p = ifs->ifs_ipf_ipv4;
} else if (fin->fin_v == 6) {
net_data_p = ifs->ifs_ipf_ipv6;
} else {
return (0);
}
/* Get the index corresponding to the if name */
sin.sa_family = (fin->fin_v == 4) ? AF_INET : AF_INET6;
bcopy(&fin->fin_saddr, &sin.sa_data, sizeof (struct in_addr));
phy_ifdata_routeto = net_routeto(net_data_p, &sin, NULL);
return (((phy_if_t)fin->fin_ifp == phy_ifdata_routeto) ? 1 : 0);
}
/*
* Return true only if forwarding is enabled on the interface.
*/
static int
fr_forwarding_enabled(phy_if_t phyif, net_handle_t ndp)
{
lif_if_t lif;
for (lif = net_lifgetnext(ndp, phyif, 0); lif > 0;
lif = net_lifgetnext(ndp, phyif, lif)) {
int res;
uint64_t flags;
res = net_getlifflags(ndp, phyif, lif, &flags);
if (res != 0)
return (0);
if (flags & IFF_ROUTER)
return (1);
}
return (0);
}
/*
* Function: fr_fastroute
* Returns: 0: success;
* -1: failed
* Parameters:
* mb: the message block where ip head starts
* mpp: the pointer to the pointer of the orignal
* packet message
* fin: packet information
* fdp: destination interface information
* if it is NULL, no interface information provided.
*
* This function is for fastroute/to/dup-to rules. It calls
* pfil_make_lay2_packet to search route, make lay-2 header
* ,and identify output queue for the IP packet.
* The destination address depends on the following conditions:
* 1: for fastroute rule, fdp is passed in as NULL, so the
* destination address is the IP Packet's destination address
* 2: for to/dup-to rule, if an ip address is specified after
* the interface name, this address is the as destination
* address. Otherwise IP Packet's destination address is used
*/
int fr_fastroute(mb, mpp, fin, fdp)
mblk_t *mb, **mpp;
fr_info_t *fin;
frdest_t *fdp;
{
net_handle_t net_data_p;
net_inject_t *inj;
mblk_t *mp = NULL;
frentry_t *fr = fin->fin_fr;
qpktinfo_t *qpi;
ip_t *ip;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
struct sockaddr *sinp;
ipf_stack_t *ifs = fin->fin_ifs;
#ifndef sparc
u_short __iplen, __ipoff;
#endif
if (fin->fin_v == 4) {
net_data_p = ifs->ifs_ipf_ipv4;
} else if (fin->fin_v == 6) {
net_data_p = ifs->ifs_ipf_ipv6;
} else {
return (-1);
}
/* Check the src here, fin_ifp is the src interface. */
if (!fr_forwarding_enabled((phy_if_t)fin->fin_ifp, net_data_p))
return (-1);
inj = net_inject_alloc(NETINFO_VERSION);
if (inj == NULL)
return -1;
ip = fin->fin_ip;
qpi = fin->fin_qpi;
/*
* If this is a duplicate mblk then we want ip to point at that
* data, not the original, if and only if it is already pointing at
* the current mblk data.
*
* Otherwise, if it's not a duplicate, and we're not already pointing
* at the current mblk data, then we want to ensure that the data
* points at ip.
*/
if ((ip == (ip_t *)qpi->qpi_m->b_rptr) && (qpi->qpi_m != mb)) {
ip = (ip_t *)mb->b_rptr;
} else if ((qpi->qpi_m == mb) && (ip != (ip_t *)qpi->qpi_m->b_rptr)) {
qpi->qpi_m->b_rptr = (uchar_t *)ip;
qpi->qpi_off = 0;
}
/*
* If there is another M_PROTO, we don't want it
*/
if (*mpp != mb) {
mp = unlinkb(*mpp);
freeb(*mpp);
*mpp = mp;
}
sinp = (struct sockaddr *)&inj->ni_addr;
sin = (struct sockaddr_in *)sinp;
sin6 = (struct sockaddr_in6 *)sinp;
bzero((char *)&inj->ni_addr, sizeof (inj->ni_addr));
inj->ni_addr.ss_family = (fin->fin_v == 4) ? AF_INET : AF_INET6;
inj->ni_packet = mb;
/*
* In case we're here due to "to <if>" being used with
* "keep state", check that we're going in the correct
* direction.
*/
if (fdp != NULL) {
if ((fr != NULL) && (fdp->fd_ifp != NULL) &&
(fin->fin_rev != 0) && (fdp == &fr->fr_tif))
goto bad_fastroute;
inj->ni_physical = (phy_if_t)fdp->fd_ifp;
if (fin->fin_v == 4) {
sin->sin_addr = fdp->fd_ip;
} else {
sin6->sin6_addr = fdp->fd_ip6.in6;
}
} else {
if (fin->fin_v == 4) {
sin->sin_addr = ip->ip_dst;
} else {
sin6->sin6_addr = ((ip6_t *)ip)->ip6_dst;
}
inj->ni_physical = net_routeto(net_data_p, sinp, NULL);
}
/* we're checking the destinatation here */
if (!fr_forwarding_enabled(inj->ni_physical, net_data_p))
goto bad_fastroute;
/*
* Clear the hardware checksum flags from packets that we are doing
* input processing on as leaving them set will cause the outgoing
* NIC (if it supports hardware checksum) to calculate them anew,
* using the old (correct) checksums as the pseudo value to start
* from.
*/
if (fin->fin_out == 0) {
DB_CKSUMFLAGS(mb) = 0;
}
*mpp = mb;
if (fin->fin_out == 0) {
void *saveifp;
u_32_t pass;
saveifp = fin->fin_ifp;
fin->fin_ifp = (void *)inj->ni_physical;
fin->fin_flx &= ~FI_STATE;
fin->fin_out = 1;
(void) fr_acctpkt(fin, &pass);
fin->fin_fr = NULL;
if (!fr || !(fr->fr_flags & FR_RETMASK))
(void) fr_checkstate(fin, &pass);
if (fr_checknatout(fin, NULL) == -1)
goto bad_fastroute;
fin->fin_out = 0;
fin->fin_ifp = saveifp;
}
#ifndef sparc
if (fin->fin_v == 4) {
__iplen = (u_short)ip->ip_len,
__ipoff = (u_short)ip->ip_off;
ip->ip_len = htons(__iplen);
ip->ip_off = htons(__ipoff);
}
#endif
if (net_data_p) {
if (net_inject(net_data_p, NI_DIRECT_OUT, inj) < 0) {
net_inject_free(inj);
return (-1);
}
}
ifs->ifs_fr_frouteok[0]++;
net_inject_free(inj);
return 0;
bad_fastroute:
net_inject_free(inj);
freemsg(mb);
ifs->ifs_fr_frouteok[1]++;
return -1;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_hook4_out */
/* Returns: int - 0 == packet ok, else problem, free packet if not done */
/* Parameters: event(I) - pointer to event */
/* info(I) - pointer to hook information for firewalling */
/* */
/* Calling ipf_hook. */
/* ------------------------------------------------------------------------ */
/*ARGSUSED*/
int ipf_hook4_out(hook_event_token_t token, hook_data_t info, void *arg)
{
return ipf_hook(info, 1, 0, arg);
}
/*ARGSUSED*/
int ipf_hook6_out(hook_event_token_t token, hook_data_t info, void *arg)
{
return ipf_hook6(info, 1, 0, arg);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_hook4_in */
/* Returns: int - 0 == packet ok, else problem, free packet if not done */
/* Parameters: event(I) - pointer to event */
/* info(I) - pointer to hook information for firewalling */
/* */
/* Calling ipf_hook. */
/* ------------------------------------------------------------------------ */
/*ARGSUSED*/
int ipf_hook4_in(hook_event_token_t token, hook_data_t info, void *arg)
{
return ipf_hook(info, 0, 0, arg);
}
/*ARGSUSED*/
int ipf_hook6_in(hook_event_token_t token, hook_data_t info, void *arg)
{
return ipf_hook6(info, 0, 0, arg);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_hook4_loop_out */
/* Returns: int - 0 == packet ok, else problem, free packet if not done */
/* Parameters: event(I) - pointer to event */
/* info(I) - pointer to hook information for firewalling */
/* */
/* Calling ipf_hook. */
/* ------------------------------------------------------------------------ */
/*ARGSUSED*/
int ipf_hook4_loop_out(hook_event_token_t token, hook_data_t info, void *arg)
{
return ipf_hook(info, 1, FI_NOCKSUM, arg);
}
/*ARGSUSED*/
int ipf_hook6_loop_out(hook_event_token_t token, hook_data_t info, void *arg)
{
return ipf_hook6(info, 1, FI_NOCKSUM, arg);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_hook4_loop_in */
/* Returns: int - 0 == packet ok, else problem, free packet if not done */
/* Parameters: event(I) - pointer to event */
/* info(I) - pointer to hook information for firewalling */
/* */
/* Calling ipf_hook. */
/* ------------------------------------------------------------------------ */
/*ARGSUSED*/
int ipf_hook4_loop_in(hook_event_token_t token, hook_data_t info, void *arg)
{
return ipf_hook(info, 0, FI_NOCKSUM, arg);
}
/*ARGSUSED*/
int ipf_hook6_loop_in(hook_event_token_t token, hook_data_t info, void *arg)
{
return ipf_hook6(info, 0, FI_NOCKSUM, arg);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_hook */
/* Returns: int - 0 == packet ok, else problem, free packet if not done */
/* Parameters: info(I) - pointer to hook information for firewalling */
/* out(I) - whether packet is going in or out */
/* loopback(I) - whether packet is a loopback packet or not */
/* */
/* Stepping stone function between the IP mainline and IPFilter. Extracts */
/* parameters out of the info structure and forms them up to be useful for */
/* calling ipfilter. */
/* ------------------------------------------------------------------------ */
int ipf_hook(hook_data_t info, int out, int loopback, void *arg)
{
hook_pkt_event_t *fw;
ipf_stack_t *ifs;
qpktinfo_t qpi;
int rval, hlen;
u_short swap;
phy_if_t phy;
ip_t *ip;
ifs = arg;
fw = (hook_pkt_event_t *)info;
ASSERT(fw != NULL);
phy = (out == 0) ? fw->hpe_ifp : fw->hpe_ofp;
ip = fw->hpe_hdr;
swap = ntohs(ip->ip_len);
ip->ip_len = swap;
swap = ntohs(ip->ip_off);
ip->ip_off = swap;
hlen = IPH_HDR_LENGTH(ip);
qpi.qpi_m = fw->hpe_mb;
qpi.qpi_data = fw->hpe_hdr;
qpi.qpi_off = (char *)qpi.qpi_data - (char *)fw->hpe_mb->b_rptr;
qpi.qpi_ill = (void *)phy;
qpi.qpi_flags = fw->hpe_flags & (HPE_MULTICAST|HPE_BROADCAST);
if (qpi.qpi_flags)
qpi.qpi_flags |= FI_MBCAST;
qpi.qpi_flags |= loopback;
rval = fr_check(fw->hpe_hdr, hlen, qpi.qpi_ill, out,
&qpi, fw->hpe_mp, ifs);
/* For fastroute cases, fr_check returns 0 with mp set to NULL */
if (rval == 0 && *(fw->hpe_mp) == NULL)
rval = 1;
/* Notify IP the packet mblk_t and IP header pointers. */
fw->hpe_mb = qpi.qpi_m;
fw->hpe_hdr = qpi.qpi_data;
if (rval == 0) {
ip = qpi.qpi_data;
swap = ntohs(ip->ip_len);
ip->ip_len = swap;
swap = ntohs(ip->ip_off);
ip->ip_off = swap;
}
return rval;
}
int ipf_hook6(hook_data_t info, int out, int loopback, void *arg)
{
hook_pkt_event_t *fw;
int rval, hlen;
qpktinfo_t qpi;
phy_if_t phy;
fw = (hook_pkt_event_t *)info;
ASSERT(fw != NULL);
phy = (out == 0) ? fw->hpe_ifp : fw->hpe_ofp;
hlen = sizeof (ip6_t);
qpi.qpi_m = fw->hpe_mb;
qpi.qpi_data = fw->hpe_hdr;
qpi.qpi_off = (char *)qpi.qpi_data - (char *)fw->hpe_mb->b_rptr;
qpi.qpi_ill = (void *)phy;
qpi.qpi_flags = fw->hpe_flags & (HPE_MULTICAST|HPE_BROADCAST);
if (qpi.qpi_flags)
qpi.qpi_flags |= FI_MBCAST;
qpi.qpi_flags |= loopback;
rval = fr_check(fw->hpe_hdr, hlen, qpi.qpi_ill, out,
&qpi, fw->hpe_mp, arg);
/* For fastroute cases, fr_check returns 0 with mp set to NULL */
if (rval == 0 && *(fw->hpe_mp) == NULL)
rval = 1;
/* Notify IP the packet mblk_t and IP header pointers. */
fw->hpe_mb = qpi.qpi_m;
fw->hpe_hdr = qpi.qpi_data;
return rval;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nic_event_v4 */
/* Returns: int - 0 == no problems encountered */
/* Parameters: event(I) - pointer to event */
/* info(I) - pointer to information about a NIC event */
/* */
/* Function to receive asynchronous NIC events from IP */
/* ------------------------------------------------------------------------ */
/*ARGSUSED*/
int ipf_nic_event_v4(hook_event_token_t event, hook_data_t info, void *arg)
{
struct sockaddr_in *sin;
hook_nic_event_t *hn;
ipf_stack_t *ifs = arg;
void *new_ifp = NULL;
if (ifs->ifs_fr_running <= 0)
return (0);
hn = (hook_nic_event_t *)info;
switch (hn->hne_event)
{
case NE_PLUMB :
frsync(IPFSYNC_NEWIFP, 4, (void *)hn->hne_nic, hn->hne_data,
ifs);
fr_natifpsync(IPFSYNC_NEWIFP, 4, (void *)hn->hne_nic,
hn->hne_data, ifs);
fr_statesync(IPFSYNC_NEWIFP, 4, (void *)hn->hne_nic,
hn->hne_data, ifs);
break;
case NE_UNPLUMB :
frsync(IPFSYNC_OLDIFP, 4, (void *)hn->hne_nic, NULL, ifs);
fr_natifpsync(IPFSYNC_OLDIFP, 4, (void *)hn->hne_nic, NULL,
ifs);
fr_statesync(IPFSYNC_OLDIFP, 4, (void *)hn->hne_nic, NULL, ifs);
break;
case NE_ADDRESS_CHANGE :
/*
* We only respond to events for logical interface 0 because
* IPFilter only uses the first address given to a network
* interface. We check for hne_lif==1 because the netinfo
* code maps adds 1 to the lif number so that it can return
* 0 to indicate "no more lifs" when walking them.
*/
if (hn->hne_lif == 1) {
frsync(IPFSYNC_RESYNC, 4, (void *)hn->hne_nic, NULL,
ifs);
sin = hn->hne_data;
fr_nataddrsync(4, (void *)hn->hne_nic, &sin->sin_addr,
ifs);
}
break;
#if SOLARIS2 >= 10
case NE_IFINDEX_CHANGE :
WRITE_ENTER(&ifs->ifs_ipf_mutex);
if (hn->hne_data != NULL) {
/*
* The netinfo passes interface index as int (hne_data should be
* handled as a pointer to int), which is always 32bit. We need to
* convert it to void pointer here, since interfaces are
* represented as pointers to void in IPF. The pointers are 64 bits
* long on 64bit platforms. Doing something like
* (void *)((int) x)
* will throw warning:
* "cast to pointer from integer of different size"
* during 64bit compilation.
*
* The line below uses (size_t) to typecast int to
* size_t, which might be 64bit/32bit (depending
* on architecture). Once we have proper 64bit/32bit
* type (size_t), we can safely convert it to void pointer.
*/
new_ifp = (void *)(size_t)*((int *)hn->hne_data);
fr_ifindexsync((void *)hn->hne_nic, new_ifp, ifs);
fr_natifindexsync((void *)hn->hne_nic, new_ifp, ifs);
fr_stateifindexsync((void *)hn->hne_nic, new_ifp, ifs);
}
RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
break;
#endif
default :
break;
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nic_event_v6 */
/* Returns: int - 0 == no problems encountered */
/* Parameters: event(I) - pointer to event */
/* info(I) - pointer to information about a NIC event */
/* */
/* Function to receive asynchronous NIC events from IP */
/* ------------------------------------------------------------------------ */
/*ARGSUSED*/
int ipf_nic_event_v6(hook_event_token_t event, hook_data_t info, void *arg)
{
struct sockaddr_in6 *sin6;
hook_nic_event_t *hn;
ipf_stack_t *ifs = arg;
void *new_ifp = NULL;
if (ifs->ifs_fr_running <= 0)
return (0);
hn = (hook_nic_event_t *)info;
switch (hn->hne_event)
{
case NE_PLUMB :
frsync(IPFSYNC_NEWIFP, 6, (void *)hn->hne_nic,
hn->hne_data, ifs);
fr_natifpsync(IPFSYNC_NEWIFP, 6, (void *)hn->hne_nic,
hn->hne_data, ifs);
fr_statesync(IPFSYNC_NEWIFP, 6, (void *)hn->hne_nic,
hn->hne_data, ifs);
break;
case NE_UNPLUMB :
frsync(IPFSYNC_OLDIFP, 6, (void *)hn->hne_nic, NULL, ifs);
fr_natifpsync(IPFSYNC_OLDIFP, 6, (void *)hn->hne_nic, NULL,
ifs);
fr_statesync(IPFSYNC_OLDIFP, 6, (void *)hn->hne_nic, NULL, ifs);
break;
case NE_ADDRESS_CHANGE :
if (hn->hne_lif == 1) {
sin6 = hn->hne_data;
fr_nataddrsync(6, (void *)hn->hne_nic, &sin6->sin6_addr,
ifs);
}
break;
#if SOLARIS2 >= 10
case NE_IFINDEX_CHANGE :
WRITE_ENTER(&ifs->ifs_ipf_mutex);
if (hn->hne_data != NULL) {
/*
* The netinfo passes interface index as int (hne_data should be
* handled as a pointer to int), which is always 32bit. We need to
* convert it to void pointer here, since interfaces are
* represented as pointers to void in IPF. The pointers are 64 bits
* long on 64bit platforms. Doing something like
* (void *)((int) x)
* will throw warning:
* "cast to pointer from integer of different size"
* during 64bit compilation.
*
* The line below uses (size_t) to typecast int to
* size_t, which might be 64bit/32bit (depending
* on architecture). Once we have proper 64bit/32bit
* type (size_t), we can safely convert it to void pointer.
*/
new_ifp = (void *)(size_t)*((int *)hn->hne_data);
fr_ifindexsync((void *)hn->hne_nic, new_ifp, ifs);
fr_natifindexsync((void *)hn->hne_nic, new_ifp, ifs);
fr_stateifindexsync((void *)hn->hne_nic, new_ifp, ifs);
}
RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
break;
#endif
default :
break;
}
return 0;
}
/*
* Functions fr_make_rst(), fr_make_icmp_v4(), fr_make_icmp_v6()
* are needed in Solaris kernel only. We don't need them in
* ipftest to pretend the ICMP/RST packet was sent as a response.
*/
#if defined(_KERNEL) && (SOLARIS2 >= 10)
/* ------------------------------------------------------------------------ */
/* Function: fr_make_rst */
/* Returns: int - 0 on success, -1 on failure */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* We must alter the original mblks passed to IPF from IP stack via */
/* FW_HOOKS. FW_HOOKS interface is powerfull, but it has some limitations. */
/* IPF can basicaly do only these things with mblk representing the packet: */
/* leave it as it is (pass the packet) */
/* */
/* discard it (block the packet) */
/* */
/* alter it (i.e. NAT) */
/* */
/* As you can see IPF can not simply discard the mblk and supply a new one */
/* instead to IP stack via FW_HOOKS. */
/* */
/* The return-rst action for packets coming via NIC is handled as follows: */
/* mblk with packet is discarded */
/* */
/* new mblk with RST response is constructed and injected to network */
/* */
/* IPF can't inject packets to loopback interface, this is just another */
/* limitation we have to deal with here. The only option to send RST */
/* response to offending TCP packet coming via loopback is to alter it. */
/* */
/* The fr_make_rst() function alters TCP SYN/FIN packet intercepted on */
/* loopback interface into TCP RST packet. fin->fin_mp is pointer to */
/* mblk L3 (IP) and L4 (TCP/UDP) packet headers. */
/* ------------------------------------------------------------------------ */
int fr_make_rst(fin)
fr_info_t *fin;
{
uint16_t tmp_port;
int rv = -1;
uint32_t old_ack;
tcphdr_t *tcp = NULL;
struct in_addr tmp_src;
#ifdef USE_INET6
struct in6_addr tmp_src6;
#endif
ASSERT(fin->fin_p == IPPROTO_TCP);
/*
* We do not need to adjust chksum, since it is not being checked by
* Solaris IP stack for loopback clients.
*/
if ((fin->fin_v == 4) && (fin->fin_p == IPPROTO_TCP) &&
((tcp = (tcphdr_t *) fin->fin_dp) != NULL)) {
if (tcp->th_flags & (TH_SYN | TH_FIN)) {
/* Swap IPv4 addresses. */
tmp_src = fin->fin_ip->ip_src;
fin->fin_ip->ip_src = fin->fin_ip->ip_dst;
fin->fin_ip->ip_dst = tmp_src;
rv = 0;
}
else
tcp = NULL;
}
#ifdef USE_INET6
else if ((fin->fin_v == 6) && (fin->fin_p == IPPROTO_TCP) &&
((tcp = (tcphdr_t *) fin->fin_dp) != NULL)) {
/*
* We are relying on fact the next header is TCP, which is true
* for regular TCP packets coming in over loopback.
*/
if (tcp->th_flags & (TH_SYN | TH_FIN)) {
/* Swap IPv6 addresses. */
tmp_src6 = fin->fin_ip6->ip6_src;
fin->fin_ip6->ip6_src = fin->fin_ip6->ip6_dst;
fin->fin_ip6->ip6_dst = tmp_src6;
rv = 0;
}
else
tcp = NULL;
}
#endif
if (tcp != NULL) {
/*
* Adjust TCP header:
* swap ports,
* set flags,
* set correct ACK number
*/
tmp_port = tcp->th_sport;
tcp->th_sport = tcp->th_dport;
tcp->th_dport = tmp_port;
old_ack = tcp->th_ack;
tcp->th_ack = htonl(ntohl(tcp->th_seq) + 1);
tcp->th_seq = old_ack;
tcp->th_flags = TH_RST | TH_ACK;
}
return (rv);
}
/* ------------------------------------------------------------------------ */
/* Function: fr_make_icmp_v4 */
/* Returns: int - 0 on success, -1 on failure */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Please read comment at fr_make_icmp() wrapper function to get an idea */
/* what is going to happen here and why. Once you read the comment there, */
/* continue here with next paragraph. */
/* */
/* To turn IPv4 packet into ICMPv4 response packet, these things must */
/* happen here: */
/* (1) Original mblk is copied (duplicated). */
/* */
/* (2) ICMP header is created. */
/* */
/* (3) Link ICMP header with copy of original mblk, we have ICMPv4 */
/* data ready then. */
/* */
/* (4) Swap IP addresses in original mblk and adjust IP header data. */
/* */
/* (5) The mblk containing original packet is trimmed to contain IP */
/* header only and ICMP chksum is computed. */
/* */
/* (6) The ICMP header we have from (3) is linked to original mblk, */
/* which now contains new IP header. If original packet was spread */
/* over several mblks, only the first mblk is kept. */
/* ------------------------------------------------------------------------ */
static int fr_make_icmp_v4(fin)
fr_info_t *fin;
{
struct in_addr tmp_src;
tcphdr_t *tcp;
struct icmp *icmp;
mblk_t *mblk_icmp;
mblk_t *mblk_ip;
size_t icmp_pld_len; /* octets to append to ICMP header */
size_t orig_iphdr_len; /* length of IP header only */
uint32_t sum;
uint16_t *buf;
int len;
if (fin->fin_v != 4)
return (-1);
/*
* If we are dealing with TCP, then packet must be SYN/FIN to be routed
* by IP stack. If it is not SYN/FIN, then we must drop it silently.
*/
tcp = (tcphdr_t *) fin->fin_dp;
if ((fin->fin_p == IPPROTO_TCP) &&
((tcp == NULL) || ((tcp->th_flags & (TH_SYN | TH_FIN)) == 0)))
return (-1);
/*
* Step (1)
*
* Make copy of original mblk.
*
* We want to copy as much data as necessary, not less, not more. The
* ICMPv4 payload length for unreachable messages is:
* original IP header + 8 bytes of L4 (if there are any).
*
* We determine if there are at least 8 bytes of L4 data following IP
* header first.
*/
icmp_pld_len = (fin->fin_dlen > ICMPERR_ICMPHLEN) ?
ICMPERR_ICMPHLEN : fin->fin_dlen;
/*
* Since we don't want to copy more data than necessary, we must trim
* the original mblk here. The right way (STREAMish) would be to use
* adjmsg() to trim it. However we would have to calculate the length
* argument for adjmsg() from pointers we already have here.
*
* Since we have pointers and offsets, it's faster and easier for
* us to just adjust pointers by hand instead of using adjmsg().
*/
fin->fin_m->b_wptr = (unsigned char *) fin->fin_dp;
fin->fin_m->b_wptr += icmp_pld_len;
icmp_pld_len = fin->fin_m->b_wptr - (unsigned char *) fin->fin_ip;
/*
* Also we don't want to copy any L2 stuff, which might precede IP
* header, so we have have to set b_rptr to point to the start of IP
* header.
*/
fin->fin_m->b_rptr += fin->fin_ipoff;
if ((mblk_ip = copyb(fin->fin_m)) == NULL)
return (-1);
fin->fin_m->b_rptr -= fin->fin_ipoff;
/*
* Step (2)
*
* Create an ICMP header, which will be appened to original mblk later.
* ICMP header is just another mblk.
*/
mblk_icmp = (mblk_t *) allocb(ICMPERR_ICMPHLEN, BPRI_HI);
if (mblk_icmp == NULL) {
FREE_MB_T(mblk_ip);
return (-1);
}
MTYPE(mblk_icmp) = M_DATA;
icmp = (struct icmp *) mblk_icmp->b_wptr;
icmp->icmp_type = ICMP_UNREACH;
icmp->icmp_code = fin->fin_icode & 0xFF;
icmp->icmp_void = 0;
icmp->icmp_cksum = 0;
mblk_icmp->b_wptr += ICMPERR_ICMPHLEN;
/*
* Step (3)
*
* Complete ICMP packet - link ICMP header with L4 data from original
* IP packet.
*/
linkb(mblk_icmp, mblk_ip);
/*
* Step (4)
*
* Swap IP addresses and change IP header fields accordingly in
* original IP packet.
*
* There is a rule option return-icmp as a dest for physical
* interfaces. This option becomes useless for loopback, since IPF box
* uses same address as a loopback destination. We ignore the option
* here, the ICMP packet will always look like as it would have been
* sent from the original destination host.
*/
tmp_src = fin->fin_ip->ip_src;
fin->fin_ip->ip_src = fin->fin_ip->ip_dst;
fin->fin_ip->ip_dst = tmp_src;
fin->fin_ip->ip_p = IPPROTO_ICMP;
fin->fin_ip->ip_sum = 0;
/*
* Step (5)
*
* We trim the orignal mblk to hold IP header only.
*/
fin->fin_m->b_wptr = fin->fin_dp;
orig_iphdr_len = fin->fin_m->b_wptr -
(fin->fin_m->b_rptr + fin->fin_ipoff);
fin->fin_ip->ip_len = htons(icmp_pld_len + ICMPERR_ICMPHLEN +
orig_iphdr_len);
/*
* ICMP chksum calculation. The data we are calculating chksum for are
* spread over two mblks, therefore we have to use two for loops.
*
* First for loop computes chksum part for ICMP header.
*/
buf = (uint16_t *) icmp;
len = ICMPERR_ICMPHLEN;
for (sum = 0; len > 1; len -= 2)
sum += *buf++;
/*
* Here we add chksum part for ICMP payload.
*/
len = icmp_pld_len;
buf = (uint16_t *) mblk_ip->b_rptr;
for (; len > 1; len -= 2)
sum += *buf++;
/*
* Chksum is done.
*/
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
icmp->icmp_cksum = ~sum;
/*
* Step (6)
*
* Release all packet mblks, except the first one.
*/
if (fin->fin_m->b_cont != NULL) {
FREE_MB_T(fin->fin_m->b_cont);
}
/*
* Append ICMP payload to first mblk, which already contains new IP
* header.
*/
linkb(fin->fin_m, mblk_icmp);
return (0);
}
#ifdef USE_INET6
/* ------------------------------------------------------------------------ */
/* Function: fr_make_icmp_v6 */
/* Returns: int - 0 on success, -1 on failure */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Please read comment at fr_make_icmp() wrapper function to get an idea */
/* what and why is going to happen here. Once you read the comment there, */
/* continue here with next paragraph. */
/* */
/* This function turns IPv6 packet (UDP, TCP, ...) into ICMPv6 response. */
/* The algorithm is fairly simple: */
/* 1) We need to get copy of complete mblk. */
/* */
/* 2) New ICMPv6 header is created. */
/* */
/* 3) The copy of original mblk with packet is linked to ICMPv6 */
/* header. */
/* */
/* 4) The checksum must be adjusted. */
/* */
/* 5) IP addresses in original mblk are swapped and IP header data */
/* are adjusted (protocol number). */
/* */
/* 6) Original mblk is trimmed to hold IPv6 header only, then it is */
/* linked with the ICMPv6 data we got from (3). */
/* ------------------------------------------------------------------------ */
static int fr_make_icmp_v6(fin)
fr_info_t *fin;
{
struct icmp6_hdr *icmp6;
tcphdr_t *tcp;
struct in6_addr tmp_src6;
size_t icmp_pld_len;
mblk_t *mblk_ip, *mblk_icmp;
if (fin->fin_v != 6)
return (-1);
/*
* If we are dealing with TCP, then packet must SYN/FIN to be routed by
* IP stack. If it is not SYN/FIN, then we must drop it silently.
*/
tcp = (tcphdr_t *) fin->fin_dp;
if ((fin->fin_p == IPPROTO_TCP) &&
((tcp == NULL) || ((tcp->th_flags & (TH_SYN | TH_FIN)) == 0)))
return (-1);
/*
* Step (1)
*
* We need to copy complete packet in case of IPv6, no trimming is
* needed (except the L2 headers).
*/
icmp_pld_len = M_LEN(fin->fin_m);
fin->fin_m->b_rptr += fin->fin_ipoff;
if ((mblk_ip = copyb(fin->fin_m)) == NULL)
return (-1);
fin->fin_m->b_rptr -= fin->fin_ipoff;
/*
* Step (2)
*
* Allocate and create ICMP header.
*/
mblk_icmp = (mblk_t *) allocb(sizeof (struct icmp6_hdr),
BPRI_HI);
if (mblk_icmp == NULL)
return (-1);
MTYPE(mblk_icmp) = M_DATA;
icmp6 = (struct icmp6_hdr *) mblk_icmp->b_wptr;
icmp6->icmp6_type = ICMP6_DST_UNREACH;
icmp6->icmp6_code = fin->fin_icode & 0xFF;
icmp6->icmp6_data32[0] = 0;
mblk_icmp->b_wptr += sizeof (struct icmp6_hdr);
/*
* Step (3)
*
* Link the copy of IP packet to ICMP header.
*/
linkb(mblk_icmp, mblk_ip);
/*
* Step (4)
*
* Calculate chksum - this is much more easier task than in case of
* IPv4 - ICMPv6 chksum only covers IP addresses, and payload length.
* We are making compensation just for change of packet length.
*/
icmp6->icmp6_cksum = icmp_pld_len + sizeof (struct icmp6_hdr);
/*
* Step (5)
*
* Swap IP addresses.
*/
tmp_src6 = fin->fin_ip6->ip6_src;
fin->fin_ip6->ip6_src = fin->fin_ip6->ip6_dst;
fin->fin_ip6->ip6_dst = tmp_src6;
/*
* and adjust IP header data.
*/
fin->fin_ip6->ip6_nxt = IPPROTO_ICMPV6;
fin->fin_ip6->ip6_plen = htons(icmp_pld_len + sizeof (struct icmp6_hdr));
/*
* Step (6)
*
* We must release all linked mblks from original packet and keep only
* the first mblk with IP header to link ICMP data.
*/
fin->fin_m->b_wptr = (unsigned char *) fin->fin_ip6 + sizeof (ip6_t);
if (fin->fin_m->b_cont != NULL) {
FREE_MB_T(fin->fin_m->b_cont);
}
/*
* Append ICMP payload to IP header.
*/
linkb(fin->fin_m, mblk_icmp);
return (0);
}
#endif /* USE_INET6 */
/* ------------------------------------------------------------------------ */
/* Function: fr_make_icmp */
/* Returns: int - 0 on success, -1 on failure */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* We must alter the original mblks passed to IPF from IP stack via */
/* FW_HOOKS. The reasons why we must alter packet are discussed within */
/* comment at fr_make_rst() function. */
/* */
/* The fr_make_icmp() function acts as a wrapper, which passes the code */
/* execution to fr_make_icmp_v4() or fr_make_icmp_v6() depending on */
/* protocol version. However there are some details, which are common to */
/* both IP versions. The details are going to be explained here. */
/* */
/* The packet looks as follows: */
/* xxx | IP hdr | IP payload ... | */
/* ^ ^ ^ ^ */
/* | | | | */
/* | | | fin_m->b_wptr = fin->fin_dp + fin->fin_dlen */
/* | | | */
/* | | `- fin_m->fin_dp (in case of IPv4 points to L4 header) */
/* | | */
/* | `- fin_m->b_rptr + fin_ipoff (fin_ipoff is most likely 0 in case */
/* | of loopback) */
/* | */
/* `- fin_m->b_rptr - points to L2 header in case of physical NIC */
/* */
/* All relevant IP headers are pulled up into the first mblk. It happened */
/* well in advance before the matching rule was found (the rule, which took */
/* us here, to fr_make_icmp() function). */
/* */
/* Both functions will turn packet passed in fin->fin_m mblk into a new */
/* packet. New packet will be represented as chain of mblks. */
/* orig mblk |- b_cont ---. */
/* ^ `-> ICMP hdr |- b_cont--. */
/* | ^ `-> duped orig mblk */
/* | | ^ */
/* `- The original mblk | | */
/* will be trimmed to | | */
/* to contain IP header | | */
/* only | | */
/* | | */
/* `- This is newly | */
/* allocated mblk to | */
/* hold ICMPv6 data. | */
/* | */
/* | */
/* | */
/* This is the copy of original mblk, it will contain -' */
/* orignal IP packet in case of ICMPv6. In case of */
/* ICMPv4 it will contain up to 8 bytes of IP payload */
/* (TCP/UDP/L4) data from original packet. */
/* ------------------------------------------------------------------------ */
int fr_make_icmp(fin)
fr_info_t *fin;
{
int rv;
if (fin->fin_v == 4)
rv = fr_make_icmp_v4(fin);
#ifdef USE_INET6
else if (fin->fin_v == 6)
rv = fr_make_icmp_v6(fin);
#endif
else
rv = -1;
return (rv);
}
/* ------------------------------------------------------------------------ */
/* Function: fr_buf_sum */
/* Returns: unsigned int - sum of buffer buf */
/* Parameters: buf - pointer to buf we want to sum up */
/* len - length of buffer buf */
/* */
/* Sums buffer buf. The result is used for chksum calculation. The buf */
/* argument must be aligned. */
/* ------------------------------------------------------------------------ */
static uint32_t fr_buf_sum(buf, len)
const void *buf;
unsigned int len;
{
uint32_t sum = 0;
uint16_t *b = (uint16_t *)buf;
while (len > 1) {
sum += *b++;
len -= 2;
}
if (len == 1)
sum += htons((*(unsigned char *)b) << 8);
return (sum);
}
/* ------------------------------------------------------------------------ */
/* Function: fr_calc_chksum */
/* Returns: void */
/* Parameters: fin - pointer to fr_info_t instance with packet data */
/* pkt - pointer to duplicated packet */
/* */
/* Calculates all chksums (L3, L4) for packet pkt. Works for both IP */
/* versions. */
/* ------------------------------------------------------------------------ */
void fr_calc_chksum(fin, pkt)
fr_info_t *fin;
mb_t *pkt;
{
struct pseudo_hdr {
union {
struct in_addr in4;
#ifdef USE_INET6
struct in6_addr in6;
#endif
} src_addr;
union {
struct in_addr in4;
#ifdef USE_INET6
struct in6_addr in6;
#endif
} dst_addr;
char zero;
char proto;
uint16_t len;
} phdr;
uint32_t sum, ip_sum;
void *buf;
uint16_t *l4_csum_p;
tcphdr_t *tcp;
udphdr_t *udp;
icmphdr_t *icmp;
#ifdef USE_INET6
struct icmp6_hdr *icmp6;
#endif
ip_t *ip;
unsigned int len;
int pld_len;
/*
* We need to pullup the packet to the single continuous buffer to avoid
* potential misaligment of b_rptr member in mblk chain.
*/
if (pullupmsg(pkt, -1) == 0) {
cmn_err(CE_WARN, "Failed to pullup loopback pkt -> chksum"
" will not be computed by IPF");
return;
}
/*
* It is guaranteed IP header starts right at b_rptr, because we are
* working with a copy of the original packet.
*
* Compute pseudo header chksum for TCP and UDP.
*/
if ((fin->fin_p == IPPROTO_UDP) ||
(fin->fin_p == IPPROTO_TCP)) {
bzero(&phdr, sizeof (phdr));
#ifdef USE_INET6
if (fin->fin_v == 6) {
phdr.src_addr.in6 = fin->fin_srcip6;
phdr.dst_addr.in6 = fin->fin_dstip6;
} else {
phdr.src_addr.in4 = fin->fin_src;
phdr.dst_addr.in4 = fin->fin_dst;
}
#else
phdr.src_addr.in4 = fin->fin_src;
phdr.dst_addr.in4 = fin->fin_dst;
#endif
phdr.zero = (char) 0;
phdr.proto = fin->fin_p;
phdr.len = htons((uint16_t)fin->fin_dlen);
sum = fr_buf_sum(&phdr, (unsigned int)sizeof (phdr));
} else {
sum = 0;
}
/*
* Set pointer to the L4 chksum field in the packet, set buf pointer to
* the L4 header start.
*/
switch (fin->fin_p) {
case IPPROTO_UDP:
udp = (udphdr_t *)(pkt->b_rptr + fin->fin_hlen);
l4_csum_p = &udp->uh_sum;
buf = udp;
break;
case IPPROTO_TCP:
tcp = (tcphdr_t *)(pkt->b_rptr + fin->fin_hlen);
l4_csum_p = &tcp->th_sum;
buf = tcp;
break;
case IPPROTO_ICMP:
icmp = (icmphdr_t *)(pkt->b_rptr + fin->fin_hlen);
l4_csum_p = &icmp->icmp_cksum;
buf = icmp;
break;
#ifdef USE_INET6
case IPPROTO_ICMPV6:
icmp6 = (struct icmp6_hdr *)(pkt->b_rptr + fin->fin_hlen);
l4_csum_p = &icmp6->icmp6_cksum;
buf = icmp6;
break;
#endif
default:
l4_csum_p = NULL;
}
/*
* Compute L4 chksum if needed.
*/
if (l4_csum_p != NULL) {
*l4_csum_p = (uint16_t)0;
pld_len = fin->fin_dlen;
len = pkt->b_wptr - (unsigned char *)buf;
ASSERT(len == pld_len);
/*
* Add payload sum to pseudoheader sum.
*/
sum += fr_buf_sum(buf, len);
while (sum >> 16)
sum = (sum & 0xFFFF) + (sum >> 16);
*l4_csum_p = ~((uint16_t)sum);
DTRACE_PROBE1(l4_sum, uint16_t, *l4_csum_p);
}
/*
* The IP header chksum is needed just for IPv4.
*/
if (fin->fin_v == 4) {
/*
* Compute IPv4 header chksum.
*/
ip = (ip_t *)pkt->b_rptr;
ip->ip_sum = (uint16_t)0;
ip_sum = fr_buf_sum(ip, (unsigned int)fin->fin_hlen);
while (ip_sum >> 16)
ip_sum = (ip_sum & 0xFFFF) + (ip_sum >> 16);
ip->ip_sum = ~((uint16_t)ip_sum);
DTRACE_PROBE1(l3_sum, uint16_t, ip->ip_sum);
}
return;
}
#endif /* _KERNEL && SOLARIS2 >= 10 */