/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/stropts.h>
#include <sys/strsun.h>
#include <sys/strlog.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/timod.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/cmn_err.h>
#include <sys/proc.h>
#include <sys/suntpi.h>
#include <sys/policy.h>
#include <sys/zone.h>
#include <sys/disp.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <netinet/in.h>
#include <inet/common.h>
#include <netinet/ip6.h>
#include <inet/ip.h>
#include <inet/ipclassifier.h>
#include <inet/proto_set.h>
#include <inet/nd.h>
#include <inet/optcom.h>
#include <netinet/ip_mroute.h>
#include <sys/isa_defs.h>
#include <net/route.h>
#include <inet/rts_impl.h>
#include <inet/ip_rts.h>
/*
* This is a transport provider for routing sockets. Downstream messages are
* wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry
* in the ip_ioctl_ftbl callout table to pass the routing socket data into IP.
* Upstream messages are generated for listeners of the routing socket as well
* as the message sender (unless they have turned off their end using
* SO_USELOOPBACK or shutdown(3n)). Upstream messages may also be generated
* asynchronously when:
*
* Interfaces are brought up or down.
* Addresses are assigned to interfaces.
* ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed.
* No route is found while sending a packet.
*
* Since all we do is reformat the messages between routing socket and
* ioctl forms, no synchronization is necessary in this module; all
* the dirty work is done down in ip.
*/
/* Default structure copied into T_INFO_ACK messages */
static struct T_info_ack rts_g_t_info_ack = {
T_INFO_ACK,
T_INFINITE, /* TSDU_size. Maximum size messages. */
T_INVALID, /* ETSDU_size. No expedited data. */
T_INVALID, /* CDATA_size. No connect data. */
T_INVALID, /* DDATA_size. No disconnect data. */
0, /* ADDR_size. */
0, /* OPT_size - not initialized here */
64 * 1024, /* TIDU_size. rts allows maximum size messages. */
T_COTS, /* SERV_type. rts supports connection oriented. */
TS_UNBND, /* CURRENT_state. This is set from rts_state. */
(XPG4_1) /* PROVIDER_flag */
};
/*
* Table of ND variables supported by rts. These are loaded into rts_g_nd
* in rts_open.
* All of these are alterable, within the min/max values given, at run time.
*/
static rtsparam_t lcl_param_arr[] = {
/* min max value name */
{ 4096, 65536, 8192, "rts_xmit_hiwat"},
{ 0, 65536, 1024, "rts_xmit_lowat"},
{ 4096, 65536, 8192, "rts_recv_hiwat"},
{ 65536, 1024*1024*1024, 256*1024, "rts_max_buf"},
};
#define rtss_xmit_hiwat rtss_params[0].rts_param_value
#define rtss_xmit_lowat rtss_params[1].rts_param_value
#define rtss_recv_hiwat rtss_params[2].rts_param_value
#define rtss_max_buf rtss_params[3].rts_param_value
static void rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
int sys_error);
static void rts_input(void *, mblk_t *, void *, ip_recv_attr_t *);
static void rts_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
static mblk_t *rts_ioctl_alloc(mblk_t *data);
static int rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt);
static int rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *cr);
static void rts_rsrv(queue_t *q);
static void *rts_stack_init(netstackid_t stackid, netstack_t *ns);
static void rts_stack_fini(netstackid_t stackid, void *arg);
static void rts_wput(queue_t *q, mblk_t *mp);
static void rts_wput_iocdata(queue_t *q, mblk_t *mp);
static void rts_wput_other(queue_t *q, mblk_t *mp);
static int rts_wrw(queue_t *q, struiod_t *dp);
static int rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
static conn_t *rts_open(int flag, cred_t *credp);
static int rts_stream_close(queue_t *q);
static int rts_close(sock_lower_handle_t proto_handle, int flags,
cred_t *cr);
static struct module_info rts_mod_info = {
129, "rts", 1, INFPSZ, 512, 128
};
static struct qinit rtsrinit = {
NULL, (pfi_t)rts_rsrv, rts_stream_open, rts_stream_close, NULL,
&rts_mod_info
};
static struct qinit rtswinit = {
(pfi_t)rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info,
NULL, (pfi_t)rts_wrw, NULL, STRUIOT_STANDARD
};
struct streamtab rtsinfo = {
&rtsrinit, &rtswinit
};
/*
* This routine allocates the necessary
* message blocks for IOCTL wrapping the
* user data.
*/
static mblk_t *
rts_ioctl_alloc(mblk_t *data)
{
mblk_t *mp = NULL;
mblk_t *mp1 = NULL;
ipllc_t *ipllc;
struct iocblk *ioc;
mp = allocb_tmpl(sizeof (ipllc_t), data);
if (mp == NULL)
return (NULL);
mp1 = allocb_tmpl(sizeof (struct iocblk), data);
if (mp1 == NULL) {
freeb(mp);
return (NULL);
}
ipllc = (ipllc_t *)mp->b_rptr;
ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST;
ipllc->ipllc_name_offset = 0;
ipllc->ipllc_name_length = 0;
mp->b_wptr += sizeof (ipllc_t);
mp->b_cont = data;
ioc = (struct iocblk *)mp1->b_rptr;
ioc->ioc_cmd = IP_IOCTL;
ioc->ioc_error = 0;
ioc->ioc_cr = NULL;
ioc->ioc_count = msgdsize(mp);
mp1->b_wptr += sizeof (struct iocblk);
mp1->b_datap->db_type = M_IOCTL;
mp1->b_cont = mp;
return (mp1);
}
/*
* This routine closes rts stream, by disabling
* put/srv routines and freeing the this module
* internal datastructure.
*/
static int
rts_common_close(queue_t *q, conn_t *connp)
{
ASSERT(connp != NULL && IPCL_IS_RTS(connp));
ip_rts_unregister(connp);
ip_quiesce_conn(connp);
if (!IPCL_IS_NONSTR(connp)) {
qprocsoff(q);
}
/*
* Now we are truly single threaded on this stream, and can
* delete the things hanging off the connp, and finally the connp.
* We removed this connp from the fanout list, it cannot be
* accessed thru the fanouts, and we already waited for the
* conn_ref to drop to 0. We are already in close, so
* there cannot be any other thread from the top. qprocsoff
* has completed, and service has completed or won't run in
* future.
*/
ASSERT(connp->conn_ref == 1);
if (!IPCL_IS_NONSTR(connp)) {
inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
} else {
ip_free_helper_stream(connp);
}
connp->conn_ref--;
ipcl_conn_destroy(connp);
return (0);
}
static int
rts_stream_close(queue_t *q)
{
conn_t *connp = Q_TO_CONN(q);
(void) rts_common_close(q, connp);
q->q_ptr = WR(q)->q_ptr = NULL;
return (0);
}
/*
* This is the open routine for routing socket. It allocates
* rts_t structure for the stream and tells IP that it is a routing socket.
*/
/* ARGSUSED */
static int
rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
conn_t *connp;
dev_t conn_dev;
rts_t *rts;
/* If the stream is already open, return immediately. */
if (q->q_ptr != NULL)
return (0);
if (sflag == MODOPEN)
return (EINVAL);
/*
* Since RTS is not used so heavily, allocating from the small
* arena should be sufficient.
*/
if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
return (EBUSY);
}
connp = rts_open(flag, credp);
ASSERT(connp != NULL);
*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
rts = connp->conn_rts;
rw_enter(&rts->rts_rwlock, RW_WRITER);
connp->conn_dev = conn_dev;
connp->conn_minor_arena = ip_minor_arena_sa;
q->q_ptr = connp;
WR(q)->q_ptr = connp;
connp->conn_rq = q;
connp->conn_wq = WR(q);
WR(q)->q_hiwat = connp->conn_sndbuf;
WR(q)->q_lowat = connp->conn_sndlowat;
mutex_enter(&connp->conn_lock);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
rw_exit(&rts->rts_rwlock);
/* Indicate to IP that this is a routing socket client */
ip_rts_register(connp);
qprocson(q);
return (0);
}
/* ARGSUSED */
static conn_t *
rts_open(int flag, cred_t *credp)
{
netstack_t *ns;
rts_stack_t *rtss;
rts_t *rts;
conn_t *connp;
zoneid_t zoneid;
ns = netstack_find_by_cred(credp);
ASSERT(ns != NULL);
rtss = ns->netstack_rts;
ASSERT(rtss != NULL);
/*
* For exclusive stacks we set the zoneid to zero
* to make RTS operate as if in the global zone.
*/
if (ns->netstack_stackid != GLOBAL_NETSTACKID)
zoneid = GLOBAL_ZONEID;
else
zoneid = crgetzoneid(credp);
connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns);
rts = connp->conn_rts;
/*
* ipcl_conn_create did a netstack_hold. Undo the hold that was
* done by netstack_find_by_cred()
*/
netstack_rele(ns);
rw_enter(&rts->rts_rwlock, RW_WRITER);
ASSERT(connp->conn_rts == rts);
ASSERT(rts->rts_connp == connp);
connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
connp->conn_ixa->ixa_zoneid = zoneid;
connp->conn_zoneid = zoneid;
connp->conn_flow_cntrld = B_FALSE;
rts->rts_rtss = rtss;
connp->conn_rcvbuf = rtss->rtss_recv_hiwat;
connp->conn_sndbuf = rtss->rtss_xmit_hiwat;
connp->conn_sndlowat = rtss->rtss_xmit_lowat;
connp->conn_rcvlowat = rts_mod_info.mi_lowat;
connp->conn_family = PF_ROUTE;
connp->conn_so_type = SOCK_RAW;
/* SO_PROTOTYPE is always sent down by sockfs setting conn_proto */
connp->conn_recv = rts_input;
connp->conn_recvicmp = rts_icmp_input;
crhold(credp);
connp->conn_cred = credp;
connp->conn_cpid = curproc->p_pid;
/* Cache things in ixa without an extra refhold */
ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
connp->conn_ixa->ixa_cred = connp->conn_cred;
connp->conn_ixa->ixa_cpid = connp->conn_cpid;
if (is_system_labeled())
connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
/*
* rts sockets start out as bound and connected
* For streams based sockets, socket state is set to
* SS_ISBOUND | SS_ISCONNECTED in so_strinit.
*/
rts->rts_state = TS_DATA_XFER;
rw_exit(&rts->rts_rwlock);
return (connp);
}
/*
* This routine creates a T_ERROR_ACK message and passes it upstream.
*/
static void
rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
{
if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
qreply(q, mp);
}
/*
* This routine creates a T_OK_ACK message and passes it upstream.
*/
static void
rts_ok_ack(queue_t *q, mblk_t *mp)
{
if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL)
qreply(q, mp);
}
/*
* This routine is called by rts_wput to handle T_UNBIND_REQ messages.
*/
static void
rts_tpi_unbind(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
rts_t *rts = connp->conn_rts;
/* If a bind has not been done, we can't unbind. */
if (rts->rts_state != TS_IDLE) {
rts_err_ack(q, mp, TOUTSTATE, 0);
return;
}
rts->rts_state = TS_UNBND;
rts_ok_ack(q, mp);
}
/*
* This routine is called to handle each
* O_T_BIND_REQ/T_BIND_REQ message passed to
* rts_wput. Note: This routine works with both
* O_T_BIND_REQ and T_BIND_REQ semantics.
*/
static void
rts_tpi_bind(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
rts_t *rts = connp->conn_rts;
struct T_bind_req *tbr;
if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"rts_tpi_bind: bad data, %d", rts->rts_state);
rts_err_ack(q, mp, TBADADDR, 0);
return;
}
if (rts->rts_state != TS_UNBND) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"rts_tpi_bind: bad state, %d", rts->rts_state);
rts_err_ack(q, mp, TOUTSTATE, 0);
return;
}
tbr = (struct T_bind_req *)mp->b_rptr;
if (tbr->ADDR_length != 0) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length);
rts_err_ack(q, mp, TBADADDR, 0);
return;
}
/* Generic request */
tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req);
tbr->ADDR_length = 0;
tbr->PRIM_type = T_BIND_ACK;
mp->b_datap->db_type = M_PCPROTO;
rts->rts_state = TS_IDLE;
qreply(q, mp);
}
static void
rts_copy_info(struct T_info_ack *tap, rts_t *rts)
{
*tap = rts_g_t_info_ack;
tap->CURRENT_state = rts->rts_state;
tap->OPT_size = rts_max_optsize;
}
/*
* This routine responds to T_CAPABILITY_REQ messages. It is called by
* rts_wput. Much of the T_CAPABILITY_ACK information is copied from
* rts_g_t_info_ack. The current state of the stream is copied from
* rts_state.
*/
static void
rts_capability_req(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
rts_t *rts = connp->conn_rts;
t_uscalar_t cap_bits1;
struct T_capability_ack *tcap;
cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
mp->b_datap->db_type, T_CAPABILITY_ACK);
if (mp == NULL)
return;
tcap = (struct T_capability_ack *)mp->b_rptr;
tcap->CAP_bits1 = 0;
if (cap_bits1 & TC1_INFO) {
rts_copy_info(&tcap->INFO_ack, rts);
tcap->CAP_bits1 |= TC1_INFO;
}
qreply(q, mp);
}
/*
* This routine responds to T_INFO_REQ messages. It is called by rts_wput.
* Most of the T_INFO_ACK information is copied from rts_g_t_info_ack.
* The current state of the stream is copied from rts_state.
*/
static void
rts_info_req(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
rts_t *rts = connp->conn_rts;
mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO,
T_INFO_ACK);
if (mp == NULL)
return;
rts_copy_info((struct T_info_ack *)mp->b_rptr, rts);
qreply(q, mp);
}
/*
* This routine gets default values of certain options whose default
* values are maintained by protcol specific code
*/
/* ARGSUSED */
int
rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
/* no default value processed by protocol specific code currently */
return (-1);
}
static int
rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
{
rts_t *rts = connp->conn_rts;
conn_opt_arg_t coas;
int retval;
ASSERT(RW_READ_HELD(&rts->rts_rwlock));
switch (level) {
/* do this in conn_opt_get? */
case SOL_ROUTE:
switch (name) {
case RT_AWARE:
mutex_enter(&connp->conn_lock);
*(int *)ptr = connp->conn_rtaware;
mutex_exit(&connp->conn_lock);
return (0);
}
break;
}
coas.coa_connp = connp;
coas.coa_ixa = connp->conn_ixa;
coas.coa_ipp = &connp->conn_xmit_ipp;
mutex_enter(&connp->conn_lock);
retval = conn_opt_get(&coas, level, name, ptr);
mutex_exit(&connp->conn_lock);
return (retval);
}
/* ARGSUSED */
static int
rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen,
uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr,
void *thisdg_attrs, boolean_t checkonly)
{
int *i1 = (int *)invalp;
rts_t *rts = connp->conn_rts;
rts_stack_t *rtss = rts->rts_rtss;
int error;
conn_opt_arg_t coas;
coas.coa_connp = connp;
coas.coa_ixa = connp->conn_ixa;
coas.coa_ipp = &connp->conn_xmit_ipp;
ASSERT(RW_WRITE_HELD(&rts->rts_rwlock));
/*
* For rts, we should have no ancillary data sent down
* (rts_wput doesn't handle options).
*/
ASSERT(thisdg_attrs == NULL);
/*
* For fixed length options, no sanity check
* of passed in length is done. It is assumed *_optcom_req()
* routines do the right thing.
*/
switch (level) {
case SOL_SOCKET:
switch (name) {
case SO_PROTOTYPE:
/*
* Routing socket applications that call socket() with
* a third argument can filter which messages will be
* sent upstream thanks to sockfs. so_socket() sends
* down the SO_PROTOTYPE and rts_queue_input()
* implements the filtering.
*/
if (*i1 != AF_INET && *i1 != AF_INET6) {
*outlenp = 0;
return (EPROTONOSUPPORT);
}
if (!checkonly)
connp->conn_proto = *i1;
*outlenp = inlen;
return (0);
/*
* The following two items can be manipulated,
* but changing them should do nothing.
*/
case SO_SNDBUF:
if (*i1 > rtss->rtss_max_buf) {
*outlenp = 0;
return (ENOBUFS);
}
break; /* goto sizeof (int) option return */
case SO_RCVBUF:
if (*i1 > rtss->rtss_max_buf) {
*outlenp = 0;
return (ENOBUFS);
}
break; /* goto sizeof (int) option return */
}
break;
case SOL_ROUTE:
switch (name) {
case RT_AWARE:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_rtaware = *i1;
mutex_exit(&connp->conn_lock);
}
*outlenp = inlen;
return (0);
}
break;
}
/* Serialized setsockopt since we are D_MTQPAIR */
error = conn_opt_set(&coas, level, name, inlen, invalp,
checkonly, cr);
if (error != 0) {
*outlenp = 0;
return (error);
}
/*
* Common case of return from an option that is sizeof (int)
*/
if (invalp != outvalp) {
/* don't trust bcopy for identical src/dst */
(void) bcopy(invalp, outvalp, inlen);
}
*outlenp = (t_uscalar_t)sizeof (int);
return (0);
}
static int
rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
void *thisdg_attrs, cred_t *cr)
{
boolean_t checkonly = B_FALSE;
if (optset_context) {
switch (optset_context) {
case SETFN_OPTCOM_CHECKONLY:
checkonly = B_TRUE;
/*
* Note: Implies T_CHECK semantics for T_OPTCOM_REQ
* inlen != 0 implies value supplied and
* we have to "pretend" to set it.
* inlen == 0 implies that there is no value part
* in T_CHECK request and just validation
* done elsewhere should be enough, we just return here.
*/
if (inlen == 0) {
*outlenp = 0;
return (0);
}
break;
case SETFN_OPTCOM_NEGOTIATE:
checkonly = B_FALSE;
break;
case SETFN_UD_NEGOTIATE:
case SETFN_CONN_NEGOTIATE:
checkonly = B_FALSE;
/*
* Negotiating local and "association-related" options
* through T_UNITDATA_REQ or T_CONN_{REQ,CON}
* Not allowed in this module.
*/
return (EINVAL);
default:
/*
* We should never get here
*/
*outlenp = 0;
return (EINVAL);
}
ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
(optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
}
return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp,
outvalp, cr, thisdg_attrs, checkonly));
}
/*
* This routine retrieves the current status of socket options.
* It returns the size of the option retrieved.
*/
int
rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
rts_t *rts;
int err;
rts = Q_TO_RTS(q);
rw_enter(&rts->rts_rwlock, RW_READER);
err = rts_opt_get(Q_TO_CONN(q), level, name, ptr);
rw_exit(&rts->rts_rwlock);
return (err);
}
/*
* This routine sets socket options.
*/
/*ARGSUSED*/
int
rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
uchar_t *outvalp, void *thisdg_attrs, cred_t *cr)
{
conn_t *connp = Q_TO_CONN(q);
int error;
rts_t *rts = connp->conn_rts;
rw_enter(&rts->rts_rwlock, RW_WRITER);
error = rts_opt_set(connp, optset_context, level, name, inlen, invalp,
outlenp, outvalp, thisdg_attrs, cr);
rw_exit(&rts->rts_rwlock);
return (error);
}
/*
* This routine retrieves the value of an ND variable in a rtsparam_t
* structure. It is called through nd_getset when a user reads the
* variable.
*/
/* ARGSUSED */
static int
rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
{
rtsparam_t *rtspa = (rtsparam_t *)cp;
(void) mi_mpprintf(mp, "%u", rtspa->rts_param_value);
return (0);
}
/*
* Walk through the param array specified registering each element with the
* named dispatch (ND) handler.
*/
static boolean_t
rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt)
{
for (; cnt-- > 0; rtspa++) {
if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) {
if (!nd_load(ndp, rtspa->rts_param_name,
rts_param_get, rts_param_set, (caddr_t)rtspa)) {
nd_free(ndp);
return (B_FALSE);
}
}
}
return (B_TRUE);
}
/* This routine sets an ND variable in a rtsparam_t structure. */
/* ARGSUSED */
static int
rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
{
ulong_t new_value;
rtsparam_t *rtspa = (rtsparam_t *)cp;
/*
* Fail the request if the new value does not lie within the
* required bounds.
*/
if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
new_value < rtspa->rts_param_min ||
new_value > rtspa->rts_param_max) {
return (EINVAL);
}
/* Set the new value */
rtspa->rts_param_value = new_value;
return (0);
}
/*
* Empty rsrv routine which is used by rts_input to cause a wakeup
* of a thread in qwait.
*/
/*ARGSUSED*/
static void
rts_rsrv(queue_t *q)
{
}
/*
* This routine handles synchronous messages passed downstream. It either
* consumes the message or passes it downstream; it never queues a
* a message. The data messages that go down are wrapped in an IOCTL
* message.
*
* Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that
* it can return an immediate error (such as ENETUNREACH when adding a route).
* It uses the RTS_WRW_PENDING to ensure that each rts instance has only
* one M_IOCTL outstanding at any given time.
*/
static int
rts_wrw(queue_t *q, struiod_t *dp)
{
mblk_t *mp = dp->d_mp;
mblk_t *mp1;
int error;
rt_msghdr_t *rtm;
conn_t *connp = Q_TO_CONN(q);
rts_t *rts = connp->conn_rts;
while (rts->rts_flag & RTS_WRW_PENDING) {
if (qwait_rw(q)) {
rts->rts_error = EINTR;
goto err_ret;
}
}
rts->rts_flag |= RTS_WRW_PENDING;
if (isuioq(q) && (error = struioget(q, mp, dp, 0))) {
/*
* Uio error of some sort, so just return the error.
*/
rts->rts_error = error;
goto err_ret;
}
/*
* Pass the mblk (chain) onto wput().
*/
dp->d_mp = 0;
switch (mp->b_datap->db_type) {
case M_PROTO:
case M_PCPROTO:
/* Expedite other than T_DATA_REQ to below the switch */
if (((mp->b_wptr - mp->b_rptr) !=
sizeof (struct T_data_req)) ||
(((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ))
break;
if ((mp1 = mp->b_cont) == NULL) {
rts->rts_error = EINVAL;
freemsg(mp);
goto err_ret;
}
freeb(mp);
mp = mp1;
/* FALLTHRU */
case M_DATA:
/*
* The semantics of the routing socket is such that the rtm_pid
* field is automatically filled in during requests with the
* current process' pid. We do this here (where we still have
* user context) after checking we have at least a message the
* size of a routing message header.
*/
if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
rts->rts_error = EINVAL;
freemsg(mp);
goto err_ret;
}
}
rtm = (rt_msghdr_t *)mp->b_rptr;
rtm->rtm_pid = curproc->p_pid;
break;
default:
break;
}
rts->rts_flag |= RTS_WPUT_PENDING;
rts_wput(q, mp);
while (rts->rts_flag & RTS_WPUT_PENDING)
if (qwait_rw(q)) {
/* RTS_WPUT_PENDING will be cleared below */
rts->rts_error = EINTR;
break;
}
err_ret:
rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING);
return (rts->rts_error);
}
/*
* This routine handles all messages passed downstream. It either
* consumes the message or passes it downstream; it never queues a
* a message. The data messages that go down are wrapped in an IOCTL
* message.
*/
static void
rts_wput(queue_t *q, mblk_t *mp)
{
uchar_t *rptr = mp->b_rptr;
mblk_t *mp1;
conn_t *connp = Q_TO_CONN(q);
rts_t *rts = connp->conn_rts;
switch (mp->b_datap->db_type) {
case M_DATA:
break;
case M_PROTO:
case M_PCPROTO:
if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) {
/* Expedite valid T_DATA_REQ to below the switch */
if (((union T_primitives *)rptr)->type == T_DATA_REQ) {
mp1 = mp->b_cont;
freeb(mp);
if (mp1 == NULL)
return;
mp = mp1;
break;
}
}
/* FALLTHRU */
default:
rts_wput_other(q, mp);
return;
}
ASSERT(msg_getcred(mp, NULL) != NULL);
mp1 = rts_ioctl_alloc(mp);
if (mp1 == NULL) {
ASSERT(rts != NULL);
freemsg(mp);
if (rts->rts_flag & RTS_WPUT_PENDING) {
rts->rts_error = ENOMEM;
rts->rts_flag &= ~RTS_WPUT_PENDING;
}
return;
}
ip_wput_nondata(q, mp1);
}
/*
* Handles all the control message, if it
* can not understand it, it will
* pass down stream.
*/
static void
rts_wput_other(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
rts_t *rts = connp->conn_rts;
uchar_t *rptr = mp->b_rptr;
struct iocblk *iocp;
cred_t *cr;
rts_stack_t *rtss;
rtss = rts->rts_rtss;
switch (mp->b_datap->db_type) {
case M_PROTO:
case M_PCPROTO:
if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) {
/*
* If the message does not contain a PRIM_type,
* throw it away.
*/
freemsg(mp);
return;
}
switch (((union T_primitives *)rptr)->type) {
case T_BIND_REQ:
case O_T_BIND_REQ:
rts_tpi_bind(q, mp);
return;
case T_UNBIND_REQ:
rts_tpi_unbind(q, mp);
return;
case T_CAPABILITY_REQ:
rts_capability_req(q, mp);
return;
case T_INFO_REQ:
rts_info_req(q, mp);
return;
case T_SVR4_OPTMGMT_REQ:
case T_OPTMGMT_REQ:
/*
* All Solaris components should pass a db_credp
* for this TPI message, hence we ASSERT.
* But in case there is some other M_PROTO that looks
* like a TPI message sent by some other kernel
* component, we check and return an error.
*/
cr = msg_getcred(mp, NULL);
ASSERT(cr != NULL);
if (cr == NULL) {
rts_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (((union T_primitives *)rptr)->type ==
T_SVR4_OPTMGMT_REQ) {
svr4_optcom_req(q, mp, cr, &rts_opt_obj);
} else {
tpi_optcom_req(q, mp, cr, &rts_opt_obj);
}
return;
case O_T_CONN_RES:
case T_CONN_RES:
case T_DISCON_REQ:
/* Not supported by rts. */
rts_err_ack(q, mp, TNOTSUPPORT, 0);
return;
case T_DATA_REQ:
case T_EXDATA_REQ:
case T_ORDREL_REQ:
/* Illegal for rts. */
freemsg(mp);
(void) putnextctl1(RD(q), M_ERROR, EPROTO);
return;
default:
break;
}
break;
case M_IOCTL:
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case ND_SET:
case ND_GET:
if (nd_getset(q, rtss->rtss_g_nd, mp)) {
qreply(q, mp);
return;
}
break;
case TI_GETPEERNAME:
mi_copyin(q, mp, NULL,
SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
return;
default:
break;
}
case M_IOCDATA:
rts_wput_iocdata(q, mp);
return;
default:
break;
}
ip_wput_nondata(q, mp);
}
/*
* Called by rts_wput_other to handle all M_IOCDATA messages.
*/
static void
rts_wput_iocdata(queue_t *q, mblk_t *mp)
{
struct sockaddr *rtsaddr;
mblk_t *mp1;
STRUCT_HANDLE(strbuf, sb);
struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
/* Make sure it is one of ours. */
switch (iocp->ioc_cmd) {
case TI_GETPEERNAME:
break;
default:
ip_wput_nondata(q, mp);
return;
}
switch (mi_copy_state(q, mp, &mp1)) {
case -1:
return;
case MI_COPY_CASE(MI_COPY_IN, 1):
break;
case MI_COPY_CASE(MI_COPY_OUT, 1):
/* Copy out the strbuf. */
mi_copyout(q, mp);
return;
case MI_COPY_CASE(MI_COPY_OUT, 2):
/* All done. */
mi_copy_done(q, mp, 0);
return;
default:
mi_copy_done(q, mp, EPROTO);
return;
}
STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) {
mi_copy_done(q, mp, EINVAL);
return;
}
switch (iocp->ioc_cmd) {
case TI_GETPEERNAME:
break;
default:
mi_copy_done(q, mp, EPROTO);
return;
}
mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t),
B_TRUE);
if (mp1 == NULL)
return;
STRUCT_FSET(sb, len, (int)sizeof (sin_t));
rtsaddr = (struct sockaddr *)mp1->b_rptr;
mp1->b_wptr = (uchar_t *)&rtsaddr[1];
bzero(rtsaddr, sizeof (struct sockaddr));
rtsaddr->sa_family = AF_ROUTE;
/* Copy out the address */
mi_copyout(q, mp);
}
/*
* IP passes up a NULL ira.
*/
/*ARGSUSED2*/
static void
rts_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
{
conn_t *connp = (conn_t *)arg1;
rts_t *rts = connp->conn_rts;
struct iocblk *iocp;
mblk_t *mp1;
struct T_data_ind *tdi;
int error;
switch (mp->b_datap->db_type) {
case M_IOCACK:
case M_IOCNAK:
iocp = (struct iocblk *)mp->b_rptr;
ASSERT(!IPCL_IS_NONSTR(connp));
if (rts->rts_flag & (RTS_WPUT_PENDING)) {
rts->rts_flag &= ~RTS_WPUT_PENDING;
rts->rts_error = iocp->ioc_error;
/*
* Tell rts_wvw/qwait that we are done.
* Note: there is no qwait_wakeup() we can use.
*/
qenable(connp->conn_rq);
freemsg(mp);
return;
}
break;
case M_DATA:
/*
* Prepend T_DATA_IND to prevent the stream head from
* consolidating multiple messages together.
* If the allocation fails just send up the M_DATA.
*/
mp1 = allocb(sizeof (*tdi), BPRI_MED);
if (mp1 != NULL) {
mp1->b_cont = mp;
mp = mp1;
mp->b_datap->db_type = M_PROTO;
mp->b_wptr += sizeof (*tdi);
tdi = (struct T_data_ind *)mp->b_rptr;
tdi->PRIM_type = T_DATA_IND;
tdi->MORE_flag = 0;
}
break;
default:
break;
}
if (IPCL_IS_NONSTR(connp)) {
if ((*connp->conn_upcalls->su_recv)
(connp->conn_upper_handle, mp, msgdsize(mp), 0,
&error, NULL) < 0) {
ASSERT(error == ENOSPC);
/*
* Let's confirm hoding the lock that
* we are out of recv space.
*/
mutex_enter(&rts->rts_recv_mutex);
if ((*connp->conn_upcalls->su_recv)
(connp->conn_upper_handle, NULL, 0, 0,
&error, NULL) < 0) {
ASSERT(error == ENOSPC);
connp->conn_flow_cntrld = B_TRUE;
}
mutex_exit(&rts->rts_recv_mutex);
}
} else {
putnext(connp->conn_rq, mp);
}
}
/*ARGSUSED*/
static void
rts_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
{
freemsg(mp);
}
void
rts_ddi_g_init(void)
{
rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr,
rts_opt_obj.odb_opt_arr_cnt);
/*
* We want to be informed each time a stack is created or
* destroyed in the kernel, so we can maintain the
* set of rts_stack_t's.
*/
netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini);
}
void
rts_ddi_g_destroy(void)
{
netstack_unregister(NS_RTS);
}
#define INET_NAME "ip"
/*
* Initialize the RTS stack instance.
*/
/* ARGSUSED */
static void *
rts_stack_init(netstackid_t stackid, netstack_t *ns)
{
rts_stack_t *rtss;
rtsparam_t *pa;
int error = 0;
major_t major;
rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP);
rtss->rtss_netstack = ns;
pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
rtss->rtss_params = pa;
bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr));
(void) rts_param_register(&rtss->rtss_g_nd,
rtss->rtss_params, A_CNT(lcl_param_arr));
major = mod_name_to_major(INET_NAME);
error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident);
ASSERT(error == 0);
return (rtss);
}
/*
* Free the RTS stack instance.
*/
/* ARGSUSED */
static void
rts_stack_fini(netstackid_t stackid, void *arg)
{
rts_stack_t *rtss = (rts_stack_t *)arg;
nd_free(&rtss->rtss_g_nd);
kmem_free(rtss->rtss_params, sizeof (lcl_param_arr));
rtss->rtss_params = NULL;
ldi_ident_release(rtss->rtss_ldi_ident);
kmem_free(rtss, sizeof (*rtss));
}
/* ARGSUSED */
int
rts_accept(sock_lower_handle_t lproto_handle,
sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
cred_t *cr)
{
return (EINVAL);
}
/* ARGSUSED */
static int
rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
socklen_t len, cred_t *cr)
{
/*
* rebind not allowed
*/
return (EINVAL);
}
/* ARGSUSED */
int
rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
{
return (EINVAL);
}
/* ARGSUSED */
int
rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
socklen_t len, sock_connid_t *id, cred_t *cr)
{
/*
* rts sockets start out as bound and connected
*/
*id = 0;
return (EISCONN);
}
/* ARGSUSED */
int
rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
socklen_t *addrlen, cred_t *cr)
{
bzero(addr, sizeof (struct sockaddr));
addr->sa_family = AF_ROUTE;
*addrlen = sizeof (struct sockaddr);
return (0);
}
/* ARGSUSED */
int
rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
socklen_t *addrlen, cred_t *cr)
{
bzero(addr, sizeof (struct sockaddr));
addr->sa_family = AF_ROUTE;
*addrlen = sizeof (struct sockaddr);
return (0);
}
static int
rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
void *optvalp, socklen_t *optlen, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
rts_t *rts = connp->conn_rts;
int error;
t_uscalar_t max_optbuf_len;
void *optvalp_buf;
int len;
error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
rts_opt_obj.odb_opt_des_arr,
rts_opt_obj.odb_opt_arr_cnt,
B_FALSE, B_TRUE, cr);
if (error != 0) {
if (error < 0)
error = proto_tlitosyserr(-error);
return (error);
}
optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
rw_enter(&rts->rts_rwlock, RW_READER);
len = rts_opt_get(connp, level, option_name, optvalp_buf);
rw_exit(&rts->rts_rwlock);
if (len == -1) {
kmem_free(optvalp_buf, max_optbuf_len);
return (EINVAL);
}
/*
* update optlen and copy option value
*/
t_uscalar_t size = MIN(len, *optlen);
bcopy(optvalp_buf, optvalp, size);
bcopy(&size, optlen, sizeof (size));
kmem_free(optvalp_buf, max_optbuf_len);
return (0);
}
static int
rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
const void *optvalp, socklen_t optlen, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
rts_t *rts = connp->conn_rts;
int error;
error = proto_opt_check(level, option_name, optlen, NULL,
rts_opt_obj.odb_opt_des_arr,
rts_opt_obj.odb_opt_arr_cnt,
B_TRUE, B_FALSE, cr);
if (error != 0) {
if (error < 0)
error = proto_tlitosyserr(-error);
return (error);
}
rw_enter(&rts->rts_rwlock, RW_WRITER);
error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
NULL, cr);
rw_exit(&rts->rts_rwlock);
ASSERT(error >= 0);
return (error);
}
/* ARGSUSED */
static int
rts_send(sock_lower_handle_t proto_handle, mblk_t *mp,
struct nmsghdr *msg, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
rt_msghdr_t *rtm;
int error;
ASSERT(DB_TYPE(mp) == M_DATA);
/*
* The semantics of the routing socket is such that the rtm_pid
* field is automatically filled in during requests with the
* current process' pid. We do this here (where we still have
* user context) after checking we have at least a message the
* size of a routing message header.
*/
if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
freemsg(mp);
return (EINVAL);
}
}
rtm = (rt_msghdr_t *)mp->b_rptr;
rtm->rtm_pid = curproc->p_pid;
/*
* We are not constrained by the ioctl interface and
* ip_rts_request_common processing requests synchronously hence
* we can send them down concurrently.
*/
error = ip_rts_request_common(mp, connp, cr);
return (error);
}
/* ARGSUSED */
sock_lower_handle_t
rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
uint_t *smodep, int *errorp, int flags, cred_t *credp)
{
conn_t *connp;
if (family != AF_ROUTE || type != SOCK_RAW ||
(proto != 0 && proto != AF_INET && proto != AF_INET6)) {
*errorp = EPROTONOSUPPORT;
return (NULL);
}
connp = rts_open(flags, credp);
ASSERT(connp != NULL);
connp->conn_flags |= IPCL_NONSTR;
connp->conn_proto = proto;
mutex_enter(&connp->conn_lock);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
*errorp = 0;
*smodep = SM_ATOMIC;
*sock_downcalls = &sock_rts_downcalls;
return ((sock_lower_handle_t)connp);
}
/* ARGSUSED */
void
rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
struct sock_proto_props sopp;
connp->conn_upcalls = sock_upcalls;
connp->conn_upper_handle = sock_handle;
sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ;
sopp.sopp_wroff = 0;
sopp.sopp_rxhiwat = connp->conn_rcvbuf;
sopp.sopp_rxlowat = connp->conn_rcvlowat;
sopp.sopp_maxblk = INFPSZ;
sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz;
sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 :
rts_mod_info.mi_minpsz;
(*connp->conn_upcalls->su_set_proto_props)
(connp->conn_upper_handle, &sopp);
/*
* We treat it as already connected for routing socket.
*/
(*connp->conn_upcalls->su_connected)
(connp->conn_upper_handle, 0, NULL, -1);
/* Indicate to IP that this is a routing socket client */
ip_rts_register(connp);
}
/* ARGSUSED */
int
rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
ASSERT(connp != NULL && IPCL_IS_RTS(connp));
return (rts_common_close(NULL, connp));
}
/* ARGSUSED */
int
rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
/* shut down the send side */
if (how != SHUT_RD)
(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
SOCK_OPCTL_SHUT_SEND, 0);
/* shut down the recv side */
if (how != SHUT_WR)
(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
SOCK_OPCTL_SHUT_RECV, 0);
return (0);
}
void
rts_clr_flowctrl(sock_lower_handle_t proto_handle)
{
conn_t *connp = (conn_t *)proto_handle;
rts_t *rts = connp->conn_rts;
mutex_enter(&rts->rts_recv_mutex);
connp->conn_flow_cntrld = B_FALSE;
mutex_exit(&rts->rts_recv_mutex);
}
int
rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
int mode, int32_t *rvalp, cred_t *cr)
{
conn_t *connp = (conn_t *)proto_handle;
int error;
/*
* If we don't have a helper stream then create one.
* ip_create_helper_stream takes care of locking the conn_t,
* so this check for NULL is just a performance optimization.
*/
if (connp->conn_helper_info == NULL) {
rts_stack_t *rtss = connp->conn_rts->rts_rtss;
ASSERT(rtss->rtss_ldi_ident != NULL);
/*
* Create a helper stream for non-STREAMS socket.
*/
error = ip_create_helper_stream(connp, rtss->rtss_ldi_ident);
if (error != 0) {
ip0dbg(("rts_ioctl: create of IP helper stream "
"failed %d\n", error));
return (error);
}
}
switch (cmd) {
case ND_SET:
case ND_GET:
case TI_GETPEERNAME:
case TI_GETMYNAME:
#ifdef DEUG
cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams"
" socket", cmd);
#endif
error = EINVAL;
break;
default:
/*
* Pass on to IP using helper stream
*/
error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
cmd, arg, mode, cr, rvalp);
break;
}
return (error);
}
sock_downcalls_t sock_rts_downcalls = {
rts_activate,
rts_accept,
rts_bind,
rts_listen,
rts_connect,
rts_getpeername,
rts_getsockname,
rts_getsockopt,
rts_setsockopt,
rts_send,
NULL,
NULL,
NULL,
rts_shutdown,
rts_clr_flowctrl,
rts_ioctl,
rts_close
};