ip.c revision 8810c16b934a2ad4f27aa86f95b0e8cec1c6ea46
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1990 Mentat Inc. */
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/dlpi.h>
#include <sys/stropts.h>
#include <sys/sysmacros.h>
#include <sys/strsubr.h>
#include <sys/strlog.h>
#include <sys/strsun.h>
#include <sys/zone.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/xti_inet.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/kobj.h>
#include <sys/modctl.h>
#include <sys/atomic.h>
#include <sys/policy.h>
#include <sys/priv.h>
#include <sys/systm.h>
#include <sys/param.h>
#include <sys/kmem.h>
#include <sys/sdt.h>
#include <sys/socket.h>
#include <sys/vtrace.h>
#include <sys/isa_defs.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/route.h>
#include <sys/sockio.h>
#include <netinet/in.h>
#include <net/if_dl.h>
#include <inet/common.h>
#include <inet/mi.h>
#include <inet/mib2.h>
#include <inet/nd.h>
#include <inet/arp.h>
#include <inet/snmpcom.h>
#include <inet/kstatcom.h>
#include <netinet/igmp_var.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet/sctp.h>
#include <inet/ip.h>
#include <inet/ip_impl.h>
#include <inet/ip6.h>
#include <inet/ip6_asp.h>
#include <inet/tcp.h>
#include <inet/tcp_impl.h>
#include <inet/ip_multi.h>
#include <inet/ip_if.h>
#include <inet/ip_ire.h>
#include <inet/ip_ftable.h>
#include <inet/ip_rts.h>
#include <inet/optcom.h>
#include <inet/ip_ndp.h>
#include <inet/ip_listutils.h>
#include <netinet/igmp.h>
#include <netinet/ip_mroute.h>
#include <inet/ipp_common.h>
#include <net/pfkeyv2.h>
#include <inet/ipsec_info.h>
#include <inet/sadb.h>
#include <inet/ipsec_impl.h>
#include <sys/iphada.h>
#include <inet/tun.h>
#include <inet/ipdrop.h>
#include <inet/ip_netinfo.h>
#include <sys/ethernet.h>
#include <net/if_types.h>
#include <sys/cpuvar.h>
#include <ipp/ipp.h>
#include <ipp/ipp_impl.h>
#include <ipp/ipgpc/ipgpc.h>
#include <sys/multidata.h>
#include <sys/pattr.h>
#include <inet/ipclassifier.h>
#include <inet/sctp_ip.h>
#include <inet/sctp/sctp_impl.h>
#include <inet/udp_impl.h>
#include <sys/sunddi.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tnet.h>
#include <rpc/pmap_prot.h>
/*
* Values for squeue switch:
* IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain
* IP_SQUEUE_ENTER: squeue_enter
* IP_SQUEUE_FILL: squeue_fill
*/
int ip_squeue_enter = 2;
squeue_func_t ip_input_proc;
/*
* IP statistics.
*/
#define IP_STAT(x) (ip_statistics.x.value.ui64++)
#define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n))
#define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x))
typedef struct ip_stat {
kstat_named_t ipsec_fanout_proto;
kstat_named_t ip_udp_fannorm;
kstat_named_t ip_udp_fanmb;
kstat_named_t ip_udp_fanothers;
kstat_named_t ip_udp_fast_path;
kstat_named_t ip_udp_slow_path;
kstat_named_t ip_udp_input_err;
kstat_named_t ip_tcppullup;
kstat_named_t ip_tcpoptions;
kstat_named_t ip_multipkttcp;
kstat_named_t ip_tcp_fast_path;
kstat_named_t ip_tcp_slow_path;
kstat_named_t ip_tcp_input_error;
kstat_named_t ip_db_ref;
kstat_named_t ip_notaligned1;
kstat_named_t ip_notaligned2;
kstat_named_t ip_multimblk3;
kstat_named_t ip_multimblk4;
kstat_named_t ip_ipoptions;
kstat_named_t ip_classify_fail;
kstat_named_t ip_opt;
kstat_named_t ip_udp_rput_local;
kstat_named_t ipsec_proto_ahesp;
kstat_named_t ip_conn_flputbq;
kstat_named_t ip_conn_walk_drain;
kstat_named_t ip_out_sw_cksum;
kstat_named_t ip_in_sw_cksum;
kstat_named_t ip_trash_ire_reclaim_calls;
kstat_named_t ip_trash_ire_reclaim_success;
kstat_named_t ip_ire_arp_timer_expired;
kstat_named_t ip_ire_redirect_timer_expired;
kstat_named_t ip_ire_pmtu_timer_expired;
kstat_named_t ip_input_multi_squeue;
kstat_named_t ip_tcp_in_full_hw_cksum_err;
kstat_named_t ip_tcp_in_part_hw_cksum_err;
kstat_named_t ip_tcp_in_sw_cksum_err;
kstat_named_t ip_tcp_out_sw_cksum_bytes;
kstat_named_t ip_udp_in_full_hw_cksum_err;
kstat_named_t ip_udp_in_part_hw_cksum_err;
kstat_named_t ip_udp_in_sw_cksum_err;
kstat_named_t ip_udp_out_sw_cksum_bytes;
kstat_named_t ip_frag_mdt_pkt_out;
kstat_named_t ip_frag_mdt_discarded;
kstat_named_t ip_frag_mdt_allocfail;
kstat_named_t ip_frag_mdt_addpdescfail;
kstat_named_t ip_frag_mdt_allocd;
} ip_stat_t;
static ip_stat_t ip_statistics = {
{ "ipsec_fanout_proto", KSTAT_DATA_UINT64 },
{ "ip_udp_fannorm", KSTAT_DATA_UINT64 },
{ "ip_udp_fanmb", KSTAT_DATA_UINT64 },
{ "ip_udp_fanothers", KSTAT_DATA_UINT64 },
{ "ip_udp_fast_path", KSTAT_DATA_UINT64 },
{ "ip_udp_slow_path", KSTAT_DATA_UINT64 },
{ "ip_udp_input_err", KSTAT_DATA_UINT64 },
{ "ip_tcppullup", KSTAT_DATA_UINT64 },
{ "ip_tcpoptions", KSTAT_DATA_UINT64 },
{ "ip_multipkttcp", KSTAT_DATA_UINT64 },
{ "ip_tcp_fast_path", KSTAT_DATA_UINT64 },
{ "ip_tcp_slow_path", KSTAT_DATA_UINT64 },
{ "ip_tcp_input_error", KSTAT_DATA_UINT64 },
{ "ip_db_ref", KSTAT_DATA_UINT64 },
{ "ip_notaligned1", KSTAT_DATA_UINT64 },
{ "ip_notaligned2", KSTAT_DATA_UINT64 },
{ "ip_multimblk3", KSTAT_DATA_UINT64 },
{ "ip_multimblk4", KSTAT_DATA_UINT64 },
{ "ip_ipoptions", KSTAT_DATA_UINT64 },
{ "ip_classify_fail", KSTAT_DATA_UINT64 },
{ "ip_opt", KSTAT_DATA_UINT64 },
{ "ip_udp_rput_local", KSTAT_DATA_UINT64 },
{ "ipsec_proto_ahesp", KSTAT_DATA_UINT64 },
{ "ip_conn_flputbq", KSTAT_DATA_UINT64 },
{ "ip_conn_walk_drain", KSTAT_DATA_UINT64 },
{ "ip_out_sw_cksum", KSTAT_DATA_UINT64 },
{ "ip_in_sw_cksum", KSTAT_DATA_UINT64 },
{ "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 },
{ "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 },
{ "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 },
{ "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 },
{ "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 },
{ "ip_input_multi_squeue", KSTAT_DATA_UINT64 },
{ "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 },
{ "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 },
{ "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 },
{ "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 },
{ "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 },
{ "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 },
{ "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 },
};
static kstat_t *ip_kstat;
#define TCP6 "tcp6"
#define TCP "tcp"
#define SCTP "sctp"
#define SCTP6 "sctp6"
major_t TCP6_MAJ;
major_t TCP_MAJ;
major_t SCTP_MAJ;
major_t SCTP6_MAJ;
int ip_poll_normal_ms = 100;
int ip_poll_normal_ticks = 0;
/*
* Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
*/
struct listptr_s {
mblk_t *lp_head; /* pointer to the head of the list */
mblk_t *lp_tail; /* pointer to the tail of the list */
};
typedef struct listptr_s listptr_t;
/*
* This is used by ip_snmp_get_mib2_ip_route_media and
* ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
*/
typedef struct iproutedata_s {
uint_t ird_idx;
listptr_t ird_route; /* ipRouteEntryTable */
listptr_t ird_netmedia; /* ipNetToMediaEntryTable */
listptr_t ird_attrs; /* ipRouteAttributeTable */
} iproutedata_t;
/*
* Cluster specific hooks. These should be NULL when booted as a non-cluster
*/
/*
* Hook functions to enable cluster networking
* On non-clustered systems these vectors must always be NULL.
*
* Hook function to Check ip specified ip address is a shared ip address
* in the cluster
*
*/
int (*cl_inet_isclusterwide)(uint8_t protocol,
sa_family_t addr_family, uint8_t *laddrp) = NULL;
/*
* Hook function to generate cluster wide ip fragment identifier
*/
uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
uint8_t *laddrp, uint8_t *faddrp) = NULL;
/*
* Synchronization notes:
*
* IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
* MT level protection given by STREAMS. IP uses a combination of its own
* internal serialization mechanism and standard Solaris locking techniques.
* The internal serialization is per phyint (no IPMP) or per IPMP group.
* This is used to serialize plumbing operations, IPMP operations, certain
* multicast operations, most set ioctls, igmp/mld timers etc.
*
* Plumbing is a long sequence of operations involving message
* exchanges between IP, ARP and device drivers. Many set ioctls are typically
* involved in plumbing operations. A natural model is to serialize these
* ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
* parallel without any interference. But various set ioctls on hme0 are best
* serialized. However if the system uses IPMP, the operations are easier if
* they are serialized on a per IPMP group basis since IPMP operations
* happen across ill's of a group. Thus the lowest common denominator is to
* serialize most set ioctls, multicast join/leave operations, IPMP operations
* igmp/mld timer operations, and processing of DLPI control messages received
* from drivers on a per IPMP group basis. If the system does not employ
* IPMP the serialization is on a per phyint basis. This serialization is
* provided by the ipsq_t and primitives operating on this. Details can
* be found in ip_if.c above the core primitives operating on ipsq_t.
*
* Lookups of an ipif or ill by a thread return a refheld ipif / ill.
* Simiarly lookup of an ire by a thread also returns a refheld ire.
* In addition ipif's and ill's referenced by the ire are also indirectly
* refheld. Thus no ipif or ill can vanish nor can critical parameters like
* the ipif's address or netmask change as long as an ipif is refheld
* directly or indirectly. For example an SIOCLIFADDR ioctl that changes the
* address of an ipif has to go through the ipsq_t. This ensures that only
* 1 such exclusive operation proceeds at any time on the ipif. It then
* deletes all ires associated with this ipif, and waits for all refcnts
* associated with this ipif to come down to zero. The address is changed
* only after the ipif has been quiesced. Then the ipif is brought up again.
* More details are described above the comment in ip_sioctl_flags.
*
* Packet processing is based mostly on IREs and are fully multi-threaded
* using standard Solaris MT techniques.
*
* There are explicit locks in IP to handle:
* - The ip_g_head list maintained by mi_open_link() and friends.
*
* - The reassembly data structures (one lock per hash bucket)
*
* - conn_lock is meant to protect conn_t fields. The fields actually
* protected by conn_lock are documented in the conn_t definition.
*
* - ire_lock to protect some of the fields of the ire, IRE tables
* (one lock per hash bucket). Refer to ip_ire.c for details.
*
* - ndp_g_lock and nce_lock for protecting NCEs.
*
* - ill_lock protects fields of the ill and ipif. Details in ip.h
*
* - ill_g_lock: This is a global reader/writer lock. Protects the following
* * The AVL tree based global multi list of all ills.
* * The linked list of all ipifs of an ill
* * The <ill-ipsq> mapping
* * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next
* * The illgroup list threaded by ill_group_next.
* * <ill-phyint> association
* Insertion/deletion of an ill in the system, insertion/deletion of an ipif
* into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion
* of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill
* will all have to hold the ill_g_lock as writer for the actual duration
* of the insertion/deletion/change. More details about the <ill-ipsq> mapping
* may be found in the IPMP section.
*
* - ill_lock: This is a per ill mutex.
* It protects some members of the ill and is documented below.
* It also protects the <ill-ipsq> mapping
* It also protects the illgroup list threaded by ill_group_next.
* It also protects the <ill-phyint> assoc.
* It also protects the list of ipifs hanging off the ill.
*
* - ipsq_lock: This is a per ipsq_t mutex lock.
* This protects all the other members of the ipsq struct except
* ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock
*
* - illgrp_lock: This is a per ill_group mutex lock.
* The only thing it protects is the illgrp_ill_schednext member of ill_group
* which dictates which is the next ill in an ill_group that is to be chosen
* for sending outgoing packets, through creation of an IRE_CACHE that
* references this ill.
*
* - phyint_lock: This is a per phyint mutex lock. Protects just the
* phyint_flags
*
* - ip_g_nd_lock: This is a global reader/writer lock.
* Any call to nd_load to load a new parameter to the ND table must hold the
* lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock
* as reader.
*
* - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
* This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
* uniqueness check also done atomically.
*
* - ipsec_capab_ills_lock: This readers/writer lock protects the global
* lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken
* as a writer when adding or deleting elements from these lists, and
* as a reader when walking these lists to send a SADB update to the
* IPsec capable ills.
*
* - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
* group list linked by ill_usesrc_grp_next. It also protects the
* ill_usesrc_ifindex field. It is taken as a writer when a member of the
* group is being added or deleted. This lock is taken as a reader when
* walking the list/group(eg: to get the number of members in a usesrc group).
* Note, it is only necessary to take this lock if the ill_usesrc_grp_next
* field is changing state i.e from NULL to non-NULL or vice-versa. For
* example, it is not necessary to take this lock in the initial portion
* of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and
* ip_sioctl_flags since the these operations are executed exclusively and
* that ensures that the "usesrc group state" cannot change. The "usesrc
* group state" change can happen only in the latter part of
* ip_sioctl_slifusesrc and in ill_delete.
*
* Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications.
*
* To change the <ill-phyint> association, the ill_g_lock must be held
* as writer, and the ill_locks of both the v4 and v6 instance of the ill
* must be held.
*
* To change the <ill-ipsq> association the ill_g_lock must be held as writer
* and the ill_lock of the ill in question must be held.
*
* To change the <ill-illgroup> association the ill_g_lock must be held as
* writer and the ill_lock of the ill in question must be held.
*
* To add or delete an ipif from the list of ipifs hanging off the ill,
* ill_g_lock (writer) and ill_lock must be held and the thread must be
* a writer on the associated ipsq,.
*
* To add or delete an ill to the system, the ill_g_lock must be held as
* writer and the thread must be a writer on the associated ipsq.
*
* To add or delete an ilm to an ill, the ill_lock must be held and the thread
* must be a writer on the associated ipsq.
*
* Lock hierarchy
*
* Some lock hierarchy scenarios are listed below.
*
* ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
* ill_g_lock -> illgrp_lock -> ill_lock
* ill_g_lock -> ill_lock(s) -> phyint_lock
* ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock
* ill_g_lock -> ip_addr_avail_lock
* conn_lock -> irb_lock -> ill_lock -> ire_lock
* ill_g_lock -> ip_g_nd_lock
*
* When more than 1 ill lock is needed to be held, all ill lock addresses
* are sorted on address and locked starting from highest addressed lock
* downward.
*
* Mobile-IP scenarios
*
* irb_lock -> ill_lock -> ire_mrtun_lock
* irb_lock -> ill_lock -> ire_srcif_table_lock
*
* IPsec scenarios
*
* ipsa_lock -> ill_g_lock -> ill_lock
* ipsec_capab_ills_lock -> ill_g_lock -> ill_lock
* ipsec_capab_ills_lock -> ipsa_lock
* ill_g_usesrc_lock -> ill_g_lock -> ill_lock
*
* Trusted Solaris scenarios
*
* igsa_lock -> gcgrp_rwlock -> gcgrp_lock
* igsa_lock -> gcdb_lock
* gcgrp_rwlock -> ire_lock
* gcgrp_rwlock -> gcdb_lock
*
*
* Routing/forwarding table locking notes:
*
* Lock acquisition order: Radix tree lock, irb_lock.
* Requirements:
* i. Walker must not hold any locks during the walker callback.
* ii Walker must not see a truncated tree during the walk because of any node
* deletion.
* iii Existing code assumes ire_bucket is valid if it is non-null and is used
* in many places in the code to walk the irb list. Thus even if all the
* ires in a bucket have been deleted, we still can't free the radix node
* until the ires have actually been inactive'd (freed).
*
* Tree traversal - Need to hold the global tree lock in read mode.
* Before dropping the global tree lock, need to either increment the ire_refcnt
* to ensure that the radix node can't be deleted.
*
* Tree add - Need to hold the global tree lock in write mode to add a
* radix node. To prevent the node from being deleted, increment the
* irb_refcnt, after the node is added to the tree. The ire itself is
* added later while holding the irb_lock, but not the tree lock.
*
* Tree delete - Need to hold the global tree lock and irb_lock in write mode.
* All associated ires must be inactive (i.e. freed), and irb_refcnt
* must be zero.
*
* Walker - Increment irb_refcnt before calling the walker callback. Hold the
* global tree lock (read mode) for traversal.
*
* IPSEC notes :
*
* IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message
* in front of the actual packet. For outbound datagrams, the M_CTL
* contains a ipsec_out_t (defined in ipsec_info.h), which has the
* information used by the IPSEC code for applying the right level of
* protection. The information initialized by IP in the ipsec_out_t
* is determined by the per-socket policy or global policy in the system.
* For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in
* ipsec_info.h) which starts out with nothing in it. It gets filled
* with the right information if it goes through the AH/ESP code, which
* happens if the incoming packet is secure. The information initialized
* by AH/ESP, is later used by IP(during fanouts to ULP) to see whether
* the policy requirements needed by per-socket policy or global policy
* is met or not.
*
* If there is both per-socket policy (set using setsockopt) and there
* is also global policy match for the 5 tuples of the socket,
* ipsec_override_policy() makes the decision of which one to use.
*
* For fully connected sockets i.e dst, src [addr, port] is known,
* conn_policy_cached is set indicating that policy has been cached.
* conn_in_enforce_policy may or may not be set depending on whether
* there is a global policy match or per-socket policy match.
* Policy inheriting happpens in ip_bind during the ipa_conn_t bind.
* Once the right policy is set on the conn_t, policy cannot change for
* this socket. This makes life simpler for TCP (UDP ?) where
* re-transmissions go out with the same policy. For symmetry, policy
* is cached for fully connected UDP sockets also. Thus if policy is cached,
* it also implies that policy is latched i.e policy cannot change
* on these sockets. As we have the right policy on the conn, we don't
* have to lookup global policy for every outbound and inbound datagram
* and thus serving as an optimization. Note that a global policy change
* does not affect fully connected sockets if they have policy. If fully
* connected sockets did not have any policy associated with it, global
* policy change may affect them.
*
* IP Flow control notes:
*
* Non-TCP streams are flow controlled by IP. On the send side, if the packet
* cannot be sent down to the driver by IP, because of a canput failure, IP
* does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq.
* ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained
* when the flowcontrol condition subsides. Ultimately STREAMS backenables the
* ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the
* first conn in the list of conn's to be drained. ip_wsrv on this conn drains
* the queued messages, and removes the conn from the drain list, if all
* messages were drained. It also qenables the next conn in the drain list to
* continue the drain process.
*
* In reality the drain list is not a single list, but a configurable number
* of lists. The ip_wsrv on the IP module, qenables the first conn in each
* list. If the ip_wsrv of the next qenabled conn does not run, because the
* stream closes, ip_close takes responsibility to qenable the next conn in
* the drain list. The directly called ip_wput path always does a putq, if
* it cannot putnext. Thus synchronization problems are handled between
* ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only
* functions that manipulate this drain list. Furthermore conn_drain_insert
* is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv
* running on a queue at any time. conn_drain_tail can be simultaneously called
* from both ip_wsrv and ip_close.
*
* IPQOS notes:
*
* IPQoS Policies are applied to packets using IPPF (IP Policy framework)
* and IPQoS modules. IPPF includes hooks in IP at different control points
* (callout positions) which direct packets to IPQoS modules for policy
* processing. Policies, if present, are global.
*
* The callout positions are located in the following paths:
* o local_in (packets destined for this host)
* o local_out (packets orginating from this host )
* o fwd_in (packets forwarded by this m/c - inbound)
* o fwd_out (packets forwarded by this m/c - outbound)
* Hooks at these callout points can be enabled/disabled using the ndd variable
* ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
* By default all the callout positions are enabled.
*
* Outbound (local_out)
* Hooks are placed in ip_wput_ire and ipsec_out_process.
*
* Inbound (local_in)
* Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and
* TCP and UDP fanout routines.
*
* Forwarding (in and out)
* Hooks are placed in ip_rput_forward and ip_mrtun_forward.
*
* IP Policy Framework processing (IPPF processing)
* Policy processing for a packet is initiated by ip_process, which ascertains
* that the classifier (ipgpc) is loaded and configured, failing which the
* packet resumes normal processing in IP. If the clasifier is present, the
* packet is acted upon by one or more IPQoS modules (action instances), per
* filters configured in ipgpc and resumes normal IP processing thereafter.
* An action instance can drop a packet in course of its processing.
*
* A boolean variable, ip_policy, is used in all the fanout routines that can
* invoke ip_process for a packet. This variable indicates if the packet should
* to be sent for policy processing. The variable is set to B_TRUE by default,
* i.e. when the routines are invoked in the normal ip procesing path for a
* packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout;
* ip_policy is set to B_FALSE for all the routines called in these two
* functions because, in the former case, we don't process loopback traffic
* currently while in the latter, the packets have already been processed in
* icmp_inbound.
*
* Zones notes:
*
* The partitioning rules for networking are as follows:
* 1) Packets coming from a zone must have a source address belonging to that
* zone.
* 2) Packets coming from a zone can only be sent on a physical interface on
* which the zone has an IP address.
* 3) Between two zones on the same machine, packet delivery is only allowed if
* there's a matching route for the destination and zone in the forwarding
* table.
* 4) The TCP and UDP port spaces are per-zone; that is, two processes in
* different zones can bind to the same port with the wildcard address
* (INADDR_ANY).
*
* The granularity of interface partitioning is at the logical interface level.
* Therefore, every zone has its own IP addresses, and incoming packets can be
* attributed to a zone unambiguously. A logical interface is placed into a zone
* using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
* structure. Rule (1) is implemented by modifying the source address selection
* algorithm so that the list of eligible addresses is filtered based on the
* sending process zone.
*
* The Internet Routing Entries (IREs) are either exclusive to a zone or shared
* across all zones, depending on their type. Here is the break-up:
*
* IRE type Shared/exclusive
* -------- ----------------
* IRE_BROADCAST Exclusive
* IRE_DEFAULT (default routes) Shared (*)
* IRE_LOCAL Exclusive (x)
* IRE_LOOPBACK Exclusive
* IRE_PREFIX (net routes) Shared (*)
* IRE_CACHE Exclusive
* IRE_IF_NORESOLVER (interface routes) Exclusive
* IRE_IF_RESOLVER (interface routes) Exclusive
* IRE_HOST (host routes) Shared (*)
*
* (*) A zone can only use a default or off-subnet route if the gateway is
* directly reachable from the zone, that is, if the gateway's address matches
* one of the zone's logical interfaces.
*
* (x) IRE_LOCAL are handled a bit differently, since for all other entries
* in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source
* when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP
* address of the zone itself (the destination). Since IRE_LOCAL is used
* for communication between zones, ip_wput_ire has special logic to set
* the right source address when sending using an IRE_LOCAL.
*
* Furthermore, when ip_restrict_interzone_loopback is set (the default),
* ire_cache_lookup restricts loopback using an IRE_LOCAL
* between zone to the case when L2 would have conceptually looped the packet
* back, i.e. the loopback which is required since neither Ethernet drivers
* nor Ethernet hardware loops them back. This is the case when the normal
* routes (ignoring IREs with different zoneids) would send out the packet on
* the same ill (or ill group) as the ill with which is IRE_LOCAL is
* associated.
*
* Multiple zones can share a common broadcast address; typically all zones
* share the 255.255.255.255 address. Incoming as well as locally originated
* broadcast packets must be dispatched to all the zones on the broadcast
* network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
* since some zones may not be on the 10.16.72/24 network. To handle this, each
* zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
* sent to every zone that has an IRE_BROADCAST entry for the destination
* address on the input ill, see conn_wantpacket().
*
* Applications in different zones can join the same multicast group address.
* For IPv4, group memberships are per-logical interface, so they're already
* inherently part of a zone. For IPv6, group memberships are per-physical
* interface, so we distinguish IPv6 group memberships based on group address,
* interface and zoneid. In both cases, received multicast packets are sent to
* every zone for which a group membership entry exists. On IPv6 we need to
* check that the target zone still has an address on the receiving physical
* interface; it could have been removed since the application issued the
* IPV6_JOIN_GROUP.
*/
/*
* Squeue Fanout flags:
* 0: No fanout.
* 1: Fanout across all squeues
*/
boolean_t ip_squeue_fanout = 0;
/*
* Maximum dups allowed per packet.
*/
uint_t ip_max_frag_dups = 10;
#define IS_SIMPLE_IPH(ipha) \
((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION)
/* RFC1122 Conformance */
#define IP_FORWARD_DEFAULT IP_FORWARD_NEVER
#define ILL_MAX_NAMELEN LIFNAMSIZ
static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *);
static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t);
static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *);
static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t);
static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int,
uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t);
static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp);
static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t,
mblk_t *, int);
static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *,
icmph_t *, ipha_t *, int, int, boolean_t, boolean_t,
ill_t *, zoneid_t);
static void icmp_options_update(ipha_t *);
static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t);
static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t,
zoneid_t zoneid);
static mblk_t *icmp_pkt_err_ok(mblk_t *);
static void icmp_redirect(mblk_t *);
static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t);
static void ip_arp_news(queue_t *, mblk_t *);
static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *);
mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
char *ip_dot_addr(ipaddr_t, char *);
mblk_t *ip_carve_mp(mblk_t **, ssize_t);
int ip_close(queue_t *, int);
static char *ip_dot_saddr(uchar_t *, char *);
static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t,
boolean_t, boolean_t, ill_t *, zoneid_t);
static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t,
boolean_t, boolean_t, zoneid_t);
static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t,
boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t);
static void ip_lrput(queue_t *, mblk_t *);
ipaddr_t ip_massage_options(ipha_t *);
static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *);
ipaddr_t ip_net_mask(ipaddr_t);
void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *,
zoneid_t);
static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t,
conn_t *, uint32_t, zoneid_t);
char *ip_nv_lookup(nv_t *, int);
static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *);
static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *);
static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *);
static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *,
size_t);
static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
void ip_rput(queue_t *, mblk_t *);
static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
void *dummy_arg);
void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *);
static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *,
ire_t *);
static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *);
static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *,
uint16_t *);
int ip_snmp_get(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *);
static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *);
static void ip_snmp_get2_v4(ire_t *, iproutedata_t *);
static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *);
int ip_snmp_set(queue_t *, int, int, uchar_t *, int);
static boolean_t ip_source_routed(ipha_t *);
static boolean_t ip_source_route_included(ipha_t *);
static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t,
zoneid_t);
static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int);
static void ip_wput_local_options(ipha_t *);
static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t,
zoneid_t);
static void conn_drain_init(void);
static void conn_drain_fini(void);
static void conn_drain_tail(conn_t *connp, boolean_t closing);
static void conn_walk_drain(void);
static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *,
zoneid_t);
static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int,
zoneid_t);
static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
void *dummy_arg);
static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *,
conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *);
static void ip_multirt_bad_mtu(ire_t *, uint32_t);
static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *);
static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *,
caddr_t, cred_t *);
extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value,
caddr_t cp, cred_t *cr);
extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t,
cred_t *);
static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
caddr_t cp, cred_t *cr);
static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t,
cred_t *);
static squeue_func_t ip_squeue_switch(int);
static void ip_kstat_init(void);
static void ip_kstat_fini(void);
static int ip_kstat_update(kstat_t *kp, int rw);
static void icmp_kstat_init(void);
static void icmp_kstat_fini(void);
static int icmp_kstat_update(kstat_t *kp, int rw);
static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *);
static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t,
ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *);
static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *,
ipha_t *, ill_t *, boolean_t);
timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */
static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */
static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */
static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */
ipaddr_t ip_g_all_ones = IP_HOST_MASK;
clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */
uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */
/* How long, in seconds, we allow frags to hang around. */
#define IP_FRAG_TIMEOUT 60
time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT;
clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000;
/*
* Threshold which determines whether MDT should be used when
* generating IP fragments; payload size must be greater than
* this threshold for MDT to take place.
*/
#define IP_WPUT_FRAG_MDT_MIN 32768
int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN;
/* Protected by ip_mi_lock */
static void *ip_g_head; /* Instance Data List Head */
kmutex_t ip_mi_lock; /* Lock for list of instances */
/* Only modified during _init and _fini thus no locking is needed. */
caddr_t ip_g_nd; /* Named Dispatch List Head */
static long ip_rput_pullups;
int dohwcksum = 1; /* use h/w cksum if supported by the hardware */
vmem_t *ip_minor_arena;
/*
* MIB-2 stuff for SNMP (both IP and ICMP)
*/
mib2_ip_t ip_mib;
mib2_icmp_t icmp_mib;
#ifdef DEBUG
uint32_t ipsechw_debug = 0;
#endif
kstat_t *ip_mibkp; /* kstat exporting ip_mib data */
kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */
uint_t loopback_packets = 0;
/*
* Multirouting/CGTP stuff
*/
cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */
int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */
boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */
/* Interval (in ms) between consecutive 'bad MTU' warnings */
hrtime_t ip_multirt_log_interval = 1000;
/* Time since last warning issued. */
static hrtime_t multirt_bad_mtu_last_time = 0;
kmutex_t ip_trash_timer_lock;
krwlock_t ip_g_nd_lock;
/*
* XXX following really should only be in a header. Would need more
* header and .c clean up first.
*/
extern optdb_obj_t ip_opt_obj;
ulong_t ip_squeue_enter_unbound = 0;
/*
* Named Dispatch Parameter Table.
* All of these are alterable, within the min/max values given, at run time.
*/
static ipparam_t lcl_param_arr[] = {
/* min max value name */
{ 0, 1, 0, "ip_respond_to_address_mask_broadcast"},
{ 0, 1, 1, "ip_respond_to_echo_broadcast"},
{ 0, 1, 1, "ip_respond_to_echo_multicast"},
{ 0, 1, 0, "ip_respond_to_timestamp"},
{ 0, 1, 0, "ip_respond_to_timestamp_broadcast"},
{ 0, 1, 1, "ip_send_redirects"},
{ 0, 1, 0, "ip_forward_directed_broadcasts"},
{ 0, 10, 0, "ip_debug"},
{ 0, 10, 0, "ip_mrtdebug"},
{ 5000, 999999999, 60000, "ip_ire_timer_interval" },
{ 60000, 999999999, 1200000, "ip_ire_arp_interval" },
{ 60000, 999999999, 60000, "ip_ire_redirect_interval" },
{ 1, 255, 255, "ip_def_ttl" },
{ 0, 1, 0, "ip_forward_src_routed"},
{ 0, 256, 32, "ip_wroff_extra" },
{ 5000, 999999999, 600000, "ip_ire_pathmtu_interval" },
{ 8, 65536, 64, "ip_icmp_return_data_bytes" },
{ 0, 1, 1, "ip_path_mtu_discovery" },
{ 0, 240, 30, "ip_ignore_delete_time" },
{ 0, 1, 0, "ip_ignore_redirect" },
{ 0, 1, 1, "ip_output_queue" },
{ 1, 254, 1, "ip_broadcast_ttl" },
{ 0, 99999, 100, "ip_icmp_err_interval" },
{ 1, 99999, 10, "ip_icmp_err_burst" },
{ 0, 999999999, 1000000, "ip_reass_queue_bytes" },
{ 0, 1, 0, "ip_strict_dst_multihoming" },
{ 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"},
{ 0, 1, 0, "ipsec_override_persocket_policy" },
{ 0, 1, 1, "icmp_accept_clear_messages" },
{ 0, 1, 1, "igmp_accept_clear_messages" },
{ 2, 999999999, ND_DELAY_FIRST_PROBE_TIME,
"ip_ndp_delay_first_probe_time"},
{ 1, 999999999, ND_MAX_UNICAST_SOLICIT,
"ip_ndp_max_unicast_solicit"},
{ 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" },
{ 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" },
{ 0, 1, 0, "ip6_forward_src_routed"},
{ 0, 1, 1, "ip6_respond_to_echo_multicast"},
{ 0, 1, 1, "ip6_send_redirects"},
{ 0, 1, 0, "ip6_ignore_redirect" },
{ 0, 1, 0, "ip6_strict_dst_multihoming" },
{ 1, 8, 3, "ip_ire_reclaim_fraction" },
{ 0, 999999, 1000, "ipsec_policy_log_interval" },
{ 0, 1, 1, "pim_accept_clear_messages" },
{ 1000, 20000, 2000, "ip_ndp_unsolicit_interval" },
{ 1, 20, 3, "ip_ndp_unsolicit_count" },
{ 0, 1, 1, "ip6_ignore_home_address_opt" },
{ 0, 15, 0, "ip_policy_mask" },
{ 1000, 60000, 1000, "ip_multirt_resolution_interval" },
{ 0, 255, 1, "ip_multirt_ttl" },
{ 0, 1, 1, "ip_multidata_outbound" },
{ 0, 3600000, 300000, "ip_ndp_defense_interval" },
{ 0, 999999, 60*60*24, "ip_max_temp_idle" },
{ 0, 1000, 1, "ip_max_temp_defend" },
{ 0, 1000, 3, "ip_max_defend" },
{ 0, 999999, 30, "ip_defend_interval" },
{ 0, 3600000, 300000, "ip_dup_recovery" },
{ 0, 1, 1, "ip_restrict_interzone_loopback" },
#ifdef DEBUG
{ 0, 1, 0, "ip6_drop_inbound_icmpv6" },
#endif
};
ipparam_t *ip_param_arr = lcl_param_arr;
/* Extended NDP table */
static ipndp_t lcl_ndp_arr[] = {
/* getf setf data name */
{ ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward,
"ip_forwarding" },
{ ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward,
"ip6_forwarding" },
{ ip_ill_report, NULL, NULL,
"ip_ill_status" },
{ ip_ipif_report, NULL, NULL,
"ip_ipif_status" },
{ ip_ire_report, NULL, NULL,
"ipv4_ire_status" },
{ ip_ire_report_mrtun, NULL, NULL,
"ipv4_mrtun_ire_status" },
{ ip_ire_report_srcif, NULL, NULL,
"ipv4_srcif_ire_status" },
{ ip_ire_report_v6, NULL, NULL,
"ipv6_ire_status" },
{ ip_conn_report, NULL, NULL,
"ip_conn_status" },
{ nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups,
"ip_rput_pullups" },
{ ndp_report, NULL, NULL,
"ip_ndp_cache_report" },
{ ip_srcid_report, NULL, NULL,
"ip_srcid_status" },
{ ip_param_generic_get, ip_squeue_profile_set,
(caddr_t)&ip_squeue_profile, "ip_squeue_profile" },
{ ip_param_generic_get, ip_squeue_bind_set,
(caddr_t)&ip_squeue_bind, "ip_squeue_bind" },
{ ip_param_generic_get, ip_input_proc_set,
(caddr_t)&ip_squeue_enter, "ip_squeue_enter" },
{ ip_param_generic_get, ip_int_set,
(caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" },
{ ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter,
"ip_cgtp_filter" },
{ ip_param_generic_get, ip_int_set,
(caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }
};
/*
* ip_g_forward controls IP forwarding. It takes two values:
* 0: IP_FORWARD_NEVER Don't forward packets ever.
* 1: IP_FORWARD_ALWAYS Forward packets for elsewhere.
*
* RFC1122 says there must be a configuration switch to control forwarding,
* but that the default MUST be to not forward packets ever. Implicit
* control based on configuration of multiple interfaces MUST NOT be
* implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability
* and, in fact, it was the default. That capability is now provided in the
* /etc/rc2.d/S69inet script.
*/
int ip_g_forward = IP_FORWARD_DEFAULT;
/* It also has an IPv6 counterpart. */
int ipv6_forward = IP_FORWARD_DEFAULT;
/*
* Table of IP ioctls encoding the various properties of the ioctl and
* indexed based on the last byte of the ioctl command. Occasionally there
* is a clash, and there is more than 1 ioctl with the same last byte.
* In such a case 1 ioctl is encoded in the ndx table and the remaining
* ioctls are encoded in the misc table. An entry in the ndx table is
* retrieved by indexing on the last byte of the ioctl command and comparing
* the ioctl command with the value in the ndx table. In the event of a
* mismatch the misc table is then searched sequentially for the desired
* ioctl command.
*
* Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
*/
ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV,
MISC_CMD, ip_siocaddrt, NULL },
/* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV,
MISC_CMD, ip_siocdelrt, NULL },
/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
IF_CMD, ip_sioctl_get_addr, NULL },
/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
IPI_GET_CMD | IPI_REPL,
IF_CMD, ip_sioctl_get_dstaddr, NULL },
/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
IPI_MODOK | IPI_GET_CMD | IPI_REPL,
IF_CMD, ip_sioctl_get_flags, NULL },
/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* copyin size cannot be coded for SIOCGIFCONF */
/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL,
MISC_CMD, ip_sioctl_get_ifconf, NULL },
/* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_mtu, NULL },
/* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
IF_CMD, ip_sioctl_get_mtu, NULL },
/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
IPI_GET_CMD | IPI_REPL,
IF_CMD, ip_sioctl_get_brdaddr, NULL },
/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_brdaddr, NULL },
/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
IPI_GET_CMD | IPI_REPL,
IF_CMD, ip_sioctl_get_netmask, NULL },
/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
IPI_GET_CMD | IPI_REPL,
IF_CMD, ip_sioctl_get_metric, NULL },
/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
IF_CMD, ip_sioctl_metric, NULL },
/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* See 166-168 below for extended SIOC*XARP ioctls */
/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV,
MISC_CMD, ip_sioctl_arp, NULL },
/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL,
MISC_CMD, ip_sioctl_arp, NULL },
/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV,
MISC_CMD, ip_sioctl_arp, NULL },
/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
MISC_CMD, if_unitsel, if_unitsel_restart },
/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
IPI_PRIV | IPI_WR | IPI_MODOK,
IF_CMD, ip_sioctl_sifname, NULL },
/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL,
MISC_CMD, ip_sioctl_get_ifnum, NULL },
/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
IF_CMD, ip_sioctl_get_muxid, NULL },
/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
IF_CMD, ip_sioctl_muxid, NULL },
/* Both if and lif variants share same func */
/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
IF_CMD, ip_sioctl_get_lifindex, NULL },
/* Both if and lif variants share same func */
/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
IF_CMD, ip_sioctl_slifindex, NULL },
/* copyin size cannot be coded for SIOCGIFCONF */
/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL,
MISC_CMD, ip_sioctl_get_ifconf, NULL },
/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
LIF_CMD, ip_sioctl_removeif,
ip_sioctl_removeif_restart },
/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL,
LIF_CMD, ip_sioctl_addif, NULL },
#define SIOCLIFADDR_NDX 112
/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_addr, NULL },
/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_dstaddr, NULL },
/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
IPI_GET_CMD | IPI_MODOK | IPI_REPL,
LIF_CMD, ip_sioctl_get_flags, NULL },
/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL,
ip_sioctl_get_lifconf, NULL },
/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_mtu, NULL },
/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_mtu, NULL },
/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_brdaddr, NULL },
/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_brdaddr, NULL },
/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_netmask, NULL },
/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_metric, NULL },
/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_metric, NULL },
/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL,
LIF_CMD, ip_sioctl_slifname,
ip_sioctl_slifname_restart },
/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL,
MISC_CMD, ip_sioctl_get_lifnum, NULL },
/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_muxid, NULL },
/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
LIF_CMD, ip_sioctl_muxid, NULL },
/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_lifindex, 0 },
/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
LIF_CMD, ip_sioctl_slifindex, 0 },
/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_token, NULL },
/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_token, NULL },
/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_subnet, NULL },
/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_lnkinfo, NULL },
/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
LIF_CMD, ip_siocdelndp_v6, NULL },
/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
LIF_CMD, ip_siocqueryndp_v6, NULL },
/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
LIF_CMD, ip_siocsetndp_v6, NULL },
/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
MISC_CMD, ip_sioctl_tmyaddr, NULL },
/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
MISC_CMD, ip_sioctl_tonlink, NULL },
/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
MISC_CMD, ip_sioctl_tmysite, NULL },
/* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL,
TUN_CMD, ip_sioctl_tunparam, NULL },
/* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req),
IPI_PRIV | IPI_WR,
TUN_CMD, ip_sioctl_tunparam, NULL },
/* IPSECioctls handled in ip_sioctl_copyin_setup itself */
/* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
/* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
/* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
/* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
/* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
LIF_CMD, ip_sioctl_move, ip_sioctl_move },
/* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
LIF_CMD, ip_sioctl_move, ip_sioctl_move },
/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_groupname, NULL },
/* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_oindex, NULL },
/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_slifoindex, NULL },
/* These are handled in ip_sioctl_copyin_setup itself */
/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
MISC_CMD, NULL, NULL },
/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
MISC_CMD, NULL, NULL },
/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL,
ip_sioctl_get_lifconf, NULL },
/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV,
MISC_CMD, ip_sioctl_xarp, NULL },
/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL,
MISC_CMD, ip_sioctl_xarp, NULL },
/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV,
MISC_CMD, ip_sioctl_xarp, NULL },
/* SIOCPOPSOCKFS is not handled by IP */
/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
IPI_GET_CMD | IPI_REPL,
LIF_CMD, ip_sioctl_get_lifzone, NULL },
/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
IPI_PRIV | IPI_WR | IPI_REPL,
LIF_CMD, ip_sioctl_slifzone,
ip_sioctl_slifzone_restart },
/* 172-174 are SCTP ioctls and not handled by IP */
/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD,
ip_sioctl_get_lifusesrc, 0 },
/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_slifusesrc,
NULL },
/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
ip_sioctl_get_lifsrcof, NULL },
/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
MISC_CMD, ip_sioctl_msfilter, NULL },
/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR,
MISC_CMD, ip_sioctl_msfilter, NULL },
/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
MISC_CMD, ip_sioctl_msfilter, NULL },
/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR,
MISC_CMD, ip_sioctl_msfilter, NULL },
/* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD,
ip_sioctl_set_ipmpfailback, NULL }
};
int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
{ OSIOCGTUNPARAM, sizeof (struct old_iftun_req),
IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL },
{ OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR,
TUN_CMD, ip_sioctl_tunparam, NULL },
{ I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
{ I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
{ I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
{ I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
{ ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL },
{ ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
{ IP_IOCTL, 0, 0, 0, NULL, NULL },
{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD,
MISC_CMD, mrt_ioctl},
{ SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD,
MISC_CMD, mrt_ioctl},
{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD,
MISC_CMD, mrt_ioctl}
};
int ip_misc_ioctl_count =
sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
static idl_t *conn_drain_list; /* The array of conn drain lists */
static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */
static int conn_drain_list_index; /* Next drain_list to be used */
int conn_drain_nthreads; /* Number of drainers reqd. */
/* Settable in /etc/system */
uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */
/* Defined in ip_ire.c */
extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
static nv_t ire_nv_arr[] = {
{ IRE_BROADCAST, "BROADCAST" },
{ IRE_LOCAL, "LOCAL" },
{ IRE_LOOPBACK, "LOOPBACK" },
{ IRE_CACHE, "CACHE" },
{ IRE_DEFAULT, "DEFAULT" },
{ IRE_PREFIX, "PREFIX" },
{ IRE_IF_NORESOLVER, "IF_NORESOL" },
{ IRE_IF_RESOLVER, "IF_RESOLV" },
{ IRE_HOST, "HOST" },
{ 0 }
};
nv_t *ire_nv_tbl = ire_nv_arr;
/* Defined in ip_if.c, protect the list of IPsec capable ills */
extern krwlock_t ipsec_capab_ills_lock;
/* Defined in ip_netinfo.c */
extern ddi_taskq_t *eventq_queue_nic;
/* Packet dropper for IP IPsec processing failures */
ipdropper_t ip_dropper;
/* Simple ICMP IP Header Template */
static ipha_t icmp_ipha = {
IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
};
struct module_info ip_mod_info = {
IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024
};
/*
* Duplicate static symbols within a module confuses mdb; so we avoid the
* problem by making the symbols here distinct from those in udp.c.
*/
static struct qinit iprinit = {
(pfi_t)ip_rput, NULL, ip_open, ip_close, NULL,
&ip_mod_info
};
static struct qinit ipwinit = {
(pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL,
&ip_mod_info
};
static struct qinit iplrinit = {
(pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL,
&ip_mod_info
};
static struct qinit iplwinit = {
(pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL,
&ip_mod_info
};
struct streamtab ipinfo = {
&iprinit, &ipwinit, &iplrinit, &iplwinit
};
#ifdef DEBUG
static boolean_t skip_sctp_cksum = B_FALSE;
#endif
/*
* Prepend the zoneid using an ipsec_out_t for later use by functions like
* ip_rput_v6(), ip_output(), etc. If the message
* block already has a M_CTL at the front of it, then simply set the zoneid
* appropriately.
*/
mblk_t *
ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid)
{
mblk_t *first_mp;
ipsec_out_t *io;
ASSERT(zoneid != ALL_ZONES);
if (mp->b_datap->db_type == M_CTL) {
io = (ipsec_out_t *)mp->b_rptr;
ASSERT(io->ipsec_out_type == IPSEC_OUT);
io->ipsec_out_zoneid = zoneid;
return (mp);
}
first_mp = ipsec_alloc_ipsec_out();
if (first_mp == NULL)
return (NULL);
io = (ipsec_out_t *)first_mp->b_rptr;
/* This is not a secure packet */
io->ipsec_out_secure = B_FALSE;
io->ipsec_out_zoneid = zoneid;
first_mp->b_cont = mp;
return (first_mp);
}
/*
* Copy an M_CTL-tagged message, preserving reference counts appropriately.
*/
mblk_t *
ip_copymsg(mblk_t *mp)
{
mblk_t *nmp;
ipsec_info_t *in;
if (mp->b_datap->db_type != M_CTL)
return (copymsg(mp));
in = (ipsec_info_t *)mp->b_rptr;
/*
* Note that M_CTL is also used for delivering ICMP error messages
* upstream to transport layers.
*/
if (in->ipsec_info_type != IPSEC_OUT &&
in->ipsec_info_type != IPSEC_IN)
return (copymsg(mp));
nmp = copymsg(mp->b_cont);
if (in->ipsec_info_type == IPSEC_OUT)
return (ipsec_out_tag(mp, nmp));
else
return (ipsec_in_tag(mp, nmp));
}
/* Generate an ICMP fragmentation needed message. */
static void
icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid)
{
icmph_t icmph;
mblk_t *first_mp;
boolean_t mctl_present;
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
if (!(mp = icmp_pkt_err_ok(mp))) {
if (mctl_present)
freeb(first_mp);
return;
}
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_DEST_UNREACHABLE;
icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
icmph.icmph_du_mtu = htons((uint16_t)mtu);
BUMP_MIB(&icmp_mib, icmpOutFragNeeded);
BUMP_MIB(&icmp_mib, icmpOutDestUnreachs);
icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid);
}
/*
* icmp_inbound deals with ICMP messages in the following ways.
*
* 1) It needs to send a reply back and possibly delivering it
* to the "interested" upper clients.
* 2) It needs to send it to the upper clients only.
* 3) It needs to change some values in IP only.
* 4) It needs to change some values in IP and upper layers e.g TCP.
*
* We need to accomodate icmp messages coming in clear until we get
* everything secure from the wire. If icmp_accept_clear_messages
* is zero we check with the global policy and act accordingly. If
* it is non-zero, we accept the message without any checks. But
* *this does not mean* that this will be delivered to the upper
* clients. By accepting we might send replies back, change our MTU
* value etc. but delivery to the ULP/clients depends on their policy
* dispositions.
*
* We handle the above 4 cases in the context of IPSEC in the
* following way :
*
* 1) Send the reply back in the same way as the request came in.
* If it came in encrypted, it goes out encrypted. If it came in
* clear, it goes out in clear. Thus, this will prevent chosen
* plain text attack.
* 2) The client may or may not expect things to come in secure.
* If it comes in secure, the policy constraints are checked
* before delivering it to the upper layers. If it comes in
* clear, ipsec_inbound_accept_clear will decide whether to
* accept this in clear or not. In both the cases, if the returned
* message (IP header + 8 bytes) that caused the icmp message has
* AH/ESP headers, it is sent up to AH/ESP for validation before
* sending up. If there are only 8 bytes of returned message, then
* upper client will not be notified.
* 3) Check with global policy to see whether it matches the constaints.
* But this will be done only if icmp_accept_messages_in_clear is
* zero.
* 4) If we need to change both in IP and ULP, then the decision taken
* while affecting the values in IP and while delivering up to TCP
* should be the same.
*
* There are two cases.
*
* a) If we reject data at the IP layer (ipsec_check_global_policy()
* failed), we will not deliver it to the ULP, even though they
* are *willing* to accept in *clear*. This is fine as our global
* disposition to icmp messages asks us reject the datagram.
*
* b) If we accept data at the IP layer (ipsec_check_global_policy()
* succeeded or icmp_accept_messages_in_clear is 1), and not able
* to deliver it to ULP (policy failed), it can lead to
* consistency problems. The cases known at this time are
* ICMP_DESTINATION_UNREACHABLE messages with following code
* values :
*
* - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
* and Upper layer rejects. Then the communication will
* come to a stop. This is solved by making similar decisions
* at both levels. Currently, when we are unable to deliver
* to the Upper Layer (due to policy failures) while IP has
* adjusted ire_max_frag, the next outbound datagram would
* generate a local ICMP_FRAGMENTATION_NEEDED message - which
* will be with the right level of protection. Thus the right
* value will be communicated even if we are not able to
* communicate when we get from the wire initially. But this
* assumes there would be at least one outbound datagram after
* IP has adjusted its ire_max_frag value. To make things
* simpler, we accept in clear after the validation of
* AH/ESP headers.
*
* - Other ICMP ERRORS : We may not be able to deliver it to the
* upper layer depending on the level of protection the upper
* layer expects and the disposition in ipsec_inbound_accept_clear().
* ipsec_inbound_accept_clear() decides whether a given ICMP error
* should be accepted in clear when the Upper layer expects secure.
* Thus the communication may get aborted by some bad ICMP
* packets.
*
* IPQoS Notes:
* The only instance when a packet is sent for processing is when there
* isn't an ICMP client and if we are interested in it.
* If there is a client, IPPF processing will take place in the
* ip_fanout_proto routine.
*
* Zones notes:
* The packet is only processed in the context of the specified zone: typically
* only this zone will reply to an echo request, and only interested clients in
* this zone will receive a copy of the packet. This means that the caller must
* call icmp_inbound() for each relevant zone.
*/
static void
icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill,
int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy,
ill_t *recv_ill, zoneid_t zoneid)
{
icmph_t *icmph;
ipha_t *ipha;
int iph_hdr_length;
int hdr_length;
boolean_t interested;
uint32_t ts;
uchar_t *wptr;
ipif_t *ipif;
mblk_t *first_mp;
ipsec_in_t *ii;
ire_t *src_ire;
boolean_t onlink;
timestruc_t now;
uint32_t ill_index;
ASSERT(ill != NULL);
first_mp = mp;
if (mctl_present) {
mp = first_mp->b_cont;
ASSERT(mp != NULL);
}
ipha = (ipha_t *)mp->b_rptr;
if (icmp_accept_clear_messages == 0) {
first_mp = ipsec_check_global_policy(first_mp, NULL,
ipha, NULL, mctl_present);
if (first_mp == NULL)
return;
}
/*
* On a labeled system, we have to check whether the zone itself is
* permitted to receive raw traffic.
*/
if (is_system_labeled()) {
if (zoneid == ALL_ZONES)
zoneid = tsol_packet_to_zoneid(mp);
if (!tsol_can_accept_raw(mp, B_FALSE)) {
ip1dbg(("icmp_inbound: zone %d can't receive raw",
zoneid));
BUMP_MIB(&icmp_mib, icmpInErrors);
freemsg(first_mp);
return;
}
}
/*
* We have accepted the ICMP message. It means that we will
* respond to the packet if needed. It may not be delivered
* to the upper client depending on the policy constraints
* and the disposition in ipsec_inbound_accept_clear.
*/
ASSERT(ill != NULL);
BUMP_MIB(&icmp_mib, icmpInMsgs);
iph_hdr_length = IPH_HDR_LENGTH(ipha);
if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) {
/* Last chance to get real. */
if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) {
BUMP_MIB(&icmp_mib, icmpInErrors);
freemsg(first_mp);
return;
}
/* Refresh iph following the pullup. */
ipha = (ipha_t *)mp->b_rptr;
}
/* ICMP header checksum, including checksum field, should be zero. */
if (sum_valid ? (sum != 0 && sum != 0xFFFF) :
IP_CSUM(mp, iph_hdr_length, 0)) {
BUMP_MIB(&icmp_mib, icmpInCksumErrs);
freemsg(first_mp);
return;
}
/* The IP header will always be a multiple of four bytes */
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type,
icmph->icmph_code));
wptr = (uchar_t *)icmph + ICMPH_SIZE;
/* We will set "interested" to "true" if we want a copy */
interested = B_FALSE;
switch (icmph->icmph_type) {
case ICMP_ECHO_REPLY:
BUMP_MIB(&icmp_mib, icmpInEchoReps);
break;
case ICMP_DEST_UNREACHABLE:
if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
BUMP_MIB(&icmp_mib, icmpInFragNeeded);
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&icmp_mib, icmpInDestUnreachs);
break;
case ICMP_SOURCE_QUENCH:
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&icmp_mib, icmpInSrcQuenchs);
break;
case ICMP_REDIRECT:
if (!ip_ignore_redirect)
interested = B_TRUE;
BUMP_MIB(&icmp_mib, icmpInRedirects);
break;
case ICMP_ECHO_REQUEST:
/*
* Whether to respond to echo requests that come in as IP
* broadcasts or as IP multicast is subject to debate
* (what isn't?). We aim to please, you pick it.
* Default is do it.
*/
if (!broadcast && !CLASSD(ipha->ipha_dst)) {
/* unicast: always respond */
interested = B_TRUE;
} else if (CLASSD(ipha->ipha_dst)) {
/* multicast: respond based on tunable */
interested = ip_g_resp_to_echo_mcast;
} else if (broadcast) {
/* broadcast: respond based on tunable */
interested = ip_g_resp_to_echo_bcast;
}
BUMP_MIB(&icmp_mib, icmpInEchos);
break;
case ICMP_ROUTER_ADVERTISEMENT:
case ICMP_ROUTER_SOLICITATION:
break;
case ICMP_TIME_EXCEEDED:
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&icmp_mib, icmpInTimeExcds);
break;
case ICMP_PARAM_PROBLEM:
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&icmp_mib, icmpInParmProbs);
break;
case ICMP_TIME_STAMP_REQUEST:
/* Response to Time Stamp Requests is local policy. */
if (ip_g_resp_to_timestamp &&
/* So is whether to respond if it was an IP broadcast. */
(!broadcast || ip_g_resp_to_timestamp_bcast)) {
int tstamp_len = 3 * sizeof (uint32_t);
if (wptr + tstamp_len > mp->b_wptr) {
if (!pullupmsg(mp, wptr + tstamp_len -
mp->b_rptr)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
return;
}
/* Refresh ipha following the pullup. */
ipha = (ipha_t *)mp->b_rptr;
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
wptr = (uchar_t *)icmph + ICMPH_SIZE;
}
interested = B_TRUE;
}
BUMP_MIB(&icmp_mib, icmpInTimestamps);
break;
case ICMP_TIME_STAMP_REPLY:
BUMP_MIB(&icmp_mib, icmpInTimestampReps);
break;
case ICMP_INFO_REQUEST:
/* Per RFC 1122 3.2.2.7, ignore this. */
case ICMP_INFO_REPLY:
break;
case ICMP_ADDRESS_MASK_REQUEST:
if ((ip_respond_to_address_mask_broadcast || !broadcast) &&
/* TODO m_pullup of complete header? */
(mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN)
interested = B_TRUE;
BUMP_MIB(&icmp_mib, icmpInAddrMasks);
break;
case ICMP_ADDRESS_MASK_REPLY:
BUMP_MIB(&icmp_mib, icmpInAddrMaskReps);
break;
default:
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&icmp_mib, icmpInUnknowns);
break;
}
/* See if there is an ICMP client. */
if (ipcl_proto_search(IPPROTO_ICMP) != NULL) {
/* If there is an ICMP client and we want one too, copy it. */
mblk_t *first_mp1;
if (!interested) {
ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present,
ip_policy, recv_ill, zoneid);
return;
}
first_mp1 = ip_copymsg(first_mp);
if (first_mp1 != NULL) {
ip_fanout_proto(q, first_mp1, ill, ipha,
0, mctl_present, ip_policy, recv_ill, zoneid);
}
} else if (!interested) {
freemsg(first_mp);
return;
} else {
/*
* Initiate policy processing for this packet if ip_policy
* is true.
*/
if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) {
ill_index = ill->ill_phyint->phyint_ifindex;
ip_process(IPP_LOCAL_IN, &mp, ill_index);
if (mp == NULL) {
if (mctl_present) {
freeb(first_mp);
}
BUMP_MIB(&icmp_mib, icmpInErrors);
return;
}
}
}
/* We want to do something with it. */
/* Check db_ref to make sure we can modify the packet. */
if (mp->b_datap->db_ref > 1) {
mblk_t *first_mp1;
first_mp1 = ip_copymsg(first_mp);
freemsg(first_mp);
if (!first_mp1) {
BUMP_MIB(&icmp_mib, icmpOutDrops);
return;
}
first_mp = first_mp1;
if (mctl_present) {
mp = first_mp->b_cont;
ASSERT(mp != NULL);
} else {
mp = first_mp;
}
ipha = (ipha_t *)mp->b_rptr;
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
wptr = (uchar_t *)icmph + ICMPH_SIZE;
}
switch (icmph->icmph_type) {
case ICMP_ADDRESS_MASK_REQUEST:
ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
if (ipif == NULL) {
freemsg(first_mp);
return;
}
/*
* outging interface must be IPv4
*/
ASSERT(ipif != NULL && !ipif->ipif_isv6);
icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN);
ipif_refrele(ipif);
BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps);
break;
case ICMP_ECHO_REQUEST:
icmph->icmph_type = ICMP_ECHO_REPLY;
BUMP_MIB(&icmp_mib, icmpOutEchoReps);
break;
case ICMP_TIME_STAMP_REQUEST: {
uint32_t *tsp;
icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
tsp = (uint32_t *)wptr;
tsp++; /* Skip past 'originate time' */
/* Compute # of milliseconds since midnight */
gethrestime(&now);
ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
now.tv_nsec / (NANOSEC / MILLISEC);
*tsp++ = htonl(ts); /* Lay in 'receive time' */
*tsp++ = htonl(ts); /* Lay in 'send time' */
BUMP_MIB(&icmp_mib, icmpOutTimestampReps);
break;
}
default:
ipha = (ipha_t *)&icmph[1];
if ((uchar_t *)&ipha[1] > mp->b_wptr) {
if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
return;
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
return;
}
hdr_length = IPH_HDR_LENGTH(ipha);
if (hdr_length < sizeof (ipha_t)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
return;
}
if ((uchar_t *)ipha + hdr_length > mp->b_wptr) {
if (!pullupmsg(mp,
(uchar_t *)ipha + hdr_length - mp->b_rptr)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
return;
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
switch (icmph->icmph_type) {
case ICMP_REDIRECT:
/*
* As there is no upper client to deliver, we don't
* need the first_mp any more.
*/
if (mctl_present) {
freeb(first_mp);
}
icmp_redirect(mp);
return;
case ICMP_DEST_UNREACHABLE:
if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
if (!icmp_inbound_too_big(icmph, ipha, ill,
zoneid, mp, iph_hdr_length)) {
freemsg(first_mp);
return;
}
/*
* icmp_inbound_too_big() may alter mp.
* Resynch ipha and icmph accordingly.
*/
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
/* FALLTHRU */
default :
/*
* IPQoS notes: Since we have already done IPQoS
* processing we don't want to do it again in
* the fanout routines called by
* icmp_inbound_error_fanout, hence the last
* argument, ip_policy, is B_FALSE.
*/
icmp_inbound_error_fanout(q, ill, first_mp, icmph,
ipha, iph_hdr_length, hdr_length, mctl_present,
B_FALSE, recv_ill, zoneid);
}
return;
}
/* Send out an ICMP packet */
icmph->icmph_checksum = 0;
icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0);
if (icmph->icmph_checksum == 0)
icmph->icmph_checksum = 0xFFFF;
if (broadcast || CLASSD(ipha->ipha_dst)) {
ipif_t *ipif_chosen;
/*
* Make it look like it was directed to us, so we don't look
* like a fool with a broadcast or multicast source address.
*/
ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
/*
* Make sure that we haven't grabbed an interface that's DOWN.
*/
if (ipif != NULL) {
ipif_chosen = ipif_select_source(ipif->ipif_ill,
ipha->ipha_src, zoneid);
if (ipif_chosen != NULL) {
ipif_refrele(ipif);
ipif = ipif_chosen;
}
}
if (ipif == NULL) {
ip0dbg(("icmp_inbound: "
"No source for broadcast/multicast:\n"
"\tsrc 0x%x dst 0x%x ill %p "
"ipif_lcl_addr 0x%x\n",
ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst),
(void *)ill,
ill->ill_ipif->ipif_lcl_addr));
freemsg(first_mp);
return;
}
ASSERT(ipif != NULL && !ipif->ipif_isv6);
ipha->ipha_dst = ipif->ipif_src_addr;
ipif_refrele(ipif);
}
/* Reset time to live. */
ipha->ipha_ttl = ip_def_ttl;
{
/* Swap source and destination addresses */
ipaddr_t tmp;
tmp = ipha->ipha_src;
ipha->ipha_src = ipha->ipha_dst;
ipha->ipha_dst = tmp;
}
ipha->ipha_ident = 0;
if (!IS_SIMPLE_IPH(ipha))
icmp_options_update(ipha);
/*
* ICMP echo replies should go out on the same interface
* the request came on as probes used by in.mpathd for detecting
* NIC failures are ECHO packets. We turn-off load spreading
* by setting ipsec_in_attach_if to B_TRUE, which is copied
* to ipsec_out_attach_if by ipsec_in_to_out called later in this
* function. This is in turn handled by ip_wput and ip_newroute
* to make sure that the packet goes out on the interface it came
* in on. If we don't turnoff load spreading, the packets might get
* dropped if there are no non-FAILED/INACTIVE interfaces for it
* to go out and in.mpathd would wrongly detect a failure or
* mis-detect a NIC failure for link failure. As load spreading
* can happen only if ill_group is not NULL, we do only for
* that case and this does not affect the normal case.
*
* We turn off load spreading only on echo packets that came from
* on-link hosts. If the interface route has been deleted, this will
* not be enforced as we can't do much. For off-link hosts, as the
* default routes in IPv4 does not typically have an ire_ipif
* pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute.
* Moreover, expecting a default route through this interface may
* not be correct. We use ipha_dst because of the swap above.
*/
onlink = B_FALSE;
if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) {
/*
* First, we need to make sure that it is not one of our
* local addresses. If we set onlink when it is one of
* our local addresses, we will end up creating IRE_CACHES
* for one of our local addresses. Then, we will never
* accept packets for them afterwards.
*/
src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL,
NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (src_ire == NULL) {
ipif = ipif_get_next_ipif(NULL, ill);
if (ipif == NULL) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(mp);
return;
}
src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0,
IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE);
ipif_refrele(ipif);
if (src_ire != NULL) {
onlink = B_TRUE;
ire_refrele(src_ire);
}
} else {
ire_refrele(src_ire);
}
}
if (!mctl_present) {
/*
* This packet should go out the same way as it
* came in i.e in clear. To make sure that global
* policy will not be applied to this in ip_wput_ire,
* we attach a IPSEC_IN mp and clear ipsec_in_secure.
*/
ASSERT(first_mp == mp);
if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(mp);
return;
}
ii = (ipsec_in_t *)first_mp->b_rptr;
/* This is not a secure packet */
ii->ipsec_in_secure = B_FALSE;
if (onlink) {
ii->ipsec_in_attach_if = B_TRUE;
ii->ipsec_in_ill_index =
ill->ill_phyint->phyint_ifindex;
ii->ipsec_in_rill_index =
recv_ill->ill_phyint->phyint_ifindex;
}
first_mp->b_cont = mp;
} else if (onlink) {
ii = (ipsec_in_t *)first_mp->b_rptr;
ii->ipsec_in_attach_if = B_TRUE;
ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex;
ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex;
} else {
ii = (ipsec_in_t *)first_mp->b_rptr;
}
ii->ipsec_in_zoneid = zoneid;
ASSERT(zoneid != ALL_ZONES);
if (!ipsec_in_to_out(first_mp, ipha, NULL)) {
BUMP_MIB(&ip_mib, ipInDiscards);
return;
}
BUMP_MIB(&icmp_mib, icmpOutMsgs);
put(WR(q), first_mp);
}
static ipaddr_t
icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp)
{
conn_t *connp;
connf_t *connfp;
ipaddr_t nexthop_addr = INADDR_ANY;
int hdr_length = IPH_HDR_LENGTH(ipha);
uint16_t *up;
uint32_t ports;
up = (uint16_t *)((uchar_t *)ipha + hdr_length);
switch (ipha->ipha_protocol) {
case IPPROTO_TCP:
{
tcph_t *tcph;
/* do a reverse lookup */
tcph = (tcph_t *)((uchar_t *)ipha + hdr_length);
connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph,
TCPS_LISTEN);
break;
}
case IPPROTO_UDP:
{
uint32_t dstport, srcport;
((uint16_t *)&ports)[0] = up[1];
((uint16_t *)&ports)[1] = up[0];
/* Extract ports in net byte order */
dstport = htons(ntohl(ports) & 0xFFFF);
srcport = htons(ntohl(ports) >> 16);
connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)];
mutex_enter(&connfp->connf_lock);
connp = connfp->connf_head;
/* do a reverse lookup */
while ((connp != NULL) &&
(!IPCL_UDP_MATCH(connp, dstport,
ipha->ipha_src, srcport, ipha->ipha_dst) ||
!IPCL_ZONE_MATCH(connp, zoneid))) {
connp = connp->conn_next;
}
if (connp != NULL)
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
break;
}
case IPPROTO_SCTP:
{
in6_addr_t map_src, map_dst;
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src);
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst);
((uint16_t *)&ports)[0] = up[1];
((uint16_t *)&ports)[1] = up[0];
if ((connp = sctp_find_conn(&map_src, &map_dst, ports,
0, zoneid)) == NULL) {
connp = ipcl_classify_raw(mp, IPPROTO_SCTP,
zoneid, ports, ipha);
} else {
CONN_INC_REF(connp);
SCTP_REFRELE(CONN2SCTP(connp));
}
break;
}
default:
{
ipha_t ripha;
ripha.ipha_src = ipha->ipha_dst;
ripha.ipha_dst = ipha->ipha_src;
ripha.ipha_protocol = ipha->ipha_protocol;
connfp = &ipcl_proto_fanout[ipha->ipha_protocol];
mutex_enter(&connfp->connf_lock);
connp = connfp->connf_head;
for (connp = connfp->connf_head; connp != NULL;
connp = connp->conn_next) {
if (IPCL_PROTO_MATCH(connp,
ipha->ipha_protocol, &ripha, ill,
0, zoneid)) {
CONN_INC_REF(connp);
break;
}
}
mutex_exit(&connfp->connf_lock);
}
}
if (connp != NULL) {
if (connp->conn_nexthop_set)
nexthop_addr = connp->conn_nexthop_v4;
CONN_DEC_REF(connp);
}
return (nexthop_addr);
}
/* Table from RFC 1191 */
static int icmp_frag_size_table[] =
{ 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
/*
* Process received ICMP Packet too big.
* After updating any IRE it does the fanout to any matching transport streams.
* Assumes the message has been pulled up till the IP header that caused
* the error.
*
* Returns B_FALSE on failure and B_TRUE on success.
*/
static boolean_t
icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill,
zoneid_t zoneid, mblk_t *mp, int iph_hdr_length)
{
ire_t *ire, *first_ire;
int mtu;
int hdr_length;
ipaddr_t nexthop_addr;
ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
hdr_length = IPH_HDR_LENGTH(ipha);
/* Drop if the original packet contained a source route */
if (ip_source_route_included(ipha)) {
return (B_FALSE);
}
/*
* Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport
* header.
*/
if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
mp->b_wptr) {
if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
BUMP_MIB(&ip_mib, ipInDiscards);
ip1dbg(("icmp_inbound_too_big: insufficient hdr\n"));
return (B_FALSE);
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp);
if (nexthop_addr != INADDR_ANY) {
/* nexthop set */
first_ire = ire_ctable_lookup(ipha->ipha_dst,
nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp),
MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
} else {
/* nexthop not set */
first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE,
NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
}
if (!first_ire) {
ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n",
ntohl(ipha->ipha_dst)));
return (B_FALSE);
}
/* Check for MTU discovery advice as described in RFC 1191 */
mtu = ntohs(icmph->icmph_du_mtu);
rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER);
for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst;
ire = ire->ire_next) {
/*
* Look for the connection to which this ICMP message is
* directed. If it has the IP_NEXTHOP option set, then the
* search is limited to IREs with the MATCH_IRE_PRIVATE
* option. Else the search is limited to regular IREs.
*/
if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) &&
(nexthop_addr != ire->ire_gateway_addr)) ||
(!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) &&
(nexthop_addr != INADDR_ANY)))
continue;
mutex_enter(&ire->ire_lock);
if (icmph->icmph_du_zero == 0 && mtu > 68) {
/* Reduce the IRE max frag value as advised. */
ip1dbg(("Received mtu from router: %d (was %d)\n",
mtu, ire->ire_max_frag));
ire->ire_max_frag = MIN(ire->ire_max_frag, mtu);
} else {
uint32_t length;
int i;
/*
* Use the table from RFC 1191 to figure out
* the next "plateau" based on the length in
* the original IP packet.
*/
length = ntohs(ipha->ipha_length);
if (ire->ire_max_frag <= length &&
ire->ire_max_frag >= length - hdr_length) {
/*
* Handle broken BSD 4.2 systems that
* return the wrong iph_length in ICMP
* errors.
*/
ip1dbg(("Wrong mtu: sent %d, ire %d\n",
length, ire->ire_max_frag));
length -= hdr_length;
}
for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
if (length > icmp_frag_size_table[i])
break;
}
if (i == A_CNT(icmp_frag_size_table)) {
/* Smaller than 68! */
ip1dbg(("Too big for packet size %d\n",
length));
ire->ire_max_frag = MIN(ire->ire_max_frag, 576);
ire->ire_frag_flag = 0;
} else {
mtu = icmp_frag_size_table[i];
ip1dbg(("Calculated mtu %d, packet size %d, "
"before %d", mtu, length,
ire->ire_max_frag));
ire->ire_max_frag = MIN(ire->ire_max_frag, mtu);
ip1dbg((", after %d\n", ire->ire_max_frag));
}
/* Record the new max frag size for the ULP. */
icmph->icmph_du_zero = 0;
icmph->icmph_du_mtu =
htons((uint16_t)ire->ire_max_frag);
}
mutex_exit(&ire->ire_lock);
}
rw_exit(&first_ire->ire_bucket->irb_lock);
ire_refrele(first_ire);
return (B_TRUE);
}
/*
* If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout
* calls this function.
*/
static mblk_t *
icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length)
{
ipha_t *ipha;
icmph_t *icmph;
ipha_t *in_ipha;
int length;
ASSERT(mp->b_datap->db_type == M_DATA);
/*
* For Self-encapsulated packets, we added an extra IP header
* without the options. Inner IP header is the one from which
* the outer IP header was formed. Thus, we need to remove the
* outer IP header. To do this, we pullup the whole message
* and overlay whatever follows the outer IP header over the
* outer IP header.
*/
if (!pullupmsg(mp, -1)) {
BUMP_MIB(&ip_mib, ipInDiscards);
return (NULL);
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
/*
* The length that we want to overlay is following the inner
* IP header. Subtracting the IP header + icmp header + outer
* IP header's length should give us the length that we want to
* overlay.
*/
length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) -
hdr_length;
/*
* Overlay whatever follows the inner header over the
* outer header.
*/
bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
/* Set the wptr to account for the outer header */
mp->b_wptr -= hdr_length;
return (mp);
}
/*
* Try to pass the ICMP message upstream in case the ULP cares.
*
* If the packet that caused the ICMP error is secure, we send
* it to AH/ESP to make sure that the attached packet has a
* valid association. ipha in the code below points to the
* IP header of the packet that caused the error.
*
* We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently
* in the context of IPSEC. Normally we tell the upper layer
* whenever we send the ire (including ip_bind), the IPSEC header
* length in ire_ipsec_overhead. TCP can deduce the MSS as it
* has both the MTU (ire_max_frag) and the ire_ipsec_overhead.
* Similarly, we pass the new MTU icmph_du_mtu and TCP does the
* same thing. As TCP has the IPSEC options size that needs to be
* adjusted, we just pass the MTU unchanged.
*
* IFN could have been generated locally or by some router.
*
* LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this.
* This happens because IP adjusted its value of MTU on an
* earlier IFN message and could not tell the upper layer,
* the new adjusted value of MTU e.g. Packet was encrypted
* or there was not enough information to fanout to upper
* layers. Thus on the next outbound datagram, ip_wput_ire
* generates the IFN, where IPSEC processing has *not* been
* done.
*
* *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed
* could have generated this. This happens because ire_max_frag
* value in IP was set to a new value, while the IPSEC processing
* was being done and after we made the fragmentation check in
* ip_wput_ire. Thus on return from IPSEC processing,
* ip_wput_ipsec_out finds that the new length is > ire_max_frag
* and generates the IFN. As IPSEC processing is over, we fanout
* to AH/ESP to remove the header.
*
* In both these cases, ipsec_in_loopback will be set indicating
* that IFN was generated locally.
*
* ROUTER : IFN could be secure or non-secure.
*
* * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
* packet in error has AH/ESP headers to validate the AH/ESP
* headers. AH/ESP will verify whether there is a valid SA or
* not and send it back. We will fanout again if we have more
* data in the packet.
*
* If the packet in error does not have AH/ESP, we handle it
* like any other case.
*
* * NON_SECURE : If the packet in error has AH/ESP headers,
* we attach a dummy ipsec_in and send it up to AH/ESP
* for validation. AH/ESP will verify whether there is a
* valid SA or not and send it back. We will fanout again if
* we have more data in the packet.
*
* If the packet in error does not have AH/ESP, we handle it
* like any other case.
*/
static void
icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp,
icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length,
boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill,
zoneid_t zoneid)
{
uint16_t *up; /* Pointer to ports in ULP header */
uint32_t ports; /* reversed ports for fanout */
ipha_t ripha; /* With reversed addresses */
mblk_t *first_mp;
ipsec_in_t *ii;
tcph_t *tcph;
conn_t *connp;
first_mp = mp;
if (mctl_present) {
mp = first_mp->b_cont;
ASSERT(mp != NULL);
ii = (ipsec_in_t *)first_mp->b_rptr;
ASSERT(ii->ipsec_in_type == IPSEC_IN);
} else {
ii = NULL;
}
switch (ipha->ipha_protocol) {
case IPPROTO_UDP:
/*
* Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
* transport header.
*/
if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
mp->b_wptr) {
if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto drop_pkt;
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
up = (uint16_t *)((uchar_t *)ipha + hdr_length);
/*
* Attempt to find a client stream based on port.
* Note that we do a reverse lookup since the header is
* in the form we sent it out.
* The ripha header is only used for the IP_UDP_MATCH and we
* only set the src and dst addresses and protocol.
*/
ripha.ipha_src = ipha->ipha_dst;
ripha.ipha_dst = ipha->ipha_src;
ripha.ipha_protocol = ipha->ipha_protocol;
((uint16_t *)&ports)[0] = up[1];
((uint16_t *)&ports)[1] = up[0];
ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n",
ntohl(ipha->ipha_src), ntohs(up[0]),
ntohl(ipha->ipha_dst), ntohs(up[1]),
icmph->icmph_type, icmph->icmph_code));
/* Have to change db_type after any pullupmsg */
DB_TYPE(mp) = M_CTL;
ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0,
mctl_present, ip_policy, recv_ill, zoneid);
return;
case IPPROTO_TCP:
/*
* Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
* transport header.
*/
if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
mp->b_wptr) {
if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto drop_pkt;
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
/*
* Find a TCP client stream for this packet.
* Note that we do a reverse lookup since the header is
* in the form we sent it out.
*/
tcph = (tcph_t *)((uchar_t *)ipha + hdr_length);
connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN);
if (connp == NULL) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto drop_pkt;
}
/* Have to change db_type after any pullupmsg */
DB_TYPE(mp) = M_CTL;
squeue_fill(connp->conn_sqp, first_mp, tcp_input,
connp, SQTAG_TCP_INPUT_ICMP_ERR);
return;
case IPPROTO_SCTP:
/*
* Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
* transport header.
*/
if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
mp->b_wptr) {
if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto drop_pkt;
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
up = (uint16_t *)((uchar_t *)ipha + hdr_length);
/*
* Find a SCTP client stream for this packet.
* Note that we do a reverse lookup since the header is
* in the form we sent it out.
* The ripha header is only used for the matching and we
* only set the src and dst addresses, protocol, and version.
*/
ripha.ipha_src = ipha->ipha_dst;
ripha.ipha_dst = ipha->ipha_src;
ripha.ipha_protocol = ipha->ipha_protocol;
ripha.ipha_version_and_hdr_length =
ipha->ipha_version_and_hdr_length;
((uint16_t *)&ports)[0] = up[1];
((uint16_t *)&ports)[1] = up[0];
/* Have to change db_type after any pullupmsg */
DB_TYPE(mp) = M_CTL;
ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0,
mctl_present, ip_policy, 0, zoneid);
return;
case IPPROTO_ESP:
case IPPROTO_AH: {
int ipsec_rc;
/*
* We need a IPSEC_IN in the front to fanout to AH/ESP.
* We will re-use the IPSEC_IN if it is already present as
* AH/ESP will not affect any fields in the IPSEC_IN for
* ICMP errors. If there is no IPSEC_IN, allocate a new
* one and attach it in the front.
*/
if (ii != NULL) {
/*
* ip_fanout_proto_again converts the ICMP errors
* that come back from AH/ESP to M_DATA so that
* if it is non-AH/ESP and we do a pullupmsg in
* this function, it would work. Convert it back
* to M_CTL before we send up as this is a ICMP
* error. This could have been generated locally or
* by some router. Validate the inner IPSEC
* headers.
*
* NOTE : ill_index is used by ip_fanout_proto_again
* to locate the ill.
*/
ASSERT(ill != NULL);
ii->ipsec_in_ill_index =
ill->ill_phyint->phyint_ifindex;
ii->ipsec_in_rill_index =
recv_ill->ill_phyint->phyint_ifindex;
DB_TYPE(first_mp->b_cont) = M_CTL;
} else {
/*
* IPSEC_IN is not present. We attach a ipsec_in
* message and send up to IPSEC for validating
* and removing the IPSEC headers. Clear
* ipsec_in_secure so that when we return
* from IPSEC, we don't mistakenly think that this
* is a secure packet came from the network.
*
* NOTE : ill_index is used by ip_fanout_proto_again
* to locate the ill.
*/
ASSERT(first_mp == mp);
first_mp = ipsec_in_alloc(B_TRUE);
if (first_mp == NULL) {
freemsg(mp);
BUMP_MIB(&ip_mib, ipInDiscards);
return;
}
ii = (ipsec_in_t *)first_mp->b_rptr;
/* This is not a secure packet */
ii->ipsec_in_secure = B_FALSE;
first_mp->b_cont = mp;
DB_TYPE(mp) = M_CTL;
ASSERT(ill != NULL);
ii->ipsec_in_ill_index =
ill->ill_phyint->phyint_ifindex;
ii->ipsec_in_rill_index =
recv_ill->ill_phyint->phyint_ifindex;
}
ip2dbg(("icmp_inbound_error: ipsec\n"));
if (!ipsec_loaded()) {
ip_proto_not_sup(q, first_mp, 0, zoneid);
return;
}
if (ipha->ipha_protocol == IPPROTO_ESP)
ipsec_rc = ipsecesp_icmp_error(first_mp);
else
ipsec_rc = ipsecah_icmp_error(first_mp);
if (ipsec_rc == IPSEC_STATUS_FAILED)
return;
ip_fanout_proto_again(first_mp, ill, recv_ill, NULL);
return;
}
default:
/*
* The ripha header is only used for the lookup and we
* only set the src and dst addresses and protocol.
*/
ripha.ipha_src = ipha->ipha_dst;
ripha.ipha_dst = ipha->ipha_src;
ripha.ipha_protocol = ipha->ipha_protocol;
ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n",
ripha.ipha_protocol, ntohl(ipha->ipha_src),
ntohl(ipha->ipha_dst),
icmph->icmph_type, icmph->icmph_code));
if (ipha->ipha_protocol == IPPROTO_ENCAP) {
ipha_t *in_ipha;
if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
mp->b_wptr) {
if (!pullupmsg(mp, (uchar_t *)ipha +
hdr_length + sizeof (ipha_t) -
mp->b_rptr)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto drop_pkt;
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
}
/*
* Caller has verified that length has to be
* at least the size of IP header.
*/
ASSERT(hdr_length >= sizeof (ipha_t));
/*
* Check the sanity of the inner IP header like
* we did for the outer header.
*/
in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto drop_pkt;
}
if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto drop_pkt;
}
/* Check for Self-encapsulated tunnels */
if (in_ipha->ipha_src == ipha->ipha_src &&
in_ipha->ipha_dst == ipha->ipha_dst) {
mp = icmp_inbound_self_encap_error(mp,
iph_hdr_length, hdr_length);
if (mp == NULL)
goto drop_pkt;
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
hdr_length = IPH_HDR_LENGTH(ipha);
/*
* The packet in error is self-encapsualted.
* And we are finding it further encapsulated
* which we could not have possibly generated.
*/
if (ipha->ipha_protocol == IPPROTO_ENCAP) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto drop_pkt;
}
icmp_inbound_error_fanout(q, ill, first_mp,
icmph, ipha, iph_hdr_length, hdr_length,
mctl_present, ip_policy, recv_ill, zoneid);
return;
}
}
if ((ipha->ipha_protocol == IPPROTO_ENCAP ||
ipha->ipha_protocol == IPPROTO_IPV6) &&
icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
ii != NULL &&
ii->ipsec_in_loopback &&
ii->ipsec_in_secure) {
/*
* For IP tunnels that get a looped-back
* ICMP_FRAGMENTATION_NEEDED message, adjust the
* reported new MTU to take into account the IPsec
* headers protecting this configured tunnel.
*
* This allows the tunnel module (tun.c) to blindly
* accept the MTU reported in an ICMP "too big"
* message.
*
* Non-looped back ICMP messages will just be
* handled by the security protocols (if needed),
* and the first subsequent packet will hit this
* path.
*/
icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) -
ipsec_in_extra_length(first_mp));
}
/* Have to change db_type after any pullupmsg */
DB_TYPE(mp) = M_CTL;
ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present,
ip_policy, recv_ill, zoneid);
return;
}
/* NOTREACHED */
drop_pkt:;
ip1dbg(("icmp_inbound_error_fanout: drop pkt\n"));
freemsg(first_mp);
}
/*
* Common IP options parser.
*
* Setup routine: fill in *optp with options-parsing state, then
* tail-call ipoptp_next to return the first option.
*/
uint8_t
ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
{
uint32_t totallen; /* total length of all options */
totallen = ipha->ipha_version_and_hdr_length -
(uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
totallen <<= 2;
optp->ipoptp_next = (uint8_t *)(&ipha[1]);
optp->ipoptp_end = optp->ipoptp_next + totallen;
optp->ipoptp_flags = 0;
return (ipoptp_next(optp));
}
/*
* Common IP options parser: extract next option.
*/
uint8_t
ipoptp_next(ipoptp_t *optp)
{
uint8_t *end = optp->ipoptp_end;
uint8_t *cur = optp->ipoptp_next;
uint8_t opt, len, pointer;
/*
* If cur > end already, then the ipoptp_end or ipoptp_next pointer
* has been corrupted.
*/
ASSERT(cur <= end);
if (cur == end)
return (IPOPT_EOL);
opt = cur[IPOPT_OPTVAL];
/*
* Skip any NOP options.
*/
while (opt == IPOPT_NOP) {
cur++;
if (cur == end)
return (IPOPT_EOL);
opt = cur[IPOPT_OPTVAL];
}
if (opt == IPOPT_EOL)
return (IPOPT_EOL);
/*
* Option requiring a length.
*/
if ((cur + 1) >= end) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (IPOPT_EOL);
}
len = cur[IPOPT_OLEN];
if (len < 2) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (IPOPT_EOL);
}
optp->ipoptp_cur = cur;
optp->ipoptp_len = len;
optp->ipoptp_next = cur + len;
if (cur + len > end) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (IPOPT_EOL);
}
/*
* For the options which require a pointer field, make sure
* its there, and make sure it points to either something
* inside this option, or the end of the option.
*/
switch (opt) {
case IPOPT_RR:
case IPOPT_TS:
case IPOPT_LSRR:
case IPOPT_SSRR:
if (len <= IPOPT_OFFSET) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (opt);
}
pointer = cur[IPOPT_OFFSET];
if (pointer - 1 > len) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (opt);
}
break;
}
/*
* Sanity check the pointer field based on the type of the
* option.
*/
switch (opt) {
case IPOPT_RR:
case IPOPT_SSRR:
case IPOPT_LSRR:
if (pointer < IPOPT_MINOFF_SR)
optp->ipoptp_flags |= IPOPTP_ERROR;
break;
case IPOPT_TS:
if (pointer < IPOPT_MINOFF_IT)
optp->ipoptp_flags |= IPOPTP_ERROR;
/*
* Note that the Internet Timestamp option also
* contains two four bit fields (the Overflow field,
* and the Flag field), which follow the pointer
* field. We don't need to check that these fields
* fall within the length of the option because this
* was implicitely done above. We've checked that the
* pointer value is at least IPOPT_MINOFF_IT, and that
* it falls within the option. Since IPOPT_MINOFF_IT >
* IPOPT_POS_OV_FLG, we don't need the explicit check.
*/
ASSERT(len > IPOPT_POS_OV_FLG);
break;
}
return (opt);
}
/*
* Use the outgoing IP header to create an IP_OPTIONS option the way
* it was passed down from the application.
*/
int
ip_opt_get_user(const ipha_t *ipha, uchar_t *buf)
{
ipoptp_t opts;
const uchar_t *opt;
uint8_t optval;
uint8_t optlen;
uint32_t len = 0;
uchar_t *buf1 = buf;
buf += IP_ADDR_LEN; /* Leave room for final destination */
len += IP_ADDR_LEN;
bzero(buf1, IP_ADDR_LEN);
/*
* OK to cast away const here, as we don't store through the returned
* opts.ipoptp_cur pointer.
*/
for (optval = ipoptp_first(&opts, (ipha_t *)ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
int off;
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
switch (optval) {
case IPOPT_SSRR:
case IPOPT_LSRR:
/*
* Insert ipha_dst as the first entry in the source
* route and move down the entries on step.
* The last entry gets placed at buf1.
*/
buf[IPOPT_OPTVAL] = optval;
buf[IPOPT_OLEN] = optlen;
buf[IPOPT_OFFSET] = optlen;
off = optlen - IP_ADDR_LEN;
if (off < 0) {
/* No entries in source route */
break;
}
/* Last entry in source route */
bcopy(opt + off, buf1, IP_ADDR_LEN);
off -= IP_ADDR_LEN;
while (off > 0) {
bcopy(opt + off,
buf + off + IP_ADDR_LEN,
IP_ADDR_LEN);
off -= IP_ADDR_LEN;
}
/* ipha_dst into first slot */
bcopy(&ipha->ipha_dst,
buf + off + IP_ADDR_LEN,
IP_ADDR_LEN);
buf += optlen;
len += optlen;
break;
case IPOPT_COMSEC:
case IPOPT_SECURITY:
/* if passing up a label is not ok, then remove */
if (is_system_labeled())
break;
/* FALLTHROUGH */
default:
bcopy(opt, buf, optlen);
buf += optlen;
len += optlen;
break;
}
}
done:
/* Pad the resulting options */
while (len & 0x3) {
*buf++ = IPOPT_EOL;
len++;
}
return (len);
}
/*
* Update any record route or timestamp options to include this host.
* Reverse any source route option.
* This routine assumes that the options are well formed i.e. that they
* have already been checked.
*/
static void
icmp_options_update(ipha_t *ipha)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
ipaddr_t src; /* Our local address */
ipaddr_t dst;
ip2dbg(("icmp_options_update\n"));
src = ipha->ipha_src;
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
opt = opts.ipoptp_cur;
ip2dbg(("icmp_options_update: opt %d, len %d\n",
optval, opts.ipoptp_len));
switch (optval) {
int off1, off2;
case IPOPT_SSRR:
case IPOPT_LSRR:
/*
* Reverse the source route. The first entry
* should be the next to last one in the current
* source route (the last entry is our address).
* The last entry should be the final destination.
*/
off1 = IPOPT_MINOFF_SR - 1;
off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
if (off2 < 0) {
/* No entries in source route */
ip1dbg((
"icmp_options_update: bad src route\n"));
break;
}
bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
off2 -= IP_ADDR_LEN;
while (off1 < off2) {
bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
bcopy((char *)opt + off2, (char *)opt + off1,
IP_ADDR_LEN);
bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
off1 += IP_ADDR_LEN;
off2 -= IP_ADDR_LEN;
}
opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
break;
}
}
}
/*
* Process received ICMP Redirect messages.
*/
/* ARGSUSED */
static void
icmp_redirect(mblk_t *mp)
{
ipha_t *ipha;
int iph_hdr_length;
icmph_t *icmph;
ipha_t *ipha_err;
ire_t *ire;
ire_t *prev_ire;
ire_t *save_ire;
ipaddr_t src, dst, gateway;
iulp_t ulp_info = { 0 };
int error;
ipha = (ipha_t *)mp->b_rptr;
iph_hdr_length = IPH_HDR_LENGTH(ipha);
if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) <
sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) {
BUMP_MIB(&icmp_mib, icmpInErrors);
freemsg(mp);
return;
}
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha_err = (ipha_t *)&icmph[1];
src = ipha->ipha_src;
dst = ipha_err->ipha_dst;
gateway = icmph->icmph_rd_gateway;
/* Make sure the new gateway is reachable somehow. */
ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE);
/*
* Make sure we had a route for the dest in question and that
* that route was pointing to the old gateway (the source of the
* redirect packet.)
*/
prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES,
NULL, MATCH_IRE_GW);
/*
* Check that
* the redirect was not from ourselves
* the new gateway and the old gateway are directly reachable
*/
if (!prev_ire ||
!ire ||
ire->ire_type == IRE_LOCAL) {
BUMP_MIB(&icmp_mib, icmpInBadRedirects);
freemsg(mp);
if (ire != NULL)
ire_refrele(ire);
if (prev_ire != NULL)
ire_refrele(prev_ire);
return;
}
/*
* Should we use the old ULP info to create the new gateway? From
* a user's perspective, we should inherit the info so that it
* is a "smooth" transition. If we do not do that, then new
* connections going thru the new gateway will have no route metrics,
* which is counter-intuitive to user. From a network point of
* view, this may or may not make sense even though the new gateway
* is still directly connected to us so the route metrics should not
* change much.
*
* But if the old ire_uinfo is not initialized, we do another
* recursive lookup on the dest using the new gateway. There may
* be a route to that. If so, use it to initialize the redirect
* route.
*/
if (prev_ire->ire_uinfo.iulp_set) {
bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t));
} else {
ire_t *tmp_ire;
ire_t *sire;
tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire,
ALL_ZONES, 0, NULL,
(MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT));
if (sire != NULL) {
bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t));
/*
* If sire != NULL, ire_ftable_lookup() should not
* return a NULL value.
*/
ASSERT(tmp_ire != NULL);
ire_refrele(tmp_ire);
ire_refrele(sire);
} else if (tmp_ire != NULL) {
bcopy(&tmp_ire->ire_uinfo, &ulp_info,
sizeof (iulp_t));
ire_refrele(tmp_ire);
}
}
if (prev_ire->ire_type == IRE_CACHE)
ire_delete(prev_ire);
ire_refrele(prev_ire);
/*
* TODO: more precise handling for cases 0, 2, 3, the latter two
* require TOS routing
*/
switch (icmph->icmph_code) {
case 0:
case 1:
/* TODO: TOS specificity for cases 2 and 3 */
case 2:
case 3:
break;
default:
freemsg(mp);
BUMP_MIB(&icmp_mib, icmpInBadRedirects);
ire_refrele(ire);
return;
}
/*
* Create a Route Association. This will allow us to remember that
* someone we believe told us to use the particular gateway.
*/
save_ire = ire;
ire = ire_create(
(uchar_t *)&dst, /* dest addr */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&save_ire->ire_src_addr, /* source addr */
(uchar_t *)&gateway, /* gateway addr */
NULL, /* no in_srcaddr */
&save_ire->ire_max_frag, /* max frag */
NULL, /* Fast Path header */
NULL, /* no rfq */
NULL, /* no stq */
IRE_HOST,
NULL,
NULL,
NULL,
0,
0,
0,
(RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
&ulp_info,
NULL,
NULL);
if (ire == NULL) {
freemsg(mp);
ire_refrele(save_ire);
return;
}
error = ire_add(&ire, NULL, NULL, NULL, B_FALSE);
ire_refrele(save_ire);
atomic_inc_32(&ip_redirect_cnt);
if (error == 0) {
ire_refrele(ire); /* Held in ire_add_v4 */
/* tell routing sockets that we received a redirect */
ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
(RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
(RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR));
}
/*
* Delete any existing IRE_HOST type redirect ires for this destination.
* This together with the added IRE has the effect of
* modifying an existing redirect.
*/
prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL,
ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE));
if (prev_ire != NULL) {
if (prev_ire ->ire_flags & RTF_DYNAMIC)
ire_delete(prev_ire);
ire_refrele(prev_ire);
}
freemsg(mp);
}
/*
* Generate an ICMP parameter problem message.
*/
static void
icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid)
{
icmph_t icmph;
boolean_t mctl_present;
mblk_t *first_mp;
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
if (!(mp = icmp_pkt_err_ok(mp))) {
if (mctl_present)
freeb(first_mp);
return;
}
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_PARAM_PROBLEM;
icmph.icmph_pp_ptr = ptr;
BUMP_MIB(&icmp_mib, icmpOutParmProbs);
icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid);
}
/*
* Build and ship an IPv4 ICMP message using the packet data in mp, and
* the ICMP header pointed to by "stuff". (May be called as writer.)
* Note: assumes that icmp_pkt_err_ok has been called to verify that
* an icmp error packet can be sent.
* Assigns an appropriate source address to the packet. If ipha_dst is
* one of our addresses use it for source. Otherwise pick a source based
* on a route lookup back to ipha_src.
* Note that ipha_src must be set here since the
* packet is likely to arrive on an ill queue in ip_wput() which will
* not set a source address.
*/
static void
icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len,
boolean_t mctl_present, zoneid_t zoneid)
{
ipaddr_t dst;
icmph_t *icmph;
ipha_t *ipha;
uint_t len_needed;
size_t msg_len;
mblk_t *mp1;
ipaddr_t src;
ire_t *ire;
mblk_t *ipsec_mp;
ipsec_out_t *io = NULL;
boolean_t xmit_if_on = B_FALSE;
if (mctl_present) {
/*
* If it is :
*
* 1) a IPSEC_OUT, then this is caused by outbound
* datagram originating on this host. IPSEC processing
* may or may not have been done. Refer to comments above
* icmp_inbound_error_fanout for details.
*
* 2) a IPSEC_IN if we are generating a icmp_message
* for an incoming datagram destined for us i.e called
* from ip_fanout_send_icmp.
*/
ipsec_info_t *in;
ipsec_mp = mp;
mp = ipsec_mp->b_cont;
in = (ipsec_info_t *)ipsec_mp->b_rptr;
ipha = (ipha_t *)mp->b_rptr;
ASSERT(in->ipsec_info_type == IPSEC_OUT ||
in->ipsec_info_type == IPSEC_IN);
if (in->ipsec_info_type == IPSEC_IN) {
/*
* Convert the IPSEC_IN to IPSEC_OUT.
*/
if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) {
BUMP_MIB(&ip_mib, ipOutDiscards);
return;
}
io = (ipsec_out_t *)ipsec_mp->b_rptr;
} else {
ASSERT(in->ipsec_info_type == IPSEC_OUT);
io = (ipsec_out_t *)in;
if (io->ipsec_out_xmit_if)
xmit_if_on = B_TRUE;
/*
* Clear out ipsec_out_proc_begin, so we do a fresh
* ire lookup.
*/
io->ipsec_out_proc_begin = B_FALSE;
}
ASSERT(zoneid == io->ipsec_out_zoneid);
ASSERT(zoneid != ALL_ZONES);
} else {
/*
* This is in clear. The icmp message we are building
* here should go out in clear.
*
* Pardon the convolution of it all, but it's easier to
* allocate a "use cleartext" IPSEC_IN message and convert
* it than it is to allocate a new one.
*/
ipsec_in_t *ii;
ASSERT(DB_TYPE(mp) == M_DATA);
if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) {
freemsg(mp);
BUMP_MIB(&ip_mib, ipOutDiscards);
return;
}
ii = (ipsec_in_t *)ipsec_mp->b_rptr;
/* This is not a secure packet */
ii->ipsec_in_secure = B_FALSE;
/*
* For trusted extensions using a shared IP address we can
* send using any zoneid.
*/
if (zoneid == ALL_ZONES)
ii->ipsec_in_zoneid = GLOBAL_ZONEID;
else
ii->ipsec_in_zoneid = zoneid;
ipsec_mp->b_cont = mp;
ipha = (ipha_t *)mp->b_rptr;
/*
* Convert the IPSEC_IN to IPSEC_OUT.
*/
if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) {
BUMP_MIB(&ip_mib, ipOutDiscards);
return;
}
io = (ipsec_out_t *)ipsec_mp->b_rptr;
}
/* Remember our eventual destination */
dst = ipha->ipha_src;
ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK),
NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE);
if (ire != NULL &&
(ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) {
src = ipha->ipha_dst;
} else if (!xmit_if_on) {
if (ire != NULL)
ire_refrele(ire);
ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL,
(MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY));
if (ire == NULL) {
BUMP_MIB(&ip_mib, ipOutNoRoutes);
freemsg(ipsec_mp);
return;
}
src = ire->ire_src_addr;
} else {
ipif_t *ipif = NULL;
ill_t *ill;
/*
* This must be an ICMP error coming from
* ip_mrtun_forward(). The src addr should
* be equal to the IP-addr of the outgoing
* interface.
*/
if (io == NULL) {
/* This is not a IPSEC_OUT type control msg */
BUMP_MIB(&ip_mib, ipOutNoRoutes);
freemsg(ipsec_mp);
return;
}
ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE,
NULL, NULL, NULL, NULL);
if (ill != NULL) {
ipif = ipif_get_next_ipif(NULL, ill);
ill_refrele(ill);
}
if (ipif == NULL) {
BUMP_MIB(&ip_mib, ipOutNoRoutes);
freemsg(ipsec_mp);
return;
}
src = ipif->ipif_src_addr;
ipif_refrele(ipif);
}
if (ire != NULL)
ire_refrele(ire);
/*
* Check if we can send back more then 8 bytes in addition
* to the IP header. We will include as much as 64 bytes.
*/
len_needed = IPH_HDR_LENGTH(ipha);
if (ipha->ipha_protocol == IPPROTO_ENCAP &&
(uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) {
len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed));
}
len_needed += ip_icmp_return;
msg_len = msgdsize(mp);
if (msg_len > len_needed) {
(void) adjmsg(mp, len_needed - msg_len);
msg_len = len_needed;
}
mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI);
if (mp1 == NULL) {
BUMP_MIB(&icmp_mib, icmpOutErrors);
freemsg(ipsec_mp);
return;
}
/*
* On an unlabeled system, dblks don't necessarily have creds.
*/
ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL);
if (DB_CRED(mp) != NULL)
mblk_setcred(mp1, DB_CRED(mp));
mp1->b_cont = mp;
mp = mp1;
ASSERT(ipsec_mp->b_datap->db_type == M_CTL &&
ipsec_mp->b_rptr == (uint8_t *)io &&
io->ipsec_out_type == IPSEC_OUT);
ipsec_mp->b_cont = mp;
/*
* Set ipsec_out_icmp_loopback so we can let the ICMP messages this
* node generates be accepted in peace by all on-host destinations.
* If we do NOT assume that all on-host destinations trust
* self-generated ICMP messages, then rework here, ip6.c, and spd.c.
* (Look for ipsec_out_icmp_loopback).
*/
io->ipsec_out_icmp_loopback = B_TRUE;
ipha = (ipha_t *)mp->b_rptr;
mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
*ipha = icmp_ipha;
ipha->ipha_src = src;
ipha->ipha_dst = dst;
ipha->ipha_ttl = ip_def_ttl;
msg_len += sizeof (icmp_ipha) + len;
if (msg_len > IP_MAXPACKET) {
(void) adjmsg(mp, IP_MAXPACKET - msg_len);
msg_len = IP_MAXPACKET;
}
ipha->ipha_length = htons((uint16_t)msg_len);
icmph = (icmph_t *)&ipha[1];
bcopy(stuff, icmph, len);
icmph->icmph_checksum = 0;
icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
if (icmph->icmph_checksum == 0)
icmph->icmph_checksum = 0xFFFF;
BUMP_MIB(&icmp_mib, icmpOutMsgs);
put(q, ipsec_mp);
}
/*
* Determine if an ICMP error packet can be sent given the rate limit.
* The limit consists of an average frequency (icmp_pkt_err_interval measured
* in milliseconds) and a burst size. Burst size number of packets can
* be sent arbitrarely closely spaced.
* The state is tracked using two variables to implement an approximate
* token bucket filter:
* icmp_pkt_err_last - lbolt value when the last burst started
* icmp_pkt_err_sent - number of packets sent in current burst
*/
boolean_t
icmp_err_rate_limit(void)
{
clock_t now = TICK_TO_MSEC(lbolt);
uint_t refilled; /* Number of packets refilled in tbf since last */
uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */
if (err_interval == 0)
return (B_FALSE);
if (icmp_pkt_err_last > now) {
/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
icmp_pkt_err_last = 0;
icmp_pkt_err_sent = 0;
}
/*
* If we are in a burst update the token bucket filter.
* Update the "last" time to be close to "now" but make sure
* we don't loose precision.
*/
if (icmp_pkt_err_sent != 0) {
refilled = (now - icmp_pkt_err_last)/err_interval;
if (refilled > icmp_pkt_err_sent) {
icmp_pkt_err_sent = 0;
} else {
icmp_pkt_err_sent -= refilled;
icmp_pkt_err_last += refilled * err_interval;
}
}
if (icmp_pkt_err_sent == 0) {
/* Start of new burst */
icmp_pkt_err_last = now;
}
if (icmp_pkt_err_sent < ip_icmp_err_burst) {
icmp_pkt_err_sent++;
ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
icmp_pkt_err_sent));
return (B_FALSE);
}
ip1dbg(("icmp_err_rate_limit: dropped\n"));
return (B_TRUE);
}
/*
* Check if it is ok to send an IPv4 ICMP error packet in
* response to the IPv4 packet in mp.
* Free the message and return null if no
* ICMP error packet should be sent.
*/
static mblk_t *
icmp_pkt_err_ok(mblk_t *mp)
{
icmph_t *icmph;
ipha_t *ipha;
uint_t len_needed;
ire_t *src_ire;
ire_t *dst_ire;
if (!mp)
return (NULL);
ipha = (ipha_t *)mp->b_rptr;
if (ip_csum_hdr(ipha)) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
freemsg(mp);
return (NULL);
}
src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST,
NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST,
NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (src_ire != NULL || dst_ire != NULL ||
CLASSD(ipha->ipha_dst) ||
CLASSD(ipha->ipha_src) ||
(ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
/* Note: only errors to the fragment with offset 0 */
BUMP_MIB(&icmp_mib, icmpOutDrops);
freemsg(mp);
if (src_ire != NULL)
ire_refrele(src_ire);
if (dst_ire != NULL)
ire_refrele(dst_ire);
return (NULL);
}
if (ipha->ipha_protocol == IPPROTO_ICMP) {
/*
* Check the ICMP type. RFC 1122 sez: don't send ICMP
* errors in response to any ICMP errors.
*/
len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
if (mp->b_wptr - mp->b_rptr < len_needed) {
if (!pullupmsg(mp, len_needed)) {
BUMP_MIB(&icmp_mib, icmpInErrors);
freemsg(mp);
return (NULL);
}
ipha = (ipha_t *)mp->b_rptr;
}
icmph = (icmph_t *)
(&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
switch (icmph->icmph_type) {
case ICMP_DEST_UNREACHABLE:
case ICMP_SOURCE_QUENCH:
case ICMP_TIME_EXCEEDED:
case ICMP_PARAM_PROBLEM:
case ICMP_REDIRECT:
BUMP_MIB(&icmp_mib, icmpOutDrops);
freemsg(mp);
return (NULL);
default:
break;
}
}
/*
* If this is a labeled system, then check to see if we're allowed to
* send a response to this particular sender. If not, then just drop.
*/
if (is_system_labeled() && !tsol_can_reply_error(mp)) {
ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
BUMP_MIB(&icmp_mib, icmpOutDrops);
freemsg(mp);
return (NULL);
}
if (icmp_err_rate_limit()) {
/*
* Only send ICMP error packets every so often.
* This should be done on a per port/source basis,
* but for now this will suffice.
*/
freemsg(mp);
return (NULL);
}
return (mp);
}
/*
* Generate an ICMP redirect message.
*/
static void
icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway)
{
icmph_t icmph;
/*
* We are called from ip_rput where we could
* not have attached an IPSEC_IN.
*/
ASSERT(mp->b_datap->db_type == M_DATA);
if (!(mp = icmp_pkt_err_ok(mp))) {
return;
}
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_REDIRECT;
icmph.icmph_code = 1;
icmph.icmph_rd_gateway = gateway;
BUMP_MIB(&icmp_mib, icmpOutRedirects);
/* Redirects sent by router, and router is global zone */
icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID);
}
/*
* Generate an ICMP time exceeded message.
*/
void
icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid)
{
icmph_t icmph;
boolean_t mctl_present;
mblk_t *first_mp;
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
if (!(mp = icmp_pkt_err_ok(mp))) {
if (mctl_present)
freeb(first_mp);
return;
}
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_TIME_EXCEEDED;
icmph.icmph_code = code;
BUMP_MIB(&icmp_mib, icmpOutTimeExcds);
icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid);
}
/*
* Generate an ICMP unreachable message.
*/
void
icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid)
{
icmph_t icmph;
mblk_t *first_mp;
boolean_t mctl_present;
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
if (!(mp = icmp_pkt_err_ok(mp))) {
if (mctl_present)
freeb(first_mp);
return;
}
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_DEST_UNREACHABLE;
icmph.icmph_code = code;
BUMP_MIB(&icmp_mib, icmpOutDestUnreachs);
ip2dbg(("send icmp destination unreachable code %d\n", code));
icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present,
zoneid);
}
/*
* Attempt to start recovery of an IPv4 interface that's been shut down as a
* duplicate. As long as someone else holds the address, the interface will
* stay down. When that conflict goes away, the interface is brought back up.
* This is done so that accidental shutdowns of addresses aren't made
* permanent. Your server will recover from a failure.
*
* For DHCP, recovery is not done in the kernel. Instead, it's handled by a
* user space process (dhcpagent).
*
* Recovery completes if ARP reports that the address is now ours (via
* AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation.
*
* This function is entered on a timer expiry; the ID is in ipif_recovery_id.
*/
static void
ipif_dup_recovery(void *arg)
{
ipif_t *ipif = arg;
ill_t *ill = ipif->ipif_ill;
mblk_t *arp_add_mp;
mblk_t *arp_del_mp;
area_t *area;
ipif->ipif_recovery_id = 0;
if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) ||
(ipif->ipif_flags & IPIF_POINTOPOINT)) {
/* No reason to try to bring this address back. */
return;
}
if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL)
goto alloc_fail;
if (ipif->ipif_arp_del_mp == NULL) {
if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL)
goto alloc_fail;
ipif->ipif_arp_del_mp = arp_del_mp;
}
/* Setting the 'unverified' flag restarts DAD */
area = (area_t *)arp_add_mp->b_rptr;
area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
ACE_F_UNVERIFIED;
putnext(ill->ill_rq, arp_add_mp);
return;
alloc_fail:
/* On allocation failure, just restart the timer */
freemsg(arp_add_mp);
if (ip_dup_recovery > 0) {
ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif,
MSEC_TO_TICK(ip_dup_recovery));
}
}
/*
* This is for exclusive changes due to ARP. Either tear down an interface due
* to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery.
*/
/* ARGSUSED */
static void
ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg)
{
ill_t *ill = rq->q_ptr;
arh_t *arh;
ipaddr_t src;
ipif_t *ipif;
char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */
char hbuf[MAC_STR_LEN];
char sbuf[INET_ADDRSTRLEN];
const char *failtype;
boolean_t bring_up;
switch (((arcn_t *)mp->b_rptr)->arcn_code) {
case AR_CN_READY:
failtype = NULL;
bring_up = B_TRUE;
break;
case AR_CN_FAILED:
failtype = "in use";
bring_up = B_FALSE;
break;
default:
failtype = "claimed";
bring_up = B_FALSE;
break;
}
arh = (arh_t *)mp->b_cont->b_rptr;
bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN);
/* Handle failures due to probes */
if (src == 0) {
bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src,
IP_ADDR_LEN);
}
(void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf));
(void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf,
sizeof (hbuf));
(void) ip_dot_addr(src, sbuf);
for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
if ((ipif->ipif_flags & IPIF_POINTOPOINT) ||
ipif->ipif_lcl_addr != src) {
continue;
}
/*
* If we failed on a recovery probe, then restart the timer to
* try again later.
*/
if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) &&
!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) &&
ill->ill_net_type == IRE_IF_RESOLVER &&
ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) {
ipif->ipif_recovery_id = timeout(ipif_dup_recovery,
ipif, MSEC_TO_TICK(ip_dup_recovery));
continue;
}
/*
* If what we're trying to do has already been done, then do
* nothing.
*/
if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0))
continue;
if (ipif->ipif_id != 0) {
(void) snprintf(ibuf + ill->ill_name_length - 1,
sizeof (ibuf) - ill->ill_name_length + 1, ":%d",
ipif->ipif_id);
}
if (failtype == NULL) {
cmn_err(CE_NOTE, "recovered address %s on %s", sbuf,
ibuf);
} else {
cmn_err(CE_WARN, "%s has duplicate address %s (%s "
"by %s); disabled", ibuf, sbuf, failtype, hbuf);
}
if (bring_up) {
ASSERT(ill->ill_dl_up);
/*
* Free up the ARP delete message so we can allocate
* a fresh one through the normal path.
*/
freemsg(ipif->ipif_arp_del_mp);
ipif->ipif_arp_del_mp = NULL;
if (ipif_resolver_up(ipif, Res_act_initial) !=
EINPROGRESS) {
ipif->ipif_addr_ready = 1;
(void) ipif_up_done(ipif);
}
continue;
}
mutex_enter(&ill->ill_lock);
ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
ipif->ipif_flags |= IPIF_DUPLICATE;
ill->ill_ipif_dup_count++;
mutex_exit(&ill->ill_lock);
/*
* Already exclusive on the ill; no need to handle deferred
* processing here.
*/
(void) ipif_down(ipif, NULL, NULL);
ipif_down_tail(ipif);
if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) &&
ill->ill_net_type == IRE_IF_RESOLVER &&
ip_dup_recovery > 0) {
ipif->ipif_recovery_id = timeout(ipif_dup_recovery,
ipif, MSEC_TO_TICK(ip_dup_recovery));
}
}
freemsg(mp);
}
/* ARGSUSED */
static void
ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg)
{
ill_t *ill = rq->q_ptr;
arh_t *arh;
ipaddr_t src;
ipif_t *ipif;
arh = (arh_t *)mp->b_cont->b_rptr;
bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN);
for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src)
(void) ipif_resolver_up(ipif, Res_act_defend);
}
freemsg(mp);
}
/*
* News from ARP. ARP sends notification of interesting events down
* to its clients using M_CTL messages with the interesting ARP packet
* attached via b_cont.
* The interesting event from a device comes up the corresponding ARP-IP-DEV
* queue as opposed to ARP sending the message to all the clients, i.e. all
* its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache
* table if a cache IRE is found to delete all the entries for the address in
* the packet.
*/
static void
ip_arp_news(queue_t *q, mblk_t *mp)
{
arcn_t *arcn;
arh_t *arh;
ire_t *ire = NULL;
char hbuf[MAC_STR_LEN];
char sbuf[INET_ADDRSTRLEN];
ipaddr_t src;
in6_addr_t v6src;
boolean_t isv6 = B_FALSE;
ipif_t *ipif;
ill_t *ill;
if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) {
if (q->q_next) {
putnext(q, mp);
} else
freemsg(mp);
return;
}
arh = (arh_t *)mp->b_cont->b_rptr;
/* Is it one we are interested in? */
if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) {
isv6 = B_TRUE;
bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src,
IPV6_ADDR_LEN);
} else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) {
bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src,
IP_ADDR_LEN);
} else {
freemsg(mp);
return;
}
ill = q->q_ptr;
arcn = (arcn_t *)mp->b_rptr;
switch (arcn->arcn_code) {
case AR_CN_BOGON:
/*
* Someone is sending ARP packets with a source protocol
* address that we have published and for which we believe our
* entry is authoritative and (when ill_arp_extend is set)
* verified to be unique on the network.
*
* The ARP module internally handles the cases where the sender
* is just probing (for DAD) and where the hardware address of
* a non-authoritative entry has changed. Thus, these are the
* real conflicts, and we have to do resolution.
*
* We back away quickly from the address if it's from DHCP or
* otherwise temporary and hasn't been used recently (or at
* all). We'd like to include "deprecated" addresses here as
* well (as there's no real reason to defend something we're
* discarding), but IPMP "reuses" this flag to mean something
* other than the standard meaning.
*
* If the ARP module above is not extended (meaning that it
* doesn't know how to defend the address), then we just log
* the problem as we always did and continue on. It's not
* right, but there's little else we can do, and those old ATM
* users are going away anyway.
*/
(void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen,
hbuf, sizeof (hbuf));
(void) ip_dot_addr(src, sbuf);
if (isv6)
ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL);
else
ire = ire_cache_lookup(src, ALL_ZONES, NULL);
if (ire != NULL && IRE_IS_LOCAL(ire)) {
uint32_t now;
uint32_t maxage;
clock_t lused;
uint_t maxdefense;
uint_t defs;
/*
* First, figure out if this address hasn't been used
* in a while. If it hasn't, then it's a better
* candidate for abandoning.
*/
ipif = ire->ire_ipif;
ASSERT(ipif != NULL);
now = gethrestime_sec();
maxage = now - ire->ire_create_time;
if (maxage > ip_max_temp_idle)
maxage = ip_max_temp_idle;
lused = drv_hztousec(ddi_get_lbolt() -
ire->ire_last_used_time) / MICROSEC + 1;
if (lused >= maxage && (ipif->ipif_flags &
(IPIF_DHCPRUNNING | IPIF_TEMPORARY)))
maxdefense = ip_max_temp_defend;
else
maxdefense = ip_max_defend;
/*
* Now figure out how many times we've defended
* ourselves. Ignore defenses that happened long in
* the past.
*/
mutex_enter(&ire->ire_lock);
if ((defs = ire->ire_defense_count) > 0 &&
now - ire->ire_defense_time > ip_defend_interval) {
ire->ire_defense_count = defs = 0;
}
ire->ire_defense_count++;
ire->ire_defense_time = now;
mutex_exit(&ire->ire_lock);
ill_refhold(ill);
ire_refrele(ire);
/*
* If we've defended ourselves too many times already,
* then give up and tear down the interface(s) using
* this address. Otherwise, defend by sending out a
* gratuitous ARP.
*/
if (defs >= maxdefense && ill->ill_arp_extend) {
(void) qwriter_ip(NULL, ill, q, mp,
ip_arp_excl, CUR_OP, B_FALSE);
} else {
cmn_err(CE_WARN,
"node %s is using our IP address %s on %s",
hbuf, sbuf, ill->ill_name);
/*
* If this is an old (ATM) ARP module, then
* don't try to defend the address. Remain
* compatible with the old behavior. Defend
* only with new ARP.
*/
if (ill->ill_arp_extend) {
(void) qwriter_ip(NULL, ill, q, mp,
ip_arp_defend, CUR_OP, B_FALSE);
} else {
ill_refrele(ill);
}
}
return;
}
cmn_err(CE_WARN,
"proxy ARP problem? Node '%s' is using %s on %s",
hbuf, sbuf, ill->ill_name);
if (ire != NULL)
ire_refrele(ire);
break;
case AR_CN_ANNOUNCE:
if (isv6) {
/*
* For XRESOLV interfaces.
* Delete the IRE cache entry and NCE for this
* v6 address
*/
ip_ire_clookup_and_delete_v6(&v6src);
/*
* If v6src is a non-zero, it's a router address
* as below. Do the same sort of thing to clean
* out off-net IRE_CACHE entries that go through
* the router.
*/
if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) {
ire_walk_v6(ire_delete_cache_gw_v6,
(char *)&v6src, ALL_ZONES);
}
} else {
nce_hw_map_t hwm;
/*
* ARP gives us a copy of any packet where it thinks
* the address has changed, so that we can update our
* caches. We're responsible for caching known answers
* in the current design. We check whether the
* hardware address really has changed in all of our
* entries that have cached this mapping, and if so, we
* blow them away. This way we will immediately pick
* up the rare case of a host changing hardware
* address.
*/
if (src == 0)
break;
hwm.hwm_addr = src;
hwm.hwm_hwlen = arh->arh_hlen;
hwm.hwm_hwaddr = (uchar_t *)(arh + 1);
ndp_walk_common(&ndp4, NULL,
(pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES);
}
break;
case AR_CN_READY:
/* No external v6 resolver has a contract to use this */
if (isv6)
break;
/* If the link is down, we'll retry this later */
if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING))
break;
ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL,
NULL, NULL);
if (ipif != NULL) {
/*
* If this is a duplicate recovery, then we now need to
* go exclusive to bring this thing back up.
*/
if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) ==
IPIF_DUPLICATE) {
ipif_refrele(ipif);
ill_refhold(ill);
(void) qwriter_ip(NULL, ill, q, mp,
ip_arp_excl, CUR_OP, B_FALSE);
return;
}
/*
* If this is the first notice that this address is
* ready, then let the user know now.
*/
if ((ipif->ipif_flags & IPIF_UP) &&
!ipif->ipif_addr_ready) {
ipif_mask_reply(ipif);
ip_rts_ifmsg(ipif);
ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
sctp_update_ipif(ipif, SCTP_IPIF_UP);
}
ipif->ipif_addr_ready = 1;
ipif_refrele(ipif);
}
ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp));
if (ire != NULL) {
ire->ire_defense_count = 0;
ire_refrele(ire);
}
break;
case AR_CN_FAILED:
/* No external v6 resolver has a contract to use this */
if (isv6)
break;
ill_refhold(ill);
(void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP,
B_FALSE);
return;
}
freemsg(mp);
}
/*
* Create a mblk suitable for carrying the interface index and/or source link
* address. This mblk is tagged as an M_CTL and is sent to ULP. This is used
* when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user
* application.
*/
mblk_t *
ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags)
{
mblk_t *mp;
in_pktinfo_t *pinfo;
ipha_t *ipha;
struct ether_header *pether;
mp = allocb(sizeof (in_pktinfo_t), BPRI_MED);
if (mp == NULL) {
ip1dbg(("ip_add_info: allocation failure.\n"));
return (data_mp);
}
ipha = (ipha_t *)data_mp->b_rptr;
pinfo = (in_pktinfo_t *)mp->b_rptr;
bzero(pinfo, sizeof (in_pktinfo_t));
pinfo->in_pkt_flags = (uchar_t)flags;
pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */
if (flags & IPF_RECVIF)
pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex;
pether = (struct ether_header *)((char *)ipha
- sizeof (struct ether_header));
/*
* Make sure the interface is an ethernet type, since this option
* is currently supported only on this type of interface. Also make
* sure we are pointing correctly above db_base.
*/
if ((flags & IPF_RECVSLLA) &&
((uchar_t *)pether >= data_mp->b_datap->db_base) &&
(ill->ill_type == IFT_ETHER) &&
(ill->ill_net_type == IRE_IF_RESOLVER)) {
pinfo->in_pkt_slla.sdl_type = IFT_ETHER;
bcopy((uchar_t *)pether->ether_shost.ether_addr_octet,
(uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL);
} else {
/*
* Clear the bit. Indicate to upper layer that IP is not
* sending this ancillary info.
*/
pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA;
}
mp->b_datap->db_type = M_CTL;
mp->b_wptr += sizeof (in_pktinfo_t);
mp->b_cont = data_mp;
return (mp);
}
/*
* Latch in the IPsec state for a stream based on the ipsec_in_t passed in as
* part of the bind request.
*/
boolean_t
ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp)
{
ipsec_in_t *ii;
ASSERT(policy_mp != NULL);
ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET);
ii = (ipsec_in_t *)policy_mp->b_rptr;
ASSERT(ii->ipsec_in_type == IPSEC_IN);
connp->conn_policy = ii->ipsec_in_policy;
ii->ipsec_in_policy = NULL;
if (ii->ipsec_in_action != NULL) {
if (connp->conn_latch == NULL) {
connp->conn_latch = iplatch_create();
if (connp->conn_latch == NULL)
return (B_FALSE);
}
ipsec_latch_inbound(connp->conn_latch, ii);
}
return (B_TRUE);
}
/*
* Upper level protocols (ULP) pass through bind requests to IP for inspection
* and to arrange for power-fanout assist. The ULP is identified by
* adding a single byte at the end of the original bind message.
* A ULP other than UDP or TCP that wishes to be recognized passes
* down a bind with a zero length address.
*
* The binding works as follows:
* - A zero byte address means just bind to the protocol.
* - A four byte address is treated as a request to validate
* that the address is a valid local address, appropriate for
* an application to bind to. This does not affect any fanout
* information in IP.
* - A sizeof sin_t byte address is used to bind to only the local address
* and port.
* - A sizeof ipa_conn_t byte address contains complete fanout information
* consisting of local and remote addresses and ports. In
* this case, the addresses are both validated as appropriate
* for this operation, and, if so, the information is retained
* for use in the inbound fanout.
*
* The ULP (except in the zero-length bind) can append an
* additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the
* T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants
* a copy of the source or destination IRE (source for local bind;
* destination for complete bind). IPSEC_POLICY_SET indicates that the
* policy information contained should be copied on to the conn.
*
* NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present.
*/
mblk_t *
ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp)
{
ssize_t len;
struct T_bind_req *tbr;
sin_t *sin;
ipa_conn_t *ac;
uchar_t *ucp;
mblk_t *mp1;
boolean_t ire_requested;
boolean_t ipsec_policy_set = B_FALSE;
int error = 0;
int protocol;
ipa_conn_x_t *acx;
ASSERT(!connp->conn_af_isv6);
connp->conn_pkt_isv6 = B_FALSE;
len = MBLKL(mp);
if (len < (sizeof (*tbr) + 1)) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"ip_bind: bogus msg, len %ld", len);
/* XXX: Need to return something better */
goto bad_addr;
}
/* Back up and extract the protocol identifier. */
mp->b_wptr--;
protocol = *mp->b_wptr & 0xFF;
tbr = (struct T_bind_req *)mp->b_rptr;
/* Reset the message type in preparation for shipping it back. */
DB_TYPE(mp) = M_PCPROTO;
connp->conn_ulp = (uint8_t)protocol;
/*
* Check for a zero length address. This is from a protocol that
* wants to register to receive all packets of its type.
*/
if (tbr->ADDR_length == 0) {
/*
* These protocols are now intercepted in ip_bind_v6().
* Reject protocol-level binds here for now.
*
* For SCTP raw socket, ICMP sends down a bind with sin_t
* so that the protocol type cannot be SCTP.
*/
if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH ||
protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) {
goto bad_addr;
}
/*
*
* The udp module never sends down a zero-length address,
* and allowing this on a labeled system will break MLP
* functionality.
*/
if (is_system_labeled() && protocol == IPPROTO_UDP)
goto bad_addr;
if (connp->conn_mac_exempt)
goto bad_addr;
/* No hash here really. The table is big enough. */
connp->conn_srcv6 = ipv6_all_zeros;
ipcl_proto_insert(connp, protocol);
tbr->PRIM_type = T_BIND_ACK;
return (mp);
}
/* Extract the address pointer from the message. */
ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset,
tbr->ADDR_length);
if (ucp == NULL) {
ip1dbg(("ip_bind: no address\n"));
goto bad_addr;
}
if (!OK_32PTR(ucp)) {
ip1dbg(("ip_bind: unaligned address\n"));
goto bad_addr;
}
/*
* Check for trailing mps.
*/
mp1 = mp->b_cont;
ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE);
ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET);
switch (tbr->ADDR_length) {
default:
ip1dbg(("ip_bind: bad address length %d\n",
(int)tbr->ADDR_length));
goto bad_addr;
case IP_ADDR_LEN:
/* Verification of local address only */
error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0,
ire_requested, ipsec_policy_set, B_FALSE);
break;
case sizeof (sin_t):
sin = (sin_t *)ucp;
error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr,
sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE);
if (protocol == IPPROTO_TCP)
connp->conn_recv = tcp_conn_request;
break;
case sizeof (ipa_conn_t):
ac = (ipa_conn_t *)ucp;
/* For raw socket, the local port is not set. */
if (ac->ac_lport == 0)
ac->ac_lport = connp->conn_lport;
/* Always verify destination reachability. */
error = ip_bind_connected(connp, mp, &ac->ac_laddr,
ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested,
ipsec_policy_set, B_TRUE, B_TRUE);
if (protocol == IPPROTO_TCP)
connp->conn_recv = tcp_input;
break;
case sizeof (ipa_conn_x_t):
acx = (ipa_conn_x_t *)ucp;
/*
* Whether or not to verify destination reachability depends
* on the setting of the ACX_VERIFY_DST flag in acx->acx_flags.
*/
error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr,
acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr,
acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set,
B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0);
if (protocol == IPPROTO_TCP)
connp->conn_recv = tcp_input;
break;
}
if (error == EINPROGRESS)
return (NULL);
else if (error != 0)
goto bad_addr;
/*
* Pass the IPSEC headers size in ire_ipsec_overhead.
* We can't do this in ip_bind_insert_ire because the policy
* may not have been inherited at that point in time and hence
* conn_out_enforce_policy may not be set.
*/
mp1 = mp->b_cont;
if (ire_requested && connp->conn_out_enforce_policy &&
mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) {
ire_t *ire = (ire_t *)mp1->b_rptr;
ASSERT(MBLKL(mp1) >= sizeof (ire_t));
ire->ire_ipsec_overhead = conn_ipsec_length(connp);
}
/* Send it home. */
mp->b_datap->db_type = M_PCPROTO;
tbr->PRIM_type = T_BIND_ACK;
return (mp);
bad_addr:
/*
* If error = -1 then we generate a TBADADDR - otherwise error is
* a unix errno.
*/
if (error > 0)
mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
else
mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
return (mp);
}
/*
* Here address is verified to be a valid local address.
* If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast
* address is also considered a valid local address.
* In the case of a broadcast/multicast address, however, the
* upper protocol is expected to reset the src address
* to 0 if it sees a IRE_BROADCAST type returned so that
* no packets are emitted with broadcast/multicast address as
* source address (that violates hosts requirements RFC1122)
* The addresses valid for bind are:
* (1) - INADDR_ANY (0)
* (2) - IP address of an UP interface
* (3) - IP address of a DOWN interface
* (4) - valid local IP broadcast addresses. In this case
* the conn will only receive packets destined to
* the specified broadcast address.
* (5) - a multicast address. In this case
* the conn will only receive packets destined to
* the specified multicast address. Note: the
* application still has to issue an
* IP_ADD_MEMBERSHIP socket option.
*
* On error, return -1 for TBADADDR otherwise pass the
* errno with TSYSERR reply.
*
* In all the above cases, the bound address must be valid in the current zone.
* When the address is loopback, multicast or broadcast, there might be many
* matching IREs so bind has to look up based on the zone.
*
* Note: lport is in network byte order.
*/
int
ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport,
boolean_t ire_requested, boolean_t ipsec_policy_set,
boolean_t fanout_insert)
{
int error = 0;
ire_t *src_ire;
mblk_t *policy_mp;
ipif_t *ipif;
zoneid_t zoneid;
if (ipsec_policy_set) {
policy_mp = mp->b_cont;
}
/*
* If it was previously connected, conn_fully_bound would have
* been set.
*/
connp->conn_fully_bound = B_FALSE;
src_ire = NULL;
ipif = NULL;
zoneid = IPCL_ZONEID(connp);
if (src_addr) {
src_ire = ire_route_lookup(src_addr, 0, 0, 0,
NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY);
/*
* If an address other than 0.0.0.0 is requested,
* we verify that it is a valid address for bind
* Note: Following code is in if-else-if form for
* readability compared to a condition check.
*/
/* LINTED - statement has no consequent */
if (IRE_IS_LOCAL(src_ire)) {
/*
* (2) Bind to address of local UP interface
*/
} else if (src_ire && src_ire->ire_type == IRE_BROADCAST) {
/*
* (4) Bind to broadcast address
* Note: permitted only from transports that
* request IRE
*/
if (!ire_requested)
error = EADDRNOTAVAIL;
} else {
/*
* (3) Bind to address of local DOWN interface
* (ipif_lookup_addr() looks up all interfaces
* but we do not get here for UP interfaces
* - case (2) above)
* We put the protocol byte back into the mblk
* since we may come back via ip_wput_nondata()
* later with this mblk if ipif_lookup_addr chooses
* to defer processing.
*/
*mp->b_wptr++ = (char)connp->conn_ulp;
if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid,
CONNP_TO_WQ(connp), mp, ip_wput_nondata,
&error)) != NULL) {
ipif_refrele(ipif);
} else if (error == EINPROGRESS) {
if (src_ire != NULL)
ire_refrele(src_ire);
return (EINPROGRESS);
} else if (CLASSD(src_addr)) {
error = 0;
if (src_ire != NULL)
ire_refrele(src_ire);
/*
* (5) bind to multicast address.
* Fake out the IRE returned to upper
* layer to be a broadcast IRE.
*/
src_ire = ire_ctable_lookup(
INADDR_BROADCAST, INADDR_ANY,
IRE_BROADCAST, NULL, zoneid, NULL,
(MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY));
if (src_ire == NULL || !ire_requested)
error = EADDRNOTAVAIL;
} else {
/*
* Not a valid address for bind
*/
error = EADDRNOTAVAIL;
}
/*
* Just to keep it consistent with the processing in
* ip_bind_v4()
*/
mp->b_wptr--;
}
if (error) {
/* Red Alert! Attempting to be a bogon! */
ip1dbg(("ip_bind: bad src address 0x%x\n",
ntohl(src_addr)));
goto bad_addr;
}
}
/*
* Allow setting new policies. For example, disconnects come
* down as ipa_t bind. As we would have set conn_policy_cached
* to B_TRUE before, we should set it to B_FALSE, so that policy
* can change after the disconnect.
*/
connp->conn_policy_cached = B_FALSE;
/*
* If not fanout_insert this was just an address verification
*/
if (fanout_insert) {
/*
* The addresses have been verified. Time to insert in
* the correct fanout list.
*/
IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6);
IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6);
connp->conn_lport = lport;
connp->conn_fport = 0;
/*
* Do we need to add a check to reject Multicast packets
*/
error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport);
}
if (error == 0) {
if (ire_requested) {
if (!ip_bind_insert_ire(mp, src_ire, NULL)) {
error = -1;
/* Falls through to bad_addr */
}
} else if (ipsec_policy_set) {
if (!ip_bind_ipsec_policy_set(connp, policy_mp)) {
error = -1;
/* Falls through to bad_addr */
}
}
}
bad_addr:
if (error != 0) {
if (connp->conn_anon_port) {
(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
connp->conn_mlp_type, connp->conn_ulp, ntohs(lport),
B_FALSE);
}
connp->conn_mlp_type = mlptSingle;
}
if (src_ire != NULL)
IRE_REFRELE(src_ire);
if (ipsec_policy_set) {
ASSERT(policy_mp == mp->b_cont);
ASSERT(policy_mp != NULL);
freeb(policy_mp);
/*
* As of now assume that nothing else accompanies
* IPSEC_POLICY_SET.
*/
mp->b_cont = NULL;
}
return (error);
}
/*
* Verify that both the source and destination addresses
* are valid. If verify_dst is false, then the destination address may be
* unreachable, i.e. have no route to it. Protocols like TCP want to verify
* destination reachability, while tunnels do not.
* Note that we allow connect to broadcast and multicast
* addresses when ire_requested is set. Thus the ULP
* has to check for IRE_BROADCAST and multicast.
*
* Returns zero if ok.
* On error: returns -1 to mean TBADADDR otherwise returns an errno
* (for use with TSYSERR reply).
*
* Note: lport and fport are in network byte order.
*/
int
ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp,
uint16_t lport, ipaddr_t dst_addr, uint16_t fport,
boolean_t ire_requested, boolean_t ipsec_policy_set,
boolean_t fanout_insert, boolean_t verify_dst)
{
ire_t *src_ire;
ire_t *dst_ire;
int error = 0;
int protocol;
mblk_t *policy_mp;
ire_t *sire = NULL;
ire_t *md_dst_ire = NULL;
ill_t *md_ill = NULL;
zoneid_t zoneid;
ipaddr_t src_addr = *src_addrp;
src_ire = dst_ire = NULL;
protocol = *mp->b_wptr & 0xFF;
/*
* If we never got a disconnect before, clear it now.
*/
connp->conn_fully_bound = B_FALSE;
if (ipsec_policy_set) {
policy_mp = mp->b_cont;
}
zoneid = IPCL_ZONEID(connp);
if (CLASSD(dst_addr)) {
/* Pick up an IRE_BROADCAST */
dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL,
NULL, zoneid, MBLK_GETLABEL(mp),
(MATCH_IRE_RECURSIVE |
MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE |
MATCH_IRE_SECATTR));
} else {
/*
* If conn_dontroute is set or if conn_nexthop_set is set,
* and onlink ipif is not found set ENETUNREACH error.
*/
if (connp->conn_dontroute || connp->conn_nexthop_set) {
ipif_t *ipif;
ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ?
dst_addr : connp->conn_nexthop_v4,
connp->conn_zoneid);
if (ipif == NULL) {
error = ENETUNREACH;
goto bad_addr;
}
ipif_refrele(ipif);
}
if (connp->conn_nexthop_set) {
dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0,
0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp),
MATCH_IRE_SECATTR);
} else {
dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL,
&sire, zoneid, MBLK_GETLABEL(mp),
(MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE |
MATCH_IRE_SECATTR));
}
}
/*
* dst_ire can't be a broadcast when not ire_requested.
* We also prevent ire's with src address INADDR_ANY to
* be used, which are created temporarily for
* sending out packets from endpoints that have
* conn_unspec_src set. If verify_dst is true, the destination must be
* reachable. If verify_dst is false, the destination needn't be
* reachable.
*
* If we match on a reject or black hole, then we've got a
* local failure. May as well fail out the connect() attempt,
* since it's never going to succeed.
*/
if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY ||
(dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) {
/*
* If we're verifying destination reachability, we always want
* to complain here.
*
* If we're not verifying destination reachability but the
* destination has a route, we still want to fail on the
* temporary address and broadcast address tests.
*/
if (verify_dst || (dst_ire != NULL)) {
if (ip_debug > 2) {
pr_addr_dbg("ip_bind_connected: bad connected "
"dst %s\n", AF_INET, &dst_addr);
}
if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST))
error = ENETUNREACH;
else
error = EHOSTUNREACH;
goto bad_addr;
}
}
/*
* We now know that routing will allow us to reach the destination.
* Check whether Trusted Solaris policy allows communication with this
* host, and pretend that the destination is unreachable if not.
*
* This is never a problem for TCP, since that transport is known to
* compute the label properly as part of the tcp_rput_other T_BIND_ACK
* handling. If the remote is unreachable, it will be detected at that
* point, so there's no reason to check it here.
*
* Note that for sendto (and other datagram-oriented friends), this
* check is done as part of the data path label computation instead.
* The check here is just to make non-TCP connect() report the right
* error.
*/
if (dst_ire != NULL && is_system_labeled() &&
!IPCL_IS_TCP(connp) &&
tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL,
connp->conn_mac_exempt) != 0) {
error = EHOSTUNREACH;
if (ip_debug > 2) {
pr_addr_dbg("ip_bind_connected: no label for dst %s\n",
AF_INET, &dst_addr);
}
goto bad_addr;
}
/*
* If the app does a connect(), it means that it will most likely
* send more than 1 packet to the destination. It makes sense
* to clear the temporary flag.
*/
if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE &&
(dst_ire->ire_marks & IRE_MARK_TEMPORARY)) {
irb_t *irb = dst_ire->ire_bucket;
rw_enter(&irb->irb_lock, RW_WRITER);
dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY;
irb->irb_tmp_ire_cnt--;
rw_exit(&irb->irb_lock);
}
/*
* See if we should notify ULP about MDT; we do this whether or not
* ire_requested is TRUE, in order to handle active connects; MDT
* eligibility tests for passive connects are handled separately
* through tcp_adapt_ire(). We do this before the source address
* selection, because dst_ire may change after a call to
* ipif_select_source(). This is a best-effort check, as the
* packet for this connection may not actually go through
* dst_ire->ire_stq, and the exact IRE can only be known after
* calling ip_newroute(). This is why we further check on the
* IRE during Multidata packet transmission in tcp_multisend().
*/
if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL &&
!(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) &&
(md_ill = ire_to_ill(dst_ire), md_ill != NULL) &&
ILL_MDT_CAPABLE(md_ill)) {
md_dst_ire = dst_ire;
IRE_REFHOLD(md_dst_ire);
}
if (dst_ire != NULL &&
dst_ire->ire_type == IRE_LOCAL &&
dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) {
/*
* If the IRE belongs to a different zone, look for a matching
* route in the forwarding table and use the source address from
* that route.
*/
src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL,
zoneid, 0, NULL,
MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
MATCH_IRE_RJ_BHOLE);
if (src_ire == NULL) {
error = EHOSTUNREACH;
goto bad_addr;
} else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
if (!(src_ire->ire_type & IRE_HOST))
error = ENETUNREACH;
else
error = EHOSTUNREACH;
goto bad_addr;
}
if (src_addr == INADDR_ANY)
src_addr = src_ire->ire_src_addr;
ire_refrele(src_ire);
src_ire = NULL;
} else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) {
if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
src_addr = sire->ire_src_addr;
ire_refrele(dst_ire);
dst_ire = sire;
sire = NULL;
} else {
/*
* Pick a source address so that a proper inbound
* load spreading would happen.
*/
ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill;
ipif_t *src_ipif = NULL;
ire_t *ipif_ire;
/*
* Supply a local source address such that inbound
* load spreading happens.
*
* Determine the best source address on this ill for
* the destination.
*
* 1) For broadcast, we should return a broadcast ire
* found above so that upper layers know that the
* destination address is a broadcast address.
*
* 2) If this is part of a group, select a better
* source address so that better inbound load
* balancing happens. Do the same if the ipif
* is DEPRECATED.
*
* 3) If the outgoing interface is part of a usesrc
* group, then try selecting a source address from
* the usesrc ILL.
*/
if ((dst_ire->ire_zoneid != zoneid &&
dst_ire->ire_zoneid != ALL_ZONES) ||
(!(dst_ire->ire_type & IRE_BROADCAST) &&
((dst_ill->ill_group != NULL) ||
(dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
(dst_ill->ill_usesrc_ifindex != 0)))) {
/*
* If the destination is reachable via a
* given gateway, the selected source address
* should be in the same subnet as the gateway.
* Otherwise, the destination is not reachable.
*
* If there are no interfaces on the same subnet
* as the destination, ipif_select_source gives
* first non-deprecated interface which might be
* on a different subnet than the gateway.
* This is not desirable. Hence pass the dst_ire
* source address to ipif_select_source.
* It is sure that the destination is reachable
* with the dst_ire source address subnet.
* So passing dst_ire source address to
* ipif_select_source will make sure that the
* selected source will be on the same subnet
* as dst_ire source address.
*/
ipaddr_t saddr =
dst_ire->ire_ipif->ipif_src_addr;
src_ipif = ipif_select_source(dst_ill,
saddr, zoneid);
if (src_ipif != NULL) {
if (IS_VNI(src_ipif->ipif_ill)) {
/*
* For VNI there is no
* interface route
*/
src_addr =
src_ipif->ipif_src_addr;
} else {
ipif_ire =
ipif_to_ire(src_ipif);
if (ipif_ire != NULL) {
IRE_REFRELE(dst_ire);
dst_ire = ipif_ire;
}
src_addr =
dst_ire->ire_src_addr;
}
ipif_refrele(src_ipif);
} else {
src_addr = dst_ire->ire_src_addr;
}
} else {
src_addr = dst_ire->ire_src_addr;
}
}
}
/*
* We do ire_route_lookup() here (and not
* interface lookup as we assert that
* src_addr should only come from an
* UP interface for hard binding.
*/
ASSERT(src_ire == NULL);
src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL,
NULL, zoneid, NULL, MATCH_IRE_ZONEONLY);
/* src_ire must be a local|loopback */
if (!IRE_IS_LOCAL(src_ire)) {
if (ip_debug > 2) {
pr_addr_dbg("ip_bind_connected: bad connected "
"src %s\n", AF_INET, &src_addr);
}
error = EADDRNOTAVAIL;
goto bad_addr;
}
/*
* If the source address is a loopback address, the
* destination had best be local or multicast.
* The transports that can't handle multicast will reject
* those addresses.
*/
if (src_ire->ire_type == IRE_LOOPBACK &&
!(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) {
ip1dbg(("ip_bind_connected: bad connected loopback\n"));
error = -1;
goto bad_addr;
}
/*
* Allow setting new policies. For example, disconnects come
* down as ipa_t bind. As we would have set conn_policy_cached
* to B_TRUE before, we should set it to B_FALSE, so that policy
* can change after the disconnect.
*/
connp->conn_policy_cached = B_FALSE;
/*
* Set the conn addresses/ports immediately, so the IPsec policy calls
* can handle their passed-in conn's.
*/
IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6);
IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6);
connp->conn_lport = lport;
connp->conn_fport = fport;
*src_addrp = src_addr;
ASSERT(!(ipsec_policy_set && ire_requested));
if (ire_requested) {
iulp_t *ulp_info = NULL;
/*
* Note that sire will not be NULL if this is an off-link
* connection and there is not cache for that dest yet.
*
* XXX Because of an existing bug, if there are multiple
* default routes, the IRE returned now may not be the actual
* default route used (default routes are chosen in a
* round robin fashion). So if the metrics for different
* default routes are different, we may return the wrong
* metrics. This will not be a problem if the existing
* bug is fixed.
*/
if (sire != NULL) {
ulp_info = &(sire->ire_uinfo);
}
if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) {
error = -1;
goto bad_addr;
}
} else if (ipsec_policy_set) {
if (!ip_bind_ipsec_policy_set(connp, policy_mp)) {
error = -1;
goto bad_addr;
}
}
/*
* Cache IPsec policy in this conn. If we have per-socket policy,
* we'll cache that. If we don't, we'll inherit global policy.
*
* We can't insert until the conn reflects the policy. Note that
* conn_policy_cached is set by ipsec_conn_cache_policy() even for
* connections where we don't have a policy. This is to prevent
* global policy lookups in the inbound path.
*
* If we insert before we set conn_policy_cached,
* CONN_INBOUND_POLICY_PRESENT() check can still evaluate true
* because global policy cound be non-empty. We normally call
* ipsec_check_policy() for conn_policy_cached connections only if
* ipc_in_enforce_policy is set. But in this case,
* conn_policy_cached can get set anytime since we made the
* CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is
* called, which will make the above assumption false. Thus, we
* need to insert after we set conn_policy_cached.
*/
if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0)
goto bad_addr;
if (fanout_insert) {
/*
* The addresses have been verified. Time to insert in
* the correct fanout list.
*/
error = ipcl_conn_insert(connp, protocol, src_addr,
dst_addr, connp->conn_ports);
}
if (error == 0) {
connp->conn_fully_bound = B_TRUE;
/*
* Our initial checks for MDT have passed; the IRE is not
* LOCAL/LOOPBACK/BROADCAST, and the link layer seems to
* be supporting MDT. Pass the IRE, IPC and ILL into
* ip_mdinfo_return(), which performs further checks
* against them and upon success, returns the MDT info
* mblk which we will attach to the bind acknowledgment.
*/
if (md_dst_ire != NULL) {
mblk_t *mdinfo_mp;
ASSERT(md_ill != NULL);
ASSERT(md_ill->ill_mdt_capab != NULL);
if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp,
md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL)
linkb(mp, mdinfo_mp);
}
}
bad_addr:
if (ipsec_policy_set) {
ASSERT(policy_mp == mp->b_cont);
ASSERT(policy_mp != NULL);
freeb(policy_mp);
/*
* As of now assume that nothing else accompanies
* IPSEC_POLICY_SET.
*/
mp->b_cont = NULL;
}
if (src_ire != NULL)
IRE_REFRELE(src_ire);
if (dst_ire != NULL)
IRE_REFRELE(dst_ire);
if (sire != NULL)
IRE_REFRELE(sire);
if (md_dst_ire != NULL)
IRE_REFRELE(md_dst_ire);
return (error);
}
/*
* Insert the ire in b_cont. Returns false if it fails (due to lack of space).
* Prefers dst_ire over src_ire.
*/
static boolean_t
ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info)
{
mblk_t *mp1;
ire_t *ret_ire = NULL;
mp1 = mp->b_cont;
ASSERT(mp1 != NULL);
if (ire != NULL) {
/*
* mp1 initialized above to IRE_DB_REQ_TYPE
* appended mblk. Its <upper protocol>'s
* job to make sure there is room.
*/
if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t))
return (0);
mp1->b_datap->db_type = IRE_DB_TYPE;
mp1->b_wptr = mp1->b_rptr + sizeof (ire_t);
bcopy(ire, mp1->b_rptr, sizeof (ire_t));
ret_ire = (ire_t *)mp1->b_rptr;
/*
* Pass the latest setting of the ip_path_mtu_discovery and
* copy the ulp info if any.
*/
ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ?
IPH_DF : 0;
if (ulp_info != NULL) {
bcopy(ulp_info, &(ret_ire->ire_uinfo),
sizeof (iulp_t));
}
ret_ire->ire_mp = mp1;
} else {
/*
* No IRE was found. Remove IRE mblk.
*/
mp->b_cont = mp1->b_cont;
freeb(mp1);
}
return (1);
}
/*
* Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
* the final piece where we don't. Return a pointer to the first mblk in the
* result, and update the pointer to the next mblk to chew on. If anything
* goes wrong (i.e., dupb fails), we waste everything in sight and return a
* NULL pointer.
*/
mblk_t *
ip_carve_mp(mblk_t **mpp, ssize_t len)
{
mblk_t *mp0;
mblk_t *mp1;
mblk_t *mp2;
if (!len || !mpp || !(mp0 = *mpp))
return (NULL);
/* If we aren't going to consume the first mblk, we need a dup. */
if (mp0->b_wptr - mp0->b_rptr > len) {
mp1 = dupb(mp0);
if (mp1) {
/* Partition the data between the two mblks. */
mp1->b_wptr = mp1->b_rptr + len;
mp0->b_rptr = mp1->b_wptr;
/*
* after adjustments if mblk not consumed is now
* unaligned, try to align it. If this fails free
* all messages and let upper layer recover.
*/
if (!OK_32PTR(mp0->b_rptr)) {
if (!pullupmsg(mp0, -1)) {
freemsg(mp0);
freemsg(mp1);
*mpp = NULL;
return (NULL);
}
}
}
return (mp1);
}
/* Eat through as many mblks as we need to get len bytes. */
len -= mp0->b_wptr - mp0->b_rptr;
for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
if (mp2->b_wptr - mp2->b_rptr > len) {
/*
* We won't consume the entire last mblk. Like
* above, dup and partition it.
*/
mp1->b_cont = dupb(mp2);
mp1 = mp1->b_cont;
if (!mp1) {
/*
* Trouble. Rather than go to a lot of
* trouble to clean up, we free the messages.
* This won't be any worse than losing it on
* the wire.
*/
freemsg(mp0);
freemsg(mp2);
*mpp = NULL;
return (NULL);
}
mp1->b_wptr = mp1->b_rptr + len;
mp2->b_rptr = mp1->b_wptr;
/*
* after adjustments if mblk not consumed is now
* unaligned, try to align it. If this fails free
* all messages and let upper layer recover.
*/
if (!OK_32PTR(mp2->b_rptr)) {
if (!pullupmsg(mp2, -1)) {
freemsg(mp0);
freemsg(mp2);
*mpp = NULL;
return (NULL);
}
}
*mpp = mp2;
return (mp0);
}
/* Decrement len by the amount we just got. */
len -= mp2->b_wptr - mp2->b_rptr;
}
/*
* len should be reduced to zero now. If not our caller has
* screwed up.
*/
if (len) {
/* Shouldn't happen! */
freemsg(mp0);
*mpp = NULL;
return (NULL);
}
/*
* We consumed up to exactly the end of an mblk. Detach the part
* we are returning from the rest of the chain.
*/
mp1->b_cont = NULL;
*mpp = mp2;
return (mp0);
}
/* The ill stream is being unplumbed. Called from ip_close */
int
ip_modclose(ill_t *ill)
{
boolean_t success;
ipsq_t *ipsq;
ipif_t *ipif;
queue_t *q = ill->ill_rq;
hook_nic_event_t *info;
/*
* Forcibly enter the ipsq after some delay. This is to take
* care of the case when some ioctl does not complete because
* we sent a control message to the driver and it did not
* send us a reply. We want to be able to at least unplumb
* and replumb rather than force the user to reboot the system.
*/
success = ipsq_enter(ill, B_FALSE);
/*
* Open/close/push/pop is guaranteed to be single threaded
* per stream by STREAMS. FS guarantees that all references
* from top are gone before close is called. So there can't
* be another close thread that has set CONDEMNED on this ill.
* and cause ipsq_enter to return failure.
*/
ASSERT(success);
ipsq = ill->ill_phyint->phyint_ipsq;
/*
* Mark it condemned. No new reference will be made to this ill.
* Lookup functions will return an error. Threads that try to
* increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
* that the refcnt will drop down to zero.
*/
mutex_enter(&ill->ill_lock);
ill->ill_state_flags |= ILL_CONDEMNED;
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
ipif->ipif_state_flags |= IPIF_CONDEMNED;
}
/*
* Wake up anybody waiting to enter the ipsq. ipsq_enter
* returns error if ILL_CONDEMNED is set
*/
cv_broadcast(&ill->ill_cv);
mutex_exit(&ill->ill_lock);
/*
* Shut down fragmentation reassembly.
* ill_frag_timer won't start a timer again.
* Now cancel any existing timer
*/
(void) untimeout(ill->ill_frag_timer_id);
(void) ill_frag_timeout(ill, 0);
/*
* If MOVE was in progress, clear the
* move_in_progress fields also.
*/
if (ill->ill_move_in_progress) {
ILL_CLEAR_MOVE(ill);
}
/*
* Call ill_delete to bring down the ipifs, ilms and ill on
* this ill. Then wait for the refcnts to drop to zero.
* ill_is_quiescent checks whether the ill is really quiescent.
* Then make sure that threads that are waiting to enter the
* ipsq have seen the error returned by ipsq_enter and have
* gone away. Then we call ill_delete_tail which does the
* DL_UNBIND and DL_DETACH with the driver and then qprocsoff.
*/
ill_delete(ill);
mutex_enter(&ill->ill_lock);
while (!ill_is_quiescent(ill))
cv_wait(&ill->ill_cv, &ill->ill_lock);
while (ill->ill_waiters)
cv_wait(&ill->ill_cv, &ill->ill_lock);
mutex_exit(&ill->ill_lock);
/* qprocsoff is called in ill_delete_tail */
ill_delete_tail(ill);
/*
* Walk through all upper (conn) streams and qenable
* those that have queued data.
* close synchronization needs this to
* be done to ensure that all upper layers blocked
* due to flow control to the closing device
* get unblocked.
*/
ip1dbg(("ip_wsrv: walking\n"));
conn_walk_drain();
mutex_enter(&ip_mi_lock);
mi_close_unlink(&ip_g_head, (IDP)ill);
mutex_exit(&ip_mi_lock);
/*
* credp could be null if the open didn't succeed and ip_modopen
* itself calls ip_close.
*/
if (ill->ill_credp != NULL)
crfree(ill->ill_credp);
/*
* Unhook the nic event message from the ill and enqueue it into the nic
* event taskq.
*/
if ((info = ill->ill_nic_event_info) != NULL) {
if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func,
(void *)info, DDI_SLEEP) == DDI_FAILURE) {
ip2dbg(("ip_ioctl_finish:ddi_taskq_dispatch failed\n"));
if (info->hne_data != NULL)
kmem_free(info->hne_data, info->hne_datalen);
kmem_free(info, sizeof (hook_nic_event_t));
}
ill->ill_nic_event_info = NULL;
}
mi_close_free((IDP)ill);
q->q_ptr = WR(q)->q_ptr = NULL;
ipsq_exit(ipsq, B_TRUE, B_TRUE);
return (0);
}
/*
* This is called as part of close() for both IP and UDP
* in order to quiesce the conn.
*/
void
ip_quiesce_conn(conn_t *connp)
{
boolean_t drain_cleanup_reqd = B_FALSE;
boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
boolean_t ilg_cleanup_reqd = B_FALSE;
ASSERT(!IPCL_IS_TCP(connp));
/*
* Mark the conn as closing, and this conn must not be
* inserted in future into any list. Eg. conn_drain_insert(),
* won't insert this conn into the conn_drain_list.
* Similarly ill_pending_mp_add() will not add any mp to
* the pending mp list, after this conn has started closing.
*
* conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg
* cannot get set henceforth.
*/
mutex_enter(&connp->conn_lock);
ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
connp->conn_state_flags |= CONN_CLOSING;
if (connp->conn_idl != NULL)
drain_cleanup_reqd = B_TRUE;
if (connp->conn_oper_pending_ill != NULL)
conn_ioctl_cleanup_reqd = B_TRUE;
if (connp->conn_ilg_inuse != 0)
ilg_cleanup_reqd = B_TRUE;
mutex_exit(&connp->conn_lock);
if (IPCL_IS_UDP(connp))
udp_quiesce_conn(connp);
if (conn_ioctl_cleanup_reqd)
conn_ioctl_cleanup(connp);
if (is_system_labeled() && connp->conn_anon_port) {
(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
connp->conn_mlp_type, connp->conn_ulp,
ntohs(connp->conn_lport), B_FALSE);
connp->conn_anon_port = 0;
}
connp->conn_mlp_type = mlptSingle;
/*
* Remove this conn from any fanout list it is on.
* and then wait for any threads currently operating
* on this endpoint to finish
*/
ipcl_hash_remove(connp);
/*
* Remove this conn from the drain list, and do
* any other cleanup that may be required.
* (Only non-tcp streams may have a non-null conn_idl.
* TCP streams are never flow controlled, and
* conn_idl will be null)
*/
if (drain_cleanup_reqd)
conn_drain_tail(connp, B_TRUE);
if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter)
(void) ip_mrouter_done(NULL);
if (ilg_cleanup_reqd)
ilg_delete_all(connp);
conn_delete_ire(connp, NULL);
/*
* Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
* callers from write side can't be there now because close
* is in progress. The only other caller is ipcl_walk
* which checks for the condemned flag.
*/
mutex_enter(&connp->conn_lock);
connp->conn_state_flags |= CONN_CONDEMNED;
while (connp->conn_ref != 1)
cv_wait(&connp->conn_cv, &connp->conn_lock);
connp->conn_state_flags |= CONN_QUIESCED;
mutex_exit(&connp->conn_lock);
}
/* ARGSUSED */
int
ip_close(queue_t *q, int flags)
{
conn_t *connp;
TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q);
/*
* Call the appropriate delete routine depending on whether this is
* a module or device.
*/
if (WR(q)->q_next != NULL) {
/* This is a module close */
return (ip_modclose((ill_t *)q->q_ptr));
}
connp = q->q_ptr;
ip_quiesce_conn(connp);
qprocsoff(q);
/*
* Now we are truly single threaded on this stream, and can
* delete the things hanging off the connp, and finally the connp.
* We removed this connp from the fanout list, it cannot be
* accessed thru the fanouts, and we already waited for the
* conn_ref to drop to 0. We are already in close, so
* there cannot be any other thread from the top. qprocsoff
* has completed, and service has completed or won't run in
* future.
*/
ASSERT(connp->conn_ref == 1);
/*
* A conn which was previously marked as IPCL_UDP cannot
* retain the flag because it would have been cleared by
* udp_close().
*/
ASSERT(!IPCL_IS_UDP(connp));
if (connp->conn_latch != NULL) {
IPLATCH_REFRELE(connp->conn_latch);
connp->conn_latch = NULL;
}
if (connp->conn_policy != NULL) {
IPPH_REFRELE(connp->conn_policy);
connp->conn_policy = NULL;
}
if (connp->conn_ipsec_opt_mp != NULL) {
freemsg(connp->conn_ipsec_opt_mp);
connp->conn_ipsec_opt_mp = NULL;
}
inet_minor_free(ip_minor_arena, connp->conn_dev);
connp->conn_ref--;
ipcl_conn_destroy(connp);
q->q_ptr = WR(q)->q_ptr = NULL;
return (0);
}
int
ip_snmpmod_close(queue_t *q)
{
conn_t *connp = Q_TO_CONN(q);
ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD));
qprocsoff(q);
if (connp->conn_flags & IPCL_UDPMOD)
udp_close_free(connp);
if (connp->conn_cred != NULL) {
crfree(connp->conn_cred);
connp->conn_cred = NULL;
}
CONN_DEC_REF(connp);
q->q_ptr = WR(q)->q_ptr = NULL;
return (0);
}
/*
* Write side put procedure for TCP module or UDP module instance. TCP/UDP
* as a module is only used for MIB browsers that push TCP/UDP over IP or ARP.
* The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ.
* M_FLUSH messages and ioctls are only passed downstream; we don't flush our
* queues as we never enqueue messages there and we don't handle any ioctls.
* Everything else is freed.
*/
void
ip_snmpmod_wput(queue_t *q, mblk_t *mp)
{
conn_t *connp = q->q_ptr;
pfi_t setfn;
pfi_t getfn;
ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD));
switch (DB_TYPE(mp)) {
case M_PROTO:
case M_PCPROTO:
if ((MBLKL(mp) >= sizeof (t_scalar_t)) &&
((((union T_primitives *)mp->b_rptr)->type ==
T_SVR4_OPTMGMT_REQ) ||
(((union T_primitives *)mp->b_rptr)->type ==
T_OPTMGMT_REQ))) {
/*
* This is the only TPI primitive supported. Its
* handling does not require tcp_t, but it does require
* conn_t to check permissions.
*/
cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
if (connp->conn_flags & IPCL_TCPMOD) {
setfn = tcp_snmp_set;
getfn = tcp_snmp_get;
} else {
setfn = udp_snmp_set;
getfn = udp_snmp_get;
}
if (!snmpcom_req(q, mp, setfn, getfn, cr)) {
freemsg(mp);
return;
}
} else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP))
!= NULL)
qreply(q, mp);
break;
case M_FLUSH:
case M_IOCTL:
putnext(q, mp);
break;
default:
freemsg(mp);
break;
}
}
/* Return the IP checksum for the IP header at "iph". */
uint16_t
ip_csum_hdr(ipha_t *ipha)
{
uint16_t *uph;
uint32_t sum;
int opt_len;
opt_len = (ipha->ipha_version_and_hdr_length & 0xF) -
IP_SIMPLE_HDR_LENGTH_IN_WORDS;
uph = (uint16_t *)ipha;
sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
if (opt_len > 0) {
do {
sum += uph[10];
sum += uph[11];
uph += 2;
} while (--opt_len);
}
sum = (sum & 0xFFFF) + (sum >> 16);
sum = ~(sum + (sum >> 16)) & 0xFFFF;
if (sum == 0xffff)
sum = 0;
return ((uint16_t)sum);
}
void
ip_ddi_destroy(void)
{
ipv4_hook_destroy();
ipv6_hook_destroy();
ip_net_destroy();
tnet_fini();
tcp_ddi_destroy();
sctp_ddi_destroy();
ipsec_loader_destroy();
ipsec_policy_destroy();
ipsec_kstat_destroy();
nd_free(&ip_g_nd);
mutex_destroy(&igmp_timer_lock);
mutex_destroy(&mld_timer_lock);
mutex_destroy(&igmp_slowtimeout_lock);
mutex_destroy(&mld_slowtimeout_lock);
mutex_destroy(&ip_mi_lock);
mutex_destroy(&rts_clients.connf_lock);
ip_ire_fini();
ip6_asp_free();
conn_drain_fini();
ipcl_destroy();
inet_minor_destroy(ip_minor_arena);
icmp_kstat_fini();
ip_kstat_fini();
rw_destroy(&ipsec_capab_ills_lock);
rw_destroy(&ill_g_usesrc_lock);
ip_drop_unregister(&ip_dropper);
}
void
ip_ddi_init(void)
{
TCP6_MAJ = ddi_name_to_major(TCP6);
TCP_MAJ = ddi_name_to_major(TCP);
SCTP_MAJ = ddi_name_to_major(SCTP);
SCTP6_MAJ = ddi_name_to_major(SCTP6);
ip_input_proc = ip_squeue_switch(ip_squeue_enter);
/* IP's IPsec code calls the packet dropper */
ip_drop_register(&ip_dropper, "IP IPsec processing");
if (!ip_g_nd) {
if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr),
lcl_ndp_arr, A_CNT(lcl_ndp_arr))) {
nd_free(&ip_g_nd);
}
}
ipsec_loader_init();
ipsec_policy_init();
ipsec_kstat_init();
rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL);
mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL);
rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL);
rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
/*
* For IP and TCP the minor numbers should start from 2 since we have 4
* initial devices: ip, ip6, tcp, tcp6.
*/
if ((ip_minor_arena = inet_minor_create("ip_minor_arena",
INET_MIN_DEV + 2, KM_SLEEP)) == NULL) {
cmn_err(CE_PANIC,
"ip_ddi_init: ip_minor_arena creation failed\n");
}
ipcl_init();
mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL);
ip_ire_init();
ip6_asp_init();
ipif_init();
conn_drain_init();
tcp_ddi_init();
sctp_ddi_init();
ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
if ((ip_kstat = kstat_create("ip", 0, "ipstat",
"net", KSTAT_TYPE_NAMED,
sizeof (ip_statistics) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL)) != NULL) {
ip_kstat->ks_data = &ip_statistics;
kstat_install(ip_kstat);
}
ip_kstat_init();
ip6_kstat_init();
icmp_kstat_init();
ipsec_loader_start();
tnet_init();
ip_net_init();
ipv4_hook_init();
ipv6_hook_init();
}
/*
* Allocate and initialize a DLPI template of the specified length. (May be
* called as writer.)
*/
mblk_t *
ip_dlpi_alloc(size_t len, t_uscalar_t prim)
{
mblk_t *mp;
mp = allocb(len, BPRI_MED);
if (!mp)
return (NULL);
/*
* DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
* of which we don't seem to use) are sent with M_PCPROTO, and
* that other DLPI are M_PROTO.
*/
if (prim == DL_INFO_REQ) {
mp->b_datap->db_type = M_PCPROTO;
} else {
mp->b_datap->db_type = M_PROTO;
}
mp->b_wptr = mp->b_rptr + len;
bzero(mp->b_rptr, len);
((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
return (mp);
}
const char *
dlpi_prim_str(int prim)
{
switch (prim) {
case DL_INFO_REQ: return ("DL_INFO_REQ");
case DL_INFO_ACK: return ("DL_INFO_ACK");
case DL_ATTACH_REQ: return ("DL_ATTACH_REQ");
case DL_DETACH_REQ: return ("DL_DETACH_REQ");
case DL_BIND_REQ: return ("DL_BIND_REQ");
case DL_BIND_ACK: return ("DL_BIND_ACK");
case DL_UNBIND_REQ: return ("DL_UNBIND_REQ");
case DL_OK_ACK: return ("DL_OK_ACK");
case DL_ERROR_ACK: return ("DL_ERROR_ACK");
case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ");
case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ");
case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ");
case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ");
case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ");
case DL_UNITDATA_IND: return ("DL_UNITDATA_IND");
case DL_UDERROR_IND: return ("DL_UDERROR_IND");
case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ");
case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK");
case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ");
case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ");
case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK");
case DL_NOTIFY_IND: return ("DL_NOTIFY_IND");
case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ");
case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK");
case DL_CONTROL_REQ: return ("DL_CONTROL_REQ");
case DL_CONTROL_ACK: return ("DL_CONTROL_ACK");
default: return ("<unknown primitive>");
}
}
const char *
dlpi_err_str(int err)
{
switch (err) {
case DL_ACCESS: return ("DL_ACCESS");
case DL_BADADDR: return ("DL_BADADDR");
case DL_BADCORR: return ("DL_BADCORR");
case DL_BADDATA: return ("DL_BADDATA");
case DL_BADPPA: return ("DL_BADPPA");
case DL_BADPRIM: return ("DL_BADPRIM");
case DL_BADQOSPARAM: return ("DL_BADQOSPARAM");
case DL_BADQOSTYPE: return ("DL_BADQOSTYPE");
case DL_BADSAP: return ("DL_BADSAP");
case DL_BADTOKEN: return ("DL_BADTOKEN");
case DL_BOUND: return ("DL_BOUND");
case DL_INITFAILED: return ("DL_INITFAILED");
case DL_NOADDR: return ("DL_NOADDR");
case DL_NOTINIT: return ("DL_NOTINIT");
case DL_OUTSTATE: return ("DL_OUTSTATE");
case DL_SYSERR: return ("DL_SYSERR");
case DL_UNSUPPORTED: return ("DL_UNSUPPORTED");
case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE");
case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED ");
case DL_TOOMANY: return ("DL_TOOMANY");
case DL_NOTENAB: return ("DL_NOTENAB");
case DL_BUSY: return ("DL_BUSY");
case DL_NOAUTO: return ("DL_NOAUTO");
case DL_NOXIDAUTO: return ("DL_NOXIDAUTO");
case DL_NOTESTAUTO: return ("DL_NOTESTAUTO");
case DL_XIDAUTO: return ("DL_XIDAUTO");
case DL_TESTAUTO: return ("DL_TESTAUTO");
case DL_PENDING: return ("DL_PENDING");
default: return ("<unknown error>");
}
}
/*
* Debug formatting routine. Returns a character string representation of the
* addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address
* in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
*
* Once the ndd table-printing interfaces are removed, this can be changed to
* standard dotted-decimal form.
*/
char *
ip_dot_addr(ipaddr_t addr, char *buf)
{
uint8_t *ap = (uint8_t *)&addr;
(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
return (buf);
}
/*
* Write the given MAC address as a printable string in the usual colon-
* separated format.
*/
const char *
mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
{
char *bp;
if (alen == 0 || buflen < 4)
return ("?");
bp = buf;
for (;;) {
/*
* If there are more MAC address bytes available, but we won't
* have any room to print them, then add "..." to the string
* instead. See below for the 'magic number' explanation.
*/
if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
(void) strcpy(bp, "...");
break;
}
(void) sprintf(bp, "%02x", *addr++);
bp += 2;
if (--alen == 0)
break;
*bp++ = ':';
buflen -= 3;
/*
* At this point, based on the first 'if' statement above,
* either alen == 1 and buflen >= 3, or alen > 1 and
* buflen >= 4. The first case leaves room for the final "xx"
* number and trailing NUL byte. The second leaves room for at
* least "...". Thus the apparently 'magic' numbers chosen for
* that statement.
*/
}
return (buf);
}
/*
* Send an ICMP error after patching up the packet appropriately. Returns
* non-zero if the appropriate MIB should be bumped; zero otherwise.
*/
static boolean_t
ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags,
uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid)
{
ipha_t *ipha;
mblk_t *first_mp;
boolean_t secure;
unsigned char db_type;
first_mp = mp;
if (mctl_present) {
mp = mp->b_cont;
secure = ipsec_in_is_secure(first_mp);
ASSERT(mp != NULL);
} else {
/*
* If this is an ICMP error being reported - which goes
* up as M_CTLs, we need to convert them to M_DATA till
* we finish checking with global policy because
* ipsec_check_global_policy() assumes M_DATA as clear
* and M_CTL as secure.
*/
db_type = DB_TYPE(mp);
DB_TYPE(mp) = M_DATA;
secure = B_FALSE;
}
/*
* We are generating an icmp error for some inbound packet.
* Called from all ip_fanout_(udp, tcp, proto) functions.
* Before we generate an error, check with global policy
* to see whether this is allowed to enter the system. As
* there is no "conn", we are checking with global policy.
*/
ipha = (ipha_t *)mp->b_rptr;
if (secure || ipsec_inbound_v4_policy_present) {
first_mp = ipsec_check_global_policy(first_mp, NULL,
ipha, NULL, mctl_present);
if (first_mp == NULL)
return (B_FALSE);
}
if (!mctl_present)
DB_TYPE(mp) = db_type;
if (flags & IP_FF_SEND_ICMP) {
if (flags & IP_FF_HDR_COMPLETE) {
if (ip_hdr_complete(ipha, zoneid)) {
freemsg(first_mp);
return (B_TRUE);
}
}
if (flags & IP_FF_CKSUM) {
/*
* Have to correct checksum since
* the packet might have been
* fragmented and the reassembly code in ip_rput
* does not restore the IP checksum.
*/
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
}
switch (icmp_type) {
case ICMP_DEST_UNREACHABLE:
icmp_unreachable(WR(q), first_mp, icmp_code, zoneid);
break;
default:
freemsg(first_mp);
break;
}
} else {
freemsg(first_mp);
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Used to send an ICMP error message when a packet is received for
* a protocol that is not supported. The mblk passed as argument
* is consumed by this function.
*/
void
ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid)
{
mblk_t *mp;
ipha_t *ipha;
ill_t *ill;
ipsec_in_t *ii;
ii = (ipsec_in_t *)ipsec_mp->b_rptr;
ASSERT(ii->ipsec_in_type == IPSEC_IN);
mp = ipsec_mp->b_cont;
ipsec_mp->b_cont = NULL;
ipha = (ipha_t *)mp->b_rptr;
if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE,
ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) {
BUMP_MIB(&ip_mib, ipInUnknownProtos);
}
} else {
/* Get ill from index in ipsec_in_t. */
ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index,
B_TRUE, NULL, NULL, NULL, NULL);
if (ill != NULL) {
if (ip_fanout_send_icmp_v6(q, mp, flags,
ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER,
0, B_FALSE, zoneid)) {
BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos);
}
ill_refrele(ill);
} else { /* re-link for the freemsg() below. */
ipsec_mp->b_cont = mp;
}
}
/* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */
freemsg(ipsec_mp);
}
/*
* See if the inbound datagram has had IPsec processing applied to it.
*/
boolean_t
ipsec_in_is_secure(mblk_t *ipsec_mp)
{
ipsec_in_t *ii;
ii = (ipsec_in_t *)ipsec_mp->b_rptr;
ASSERT(ii->ipsec_in_type == IPSEC_IN);
if (ii->ipsec_in_loopback) {
return (ii->ipsec_in_secure);
} else {
return (ii->ipsec_in_ah_sa != NULL ||
ii->ipsec_in_esp_sa != NULL ||
ii->ipsec_in_decaps);
}
}
/*
* Handle protocols with which IP is less intimate. There
* can be more than one stream bound to a particular
* protocol. When this is the case, normally each one gets a copy
* of any incoming packets.
*
* IPSEC NOTE :
*
* Don't allow a secure packet going up a non-secure connection.
* We don't allow this because
*
* 1) Reply might go out in clear which will be dropped at
* the sending side.
* 2) If the reply goes out in clear it will give the
* adversary enough information for getting the key in
* most of the cases.
*
* Moreover getting a secure packet when we expect clear
* implies that SA's were added without checking for
* policy on both ends. This should not happen once ISAKMP
* is used to negotiate SAs as SAs will be added only after
* verifying the policy.
*
* NOTE : If the packet was tunneled and not multicast we only send
* to it the first match. Unlike TCP and UDP fanouts this doesn't fall
* back to delivering packets to AF_INET6 raw sockets.
*
* IPQoS Notes:
* Once we have determined the client, invoke IPPF processing.
* Policy processing takes place only if the callout_position, IPP_LOCAL_IN,
* is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local
* ip_policy will be false.
*
* Zones notes:
* Currently only applications in the global zone can create raw sockets for
* protocols other than ICMP. So unlike the broadcast / multicast case of
* ip_fanout_udp(), we only send a copy of the packet to streams in the
* specified zone. For ICMP, this is handled by the callers of icmp_inbound().
*/
static void
ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags,
boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill,
zoneid_t zoneid)
{
queue_t *rq;
mblk_t *mp1, *first_mp1;
uint_t protocol = ipha->ipha_protocol;
ipaddr_t dst;
boolean_t one_only;
mblk_t *first_mp = mp;
boolean_t secure;
uint32_t ill_index;
conn_t *connp, *first_connp, *next_connp;
connf_t *connfp;
boolean_t shared_addr;
if (mctl_present) {
mp = first_mp->b_cont;
secure = ipsec_in_is_secure(first_mp);
ASSERT(mp != NULL);
} else {
secure = B_FALSE;
}
dst = ipha->ipha_dst;
/*
* If the packet was tunneled and not multicast we only send to it
* the first match.
*/
one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) &&
!CLASSD(dst));
shared_addr = (zoneid == ALL_ZONES);
if (shared_addr) {
/*
* We don't allow multilevel ports for raw IP, so no need to
* check for that here.
*/
zoneid = tsol_packet_to_zoneid(mp);
}
connfp = &ipcl_proto_fanout[protocol];
mutex_enter(&connfp->connf_lock);
connp = connfp->connf_head;
for (connp = connfp->connf_head; connp != NULL;
connp = connp->conn_next) {
if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags,
zoneid) &&
(!is_system_labeled() ||
tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
connp)))
break;
}
if (connp == NULL || connp->conn_upq == NULL) {
/*
* No one bound to these addresses. Is
* there a client that wants all
* unclaimed datagrams?
*/
mutex_exit(&connfp->connf_lock);
/*
* Check for IPPROTO_ENCAP...
*/
if (protocol == IPPROTO_ENCAP && ip_g_mrouter) {
/*
* If an IPsec mblk is here on a multicast
* tunnel (using ip_mroute stuff), check policy here,
* THEN ship off to ip_mroute_decap().
*
* BTW, If I match a configured IP-in-IP
* tunnel, this path will not be reached, and
* ip_mroute_decap will never be called.
*/
first_mp = ipsec_check_global_policy(first_mp, connp,
ipha, NULL, mctl_present);
if (first_mp != NULL) {
if (mctl_present)
freeb(first_mp);
ip_mroute_decap(q, mp);
} /* Else we already freed everything! */
} else {
/*
* Otherwise send an ICMP protocol unreachable.
*/
if (ip_fanout_send_icmp(q, first_mp, flags,
ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE,
mctl_present, zoneid)) {
BUMP_MIB(&ip_mib, ipInUnknownProtos);
}
}
return;
}
CONN_INC_REF(connp);
first_connp = connp;
/*
* Only send message to one tunnel driver by immediately
* terminating the loop.
*/
connp = one_only ? NULL : connp->conn_next;
for (;;) {
while (connp != NULL) {
if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill,
flags, zoneid) &&
(!is_system_labeled() ||
tsol_receive_local(mp, &dst, IPV4_VERSION,
shared_addr, connp)))
break;
connp = connp->conn_next;
}
/*
* Copy the packet.
*/
if (connp == NULL || connp->conn_upq == NULL ||
(((first_mp1 = dupmsg(first_mp)) == NULL) &&
((first_mp1 = ip_copymsg(first_mp)) == NULL))) {
/*
* No more interested clients or memory
* allocation failed
*/
connp = first_connp;
break;
}
mp1 = mctl_present ? first_mp1->b_cont : first_mp1;
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
rq = connp->conn_rq;
if (!canputnext(rq)) {
if (flags & IP_FF_RAWIP) {
BUMP_MIB(&ip_mib, rawipInOverflows);
} else {
BUMP_MIB(&icmp_mib, icmpInOverflows);
}
freemsg(first_mp1);
} else {
/*
* Don't enforce here if we're an actual tunnel -
* let "tun" do it instead.
*/
if (!IPCL_IS_IPTUN(connp) &&
(CONN_INBOUND_POLICY_PRESENT(connp) || secure)) {
first_mp1 = ipsec_check_inbound_policy
(first_mp1, connp, ipha, NULL,
mctl_present);
}
if (first_mp1 != NULL) {
/*
* ip_fanout_proto also gets called from
* icmp_inbound_error_fanout, in which case
* the msg type is M_CTL. Don't add info
* in this case for the time being. In future
* when there is a need for knowing the
* inbound iface index for ICMP error msgs,
* then this can be changed.
*/
if ((connp->conn_recvif != 0) &&
(mp->b_datap->db_type != M_CTL)) {
/*
* the actual data will be
* contained in b_cont upon
* successful return of the
* following call else
* original mblk is returned
*/
ASSERT(recv_ill != NULL);
mp1 = ip_add_info(mp1, recv_ill,
IPF_RECVIF);
}
BUMP_MIB(&ip_mib, ipInDelivers);
if (mctl_present)
freeb(first_mp1);
putnext(rq, mp1);
}
}
mutex_enter(&connfp->connf_lock);
/* Follow the next pointer before releasing the conn. */
next_connp = connp->conn_next;
CONN_DEC_REF(connp);
connp = next_connp;
}
/* Last one. Send it upstream. */
mutex_exit(&connfp->connf_lock);
/*
* If this packet is coming from icmp_inbound_error_fanout ip_policy
* will be set to false.
*/
if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) {
ill_index = ill->ill_phyint->phyint_ifindex;
ip_process(IPP_LOCAL_IN, &mp, ill_index);
if (mp == NULL) {
CONN_DEC_REF(connp);
if (mctl_present) {
freeb(first_mp);
}
return;
}
}
rq = connp->conn_rq;
if (!canputnext(rq)) {
if (flags & IP_FF_RAWIP) {
BUMP_MIB(&ip_mib, rawipInOverflows);
} else {
BUMP_MIB(&icmp_mib, icmpInOverflows);
}
freemsg(first_mp);
} else {
if (IPCL_IS_IPTUN(connp)) {
/*
* Tunneled packet. We enforce policy in the tunnel
* module itself.
*
* Send the WHOLE packet up (incl. IPSEC_IN) without
* a policy check.
*/
putnext(rq, first_mp);
CONN_DEC_REF(connp);
return;
}
if ((CONN_INBOUND_POLICY_PRESENT(connp) || secure)) {
first_mp = ipsec_check_inbound_policy(first_mp, connp,
ipha, NULL, mctl_present);
}
if (first_mp != NULL) {
/*
* ip_fanout_proto also gets called
* from icmp_inbound_error_fanout, in
* which case the msg type is M_CTL.
* Don't add info in this case for time
* being. In future when there is a
* need for knowing the inbound iface
* index for ICMP error msgs, then this
* can be changed
*/
if ((connp->conn_recvif != 0) &&
(mp->b_datap->db_type != M_CTL)) {
/*
* the actual data will be contained in
* b_cont upon successful return
* of the following call else original
* mblk is returned
*/
ASSERT(recv_ill != NULL);
mp = ip_add_info(mp, recv_ill, IPF_RECVIF);
}
BUMP_MIB(&ip_mib, ipInDelivers);
putnext(rq, mp);
if (mctl_present)
freeb(first_mp);
}
}
CONN_DEC_REF(connp);
}
/*
* Fanout for TCP packets
* The caller puts <fport, lport> in the ports parameter.
*
* IPQoS Notes
* Before sending it to the client, invoke IPPF processing.
* Policy processing takes place only if the callout_position, IPP_LOCAL_IN,
* is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local
* ip_policy is false.
*/
static void
ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha,
uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid)
{
mblk_t *first_mp;
boolean_t secure;
uint32_t ill_index;
int ip_hdr_len;
tcph_t *tcph;
boolean_t syn_present = B_FALSE;
conn_t *connp;
first_mp = mp;
if (mctl_present) {
ASSERT(first_mp->b_datap->db_type == M_CTL);
mp = first_mp->b_cont;
secure = ipsec_in_is_secure(first_mp);
ASSERT(mp != NULL);
} else {
secure = B_FALSE;
}
ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr);
if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) ==
NULL) {
/*
* No connected connection or listener. Send a
* TH_RST via tcp_xmit_listeners_reset.
*/
/* Initiate IPPf processing, if needed. */
if (IPP_ENABLED(IPP_LOCAL_IN)) {
uint32_t ill_index;
ill_index = recv_ill->ill_phyint->phyint_ifindex;
ip_process(IPP_LOCAL_IN, &first_mp, ill_index);
if (first_mp == NULL)
return;
}
BUMP_MIB(&ip_mib, ipInDelivers);
ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n",
zoneid));
tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid);
return;
}
/*
* Allocate the SYN for the TCP connection here itself
*/
tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
if (IPCL_IS_TCP(connp)) {
squeue_t *sqp;
/*
* For fused tcp loopback, assign the eager's
* squeue to be that of the active connect's.
* Note that we don't check for IP_FF_LOOPBACK
* here since this routine gets called only
* for loopback (unlike the IPv6 counterpart).
*/
ASSERT(Q_TO_CONN(q) != NULL);
if (do_tcp_fusion &&
!CONN_INBOUND_POLICY_PRESENT(connp) && !secure &&
!IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy &&
IPCL_IS_TCP(Q_TO_CONN(q))) {
ASSERT(Q_TO_CONN(q)->conn_sqp != NULL);
sqp = Q_TO_CONN(q)->conn_sqp;
} else {
sqp = IP_SQUEUE_GET(lbolt);
}
mp->b_datap->db_struioflag |= STRUIO_EAGER;
DB_CKSUMSTART(mp) = (intptr_t)sqp;
syn_present = B_TRUE;
}
}
if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) {
uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF;
if ((flags & TH_RST) || (flags & TH_URG)) {
CONN_DEC_REF(connp);
freemsg(first_mp);
return;
}
if (flags & TH_ACK) {
tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid);
CONN_DEC_REF(connp);
return;
}
CONN_DEC_REF(connp);
freemsg(first_mp);
return;
}
if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) {
first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha,
NULL, mctl_present);
if (first_mp == NULL) {
CONN_DEC_REF(connp);
return;
}
if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) {
ASSERT(syn_present);
if (mctl_present) {
ASSERT(first_mp != mp);
first_mp->b_datap->db_struioflag |=
STRUIO_POLICY;
} else {
ASSERT(first_mp == mp);
mp->b_datap->db_struioflag &=
~STRUIO_EAGER;
mp->b_datap->db_struioflag |=
STRUIO_POLICY;
}
} else {
/*
* Discard first_mp early since we're dealing with a
* fully-connected conn_t and tcp doesn't do policy in
* this case.
*/
if (mctl_present) {
freeb(first_mp);
mctl_present = B_FALSE;
}
first_mp = mp;
}
}
/*
* Initiate policy processing here if needed. If we get here from
* icmp_inbound_error_fanout, ip_policy is false.
*/
if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) {
ill_index = recv_ill->ill_phyint->phyint_ifindex;
ip_process(IPP_LOCAL_IN, &mp, ill_index);
if (mp == NULL) {
CONN_DEC_REF(connp);
if (mctl_present)
freeb(first_mp);
return;
} else if (mctl_present) {
ASSERT(first_mp != mp);
first_mp->b_cont = mp;
} else {
first_mp = mp;
}
}
/* Handle IPv6 socket options. */
if (!syn_present &&
connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) {
/* Add header */
ASSERT(recv_ill != NULL);
mp = ip_add_info(mp, recv_ill, IPF_RECVIF);
if (mp == NULL) {
CONN_DEC_REF(connp);
if (mctl_present)
freeb(first_mp);
return;
} else if (mctl_present) {
/*
* ip_add_info might return a new mp.
*/
ASSERT(first_mp != mp);
first_mp->b_cont = mp;
} else {
first_mp = mp;
}
}
BUMP_MIB(&ip_mib, ipInDelivers);
if (IPCL_IS_TCP(connp)) {
(*ip_input_proc)(connp->conn_sqp, first_mp,
connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP);
} else {
putnext(connp->conn_rq, first_mp);
CONN_DEC_REF(connp);
}
}
/*
* Deliver a udp packet to the given conn, possibly applying ipsec policy.
* We are responsible for disposing of mp, such as by freemsg() or putnext()
* Caller is responsible for dropping references to the conn, and freeing
* first_mp.
*
* IPQoS Notes
* Before sending it to the client, invoke IPPF processing. Policy processing
* takes place only if the callout_position, IPP_LOCAL_IN, is enabled and
* ip_policy is true. If we get here from icmp_inbound_error_fanout or
* ip_wput_local, ip_policy is false.
*/
static void
ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp,
boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill,
boolean_t ip_policy)
{
boolean_t mctl_present = (first_mp != NULL);
uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */
uint32_t ill_index;
if (mctl_present)
first_mp->b_cont = mp;
else
first_mp = mp;
if (CONN_UDP_FLOWCTLD(connp)) {
BUMP_MIB(&ip_mib, udpInOverflows);
freemsg(first_mp);
return;
}
if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) {
first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha,
NULL, mctl_present);
if (first_mp == NULL)
return; /* Freed by ipsec_check_inbound_policy(). */
}
if (mctl_present)
freeb(first_mp);
if (connp->conn_recvif)
in_flags = IPF_RECVIF;
if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA))
in_flags |= IPF_RECVSLLA;
/* Handle IPv6 options. */
if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO))
in_flags |= IPF_RECVIF;
/*
* Initiate IPPF processing here, if needed. Note first_mp won't be
* freed if the packet is dropped. The caller will do so.
*/
if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) {
ill_index = recv_ill->ill_phyint->phyint_ifindex;
ip_process(IPP_LOCAL_IN, &mp, ill_index);
if (mp == NULL) {
return;
}
}
if ((in_flags != 0) &&
(mp->b_datap->db_type != M_CTL)) {
/*
* The actual data will be contained in b_cont
* upon successful return of the following call
* else original mblk is returned
*/
ASSERT(recv_ill != NULL);
mp = ip_add_info(mp, recv_ill, in_flags);
}
BUMP_MIB(&ip_mib, ipInDelivers);
/* Send it upstream */
CONN_UDP_RECV(connp, mp);
}
/*
* Fanout for UDP packets.
* The caller puts <fport, lport> in the ports parameter.
*
* If SO_REUSEADDR is set all multicast and broadcast packets
* will be delivered to all streams bound to the same port.
*
* Zones notes:
* Multicast and broadcast packets will be distributed to streams in all zones.
* In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
* AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
* packets. To maintain this behavior with multiple zones, the conns are grouped
* by zone and the SO_REUSEADDR flag is checked for the first matching conn in
* each zone. If unset, all the following conns in the same zone are skipped.
*/
static void
ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha,
uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present,
boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid)
{
uint32_t dstport, srcport;
ipaddr_t dst;
mblk_t *first_mp;
boolean_t secure;
in6_addr_t v6src;
conn_t *connp;
connf_t *connfp;
conn_t *first_connp;
conn_t *next_connp;
mblk_t *mp1, *first_mp1;
ipaddr_t src;
zoneid_t last_zoneid;
boolean_t reuseaddr;
boolean_t shared_addr;
first_mp = mp;
if (mctl_present) {
mp = first_mp->b_cont;
first_mp->b_cont = NULL;
secure = ipsec_in_is_secure(first_mp);
ASSERT(mp != NULL);
} else {
first_mp = NULL;
secure = B_FALSE;
}
/* Extract ports in net byte order */
dstport = htons(ntohl(ports) & 0xFFFF);
srcport = htons(ntohl(ports) >> 16);
dst = ipha->ipha_dst;
src = ipha->ipha_src;
shared_addr = (zoneid == ALL_ZONES);
if (shared_addr) {
zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport);
if (zoneid == ALL_ZONES)
zoneid = tsol_packet_to_zoneid(mp);
}
connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)];
mutex_enter(&connfp->connf_lock);
connp = connfp->connf_head;
if (!broadcast && !CLASSD(dst)) {
/*
* Not broadcast or multicast. Send to the one (first)
* client we find. No need to check conn_wantpacket()
* since IP_BOUND_IF/conn_incoming_ill does not apply to
* IPv4 unicast packets.
*/
while ((connp != NULL) &&
(!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) ||
!IPCL_ZONE_MATCH(connp, zoneid))) {
connp = connp->conn_next;
}
if (connp == NULL || connp->conn_upq == NULL)
goto notfound;
if (is_system_labeled() &&
!tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
connp))
goto notfound;
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags,
recv_ill, ip_policy);
IP_STAT(ip_udp_fannorm);
CONN_DEC_REF(connp);
return;
}
/*
* Broadcast and multicast case
*
* Need to check conn_wantpacket().
* If SO_REUSEADDR has been set on the first we send the
* packet to all clients that have joined the group and
* match the port.
*/
while (connp != NULL) {
if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) &&
conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
(!is_system_labeled() ||
tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
connp)))
break;
connp = connp->conn_next;
}
if (connp == NULL || connp->conn_upq == NULL)
goto notfound;
first_connp = connp;
/*
* When SO_REUSEADDR is not set, send the packet only to the first
* matching connection in its zone by keeping track of the zoneid.
*/
reuseaddr = first_connp->conn_reuseaddr;
last_zoneid = first_connp->conn_zoneid;
CONN_INC_REF(connp);
connp = connp->conn_next;
for (;;) {
while (connp != NULL) {
if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) &&
(reuseaddr || connp->conn_zoneid != last_zoneid) &&
conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
(!is_system_labeled() ||
tsol_receive_local(mp, &dst, IPV4_VERSION,
shared_addr, connp)))
break;
connp = connp->conn_next;
}
/*
* Just copy the data part alone. The mctl part is
* needed just for verifying policy and it is never
* sent up.
*/
if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) &&
((mp1 = copymsg(mp)) == NULL))) {
/*
* No more interested clients or memory
* allocation failed
*/
connp = first_connp;
break;
}
if (connp->conn_zoneid != last_zoneid) {
/*
* Update the zoneid so that the packet isn't sent to
* any more conns in the same zone unless SO_REUSEADDR
* is set.
*/
reuseaddr = connp->conn_reuseaddr;
last_zoneid = connp->conn_zoneid;
}
if (first_mp != NULL) {
ASSERT(((ipsec_info_t *)first_mp->b_rptr)->
ipsec_info_type == IPSEC_IN);
first_mp1 = ipsec_in_tag(first_mp, NULL);
if (first_mp1 == NULL) {
freemsg(mp1);
connp = first_connp;
break;
}
} else {
first_mp1 = NULL;
}
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
/*
* IPQoS notes: We don't send the packet for policy
* processing here, will do it for the last one (below).
* i.e. we do it per-packet now, but if we do policy
* processing per-conn, then we would need to do it
* here too.
*/
ip_fanout_udp_conn(connp, first_mp1, mp1, secure,
ipha, flags, recv_ill, B_FALSE);
mutex_enter(&connfp->connf_lock);
/* Follow the next pointer before releasing the conn. */
next_connp = connp->conn_next;
IP_STAT(ip_udp_fanmb);
CONN_DEC_REF(connp);
connp = next_connp;
}
/* Last one. Send it upstream. */
mutex_exit(&connfp->connf_lock);
ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill,
ip_policy);
IP_STAT(ip_udp_fanmb);
CONN_DEC_REF(connp);
return;
notfound:
mutex_exit(&connfp->connf_lock);
IP_STAT(ip_udp_fanothers);
/*
* IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses
* have already been matched above, since they live in the IPv4
* fanout tables. This implies we only need to
* check for IPv6 in6addr_any endpoints here.
* Thus we compare using ipv6_all_zeros instead of the destination
* address, except for the multicast group membership lookup which
* uses the IPv4 destination.
*/
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src);
connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)];
mutex_enter(&connfp->connf_lock);
connp = connfp->connf_head;
if (!broadcast && !CLASSD(dst)) {
while (connp != NULL) {
if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros,
srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) &&
conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
!connp->conn_ipv6_v6only)
break;
connp = connp->conn_next;
}
if (connp != NULL && is_system_labeled() &&
!tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
connp))
connp = NULL;
if (connp == NULL || connp->conn_upq == NULL) {
/*
* No one bound to this port. Is
* there a client that wants all
* unclaimed datagrams?
*/
mutex_exit(&connfp->connf_lock);
if (mctl_present)
first_mp->b_cont = mp;
else
first_mp = mp;
if (ipcl_proto_search(IPPROTO_UDP) != NULL) {
ip_fanout_proto(q, first_mp, ill, ipha,
flags | IP_FF_RAWIP, mctl_present,
ip_policy, recv_ill, zoneid);
} else {
if (ip_fanout_send_icmp(q, first_mp, flags,
ICMP_DEST_UNREACHABLE,
ICMP_PORT_UNREACHABLE,
mctl_present, zoneid)) {
BUMP_MIB(&ip_mib, udpNoPorts);
}
}
return;
}
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags,
recv_ill, ip_policy);
CONN_DEC_REF(connp);
return;
}
/*
* IPv4 multicast packet being delivered to an AF_INET6
* in6addr_any endpoint.
* Need to check conn_wantpacket(). Note that we use conn_wantpacket()
* and not conn_wantpacket_v6() since any multicast membership is
* for an IPv4-mapped multicast address.
* The packet is sent to all clients in all zones that have joined the
* group and match the port.
*/
while (connp != NULL) {
if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros,
srcport, v6src) &&
conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
(!is_system_labeled() ||
tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
connp)))
break;
connp = connp->conn_next;
}
if (connp == NULL || connp->conn_upq == NULL) {
/*
* No one bound to this port. Is
* there a client that wants all
* unclaimed datagrams?
*/
mutex_exit(&connfp->connf_lock);
if (mctl_present)
first_mp->b_cont = mp;
else
first_mp = mp;
if (ipcl_proto_search(IPPROTO_UDP) != NULL) {
ip_fanout_proto(q, first_mp, ill, ipha,
flags | IP_FF_RAWIP, mctl_present, ip_policy,
recv_ill, zoneid);
} else {
/*
* We used to attempt to send an icmp error here, but
* since this is known to be a multicast packet
* and we don't send icmp errors in response to
* multicast, just drop the packet and give up sooner.
*/
BUMP_MIB(&ip_mib, udpNoPorts);
freemsg(first_mp);
}
return;
}
first_connp = connp;
CONN_INC_REF(connp);
connp = connp->conn_next;
for (;;) {
while (connp != NULL) {
if (IPCL_UDP_MATCH_V6(connp, dstport,
ipv6_all_zeros, srcport, v6src) &&
conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
(!is_system_labeled() ||
tsol_receive_local(mp, &dst, IPV4_VERSION,
shared_addr, connp)))
break;
connp = connp->conn_next;
}
/*
* Just copy the data part alone. The mctl part is
* needed just for verifying policy and it is never
* sent up.
*/
if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) &&
((mp1 = copymsg(mp)) == NULL))) {
/*
* No more intested clients or memory
* allocation failed
*/
connp = first_connp;
break;
}
if (first_mp != NULL) {
ASSERT(((ipsec_info_t *)first_mp->b_rptr)->
ipsec_info_type == IPSEC_IN);
first_mp1 = ipsec_in_tag(first_mp, NULL);
if (first_mp1 == NULL) {
freemsg(mp1);
connp = first_connp;
break;
}
} else {
first_mp1 = NULL;
}
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
/*
* IPQoS notes: We don't send the packet for policy
* processing here, will do it for the last one (below).
* i.e. we do it per-packet now, but if we do policy
* processing per-conn, then we would need to do it
* here too.
*/
ip_fanout_udp_conn(connp, first_mp1, mp1, secure,
ipha, flags, recv_ill, B_FALSE);
mutex_enter(&connfp->connf_lock);
/* Follow the next pointer before releasing the conn. */
next_connp = connp->conn_next;
CONN_DEC_REF(connp);
connp = next_connp;
}
/* Last one. Send it upstream. */
mutex_exit(&connfp->connf_lock);
ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill,
ip_policy);
CONN_DEC_REF(connp);
}
/*
* Complete the ip_wput header so that it
* is possible to generate ICMP
* errors.
*/
int
ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid)
{
ire_t *ire;
if (ipha->ipha_src == INADDR_ANY) {
ire = ire_lookup_local(zoneid);
if (ire == NULL) {
ip1dbg(("ip_hdr_complete: no source IRE\n"));
return (1);
}
ipha->ipha_src = ire->ire_addr;
ire_refrele(ire);
}
ipha->ipha_ttl = ip_def_ttl;
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
return (0);
}
/*
* Nobody should be sending
* packets up this stream
*/
static void
ip_lrput(queue_t *q, mblk_t *mp)
{
mblk_t *mp1;
switch (mp->b_datap->db_type) {
case M_FLUSH:
/* Turn around */
if (*mp->b_rptr & FLUSHW) {
*mp->b_rptr &= ~FLUSHR;
qreply(q, mp);
return;
}
break;
}
/* Could receive messages that passed through ar_rput */
for (mp1 = mp; mp1; mp1 = mp1->b_cont)
mp1->b_prev = mp1->b_next = NULL;
freemsg(mp);
}
/* Nobody should be sending packets down this stream */
/* ARGSUSED */
void
ip_lwput(queue_t *q, mblk_t *mp)
{
freemsg(mp);
}
/*
* Move the first hop in any source route to ipha_dst and remove that part of
* the source route. Called by other protocols. Errors in option formatting
* are ignored - will be handled by ip_wput_options Return the final
* destination (either ipha_dst or the last entry in a source route.)
*/
ipaddr_t
ip_massage_options(ipha_t *ipha)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
int i;
ire_t *ire;
ip2dbg(("ip_massage_options\n"));
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
switch (optval) {
uint8_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg(("ip_massage_options: bad src route\n"));
break;
}
optlen = opts.ipoptp_len;
off = opt[IPOPT_OFFSET];
off--;
redo_srr:
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg(("ip_massage_options: end of SR\n"));
break;
}
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
ip1dbg(("ip_massage_options: next hop 0x%x\n",
ntohl(dst)));
/*
* Check if our address is present more than
* once as consecutive hops in source route.
* XXX verify per-interface ip_forwarding
* for source route?
*/
ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (ire != NULL) {
ire_refrele(ire);
off += IP_ADDR_LEN;
goto redo_srr;
}
if (dst == htonl(INADDR_LOOPBACK)) {
ip1dbg(("ip_massage_options: loopback addr in "
"source route!\n"));
break;
}
/*
* Update ipha_dst to be the first hop and remove the
* first hop from the source route (by overwriting
* part of the option with NOP options).
*/
ipha->ipha_dst = dst;
/* Put the last entry in dst */
off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
3;
bcopy(&opt[off], &dst, IP_ADDR_LEN);
ip1dbg(("ip_massage_options: last hop 0x%x\n",
ntohl(dst)));
/* Move down and overwrite */
opt[IP_ADDR_LEN] = opt[0];
opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
for (i = 0; i < IP_ADDR_LEN; i++)
opt[i] = IPOPT_NOP;
break;
}
}
return (dst);
}
/*
* This function's job is to forward data to the reverse tunnel (FA->HA)
* after doing a few checks. It is assumed that the incoming interface
* of the packet is always different than the outgoing interface and the
* ire_type of the found ire has to be a non-resolver type.
*
* IPQoS notes
* IP policy is invoked twice for a forwarded packet, once on the read side
* and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are
* enabled.
*/
static void
ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp)
{
ipha_t *ipha;
queue_t *q;
uint32_t pkt_len;
#define rptr ((uchar_t *)ipha)
uint32_t sum;
uint32_t max_frag;
mblk_t *first_mp;
uint32_t ill_index;
ipxmit_state_t pktxmit_state;
ill_t *out_ill;
ASSERT(ire != NULL);
ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER);
ASSERT(ire->ire_stq != NULL);
/* Initiate read side IPPF processing */
if (IPP_ENABLED(IPP_FWD_IN)) {
ill_index = in_ill->ill_phyint->phyint_ifindex;
ip_process(IPP_FWD_IN, &mp, ill_index);
if (mp == NULL) {
ip2dbg(("ip_mrtun_forward: inbound pkt "
"dropped during IPPF processing\n"));
return;
}
}
if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags &
ILLF_ROUTER) == 0) ||
(in_ill == (ill_t *)ire->ire_stq->q_ptr)) {
BUMP_MIB(&ip_mib, ipForwProhibits);
ip0dbg(("ip_mrtun_forward: Can't forward :"
"forwarding is not turned on\n"));
goto drop_pkt;
}
/*
* Don't forward if the interface is down
*/
if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto drop_pkt;
}
ipha = (ipha_t *)mp->b_rptr;
pkt_len = ntohs(ipha->ipha_length);
/* Adjust the checksum to reflect the ttl decrement. */
sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
if (ipha->ipha_ttl-- <= 1) {
if (ip_csum_hdr(ipha)) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
goto drop_pkt;
}
q = ire->ire_stq;
if ((first_mp = allocb(sizeof (ipsec_info_t),
BPRI_HI)) == NULL) {
goto drop_pkt;
}
ip_ipsec_out_prepend(first_mp, mp, in_ill);
/* Sent by forwarding path, and router is global zone */
icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED,
GLOBAL_ZONEID);
return;
}
/* Get the ill_index of the ILL */
ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex;
/*
* This location is chosen for the placement of the forwarding hook
* because at this point we know that we have a path out for the
* packet but haven't yet applied any logic (such as fragmenting)
* that happen as part of transmitting the packet out.
*/
out_ill = ire->ire_ipif->ipif_ill;
DTRACE_PROBE4(ip4__forwarding__start,
ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding,
in_ill, out_ill, ipha, mp, mp);
DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);
if (mp == NULL)
return;
pkt_len = ntohs(ipha->ipha_length);
/*
* ip_mrtun_forward is only used by foreign agent to reverse
* tunnel the incoming packet. So it does not do any option
* processing for source routing.
*/
max_frag = ire->ire_max_frag;
if (pkt_len > max_frag) {
/*
* It needs fragging on its way out. We haven't
* verified the header checksum yet. Since we
* are going to put a surely good checksum in the
* outgoing header, we have to make sure that it
* was good coming in.
*/
if (ip_csum_hdr(ipha)) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
goto drop_pkt;
}
/* Initiate write side IPPF processing */
if (IPP_ENABLED(IPP_FWD_OUT)) {
ip_process(IPP_FWD_OUT, &mp, ill_index);
if (mp == NULL) {
ip2dbg(("ip_mrtun_forward: outbound pkt "\
"dropped/deferred during ip policy "\
"processing\n"));
return;
}
}
if ((first_mp = allocb(sizeof (ipsec_info_t),
BPRI_HI)) == NULL) {
goto drop_pkt;
}
ip_ipsec_out_prepend(first_mp, mp, in_ill);
mp = first_mp;
ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID);
return;
}
ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type));
ASSERT(ire->ire_ipif != NULL);
DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
NULL, out_ill, ipha, mp, mp);
DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
if (mp == NULL)
return;
/* Now send the packet to the tunnel interface */
mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT);
q = ire->ire_stq;
pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE);
if ((pktxmit_state == SEND_FAILED) ||
(pktxmit_state == LLHDR_RESLV_FAILED)) {
ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n",
q->q_ptr));
}
return;
drop_pkt:;
ip2dbg(("ip_mrtun_forward: dropping pkt\n"));
freemsg(mp);
#undef rptr
}
/*
* Fills the ipsec_out_t data structure with appropriate fields and
* prepends it to mp which contains the IP hdr + data that was meant
* to be forwarded. Please note that ipsec_out_info data structure
* is used here to communicate the outgoing ill path at ip_wput()
* for the ICMP error packet. This has nothing to do with ipsec IP
* security. ipsec_out_t is really used to pass the info to the module
* IP where this information cannot be extracted from conn.
* This functions is called by ip_mrtun_forward().
*/
void
ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill)
{
ipsec_out_t *io;
ASSERT(xmit_ill != NULL);
first_mp->b_datap->db_type = M_CTL;
first_mp->b_wptr += sizeof (ipsec_info_t);
/*
* This is to pass info to ip_wput in absence of conn.
* ipsec_out_secure will be B_FALSE because of this.
* Thus ipsec_out_secure being B_FALSE indicates that
* this is not IPSEC security related information.
*/
bzero(first_mp->b_rptr, sizeof (ipsec_info_t));
io = (ipsec_out_t *)first_mp->b_rptr;
io->ipsec_out_type = IPSEC_OUT;
io->ipsec_out_len = sizeof (ipsec_out_t);
first_mp->b_cont = mp;
io->ipsec_out_ill_index =
xmit_ill->ill_phyint->phyint_ifindex;
io->ipsec_out_xmit_if = B_TRUE;
}
/*
* Return the network mask
* associated with the specified address.
*/
ipaddr_t
ip_net_mask(ipaddr_t addr)
{
uchar_t *up = (uchar_t *)&addr;
ipaddr_t mask = 0;
uchar_t *maskp = (uchar_t *)&mask;
#if defined(__i386) || defined(__amd64)
#define TOTALLY_BRAIN_DAMAGED_C_COMPILER
#endif
#ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER
maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
#endif
if (CLASSD(addr)) {
maskp[0] = 0xF0;
return (mask);
}
if (addr == 0)
return (0);
maskp[0] = 0xFF;
if ((up[0] & 0x80) == 0)
return (mask);
maskp[1] = 0xFF;
if ((up[0] & 0xC0) == 0x80)
return (mask);
maskp[2] = 0xFF;
if ((up[0] & 0xE0) == 0xC0)
return (mask);
/* Must be experimental or multicast, indicate as much */
return ((ipaddr_t)0);
}
/*
* Select an ill for the packet by considering load spreading across
* a different ill in the group if dst_ill is part of some group.
*/
ill_t *
ip_newroute_get_dst_ill(ill_t *dst_ill)
{
ill_t *ill;
/*
* We schedule irrespective of whether the source address is
* INADDR_ANY or not. illgrp_scheduler returns a held ill.
*/
ill = illgrp_scheduler(dst_ill);
if (ill == NULL)
return (NULL);
/*
* For groups with names ip_sioctl_groupname ensures that all
* ills are of same type. For groups without names, ifgrp_insert
* ensures this.
*/
ASSERT(dst_ill->ill_type == ill->ill_type);
return (ill);
}
/*
* Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case.
*/
ill_t *
ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6)
{
ill_t *ret_ill;
ASSERT(ifindex != 0);
ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL);
if (ret_ill == NULL ||
(ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) {
if (isv6) {
if (ill != NULL) {
BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards);
} else {
BUMP_MIB(&ip6_mib, ipv6OutDiscards);
}
ip1dbg(("ip_grab_attach_ill (IPv6): "
"bad ifindex %d.\n", ifindex));
} else {
BUMP_MIB(&ip_mib, ipOutDiscards);
ip1dbg(("ip_grab_attach_ill (IPv4): "
"bad ifindex %d.\n", ifindex));
}
if (ret_ill != NULL)
ill_refrele(ret_ill);
freemsg(first_mp);
return (NULL);
}
return (ret_ill);
}
/*
* IPv4 -
* ip_newroute is called by ip_rput or ip_wput whenever we need to send
* out a packet to a destination address for which we do not have specific
* (or sufficient) routing information.
*
* NOTE : These are the scopes of some of the variables that point at IRE,
* which needs to be followed while making any future modifications
* to avoid memory leaks.
*
* - ire and sire are the entries looked up initially by
* ire_ftable_lookup.
* - ipif_ire is used to hold the interface ire associated with
* the new cache ire. But it's scope is limited, so we always REFRELE
* it before branching out to error paths.
* - save_ire is initialized before ire_create, so that ire returned
* by ire_create will not over-write the ire. We REFRELE save_ire
* before breaking out of the switch.
*
* Thus on failures, we have to REFRELE only ire and sire, if they
* are not NULL.
*/
void
ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp,
zoneid_t zoneid)
{
areq_t *areq;
ipaddr_t gw = 0;
ire_t *ire = NULL;
mblk_t *res_mp;
ipaddr_t *addrp;
ipaddr_t nexthop_addr;
ipif_t *src_ipif = NULL;
ill_t *dst_ill = NULL;
ipha_t *ipha;
ire_t *sire = NULL;
mblk_t *first_mp;
ire_t *save_ire;
ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */
ushort_t ire_marks = 0;
boolean_t mctl_present;
ipsec_out_t *io;
mblk_t *saved_mp;
ire_t *first_sire = NULL;
mblk_t *copy_mp = NULL;
mblk_t *xmit_mp = NULL;
ipaddr_t save_dst;
uint32_t multirt_flags =
MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP;
boolean_t multirt_is_resolvable;
boolean_t multirt_resolve_next;
boolean_t do_attach_ill = B_FALSE;
boolean_t ip_nexthop = B_FALSE;
tsol_ire_gw_secattr_t *attrp = NULL;
tsol_gcgrp_t *gcgrp = NULL;
tsol_gcgrp_addr_t ga;
if (ip_debug > 2) {
/* ip1dbg */
pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst);
}
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
if (mctl_present) {
io = (ipsec_out_t *)first_mp->b_rptr;
ASSERT(io->ipsec_out_type == IPSEC_OUT);
ASSERT(zoneid == io->ipsec_out_zoneid);
ASSERT(zoneid != ALL_ZONES);
}
ipha = (ipha_t *)mp->b_rptr;
/* All multicast lookups come through ip_newroute_ipif() */
if (CLASSD(dst)) {
ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n",
ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next));
freemsg(first_mp);
return;
}
if (mctl_present && io->ipsec_out_attach_if) {
/* ip_grab_attach_ill returns a held ill */
attach_ill = ip_grab_attach_ill(NULL, first_mp,
io->ipsec_out_ill_index, B_FALSE);
/* Failure case frees things for us. */
if (attach_ill == NULL)
return;
/*
* Check if we need an ire that will not be
* looked up by anybody else i.e. HIDDEN.
*/
if (ill_is_probeonly(attach_ill))
ire_marks = IRE_MARK_HIDDEN;
}
if (mctl_present && io->ipsec_out_ip_nexthop) {
ip_nexthop = B_TRUE;
nexthop_addr = io->ipsec_out_nexthop_addr;
}
/*
* If this IRE is created for forwarding or it is not for
* traffic for congestion controlled protocols, mark it as temporary.
*/
if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol))
ire_marks |= IRE_MARK_TEMPORARY;
/*
* Get what we can from ire_ftable_lookup which will follow an IRE
* chain until it gets the most specific information available.
* For example, we know that there is no IRE_CACHE for this dest,
* but there may be an IRE_OFFSUBNET which specifies a gateway.
* ire_ftable_lookup will look up the gateway, etc.
* Check if in_ill != NULL. If it is true, the packet must be
* from an incoming interface where RTA_SRCIFP is set.
* Otherwise, given ire_ftable_lookup algorithm, only one among routes
* to the destination, of equal netmask length in the forward table,
* will be recursively explored. If no information is available
* for the final gateway of that route, we force the returned ire
* to be equal to sire using MATCH_IRE_PARENT.
* At least, in this case we have a starting point (in the buckets)
* to look for other routes to the destination in the forward table.
* This is actually used only for multirouting, where a list
* of routes has to be processed in sequence.
*
* In the process of coming up with the most specific information,
* ire_ftable_lookup may end up with an incomplete IRE_CACHE entry
* for the gateway (i.e., one for which the ire_nce->nce_state is
* not yet ND_REACHABLE, and is in the middle of arp resolution).
* Two caveats when handling incomplete ire's in ip_newroute:
* - we should be careful when accessing its ire_nce (specifically
* the nce_res_mp) ast it might change underneath our feet, and,
* - not all legacy code path callers are prepared to handle
* incomplete ire's, so we should not create/add incomplete
* ire_cache entries here. (See discussion about temporary solution
* further below).
*
* In order to minimize packet dropping, and to preserve existing
* behavior, we treat this case as if there were no IRE_CACHE for the
* gateway, and instead use the IF_RESOLVER ire to send out
* another request to ARP (this is achieved by passing the
* MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the
* arp response comes back in ip_wput_nondata, we will create
* a per-dst ire_cache that has an ND_COMPLETE ire.
*
* Note that this is a temporary solution; the correct solution is
* to create an incomplete per-dst ire_cache entry, and send the
* packet out when the gw's nce is resolved. In order to achieve this,
* all packet processing must have been completed prior to calling
* ire_add_then_send. Some legacy code paths (e.g. cgtp) would need
* to be modified to accomodate this solution.
*/
if (in_ill != NULL) {
ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL,
in_ill, MATCH_IRE_TYPE);
} else if (ip_nexthop) {
/*
* The first time we come here, we look for an IRE_INTERFACE
* entry for the specified nexthop, set the dst to be the
* nexthop address and create an IRE_CACHE entry for the
* nexthop. The next time around, we are able to find an
* IRE_CACHE entry for the nexthop, set the gateway to be the
* nexthop address and create an IRE_CACHE entry for the
* destination address via the specified nexthop.
*/
ire = ire_cache_lookup(nexthop_addr, zoneid,
MBLK_GETLABEL(mp));
if (ire != NULL) {
gw = nexthop_addr;
ire_marks |= IRE_MARK_PRIVATE_ADDR;
} else {
ire = ire_ftable_lookup(nexthop_addr, 0, 0,
IRE_INTERFACE, NULL, NULL, zoneid, 0,
MBLK_GETLABEL(mp),
MATCH_IRE_TYPE | MATCH_IRE_SECATTR);
if (ire != NULL) {
dst = nexthop_addr;
}
}
} else if (attach_ill == NULL) {
ire = ire_ftable_lookup(dst, 0, 0, 0,
NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp),
MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT |
MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE);
} else {
/*
* attach_ill is set only for communicating with
* on-link hosts. So, don't look for DEFAULT.
*/
ipif_t *attach_ipif;
attach_ipif = ipif_get_next_ipif(NULL, attach_ill);
if (attach_ipif == NULL) {
ill_refrele(attach_ill);
goto icmp_err_ret;
}
ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif,
&sire, zoneid, 0, MBLK_GETLABEL(mp),
MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL |
MATCH_IRE_SECATTR);
ipif_refrele(attach_ipif);
}
ip3dbg(("ip_newroute: ire_ftable_lookup() "
"returned ire %p, sire %p\n", (void *)ire, (void *)sire));
/*
* This loop is run only once in most cases.
* We loop to resolve further routes only when the destination
* can be reached through multiple RTF_MULTIRT-flagged ires.
*/
do {
/* Clear the previous iteration's values */
if (src_ipif != NULL) {
ipif_refrele(src_ipif);
src_ipif = NULL;
}
if (dst_ill != NULL) {
ill_refrele(dst_ill);
dst_ill = NULL;
}
multirt_resolve_next = B_FALSE;
/*
* We check if packets have to be multirouted.
* In this case, given the current <ire, sire> couple,
* we look for the next suitable <ire, sire>.
* This check is done in ire_multirt_lookup(),
* which applies various criteria to find the next route
* to resolve. ire_multirt_lookup() leaves <ire, sire>
* unchanged if it detects it has not been tried yet.
*/
if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
ip3dbg(("ip_newroute: starting next_resolution "
"with first_mp %p, tag %d\n",
(void *)first_mp,
MULTIRT_DEBUG_TAGGED(first_mp)));
ASSERT(sire != NULL);
multirt_is_resolvable =
ire_multirt_lookup(&ire, &sire, multirt_flags,
MBLK_GETLABEL(mp));
ip3dbg(("ip_newroute: multirt_is_resolvable %d, "
"ire %p, sire %p\n",
multirt_is_resolvable,
(void *)ire, (void *)sire));
if (!multirt_is_resolvable) {
/*
* No more multirt route to resolve; give up
* (all routes resolved or no more
* resolvable routes).
*/
if (ire != NULL) {
ire_refrele(ire);
ire = NULL;
}
} else {
ASSERT(sire != NULL);
ASSERT(ire != NULL);
/*
* We simply use first_sire as a flag that
* indicates if a resolvable multirt route
* has already been found.
* If it is not the case, we may have to send
* an ICMP error to report that the
* destination is unreachable.
* We do not IRE_REFHOLD first_sire.
*/
if (first_sire == NULL) {
first_sire = sire;
}
}
}
if (ire == NULL) {
if (ip_debug > 3) {
/* ip2dbg */
pr_addr_dbg("ip_newroute: "
"can't resolve %s\n", AF_INET, &dst);
}
ip3dbg(("ip_newroute: "
"ire %p, sire %p, first_sire %p\n",
(void *)ire, (void *)sire, (void *)first_sire));
if (sire != NULL) {
ire_refrele(sire);
sire = NULL;
}
if (first_sire != NULL) {
/*
* At least one multirt route has been found
* in the same call to ip_newroute();
* there is no need to report an ICMP error.
* first_sire was not IRE_REFHOLDed.
*/
MULTIRT_DEBUG_UNTAG(first_mp);
freemsg(first_mp);
return;
}
ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0,
RTA_DST);
if (attach_ill != NULL)
ill_refrele(attach_ill);
goto icmp_err_ret;
}
/*
* When RTA_SRCIFP is used to add a route, then an interface
* route is added in the source interface's routing table.
* If the outgoing interface of this route is of type
* IRE_IF_RESOLVER, then upon creation of the ire,
* ire_nce->nce_res_mp is set to NULL.
* Later, when this route is first used for forwarding
* a packet, ip_newroute() is called
* to resolve the hardware address of the outgoing ipif.
* We do not come here for IRE_IF_NORESOLVER entries in the
* source interface based table. We only come here if the
* outgoing interface is a resolver interface and we don't
* have the ire_nce->nce_res_mp information yet.
* If in_ill is not null that means it is called from
* ip_rput.
*/
ASSERT(ire->ire_in_ill == NULL ||
(ire->ire_type == IRE_IF_RESOLVER &&
ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL));
/*
* Verify that the returned IRE does not have either
* the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is
* either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
*/
if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) ||
(ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) {
if (attach_ill != NULL)
ill_refrele(attach_ill);
goto icmp_err_ret;
}
/*
* Increment the ire_ob_pkt_count field for ire if it is an
* INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and
* increment the same for the parent IRE, sire, if it is some
* sort of prefix IRE (which includes DEFAULT, PREFIX, HOST
* and HOST_REDIRECT).
*/
if ((ire->ire_type & IRE_INTERFACE) != 0) {
UPDATE_OB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
}
if (sire != NULL) {
gw = sire->ire_gateway_addr;
ASSERT((sire->ire_type & (IRE_CACHETABLE |
IRE_INTERFACE)) == 0);
UPDATE_OB_PKT_COUNT(sire);
sire->ire_last_used_time = lbolt;
}
/*
* We have a route to reach the destination.
*
* 1) If the interface is part of ill group, try to get a new
* ill taking load spreading into account.
*
* 2) After selecting the ill, get a source address that
* might create good inbound load spreading.
* ipif_select_source does this for us.
*
* If the application specified the ill (ifindex), we still
* load spread. Only if the packets needs to go out
* specifically on a given ill e.g. binding to
* IPIF_NOFAILOVER address, then we don't try to use a
* different ill for load spreading.
*/
if (attach_ill == NULL) {
/*
* Don't perform outbound load spreading in the
* case of an RTF_MULTIRT route, as we actually
* typically want to replicate outgoing packets
* through particular interfaces.
*/
if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
dst_ill = ire->ire_ipif->ipif_ill;
/* for uniformity */
ill_refhold(dst_ill);
} else {
/*
* If we are here trying to create an IRE_CACHE
* for an offlink destination and have the
* IRE_CACHE for the next hop and the latter is
* using virtual IP source address selection i.e
* it's ire->ire_ipif is pointing to a virtual
* network interface (vni) then
* ip_newroute_get_dst_ll() will return the vni
* interface as the dst_ill. Since the vni is
* virtual i.e not associated with any physical
* interface, it cannot be the dst_ill, hence
* in such a case call ip_newroute_get_dst_ll()
* with the stq_ill instead of the ire_ipif ILL.
* The function returns a refheld ill.
*/
if ((ire->ire_type == IRE_CACHE) &&
IS_VNI(ire->ire_ipif->ipif_ill))
dst_ill = ip_newroute_get_dst_ill(
ire->ire_stq->q_ptr);
else
dst_ill = ip_newroute_get_dst_ill(
ire->ire_ipif->ipif_ill);
}
if (dst_ill == NULL) {
if (ip_debug > 2) {
pr_addr_dbg("ip_newroute: "
"no dst ill for dst"
" %s\n", AF_INET, &dst);
}
goto icmp_err_ret;
}
} else {
dst_ill = ire->ire_ipif->ipif_ill;
/* for uniformity */
ill_refhold(dst_ill);
/*
* We should have found a route matching ill as we
* called ire_ftable_lookup with MATCH_IRE_ILL.
* Rather than asserting, when there is a mismatch,
* we just drop the packet.
*/
if (dst_ill != attach_ill) {
ip0dbg(("ip_newroute: Packet dropped as "
"IPIF_NOFAILOVER ill is %s, "
"ire->ire_ipif->ipif_ill is %s\n",
attach_ill->ill_name,
dst_ill->ill_name));
ill_refrele(attach_ill);
goto icmp_err_ret;
}
}
/* attach_ill can't go in loop. IPMP and CGTP are disjoint */
if (attach_ill != NULL) {
ill_refrele(attach_ill);
attach_ill = NULL;
do_attach_ill = B_TRUE;
}
ASSERT(dst_ill != NULL);
ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name));
/*
* Pick the best source address from dst_ill.
*
* 1) If it is part of a multipathing group, we would
* like to spread the inbound packets across different
* interfaces. ipif_select_source picks a random source
* across the different ills in the group.
*
* 2) If it is not part of a multipathing group, we try
* to pick the source address from the destination
* route. Clustering assumes that when we have multiple
* prefixes hosted on an interface, the prefix of the
* source address matches the prefix of the destination
* route. We do this only if the address is not
* DEPRECATED.
*
* 3) If the conn is in a different zone than the ire, we
* need to pick a source address from the right zone.
*
* NOTE : If we hit case (1) above, the prefix of the source
* address picked may not match the prefix of the
* destination routes prefix as ipif_select_source
* does not look at "dst" while picking a source
* address.
* If we want the same behavior as (2), we will need
* to change the behavior of ipif_select_source.
*/
ASSERT(src_ipif == NULL);
if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
/*
* The RTF_SETSRC flag is set in the parent ire (sire).
* Check that the ipif matching the requested source
* address still exists.
*/
src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL,
zoneid, NULL, NULL, NULL, NULL);
}
if (src_ipif == NULL) {
ire_marks |= IRE_MARK_USESRC_CHECK;
if ((dst_ill->ill_group != NULL) ||
(ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
(connp != NULL && ire->ire_zoneid != zoneid &&
ire->ire_zoneid != ALL_ZONES) ||
(dst_ill->ill_usesrc_ifindex != 0)) {
/*
* If the destination is reachable via a
* given gateway, the selected source address
* should be in the same subnet as the gateway.
* Otherwise, the destination is not reachable.
*
* If there are no interfaces on the same subnet
* as the destination, ipif_select_source gives
* first non-deprecated interface which might be
* on a different subnet than the gateway.
* This is not desirable. Hence pass the dst_ire
* source address to ipif_select_source.
* It is sure that the destination is reachable
* with the dst_ire source address subnet.
* So passing dst_ire source address to
* ipif_select_source will make sure that the
* selected source will be on the same subnet
* as dst_ire source address.
*/
ipaddr_t saddr = ire->ire_ipif->ipif_src_addr;
src_ipif = ipif_select_source(dst_ill, saddr,
zoneid);
if (src_ipif == NULL) {
if (ip_debug > 2) {
pr_addr_dbg("ip_newroute: "
"no src for dst %s ",
AF_INET, &dst);
printf("through interface %s\n",
dst_ill->ill_name);
}
goto icmp_err_ret;
}
} else {
src_ipif = ire->ire_ipif;
ASSERT(src_ipif != NULL);
/* hold src_ipif for uniformity */
ipif_refhold(src_ipif);
}
}
/*
* Assign a source address while we have the conn.
* We can't have ip_wput_ire pick a source address when the
* packet returns from arp since we need to look at
* conn_unspec_src and conn_zoneid, and we lose the conn when
* going through arp.
*
* NOTE : ip_newroute_v6 does not have this piece of code as
* it uses ip6i to store this information.
*/
if (ipha->ipha_src == INADDR_ANY &&
(connp == NULL || !connp->conn_unspec_src)) {
ipha->ipha_src = src_ipif->ipif_src_addr;
}
if (ip_debug > 3) {
/* ip2dbg */
pr_addr_dbg("ip_newroute: first hop %s\n",
AF_INET, &gw);
}
ip2dbg(("\tire type %s (%d)\n",
ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type));
/*
* The TTL of multirouted packets is bounded by the
* ip_multirt_ttl ndd variable.
*/
if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
/* Force TTL of multirouted packets */
if ((ip_multirt_ttl > 0) &&
(ipha->ipha_ttl > ip_multirt_ttl)) {
ip2dbg(("ip_newroute: forcing multirt TTL "
"to %d (was %d), dst 0x%08x\n",
ip_multirt_ttl, ipha->ipha_ttl,
ntohl(sire->ire_addr)));
ipha->ipha_ttl = ip_multirt_ttl;
}
}
/*
* At this point in ip_newroute(), ire is either the
* IRE_CACHE of the next-hop gateway for an off-subnet
* destination or an IRE_INTERFACE type that should be used
* to resolve an on-subnet destination or an on-subnet
* next-hop gateway.
*
* In the IRE_CACHE case, we have the following :
*
* 1) src_ipif - used for getting a source address.
*
* 2) dst_ill - from which we derive ire_stq/ire_rfq. This
* means packets using this IRE_CACHE will go out on
* dst_ill.
*
* 3) The IRE sire will point to the prefix that is the
* longest matching route for the destination. These
* prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST.
*
* The newly created IRE_CACHE entry for the off-subnet
* destination is tied to both the prefix route and the
* interface route used to resolve the next-hop gateway
* via the ire_phandle and ire_ihandle fields,
* respectively.
*
* In the IRE_INTERFACE case, we have the following :
*
* 1) src_ipif - used for getting a source address.
*
* 2) dst_ill - from which we derive ire_stq/ire_rfq. This
* means packets using the IRE_CACHE that we will build
* here will go out on dst_ill.
*
* 3) sire may or may not be NULL. But, the IRE_CACHE that is
* to be created will only be tied to the IRE_INTERFACE
* that was derived from the ire_ihandle field.
*
* If sire is non-NULL, it means the destination is
* off-link and we will first create the IRE_CACHE for the
* gateway. Next time through ip_newroute, we will create
* the IRE_CACHE for the final destination as described
* above.
*
* In both cases, after the current resolution has been
* completed (or possibly initialised, in the IRE_INTERFACE
* case), the loop may be re-entered to attempt the resolution
* of another RTF_MULTIRT route.
*
* When an IRE_CACHE entry for the off-subnet destination is
* created, RTF_SETSRC and RTF_MULTIRT are inherited from sire,
* for further processing in emission loops.
*/
save_ire = ire;
switch (ire->ire_type) {
case IRE_CACHE: {
ire_t *ipif_ire;
mblk_t *ire_fp_mp;
ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE);
if (gw == 0)
gw = ire->ire_gateway_addr;
/*
* We need 3 ire's to create a new cache ire for an
* off-link destination from the cache ire of the
* gateway.
*
* 1. The prefix ire 'sire' (Note that this does
* not apply to the conn_nexthop_set case)
* 2. The cache ire of the gateway 'ire'
* 3. The interface ire 'ipif_ire'
*
* We have (1) and (2). We lookup (3) below.
*
* If there is no interface route to the gateway,
* it is a race condition, where we found the cache
* but the interface route has been deleted.
*/
if (ip_nexthop) {
ipif_ire = ire_ihandle_lookup_onlink(ire);
} else {
ipif_ire =
ire_ihandle_lookup_offlink(ire, sire);
}
if (ipif_ire == NULL) {
ip1dbg(("ip_newroute: "
"ire_ihandle_lookup_offlink failed\n"));
goto icmp_err_ret;
}
/*
* XXX We are using the same res_mp
* (DL_UNITDATA_REQ) though the save_ire is not
* pointing at the same ill.
* This is incorrect. We need to send it up to the
* resolver to get the right res_mp. For ethernets
* this may be okay (ill_type == DL_ETHER).
*/
res_mp = save_ire->ire_nce->nce_res_mp;
ire_fp_mp = NULL;
/*
* save_ire's nce_fp_mp can't change since it is
* not an IRE_MIPRTUN or IRE_BROADCAST
* LOCK_IRE_FP_MP does not do any useful work in
* the case of IRE_CACHE. So we don't use it below.
*/
if (save_ire->ire_stq == dst_ill->ill_wq)
ire_fp_mp = save_ire->ire_nce->nce_fp_mp;
/*
* Check cached gateway IRE for any security
* attributes; if found, associate the gateway
* credentials group to the destination IRE.
*/
if ((attrp = save_ire->ire_gw_secattr) != NULL) {
mutex_enter(&attrp->igsa_lock);
if ((gcgrp = attrp->igsa_gcgrp) != NULL)
GCGRP_REFHOLD(gcgrp);
mutex_exit(&attrp->igsa_lock);
}
ire = ire_create(
(uchar_t *)&dst, /* dest address */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
(uchar_t *)&gw, /* gateway address */
NULL,
&save_ire->ire_max_frag,
ire_fp_mp, /* Fast Path header */
dst_ill->ill_rq, /* recv-from queue */
dst_ill->ill_wq, /* send-to queue */
IRE_CACHE, /* IRE type */
res_mp,
src_ipif,
in_ill, /* incoming ill */
(sire != NULL) ?
sire->ire_mask : 0, /* Parent mask */
(sire != NULL) ?
sire->ire_phandle : 0, /* Parent handle */
ipif_ire->ire_ihandle, /* Interface handle */
(sire != NULL) ? (sire->ire_flags &
(RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */
(sire != NULL) ?
&(sire->ire_uinfo) : &(save_ire->ire_uinfo),
NULL,
gcgrp);
if (ire == NULL) {
if (gcgrp != NULL) {
GCGRP_REFRELE(gcgrp);
gcgrp = NULL;
}
ire_refrele(ipif_ire);
ire_refrele(save_ire);
break;
}
/* reference now held by IRE */
gcgrp = NULL;
ire->ire_marks |= ire_marks;
/*
* Prevent sire and ipif_ire from getting deleted.
* The newly created ire is tied to both of them via
* the phandle and ihandle respectively.
*/
if (sire != NULL) {
IRB_REFHOLD(sire->ire_bucket);
/* Has it been removed already ? */
if (sire->ire_marks & IRE_MARK_CONDEMNED) {
IRB_REFRELE(sire->ire_bucket);
ire_refrele(ipif_ire);
ire_refrele(save_ire);
break;
}
}
IRB_REFHOLD(ipif_ire->ire_bucket);
/* Has it been removed already ? */
if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) {
IRB_REFRELE(ipif_ire->ire_bucket);
if (sire != NULL)
IRB_REFRELE(sire->ire_bucket);
ire_refrele(ipif_ire);
ire_refrele(save_ire);
break;
}
xmit_mp = first_mp;
/*
* In the case of multirouting, a copy
* of the packet is done before its sending.
* The copy is used to attempt another
* route resolution, in a next loop.
*/
if (ire->ire_flags & RTF_MULTIRT) {
copy_mp = copymsg(first_mp);
if (copy_mp != NULL) {
xmit_mp = copy_mp;
MULTIRT_DEBUG_TAG(first_mp);
}
}
ire_add_then_send(q, ire, xmit_mp);
ire_refrele(save_ire);
/* Assert that sire is not deleted yet. */
if (sire != NULL) {
ASSERT(sire->ire_ptpn != NULL);
IRB_REFRELE(sire->ire_bucket);
}
/* Assert that ipif_ire is not deleted yet. */
ASSERT(ipif_ire->ire_ptpn != NULL);
IRB_REFRELE(ipif_ire->ire_bucket);
ire_refrele(ipif_ire);
/*
* If copy_mp is not NULL, multirouting was
* requested. We loop to initiate a next
* route resolution attempt, starting from sire.
*/
if (copy_mp != NULL) {
/*
* Search for the next unresolved
* multirt route.
*/
copy_mp = NULL;
ipif_ire = NULL;
ire = NULL;
multirt_resolve_next = B_TRUE;
continue;
}
if (sire != NULL)
ire_refrele(sire);
ipif_refrele(src_ipif);
ill_refrele(dst_ill);
return;
}
case IRE_IF_NORESOLVER: {
/*
* We have what we need to build an IRE_CACHE.
*
* Create a new res_mp with the IP gateway address
* in destination address in the DLPI hdr if the
* physical length is exactly 4 bytes.
*/
if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) {
uchar_t *addr;
if (gw)
addr = (uchar_t *)&gw;
else
addr = (uchar_t *)&dst;
res_mp = ill_dlur_gen(addr,
dst_ill->ill_phys_addr_length,
dst_ill->ill_sap,
dst_ill->ill_sap_length);
if (res_mp == NULL) {
ip1dbg(("ip_newroute: res_mp NULL\n"));
break;
}
} else {
res_mp = NULL;
}
/*
* TSol note: We are creating the ire cache for the
* destination 'dst'. If 'dst' is offlink, going
* through the first hop 'gw', the security attributes
* of 'dst' must be set to point to the gateway
* credentials of gateway 'gw'. If 'dst' is onlink, it
* is possible that 'dst' is a potential gateway that is
* referenced by some route that has some security
* attributes. Thus in the former case, we need to do a
* gcgrp_lookup of 'gw' while in the latter case we
* need to do gcgrp_lookup of 'dst' itself.
*/
ga.ga_af = AF_INET;
IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst,
&ga.ga_addr);
gcgrp = gcgrp_lookup(&ga, B_FALSE);
ire = ire_create(
(uchar_t *)&dst, /* dest address */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
(uchar_t *)&gw, /* gateway address */
NULL,
&save_ire->ire_max_frag,
NULL, /* Fast Path header */
dst_ill->ill_rq, /* recv-from queue */
dst_ill->ill_wq, /* send-to queue */
IRE_CACHE,
res_mp,
src_ipif,
in_ill, /* Incoming ill */
save_ire->ire_mask, /* Parent mask */
(sire != NULL) ? /* Parent handle */
sire->ire_phandle : 0,
save_ire->ire_ihandle, /* Interface handle */
(sire != NULL) ? sire->ire_flags &
(RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */
&(save_ire->ire_uinfo),
NULL,
gcgrp);
if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN)
freeb(res_mp);
if (ire == NULL) {
if (gcgrp != NULL) {
GCGRP_REFRELE(gcgrp);
gcgrp = NULL;
}
ire_refrele(save_ire);
break;
}
/* reference now held by IRE */
gcgrp = NULL;
ire->ire_marks |= ire_marks;
/* Prevent save_ire from getting deleted */
IRB_REFHOLD(save_ire->ire_bucket);
/* Has it been removed already ? */
if (save_ire->ire_marks & IRE_MARK_CONDEMNED) {
IRB_REFRELE(save_ire->ire_bucket);
ire_refrele(save_ire);
break;
}
/*
* In the case of multirouting, a copy
* of the packet is made before it is sent.
* The copy is used in the next
* loop to attempt another resolution.
*/
xmit_mp = first_mp;
if ((sire != NULL) &&
(sire->ire_flags & RTF_MULTIRT)) {
copy_mp = copymsg(first_mp);
if (copy_mp != NULL) {
xmit_mp = copy_mp;
MULTIRT_DEBUG_TAG(first_mp);
}
}
ire_add_then_send(q, ire, xmit_mp);
/* Assert that it is not deleted yet. */
ASSERT(save_ire->ire_ptpn != NULL);
IRB_REFRELE(save_ire->ire_bucket);
ire_refrele(save_ire);
if (copy_mp != NULL) {
/*
* If we found a (no)resolver, we ignore any
* trailing top priority IRE_CACHE in further
* loops. This ensures that we do not omit any
* (no)resolver.
* This IRE_CACHE, if any, will be processed
* by another thread entering ip_newroute().
* IRE_CACHE entries, if any, will be processed
* by another thread entering ip_newroute(),
* (upon resolver response, for instance).
* This aims to force parallel multirt
* resolutions as soon as a packet must be sent.
* In the best case, after the tx of only one
* packet, all reachable routes are resolved.
* Otherwise, the resolution of all RTF_MULTIRT
* routes would require several emissions.
*/
multirt_flags &= ~MULTIRT_CACHEGW;
/*
* Search for the next unresolved multirt
* route.
*/
copy_mp = NULL;
save_ire = NULL;
ire = NULL;
multirt_resolve_next = B_TRUE;
continue;
}
/*
* Don't need sire anymore
*/
if (sire != NULL)
ire_refrele(sire);
ipif_refrele(src_ipif);
ill_refrele(dst_ill);
return;
}
case IRE_IF_RESOLVER:
/*
* We can't build an IRE_CACHE yet, but at least we
* found a resolver that can help.
*/
res_mp = dst_ill->ill_resolver_mp;
if (!OK_RESOLVER_MP(res_mp))
break;
/*
* To be at this point in the code with a non-zero gw
* means that dst is reachable through a gateway that
* we have never resolved. By changing dst to the gw
* addr we resolve the gateway first.
* When ire_add_then_send() tries to put the IP dg
* to dst, it will reenter ip_newroute() at which
* time we will find the IRE_CACHE for the gw and
* create another IRE_CACHE in case IRE_CACHE above.
*/
if (gw != INADDR_ANY) {
/*
* The source ipif that was determined above was
* relative to the destination address, not the
* gateway's. If src_ipif was not taken out of
* the IRE_IF_RESOLVER entry, we'll need to call
* ipif_select_source() again.
*/
if (src_ipif != ire->ire_ipif) {
ipif_refrele(src_ipif);
src_ipif = ipif_select_source(dst_ill,
gw, zoneid);
if (src_ipif == NULL) {
if (ip_debug > 2) {
pr_addr_dbg(
"ip_newroute: no "
"src for gw %s ",
AF_INET, &gw);
printf("through "
"interface %s\n",
dst_ill->ill_name);
}
goto icmp_err_ret;
}
}
save_dst = dst;
dst = gw;
gw = INADDR_ANY;
}
/*
* We obtain a partial IRE_CACHE which we will pass
* along with the resolver query. When the response
* comes back it will be there ready for us to add.
* The ire_max_frag is atomically set under the
* irebucket lock in ire_add_v[46].
*/
ire = ire_create_mp(
(uchar_t *)&dst, /* dest address */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
(uchar_t *)&gw, /* gateway address */
NULL, /* no in_src_addr */
NULL, /* ire_max_frag */
NULL, /* Fast Path header */
dst_ill->ill_rq, /* recv-from queue */
dst_ill->ill_wq, /* send-to queue */
IRE_CACHE,
NULL,
src_ipif, /* Interface ipif */
in_ill, /* Incoming ILL */
save_ire->ire_mask, /* Parent mask */
0,
save_ire->ire_ihandle, /* Interface handle */
0, /* flags if any */
&(save_ire->ire_uinfo),
NULL,
NULL);
if (ire == NULL) {
ire_refrele(save_ire);
break;
}
if ((sire != NULL) &&
(sire->ire_flags & RTF_MULTIRT)) {
copy_mp = copymsg(first_mp);
if (copy_mp != NULL)
MULTIRT_DEBUG_TAG(copy_mp);
}
ire->ire_marks |= ire_marks;
/*
* Construct message chain for the resolver
* of the form:
* ARP_REQ_MBLK-->IRE_MBLK-->Packet
* Packet could contain a IPSEC_OUT mp.
*
* NOTE : ire will be added later when the response
* comes back from ARP. If the response does not
* come back, ARP frees the packet. For this reason,
* we can't REFHOLD the bucket of save_ire to prevent
* deletions. We may not be able to REFRELE the bucket
* if the response never comes back. Thus, before
* adding the ire, ire_add_v4 will make sure that the
* interface route does not get deleted. This is the
* only case unlike ip_newroute_v6, ip_newroute_ipif_v6
* where we can always prevent deletions because of
* the synchronous nature of adding IRES i.e
* ire_add_then_send is called after creating the IRE.
*/
ASSERT(ire->ire_mp != NULL);
ire->ire_mp->b_cont = first_mp;
/* Have saved_mp handy, for cleanup if canput fails */
saved_mp = mp;
mp = copyb(res_mp);
if (mp == NULL) {
/* Prepare for cleanup */
mp = saved_mp; /* pkt */
ire_delete(ire); /* ire_mp */
ire = NULL;
ire_refrele(save_ire);
if (copy_mp != NULL) {
MULTIRT_DEBUG_UNTAG(copy_mp);
freemsg(copy_mp);
copy_mp = NULL;
}
break;
}
linkb(mp, ire->ire_mp);
/*
* Fill in the source and dest addrs for the resolver.
* NOTE: this depends on memory layouts imposed by
* ill_init().
*/
areq = (areq_t *)mp->b_rptr;
addrp = (ipaddr_t *)((char *)areq +
areq->areq_sender_addr_offset);
if (do_attach_ill) {
/*
* This is bind to no failover case.
* arp packet also must go out on attach_ill.
*/
ASSERT(ipha->ipha_src != NULL);
*addrp = ipha->ipha_src;
} else {
*addrp = save_ire->ire_src_addr;
}
ire_refrele(save_ire);
addrp = (ipaddr_t *)((char *)areq +
areq->areq_target_addr_offset);
*addrp = dst;
/* Up to the resolver. */
if (canputnext(dst_ill->ill_rq) &&
!(dst_ill->ill_arp_closing)) {
putnext(dst_ill->ill_rq, mp);
ire = NULL;
if (copy_mp != NULL) {
/*
* If we found a resolver, we ignore
* any trailing top priority IRE_CACHE
* in the further loops. This ensures
* that we do not omit any resolver.
* IRE_CACHE entries, if any, will be
* processed next time we enter
* ip_newroute().
*/
multirt_flags &= ~MULTIRT_CACHEGW;
/*
* Search for the next unresolved
* multirt route.
*/
first_mp = copy_mp;
copy_mp = NULL;
/* Prepare the next resolution loop. */
mp = first_mp;
EXTRACT_PKT_MP(mp, first_mp,
mctl_present);
if (mctl_present)
io = (ipsec_out_t *)
first_mp->b_rptr;
ipha = (ipha_t *)mp->b_rptr;
ASSERT(sire != NULL);
dst = save_dst;
multirt_resolve_next = B_TRUE;
continue;
}
if (sire != NULL)
ire_refrele(sire);
/*
* The response will come back in ip_wput
* with db_type IRE_DB_TYPE.
*/
ipif_refrele(src_ipif);
ill_refrele(dst_ill);
return;
} else {
/* Prepare for cleanup */
DTRACE_PROBE1(ip__newroute__drop, mblk_t *,
mp);
mp->b_cont = NULL;
freeb(mp); /* areq */
/*
* this is an ire that is not added to the
* cache. ire_freemblk will handle the release
* of any resources associated with the ire.
*/
ire_delete(ire); /* ire_mp */
mp = saved_mp; /* pkt */
ire = NULL;
if (copy_mp != NULL) {
MULTIRT_DEBUG_UNTAG(copy_mp);
freemsg(copy_mp);
copy_mp = NULL;
}
break;
}
default:
break;
}
} while (multirt_resolve_next);
ip1dbg(("ip_newroute: dropped\n"));
/* Did this packet originate externally? */
if (mp->b_prev) {
mp->b_next = NULL;
mp->b_prev = NULL;
BUMP_MIB(&ip_mib, ipInDiscards);
} else {
BUMP_MIB(&ip_mib, ipOutDiscards);
}
ASSERT(copy_mp == NULL);
MULTIRT_DEBUG_UNTAG(first_mp);
freemsg(first_mp);
if (ire != NULL)
ire_refrele(ire);
if (sire != NULL)
ire_refrele(sire);
if (src_ipif != NULL)
ipif_refrele(src_ipif);
if (dst_ill != NULL)
ill_refrele(dst_ill);
return;
icmp_err_ret:
ip1dbg(("ip_newroute: no route\n"));
if (src_ipif != NULL)
ipif_refrele(src_ipif);
if (dst_ill != NULL)
ill_refrele(dst_ill);
if (sire != NULL)
ire_refrele(sire);
/* Did this packet originate externally? */
if (mp->b_prev) {
mp->b_next = NULL;
mp->b_prev = NULL;
/* XXX ipInNoRoutes */
q = WR(q);
} else {
/*
* Since ip_wput() isn't close to finished, we fill
* in enough of the header for credible error reporting.
*/
if (ip_hdr_complete(ipha, zoneid)) {
/* Failed */
MULTIRT_DEBUG_UNTAG(first_mp);
freemsg(first_mp);
if (ire != NULL)
ire_refrele(ire);
return;
}
}
BUMP_MIB(&ip_mib, ipOutNoRoutes);
/*
* At this point we will have ire only if RTF_BLACKHOLE
* or RTF_REJECT flags are set on the IRE. It will not
* generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set.
*/
if (ire != NULL) {
if (ire->ire_flags & RTF_BLACKHOLE) {
ire_refrele(ire);
MULTIRT_DEBUG_UNTAG(first_mp);
freemsg(first_mp);
return;
}
ire_refrele(ire);
}
if (ip_source_routed(ipha)) {
icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED,
zoneid);
return;
}
icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid);
}
/*
* IPv4 -
* ip_newroute_ipif is called by ip_wput_multicast and
* ip_rput_forward_multicast whenever we need to send
* out a packet to a destination address for which we do not have specific
* routing information. It is used when the packet will be sent out
* on a specific interface. It is also called by ip_wput() when IP_XMIT_IF
* socket option is set or icmp error message wants to go out on a particular
* interface for a unicast packet.
*
* In most cases, the destination address is resolved thanks to the ipif
* intrinsic resolver. However, there are some cases where the call to
* ip_newroute_ipif must take into account the potential presence of
* RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire
* that uses the interface. This is specified through flags,
* which can be a combination of:
* - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC
* flag, the resulting ire will inherit the IRE_OFFSUBNET source address
* and flags. Additionally, the packet source address has to be set to
* the specified address. The caller is thus expected to set this flag
* if the packet has no specific source address yet.
* - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT
* flag, the resulting ire will inherit the flag. All unresolved routes
* to the destination must be explored in the same call to
* ip_newroute_ipif().
*/
static void
ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst,
conn_t *connp, uint32_t flags, zoneid_t zoneid)
{
areq_t *areq;
ire_t *ire = NULL;
mblk_t *res_mp;
ipaddr_t *addrp;
mblk_t *first_mp;
ire_t *save_ire = NULL;
ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */
ipif_t *src_ipif = NULL;
ushort_t ire_marks = 0;
ill_t *dst_ill = NULL;
boolean_t mctl_present;
ipsec_out_t *io;
ipha_t *ipha;
int ihandle = 0;
mblk_t *saved_mp;
ire_t *fire = NULL;
mblk_t *copy_mp = NULL;
boolean_t multirt_resolve_next;
ipaddr_t ipha_dst;
/*
* CGTP goes in a loop which looks up a new ipif, do an ipif_refhold
* here for uniformity
*/
ipif_refhold(ipif);
/*
* This loop is run only once in most cases.
* We loop to resolve further routes only when the destination
* can be reached through multiple RTF_MULTIRT-flagged ires.
*/
do {
if (dst_ill != NULL) {
ill_refrele(dst_ill);
dst_ill = NULL;
}
if (src_ipif != NULL) {
ipif_refrele(src_ipif);
src_ipif = NULL;
}
multirt_resolve_next = B_FALSE;
ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst),
ipif->ipif_ill->ill_name));
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
if (mctl_present)
io = (ipsec_out_t *)first_mp->b_rptr;
ipha = (ipha_t *)mp->b_rptr;
/*
* Save the packet destination address, we may need it after
* the packet has been consumed.
*/
ipha_dst = ipha->ipha_dst;
/*
* If the interface is a pt-pt interface we look for an
* IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the
* local_address and the pt-pt destination address. Otherwise
* we just match the local address.
* NOTE: dst could be different than ipha->ipha_dst in case
* of sending igmp multicast packets over a point-to-point
* connection.
* Thus we must be careful enough to check ipha_dst to be a
* multicast address, otherwise it will take xmit_if path for
* multicast packets resulting into kernel stack overflow by
* repeated calls to ip_newroute_ipif from ire_send().
*/
if (CLASSD(ipha_dst) &&
!(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) {
goto err_ret;
}
/*
* We check if an IRE_OFFSUBNET for the addr that goes through
* ipif exists. We need it to determine if the RTF_SETSRC and/or
* RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may
* propagate its flags to the new ire.
*/
if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) {
fire = ipif_lookup_multi_ire(ipif, ipha_dst);
ip2dbg(("ip_newroute_ipif: "
"ipif_lookup_multi_ire("
"ipif %p, dst %08x) = fire %p\n",
(void *)ipif, ntohl(dst), (void *)fire));
}
if (mctl_present && io->ipsec_out_attach_if) {
attach_ill = ip_grab_attach_ill(NULL, first_mp,
io->ipsec_out_ill_index, B_FALSE);
/* Failure case frees things for us. */
if (attach_ill == NULL) {
ipif_refrele(ipif);
if (fire != NULL)
ire_refrele(fire);
return;
}
/*
* Check if we need an ire that will not be
* looked up by anybody else i.e. HIDDEN.
*/
if (ill_is_probeonly(attach_ill)) {
ire_marks = IRE_MARK_HIDDEN;
}
/*
* ip_wput passes the right ipif for IPIF_NOFAILOVER
* case.
*/
dst_ill = ipif->ipif_ill;
/* attach_ill has been refheld by ip_grab_attach_ill */
ASSERT(dst_ill == attach_ill);
} else {
/*
* If this is set by IP_XMIT_IF, then make sure that
* ipif is pointing to the same ill as the IP_XMIT_IF
* specified ill.
*/
ASSERT((connp == NULL) ||
(connp->conn_xmit_if_ill == NULL) ||
(connp->conn_xmit_if_ill == ipif->ipif_ill));
/*
* If the interface belongs to an interface group,
* make sure the next possible interface in the group
* is used. This encourages load spreading among
* peers in an interface group.
* Note: load spreading is disabled for RTF_MULTIRT
* routes.
*/
if ((flags & RTF_MULTIRT) && (fire != NULL) &&
(fire->ire_flags & RTF_MULTIRT)) {
/*
* Don't perform outbound load spreading
* in the case of an RTF_MULTIRT issued route,
* we actually typically want to replicate
* outgoing packets through particular
* interfaces.
*/
dst_ill = ipif->ipif_ill;
ill_refhold(dst_ill);
} else {
dst_ill = ip_newroute_get_dst_ill(
ipif->ipif_ill);
}
if (dst_ill == NULL) {
if (ip_debug > 2) {
pr_addr_dbg("ip_newroute_ipif: "
"no dst ill for dst %s\n",
AF_INET, &dst);
}
goto err_ret;
}
}
/*
* Pick a source address preferring non-deprecated ones.
* Unlike ip_newroute, we don't do any source address
* selection here since for multicast it really does not help
* in inbound load spreading as in the unicast case.
*/
if ((flags & RTF_SETSRC) && (fire != NULL) &&
(fire->ire_flags & RTF_SETSRC)) {
/*
* As requested by flags, an IRE_OFFSUBNET was looked up
* on that interface. This ire has RTF_SETSRC flag, so
* the source address of the packet must be changed.
* Check that the ipif matching the requested source
* address still exists.
*/
src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL,
zoneid, NULL, NULL, NULL, NULL);
}
if (((ipif->ipif_flags & IPIF_DEPRECATED) ||
(connp != NULL && ipif->ipif_zoneid != zoneid &&
ipif->ipif_zoneid != ALL_ZONES)) &&
(src_ipif == NULL)) {
src_ipif = ipif_select_source(dst_ill, dst, zoneid);
if (src_ipif == NULL) {
if (ip_debug > 2) {
/* ip1dbg */
pr_addr_dbg("ip_newroute_ipif: "
"no src for dst %s",
AF_INET, &dst);
}
ip1dbg((" through interface %s\n",
dst_ill->ill_name));
goto err_ret;
}
ipif_refrele(ipif);
ipif = src_ipif;
ipif_refhold(ipif);
}
if (src_ipif == NULL) {
src_ipif = ipif;
ipif_refhold(src_ipif);
}
/*
* Assign a source address while we have the conn.
* We can't have ip_wput_ire pick a source address when the
* packet returns from arp since conn_unspec_src might be set
* and we loose the conn when going through arp.
*/
if (ipha->ipha_src == INADDR_ANY &&
(connp == NULL || !connp->conn_unspec_src)) {
ipha->ipha_src = src_ipif->ipif_src_addr;
}
/*
* In case of IP_XMIT_IF, it is possible that the outgoing
* interface does not have an interface ire.
* Example: Thousands of mobileip PPP interfaces to mobile
* nodes. We don't want to create interface ires because
* packets from other mobile nodes must not take the route
* via interface ires to the visiting mobile node without
* going through the home agent, in absence of mobileip
* route optimization.
*/
if (CLASSD(ipha_dst) && (connp == NULL ||
connp->conn_xmit_if_ill == NULL)) {
/* ipif_to_ire returns an held ire */
ire = ipif_to_ire(ipif);
if (ire == NULL)
goto err_ret;
if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
goto err_ret;
/*
* ihandle is needed when the ire is added to
* cache table.
*/
save_ire = ire;
ihandle = save_ire->ire_ihandle;
ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, "
"flags %04x\n",
(void *)ire, (void *)ipif, flags));
if ((flags & RTF_MULTIRT) && (fire != NULL) &&
(fire->ire_flags & RTF_MULTIRT)) {
/*
* As requested by flags, an IRE_OFFSUBNET was
* looked up on that interface. This ire has
* RTF_MULTIRT flag, so the resolution loop will
* be re-entered to resolve additional routes on
* other interfaces. For that purpose, a copy of
* the packet is performed at this point.
*/
fire->ire_last_used_time = lbolt;
copy_mp = copymsg(first_mp);
if (copy_mp) {
MULTIRT_DEBUG_TAG(copy_mp);
}
}
if ((flags & RTF_SETSRC) && (fire != NULL) &&
(fire->ire_flags & RTF_SETSRC)) {
/*
* As requested by flags, an IRE_OFFSUBET was
* looked up on that interface. This ire has
* RTF_SETSRC flag, so the source address of the
* packet must be changed.
*/
ipha->ipha_src = fire->ire_src_addr;
}
} else {
ASSERT((connp == NULL) ||
(connp->conn_xmit_if_ill != NULL) ||
(connp->conn_dontroute));
/*
* The only ways we can come here are:
* 1) IP_XMIT_IF socket option is set
* 2) ICMP error message generated from
* ip_mrtun_forward() routine and it needs
* to go through the specified ill.
* 3) SO_DONTROUTE socket option is set
* In all cases, the new ire will not be added
* into cache table.
*/
ire_marks |= IRE_MARK_NOADD;
}
switch (ipif->ipif_net_type) {
case IRE_IF_NORESOLVER: {
/* We have what we need to build an IRE_CACHE. */
mblk_t *res_mp;
/*
* Create a new res_mp with the
* IP gateway address as destination address in the
* DLPI hdr if the physical length is exactly 4 bytes.
*/
if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) {
res_mp = ill_dlur_gen((uchar_t *)&dst,
dst_ill->ill_phys_addr_length,
dst_ill->ill_sap,
dst_ill->ill_sap_length);
} else {
/* use the value set in ip_ll_subnet_defaults */
res_mp = ill_dlur_gen(NULL,
dst_ill->ill_phys_addr_length,
dst_ill->ill_sap,
dst_ill->ill_sap_length);
}
if (res_mp == NULL)
break;
/*
* The new ire inherits the IRE_OFFSUBNET flags
* and source address, if this was requested.
*/
ire = ire_create(
(uchar_t *)&dst, /* dest address */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
NULL, /* gateway address */
NULL,
&ipif->ipif_mtu,
NULL, /* Fast Path header */
dst_ill->ill_rq, /* recv-from queue */
dst_ill->ill_wq, /* send-to queue */
IRE_CACHE,
res_mp,
src_ipif,
NULL,
(save_ire != NULL ? save_ire->ire_mask : 0),
(fire != NULL) ? /* Parent handle */
fire->ire_phandle : 0,
ihandle, /* Interface handle */
(fire != NULL) ?
(fire->ire_flags &
(RTF_SETSRC | RTF_MULTIRT)) : 0,
(save_ire == NULL ? &ire_uinfo_null :
&save_ire->ire_uinfo),
NULL,
NULL);
freeb(res_mp);
if (ire == NULL) {
if (save_ire != NULL)
ire_refrele(save_ire);
break;
}
ire->ire_marks |= ire_marks;
/*
* If IRE_MARK_NOADD is set then we need to convert
* the max_fragp to a useable value now. This is
* normally done in ire_add_v[46]. We also need to
* associate the ire with an nce (normally would be
* done in ip_wput_nondata()).
*
* Note that IRE_MARK_NOADD packets created here
* do not have a non-null ire_mp pointer. The null
* value of ire_bucket indicates that they were
* never added.
*/
if (ire->ire_marks & IRE_MARK_NOADD) {
uint_t max_frag;
max_frag = *ire->ire_max_fragp;
ire->ire_max_fragp = NULL;
ire->ire_max_frag = max_frag;
if ((ire->ire_nce = ndp_lookup_v4(
ire_to_ill(ire),
(ire->ire_gateway_addr != INADDR_ANY ?
&ire->ire_gateway_addr : &ire->ire_addr),
B_FALSE)) == NULL) {
if (save_ire != NULL)
ire_refrele(save_ire);
break;
}
ASSERT(ire->ire_nce->nce_state ==
ND_REACHABLE);
NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
}
/* Prevent save_ire from getting deleted */
if (save_ire != NULL) {
IRB_REFHOLD(save_ire->ire_bucket);
/* Has it been removed already ? */
if (save_ire->ire_marks & IRE_MARK_CONDEMNED) {
IRB_REFRELE(save_ire->ire_bucket);
ire_refrele(save_ire);
break;
}
}
ire_add_then_send(q, ire, first_mp);
/* Assert that save_ire is not deleted yet. */
if (save_ire != NULL) {
ASSERT(save_ire->ire_ptpn != NULL);
IRB_REFRELE(save_ire->ire_bucket);
ire_refrele(save_ire);
save_ire = NULL;
}
if (fire != NULL) {
ire_refrele(fire);
fire = NULL;
}
/*
* the resolution loop is re-entered if this
* was requested through flags and if we
* actually are in a multirouting case.
*/
if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) {
boolean_t need_resolve =
ire_multirt_need_resolve(ipha_dst,
MBLK_GETLABEL(copy_mp));
if (!need_resolve) {
MULTIRT_DEBUG_UNTAG(copy_mp);
freemsg(copy_mp);
copy_mp = NULL;
} else {
/*
* ipif_lookup_group() calls
* ire_lookup_multi() that uses
* ire_ftable_lookup() to find
* an IRE_INTERFACE for the group.
* In the multirt case,
* ire_lookup_multi() then invokes
* ire_multirt_lookup() to find
* the next resolvable ire.
* As a result, we obtain an new
* interface, derived from the
* next ire.
*/
ipif_refrele(ipif);
ipif = ipif_lookup_group(ipha_dst,
zoneid);
ip2dbg(("ip_newroute_ipif: "
"multirt dst %08x, ipif %p\n",
htonl(dst), (void *)ipif));
if (ipif != NULL) {
mp = copy_mp;
copy_mp = NULL;
multirt_resolve_next = B_TRUE;
continue;
} else {
freemsg(copy_mp);
}
}
}
if (ipif != NULL)
ipif_refrele(ipif);
ill_refrele(dst_ill);
ipif_refrele(src_ipif);
return;
}
case IRE_IF_RESOLVER:
/*
* We can't build an IRE_CACHE yet, but at least
* we found a resolver that can help.
*/
res_mp = dst_ill->ill_resolver_mp;
if (!OK_RESOLVER_MP(res_mp))
break;
/*
* We obtain a partial IRE_CACHE which we will pass
* along with the resolver query. When the response
* comes back it will be there ready for us to add.
* The new ire inherits the IRE_OFFSUBNET flags
* and source address, if this was requested.
* The ire_max_frag is atomically set under the
* irebucket lock in ire_add_v[46]. Only in the
* case of IRE_MARK_NOADD, we set it here itself.
*/
ire = ire_create_mp(
(uchar_t *)&dst, /* dest address */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
NULL, /* gateway address */
NULL, /* no in_src_addr */
(ire_marks & IRE_MARK_NOADD) ?
ipif->ipif_mtu : 0, /* max_frag */
NULL, /* Fast path header */
dst_ill->ill_rq, /* recv-from queue */
dst_ill->ill_wq, /* send-to queue */
IRE_CACHE,
NULL, /* let ire_nce_init figure res_mp out */
src_ipif,
NULL,
(save_ire != NULL ? save_ire->ire_mask : 0),
(fire != NULL) ? /* Parent handle */
fire->ire_phandle : 0,
ihandle, /* Interface handle */
(fire != NULL) ? /* flags if any */
(fire->ire_flags &
(RTF_SETSRC | RTF_MULTIRT)) : 0,
(save_ire == NULL ? &ire_uinfo_null :
&save_ire->ire_uinfo),
NULL,
NULL);
if (save_ire != NULL) {
ire_refrele(save_ire);
save_ire = NULL;
}
if (ire == NULL)
break;
ire->ire_marks |= ire_marks;
/*
* Construct message chain for the resolver of the
* form:
* ARP_REQ_MBLK-->IRE_MBLK-->Packet
*
* NOTE : ire will be added later when the response
* comes back from ARP. If the response does not
* come back, ARP frees the packet. For this reason,
* we can't REFHOLD the bucket of save_ire to prevent
* deletions. We may not be able to REFRELE the
* bucket if the response never comes back.
* Thus, before adding the ire, ire_add_v4 will make
* sure that the interface route does not get deleted.
* This is the only case unlike ip_newroute_v6,
* ip_newroute_ipif_v6 where we can always prevent
* deletions because ire_add_then_send is called after
* creating the IRE.
* If IRE_MARK_NOADD is set, then ire_add_then_send
* does not add this IRE into the IRE CACHE.
*/
ASSERT(ire->ire_mp != NULL);
ire->ire_mp->b_cont = first_mp;
/* Have saved_mp handy, for cleanup if canput fails */
saved_mp = mp;
mp = copyb(res_mp);
if (mp == NULL) {
/* Prepare for cleanup */
mp = saved_mp; /* pkt */
ire_delete(ire); /* ire_mp */
ire = NULL;
if (copy_mp != NULL) {
MULTIRT_DEBUG_UNTAG(copy_mp);
freemsg(copy_mp);
copy_mp = NULL;
}
break;
}
linkb(mp, ire->ire_mp);
/*
* Fill in the source and dest addrs for the resolver.
* NOTE: this depends on memory layouts imposed by
* ill_init().
*/
areq = (areq_t *)mp->b_rptr;
addrp = (ipaddr_t *)((char *)areq +
areq->areq_sender_addr_offset);
*addrp = ire->ire_src_addr;
addrp = (ipaddr_t *)((char *)areq +
areq->areq_target_addr_offset);
*addrp = dst;
/* Up to the resolver. */
if (canputnext(dst_ill->ill_rq) &&
!(dst_ill->ill_arp_closing)) {
putnext(dst_ill->ill_rq, mp);
/*
* The response will come back in ip_wput
* with db_type IRE_DB_TYPE.
*/
} else {
mp->b_cont = NULL;
freeb(mp); /* areq */
ire_delete(ire); /* ire_mp */
saved_mp->b_next = NULL;
saved_mp->b_prev = NULL;
freemsg(first_mp); /* pkt */
ip2dbg(("ip_newroute_ipif: dropped\n"));
}
if (fire != NULL) {
ire_refrele(fire);
fire = NULL;
}
/*
* The resolution loop is re-entered if this was
* requested through flags and we actually are
* in a multirouting case.
*/
if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) {
boolean_t need_resolve =
ire_multirt_need_resolve(ipha_dst,
MBLK_GETLABEL(copy_mp));
if (!need_resolve) {
MULTIRT_DEBUG_UNTAG(copy_mp);
freemsg(copy_mp);
copy_mp = NULL;
} else {
/*
* ipif_lookup_group() calls
* ire_lookup_multi() that uses
* ire_ftable_lookup() to find
* an IRE_INTERFACE for the group.
* In the multirt case,
* ire_lookup_multi() then invokes
* ire_multirt_lookup() to find
* the next resolvable ire.
* As a result, we obtain an new
* interface, derived from the
* next ire.
*/
ipif_refrele(ipif);
ipif = ipif_lookup_group(ipha_dst,
zoneid);
if (ipif != NULL) {
mp = copy_mp;
copy_mp = NULL;
multirt_resolve_next = B_TRUE;
continue;
} else {
freemsg(copy_mp);
}
}
}
if (ipif != NULL)
ipif_refrele(ipif);
ill_refrele(dst_ill);
ipif_refrele(src_ipif);
return;
default:
break;
}
} while (multirt_resolve_next);
err_ret:
ip2dbg(("ip_newroute_ipif: dropped\n"));
if (fire != NULL)
ire_refrele(fire);
ipif_refrele(ipif);
/* Did this packet originate externally? */
if (dst_ill != NULL)
ill_refrele(dst_ill);
if (src_ipif != NULL)
ipif_refrele(src_ipif);
if (mp->b_prev || mp->b_next) {
mp->b_next = NULL;
mp->b_prev = NULL;
} else {
/*
* Since ip_wput() isn't close to finished, we fill
* in enough of the header for credible error reporting.
*/
if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) {
/* Failed */
freemsg(first_mp);
if (ire != NULL)
ire_refrele(ire);
return;
}
}
/*
* At this point we will have ire only if RTF_BLACKHOLE
* or RTF_REJECT flags are set on the IRE. It will not
* generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set.
*/
if (ire != NULL) {
if (ire->ire_flags & RTF_BLACKHOLE) {
ire_refrele(ire);
freemsg(first_mp);
return;
}
ire_refrele(ire);
}
icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid);
}
/* Name/Value Table Lookup Routine */
char *
ip_nv_lookup(nv_t *nv, int value)
{
if (!nv)
return (NULL);
for (; nv->nv_name; nv++) {
if (nv->nv_value == value)
return (nv->nv_name);
}
return ("unknown");
}
/*
* one day it can be patched to 1 from /etc/system for machines that have few
* fast network interfaces feeding multiple cpus.
*/
int ill_stream_putlocks = 0;
/*
* This is a module open, i.e. this is a control stream for access
* to a DLPI device. We allocate an ill_t as the instance data in
* this case.
*/
int
ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
uint32_t mem_cnt;
uint32_t cpu_cnt;
uint32_t min_cnt;
pgcnt_t mem_avail;
ill_t *ill;
int err;
/*
* Prevent unprivileged processes from pushing IP so that
* they can't send raw IP.
*/
if (secpolicy_net_rawaccess(credp) != 0)
return (EPERM);
ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
q->q_ptr = WR(q)->q_ptr = ill;
/*
* ill_init initializes the ill fields and then sends down
* down a DL_INFO_REQ after calling qprocson.
*/
err = ill_init(q, ill);
if (err != 0) {
mi_free(ill);
q->q_ptr = NULL;
WR(q)->q_ptr = NULL;
return (err);
}
/* ill_init initializes the ipsq marking this thread as writer */
ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE);
/* Wait for the DL_INFO_ACK */
mutex_enter(&ill->ill_lock);
while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
/*
* Return value of 0 indicates a pending signal.
*/
err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
if (err == 0) {
mutex_exit(&ill->ill_lock);
(void) ip_close(q, 0);
return (EINTR);
}
}
mutex_exit(&ill->ill_lock);
/*
* ip_rput_other could have set an error in ill_error on
* receipt of M_ERROR.
*/
err = ill->ill_error;
if (err != 0) {
(void) ip_close(q, 0);
return (err);
}
/*
* ip_ire_max_bucket_cnt is sized below based on the memory
* size and the cpu speed of the machine. This is upper
* bounded by the compile time value of ip_ire_max_bucket_cnt
* and is lower bounded by the compile time value of
* ip_ire_min_bucket_cnt. Similar logic applies to
* ip6_ire_max_bucket_cnt.
*/
mem_avail = kmem_avail();
mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
ip_cache_table_size / sizeof (ire_t);
cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
min_cnt = MIN(cpu_cnt, mem_cnt);
if (min_cnt < ip_ire_min_bucket_cnt)
min_cnt = ip_ire_min_bucket_cnt;
if (ip_ire_max_bucket_cnt > min_cnt) {
ip_ire_max_bucket_cnt = min_cnt;
}
mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
ip6_cache_table_size / sizeof (ire_t);
min_cnt = MIN(cpu_cnt, mem_cnt);
if (min_cnt < ip6_ire_min_bucket_cnt)
min_cnt = ip6_ire_min_bucket_cnt;
if (ip6_ire_max_bucket_cnt > min_cnt) {
ip6_ire_max_bucket_cnt = min_cnt;
}
ill->ill_credp = credp;
crhold(credp);
mutex_enter(&ip_mi_lock);
err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp);
mutex_exit(&ip_mi_lock);
if (err) {
(void) ip_close(q, 0);
return (err);
}
return (0);
}
/* IP open routine. */
int
ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
conn_t *connp;
major_t maj;
TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q);
/* Allow reopen. */
if (q->q_ptr != NULL)
return (0);
if (sflag & MODOPEN) {
/* This is a module open */
return (ip_modopen(q, devp, flag, sflag, credp));
}
/*
* We are opening as a device. This is an IP client stream, and we
* allocate an conn_t as the instance data.
*/
connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP);
connp->conn_upq = q;
q->q_ptr = WR(q)->q_ptr = connp;
if (flag & SO_SOCKSTR)
connp->conn_flags |= IPCL_SOCKET;
/* Minor tells us which /dev entry was opened */
if (geteminor(*devp) == IPV6_MINOR) {
connp->conn_flags |= IPCL_ISV6;
connp->conn_af_isv6 = B_TRUE;
ip_setqinfo(q, geteminor(*devp), B_FALSE);
connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
} else {
connp->conn_af_isv6 = B_FALSE;
connp->conn_pkt_isv6 = B_FALSE;
}
if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) {
q->q_ptr = WR(q)->q_ptr = NULL;
CONN_DEC_REF(connp);
return (EBUSY);
}
maj = getemajor(*devp);
*devp = makedevice(maj, (minor_t)connp->conn_dev);
/*
* connp->conn_cred is crfree()ed in ipcl_conn_destroy()
*/
connp->conn_cred = credp;
crhold(connp->conn_cred);
/*
* If the caller has the process-wide flag set, then default to MAC
* exempt mode. This allows read-down to unlabeled hosts.
*/
if (getpflags(NET_MAC_AWARE, credp) != 0)
connp->conn_mac_exempt = B_TRUE;
connp->conn_zoneid = getzoneid();
/*
* This should only happen for ndd, netstat, raw socket or other SCTP
* administrative ops. In these cases, we just need a normal conn_t
* with ulp set to IPPROTO_SCTP. All other ops are trapped and
* an error will be returned.
*/
if (maj != SCTP_MAJ && maj != SCTP6_MAJ) {
connp->conn_rq = q;
connp->conn_wq = WR(q);
} else {
connp->conn_ulp = IPPROTO_SCTP;
connp->conn_rq = connp->conn_wq = NULL;
}
/* Non-zero default values */
connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
/*
* Make the conn globally visible to walkers
*/
mutex_enter(&connp->conn_lock);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
ASSERT(connp->conn_ref == 1);
qprocson(q);
return (0);
}
/*
* Change q_qinfo based on the value of isv6.
* This can not called on an ill queue.
* Note that there is no race since either q_qinfo works for conn queues - it
* is just an optimization to enter the best wput routine directly.
*/
void
ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib)
{
ASSERT(q->q_flag & QREADR);
ASSERT(WR(q)->q_next == NULL);
ASSERT(q->q_ptr != NULL);
if (minor == IPV6_MINOR) {
if (bump_mib)
BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4);
q->q_qinfo = &rinit_ipv6;
WR(q)->q_qinfo = &winit_ipv6;
(Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE;
} else {
if (bump_mib)
BUMP_MIB(&ip_mib, ipOutSwitchIPv6);
q->q_qinfo = &iprinit;
WR(q)->q_qinfo = &ipwinit;
(Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE;
}
}
/*
* See if IPsec needs loading because of the options in mp.
*/
static boolean_t
ipsec_opt_present(mblk_t *mp)
{
uint8_t *optcp, *next_optcp, *opt_endcp;
struct opthdr *opt;
struct T_opthdr *topt;
int opthdr_len;
t_uscalar_t optname, optlevel;
struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr;
ipsec_req_t *ipsr;
/*
* Walk through the mess, and find IP_SEC_OPT. If it's there,
* return TRUE.
*/
optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length);
opt_endcp = optcp + tor->OPT_length;
if (tor->PRIM_type == T_OPTMGMT_REQ) {
opthdr_len = sizeof (struct T_opthdr);
} else { /* O_OPTMGMT_REQ */
ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ);
opthdr_len = sizeof (struct opthdr);
}
for (; optcp < opt_endcp; optcp = next_optcp) {
if (optcp + opthdr_len > opt_endcp)
return (B_FALSE); /* Not enough option header. */
if (tor->PRIM_type == T_OPTMGMT_REQ) {
topt = (struct T_opthdr *)optcp;
optlevel = topt->level;
optname = topt->name;
next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len);
} else {
opt = (struct opthdr *)optcp;
optlevel = opt->level;
optname = opt->name;
next_optcp = optcp + opthdr_len +
_TPI_ALIGN_OPT(opt->len);
}
if ((next_optcp < optcp) || /* wraparound pointer space */
((next_optcp >= opt_endcp) && /* last option bad len */
((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE)))
return (B_FALSE); /* bad option buffer */
if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) ||
(optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) {
/*
* Check to see if it's an all-bypass or all-zeroes
* IPsec request. Don't bother loading IPsec if
* the socket doesn't want to use it. (A good example
* is a bypass request.)
*
* Basically, if any of the non-NEVER bits are set,
* load IPsec.
*/
ipsr = (ipsec_req_t *)(optcp + opthdr_len);
if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 ||
(ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 ||
(ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER)
!= 0)
return (B_TRUE);
}
}
return (B_FALSE);
}
/*
* If conn is is waiting for ipsec to finish loading, kick it.
*/
/* ARGSUSED */
static void
conn_restart_ipsec_waiter(conn_t *connp, void *arg)
{
t_scalar_t optreq_prim;
mblk_t *mp;
cred_t *cr;
int err = 0;
/*
* This function is called, after ipsec loading is complete.
* Since IP checks exclusively and atomically (i.e it prevents
* ipsec load from completing until ip_optcom_req completes)
* whether ipsec load is complete, there cannot be a race with IP
* trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now.
*/
mutex_enter(&connp->conn_lock);
if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) {
ASSERT(connp->conn_ipsec_opt_mp != NULL);
mp = connp->conn_ipsec_opt_mp;
connp->conn_ipsec_opt_mp = NULL;
connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT;
cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp)));
mutex_exit(&connp->conn_lock);
ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
optreq_prim = ((union T_primitives *)mp->b_rptr)->type;
if (optreq_prim == T_OPTMGMT_REQ) {
err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr,
&ip_opt_obj);
} else {
ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ);
err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr,
&ip_opt_obj);
}
if (err != EINPROGRESS)
CONN_OPER_PENDING_DONE(connp);
return;
}
mutex_exit(&connp->conn_lock);
}
/*
* Called from the ipsec_loader thread, outside any perimeter, to tell
* ip qenable any of the queues waiting for the ipsec loader to
* complete.
*
* Use ip_mi_lock to be safe here: all modifications of the mi lists
* are done with this lock held, so it's guaranteed that none of the
* links will change along the way.
*/
void
ip_ipsec_load_complete()
{
ipcl_walk(conn_restart_ipsec_waiter, NULL);
}
/*
* Can't be used. Need to call svr4* -> optset directly. the leaf routine
* determines the grp on which it has to become exclusive, queues the mp
* and sq draining restarts the optmgmt
*/
static boolean_t
ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp)
{
conn_t *connp;
/*
* Take IPsec requests and treat them special.
*/
if (ipsec_opt_present(mp)) {
/* First check if IPsec is loaded. */
mutex_enter(&ipsec_loader_lock);
if (ipsec_loader_state != IPSEC_LOADER_WAIT) {
mutex_exit(&ipsec_loader_lock);
return (B_FALSE);
}
connp = Q_TO_CONN(q);
mutex_enter(&connp->conn_lock);
connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT;
ASSERT(connp->conn_ipsec_opt_mp == NULL);
connp->conn_ipsec_opt_mp = mp;
mutex_exit(&connp->conn_lock);
mutex_exit(&ipsec_loader_lock);
ipsec_loader_loadnow();
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
* all of them are copied to the conn_t. If the req is "zero", the policy is
* zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
* fields.
* We keep only the latest setting of the policy and thus policy setting
* is not incremental/cumulative.
*
* Requests to set policies with multiple alternative actions will
* go through a different API.
*/
int
ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
{
uint_t ah_req = 0;
uint_t esp_req = 0;
uint_t se_req = 0;
ipsec_selkey_t sel;
ipsec_act_t *actp = NULL;
uint_t nact;
ipsec_policy_t *pin4 = NULL, *pout4 = NULL;
ipsec_policy_t *pin6 = NULL, *pout6 = NULL;
ipsec_policy_root_t *pr;
ipsec_policy_head_t *ph;
int fam;
boolean_t is_pol_reset;
int error = 0;
#define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
/*
* The IP_SEC_OPT option does not allow variable length parameters,
* hence a request cannot be NULL.
*/
if (req == NULL)
return (EINVAL);
ah_req = req->ipsr_ah_req;
esp_req = req->ipsr_esp_req;
se_req = req->ipsr_self_encap_req;
/*
* Are we dealing with a request to reset the policy (i.e.
* zero requests).
*/
is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
(esp_req & REQ_MASK) == 0 &&
(se_req & REQ_MASK) == 0);
if (!is_pol_reset) {
/*
* If we couldn't load IPsec, fail with "protocol
* not supported".
* IPsec may not have been loaded for a request with zero
* policies, so we don't fail in this case.
*/
mutex_enter(&ipsec_loader_lock);
if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
mutex_exit(&ipsec_loader_lock);
return (EPROTONOSUPPORT);
}
mutex_exit(&ipsec_loader_lock);
/*
* Test for valid requests. Invalid algorithms
* need to be tested by IPSEC code because new
* algorithms can be added dynamically.
*/
if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
(esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
(se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
return (EINVAL);
}
/*
* Only privileged users can issue these
* requests.
*/
if (((ah_req & IPSEC_PREF_NEVER) ||
(esp_req & IPSEC_PREF_NEVER) ||
(se_req & IPSEC_PREF_NEVER)) &&
secpolicy_net_config(cr, B_FALSE) != 0) {
return (EPERM);
}
/*
* The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
* are mutually exclusive.
*/
if (((ah_req & REQ_MASK) == REQ_MASK) ||
((esp_req & REQ_MASK) == REQ_MASK) ||
((se_req & REQ_MASK) == REQ_MASK)) {
/* Both of them are set */
return (EINVAL);
}
}
mutex_enter(&connp->conn_lock);
/*
* If we have already cached policies in ip_bind_connected*(), don't
* let them change now. We cache policies for connections
* whose src,dst [addr, port] is known.
*/
if (connp->conn_policy_cached) {
mutex_exit(&connp->conn_lock);
return (EINVAL);
}
/*
* We have a zero policies, reset the connection policy if already
* set. This will cause the connection to inherit the
* global policy, if any.
*/
if (is_pol_reset) {
if (connp->conn_policy != NULL) {
IPPH_REFRELE(connp->conn_policy);
connp->conn_policy = NULL;
}
connp->conn_flags &= ~IPCL_CHECK_POLICY;
connp->conn_in_enforce_policy = B_FALSE;
connp->conn_out_enforce_policy = B_FALSE;
mutex_exit(&connp->conn_lock);
return (0);
}
ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy);
if (ph == NULL)
goto enomem;
ipsec_actvec_from_req(req, &actp, &nact);
if (actp == NULL)
goto enomem;
/*
* Always allocate IPv4 policy entries, since they can also
* apply to ipv6 sockets being used in ipv4-compat mode.
*/
bzero(&sel, sizeof (sel));
sel.ipsl_valid = IPSL_IPV4;
pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL);
if (pin4 == NULL)
goto enomem;
pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL);
if (pout4 == NULL)
goto enomem;
if (connp->conn_pkt_isv6) {
/*
* We're looking at a v6 socket, also allocate the
* v6-specific entries...
*/
sel.ipsl_valid = IPSL_IPV6;
pin6 = ipsec_policy_create(&sel, actp, nact,
IPSEC_PRIO_SOCKET, NULL);
if (pin6 == NULL)
goto enomem;
pout6 = ipsec_policy_create(&sel, actp, nact,
IPSEC_PRIO_SOCKET, NULL);
if (pout6 == NULL)
goto enomem;
/*
* .. and file them away in the right place.
*/
fam = IPSEC_AF_V6;
pr = &ph->iph_root[IPSEC_TYPE_INBOUND];
HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]);
ipsec_insert_always(&ph->iph_rulebyid, pin6);
pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND];
HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]);
ipsec_insert_always(&ph->iph_rulebyid, pout6);
}
ipsec_actvec_free(actp, nact);
/*
* File the v4 policies.
*/
fam = IPSEC_AF_V4;
pr = &ph->iph_root[IPSEC_TYPE_INBOUND];
HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]);
ipsec_insert_always(&ph->iph_rulebyid, pin4);
pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND];
HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]);
ipsec_insert_always(&ph->iph_rulebyid, pout4);
/*
* If the requests need security, set enforce_policy.
* If the requests are IPSEC_PREF_NEVER, one should
* still set conn_out_enforce_policy so that an ipsec_out
* gets attached in ip_wput. This is needed so that
* for connections that we don't cache policy in ip_bind,
* if global policy matches in ip_wput_attach_policy, we
* don't wrongly inherit global policy. Similarly, we need
* to set conn_in_enforce_policy also so that we don't verify
* policy wrongly.
*/
if ((ah_req & REQ_MASK) != 0 ||
(esp_req & REQ_MASK) != 0 ||
(se_req & REQ_MASK) != 0) {
connp->conn_in_enforce_policy = B_TRUE;
connp->conn_out_enforce_policy = B_TRUE;
connp->conn_flags |= IPCL_CHECK_POLICY;
}
mutex_exit(&connp->conn_lock);
return (error);
#undef REQ_MASK
/*
* Common memory-allocation-failure exit path.
*/
enomem:
mutex_exit(&connp->conn_lock);
if (actp != NULL)
ipsec_actvec_free(actp, nact);
if (pin4 != NULL)
IPPOL_REFRELE(pin4);
if (pout4 != NULL)
IPPOL_REFRELE(pout4);
if (pin6 != NULL)
IPPOL_REFRELE(pin6);
if (pout6 != NULL)
IPPOL_REFRELE(pout6);
return (ENOMEM);
}
/*
* Only for options that pass in an IP addr. Currently only V4 options
* pass in an ipif. V6 options always pass an ifindex specifying the ill.
* So this function assumes level is IPPROTO_IP
*/
int
ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option,
mblk_t *first_mp)
{
ipif_t *ipif = NULL;
int error;
ill_t *ill;
int zoneid;
ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr));
if (addr != INADDR_ANY || checkonly) {
ASSERT(connp != NULL);
zoneid = IPCL_ZONEID(connp);
if (option == IP_NEXTHOP) {
ipif = ipif_lookup_onlink_addr(addr,
connp->conn_zoneid);
} else {
ipif = ipif_lookup_addr(addr, NULL, zoneid,
CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt,
&error);
}
if (ipif == NULL) {
if (error == EINPROGRESS)
return (error);
else if ((option == IP_MULTICAST_IF) ||
(option == IP_NEXTHOP))
return (EHOSTUNREACH);
else
return (EINVAL);
} else if (checkonly) {
if (option == IP_MULTICAST_IF) {
ill = ipif->ipif_ill;
/* not supported by the virtual network iface */
if (IS_VNI(ill)) {
ipif_refrele(ipif);
return (EINVAL);
}
}
ipif_refrele(ipif);
return (0);
}
ill = ipif->ipif_ill;
mutex_enter(&connp->conn_lock);
mutex_enter(&ill->ill_lock);
if ((ill->ill_state_flags & ILL_CONDEMNED) ||
(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
ipif_refrele(ipif);
return (option == IP_MULTICAST_IF ?
EHOSTUNREACH : EINVAL);
}
} else {
mutex_enter(&connp->conn_lock);
}
/* None of the options below are supported on the VNI */
if (ipif != NULL && IS_VNI(ipif->ipif_ill)) {
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
ipif_refrele(ipif);
return (EINVAL);
}
switch (option) {
case IP_DONTFAILOVER_IF:
/*
* This option is used by in.mpathd to ensure
* that IPMP probe packets only go out on the
* test interfaces. in.mpathd sets this option
* on the non-failover interfaces.
* For backward compatibility, this option
* implicitly sets IP_MULTICAST_IF, as used
* be done in bind(), so that ip_wput gets
* this ipif to send mcast packets.
*/
if (ipif != NULL) {
ASSERT(addr != INADDR_ANY);
connp->conn_nofailover_ill = ipif->ipif_ill;
connp->conn_multicast_ipif = ipif;
} else {
ASSERT(addr == INADDR_ANY);
connp->conn_nofailover_ill = NULL;
connp->conn_multicast_ipif = NULL;
}
break;
case IP_MULTICAST_IF:
connp->conn_multicast_ipif = ipif;
break;
case IP_NEXTHOP:
connp->conn_nexthop_v4 = addr;
connp->conn_nexthop_set = B_TRUE;
break;
}
if (ipif != NULL) {
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
ipif_refrele(ipif);
return (0);
}
mutex_exit(&connp->conn_lock);
/* We succeded in cleared the option */
return (0);
}
/*
* For options that pass in an ifindex specifying the ill. V6 options always
* pass in an ill. Some v4 options also pass in ifindex specifying the ill.
*/
int
ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly,
int level, int option, mblk_t *first_mp)
{
ill_t *ill = NULL;
int error = 0;
ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex));
if (ifindex != 0) {
ASSERT(connp != NULL);
ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp),
first_mp, ip_restart_optmgmt, &error);
if (ill != NULL) {
if (checkonly) {
/* not supported by the virtual network iface */
if (IS_VNI(ill)) {
ill_refrele(ill);
return (EINVAL);
}
ill_refrele(ill);
return (0);
}
if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid,
0, NULL)) {
ill_refrele(ill);
ill = NULL;
mutex_enter(&connp->conn_lock);
goto setit;
}
mutex_enter(&connp->conn_lock);
mutex_enter(&ill->ill_lock);
if (ill->ill_state_flags & ILL_CONDEMNED) {
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
ill_refrele(ill);
ill = NULL;
mutex_enter(&connp->conn_lock);
}
goto setit;
} else if (error == EINPROGRESS) {
return (error);
} else {
error = 0;
}
}
mutex_enter(&connp->conn_lock);
setit:
ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6));
/*
* The options below assume that the ILL (if any) transmits and/or
* receives traffic. Neither of which is true for the virtual network
* interface, so fail setting these on a VNI.
*/
if (IS_VNI(ill)) {
ASSERT(ill != NULL);
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
ill_refrele(ill);
return (EINVAL);
}
if (level == IPPROTO_IP) {
switch (option) {
case IP_BOUND_IF:
connp->conn_incoming_ill = ill;
connp->conn_outgoing_ill = ill;
connp->conn_orig_bound_ifindex = (ill == NULL) ?
0 : ifindex;
break;
case IP_XMIT_IF:
/*
* Similar to IP_BOUND_IF, but this only
* determines the outgoing interface for
* unicast packets. Also no IRE_CACHE entry
* is added for the destination of the
* outgoing packets. This feature is needed
* for mobile IP.
*/
connp->conn_xmit_if_ill = ill;
connp->conn_orig_xmit_ifindex = (ill == NULL) ?
0 : ifindex;
break;
case IP_MULTICAST_IF:
/*
* This option is an internal special. The socket
* level IP_MULTICAST_IF specifies an 'ipaddr' and
* is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF
* specifies an ifindex and we try first on V6 ill's.
* If we don't find one, we they try using on v4 ill's
* intenally and we come here.
*/
if (!checkonly && ill != NULL) {
ipif_t *ipif;
ipif = ill->ill_ipif;
if (ipif->ipif_state_flags & IPIF_CONDEMNED) {
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
ill_refrele(ill);
ill = NULL;
mutex_enter(&connp->conn_lock);
} else {
connp->conn_multicast_ipif = ipif;
}
}
break;
}
} else {
switch (option) {
case IPV6_BOUND_IF:
connp->conn_incoming_ill = ill;
connp->conn_outgoing_ill = ill;
connp->conn_orig_bound_ifindex = (ill == NULL) ?
0 : ifindex;
break;
case IPV6_BOUND_PIF:
/*
* Limit all transmit to this ill.
* Unlike IPV6_BOUND_IF, using this option
* prevents load spreading and failover from
* happening when the interface is part of the
* group. That's why we don't need to remember
* the ifindex in orig_bound_ifindex as in
* IPV6_BOUND_IF.
*/
connp->conn_outgoing_pill = ill;
break;
case IPV6_DONTFAILOVER_IF:
/*
* This option is used by in.mpathd to ensure
* that IPMP probe packets only go out on the
* test interfaces. in.mpathd sets this option
* on the non-failover interfaces.
*/
connp->conn_nofailover_ill = ill;
/*
* For backward compatibility, this option
* implicitly sets ip_multicast_ill as used in
* IP_MULTICAST_IF so that ip_wput gets
* this ipif to send mcast packets.
*/
connp->conn_multicast_ill = ill;
connp->conn_orig_multicast_ifindex = (ill == NULL) ?
0 : ifindex;
break;
case IPV6_MULTICAST_IF:
/*
* Set conn_multicast_ill to be the IPv6 ill.
* Set conn_multicast_ipif to be an IPv4 ipif
* for ifindex to make IPv4 mapped addresses
* on PF_INET6 sockets honor IPV6_MULTICAST_IF.
* Even if no IPv6 ill exists for the ifindex
* we need to check for an IPv4 ifindex in order
* for this to work with mapped addresses. In that
* case only set conn_multicast_ipif.
*/
if (!checkonly) {
if (ifindex == 0) {
connp->conn_multicast_ill = NULL;
connp->conn_orig_multicast_ifindex = 0;
connp->conn_multicast_ipif = NULL;
} else if (ill != NULL) {
connp->conn_multicast_ill = ill;
connp->conn_orig_multicast_ifindex =
ifindex;
}
}
break;
}
}
if (ill != NULL) {
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
ill_refrele(ill);
return (0);
}
mutex_exit(&connp->conn_lock);
/*
* We succeeded in clearing the option (ifindex == 0) or failed to
* locate the ill and could not set the option (ifindex != 0)
*/
return (ifindex == 0 ? 0 : EINVAL);
}
/* This routine sets socket options. */
/* ARGSUSED */
int
ip_opt_set(queue_t *q, uint_t optset_context, int level, int name,
uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
void *dummy, cred_t *cr, mblk_t *first_mp)
{
int *i1 = (int *)invalp;
conn_t *connp = Q_TO_CONN(q);
int error = 0;
boolean_t checkonly;
ire_t *ire;
boolean_t found;
switch (optset_context) {
case SETFN_OPTCOM_CHECKONLY:
checkonly = B_TRUE;
/*
* Note: Implies T_CHECK semantics for T_OPTCOM_REQ
* inlen != 0 implies value supplied and
* we have to "pretend" to set it.
* inlen == 0 implies that there is no
* value part in T_CHECK request and just validation
* done elsewhere should be enough, we just return here.
*/
if (inlen == 0) {
*outlenp = 0;
return (0);
}
break;
case SETFN_OPTCOM_NEGOTIATE:
case SETFN_UD_NEGOTIATE:
case SETFN_CONN_NEGOTIATE:
checkonly = B_FALSE;
break;
default:
/*
* We should never get here
*/
*outlenp = 0;
return (EINVAL);
}
ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
(optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
/*
* For fixed length options, no sanity check
* of passed in length is done. It is assumed *_optcom_req()
* routines do the right thing.
*/
switch (level) {
case SOL_SOCKET:
/*
* conn_lock protects the bitfields, and is used to
* set the fields atomically.
*/
switch (name) {
case SO_BROADCAST:
if (!checkonly) {
/* TODO: use value someplace? */
mutex_enter(&connp->conn_lock);
connp->conn_broadcast = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case SO_USELOOPBACK:
if (!checkonly) {
/* TODO: use value someplace? */
mutex_enter(&connp->conn_lock);
connp->conn_loopback = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case SO_DONTROUTE:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_dontroute = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case SO_REUSEADDR:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_reuseaddr = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case SO_PROTOTYPE:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_proto = *i1;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case SO_ALLZONES:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
if (IPCL_IS_BOUND(connp)) {
mutex_exit(&connp->conn_lock);
return (EINVAL);
}
connp->conn_allzones = *i1 != 0 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case SO_ANON_MLP:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_anon_mlp = *i1 != 0 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case SO_MAC_EXEMPT:
if (secpolicy_net_mac_aware(cr) != 0 ||
IPCL_IS_BOUND(connp))
return (EACCES);
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_mac_exempt = *i1 != 0 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
default:
/*
* "soft" error (negative)
* option not handled at this level
* Note: Do not modify *outlenp
*/
return (-EINVAL);
}
break;
case IPPROTO_IP:
switch (name) {
case IP_NEXTHOP:
if (secpolicy_net_config(cr, B_FALSE) != 0)
return (EPERM);
/* FALLTHRU */
case IP_MULTICAST_IF:
case IP_DONTFAILOVER_IF: {
ipaddr_t addr = *i1;
error = ip_opt_set_ipif(connp, addr, checkonly, name,
first_mp);
if (error != 0)
return (error);
break; /* goto sizeof (int) option return */
}
case IP_MULTICAST_TTL:
/* Recorded in transport above IP */
*outvalp = *invalp;
*outlenp = sizeof (uchar_t);
return (0);
case IP_MULTICAST_LOOP:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_multicast_loop = *invalp ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
*outvalp = *invalp;
*outlenp = sizeof (uchar_t);
return (0);
case IP_ADD_MEMBERSHIP:
case MCAST_JOIN_GROUP:
case IP_DROP_MEMBERSHIP:
case MCAST_LEAVE_GROUP: {
struct ip_mreq *mreqp;
struct group_req *greqp;
ire_t *ire;
boolean_t done = B_FALSE;
ipaddr_t group, ifaddr;
struct sockaddr_in *sin;
uint32_t *ifindexp;
boolean_t mcast_opt = B_TRUE;
mcast_record_t fmode;
int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
uint_t *, mcast_record_t, ipaddr_t, mblk_t *);
switch (name) {
case IP_ADD_MEMBERSHIP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_JOIN_GROUP:
fmode = MODE_IS_EXCLUDE;
optfn = ip_opt_add_group;
break;
case IP_DROP_MEMBERSHIP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_LEAVE_GROUP:
fmode = MODE_IS_INCLUDE;
optfn = ip_opt_delete_group;
break;
}
if (mcast_opt) {
greqp = (struct group_req *)i1;
sin = (struct sockaddr_in *)&greqp->gr_group;
if (sin->sin_family != AF_INET) {
*outlenp = 0;
return (ENOPROTOOPT);
}
group = (ipaddr_t)sin->sin_addr.s_addr;
ifaddr = INADDR_ANY;
ifindexp = &greqp->gr_interface;
} else {
mreqp = (struct ip_mreq *)i1;
group = (ipaddr_t)mreqp->imr_multiaddr.s_addr;
ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr;
ifindexp = NULL;
}
/*
* In the multirouting case, we need to replicate
* the request on all interfaces that will take part
* in replication. We do so because multirouting is
* reflective, thus we will probably receive multi-
* casts on those interfaces.
* The ip_multirt_apply_membership() succeeds if the
* operation succeeds on at least one interface.
*/
ire = ire_ftable_lookup(group, IP_HOST_MASK, 0,
IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
MATCH_IRE_MASK | MATCH_IRE_TYPE);
if (ire != NULL) {
if (ire->ire_flags & RTF_MULTIRT) {
error = ip_multirt_apply_membership(
optfn, ire, connp, checkonly, group,
fmode, INADDR_ANY, first_mp);
done = B_TRUE;
}
ire_refrele(ire);
}
if (!done) {
error = optfn(connp, checkonly, group, ifaddr,
ifindexp, fmode, INADDR_ANY, first_mp);
}
if (error) {
/*
* EINPROGRESS is a soft error, needs retry
* so don't make *outlenp zero.
*/
if (error != EINPROGRESS)
*outlenp = 0;
return (error);
}
/* OK return - copy input buffer into output buffer */
if (invalp != outvalp) {
/* don't trust bcopy for identical src/dst */
bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
return (0);
}
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case IP_ADD_SOURCE_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP: {
struct ip_mreq_source *imreqp;
struct group_source_req *gsreqp;
in_addr_t grp, src, ifaddr = INADDR_ANY;
uint32_t ifindex = 0;
mcast_record_t fmode;
struct sockaddr_in *sin;
ire_t *ire;
boolean_t mcast_opt = B_TRUE, done = B_FALSE;
int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
uint_t *, mcast_record_t, ipaddr_t, mblk_t *);
switch (name) {
case IP_BLOCK_SOURCE:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_BLOCK_SOURCE:
fmode = MODE_IS_EXCLUDE;
optfn = ip_opt_add_group;
break;
case IP_UNBLOCK_SOURCE:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_UNBLOCK_SOURCE:
fmode = MODE_IS_EXCLUDE;
optfn = ip_opt_delete_group;
break;
case IP_ADD_SOURCE_MEMBERSHIP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_JOIN_SOURCE_GROUP:
fmode = MODE_IS_INCLUDE;
optfn = ip_opt_add_group;
break;
case IP_DROP_SOURCE_MEMBERSHIP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_LEAVE_SOURCE_GROUP:
fmode = MODE_IS_INCLUDE;
optfn = ip_opt_delete_group;
break;
}
if (mcast_opt) {
gsreqp = (struct group_source_req *)i1;
if (gsreqp->gsr_group.ss_family != AF_INET) {
*outlenp = 0;
return (ENOPROTOOPT);
}
sin = (struct sockaddr_in *)&gsreqp->gsr_group;
grp = (ipaddr_t)sin->sin_addr.s_addr;
sin = (struct sockaddr_in *)&gsreqp->gsr_source;
src = (ipaddr_t)sin->sin_addr.s_addr;
ifindex = gsreqp->gsr_interface;
} else {
imreqp = (struct ip_mreq_source *)i1;
grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr;
src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr;
ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
}
/*
* In the multirouting case, we need to replicate
* the request as noted in the mcast cases above.
*/
ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0,
IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
MATCH_IRE_MASK | MATCH_IRE_TYPE);
if (ire != NULL) {
if (ire->ire_flags & RTF_MULTIRT) {
error = ip_multirt_apply_membership(
optfn, ire, connp, checkonly, grp,
fmode, src, first_mp);
done = B_TRUE;
}
ire_refrele(ire);
}
if (!done) {
error = optfn(connp, checkonly, grp, ifaddr,
&ifindex, fmode, src, first_mp);
}
if (error != 0) {
/*
* EINPROGRESS is a soft error, needs retry
* so don't make *outlenp zero.
*/
if (error != EINPROGRESS)
*outlenp = 0;
return (error);
}
/* OK return - copy input buffer into output buffer */
if (invalp != outvalp) {
bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
return (0);
}
case IP_SEC_OPT:
error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp);
if (error != 0) {
*outlenp = 0;
return (error);
}
break;
case IP_HDRINCL:
case IP_OPTIONS:
case T_IP_OPTIONS:
case IP_TOS:
case T_IP_TOS:
case IP_TTL:
case IP_RECVDSTADDR:
case IP_RECVOPTS:
/* OK return - copy input buffer into output buffer */
if (invalp != outvalp) {
/* don't trust bcopy for identical src/dst */
bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
return (0);
case IP_RECVIF:
/* Retrieve the inbound interface index */
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_recvif = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case IP_RECVSLLA:
/* Retrieve the source link layer address */
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_recvslla = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case MRT_INIT:
case MRT_DONE:
case MRT_ADD_VIF:
case MRT_DEL_VIF:
case MRT_ADD_MFC:
case MRT_DEL_MFC:
case MRT_ASSERT:
if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) {
*outlenp = 0;
return (error);
}
error = ip_mrouter_set((int)name, q, checkonly,
(uchar_t *)invalp, inlen, first_mp);
if (error) {
*outlenp = 0;
return (error);
}
/* OK return - copy input buffer into output buffer */
if (invalp != outvalp) {
/* don't trust bcopy for identical src/dst */
bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
return (0);
case IP_BOUND_IF:
case IP_XMIT_IF:
error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly,
level, name, first_mp);
if (error != 0)
return (error);
break; /* goto sizeof (int) option return */
case IP_UNSPEC_SRC:
/* Allow sending with a zero source address */
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_unspec_src = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
default:
/*
* "soft" error (negative)
* option not handled at this level
* Note: Do not modify *outlenp
*/
return (-EINVAL);
}
break;
case IPPROTO_IPV6:
switch (name) {
case IPV6_BOUND_IF:
case IPV6_BOUND_PIF:
case IPV6_DONTFAILOVER_IF:
error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly,
level, name, first_mp);
if (error != 0)
return (error);
break; /* goto sizeof (int) option return */
case IPV6_MULTICAST_IF:
/*
* The only possible errors are EINPROGRESS and
* EINVAL. EINPROGRESS will be restarted and is not
* a hard error. We call this option on both V4 and V6
* If both return EINVAL, then this call returns
* EINVAL. If at least one of them succeeds we
* return success.
*/
found = B_FALSE;
error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly,
level, name, first_mp);
if (error == EINPROGRESS)
return (error);
if (error == 0)
found = B_TRUE;
error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly,
IPPROTO_IP, IP_MULTICAST_IF, first_mp);
if (error == 0)
found = B_TRUE;
if (!found)
return (error);
break; /* goto sizeof (int) option return */
case IPV6_MULTICAST_HOPS:
/* Recorded in transport above IP */
break; /* goto sizeof (int) option return */
case IPV6_MULTICAST_LOOP:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_multicast_loop = *i1;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case IPV6_JOIN_GROUP:
case MCAST_JOIN_GROUP:
case IPV6_LEAVE_GROUP:
case MCAST_LEAVE_GROUP: {
struct ipv6_mreq *ip_mreqp;
struct group_req *greqp;
ire_t *ire;
boolean_t done = B_FALSE;
in6_addr_t groupv6;
uint32_t ifindex;
boolean_t mcast_opt = B_TRUE;
mcast_record_t fmode;
int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
int, mcast_record_t, const in6_addr_t *, mblk_t *);
switch (name) {
case IPV6_JOIN_GROUP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_JOIN_GROUP:
fmode = MODE_IS_EXCLUDE;
optfn = ip_opt_add_group_v6;
break;
case IPV6_LEAVE_GROUP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_LEAVE_GROUP:
fmode = MODE_IS_INCLUDE;
optfn = ip_opt_delete_group_v6;
break;
}
if (mcast_opt) {
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
greqp = (struct group_req *)i1;
if (greqp->gr_group.ss_family == AF_INET) {
sin = (struct sockaddr_in *)
&(greqp->gr_group);
IN6_INADDR_TO_V4MAPPED(&sin->sin_addr,
&groupv6);
} else {
sin6 = (struct sockaddr_in6 *)
&(greqp->gr_group);
groupv6 = sin6->sin6_addr;
}
ifindex = greqp->gr_interface;
} else {
ip_mreqp = (struct ipv6_mreq *)i1;
groupv6 = ip_mreqp->ipv6mr_multiaddr;
ifindex = ip_mreqp->ipv6mr_interface;
}
/*
* In the multirouting case, we need to replicate
* the request on all interfaces that will take part
* in replication. We do so because multirouting is
* reflective, thus we will probably receive multi-
* casts on those interfaces.
* The ip_multirt_apply_membership_v6() succeeds if
* the operation succeeds on at least one interface.
*/
ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0,
IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
MATCH_IRE_MASK | MATCH_IRE_TYPE);
if (ire != NULL) {
if (ire->ire_flags & RTF_MULTIRT) {
error = ip_multirt_apply_membership_v6(
optfn, ire, connp, checkonly,
&groupv6, fmode, &ipv6_all_zeros,
first_mp);
done = B_TRUE;
}
ire_refrele(ire);
}
if (!done) {
error = optfn(connp, checkonly, &groupv6,
ifindex, fmode, &ipv6_all_zeros, first_mp);
}
if (error) {
/*
* EINPROGRESS is a soft error, needs retry
* so don't make *outlenp zero.
*/
if (error != EINPROGRESS)
*outlenp = 0;
return (error);
}
/* OK return - copy input buffer into output buffer */
if (invalp != outvalp) {
/* don't trust bcopy for identical src/dst */
bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
return (0);
}
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
case MCAST_JOIN_SOURCE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP: {
struct group_source_req *gsreqp;
in6_addr_t v6grp, v6src;
uint32_t ifindex;
mcast_record_t fmode;
ire_t *ire;
boolean_t done = B_FALSE;
int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
int, mcast_record_t, const in6_addr_t *, mblk_t *);
switch (name) {
case MCAST_BLOCK_SOURCE:
fmode = MODE_IS_EXCLUDE;
optfn = ip_opt_add_group_v6;
break;
case MCAST_UNBLOCK_SOURCE:
fmode = MODE_IS_EXCLUDE;
optfn = ip_opt_delete_group_v6;
break;
case MCAST_JOIN_SOURCE_GROUP:
fmode = MODE_IS_INCLUDE;
optfn = ip_opt_add_group_v6;
break;
case MCAST_LEAVE_SOURCE_GROUP:
fmode = MODE_IS_INCLUDE;
optfn = ip_opt_delete_group_v6;
break;
}
gsreqp = (struct group_source_req *)i1;
ifindex = gsreqp->gsr_interface;
if (gsreqp->gsr_group.ss_family == AF_INET) {
struct sockaddr_in *s;
s = (struct sockaddr_in *)&gsreqp->gsr_group;
IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp);
s = (struct sockaddr_in *)&gsreqp->gsr_source;
IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
} else {
struct sockaddr_in6 *s6;
s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
v6grp = s6->sin6_addr;
s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
v6src = s6->sin6_addr;
}
/*
* In the multirouting case, we need to replicate
* the request as noted in the mcast cases above.
*/
ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0,
IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
MATCH_IRE_MASK | MATCH_IRE_TYPE);
if (ire != NULL) {
if (ire->ire_flags & RTF_MULTIRT) {
error = ip_multirt_apply_membership_v6(
optfn, ire, connp, checkonly,
&v6grp, fmode, &v6src, first_mp);
done = B_TRUE;
}
ire_refrele(ire);
}
if (!done) {
error = optfn(connp, checkonly, &v6grp,
ifindex, fmode, &v6src, first_mp);
}
if (error != 0) {
/*
* EINPROGRESS is a soft error, needs retry
* so don't make *outlenp zero.
*/
if (error != EINPROGRESS)
*outlenp = 0;
return (error);
}
/* OK return - copy input buffer into output buffer */
if (invalp != outvalp) {
bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
return (0);
}
case IPV6_UNICAST_HOPS:
/* Recorded in transport above IP */
break; /* goto sizeof (int) option return */
case IPV6_UNSPEC_SRC:
/* Allow sending with a zero source address */
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_unspec_src = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case IPV6_RECVPKTINFO:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case IPV6_RECVTCLASS:
if (!checkonly) {
if (*i1 < 0 || *i1 > 1) {
return (EINVAL);
}
mutex_enter(&connp->conn_lock);
connp->conn_ipv6_recvtclass = *i1;
mutex_exit(&connp->conn_lock);
}
break;
case IPV6_RECVPATHMTU:
if (!checkonly) {
if (*i1 < 0 || *i1 > 1) {
return (EINVAL);
}
mutex_enter(&connp->conn_lock);
connp->conn_ipv6_recvpathmtu = *i1;
mutex_exit(&connp->conn_lock);
}
break;
case IPV6_RECVHOPLIMIT:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case IPV6_RECVHOPOPTS:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case IPV6_RECVDSTOPTS:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case IPV6_RECVRTHDR:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case IPV6_RECVRTHDRDSTOPTS:
if (!checkonly) {
mutex_enter(&connp->conn_lock);
connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0;
mutex_exit(&connp->conn_lock);
}
break; /* goto sizeof (int) option return */
case IPV6_PKTINFO:
if (inlen == 0)
return (-EINVAL); /* clearing option */
error = ip6_set_pktinfo(cr, connp,
(struct in6_pktinfo *)invalp, first_mp);
if (error != 0)
*outlenp = 0;
else
*outlenp = inlen;
return (error);
case IPV6_NEXTHOP: {
struct sockaddr_in6 *sin6;
/* Verify that the nexthop is reachable */
if (inlen == 0)
return (-EINVAL); /* clearing option */
sin6 = (struct sockaddr_in6 *)invalp;
ire = ire_route_lookup_v6(&sin6->sin6_addr,
0, 0, 0, NULL, NULL, connp->conn_zoneid,
NULL, MATCH_IRE_DEFAULT);
if (ire == NULL) {
*outlenp = 0;
return (EHOSTUNREACH);
}
ire_refrele(ire);
return (-EINVAL);
}
case IPV6_SEC_OPT:
error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp);
if (error != 0) {
*outlenp = 0;
return (error);
}
break;
case IPV6_SRC_PREFERENCES: {
/*
* This is implemented strictly in the ip module
* (here and in tcp_opt_*() to accomodate tcp
* sockets). Modules above ip pass this option
* down here since ip is the only one that needs to
* be aware of source address preferences.
*
* This socket option only affects connected
* sockets that haven't already bound to a specific
* IPv6 address. In other words, sockets that
* don't call bind() with an address other than the
* unspecified address and that call connect().
* ip_bind_connected_v6() passes these preferences
* to the ipif_select_source_v6() function.
*/
if (inlen != sizeof (uint32_t))
return (EINVAL);
error = ip6_set_src_preferences(connp,
*(uint32_t *)invalp);
if (error != 0) {
*outlenp = 0;
return (error);
} else {
*outlenp = sizeof (uint32_t);
}
break;
}
case IPV6_V6ONLY:
if (*i1 < 0 || *i1 > 1) {
return (EINVAL);
}
mutex_enter(&connp->conn_lock);
connp->conn_ipv6_v6only = *i1;
mutex_exit(&connp->conn_lock);
break;
default:
return (-EINVAL);
}
break;
default:
/*
* "soft" error (negative)
* option not handled at this level
* Note: Do not modify *outlenp
*/
return (-EINVAL);
}
/*
* Common case of return from an option that is sizeof (int)
*/
*(int *)outvalp = *i1;
*outlenp = sizeof (int);
return (0);
}
/*
* This routine gets default values of certain options whose default
* values are maintained by protocol specific code
*/
/* ARGSUSED */
int
ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
{
int *i1 = (int *)ptr;
switch (level) {
case IPPROTO_IP:
switch (name) {
case IP_MULTICAST_TTL:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
return (sizeof (uchar_t));
case IP_MULTICAST_LOOP:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (uchar_t));
default:
return (-1);
}
case IPPROTO_IPV6:
switch (name) {
case IPV6_UNICAST_HOPS:
*i1 = ipv6_def_hops;
return (sizeof (int));
case IPV6_MULTICAST_HOPS:
*i1 = IP_DEFAULT_MULTICAST_TTL;
return (sizeof (int));
case IPV6_MULTICAST_LOOP:
*i1 = IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (int));
case IPV6_V6ONLY:
*i1 = 1;
return (sizeof (int));
default:
return (-1);
}
default:
return (-1);
}
/* NOTREACHED */
}
/*
* Given a destination address and a pointer to where to put the information
* this routine fills in the mtuinfo.
*/
int
ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port,
struct ip6_mtuinfo *mtuinfo)
{
ire_t *ire;
if (IN6_IS_ADDR_UNSPECIFIED(in6))
return (-1);
bzero(mtuinfo, sizeof (*mtuinfo));
mtuinfo->ip6m_addr.sin6_family = AF_INET6;
mtuinfo->ip6m_addr.sin6_port = port;
mtuinfo->ip6m_addr.sin6_addr = *in6;
ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL);
if (ire != NULL) {
mtuinfo->ip6m_mtu = ire->ire_max_frag;
ire_refrele(ire);
} else {
mtuinfo->ip6m_mtu = IPV6_MIN_MTU;
}
return (sizeof (struct ip6_mtuinfo));
}
/*
* This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error
* checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and
* isn't. This doesn't matter as the error checking is done properly for the
* other MRT options coming in through ip_opt_set.
*/
int
ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
{
conn_t *connp = Q_TO_CONN(q);
ipsec_req_t *req = (ipsec_req_t *)ptr;
switch (level) {
case IPPROTO_IP:
switch (name) {
case MRT_VERSION:
case MRT_ASSERT:
(void) ip_mrouter_get(name, q, ptr);
return (sizeof (int));
case IP_SEC_OPT:
return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4));
case IP_NEXTHOP:
if (connp->conn_nexthop_set) {
*(ipaddr_t *)ptr = connp->conn_nexthop_v4;
return (sizeof (ipaddr_t));
} else
return (0);
default:
break;
}
break;
case IPPROTO_IPV6:
switch (name) {
case IPV6_SEC_OPT:
return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6));
case IPV6_SRC_PREFERENCES: {
return (ip6_get_src_preferences(connp,
(uint32_t *)ptr));
}
case IPV6_V6ONLY:
*(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0;
return (sizeof (int));
case IPV6_PATHMTU:
return (ip_fill_mtuinfo(&connp->conn_remv6, 0,
(struct ip6_mtuinfo *)ptr));
default:
break;
}
break;
default:
break;
}
return (-1);
}
/* Named Dispatch routine to get a current value out of our parameter table. */
/* ARGSUSED */
static int
ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
{
ipparam_t *ippa = (ipparam_t *)cp;
(void) mi_mpprintf(mp, "%d", ippa->ip_param_value);
return (0);
}
/* ARGSUSED */
static int
ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
{
(void) mi_mpprintf(mp, "%d", *(int *)cp);
return (0);
}
/*
* Set ip{,6}_forwarding values. This means walking through all of the
* ill's and toggling their forwarding values.
*/
/* ARGSUSED */
static int
ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
{
long new_value;
int *forwarding_value = (int *)cp;
ill_t *walker;
boolean_t isv6 = (forwarding_value == &ipv6_forward);
ill_walk_context_t ctx;
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value < 0 || new_value > 1) {
return (EINVAL);
}
*forwarding_value = new_value;
/*
* Regardless of the current value of ip_forwarding, set all per-ill
* values of ip_forwarding to the value being set.
*
* Bring all the ill's up to date with the new global value.
*/
rw_enter(&ill_g_lock, RW_READER);
if (isv6)
walker = ILL_START_WALK_V6(&ctx);
else
walker = ILL_START_WALK_V4(&ctx);
for (; walker != NULL; walker = ill_next(&ctx, walker)) {
(void) ill_forward_set(q, mp, (new_value != 0),
(caddr_t)walker);
}
rw_exit(&ill_g_lock);
return (0);
}
/*
* Walk through the param array specified registering each element with the
* Named Dispatch handler. This is called only during init. So it is ok
* not to acquire any locks
*/
static boolean_t
ip_param_register(ipparam_t *ippa, size_t ippa_cnt,
ipndp_t *ipnd, size_t ipnd_cnt)
{
for (; ippa_cnt-- > 0; ippa++) {
if (ippa->ip_param_name && ippa->ip_param_name[0]) {
if (!nd_load(&ip_g_nd, ippa->ip_param_name,
ip_param_get, ip_param_set, (caddr_t)ippa)) {
nd_free(&ip_g_nd);
return (B_FALSE);
}
}
}
for (; ipnd_cnt-- > 0; ipnd++) {
if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) {
if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name,
ipnd->ip_ndp_getf, ipnd->ip_ndp_setf,
ipnd->ip_ndp_data)) {
nd_free(&ip_g_nd);
return (B_FALSE);
}
}
}
return (B_TRUE);
}
/* Named Dispatch routine to negotiate a new value for one of our parameters. */
/* ARGSUSED */
static int
ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
{
long new_value;
ipparam_t *ippa = (ipparam_t *)cp;
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) {
return (EINVAL);
}
ippa->ip_param_value = new_value;
return (0);
}
/*
* Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
* When an ipf is passed here for the first time, if
* we already have in-order fragments on the queue, we convert from the fast-
* path reassembly scheme to the hard-case scheme. From then on, additional
* fragments are reassembled here. We keep track of the start and end offsets
* of each piece, and the number of holes in the chain. When the hole count
* goes to zero, we are done!
*
* The ipf_count will be updated to account for any mblk(s) added (pointed to
* by mp) or subtracted (freeb()ed dups), upon return the caller must update
* ipfb_count and ill_frag_count by the difference of ipf_count before and
* after the call to ip_reassemble().
*/
int
ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
size_t msg_len)
{
uint_t end;
mblk_t *next_mp;
mblk_t *mp1;
uint_t offset;
boolean_t incr_dups = B_TRUE;
boolean_t offset_zero_seen = B_FALSE;
boolean_t pkt_boundary_checked = B_FALSE;
/* If start == 0 then ipf_nf_hdr_len has to be set. */
ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
/* Add in byte count */
ipf->ipf_count += msg_len;
if (ipf->ipf_end) {
/*
* We were part way through in-order reassembly, but now there
* is a hole. We walk through messages already queued, and
* mark them for hard case reassembly. We know that up till
* now they were in order starting from offset zero.
*/
offset = 0;
for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
IP_REASS_SET_START(mp1, offset);
if (offset == 0) {
ASSERT(ipf->ipf_nf_hdr_len != 0);
offset = -ipf->ipf_nf_hdr_len;
}
offset += mp1->b_wptr - mp1->b_rptr;
IP_REASS_SET_END(mp1, offset);
}
/* One hole at the end. */
ipf->ipf_hole_cnt = 1;
/* Brand it as a hard case, forever. */
ipf->ipf_end = 0;
}
/* Walk through all the new pieces. */
do {
end = start + (mp->b_wptr - mp->b_rptr);
/*
* If start is 0, decrease 'end' only for the first mblk of
* the fragment. Otherwise 'end' can get wrong value in the
* second pass of the loop if first mblk is exactly the
* size of ipf_nf_hdr_len.
*/
if (start == 0 && !offset_zero_seen) {
/* First segment */
ASSERT(ipf->ipf_nf_hdr_len != 0);
end -= ipf->ipf_nf_hdr_len;
offset_zero_seen = B_TRUE;
}
next_mp = mp->b_cont;
/*
* We are checking to see if there is any interesing data
* to process. If there isn't and the mblk isn't the
* one which carries the unfragmentable header then we
* drop it. It's possible to have just the unfragmentable
* header come through without any data. That needs to be
* saved.
*
* If the assert at the top of this function holds then the
* term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code
* is infrequently traveled enough that the test is left in
* to protect against future code changes which break that
* invariant.
*/
if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
/* Empty. Blast it. */
IP_REASS_SET_START(mp, 0);
IP_REASS_SET_END(mp, 0);
/*
* If the ipf points to the mblk we are about to free,
* update ipf to point to the next mblk (or NULL
* if none).
*/
if (ipf->ipf_mp->b_cont == mp)
ipf->ipf_mp->b_cont = next_mp;
freeb(mp);
continue;
}
mp->b_cont = NULL;
IP_REASS_SET_START(mp, start);
IP_REASS_SET_END(mp, end);
if (!ipf->ipf_tail_mp) {
ipf->ipf_tail_mp = mp;
ipf->ipf_mp->b_cont = mp;
if (start == 0 || !more) {
ipf->ipf_hole_cnt = 1;
/*
* if the first fragment comes in more than one
* mblk, this loop will be executed for each
* mblk. Need to adjust hole count so exiting
* this routine will leave hole count at 1.
*/
if (next_mp)
ipf->ipf_hole_cnt++;
} else
ipf->ipf_hole_cnt = 2;
continue;
} else if (ipf->ipf_last_frag_seen && !more &&
!pkt_boundary_checked) {
/*
* We check datagram boundary only if this fragment
* claims to be the last fragment and we have seen a
* last fragment in the past too. We do this only
* once for a given fragment.
*
* start cannot be 0 here as fragments with start=0
* and MF=0 gets handled as a complete packet. These
* fragments should not reach here.
*/
if (start + msgdsize(mp) !=
IP_REASS_END(ipf->ipf_tail_mp)) {
/*
* We have two fragments both of which claim
* to be the last fragment but gives conflicting
* information about the whole datagram size.
* Something fishy is going on. Drop the
* fragment and free up the reassembly list.
*/
return (IP_REASS_FAILED);
}
/*
* We shouldn't come to this code block again for this
* particular fragment.
*/
pkt_boundary_checked = B_TRUE;
}
/* New stuff at or beyond tail? */
offset = IP_REASS_END(ipf->ipf_tail_mp);
if (start >= offset) {
if (ipf->ipf_last_frag_seen) {
/* current fragment is beyond last fragment */
return (IP_REASS_FAILED);
}
/* Link it on end. */
ipf->ipf_tail_mp->b_cont = mp;
ipf->ipf_tail_mp = mp;
if (more) {
if (start != offset)
ipf->ipf_hole_cnt++;
} else if (start == offset && next_mp == NULL)
ipf->ipf_hole_cnt--;
continue;
}
mp1 = ipf->ipf_mp->b_cont;
offset = IP_REASS_START(mp1);
/* New stuff at the front? */
if (start < offset) {
if (start == 0) {
if (end >= offset) {
/* Nailed the hole at the begining. */
ipf->ipf_hole_cnt--;
}
} else if (end < offset) {
/*
* A hole, stuff, and a hole where there used
* to be just a hole.
*/
ipf->ipf_hole_cnt++;
}
mp->b_cont = mp1;
/* Check for overlap. */
while (end > offset) {
if (end < IP_REASS_END(mp1)) {
mp->b_wptr -= end - offset;
IP_REASS_SET_END(mp, offset);
if (ill->ill_isv6) {
BUMP_MIB(ill->ill_ip6_mib,
ipv6ReasmPartDups);
} else {
BUMP_MIB(&ip_mib,
ipReasmPartDups);
}
break;
}
/* Did we cover another hole? */
if ((mp1->b_cont &&
IP_REASS_END(mp1) !=
IP_REASS_START(mp1->b_cont) &&
end >= IP_REASS_START(mp1->b_cont)) ||
(!ipf->ipf_last_frag_seen && !more)) {
ipf->ipf_hole_cnt--;
}
/* Clip out mp1. */
if ((mp->b_cont = mp1->b_cont) == NULL) {
/*
* After clipping out mp1, this guy
* is now hanging off the end.
*/
ipf->ipf_tail_mp = mp;
}
IP_REASS_SET_START(mp1, 0);
IP_REASS_SET_END(mp1, 0);
/* Subtract byte count */
ipf->ipf_count -= mp1->b_datap->db_lim -
mp1->b_datap->db_base;
freeb(mp1);
if (ill->ill_isv6) {
BUMP_MIB(ill->ill_ip6_mib,
ipv6ReasmPartDups);
} else {
BUMP_MIB(&ip_mib, ipReasmPartDups);
}
mp1 = mp->b_cont;
if (!mp1)
break;
offset = IP_REASS_START(mp1);
}
ipf->ipf_mp->b_cont = mp;
continue;
}
/*
* The new piece starts somewhere between the start of the head
* and before the end of the tail.
*/
for (; mp1; mp1 = mp1->b_cont) {
offset = IP_REASS_END(mp1);
if (start < offset) {
if (end <= offset) {
/* Nothing new. */
IP_REASS_SET_START(mp, 0);
IP_REASS_SET_END(mp, 0);
/* Subtract byte count */
ipf->ipf_count -= mp->b_datap->db_lim -
mp->b_datap->db_base;
if (incr_dups) {
ipf->ipf_num_dups++;
incr_dups = B_FALSE;
}
freeb(mp);
if (ill->ill_isv6) {
BUMP_MIB(ill->ill_ip6_mib,
ipv6ReasmDuplicates);
} else {
BUMP_MIB(&ip_mib,
ipReasmDuplicates);
}
break;
}
/*
* Trim redundant stuff off beginning of new
* piece.
*/
IP_REASS_SET_START(mp, offset);
mp->b_rptr += offset - start;
if (ill->ill_isv6) {
BUMP_MIB(ill->ill_ip6_mib,
ipv6ReasmPartDups);
} else {
BUMP_MIB(&ip_mib, ipReasmPartDups);
}
start = offset;
if (!mp1->b_cont) {
/*
* After trimming, this guy is now
* hanging off the end.
*/
mp1->b_cont = mp;
ipf->ipf_tail_mp = mp;
if (!more) {
ipf->ipf_hole_cnt--;
}
break;
}
}
if (start >= IP_REASS_START(mp1->b_cont))
continue;
/* Fill a hole */
if (start > offset)
ipf->ipf_hole_cnt++;
mp->b_cont = mp1->b_cont;
mp1->b_cont = mp;
mp1 = mp->b_cont;
offset = IP_REASS_START(mp1);
if (end >= offset) {
ipf->ipf_hole_cnt--;
/* Check for overlap. */
while (end > offset) {
if (end < IP_REASS_END(mp1)) {
mp->b_wptr -= end - offset;
IP_REASS_SET_END(mp, offset);
/*
* TODO we might bump
* this up twice if there is
* overlap at both ends.
*/
if (ill->ill_isv6) {
BUMP_MIB(
ill->ill_ip6_mib,
ipv6ReasmPartDups);
} else {
BUMP_MIB(&ip_mib,
ipReasmPartDups);
}
break;
}
/* Did we cover another hole? */
if ((mp1->b_cont &&
IP_REASS_END(mp1)
!= IP_REASS_START(mp1->b_cont) &&
end >=
IP_REASS_START(mp1->b_cont)) ||
(!ipf->ipf_last_frag_seen &&
!more)) {
ipf->ipf_hole_cnt--;
}
/* Clip out mp1. */
if ((mp->b_cont = mp1->b_cont) ==
NULL) {
/*
* After clipping out mp1,
* this guy is now hanging
* off the end.
*/
ipf->ipf_tail_mp = mp;
}
IP_REASS_SET_START(mp1, 0);
IP_REASS_SET_END(mp1, 0);
/* Subtract byte count */
ipf->ipf_count -=
mp1->b_datap->db_lim -
mp1->b_datap->db_base;
freeb(mp1);
if (ill->ill_isv6) {
BUMP_MIB(ill->ill_ip6_mib,
ipv6ReasmPartDups);
} else {
BUMP_MIB(&ip_mib,
ipReasmPartDups);
}
mp1 = mp->b_cont;
if (!mp1)
break;
offset = IP_REASS_START(mp1);
}
}
break;
}
} while (start = end, mp = next_mp);
/* Fragment just processed could be the last one. Remember this fact */
if (!more)
ipf->ipf_last_frag_seen = B_TRUE;
/* Still got holes? */
if (ipf->ipf_hole_cnt)
return (IP_REASS_PARTIAL);
/* Clean up overloaded fields to avoid upstream disasters. */
for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
IP_REASS_SET_START(mp1, 0);
IP_REASS_SET_END(mp1, 0);
}
return (IP_REASS_COMPLETE);
}
/*
* ipsec processing for the fast path, used for input UDP Packets
*/
static boolean_t
ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha,
mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present)
{
uint32_t ill_index;
uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */
ASSERT(ipha->ipha_protocol == IPPROTO_UDP);
/* The ill_index of the incoming ILL */
ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex;
/* pass packet up to the transport */
if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) {
*first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha,
NULL, mctl_present);
if (*first_mpp == NULL) {
return (B_FALSE);
}
}
/* Initiate IPPF processing for fastpath UDP */
if (IPP_ENABLED(IPP_LOCAL_IN)) {
ip_process(IPP_LOCAL_IN, mpp, ill_index);
if (*mpp == NULL) {
ip2dbg(("ip_input_ipsec_process: UDP pkt "
"deferred/dropped during IPPF processing\n"));
return (B_FALSE);
}
}
/*
* We make the checks as below since we are in the fast path
* and want to minimize the number of checks if the IP_RECVIF and/or
* IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set
*/
if (connp->conn_recvif || connp->conn_recvslla ||
connp->conn_ipv6_recvpktinfo) {
if (connp->conn_recvif ||
connp->conn_ipv6_recvpktinfo) {
in_flags = IPF_RECVIF;
}
if (connp->conn_recvslla) {
in_flags |= IPF_RECVSLLA;
}
/*
* since in_flags are being set ill will be
* referenced in ip_add_info, so it better not
* be NULL.
*/
/*
* the actual data will be contained in b_cont
* upon successful return of the following call.
* If the call fails then the original mblk is
* returned.
*/
*mpp = ip_add_info(*mpp, ill, in_flags);
}
return (B_TRUE);
}
/*
* Fragmentation reassembly. Each ILL has a hash table for
* queuing packets undergoing reassembly for all IPIFs
* associated with the ILL. The hash is based on the packet
* IP ident field. The ILL frag hash table was allocated
* as a timer block at the time the ILL was created. Whenever
* there is anything on the reassembly queue, the timer will
* be running. Returns B_TRUE if successful else B_FALSE;
* frees mp on failure.
*/
static boolean_t
ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha,
uint32_t *cksum_val, uint16_t *cksum_flags)
{
uint32_t frag_offset_flags;
ill_t *ill = (ill_t *)q->q_ptr;
mblk_t *mp = *mpp;
mblk_t *t_mp;
ipaddr_t dst;
uint8_t proto = ipha->ipha_protocol;
uint32_t sum_val;
uint16_t sum_flags;
ipf_t *ipf;
ipf_t **ipfp;
ipfb_t *ipfb;
uint16_t ident;
uint32_t offset;
ipaddr_t src;
uint_t hdr_length;
uint32_t end;
mblk_t *mp1;
mblk_t *tail_mp;
size_t count;
size_t msg_len;
uint8_t ecn_info = 0;
uint32_t packet_size;
boolean_t pruned = B_FALSE;
if (cksum_val != NULL)
*cksum_val = 0;
if (cksum_flags != NULL)
*cksum_flags = 0;
/*
* Drop the fragmented as early as possible, if
* we don't have resource(s) to re-assemble.
*/
if (ip_reass_queue_bytes == 0) {
freemsg(mp);
return (B_FALSE);
}
/* Check for fragmentation offset; return if there's none */
if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
(IPH_MF | IPH_OFFSET)) == 0)
return (B_TRUE);
/*
* We utilize hardware computed checksum info only for UDP since
* IP fragmentation is a normal occurence for the protocol. In
* addition, checksum offload support for IP fragments carrying
* UDP payload is commonly implemented across network adapters.
*/
ASSERT(ill != NULL);
if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) &&
(DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
mblk_t *mp1 = mp->b_cont;
int32_t len;
/* Record checksum information from the packet */
sum_val = (uint32_t)DB_CKSUM16(mp);
sum_flags = DB_CKSUMFLAGS(mp);
/* IP payload offset from beginning of mblk */
offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
if ((sum_flags & HCK_PARTIALCKSUM) &&
(mp1 == NULL || mp1->b_cont == NULL) &&
offset >= DB_CKSUMSTART(mp) &&
((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
uint32_t adj;
/*
* Partial checksum has been calculated by hardware
* and attached to the packet; in addition, any
* prepended extraneous data is even byte aligned.
* If any such data exists, we adjust the checksum;
* this would also handle any postpended data.
*/
IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
mp, mp1, len, adj);
/* One's complement subtract extraneous checksum */
if (adj >= sum_val)
sum_val = ~(adj - sum_val) & 0xFFFF;
else
sum_val -= adj;
}
} else {
sum_val = 0;
sum_flags = 0;
}
/* Clear hardware checksumming flag */
DB_CKSUMFLAGS(mp) = 0;
ident = ipha->ipha_ident;
offset = (frag_offset_flags << 3) & 0xFFFF;
src = ipha->ipha_src;
dst = ipha->ipha_dst;
hdr_length = IPH_HDR_LENGTH(ipha);
end = ntohs(ipha->ipha_length) - hdr_length;
/* If end == 0 then we have a packet with no data, so just free it */
if (end == 0) {
freemsg(mp);
return (B_FALSE);
}
/* Record the ECN field info. */
ecn_info = (ipha->ipha_type_of_service & 0x3);
if (offset != 0) {
/*
* If this isn't the first piece, strip the header, and
* add the offset to the end value.
*/
mp->b_rptr += hdr_length;
end += offset;
}
msg_len = MBLKSIZE(mp);
tail_mp = mp;
while (tail_mp->b_cont != NULL) {
tail_mp = tail_mp->b_cont;
msg_len += MBLKSIZE(tail_mp);
}
/* If the reassembly list for this ILL will get too big, prune it */
if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
ip_reass_queue_bytes) {
ill_frag_prune(ill,
(ip_reass_queue_bytes < msg_len) ? 0 :
(ip_reass_queue_bytes - msg_len));
pruned = B_TRUE;
}
ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
mutex_enter(&ipfb->ipfb_lock);
ipfp = &ipfb->ipfb_ipf;
/* Try to find an existing fragment queue for this packet. */
for (;;) {
ipf = ipfp[0];
if (ipf != NULL) {
/*
* It has to match on ident and src/dst address.
*/
if (ipf->ipf_ident == ident &&
ipf->ipf_src == src &&
ipf->ipf_dst == dst &&
ipf->ipf_protocol == proto) {
/*
* If we have received too many
* duplicate fragments for this packet
* free it.
*/
if (ipf->ipf_num_dups > ip_max_frag_dups) {
ill_frag_free_pkts(ill, ipfb, ipf, 1);
freemsg(mp);
mutex_exit(&ipfb->ipfb_lock);
return (B_FALSE);
}
/* Found it. */
break;
}
ipfp = &ipf->ipf_hash_next;
continue;
}
/*
* If we pruned the list, do we want to store this new
* fragment?. We apply an optimization here based on the
* fact that most fragments will be received in order.
* So if the offset of this incoming fragment is zero,
* it is the first fragment of a new packet. We will
* keep it. Otherwise drop the fragment, as we have
* probably pruned the packet already (since the
* packet cannot be found).
*/
if (pruned && offset != 0) {
mutex_exit(&ipfb->ipfb_lock);
freemsg(mp);
return (B_FALSE);
}
if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) {
/*
* Too many fragmented packets in this hash
* bucket. Free the oldest.
*/
ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
}
/* New guy. Allocate a frag message. */
mp1 = allocb(sizeof (*ipf), BPRI_MED);
if (mp1 == NULL) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(mp);
reass_done:
mutex_exit(&ipfb->ipfb_lock);
return (B_FALSE);
}
BUMP_MIB(&ip_mib, ipReasmReqds);
mp1->b_cont = mp;
/* Initialize the fragment header. */
ipf = (ipf_t *)mp1->b_rptr;
ipf->ipf_mp = mp1;
ipf->ipf_ptphn = ipfp;
ipfp[0] = ipf;
ipf->ipf_hash_next = NULL;
ipf->ipf_ident = ident;
ipf->ipf_protocol = proto;
ipf->ipf_src = src;
ipf->ipf_dst = dst;
ipf->ipf_nf_hdr_len = 0;
/* Record reassembly start time. */
ipf->ipf_timestamp = gethrestime_sec();
/* Record ipf generation and account for frag header */
ipf->ipf_gen = ill->ill_ipf_gen++;
ipf->ipf_count = MBLKSIZE(mp1);
ipf->ipf_last_frag_seen = B_FALSE;
ipf->ipf_ecn = ecn_info;
ipf->ipf_num_dups = 0;
ipfb->ipfb_frag_pkts++;
ipf->ipf_checksum = 0;
ipf->ipf_checksum_flags = 0;
/* Store checksum value in fragment header */
if (sum_flags != 0) {
sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
ipf->ipf_checksum = sum_val;
ipf->ipf_checksum_flags = sum_flags;
}
/*
* We handle reassembly two ways. In the easy case,
* where all the fragments show up in order, we do
* minimal bookkeeping, and just clip new pieces on
* the end. If we ever see a hole, then we go off
* to ip_reassemble which has to mark the pieces and
* keep track of the number of holes, etc. Obviously,
* the point of having both mechanisms is so we can
* handle the easy case as efficiently as possible.
*/
if (offset == 0) {
/* Easy case, in-order reassembly so far. */
ipf->ipf_count += msg_len;
ipf->ipf_tail_mp = tail_mp;
/*
* Keep track of next expected offset in
* ipf_end.
*/
ipf->ipf_end = end;
ipf->ipf_nf_hdr_len = hdr_length;
} else {
/* Hard case, hole at the beginning. */
ipf->ipf_tail_mp = NULL;
/*
* ipf_end == 0 means that we have given up
* on easy reassembly.
*/
ipf->ipf_end = 0;
/* Forget checksum offload from now on */
ipf->ipf_checksum_flags = 0;
/*
* ipf_hole_cnt is set by ip_reassemble.
* ipf_count is updated by ip_reassemble.
* No need to check for return value here
* as we don't expect reassembly to complete
* or fail for the first fragment itself.
*/
(void) ip_reassemble(mp, ipf,
(frag_offset_flags & IPH_OFFSET) << 3,
(frag_offset_flags & IPH_MF), ill, msg_len);
}
/* Update per ipfb and ill byte counts */
ipfb->ipfb_count += ipf->ipf_count;
ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
ill->ill_frag_count += ipf->ipf_count;
ASSERT(ill->ill_frag_count > 0); /* Wraparound */
/* If the frag timer wasn't already going, start it. */
mutex_enter(&ill->ill_lock);
ill_frag_timer_start(ill);
mutex_exit(&ill->ill_lock);
goto reass_done;
}
/*
* If the packet's flag has changed (it could be coming up
* from an interface different than the previous, therefore
* possibly different checksum capability), then forget about
* any stored checksum states. Otherwise add the value to
* the existing one stored in the fragment header.
*/
if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
sum_val += ipf->ipf_checksum;
sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
ipf->ipf_checksum = sum_val;
} else if (ipf->ipf_checksum_flags != 0) {
/* Forget checksum offload from now on */
ipf->ipf_checksum_flags = 0;
}
/*
* We have a new piece of a datagram which is already being
* reassembled. Update the ECN info if all IP fragments
* are ECN capable. If there is one which is not, clear
* all the info. If there is at least one which has CE
* code point, IP needs to report that up to transport.
*/
if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
if (ecn_info == IPH_ECN_CE)
ipf->ipf_ecn = IPH_ECN_CE;
} else {
ipf->ipf_ecn = IPH_ECN_NECT;
}
if (offset && ipf->ipf_end == offset) {
/* The new fragment fits at the end */
ipf->ipf_tail_mp->b_cont = mp;
/* Update the byte count */
ipf->ipf_count += msg_len;
/* Update per ipfb and ill byte counts */
ipfb->ipfb_count += msg_len;
ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
ill->ill_frag_count += msg_len;
ASSERT(ill->ill_frag_count > 0); /* Wraparound */
if (frag_offset_flags & IPH_MF) {
/* More to come. */
ipf->ipf_end = end;
ipf->ipf_tail_mp = tail_mp;
goto reass_done;
}
} else {
/* Go do the hard cases. */
int ret;
if (offset == 0)
ipf->ipf_nf_hdr_len = hdr_length;
/* Save current byte count */
count = ipf->ipf_count;
ret = ip_reassemble(mp, ipf,
(frag_offset_flags & IPH_OFFSET) << 3,
(frag_offset_flags & IPH_MF), ill, msg_len);
/* Count of bytes added and subtracted (freeb()ed) */
count = ipf->ipf_count - count;
if (count) {
/* Update per ipfb and ill byte counts */
ipfb->ipfb_count += count;
ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
ill->ill_frag_count += count;
ASSERT(ill->ill_frag_count > 0);
}
if (ret == IP_REASS_PARTIAL) {
goto reass_done;
} else if (ret == IP_REASS_FAILED) {
/* Reassembly failed. Free up all resources */
ill_frag_free_pkts(ill, ipfb, ipf, 1);
for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
IP_REASS_SET_START(t_mp, 0);
IP_REASS_SET_END(t_mp, 0);
}
freemsg(mp);
goto reass_done;
}
/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
}
/*
* We have completed reassembly. Unhook the frag header from
* the reassembly list.
*
* Before we free the frag header, record the ECN info
* to report back to the transport.
*/
ecn_info = ipf->ipf_ecn;
BUMP_MIB(&ip_mib, ipReasmOKs);
ipfp = ipf->ipf_ptphn;
/* We need to supply these to caller */
if ((sum_flags = ipf->ipf_checksum_flags) != 0)
sum_val = ipf->ipf_checksum;
else
sum_val = 0;
mp1 = ipf->ipf_mp;
count = ipf->ipf_count;
ipf = ipf->ipf_hash_next;
if (ipf != NULL)
ipf->ipf_ptphn = ipfp;
ipfp[0] = ipf;
ill->ill_frag_count -= count;
ASSERT(ipfb->ipfb_count >= count);
ipfb->ipfb_count -= count;
ipfb->ipfb_frag_pkts--;
mutex_exit(&ipfb->ipfb_lock);
/* Ditch the frag header. */
mp = mp1->b_cont;
freeb(mp1);
/* Restore original IP length in header. */
packet_size = (uint32_t)msgdsize(mp);
if (packet_size > IP_MAXPACKET) {
freemsg(mp);
BUMP_MIB(&ip_mib, ipInHdrErrors);
return (B_FALSE);
}
if (DB_REF(mp) > 1) {
mblk_t *mp2 = copymsg(mp);
freemsg(mp);
if (mp2 == NULL) {
BUMP_MIB(&ip_mib, ipInDiscards);
return (B_FALSE);
}
mp = mp2;
}
ipha = (ipha_t *)mp->b_rptr;
ipha->ipha_length = htons((uint16_t)packet_size);
/* We're now complete, zip the frag state */
ipha->ipha_fragment_offset_and_flags = 0;
/* Record the ECN info. */
ipha->ipha_type_of_service &= 0xFC;
ipha->ipha_type_of_service |= ecn_info;
*mpp = mp;
/* Reassembly is successful; return checksum information if needed */
if (cksum_val != NULL)
*cksum_val = sum_val;
if (cksum_flags != NULL)
*cksum_flags = sum_flags;
return (B_TRUE);
}
/*
* Perform ip header check sum update local options.
* return B_TRUE if all is well, else return B_FALSE and release
* the mp. caller is responsible for decrementing ire ref cnt.
*/
static boolean_t
ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire)
{
mblk_t *first_mp;
boolean_t mctl_present;
uint16_t sum;
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
/*
* Don't do the checksum if it has gone through AH/ESP
* processing.
*/
if (!mctl_present) {
sum = ip_csum_hdr(ipha);
if (sum != 0) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
freemsg(first_mp);
return (B_FALSE);
}
}
if (!ip_rput_local_options(q, mp, ipha, ire)) {
if (mctl_present)
freeb(first_mp);
return (B_FALSE);
}
return (B_TRUE);
}
/*
* All udp packet are delivered to the local host via this routine.
*/
void
ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
ill_t *recv_ill)
{
uint32_t sum;
uint32_t u1;
boolean_t mctl_present;
conn_t *connp;
mblk_t *first_mp;
uint16_t *up;
ill_t *ill = (ill_t *)q->q_ptr;
uint16_t reass_hck_flags = 0;
#define rptr ((uchar_t *)ipha)
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
ASSERT(!mctl_present || ipsec_in_is_secure(first_mp));
ASSERT(ipha->ipha_protocol == IPPROTO_UDP);
/*
* FAST PATH for udp packets
*/
/* u1 is # words of IP options */
u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) +
IP_SIMPLE_HDR_LENGTH_IN_WORDS);
/* IP options present */
if (u1 != 0)
goto ipoptions;
/* Check the IP header checksum. */
if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
/* Clear the IP header h/w cksum flag */
DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
} else {
#define uph ((uint16_t *)ipha)
sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] +
uph[6] + uph[7] + uph[8] + uph[9];
#undef uph
/* finish doing IP checksum */
sum = (sum & 0xFFFF) + (sum >> 16);
sum = ~(sum + (sum >> 16)) & 0xFFFF;
/*
* Don't verify header checksum if this packet is coming
* back from AH/ESP as we already did it.
*/
if (!mctl_present && sum != 0 && sum != 0xFFFF) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
freemsg(first_mp);
return;
}
}
/*
* Count for SNMP of inbound packets for ire.
* if mctl is present this might be a secure packet and
* has already been counted for in ip_proto_input().
*/
if (!mctl_present) {
UPDATE_IB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
}
/* packet part of fragmented IP packet? */
u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
if (u1 & (IPH_MF | IPH_OFFSET)) {
goto fragmented;
}
/* u1 = IP header length (20 bytes) */
u1 = IP_SIMPLE_HDR_LENGTH;
/* packet does not contain complete IP & UDP headers */
if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE))
goto udppullup;
/* up points to UDP header */
up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH);
#define iphs ((uint16_t *)ipha)
/* if udp hdr cksum != 0, then need to checksum udp packet */
if (up[3] != 0) {
mblk_t *mp1 = mp->b_cont;
boolean_t cksum_err;
uint16_t hck_flags = 0;
/* Pseudo-header checksum */
u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
iphs[9] + up[2];
/*
* Revert to software checksum calculation if the interface
* isn't capable of checksum offload or if IPsec is present.
*/
if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum)
hck_flags = DB_CKSUMFLAGS(mp);
if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
IP_STAT(ip_in_sw_cksum);
IP_CKSUM_RECV(hck_flags, u1,
(uchar_t *)(rptr + DB_CKSUMSTART(mp)),
(int32_t)((uchar_t *)up - rptr),
mp, mp1, cksum_err);
if (cksum_err) {
BUMP_MIB(&ip_mib, udpInCksumErrs);
if (hck_flags & HCK_FULLCKSUM)
IP_STAT(ip_udp_in_full_hw_cksum_err);
else if (hck_flags & HCK_PARTIALCKSUM)
IP_STAT(ip_udp_in_part_hw_cksum_err);
else
IP_STAT(ip_udp_in_sw_cksum_err);
freemsg(first_mp);
return;
}
}
/* Non-fragmented broadcast or multicast packet? */
if (ire->ire_type == IRE_BROADCAST)
goto udpslowpath;
if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
ire->ire_zoneid)) != NULL) {
ASSERT(connp->conn_upq != NULL);
IP_STAT(ip_udp_fast_path);
if (CONN_UDP_FLOWCTLD(connp)) {
freemsg(mp);
BUMP_MIB(&ip_mib, udpInOverflows);
} else {
if (!mctl_present) {
BUMP_MIB(&ip_mib, ipInDelivers);
}
/*
* mp and first_mp can change.
*/
if (ip_udp_check(q, connp, recv_ill,
ipha, &mp, &first_mp, mctl_present)) {
/* Send it upstream */
CONN_UDP_RECV(connp, mp);
}
}
/*
* freeb() cannot deal with null mblk being passed
* in and first_mp can be set to null in the call
* ipsec_input_fast_proc()->ipsec_check_inbound_policy.
*/
if (mctl_present && first_mp != NULL) {
freeb(first_mp);
}
CONN_DEC_REF(connp);
return;
}
/*
* if we got here we know the packet is not fragmented and
* has no options. The classifier could not find a conn_t and
* most likely its an icmp packet so send it through slow path.
*/
goto udpslowpath;
ipoptions:
if (!ip_options_cksum(q, mp, ipha, ire)) {
goto slow_done;
}
UPDATE_IB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
if (u1 & (IPH_MF | IPH_OFFSET)) {
fragmented:
/*
* "sum" and "reass_hck_flags" are non-zero if the
* reassembled packet has a valid hardware computed
* checksum information associated with it.
*/
if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags))
goto slow_done;
/*
* Make sure that first_mp points back to mp as
* the mp we came in with could have changed in
* ip_rput_fragment().
*/
ASSERT(!mctl_present);
ipha = (ipha_t *)mp->b_rptr;
first_mp = mp;
}
/* Now we have a complete datagram, destined for this machine. */
u1 = IPH_HDR_LENGTH(ipha);
/* Pull up the UDP header, if necessary. */
if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) {
udppullup:
if (!pullupmsg(mp, u1 + UDPH_SIZE)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
goto slow_done;
}
ipha = (ipha_t *)mp->b_rptr;
}
/*
* Validate the checksum for the reassembled packet; for the
* pullup case we calculate the payload checksum in software.
*/
up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET);
if (up[3] != 0) {
boolean_t cksum_err;
if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
IP_STAT(ip_in_sw_cksum);
IP_CKSUM_RECV_REASS(reass_hck_flags,
(int32_t)((uchar_t *)up - (uchar_t *)ipha),
IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
iphs[9] + up[2], sum, cksum_err);
if (cksum_err) {
BUMP_MIB(&ip_mib, udpInCksumErrs);
if (reass_hck_flags & HCK_FULLCKSUM)
IP_STAT(ip_udp_in_full_hw_cksum_err);
else if (reass_hck_flags & HCK_PARTIALCKSUM)
IP_STAT(ip_udp_in_part_hw_cksum_err);
else
IP_STAT(ip_udp_in_sw_cksum_err);
freemsg(first_mp);
goto slow_done;
}
}
udpslowpath:
/* Clear hardware checksum flag to be safe */
DB_CKSUMFLAGS(mp) = 0;
ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up,
(ire->ire_type == IRE_BROADCAST),
IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO,
mctl_present, B_TRUE, recv_ill, ire->ire_zoneid);
slow_done:
IP_STAT(ip_udp_slow_path);
return;
#undef iphs
#undef rptr
}
/* ARGSUSED */
static mblk_t *
ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present,
ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q,
ill_rx_ring_t *ill_ring)
{
conn_t *connp;
uint32_t sum;
uint32_t u1;
uint16_t *up;
int offset;
ssize_t len;
mblk_t *mp1;
boolean_t syn_present = B_FALSE;
tcph_t *tcph;
uint_t ip_hdr_len;
ill_t *ill = (ill_t *)q->q_ptr;
zoneid_t zoneid = ire->ire_zoneid;
boolean_t cksum_err;
uint16_t hck_flags = 0;
#define rptr ((uchar_t *)ipha)
ASSERT(ipha->ipha_protocol == IPPROTO_TCP);
/*
* FAST PATH for tcp packets
*/
/* u1 is # words of IP options */
u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
+ IP_SIMPLE_HDR_LENGTH_IN_WORDS);
/* IP options present */
if (u1) {
goto ipoptions;
} else {
/* Check the IP header checksum. */
if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
/* Clear the IP header h/w cksum flag */
DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
} else {
#define uph ((uint16_t *)ipha)
sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
#undef uph
/* finish doing IP checksum */
sum = (sum & 0xFFFF) + (sum >> 16);
sum = ~(sum + (sum >> 16)) & 0xFFFF;
/*
* Don't verify header checksum if this packet
* is coming back from AH/ESP as we already did it.
*/
if (!mctl_present && (sum != 0) && sum != 0xFFFF) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
goto error;
}
}
}
if (!mctl_present) {
UPDATE_IB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
}
/* packet part of fragmented IP packet? */
u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
if (u1 & (IPH_MF | IPH_OFFSET)) {
goto fragmented;
}
/* u1 = IP header length (20 bytes) */
u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH;
/* does packet contain IP+TCP headers? */
len = mp->b_wptr - rptr;
if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) {
IP_STAT(ip_tcppullup);
goto tcppullup;
}
/* TCP options present? */
offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4;
/*
* If options need to be pulled up, then goto tcpoptions.
* otherwise we are still in the fast path
*/
if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) {
IP_STAT(ip_tcpoptions);
goto tcpoptions;
}
/* multiple mblks of tcp data? */
if ((mp1 = mp->b_cont) != NULL) {
/* more then two? */
if (mp1->b_cont != NULL) {
IP_STAT(ip_multipkttcp);
goto multipkttcp;
}
len += mp1->b_wptr - mp1->b_rptr;
}
up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET);
/* part of pseudo checksum */
/* TCP datagram length */
u1 = len - IP_SIMPLE_HDR_LENGTH;
#define iphs ((uint16_t *)ipha)
#ifdef _BIG_ENDIAN
u1 += IPPROTO_TCP;
#else
u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8);
#endif
u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9];
/*
* Revert to software checksum calculation if the interface
* isn't capable of checksum offload or if IPsec is present.
*/
if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum)
hck_flags = DB_CKSUMFLAGS(mp);
if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
IP_STAT(ip_in_sw_cksum);
IP_CKSUM_RECV(hck_flags, u1,
(uchar_t *)(rptr + DB_CKSUMSTART(mp)),
(int32_t)((uchar_t *)up - rptr),
mp, mp1, cksum_err);
if (cksum_err) {
BUMP_MIB(&ip_mib, tcpInErrs);
if (hck_flags & HCK_FULLCKSUM)
IP_STAT(ip_tcp_in_full_hw_cksum_err);
else if (hck_flags & HCK_PARTIALCKSUM)
IP_STAT(ip_tcp_in_part_hw_cksum_err);
else
IP_STAT(ip_tcp_in_sw_cksum_err);
goto error;
}
try_again:
if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) ==
NULL) {
/* Send the TH_RST */
goto no_conn;
}
/*
* TCP FAST PATH for AF_INET socket.
*
* TCP fast path to avoid extra work. An AF_INET socket type
* does not have facility to receive extra information via
* ip_process or ip_add_info. Also, when the connection was
* established, we made a check if this connection is impacted
* by any global IPSec policy or per connection policy (a
* policy that comes in effect later will not apply to this
* connection). Since all this can be determined at the
* connection establishment time, a quick check of flags
* can avoid extra work.
*/
if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present &&
!IPP_ENABLED(IPP_LOCAL_IN)) {
ASSERT(first_mp == mp);
SET_SQUEUE(mp, tcp_rput_data, connp);
return (mp);
}
tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
if (IPCL_IS_TCP(connp)) {
mp->b_datap->db_struioflag |= STRUIO_EAGER;
DB_CKSUMSTART(mp) =
(intptr_t)ip_squeue_get(ill_ring);
if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present &&
!CONN_INBOUND_POLICY_PRESENT(connp)) {
SET_SQUEUE(mp, connp->conn_recv, connp);
return (mp);
} else if (IPCL_IS_BOUND(connp) && !mctl_present &&
!CONN_INBOUND_POLICY_PRESENT(connp)) {
ip_squeue_enter_unbound++;
SET_SQUEUE(mp, tcp_conn_request_unbound,
connp);
return (mp);
}
syn_present = B_TRUE;
}
}
if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) {
uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF;
/* No need to send this packet to TCP */
if ((flags & TH_RST) || (flags & TH_URG)) {
CONN_DEC_REF(connp);
freemsg(first_mp);
return (NULL);
}
if (flags & TH_ACK) {
tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid);
CONN_DEC_REF(connp);
return (NULL);
}
CONN_DEC_REF(connp);
freemsg(first_mp);
return (NULL);
}
if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) {
first_mp = ipsec_check_inbound_policy(first_mp, connp,
ipha, NULL, mctl_present);
if (first_mp == NULL) {
CONN_DEC_REF(connp);
return (NULL);
}
if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) {
ASSERT(syn_present);
if (mctl_present) {
ASSERT(first_mp != mp);
first_mp->b_datap->db_struioflag |=
STRUIO_POLICY;
} else {
ASSERT(first_mp == mp);
mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
mp->b_datap->db_struioflag |= STRUIO_POLICY;
}
} else {
/*
* Discard first_mp early since we're dealing with a
* fully-connected conn_t and tcp doesn't do policy in
* this case.
*/
if (mctl_present) {
freeb(first_mp);
mctl_present = B_FALSE;
}
first_mp = mp;
}
}
/* Initiate IPPF processing for fastpath */
if (IPP_ENABLED(IPP_LOCAL_IN)) {
uint32_t ill_index;
ill_index = recv_ill->ill_phyint->phyint_ifindex;
ip_process(IPP_LOCAL_IN, &mp, ill_index);
if (mp == NULL) {
ip2dbg(("ip_input_ipsec_process: TCP pkt "
"deferred/dropped during IPPF processing\n"));
CONN_DEC_REF(connp);
if (mctl_present)
freeb(first_mp);
return (NULL);
} else if (mctl_present) {
/*
* ip_process might return a new mp.
*/
ASSERT(first_mp != mp);
first_mp->b_cont = mp;
} else {
first_mp = mp;
}
}
if (!syn_present && connp->conn_ipv6_recvpktinfo) {
mp = ip_add_info(mp, recv_ill, flags);
if (mp == NULL) {
CONN_DEC_REF(connp);
if (mctl_present)
freeb(first_mp);
return (NULL);
} else if (mctl_present) {
/*
* ip_add_info might return a new mp.
*/
ASSERT(first_mp != mp);
first_mp->b_cont = mp;
} else {
first_mp = mp;
}
}
if (IPCL_IS_TCP(connp)) {
SET_SQUEUE(first_mp, connp->conn_recv, connp);
return (first_mp);
} else {
putnext(connp->conn_rq, first_mp);
CONN_DEC_REF(connp);
return (NULL);
}
no_conn:
/* Initiate IPPf processing, if needed. */
if (IPP_ENABLED(IPP_LOCAL_IN)) {
uint32_t ill_index;
ill_index = recv_ill->ill_phyint->phyint_ifindex;
ip_process(IPP_LOCAL_IN, &first_mp, ill_index);
if (first_mp == NULL) {
return (NULL);
}
}
BUMP_MIB(&ip_mib, ipInDelivers);
tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid);
return (NULL);
ipoptions:
if (!ip_options_cksum(q, first_mp, ipha, ire)) {
goto slow_done;
}
UPDATE_IB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
if (u1 & (IPH_MF | IPH_OFFSET)) {
fragmented:
if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) {
if (mctl_present)
freeb(first_mp);
goto slow_done;
}
/*
* Make sure that first_mp points back to mp as
* the mp we came in with could have changed in
* ip_rput_fragment().
*/
ASSERT(!mctl_present);
ipha = (ipha_t *)mp->b_rptr;
first_mp = mp;
}
/* Now we have a complete datagram, destined for this machine. */
u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha);
len = mp->b_wptr - mp->b_rptr;
/* Pull up a minimal TCP header, if necessary. */
if (len < (u1 + 20)) {
tcppullup:
if (!pullupmsg(mp, u1 + 20)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto error;
}
ipha = (ipha_t *)mp->b_rptr;
len = mp->b_wptr - mp->b_rptr;
}
/*
* Extract the offset field from the TCP header. As usual, we
* try to help the compiler more than the reader.
*/
offset = ((uchar_t *)ipha)[u1 + 12] >> 4;
if (offset != 5) {
tcpoptions:
if (offset < 5) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto error;
}
/*
* There must be TCP options.
* Make sure we can grab them.
*/
offset <<= 2;
offset += u1;
if (len < offset) {
if (!pullupmsg(mp, offset)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto error;
}
ipha = (ipha_t *)mp->b_rptr;
len = mp->b_wptr - rptr;
}
}
/* Get the total packet length in len, including headers. */
if (mp->b_cont) {
multipkttcp:
len = msgdsize(mp);
}
/*
* Check the TCP checksum by pulling together the pseudo-
* header checksum, and passing it to ip_csum to be added in
* with the TCP datagram.
*
* Since we are not using the hwcksum if available we must
* clear the flag. We may come here via tcppullup or tcpoptions.
* If either of these fails along the way the mblk is freed.
* If this logic ever changes and mblk is reused to say send
* ICMP's back, then this flag may need to be cleared in
* other places as well.
*/
DB_CKSUMFLAGS(mp) = 0;
up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET);
u1 = (uint32_t)(len - u1); /* TCP datagram length. */
#ifdef _BIG_ENDIAN
u1 += IPPROTO_TCP;
#else
u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8);
#endif
u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9];
/*
* Not M_DATA mblk or its a dup, so do the checksum now.
*/
IP_STAT(ip_in_sw_cksum);
if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) {
BUMP_MIB(&ip_mib, tcpInErrs);
goto error;
}
IP_STAT(ip_tcp_slow_path);
goto try_again;
#undef iphs
#undef rptr
error:
freemsg(first_mp);
slow_done:
return (NULL);
}
/* ARGSUSED */
static void
ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present,
ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst)
{
conn_t *connp;
uint32_t sum;
uint32_t u1;
ssize_t len;
sctp_hdr_t *sctph;
zoneid_t zoneid = ire->ire_zoneid;
uint32_t pktsum;
uint32_t calcsum;
uint32_t ports;
uint_t ipif_seqid;
in6_addr_t map_src, map_dst;
ill_t *ill = (ill_t *)q->q_ptr;
#define rptr ((uchar_t *)ipha)
ASSERT(ipha->ipha_protocol == IPPROTO_SCTP);
/* u1 is # words of IP options */
u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
+ IP_SIMPLE_HDR_LENGTH_IN_WORDS);
/* IP options present */
if (u1 > 0) {
goto ipoptions;
} else {
/* Check the IP header checksum. */
if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
#define uph ((uint16_t *)ipha)
sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
#undef uph
/* finish doing IP checksum */
sum = (sum & 0xFFFF) + (sum >> 16);
sum = ~(sum + (sum >> 16)) & 0xFFFF;
/*
* Don't verify header checksum if this packet
* is coming back from AH/ESP as we already did it.
*/
if (!mctl_present && (sum != 0) && sum != 0xFFFF) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
goto error;
}
}
/*
* Since there is no SCTP h/w cksum support yet, just
* clear the flag.
*/
DB_CKSUMFLAGS(mp) = 0;
}
/*
* Don't verify header checksum if this packet is coming
* back from AH/ESP as we already did it.
*/
if (!mctl_present) {
UPDATE_IB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
}
/* packet part of fragmented IP packet? */
u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
if (u1 & (IPH_MF | IPH_OFFSET))
goto fragmented;
/* u1 = IP header length (20 bytes) */
u1 = IP_SIMPLE_HDR_LENGTH;
find_sctp_client:
/* Pullup if we don't have the sctp common header. */
len = MBLKL(mp);
if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) {
if (mp->b_cont == NULL ||
!pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto error;
}
ipha = (ipha_t *)mp->b_rptr;
len = MBLKL(mp);
}
sctph = (sctp_hdr_t *)(rptr + u1);
#ifdef DEBUG
if (!skip_sctp_cksum) {
#endif
pktsum = sctph->sh_chksum;
sctph->sh_chksum = 0;
calcsum = sctp_cksum(mp, u1);
if (calcsum != pktsum) {
BUMP_MIB(&sctp_mib, sctpChecksumError);
goto error;
}
sctph->sh_chksum = pktsum;
#ifdef DEBUG /* skip_sctp_cksum */
}
#endif
/* get the ports */
ports = *(uint32_t *)&sctph->sh_sport;
ipif_seqid = ire->ire_ipif->ipif_seqid;
IRE_REFRELE(ire);
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst);
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src);
if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid,
mp)) == NULL) {
/* Check for raw socket or OOTB handling */
goto no_conn;
}
/* Found a client; up it goes */
BUMP_MIB(&ip_mib, ipInDelivers);
sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present);
return;
no_conn:
ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE,
ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid);
return;
ipoptions:
DB_CKSUMFLAGS(mp) = 0;
if (!ip_options_cksum(q, first_mp, ipha, ire))
goto slow_done;
UPDATE_IB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
if (u1 & (IPH_MF | IPH_OFFSET)) {
fragmented:
if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL))
goto slow_done;
/*
* Make sure that first_mp points back to mp as
* the mp we came in with could have changed in
* ip_rput_fragment().
*/
ASSERT(!mctl_present);
ipha = (ipha_t *)mp->b_rptr;
first_mp = mp;
}
/* Now we have a complete datagram, destined for this machine. */
u1 = IPH_HDR_LENGTH(ipha);
goto find_sctp_client;
#undef iphs
#undef rptr
error:
freemsg(first_mp);
slow_done:
IRE_REFRELE(ire);
}
#define VER_BITS 0xF0
#define VERSION_6 0x60
static boolean_t
ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp,
ipaddr_t *dstp)
{
uint_t opt_len;
ipha_t *ipha;
ssize_t len;
uint_t pkt_len;
IP_STAT(ip_ipoptions);
ipha = *iphapp;
#define rptr ((uchar_t *)ipha)
/* Assume no IPv6 packets arrive over the IPv4 queue */
if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) {
BUMP_MIB(&ip_mib, ipInIPv6);
freemsg(mp);
return (B_FALSE);
}
/* multiple mblk or too short */
pkt_len = ntohs(ipha->ipha_length);
/* Get the number of words of IP options in the IP header. */
opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION;
if (opt_len) {
/* IP Options present! Validate and process. */
if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
BUMP_MIB(&ip_mib, ipInHdrErrors);
goto done;
}
/*
* Recompute complete header length and make sure we
* have access to all of it.
*/
len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
if (len > (mp->b_wptr - rptr)) {
if (len > pkt_len) {
BUMP_MIB(&ip_mib, ipInHdrErrors);
goto done;
}
if (!pullupmsg(mp, len)) {
BUMP_MIB(&ip_mib, ipInDiscards);
goto done;
}
ipha = (ipha_t *)mp->b_rptr;
}
/*
* Go off to ip_rput_options which returns the next hop
* destination address, which may have been affected
* by source routing.
*/
IP_STAT(ip_opt);
if (ip_rput_options(q, mp, ipha, dstp) == -1) {
return (B_FALSE);
}
}
*iphapp = ipha;
return (B_TRUE);
done:
/* clear b_prev - used by ip_mroute_decap */
mp->b_prev = NULL;
freemsg(mp);
return (B_FALSE);
#undef rptr
}
/*
* Deal with the fact that there is no ire for the destination.
* The incoming ill (in_ill) is passed in to ip_newroute only
* in the case of packets coming from mobile ip forward tunnel.
* It must be null otherwise.
*/
static ire_t *
ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast,
ipaddr_t dst)
{
ipha_t *ipha;
ill_t *ill;
ire_t *ire;
boolean_t check_multirt = B_FALSE;
ipha = (ipha_t *)mp->b_rptr;
ill = (ill_t *)q->q_ptr;
ASSERT(ill != NULL);
/*
* No IRE for this destination, so it can't be for us.
* Unless we are forwarding, drop the packet.
* We have to let source routed packets through
* since we don't yet know if they are 'ping -l'
* packets i.e. if they will go out over the
* same interface as they came in on.
*/
if (ll_multicast) {
freemsg(mp);
return (NULL);
}
if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) {
BUMP_MIB(&ip_mib, ipForwProhibits);
freemsg(mp);
return (NULL);
}
/*
* Mark this packet as having originated externally.
*
* For non-forwarding code path, ire_send later double
* checks this interface to see if it is still exists
* post-ARP resolution.
*
* Also, IPQOS uses this to differentiate between
* IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP
* QOS packet processing in ip_wput_attach_llhdr().
* The QoS module can mark the b_band for a fastpath message
* or the dl_priority field in a unitdata_req header for
* CoS marking. This info can only be found in
* ip_wput_attach_llhdr().
*/
mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex;
/*
* Clear the indication that this may have a hardware checksum
* as we are not using it
*/
DB_CKSUMFLAGS(mp) = 0;
if (in_ill != NULL) {
/*
* Now hand the packet to ip_newroute.
*/
ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID);
return (NULL);
}
ire = ire_forward(dst, &check_multirt, NULL, NULL,
MBLK_GETLABEL(mp));
if (ire == NULL && check_multirt) {
/* Let ip_newroute handle CGTP */
ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID);
return (NULL);
}
if (ire != NULL)
return (ire);
mp->b_prev = mp->b_next = 0;
/* send icmp unreachable */
q = WR(q);
/* Sent by forwarding path, and router is global zone */
if (ip_source_routed(ipha)) {
icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED,
GLOBAL_ZONEID);
} else {
icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID);
}
return (NULL);
}
/*
* check ip header length and align it.
*/
static boolean_t
ip_check_and_align_header(queue_t *q, mblk_t *mp)
{
ssize_t len;
ill_t *ill;
ipha_t *ipha;
len = MBLKL(mp);
if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) {
if (!OK_32PTR(mp->b_rptr))
IP_STAT(ip_notaligned1);
else
IP_STAT(ip_notaligned2);
/* Guard against bogus device drivers */
if (len < 0) {
/* clear b_prev - used by ip_mroute_decap */
mp->b_prev = NULL;
BUMP_MIB(&ip_mib, ipInHdrErrors);
freemsg(mp);
return (B_FALSE);
}
if (ip_rput_pullups++ == 0) {
ill = (ill_t *)q->q_ptr;
ipha = (ipha_t *)mp->b_rptr;
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"ip_check_and_align_header: %s forced us to "
" pullup pkt, hdr len %ld, hdr addr %p",
ill->ill_name, len, ipha);
}
if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) {
/* clear b_prev - used by ip_mroute_decap */
mp->b_prev = NULL;
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(mp);
return (B_FALSE);
}
}
return (B_TRUE);
}
static boolean_t
ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill)
{
ill_group_t *ill_group;
ill_group_t *ire_group;
queue_t *q;
ill_t *ire_ill;
uint_t ill_ifindex;
q = *qp;
/*
* We need to check to make sure the packet came in
* on the queue associated with the destination IRE.
* Note that for multicast packets and broadcast packets sent to
* a broadcast address which is shared between multiple interfaces
* we should not do this since we just got a random broadcast ire.
*/
if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) {
boolean_t check_multi = B_TRUE;
/*
* This packet came in on an interface other than the
* one associated with the destination address.
* "Gateway" it to the appropriate interface here.
* As long as the ills belong to the same group,
* we don't consider them to arriving on the wrong
* interface. Thus, when the switch is doing inbound
* load spreading, we won't drop packets when we
* are doing strict multihoming checks. Note, the
* same holds true for 'usesrc groups' where the
* destination address may belong to another interface
* to allow multipathing to happen
*/
ill_group = ill->ill_group;
ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr;
ill_ifindex = ill->ill_usesrc_ifindex;
ire_group = ire_ill->ill_group;
/*
* If it's part of the same IPMP group, or if it's a legal
* address on the 'usesrc' interface, then bypass strict
* checks.
*/
if (ill_group != NULL && ill_group == ire_group) {
check_multi = B_FALSE;
} else if (ill_ifindex != 0 &&
ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) {
check_multi = B_FALSE;
}
if (check_multi &&
ip_strict_dst_multihoming &&
((ill->ill_flags &
ire->ire_ipif->ipif_ill->ill_flags &
ILLF_ROUTER) == 0)) {
/* Drop packet */
BUMP_MIB(&ip_mib, ipForwProhibits);
freemsg(mp);
return (B_TRUE);
}
/*
* Change the queue (for non-virtual destination network
* interfaces) and ip_rput_local will be called with the right
* queue
*/
q = ire->ire_rfq;
}
/* Must be broadcast. We'll take it. */
*qp = q;
return (B_FALSE);
}
ire_t *
ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp)
{
ipha_t *ipha;
ipaddr_t ip_dst, ip_src;
ire_t *src_ire = NULL;
ill_t *stq_ill;
uint_t hlen;
uint32_t sum;
queue_t *dev_q;
boolean_t check_multirt = B_FALSE;
ipha = (ipha_t *)mp->b_rptr;
/*
* Martian Address Filtering [RFC 1812, Section 5.3.7]
* The loopback address check for both src and dst has already
* been checked in ip_input
*/
ip_dst = ntohl(dst);
ip_src = ntohl(ipha->ipha_src);
if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) ||
IN_CLASSD(ip_src)) {
BUMP_MIB(&ip_mib, ipForwProhibits);
goto drop;
}
src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (src_ire != NULL) {
BUMP_MIB(&ip_mib, ipForwProhibits);
goto drop;
}
/* No ire cache of nexthop. So first create one */
if (ire == NULL) {
ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL);
/*
* We only come to ip_fast_forward if ip_cgtp_filter is
* is not set. So upon return from ire_forward
* check_multirt should remain as false.
*/
ASSERT(!check_multirt);
if (ire == NULL) {
BUMP_MIB(&ip_mib, ipInDiscards);
mp->b_prev = mp->b_next = 0;
/* send icmp unreachable */
/* Sent by forwarding path, and router is global zone */
if (ip_source_routed(ipha)) {
icmp_unreachable(ill->ill_wq, mp,
ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID);
} else {
icmp_unreachable(ill->ill_wq, mp,
ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID);
}
return (ire);
}
}
/*
* Forwarding fastpath exception case:
* If either of the follwoing case is true, we take
* the slowpath
* o forwarding is not enabled
* o incoming and outgoing interface are the same, or the same
* IPMP group
* o corresponding ire is in incomplete state
* o packet needs fragmentation
*
* The codeflow from here on is thus:
* ip_rput_process_forward->ip_rput_forward->ip_xmit_v4
*/
stq_ill = (ill_t *)ire->ire_stq->q_ptr;
if (!(stq_ill->ill_flags & ILLF_ROUTER) ||
!(ill->ill_flags & ILLF_ROUTER) ||
(ill == stq_ill) ||
(ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) ||
(ire->ire_nce == NULL) ||
(ire->ire_nce->nce_state != ND_REACHABLE) ||
(ntohs(ipha->ipha_length) > ire->ire_max_frag) ||
ipha->ipha_ttl <= 1) {
ip_rput_process_forward(ill->ill_rq, mp, ire,
ipha, ill, B_FALSE);
return (ire);
}
DTRACE_PROBE4(ip4__forwarding__start,
ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp);
FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding,
ill, stq_ill, ipha, mp, mp);
DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);
if (mp == NULL)
goto drop;
mp->b_datap->db_struioun.cksum.flags = 0;
/* Adjust the checksum to reflect the ttl decrement. */
sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
ipha->ipha_ttl--;
dev_q = ire->ire_stq->q_next;
if ((dev_q->q_next != NULL ||
dev_q->q_first != NULL) && !canput(dev_q)) {
goto indiscard;
}
hlen = ire->ire_nce->nce_fp_mp != NULL ?
MBLKL(ire->ire_nce->nce_fp_mp) : 0;
if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) {
mblk_t *mpip = mp;
mp = ip_wput_attach_llhdr(mpip, ire, 0, 0);
if (mp != NULL) {
DTRACE_PROBE4(ip4__physical__out__start,
ill_t *, NULL, ill_t *, stq_ill,
ipha_t *, ipha, mblk_t *, mp);
FW_HOOKS(ip4_physical_out_event,
ipv4firewall_physical_out,
NULL, stq_ill, ipha, mp, mpip);
DTRACE_PROBE1(ip4__physical__out__end, mblk_t *,
mp);
if (mp == NULL)
goto drop;
UPDATE_IB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
BUMP_MIB(&ip_mib, ipForwDatagrams);
putnext(ire->ire_stq, mp);
return (ire);
}
}
indiscard:
BUMP_MIB(&ip_mib, ipInDiscards);
drop:
if (mp != NULL)
freemsg(mp);
if (src_ire != NULL)
ire_refrele(src_ire);
return (ire);
}
/*
* This function is called in the forwarding slowpath, when
* either the ire lacks the link-layer address, or the packet needs
* further processing(eg. fragmentation), before transmission.
*/
static void
ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha,
ill_t *ill, boolean_t ll_multicast)
{
ill_group_t *ill_group;
ill_group_t *ire_group;
queue_t *dev_q;
ire_t *src_ire;
ASSERT(ire->ire_stq != NULL);
mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */
mp->b_next = NULL; /* ip_rput_noire sets dst here */
if (ll_multicast != 0)
goto drop_pkt;
/*
* check if ipha_src is a broadcast address. Note that this
* check is redundant when we get here from ip_fast_forward()
* which has already done this check. However, since we can
* also get here from ip_rput_process_broadcast() or, for
* for the slow path through ip_fast_forward(), we perform
* the check again for code-reusability
*/
src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY ||
IN_BADCLASS(ntohl(ipha->ipha_dst))) {
if (src_ire != NULL)
ire_refrele(src_ire);
BUMP_MIB(&ip_mib, ipForwProhibits);
ip2dbg(("ip_rput_process_forward: Received packet with"
" bad src/dst address on %s\n", ill->ill_name));
goto drop_pkt;
}
ill_group = ill->ill_group;
ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group;
/*
* Check if we want to forward this one at this time.
* We allow source routed packets on a host provided that
* they go out the same interface or same interface group
* as they came in on.
*
* XXX To be quicker, we may wish to not chase pointers to
* get the ILLF_ROUTER flag and instead store the
* forwarding policy in the ire. An unfortunate
* side-effect of that would be requiring an ire flush
* whenever the ILLF_ROUTER flag changes.
*/
if (((ill->ill_flags &
((ill_t *)ire->ire_stq->q_ptr)->ill_flags &
ILLF_ROUTER) == 0) &&
!(ip_source_routed(ipha) && (ire->ire_rfq == q ||
(ill_group != NULL && ill_group == ire_group)))) {
BUMP_MIB(&ip_mib, ipForwProhibits);
if (ip_source_routed(ipha)) {
q = WR(q);
/*
* Clear the indication that this may have
* hardware checksum as we are not using it.
*/
DB_CKSUMFLAGS(mp) = 0;
/* Sent by forwarding path, and router is global zone */
icmp_unreachable(q, mp,
ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID);
return;
}
goto drop_pkt;
}
/* Packet is being forwarded. Turning off hwcksum flag. */
DB_CKSUMFLAGS(mp) = 0;
if (ip_g_send_redirects) {
/*
* Check whether the incoming interface and outgoing
* interface is part of the same group. If so,
* send redirects.
*
* Check the source address to see if it originated
* on the same logical subnet it is going back out on.
* If so, we should be able to send it a redirect.
* Avoid sending a redirect if the destination
* is directly connected (i.e., ipha_dst is the same
* as ire_gateway_addr or the ire_addr of the
* nexthop IRE_CACHE ), or if the packet was source
* routed out this interface.
*/
ipaddr_t src, nhop;
mblk_t *mp1;
ire_t *nhop_ire = NULL;
/*
* Check whether ire_rfq and q are from the same ill
* or if they are not same, they at least belong
* to the same group. If so, send redirects.
*/
if ((ire->ire_rfq == q ||
(ill_group != NULL && ill_group == ire_group)) &&
!ip_source_routed(ipha)) {
nhop = (ire->ire_gateway_addr != 0 ?
ire->ire_gateway_addr : ire->ire_addr);
if (ipha->ipha_dst == nhop) {
/*
* We avoid sending a redirect if the
* destination is directly connected
* because it is possible that multiple
* IP subnets may have been configured on
* the link, and the source may not
* be on the same subnet as ip destination,
* even though they are on the same
* physical link.
*/
goto sendit;
}
src = ipha->ipha_src;
/*
* We look up the interface ire for the nexthop,
* to see if ipha_src is in the same subnet
* as the nexthop.
*
* Note that, if, in the future, IRE_CACHE entries
* are obsoleted, this lookup will not be needed,
* as the ire passed to this function will be the
* same as the nhop_ire computed below.
*/
nhop_ire = ire_ftable_lookup(nhop, 0, 0,
IRE_INTERFACE, NULL, NULL, ALL_ZONES,
0, NULL, MATCH_IRE_TYPE);
if (nhop_ire != NULL) {
if ((src & nhop_ire->ire_mask) ==
(nhop & nhop_ire->ire_mask)) {
/*
* The source is directly connected.
* Just copy the ip header (which is
* in the first mblk)
*/
mp1 = copyb(mp);
if (mp1 != NULL) {
icmp_send_redirect(WR(q), mp1,
nhop);
}
}
ire_refrele(nhop_ire);
}
}
}
sendit:
dev_q = ire->ire_stq->q_next;
if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(mp);
return;
}
ip_rput_forward(ire, ipha, mp, ill);
return;
drop_pkt:
ip2dbg(("ip_rput_process_forward: drop pkt\n"));
freemsg(mp);
}
ire_t *
ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha,
ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast)
{
queue_t *q;
uint16_t hcksumflags;
q = *qp;
/*
* Clear the indication that this may have hardware
* checksum as we are not using it for forwarding.
*/
hcksumflags = DB_CKSUMFLAGS(mp);
DB_CKSUMFLAGS(mp) = 0;
/*
* Directed broadcast forwarding: if the packet came in over a
* different interface then it is routed out over we can forward it.
*/
if (ipha->ipha_protocol == IPPROTO_TCP) {
ire_refrele(ire);
freemsg(mp);
BUMP_MIB(&ip_mib, ipInDiscards);
return (NULL);
}
/*
* For multicast we have set dst to be INADDR_BROADCAST
* for delivering to all STREAMS. IRE_MARK_NORECV is really
* only for broadcast packets.
*/
if (!CLASSD(ipha->ipha_dst)) {
ire_t *new_ire;
ipif_t *ipif;
/*
* For ill groups, as the switch duplicates broadcasts
* across all the ports, we need to filter out and
* send up only one copy. There is one copy for every
* broadcast address on each ill. Thus, we look for a
* specific IRE on this ill and look at IRE_MARK_NORECV
* later to see whether this ill is eligible to receive
* them or not. ill_nominate_bcast_rcv() nominates only
* one set of IREs for receiving.
*/
ipif = ipif_get_next_ipif(NULL, ill);
if (ipif == NULL) {
ire_refrele(ire);
freemsg(mp);
BUMP_MIB(&ip_mib, ipInDiscards);
return (NULL);
}
new_ire = ire_ctable_lookup(dst, 0, 0,
ipif, ALL_ZONES, NULL, MATCH_IRE_ILL);
ipif_refrele(ipif);
if (new_ire != NULL) {
if (new_ire->ire_marks & IRE_MARK_NORECV) {
ire_refrele(ire);
ire_refrele(new_ire);
freemsg(mp);
BUMP_MIB(&ip_mib, ipInDiscards);
return (NULL);
}
/*
* In the special case of multirouted broadcast
* packets, we unconditionally need to "gateway"
* them to the appropriate interface here.
* In the normal case, this cannot happen, because
* there is no broadcast IRE tagged with the
* RTF_MULTIRT flag.
*/
if (new_ire->ire_flags & RTF_MULTIRT) {
ire_refrele(new_ire);
if (ire->ire_rfq != NULL) {
q = ire->ire_rfq;
*qp = q;
}
} else {
ire_refrele(ire);
ire = new_ire;
}
} else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) {
if (!ip_g_forward_directed_bcast) {
/*
* Free the message if
* ip_g_forward_directed_bcast is turned
* off for non-local broadcast.
*/
ire_refrele(ire);
freemsg(mp);
BUMP_MIB(&ip_mib, ipInDiscards);
return (NULL);
}
} else {
/*
* This CGTP packet successfully passed the
* CGTP filter, but the related CGTP
* broadcast IRE has not been found,
* meaning that the redundant ipif is
* probably down. However, if we discarded
* this packet, its duplicate would be
* filtered out by the CGTP filter so none
* of them would get through. So we keep
* going with this one.
*/
ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM);
if (ire->ire_rfq != NULL) {
q = ire->ire_rfq;
*qp = q;
}
}
}
if (ip_g_forward_directed_bcast && ll_multicast == 0) {
/*
* Verify that there are not more then one
* IRE_BROADCAST with this broadcast address which
* has ire_stq set.
* TODO: simplify, loop over all IRE's
*/
ire_t *ire1;
int num_stq = 0;
mblk_t *mp1;
/* Find the first one with ire_stq set */
rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
for (ire1 = ire; ire1 &&
!ire1->ire_stq && ire1->ire_addr == ire->ire_addr;
ire1 = ire1->ire_next)
;
if (ire1) {
ire_refrele(ire);
ire = ire1;
IRE_REFHOLD(ire);
}
/* Check if there are additional ones with stq set */
for (ire1 = ire; ire1; ire1 = ire1->ire_next) {
if (ire->ire_addr != ire1->ire_addr)
break;
if (ire1->ire_stq) {
num_stq++;
break;
}
}
rw_exit(&ire->ire_bucket->irb_lock);
if (num_stq == 1 && ire->ire_stq != NULL) {
ip1dbg(("ip_rput_process_broadcast: directed "
"broadcast to 0x%x\n",
ntohl(ire->ire_addr)));
mp1 = copymsg(mp);
if (mp1) {
switch (ipha->ipha_protocol) {
case IPPROTO_UDP:
ip_udp_input(q, mp1, ipha, ire, ill);
break;
default:
ip_proto_input(q, mp1, ipha, ire, ill);
break;
}
}
/*
* Adjust ttl to 2 (1+1 - the forward engine
* will decrement it by one.
*/
if (ip_csum_hdr(ipha)) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
ip2dbg(("ip_rput_broadcast:drop pkt\n"));
freemsg(mp);
ire_refrele(ire);
return (NULL);
}
ipha->ipha_ttl = ip_broadcast_ttl + 1;
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
ip_rput_process_forward(q, mp, ire, ipha,
ill, ll_multicast);
ire_refrele(ire);
return (NULL);
}
ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n",
ntohl(ire->ire_addr)));
}
/* Restore any hardware checksum flags */
DB_CKSUMFLAGS(mp) = hcksumflags;
return (ire);
}
/* ARGSUSED */
static boolean_t
ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha,
int *ll_multicast, ipaddr_t *dstp)
{
/*
* Forward packets only if we have joined the allmulti
* group on this interface.
*/
if (ip_g_mrouter && ill->ill_join_allmulti) {
int retval;
/*
* Clear the indication that this may have hardware
* checksum as we are not using it.
*/
DB_CKSUMFLAGS(mp) = 0;
retval = ip_mforward(ill, ipha, mp);
/* ip_mforward updates mib variables if needed */
/* clear b_prev - used by ip_mroute_decap */
mp->b_prev = NULL;
switch (retval) {
case 0:
/*
* pkt is okay and arrived on phyint.
*
* If we are running as a multicast router
* we need to see all IGMP and/or PIM packets.
*/
if ((ipha->ipha_protocol == IPPROTO_IGMP) ||
(ipha->ipha_protocol == IPPROTO_PIM)) {
goto done;
}
break;
case -1:
/* pkt is mal-formed, toss it */
goto drop_pkt;
case 1:
/* pkt is okay and arrived on a tunnel */
/*
* If we are running a multicast router
* we need to see all igmp packets.
*/
if (ipha->ipha_protocol == IPPROTO_IGMP) {
*dstp = INADDR_BROADCAST;
*ll_multicast = 1;
return (B_FALSE);
}
goto drop_pkt;
}
}
ILM_WALKER_HOLD(ill);
if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) {
/*
* This might just be caused by the fact that
* multiple IP Multicast addresses map to the same
* link layer multicast - no need to increment counter!
*/
ILM_WALKER_RELE(ill);
freemsg(mp);
return (B_TRUE);
}
ILM_WALKER_RELE(ill);
done:
ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp)));
/*
* This assumes the we deliver to all streams for multicast
* and broadcast packets.
*/
*dstp = INADDR_BROADCAST;
*ll_multicast = 1;
return (B_FALSE);
drop_pkt:
ip2dbg(("ip_rput: drop pkt\n"));
freemsg(mp);
return (B_TRUE);
}
static boolean_t
ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill,
int *ll_multicast, mblk_t **mpp)
{
mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp;
boolean_t must_copy = B_FALSE;
struct iocblk *iocp;
ipha_t *ipha;
#define rptr ((uchar_t *)ipha)
first_mp = *first_mpp;
mp = *mpp;
ASSERT(first_mp == mp);
/*
* if db_ref > 1 then copymsg and free original. Packet may be
* changed and do not want other entity who has a reference to this
* message to trip over the changes. This is a blind change because
* trying to catch all places that might change packet is too
* difficult (since it may be a module above this one)
*
* This corresponds to the non-fast path case. We walk down the full
* chain in this case, and check the db_ref count of all the dblks,
* and do a copymsg if required. It is possible that the db_ref counts
* of the data blocks in the mblk chain can be different.
* For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref
* count of 1, followed by a M_DATA block with a ref count of 2, if
* 'snoop' is running.
*/
for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
if (mp1->b_datap->db_ref > 1) {
must_copy = B_TRUE;
break;
}
}
if (must_copy) {
mp1 = copymsg(mp);
if (mp1 == NULL) {
for (mp1 = mp; mp1 != NULL;
mp1 = mp1->b_cont) {
mp1->b_next = NULL;
mp1->b_prev = NULL;
}
freemsg(mp);
BUMP_MIB(&ip_mib, ipInDiscards);
return (B_TRUE);
}
for (from_mp = mp, to_mp = mp1; from_mp != NULL;
from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) {
/* Copy b_prev - used by ip_mroute_decap */
to_mp->b_prev = from_mp->b_prev;
from_mp->b_prev = NULL;
}
*first_mpp = first_mp = mp1;
freemsg(mp);
mp = mp1;
*mpp = mp1;
}
ipha = (ipha_t *)mp->b_rptr;
/*
* previous code has a case for M_DATA.
* We want to check how that happens.
*/
ASSERT(first_mp->b_datap->db_type != M_DATA);
switch (first_mp->b_datap->db_type) {
case M_PROTO:
case M_PCPROTO:
if (((dl_unitdata_ind_t *)rptr)->dl_primitive !=
DL_UNITDATA_IND) {
/* Go handle anything other than data elsewhere. */
ip_rput_dlpi(q, mp);
return (B_TRUE);
}
*ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address;
/* Ditch the DLPI header. */
mp1 = mp->b_cont;
ASSERT(first_mp == mp);
*first_mpp = mp1;
freeb(mp);
*mpp = mp1;
return (B_FALSE);
case M_IOCACK:
ip1dbg(("got iocack "));
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case DL_IOC_HDR_INFO:
ill = (ill_t *)q->q_ptr;
ill_fastpath_ack(ill, mp);
return (B_TRUE);
case SIOCSTUNPARAM:
case OSIOCSTUNPARAM:
/* Go through qwriter_ip */
break;
case SIOCGTUNPARAM:
case OSIOCGTUNPARAM:
ip_rput_other(NULL, q, mp, NULL);
return (B_TRUE);
default:
putnext(q, mp);
return (B_TRUE);
}
/* FALLTHRU */
case M_ERROR:
case M_HANGUP:
/*
* Since this is on the ill stream we unconditionally
* bump up the refcount
*/
ill_refhold(ill);
(void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP,
B_FALSE);
return (B_TRUE);
case M_CTL:
if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) &&
(((da_ipsec_t *)first_mp->b_rptr)->da_type ==
IPHADA_M_CTL)) {
/*
* It's an IPsec accelerated packet.
* Make sure that the ill from which we received the
* packet has enabled IPsec hardware acceleration.
*/
if (!(ill->ill_capabilities &
(ILL_CAPAB_AH|ILL_CAPAB_ESP))) {
/* IPsec kstats: bean counter */
freemsg(mp);
return (B_TRUE);
}
/*
* Make mp point to the mblk following the M_CTL,
* then process according to type of mp.
* After this processing, first_mp will point to
* the data-attributes and mp to the pkt following
* the M_CTL.
*/
mp = first_mp->b_cont;
if (mp == NULL) {
freemsg(first_mp);
return (B_TRUE);
}
/*
* A Hardware Accelerated packet can only be M_DATA
* ESP or AH packet.
*/
if (mp->b_datap->db_type != M_DATA) {
/* non-M_DATA IPsec accelerated packet */
IPSECHW_DEBUG(IPSECHW_PKT,
("non-M_DATA IPsec accelerated pkt\n"));
freemsg(first_mp);
return (B_TRUE);
}
ipha = (ipha_t *)mp->b_rptr;
if (ipha->ipha_protocol != IPPROTO_AH &&
ipha->ipha_protocol != IPPROTO_ESP) {
IPSECHW_DEBUG(IPSECHW_PKT,
("non-M_DATA IPsec accelerated pkt\n"));
freemsg(first_mp);
return (B_TRUE);
}
*mpp = mp;
return (B_FALSE);
}
putnext(q, mp);
return (B_TRUE);
case M_FLUSH:
if (*mp->b_rptr & FLUSHW) {
*mp->b_rptr &= ~FLUSHR;
qreply(q, mp);
return (B_TRUE);
}
freemsg(mp);
return (B_TRUE);
case M_IOCNAK:
ip1dbg(("got iocnak "));
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case DL_IOC_HDR_INFO:
case SIOCSTUNPARAM:
case OSIOCSTUNPARAM:
/*
* Since this is on the ill stream we unconditionally
* bump up the refcount
*/
ill_refhold(ill);
(void) qwriter_ip(NULL, ill, q, mp, ip_rput_other,
CUR_OP, B_FALSE);
return (B_TRUE);
case SIOCGTUNPARAM:
case OSIOCGTUNPARAM:
ip_rput_other(NULL, q, mp, NULL);
return (B_TRUE);
default:
break;
}
/* FALLTHRU */
default:
putnext(q, mp);
return (B_TRUE);
}
}
/* Read side put procedure. Packets coming from the wire arrive here. */
void
ip_rput(queue_t *q, mblk_t *mp)
{
ill_t *ill;
mblk_t *dmp = NULL;
TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q);
ill = (ill_t *)q->q_ptr;
if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
union DL_primitives *dl;
/*
* Things are opening or closing. Only accept DLPI control
* messages. In the open case, the ill->ill_ipif has not yet
* been created. In the close case, things hanging off the
* ill could have been freed already. In either case it
* may not be safe to proceed further.
*/
dl = (union DL_primitives *)mp->b_rptr;
if ((mp->b_datap->db_type != M_PCPROTO) ||
(dl->dl_primitive == DL_UNITDATA_IND)) {
/*
* Also SIOC[GS]TUN* ioctls can come here.
*/
inet_freemsg(mp);
TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
"ip_input_end: q %p (%S)", q, "uninit");
return;
}
}
/*
* if db_ref > 1 then copymsg and free original. Packet may be
* changed and we do not want the other entity who has a reference to
* this message to trip over the changes. This is a blind change because
* trying to catch all places that might change the packet is too
* difficult.
*
* This corresponds to the fast path case, where we have a chain of
* M_DATA mblks. We check the db_ref count of only the 1st data block
* in the mblk chain. There doesn't seem to be a reason why a device
* driver would send up data with varying db_ref counts in the mblk
* chain. In any case the Fast path is a private interface, and our
* drivers don't do such a thing. Given the above assumption, there is
* no need to walk down the entire mblk chain (which could have a
* potential performance problem)
*/
if (mp->b_datap->db_ref > 1) {
mblk_t *mp1;
boolean_t adjusted = B_FALSE;
IP_STAT(ip_db_ref);
/*
* The IP_RECVSLLA option depends on having the link layer
* header. First check that:
* a> the underlying device is of type ether, since this
* option is currently supported only over ethernet.
* b> there is enough room to copy over the link layer header.
*
* Once the checks are done, adjust rptr so that the link layer
* header will be copied via copymsg. Note that, IFT_ETHER may
* be returned by some non-ethernet drivers but in this case the
* second check will fail.
*/
if (ill->ill_type == IFT_ETHER &&
(mp->b_rptr - mp->b_datap->db_base) >=
sizeof (struct ether_header)) {
mp->b_rptr -= sizeof (struct ether_header);
adjusted = B_TRUE;
}
mp1 = copymsg(mp);
if (mp1 == NULL) {
mp->b_next = NULL;
/* clear b_prev - used by ip_mroute_decap */
mp->b_prev = NULL;
freemsg(mp);
BUMP_MIB(&ip_mib, ipInDiscards);
TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
"ip_rput_end: q %p (%S)", q, "copymsg");
return;
}
if (adjusted) {
/*
* Copy is done. Restore the pointer in the _new_ mblk
*/
mp1->b_rptr += sizeof (struct ether_header);
}
/* Copy b_prev - used by ip_mroute_decap */
mp1->b_prev = mp->b_prev;
mp->b_prev = NULL;
freemsg(mp);
mp = mp1;
}
if (DB_TYPE(mp) == M_DATA) {
dmp = mp;
} else if (DB_TYPE(mp) == M_PROTO &&
*(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) {
dmp = mp->b_cont;
}
if (dmp != NULL) {
/*
* IP header ptr not aligned?
* OR IP header not complete in first mblk
*/
if (!OK_32PTR(dmp->b_rptr) ||
(dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) {
if (!ip_check_and_align_header(q, dmp))
return;
}
}
TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
"ip_rput_end: q %p (%S)", q, "end");
ip_input(ill, NULL, mp, NULL);
}
/*
* Direct read side procedure capable of dealing with chains. GLDv3 based
* drivers call this function directly with mblk chains while STREAMS
* read side procedure ip_rput() calls this for single packet with ip_ring
* set to NULL to process one packet at a time.
*
* The ill will always be valid if this function is called directly from
* the driver.
*
* If ip_input() is called from GLDv3:
*
* - This must be a non-VLAN IP stream.
* - 'mp' is either an untagged or a special priority-tagged packet.
* - Any VLAN tag that was in the MAC header has been stripped.
*
* Thus, there is no need to adjust b_rptr in this function.
*/
/* ARGSUSED */
void
ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain,
struct mac_header_info_s *mhip)
{
ipaddr_t dst = NULL;
ipaddr_t prev_dst;
ire_t *ire = NULL;
ipha_t *ipha;
uint_t pkt_len;
ssize_t len;
uint_t opt_len;
int ll_multicast;
int cgtp_flt_pkt;
queue_t *q = ill->ill_rq;
squeue_t *curr_sqp = NULL;
mblk_t *head = NULL;
mblk_t *tail = NULL;
mblk_t *first_mp;
mblk_t *mp;
int cnt = 0;
ASSERT(mp_chain != NULL);
ASSERT(ill != NULL);
TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q);
#define rptr ((uchar_t *)ipha)
while (mp_chain != NULL) {
first_mp = mp = mp_chain;
mp_chain = mp_chain->b_next;
mp->b_next = NULL;
ll_multicast = 0;
/*
* We do ire caching from one iteration to
* another. In the event the packet chain contains
* all packets from the same dst, this caching saves
* an ire_cache_lookup for each of the succeeding
* packets in a packet chain.
*/
prev_dst = dst;
/*
* ip_input fast path
*/
/* mblk type is not M_DATA */
if (mp->b_datap->db_type != M_DATA) {
if (ip_rput_process_notdata(q, &first_mp, ill,
&ll_multicast, &mp))
continue;
}
/* Make sure its an M_DATA and that its aligned */
ASSERT(mp->b_datap->db_type == M_DATA);
ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr));
ipha = (ipha_t *)mp->b_rptr;
len = mp->b_wptr - rptr;
BUMP_MIB(&ip_mib, ipInReceives);
/* multiple mblk or too short */
pkt_len = ntohs(ipha->ipha_length);
len -= pkt_len;
if (len != 0) {
/*
* Make sure we have data length consistent
* with the IP header.
*/
if (mp->b_cont == NULL) {
if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) {
BUMP_MIB(&ip_mib, ipInHdrErrors);
ip2dbg(("ip_input: drop pkt\n"));
freemsg(mp);
continue;
}
mp->b_wptr = rptr + pkt_len;
} else if (len += msgdsize(mp->b_cont)) {
if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) {
BUMP_MIB(&ip_mib, ipInHdrErrors);
ip2dbg(("ip_input: drop pkt\n"));
freemsg(mp);
continue;
}
(void) adjmsg(mp, -len);
IP_STAT(ip_multimblk3);
}
}
/* Obtain the dst of the current packet */
dst = ipha->ipha_dst;
if (IP_LOOPBACK_ADDR(dst) ||
IP_LOOPBACK_ADDR(ipha->ipha_src)) {
BUMP_MIB(&ip_mib, ipInAddrErrors);
cmn_err(CE_CONT, "dst %X src %X\n",
dst, ipha->ipha_src);
freemsg(mp);
continue;
}
/*
* The event for packets being received from a 'physical'
* interface is placed after validation of the source and/or
* destination address as being local so that packets can be
* redirected to loopback addresses using ipnat.
*/
DTRACE_PROBE4(ip4__physical__in__start,
ill_t *, ill, ill_t *, NULL,
ipha_t *, ipha, mblk_t *, first_mp);
FW_HOOKS(ip4_physical_in_event, ipv4firewall_physical_in,
ill, NULL, ipha, first_mp, mp);
DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp);
if (first_mp == NULL) {
continue;
}
dst = ipha->ipha_dst;
/*
* Attach any necessary label information to
* this packet
*/
if (is_system_labeled() &&
!tsol_get_pkt_label(mp, IPV4_VERSION)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(mp);
continue;
}
/*
* Reuse the cached ire only if the ipha_dst of the previous
* packet is the same as the current packet AND it is not
* INADDR_ANY.
*/
if (!(dst == prev_dst && dst != INADDR_ANY) &&
(ire != NULL)) {
ire_refrele(ire);
ire = NULL;
}
opt_len = ipha->ipha_version_and_hdr_length -
IP_SIMPLE_HDR_VERSION;
/*
* Check to see if we can take the fastpath.
* That is possible if the following conditions are met
* o Tsol disabled
* o CGTP disabled
* o ipp_action_count is 0
* o Mobile IP not running
* o no options in the packet
* o not a RSVP packet
* o not a multicast packet
*/
if (!is_system_labeled() &&
!ip_cgtp_filter && ipp_action_count == 0 &&
ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 &&
opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP &&
!ll_multicast && !CLASSD(dst)) {
if (ire == NULL)
ire = ire_cache_lookup(dst, ALL_ZONES, NULL);
/* incoming packet is for forwarding */
if (ire == NULL || (ire->ire_type & IRE_CACHE)) {
ire = ip_fast_forward(ire, dst, ill, mp);
continue;
}
/* incoming packet is for local consumption */
if (ire->ire_type & IRE_LOCAL)
goto local;
}
/*
* Disable ire caching for anything more complex
* than the simple fast path case we checked for above.
*/
if (ire != NULL) {
ire_refrele(ire);
ire = NULL;
}
/* Full-blown slow path */
if (opt_len != 0) {
if (len != 0)
IP_STAT(ip_multimblk4);
else
IP_STAT(ip_ipoptions);
if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst))
continue;
}
/*
* Invoke the CGTP (multirouting) filtering module to process
* the incoming packet. Packets identified as duplicates
* must be discarded. Filtering is active only if the
* the ip_cgtp_filter ndd variable is non-zero.
*/
cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP;
if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) {
cgtp_flt_pkt =
ip_cgtp_filter_ops->cfo_filter(q, mp);
if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) {
freemsg(first_mp);
continue;
}
}
/*
* If rsvpd is running, let RSVP daemon handle its processing
* and forwarding of RSVP multicast/unicast packets.
* If rsvpd is not running but mrouted is running, RSVP
* multicast packets are forwarded as multicast traffic
* and RSVP unicast packets are forwarded by unicast router.
* If neither rsvpd nor mrouted is running, RSVP multicast
* packets are not forwarded, but the unicast packets are
* forwarded like unicast traffic.
*/
if (ipha->ipha_protocol == IPPROTO_RSVP &&
ipcl_proto_search(IPPROTO_RSVP) != NULL) {
/* RSVP packet and rsvpd running. Treat as ours */
ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst)));
/*
* This assumes that we deliver to all streams for
* multicast and broadcast packets.
* We have to force ll_multicast to 1 to handle the
* M_DATA messages passed in from ip_mroute_decap.
*/
dst = INADDR_BROADCAST;
ll_multicast = 1;
} else if (CLASSD(dst)) {
/* packet is multicast */
mp->b_next = NULL;
if (ip_rput_process_multicast(q, mp, ill, ipha,
&ll_multicast, &dst))
continue;
}
/*
* Check if the packet is coming from the Mobile IP
* forward tunnel interface
*/
if (ill->ill_srcif_refcnt > 0) {
ire = ire_srcif_table_lookup(dst, IRE_INTERFACE,
NULL, ill, MATCH_IRE_TYPE);
if (ire != NULL && ire->ire_nce->nce_res_mp == NULL &&
ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) {
/* We need to resolve the link layer info */
ire_refrele(ire);
ire = NULL;
(void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp,
ll_multicast, dst);
continue;
}
}
if (ire == NULL) {
ire = ire_cache_lookup(dst, ALL_ZONES,
MBLK_GETLABEL(mp));
}
/*
* If mipagent is running and reverse tunnel is created as per
* mobile node request, then any packet coming through the
* incoming interface from the mobile-node, should be reverse
* tunneled to it's home agent except those that are destined
* to foreign agent only.
* This needs source address based ire lookup. The routing
* entries for source address based lookup are only created by
* mipagent program only when a reverse tunnel is created.
* Reference : RFC2002, RFC2344
*/
if (ill->ill_mrtun_refcnt > 0) {
ipaddr_t srcaddr;
ire_t *tmp_ire;
tmp_ire = ire; /* Save, we might need it later */
if (ire == NULL || (ire->ire_type != IRE_LOCAL &&
ire->ire_type != IRE_BROADCAST)) {
srcaddr = ipha->ipha_src;
ire = ire_mrtun_lookup(srcaddr, ill);
if (ire != NULL) {
/*
* Should not be getting iphada packet
* here. we should only get those for
* IRE_LOCAL traffic, excluded above.
* Fail-safe (drop packet) in the event
* hardware is misbehaving.
*/
if (first_mp != mp) {
/* IPsec KSTATS: beancount me */
freemsg(first_mp);
} else {
/*
* This packet must be forwarded
* to Reverse Tunnel
*/
ip_mrtun_forward(ire, ill, mp);
}
ire_refrele(ire);
ire = NULL;
if (tmp_ire != NULL) {
ire_refrele(tmp_ire);
tmp_ire = NULL;
}
TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
"ip_input_end: q %p (%S)",
q, "uninit");
continue;
}
}
/*
* If this packet is from a non-mobilenode or a
* mobile-node which does not request reverse
* tunnel service
*/
ire = tmp_ire;
}
/*
* If we reach here that means the incoming packet satisfies
* one of the following conditions:
* - packet is from a mobile node which does not request
* reverse tunnel
* - packet is from a non-mobile node, which is the most
* common case
* - packet is from a reverse tunnel enabled mobile node
* and destined to foreign agent only
*/
if (ire == NULL) {
/*
* No IRE for this destination, so it can't be for us.
* Unless we are forwarding, drop the packet.
* We have to let source routed packets through
* since we don't yet know if they are 'ping -l'
* packets i.e. if they will go out over the
* same interface as they came in on.
*/
ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst);
if (ire == NULL)
continue;
}
/*
* Broadcast IRE may indicate either broadcast or
* multicast packet
*/
if (ire->ire_type == IRE_BROADCAST) {
/*
* Skip broadcast checks if packet is UDP multicast;
* we'd rather not enter ip_rput_process_broadcast()
* unless the packet is broadcast for real, since
* that routine is a no-op for multicast.
*/
if (ipha->ipha_protocol != IPPROTO_UDP ||
!CLASSD(ipha->ipha_dst)) {
ire = ip_rput_process_broadcast(&q, mp,
ire, ipha, ill, dst, cgtp_flt_pkt,
ll_multicast);
if (ire == NULL)
continue;
}
} else if (ire->ire_stq != NULL) {
/* fowarding? */
ip_rput_process_forward(q, mp, ire, ipha, ill,
ll_multicast);
/* ip_rput_process_forward consumed the packet */
continue;
}
local:
/* packet not for us */
if (ire->ire_rfq != q) {
if (ip_rput_notforus(&q, mp, ire, ill))
continue;
}
switch (ipha->ipha_protocol) {
case IPPROTO_TCP:
ASSERT(first_mp == mp);
if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire,
mp, 0, q, ip_ring)) != NULL) {
if (curr_sqp == NULL) {
curr_sqp = GET_SQUEUE(mp);
ASSERT(cnt == 0);
cnt++;
head = tail = mp;
} else if (curr_sqp == GET_SQUEUE(mp)) {
ASSERT(tail != NULL);
cnt++;
tail->b_next = mp;
tail = mp;
} else {
/*
* A different squeue. Send the
* chain for the previous squeue on
* its way. This shouldn't happen
* often unless interrupt binding
* changes.
*/
IP_STAT(ip_input_multi_squeue);
squeue_enter_chain(curr_sqp, head,
tail, cnt, SQTAG_IP_INPUT);
curr_sqp = GET_SQUEUE(mp);
head = mp;
tail = mp;
cnt = 1;
}
}
continue;
case IPPROTO_UDP:
ASSERT(first_mp == mp);
ip_udp_input(q, mp, ipha, ire, ill);
continue;
case IPPROTO_SCTP:
ASSERT(first_mp == mp);
ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0,
q, dst);
/* ire has been released by ip_sctp_input */
ire = NULL;
continue;
default:
ip_proto_input(q, first_mp, ipha, ire, ill);
continue;
}
}
if (ire != NULL)
ire_refrele(ire);
if (head != NULL)
squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT);
/*
* This code is there just to make netperf/ttcp look good.
*
* Its possible that after being in polling mode (and having cleared
* the backlog), squeues have turned the interrupt frequency higher
* to improve latency at the expense of more CPU utilization (less
* packets per interrupts or more number of interrupts). Workloads
* like ttcp/netperf do manage to tickle polling once in a while
* but for the remaining time, stay in higher interrupt mode since
* their packet arrival rate is pretty uniform and this shows up
* as higher CPU utilization. Since people care about CPU utilization
* while running netperf/ttcp, turn the interrupt frequency back to
* normal/default if polling has not been used in ip_poll_normal_ticks.
*/
if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) {
if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) {
ip_ring->rr_poll_state &= ~ILL_POLLING;
ip_ring->rr_blank(ip_ring->rr_handle,
ip_ring->rr_normal_blank_time,
ip_ring->rr_normal_pkt_cnt);
}
}
TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
"ip_input_end: q %p (%S)", q, "end");
#undef rptr
}
static void
ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
t_uscalar_t err)
{
if (dl_err == DL_SYSERR) {
(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
"%s: %s failed: DL_SYSERR (errno %u)\n",
ill->ill_name, dlpi_prim_str(prim), err);
return;
}
(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
"%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim),
dlpi_err_str(dl_err));
}
/*
* ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
* than DL_UNITDATA_IND messages. If we need to process this message
* exclusively, we call qwriter_ip, in which case we also need to call
* ill_refhold before that, since qwriter_ip does an ill_refrele.
*/
void
ip_rput_dlpi(queue_t *q, mblk_t *mp)
{
dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
ill_t *ill;
ip1dbg(("ip_rput_dlpi"));
ill = (ill_t *)q->q_ptr;
switch (dloa->dl_primitive) {
case DL_ERROR_ACK:
ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): "
"%s (0x%x), unix %u\n", ill->ill_name,
dlpi_prim_str(dlea->dl_error_primitive),
dlea->dl_error_primitive,
dlpi_err_str(dlea->dl_errno),
dlea->dl_errno,
dlea->dl_unix_errno));
switch (dlea->dl_error_primitive) {
case DL_UNBIND_REQ:
mutex_enter(&ill->ill_lock);
ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
cv_signal(&ill->ill_cv);
mutex_exit(&ill->ill_lock);
/* FALLTHRU */
case DL_NOTIFY_REQ:
case DL_ATTACH_REQ:
case DL_DETACH_REQ:
case DL_INFO_REQ:
case DL_BIND_REQ:
case DL_ENABMULTI_REQ:
case DL_PHYS_ADDR_REQ:
case DL_CAPABILITY_REQ:
case DL_CONTROL_REQ:
/*
* Refhold the ill to match qwriter_ip which does a
* refrele. Since this is on the ill stream we
* unconditionally bump up the refcount without
* checking for ILL_CAN_LOOKUP
*/
ill_refhold(ill);
(void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
CUR_OP, B_FALSE);
return;
case DL_DISABMULTI_REQ:
freemsg(mp); /* Don't want to pass this up */
return;
default:
break;
}
ip_dlpi_error(ill, dlea->dl_error_primitive,
dlea->dl_errno, dlea->dl_unix_errno);
freemsg(mp);
return;
case DL_INFO_ACK:
case DL_BIND_ACK:
case DL_PHYS_ADDR_ACK:
case DL_NOTIFY_ACK:
case DL_CAPABILITY_ACK:
case DL_CONTROL_ACK:
/*
* Refhold the ill to match qwriter_ip which does a refrele
* Since this is on the ill stream we unconditionally
* bump up the refcount without doing ILL_CAN_LOOKUP.
*/
ill_refhold(ill);
(void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
CUR_OP, B_FALSE);
return;
case DL_NOTIFY_IND:
ill_refhold(ill);
/*
* The DL_NOTIFY_IND is an asynchronous message that has no
* relation to the current ioctl in progress (if any). Hence we
* pass in NEW_OP in this case.
*/
(void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
NEW_OP, B_FALSE);
return;
case DL_OK_ACK:
ip1dbg(("ip_rput: DL_OK_ACK for %s\n",
dlpi_prim_str((int)dloa->dl_correct_primitive)));
switch (dloa->dl_correct_primitive) {
case DL_UNBIND_REQ:
mutex_enter(&ill->ill_lock);
ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
cv_signal(&ill->ill_cv);
mutex_exit(&ill->ill_lock);
/* FALLTHRU */
case DL_ATTACH_REQ:
case DL_DETACH_REQ:
/*
* Refhold the ill to match qwriter_ip which does a
* refrele. Since this is on the ill stream we
* unconditionally bump up the refcount
*/
ill_refhold(ill);
qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
CUR_OP, B_FALSE);
return;
case DL_ENABMULTI_REQ:
if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
ill->ill_dlpi_multicast_state = IDS_OK;
break;
}
break;
default:
break;
}
freemsg(mp);
}
/*
* Handling of DLPI messages that require exclusive access to the ipsq.
*
* Need to do ill_pending_mp_release on ioctl completion, which could
* happen here. (along with mi_copy_done)
*/
/* ARGSUSED */
static void
ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
{
dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
int err = 0;
ill_t *ill;
ipif_t *ipif = NULL;
mblk_t *mp1 = NULL;
conn_t *connp = NULL;
t_uscalar_t physaddr_req;
mblk_t *mp_hw;
union DL_primitives *dlp;
boolean_t success;
boolean_t ioctl_aborted = B_FALSE;
boolean_t log = B_TRUE;
hook_nic_event_t *info;
ip1dbg(("ip_rput_dlpi_writer .."));
ill = (ill_t *)q->q_ptr;
ASSERT(ipsq == ill->ill_phyint->phyint_ipsq);
ASSERT(IAM_WRITER_ILL(ill));
/*
* ipsq_pending_mp and ipsq_pending_ipif track each other. i.e.
* both are null or non-null. However we can assert that only
* after grabbing the ipsq_lock. So we don't make any assertion
* here and in other places in the code.
*/
ipif = ipsq->ipsq_pending_ipif;
/*
* The current ioctl could have been aborted by the user and a new
* ioctl to bring up another ill could have started. We could still
* get a response from the driver later.
*/
if (ipif != NULL && ipif->ipif_ill != ill)
ioctl_aborted = B_TRUE;
switch (dloa->dl_primitive) {
case DL_ERROR_ACK:
switch (dlea->dl_error_primitive) {
case DL_UNBIND_REQ:
case DL_ATTACH_REQ:
case DL_DETACH_REQ:
case DL_INFO_REQ:
ill_dlpi_done(ill, dlea->dl_error_primitive);
break;
case DL_NOTIFY_REQ:
ill_dlpi_done(ill, DL_NOTIFY_REQ);
log = B_FALSE;
break;
case DL_PHYS_ADDR_REQ:
/*
* For IPv6 only, there are two additional
* phys_addr_req's sent to the driver to get the
* IPv6 token and lla. This allows IP to acquire
* the hardware address format for a given interface
* without having built in knowledge of the hardware
* address. ill_phys_addr_pend keeps track of the last
* DL_PAR sent so we know which response we are
* dealing with. ill_dlpi_done will update
* ill_phys_addr_pend when it sends the next req.
* We don't complete the IOCTL until all three DL_PARs
* have been attempted, so set *_len to 0 and break.
*/
physaddr_req = ill->ill_phys_addr_pend;
ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
if (physaddr_req == DL_IPV6_TOKEN) {
ill->ill_token_length = 0;
log = B_FALSE;
break;
} else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) {
ill->ill_nd_lla_len = 0;
log = B_FALSE;
break;
}
/*
* Something went wrong with the DL_PHYS_ADDR_REQ.
* We presumably have an IOCTL hanging out waiting
* for completion. Find it and complete the IOCTL
* with the error noted.
* However, ill_dl_phys was called on an ill queue
* (from SIOCSLIFNAME), thus conn_pending_ill is not
* set. But the ioctl is known to be pending on ill_wq.
*/
if (!ill->ill_ifname_pending)
break;
ill->ill_ifname_pending = 0;
if (!ioctl_aborted)
mp1 = ipsq_pending_mp_get(ipsq, &connp);
if (mp1 != NULL) {
/*
* This operation (SIOCSLIFNAME) must have
* happened on the ill. Assert there is no conn
*/
ASSERT(connp == NULL);
q = ill->ill_wq;
}
break;
case DL_BIND_REQ:
ill_dlpi_done(ill, DL_BIND_REQ);
if (ill->ill_ifname_pending)
break;
/*
* Something went wrong with the bind. We presumably
* have an IOCTL hanging out waiting for completion.
* Find it, take down the interface that was coming
* up, and complete the IOCTL with the error noted.
*/
if (!ioctl_aborted)
mp1 = ipsq_pending_mp_get(ipsq, &connp);
if (mp1 != NULL) {
/*
* This operation (SIOCSLIFFLAGS) must have
* happened from a conn.
*/
ASSERT(connp != NULL);
q = CONNP_TO_WQ(connp);
if (ill->ill_move_in_progress) {
ILL_CLEAR_MOVE(ill);
}
(void) ipif_down(ipif, NULL, NULL);
/* error is set below the switch */
}
break;
case DL_ENABMULTI_REQ:
ip1dbg(("DL_ERROR_ACK to enabmulti\n"));
if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
ill->ill_dlpi_multicast_state = IDS_FAILED;
if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
ipif_t *ipif;
log = B_FALSE;
printf("ip: joining multicasts failed (%d)"
" on %s - will use link layer "
"broadcasts for multicast\n",
dlea->dl_errno, ill->ill_name);
/*
* Set up the multicast mapping alone.
* writer, so ok to access ill->ill_ipif
* without any lock.
*/
ipif = ill->ill_ipif;
mutex_enter(&ill->ill_phyint->phyint_lock);
ill->ill_phyint->phyint_flags |=
PHYI_MULTI_BCAST;
mutex_exit(&ill->ill_phyint->phyint_lock);
if (!ill->ill_isv6) {
(void) ipif_arp_setup_multicast(ipif,
NULL);
} else {
(void) ipif_ndp_setup_multicast(ipif,
NULL);
}
}
freemsg(mp); /* Don't want to pass this up */
return;
case DL_CAPABILITY_REQ:
case DL_CONTROL_REQ:
ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
"DL_CAPABILITY/CONTROL REQ\n"));
ill_dlpi_done(ill, dlea->dl_error_primitive);
ill->ill_dlpi_capab_state = IDS_FAILED;
freemsg(mp);
return;
}
/*
* Note the error for IOCTL completion (mp1 is set when
* ready to complete ioctl). If ill_ifname_pending_err is
* set, an error occured during plumbing (ill_ifname_pending),
* so we want to report that error.
*
* NOTE: there are two addtional DL_PHYS_ADDR_REQ's
* (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
* expected to get errack'd if the driver doesn't support
* these flags (e.g. ethernet). log will be set to B_FALSE
* if these error conditions are encountered.
*/
if (mp1 != NULL) {
if (ill->ill_ifname_pending_err != 0) {
err = ill->ill_ifname_pending_err;
ill->ill_ifname_pending_err = 0;
} else {
err = dlea->dl_unix_errno ?
dlea->dl_unix_errno : ENXIO;
}
/*
* If we're plumbing an interface and an error hasn't already
* been saved, set ill_ifname_pending_err to the error passed
* up. Ignore the error if log is B_FALSE (see comment above).
*/
} else if (log && ill->ill_ifname_pending &&
ill->ill_ifname_pending_err == 0) {
ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
dlea->dl_unix_errno : ENXIO;
}
if (log)
ip_dlpi_error(ill, dlea->dl_error_primitive,
dlea->dl_errno, dlea->dl_unix_errno);
break;
case DL_CAPABILITY_ACK: {
boolean_t reneg_flag = B_FALSE;
/* Call a routine to handle this one. */
ill_dlpi_done(ill, DL_CAPABILITY_REQ);
/*
* Check if the ACK is due to renegotiation case since we
* will need to send a new CAPABILITY_REQ later.
*/
if (ill->ill_dlpi_capab_state == IDS_RENEG) {
/* This is the ack for a renogiation case */
reneg_flag = B_TRUE;
ill->ill_dlpi_capab_state = IDS_UNKNOWN;
}
ill_capability_ack(ill, mp);
if (reneg_flag)
ill_capability_probe(ill);
break;
}
case DL_CONTROL_ACK:
/* We treat all of these as "fire and forget" */
ill_dlpi_done(ill, DL_CONTROL_REQ);
break;
case DL_INFO_ACK:
/* Call a routine to handle this one. */
ill_dlpi_done(ill, DL_INFO_REQ);
ip_ll_subnet_defaults(ill, mp);
ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
return;
case DL_BIND_ACK:
/*
* We should have an IOCTL waiting on this unless
* sent by ill_dl_phys, in which case just return
*/
ill_dlpi_done(ill, DL_BIND_REQ);
if (ill->ill_ifname_pending)
break;
if (!ioctl_aborted)
mp1 = ipsq_pending_mp_get(ipsq, &connp);
if (mp1 == NULL)
break;
ASSERT(connp != NULL);
q = CONNP_TO_WQ(connp);
/*
* We are exclusive. So nothing can change even after
* we get the pending mp. If need be we can put it back
* and restart, as in calling ipif_arp_up() below.
*/
ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
mutex_enter(&ill->ill_lock);
ill->ill_dl_up = 1;
if ((info = ill->ill_nic_event_info) != NULL) {
ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d "
"attached for %s\n", info->hne_event,
ill->ill_name));
if (info->hne_data != NULL)
kmem_free(info->hne_data, info->hne_datalen);
kmem_free(info, sizeof (hook_nic_event_t));
}
info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
if (info != NULL) {
info->hne_nic = ill->ill_phyint->phyint_ifindex;
info->hne_lif = 0;
info->hne_event = NE_UP;
info->hne_data = NULL;
info->hne_datalen = 0;
info->hne_family = ill->ill_isv6 ? ipv6 : ipv4;
} else
ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic "
"event information for %s (ENOMEM)\n",
ill->ill_name));
ill->ill_nic_event_info = info;
mutex_exit(&ill->ill_lock);
/*
* Now bring up the resolver; when that is complete, we'll
* create IREs. Note that we intentionally mirror what
* ipif_up() would have done, because we got here by way of
* ill_dl_up(), which stopped ipif_up()'s processing.
*/
if (ill->ill_isv6) {
/*
* v6 interfaces.
* Unlike ARP which has to do another bind
* and attach, once we get here we are
* done with NDP. Except in the case of
* ILLF_XRESOLV, in which case we send an
* AR_INTERFACE_UP to the external resolver.
* If all goes well, the ioctl will complete
* in ip_rput(). If there's an error, we
* complete it here.
*/
err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr,
B_FALSE);
if (err == 0) {
if (ill->ill_flags & ILLF_XRESOLV) {
mutex_enter(&connp->conn_lock);
mutex_enter(&ill->ill_lock);
success = ipsq_pending_mp_add(
connp, ipif, q, mp1, 0);
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
if (success) {
err = ipif_resolver_up(ipif,
Res_act_initial);
if (err == EINPROGRESS) {
freemsg(mp);
return;
}
ASSERT(err != 0);
mp1 = ipsq_pending_mp_get(ipsq,
&connp);
ASSERT(mp1 != NULL);
} else {
/* conn has started closing */
err = EINTR;
}
} else { /* Non XRESOLV interface */
(void) ipif_resolver_up(ipif,
Res_act_initial);
err = ipif_up_done_v6(ipif);
}
}
} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
/*
* ARP and other v4 external resolvers.
* Leave the pending mblk intact so that
* the ioctl completes in ip_rput().
*/
mutex_enter(&connp->conn_lock);
mutex_enter(&ill->ill_lock);
success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
if (success) {
err = ipif_resolver_up(ipif, Res_act_initial);
if (err == EINPROGRESS) {
freemsg(mp);
return;
}
ASSERT(err != 0);
mp1 = ipsq_pending_mp_get(ipsq, &connp);
} else {
/* The conn has started closing */
err = EINTR;
}
} else {
/*
* This one is complete. Reply to pending ioctl.
*/
(void) ipif_resolver_up(ipif, Res_act_initial);
err = ipif_up_done(ipif);
}
if ((err == 0) && (ill->ill_up_ipifs)) {
err = ill_up_ipifs(ill, q, mp1);
if (err == EINPROGRESS) {
freemsg(mp);
return;
}
}
if (ill->ill_up_ipifs) {
ill_group_cleanup(ill);
}
break;
case DL_NOTIFY_IND: {
dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
ire_t *ire;
boolean_t need_ire_walk_v4 = B_FALSE;
boolean_t need_ire_walk_v6 = B_FALSE;
/*
* Change the address everywhere we need to.
* What we're getting here is a link-level addr or phys addr.
* The new addr is at notify + notify->dl_addr_offset
* The address length is notify->dl_addr_length;
*/
switch (notify->dl_notification) {
case DL_NOTE_PHYS_ADDR:
mp_hw = copyb(mp);
if (mp_hw == NULL) {
err = ENOMEM;
break;
}
dlp = (union DL_primitives *)mp_hw->b_rptr;
/*
* We currently don't support changing
* the token via DL_NOTIFY_IND.
* When we do support it, we have to consider
* what the implications are with respect to
* the token and the link local address.
*/
mutex_enter(&ill->ill_lock);
if (dlp->notify_ind.dl_data ==
DL_IPV6_LINK_LAYER_ADDR) {
if (ill->ill_nd_lla_mp != NULL)
freemsg(ill->ill_nd_lla_mp);
ill->ill_nd_lla_mp = mp_hw;
ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr +
dlp->notify_ind.dl_addr_offset;
ill->ill_nd_lla_len =
dlp->notify_ind.dl_addr_length -
ABS(ill->ill_sap_length);
mutex_exit(&ill->ill_lock);
break;
} else if (dlp->notify_ind.dl_data ==
DL_CURR_PHYS_ADDR) {
if (ill->ill_phys_addr_mp != NULL)
freemsg(ill->ill_phys_addr_mp);
ill->ill_phys_addr_mp = mp_hw;
ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr +
dlp->notify_ind.dl_addr_offset;
ill->ill_phys_addr_length =
dlp->notify_ind.dl_addr_length -
ABS(ill->ill_sap_length);
if (ill->ill_isv6 &&
!(ill->ill_flags & ILLF_XRESOLV)) {
if (ill->ill_nd_lla_mp != NULL)
freemsg(ill->ill_nd_lla_mp);
ill->ill_nd_lla_mp = copyb(mp_hw);
ill->ill_nd_lla = (uchar_t *)
ill->ill_nd_lla_mp->b_rptr +
dlp->notify_ind.dl_addr_offset;
ill->ill_nd_lla_len =
ill->ill_phys_addr_length;
}
}
mutex_exit(&ill->ill_lock);
/*
* Send out gratuitous arp request for our new
* hardware address.
*/
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
if (!(ipif->ipif_flags & IPIF_UP))
continue;
if (ill->ill_isv6) {
ipif_ndp_down(ipif);
/*
* Set B_TRUE to enable
* ipif_ndp_up() to send out
* unsolicited advertisements.
*/
err = ipif_ndp_up(ipif,
&ipif->ipif_v6lcl_addr,
B_TRUE);
if (err) {
ip1dbg((
"ip_rput_dlpi_writer: "
"Failed to update ndp "
"err %d\n", err));
}
} else {
/*
* IPv4 ARP case
*
* Set Res_act_move, as we only want
* ipif_resolver_up to send an
* AR_ENTRY_ADD request up to
* ARP.
*/
err = ipif_resolver_up(ipif,
Res_act_move);
if (err) {
ip1dbg((
"ip_rput_dlpi_writer: "
"Failed to update arp "
"err %d\n", err));
}
}
}
/*
* Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH
* case so that all old fastpath information can be
* purged from IRE caches.
*/
/* FALLTHRU */
case DL_NOTE_FASTPATH_FLUSH:
/*
* Any fastpath probe sent henceforth will get the
* new fp mp. So we first delete any ires that are
* waiting for the fastpath. Then walk all ires and
* delete the ire or delete the fp mp. In the case of
* IRE_MIPRTUN and IRE_BROADCAST it is difficult to
* recreate the ire's without going through a complex
* ipif up/down dance. So we don't delete the ire
* itself, but just the nce_fp_mp for these 2 ire's
* In the case of the other ire's we delete the ire's
* themselves. Access to nce_fp_mp is completely
* protected by ire_lock for IRE_MIPRTUN and
* IRE_BROADCAST. Deleting the ire is preferable in the
* other cases for performance.
*/
if (ill->ill_isv6) {
nce_fastpath_list_dispatch(ill, NULL, NULL);
ndp_walk(ill, (pfi_t)ndp_fastpath_flush,
NULL);
} else {
ire_fastpath_list_dispatch(ill, NULL, NULL);
ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE,
IRE_CACHE | IRE_BROADCAST,
ire_fastpath_flush, NULL, ill);
mutex_enter(&ire_mrtun_lock);
if (ire_mrtun_count != 0) {
mutex_exit(&ire_mrtun_lock);
ire_walk_ill_mrtun(MATCH_IRE_WQ,
IRE_MIPRTUN, ire_fastpath_flush,
NULL, ill);
} else {
mutex_exit(&ire_mrtun_lock);
}
}
break;
case DL_NOTE_SDU_SIZE:
/*
* Change the MTU size of the interface, of all
* attached ipif's, and of all relevant ire's. The
* new value's a uint32_t at notify->dl_data.
* Mtu change Vs. new ire creation - protocol below.
*
* a Mark the ipif as IPIF_CHANGING.
* b Set the new mtu in the ipif.
* c Change the ire_max_frag on all affected ires
* d Unmark the IPIF_CHANGING
*
* To see how the protocol works, assume an interface
* route is also being added simultaneously by
* ip_rt_add and let 'ipif' be the ipif referenced by
* the ire. If the ire is created before step a,
* it will be cleaned up by step c. If the ire is
* created after step d, it will see the new value of
* ipif_mtu. Any attempt to create the ire between
* steps a to d will fail because of the IPIF_CHANGING
* flag. Note that ire_create() is passed a pointer to
* the ipif_mtu, and not the value. During ire_add
* under the bucket lock, the ire_max_frag of the
* new ire being created is set from the ipif/ire from
* which it is being derived.
*/
mutex_enter(&ill->ill_lock);
ill->ill_max_frag = (uint_t)notify->dl_data;
/*
* If an SIOCSLIFLNKINFO has changed the ill_max_mtu
* leave it alone
*/
if (ill->ill_mtu_userspecified) {
mutex_exit(&ill->ill_lock);
break;
}
ill->ill_max_mtu = ill->ill_max_frag;
if (ill->ill_isv6) {
if (ill->ill_max_mtu < IPV6_MIN_MTU)
ill->ill_max_mtu = IPV6_MIN_MTU;
} else {
if (ill->ill_max_mtu < IP_MIN_MTU)
ill->ill_max_mtu = IP_MIN_MTU;
}
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
/*
* Don't override the mtu if the user
* has explicitly set it.
*/
if (ipif->ipif_flags & IPIF_FIXEDMTU)
continue;
ipif->ipif_mtu = (uint_t)notify->dl_data;
if (ipif->ipif_isv6)
ire = ipif_to_ire_v6(ipif);
else
ire = ipif_to_ire(ipif);
if (ire != NULL) {
ire->ire_max_frag = ipif->ipif_mtu;
ire_refrele(ire);
}
if (ipif->ipif_flags & IPIF_UP) {
if (ill->ill_isv6)
need_ire_walk_v6 = B_TRUE;
else
need_ire_walk_v4 = B_TRUE;
}
}
mutex_exit(&ill->ill_lock);
if (need_ire_walk_v4)
ire_walk_v4(ill_mtu_change, (char *)ill,
ALL_ZONES);
if (need_ire_walk_v6)
ire_walk_v6(ill_mtu_change, (char *)ill,
ALL_ZONES);
break;
case DL_NOTE_LINK_UP:
case DL_NOTE_LINK_DOWN: {
/*
* We are writer. ill / phyint / ipsq assocs stable.
* The RUNNING flag reflects the state of the link.
*/
phyint_t *phyint = ill->ill_phyint;
uint64_t new_phyint_flags;
boolean_t changed = B_FALSE;
boolean_t went_up;
went_up = notify->dl_notification == DL_NOTE_LINK_UP;
mutex_enter(&phyint->phyint_lock);
new_phyint_flags = went_up ?
phyint->phyint_flags | PHYI_RUNNING :
phyint->phyint_flags & ~PHYI_RUNNING;
if (new_phyint_flags != phyint->phyint_flags) {
phyint->phyint_flags = new_phyint_flags;
changed = B_TRUE;
}
mutex_exit(&phyint->phyint_lock);
/*
* ill_restart_dad handles the DAD restart and routing
* socket notification logic.
*/
if (changed) {
ill_restart_dad(phyint->phyint_illv4, went_up);
ill_restart_dad(phyint->phyint_illv6, went_up);
}
break;
}
case DL_NOTE_PROMISC_ON_PHYS:
IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: "
"got a DL_NOTE_PROMISC_ON_PHYS\n"));
mutex_enter(&ill->ill_lock);
ill->ill_promisc_on_phys = B_TRUE;
mutex_exit(&ill->ill_lock);
break;
case DL_NOTE_PROMISC_OFF_PHYS:
IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: "
"got a DL_NOTE_PROMISC_OFF_PHYS\n"));
mutex_enter(&ill->ill_lock);
ill->ill_promisc_on_phys = B_FALSE;
mutex_exit(&ill->ill_lock);
break;
case DL_NOTE_CAPAB_RENEG:
/*
* Something changed on the driver side.
* It wants us to renegotiate the capabilities
* on this ill. The most likely cause is the
* aggregation interface under us where a
* port got added or went away.
*
* We reset the capabilities and set the
* state to IDS_RENG so that when the ack
* comes back, we can start the
* renegotiation process.
*/
ill_capability_reset(ill);
ill->ill_dlpi_capab_state = IDS_RENEG;
break;
default:
ip0dbg(("ip_rput_dlpi_writer: unknown notification "
"type 0x%x for DL_NOTIFY_IND\n",
notify->dl_notification));
break;
}
/*
* As this is an asynchronous operation, we
* should not call ill_dlpi_done
*/
break;
}
case DL_NOTIFY_ACK: {
dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
if (noteack->dl_notifications & DL_NOTE_LINK_UP)
ill->ill_note_link = 1;
ill_dlpi_done(ill, DL_NOTIFY_REQ);
break;
}
case DL_PHYS_ADDR_ACK: {
/*
* We should have an IOCTL waiting on this when request
* sent by ill_dl_phys.
* However, ill_dl_phys was called on an ill queue (from
* SIOCSLIFNAME), thus conn_pending_ill is not set. But the
* ioctl is known to be pending on ill_wq.
* There are two additional phys_addr_req's sent to the
* driver to get the token and lla. ill_phys_addr_pend
* keeps track of the last one sent so we know which
* response we are dealing with. ill_dlpi_done will
* update ill_phys_addr_pend when it sends the next req.
* We don't complete the IOCTL until all three DL_PARs
* have been attempted.
*
* We don't need any lock to update ill_nd_lla* fields,
* since the ill is not yet up, We grab the lock just
* for uniformity with other code that accesses ill_nd_lla.
*/
physaddr_req = ill->ill_phys_addr_pend;
ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
if (physaddr_req == DL_IPV6_TOKEN ||
physaddr_req == DL_IPV6_LINK_LAYER_ADDR) {
if (physaddr_req == DL_IPV6_TOKEN) {
/*
* bcopy to low-order bits of ill_token
*
* XXX Temporary hack - currently,
* all known tokens are 64 bits,
* so I'll cheat for the moment.
*/
dlp = (union DL_primitives *)mp->b_rptr;
mutex_enter(&ill->ill_lock);
bcopy((uchar_t *)(mp->b_rptr +
dlp->physaddr_ack.dl_addr_offset),
(void *)&ill->ill_token.s6_addr32[2],
dlp->physaddr_ack.dl_addr_length);
ill->ill_token_length =
dlp->physaddr_ack.dl_addr_length;
mutex_exit(&ill->ill_lock);
} else {
ASSERT(ill->ill_nd_lla_mp == NULL);
mp_hw = copyb(mp);
if (mp_hw == NULL) {
err = ENOMEM;
break;
}
dlp = (union DL_primitives *)mp_hw->b_rptr;
mutex_enter(&ill->ill_lock);
ill->ill_nd_lla_mp = mp_hw;
ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr +
dlp->physaddr_ack.dl_addr_offset;
ill->ill_nd_lla_len =
dlp->physaddr_ack.dl_addr_length;
mutex_exit(&ill->ill_lock);
}
break;
}
ASSERT(physaddr_req == DL_CURR_PHYS_ADDR);
ASSERT(ill->ill_phys_addr_mp == NULL);
if (!ill->ill_ifname_pending)
break;
ill->ill_ifname_pending = 0;
if (!ioctl_aborted)
mp1 = ipsq_pending_mp_get(ipsq, &connp);
if (mp1 != NULL) {
ASSERT(connp == NULL);
q = ill->ill_wq;
}
/*
* If any error acks received during the plumbing sequence,
* ill_ifname_pending_err will be set. Break out and send up
* the error to the pending ioctl.
*/
if (ill->ill_ifname_pending_err != 0) {
err = ill->ill_ifname_pending_err;
ill->ill_ifname_pending_err = 0;
break;
}
/*
* Get the interface token. If the zeroth interface
* address is zero then set the address to the link local
* address
*/
mp_hw = copyb(mp);
if (mp_hw == NULL) {
err = ENOMEM;
break;
}
dlp = (union DL_primitives *)mp_hw->b_rptr;
ill->ill_phys_addr_mp = mp_hw;
ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr +
dlp->physaddr_ack.dl_addr_offset;
if (dlp->physaddr_ack.dl_addr_length == 0 ||
ill->ill_phys_addr_length == 0 ||
ill->ill_phys_addr_length == IP_ADDR_LEN) {
/*
* Compatibility: atun driver returns a length of 0.
* ipdptp has an ill_phys_addr_length of zero(from
* DL_BIND_ACK) but a non-zero length here.
* ipd has an ill_phys_addr_length of 4(from
* DL_BIND_ACK) but a non-zero length here.
*/
ill->ill_phys_addr = NULL;
} else if (dlp->physaddr_ack.dl_addr_length !=
ill->ill_phys_addr_length) {
ip0dbg(("DL_PHYS_ADDR_ACK: "
"Address length mismatch %d %d\n",
dlp->physaddr_ack.dl_addr_length,
ill->ill_phys_addr_length));
err = EINVAL;
break;
}
mutex_enter(&ill->ill_lock);
if (ill->ill_nd_lla_mp == NULL) {
ill->ill_nd_lla_mp = copyb(mp_hw);
if (ill->ill_nd_lla_mp == NULL) {
err = ENOMEM;
mutex_exit(&ill->ill_lock);
break;
}
ill->ill_nd_lla =
(uchar_t *)ill->ill_nd_lla_mp->b_rptr +
dlp->physaddr_ack.dl_addr_offset;
ill->ill_nd_lla_len = ill->ill_phys_addr_length;
}
mutex_exit(&ill->ill_lock);
if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
(void) ill_setdefaulttoken(ill);
/*
* If the ill zero interface has a zero address assign
* it the proper link local address.
*/
ASSERT(ill->ill_ipif->ipif_id == 0);
if (ipif != NULL &&
IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
(void) ipif_setlinklocal(ipif);
break;
}
case DL_OK_ACK:
ip2dbg(("DL_OK_ACK %s (0x%x)\n",
dlpi_prim_str((int)dloa->dl_correct_primitive),
dloa->dl_correct_primitive));
switch (dloa->dl_correct_primitive) {
case DL_UNBIND_REQ:
case DL_ATTACH_REQ:
case DL_DETACH_REQ:
ill_dlpi_done(ill, dloa->dl_correct_primitive);
break;
}
break;
default:
break;
}
freemsg(mp);
if (mp1) {
struct iocblk *iocp;
int mode;
/*
* Complete the waiting IOCTL. For SIOCLIFADDIF or
* SIOCSLIFNAME do a copyout.
*/
iocp = (struct iocblk *)mp1->b_rptr;
if (iocp->ioc_cmd == SIOCLIFADDIF ||
iocp->ioc_cmd == SIOCSLIFNAME)
mode = COPYOUT;
else
mode = NO_COPYOUT;
/*
* The ioctl must complete now without EINPROGRESS
* since ipsq_pending_mp_get has removed the ioctl mblk
* from ipsq_pending_mp. Otherwise the ioctl will be
* stuck for ever in the ipsq.
*/
ASSERT(err != EINPROGRESS);
ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq);
}
}
/*
* ip_rput_other is called by ip_rput to handle messages modifying the global
* state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared)
*/
/* ARGSUSED */
void
ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
{
ill_t *ill;
struct iocblk *iocp;
mblk_t *mp1;
conn_t *connp = NULL;
ip1dbg(("ip_rput_other "));
ill = (ill_t *)q->q_ptr;
/*
* This routine is not a writer in the case of SIOCGTUNPARAM
* in which case ipsq is NULL.
*/
if (ipsq != NULL) {
ASSERT(IAM_WRITER_IPSQ(ipsq));
ASSERT(ipsq == ill->ill_phyint->phyint_ipsq);
}
switch (mp->b_datap->db_type) {
case M_ERROR:
case M_HANGUP:
/*
* The device has a problem. We force the ILL down. It can
* be brought up again manually using SIOCSIFFLAGS (via
* ifconfig or equivalent).
*/
ASSERT(ipsq != NULL);
if (mp->b_rptr < mp->b_wptr)
ill->ill_error = (int)(*mp->b_rptr & 0xFF);
if (ill->ill_error == 0)
ill->ill_error = ENXIO;
if (!ill_down_start(q, mp))
return;
ipif_all_down_tail(ipsq, q, mp, NULL);
break;
case M_IOCACK:
iocp = (struct iocblk *)mp->b_rptr;
ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO);
switch (iocp->ioc_cmd) {
case SIOCSTUNPARAM:
case OSIOCSTUNPARAM:
ASSERT(ipsq != NULL);
/*
* Finish socket ioctl passed through to tun.
* We should have an IOCTL waiting on this.
*/
mp1 = ipsq_pending_mp_get(ipsq, &connp);
if (ill->ill_isv6) {
struct iftun_req *ta;
/*
* if a source or destination is
* being set, try and set the link
* local address for the tunnel
*/
ta = (struct iftun_req *)mp->b_cont->
b_cont->b_rptr;
if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) {
ipif_set_tun_llink(ill, ta);
}
}
if (mp1 != NULL) {
/*
* Now copy back the b_next/b_prev used by
* mi code for the mi_copy* functions.
* See ip_sioctl_tunparam() for the reason.
* Also protect against missing b_cont.
*/
if (mp->b_cont != NULL) {
mp->b_cont->b_next =
mp1->b_cont->b_next;
mp->b_cont->b_prev =
mp1->b_cont->b_prev;
}
inet_freemsg(mp1);
ASSERT(ipsq->ipsq_current_ipif != NULL);
ASSERT(connp != NULL);
ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
iocp->ioc_error, NO_COPYOUT,
ipsq->ipsq_current_ipif, ipsq);
} else {
ASSERT(connp == NULL);
putnext(q, mp);
}
break;
case SIOCGTUNPARAM:
case OSIOCGTUNPARAM:
/*
* This is really M_IOCDATA from the tunnel driver.
* convert back and complete the ioctl.
* We should have an IOCTL waiting on this.
*/
mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id);
if (mp1) {
/*
* Now copy back the b_next/b_prev used by
* mi code for the mi_copy* functions.
* See ip_sioctl_tunparam() for the reason.
* Also protect against missing b_cont.
*/
if (mp->b_cont != NULL) {
mp->b_cont->b_next =
mp1->b_cont->b_next;
mp->b_cont->b_prev =
mp1->b_cont->b_prev;
}
inet_freemsg(mp1);
if (iocp->ioc_error == 0)
mp->b_datap->db_type = M_IOCDATA;
ASSERT(connp != NULL);
ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
iocp->ioc_error, COPYOUT, NULL, NULL);
} else {
ASSERT(connp == NULL);
putnext(q, mp);
}
break;
default:
break;
}
break;
case M_IOCNAK:
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
int mode;
ipif_t *ipif;
case DL_IOC_HDR_INFO:
/*
* If this was the first attempt turn of the
* fastpath probing.
*/
mutex_enter(&ill->ill_lock);
if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
ill->ill_dlpi_fastpath_state = IDS_FAILED;
mutex_exit(&ill->ill_lock);
ill_fastpath_nack(ill);
ip1dbg(("ip_rput: DLPI fastpath off on "
"interface %s\n",
ill->ill_name));
} else {
mutex_exit(&ill->ill_lock);
}
freemsg(mp);
break;
case SIOCSTUNPARAM:
case OSIOCSTUNPARAM:
ASSERT(ipsq != NULL);
/*
* Finish socket ioctl passed through to tun
* We should have an IOCTL waiting on this.
*/
/* FALLTHRU */
case SIOCGTUNPARAM:
case OSIOCGTUNPARAM:
/*
* This is really M_IOCDATA from the tunnel driver.
* convert back and complete the ioctl.
* We should have an IOCTL waiting on this.
*/
if (iocp->ioc_cmd == SIOCGTUNPARAM ||
iocp->ioc_cmd == OSIOCGTUNPARAM) {
mp1 = ill_pending_mp_get(ill, &connp,
iocp->ioc_id);
mode = COPYOUT;
ipsq = NULL;
ipif = NULL;
} else {
mp1 = ipsq_pending_mp_get(ipsq, &connp);
mode = NO_COPYOUT;
ASSERT(ipsq->ipsq_current_ipif != NULL);
ipif = ipsq->ipsq_current_ipif;
}
if (mp1 != NULL) {
/*
* Now copy back the b_next/b_prev used by
* mi code for the mi_copy* functions.
* See ip_sioctl_tunparam() for the reason.
* Also protect against missing b_cont.
*/
if (mp->b_cont != NULL) {
mp->b_cont->b_next =
mp1->b_cont->b_next;
mp->b_cont->b_prev =
mp1->b_cont->b_prev;
}
inet_freemsg(mp1);
if (iocp->ioc_error == 0)
iocp->ioc_error = EINVAL;
ASSERT(connp != NULL);
ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
iocp->ioc_error, mode, ipif, ipsq);
} else {
ASSERT(connp == NULL);
putnext(q, mp);
}
break;
default:
break;
}
default:
break;
}
}
/*
* NOTE : This function does not ire_refrele the ire argument passed in.
*
* IPQoS notes
* IP policy is invoked twice for a forwarded packet, once on the read side
* and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are
* enabled. An additional parameter, in_ill, has been added for this purpose.
* Note that in_ill could be NULL when called from ip_rput_forward_multicast
* because ip_mroute drops this information.
*
*/
void
ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill)
{
uint32_t pkt_len;
queue_t *q;
uint32_t sum;
#define rptr ((uchar_t *)ipha)
uint32_t max_frag;
uint32_t ill_index;
ill_t *out_ill;
/* Get the ill_index of the incoming ILL */
ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0;
/* Initiate Read side IPPF processing */
if (IPP_ENABLED(IPP_FWD_IN)) {
ip_process(IPP_FWD_IN, &mp, ill_index);
if (mp == NULL) {
ip2dbg(("ip_rput_forward: pkt dropped/deferred "\
"during IPPF processing\n"));
return;
}
}
pkt_len = ntohs(ipha->ipha_length);
/* Adjust the checksum to reflect the ttl decrement. */
sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
if (ipha->ipha_ttl-- <= 1) {
if (ip_csum_hdr(ipha)) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
goto drop_pkt;
}
/*
* Note: ire_stq this will be NULL for multicast
* datagrams using the long path through arp (the IRE
* is not an IRE_CACHE). This should not cause
* problems since we don't generate ICMP errors for
* multicast packets.
*/
q = ire->ire_stq;
if (q != NULL) {
/* Sent by forwarding path, and router is global zone */
icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED,
GLOBAL_ZONEID);
} else
freemsg(mp);
return;
}
/*
* Don't forward if the interface is down
*/
if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) {
BUMP_MIB(&ip_mib, ipInDiscards);
ip2dbg(("ip_rput_forward:interface is down\n"));
goto drop_pkt;
}
/* Get the ill_index of the outgoing ILL */
ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex;
out_ill = ire->ire_ipif->ipif_ill;
DTRACE_PROBE4(ip4__forwarding__start,
ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding,
in_ill, out_ill, ipha, mp, mp);
DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);
if (mp == NULL)
return;
pkt_len = ntohs(ipha->ipha_length);
if (is_system_labeled()) {
mblk_t *mp1;
if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) {
BUMP_MIB(&ip_mib, ipForwProhibits);
goto drop_pkt;
}
/* Size may have changed */
mp = mp1;
ipha = (ipha_t *)mp->b_rptr;
pkt_len = ntohs(ipha->ipha_length);
}
/* Check if there are options to update */
if (!IS_SIMPLE_IPH(ipha)) {
if (ip_csum_hdr(ipha)) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
goto drop_pkt;
}
if (ip_rput_forward_options(mp, ipha, ire)) {
return;
}
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
}
max_frag = ire->ire_max_frag;
if (pkt_len > max_frag) {
/*
* It needs fragging on its way out. We haven't
* verified the header checksum yet. Since we
* are going to put a surely good checksum in the
* outgoing header, we have to make sure that it
* was good coming in.
*/
if (ip_csum_hdr(ipha)) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
goto drop_pkt;
}
/* Initiate Write side IPPF processing */
if (IPP_ENABLED(IPP_FWD_OUT)) {
ip_process(IPP_FWD_OUT, &mp, ill_index);
if (mp == NULL) {
ip2dbg(("ip_rput_forward: pkt dropped/deferred"\
" during IPPF processing\n"));
return;
}
}
ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID);
ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n"));
return;
}
DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
NULL, out_ill, ipha, mp, mp);
DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
if (mp == NULL)
return;
mp->b_prev = (mblk_t *)IPP_FWD_OUT;
ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n"));
(void) ip_xmit_v4(mp, ire, NULL, B_FALSE);
/* ip_xmit_v4 always consumes the packet */
return;
drop_pkt:;
ip1dbg(("ip_rput_forward: drop pkt\n"));
freemsg(mp);
#undef rptr
}
void
ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif)
{
ire_t *ire;
ASSERT(!ipif->ipif_isv6);
/*
* Find an IRE which matches the destination and the outgoing
* queue in the cache table. All we need is an IRE_CACHE which
* is pointing at ipif->ipif_ill. If it is part of some ill group,
* then it is enough to have some IRE_CACHE in the group.
*/
if (ipif->ipif_flags & IPIF_POINTOPOINT)
dst = ipif->ipif_pp_dst_addr;
ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp),
MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR);
if (ire == NULL) {
/*
* Mark this packet to make it be delivered to
* ip_rput_forward after the new ire has been
* created.
*/
mp->b_prev = NULL;
mp->b_next = mp;
ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst,
NULL, 0, GLOBAL_ZONEID);
} else {
ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL);
IRE_REFRELE(ire);
}
}
/* Update any source route, record route or timestamp options */
static int
ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
uint32_t ts;
ire_t *dst_ire = NULL;
ire_t *tmp_ire = NULL;
timestruc_t now;
ip2dbg(("ip_rput_forward_options\n"));
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_rput_forward_options: opt %d, len %d\n",
optval, opts.ipoptp_len));
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
/* Check if adminstratively disabled */
if (!ip_forward_src_routed) {
BUMP_MIB(&ip_mib, ipForwProhibits);
if (ire->ire_stq != NULL) {
/*
* Sent by forwarding path, and router
* is global zone
*/
icmp_unreachable(ire->ire_stq, mp,
ICMP_SOURCE_ROUTE_FAILED,
GLOBAL_ZONEID);
} else {
ip0dbg(("ip_rput_forward_options: "
"unable to send unreach\n"));
freemsg(mp);
}
return (-1);
}
dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (dst_ire == NULL) {
/*
* Must be partial since ip_rput_options
* checked for strict.
*/
break;
}
off = opt[IPOPT_OFFSET];
off--;
redo_srr:
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg((
"ip_rput_forward_options: end of SR\n"));
ire_refrele(dst_ire);
break;
}
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
bcopy(&ire->ire_src_addr, (char *)opt + off,
IP_ADDR_LEN);
ip1dbg(("ip_rput_forward_options: next hop 0x%x\n",
ntohl(dst)));
/*
* Check if our address is present more than
* once as consecutive hops in source route.
*/
tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (tmp_ire != NULL) {
ire_refrele(tmp_ire);
off += IP_ADDR_LEN;
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
goto redo_srr;
}
ipha->ipha_dst = dst;
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
ire_refrele(dst_ire);
break;
case IPOPT_RR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* No more room - ignore */
ip1dbg((
"ip_rput_forward_options: end of RR\n"));
break;
}
bcopy(&ire->ire_src_addr, (char *)opt + off,
IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
break;
case IPOPT_TS:
/* Insert timestamp if there is room */
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
/* Verify that the address matched */
off = opt[IPOPT_OFFSET] - 1;
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
dst_ire = ire_ctable_lookup(dst, 0,
IRE_LOCAL, NULL, ALL_ZONES, NULL,
MATCH_IRE_TYPE);
if (dst_ire == NULL) {
/* Not for us */
break;
}
ire_refrele(dst_ire);
/* FALLTHRU */
case IPOPT_TS_TSANDADDR:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
/*
* ip_*put_options should have already
* dropped this packet.
*/
cmn_err(CE_PANIC, "ip_rput_forward_options: "
"unknown IT - bug in ip_rput_options?\n");
return (0); /* Keep "lint" happy */
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
/* Increase overflow counter */
off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
opt[IPOPT_POS_OV_FLG] =
(uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
(off << 4));
break;
}
off = opt[IPOPT_OFFSET] - 1;
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
case IPOPT_TS_TSANDADDR:
bcopy(&ire->ire_src_addr,
(char *)opt + off, IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
/* FALLTHRU */
case IPOPT_TS_TSONLY:
off = opt[IPOPT_OFFSET] - 1;
/* Compute # of milliseconds since midnight */
gethrestime(&now);
ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
now.tv_nsec / (NANOSEC / MILLISEC);
bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
break;
}
break;
}
}
return (0);
}
/*
* This is called after processing at least one of AH/ESP headers.
*
* NOTE: the ill corresponding to ipsec_in_ill_index may not be
* the actual, physical interface on which the packet was received,
* but, when ip_strict_dst_multihoming is set to 1, could be the
* interface which had the ipha_dst configured when the packet went
* through ip_rput. The ill_index corresponding to the recv_ill
* is saved in ipsec_in_rill_index
*/
void
ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire)
{
mblk_t *mp;
ipaddr_t dst;
in6_addr_t *v6dstp;
ipha_t *ipha;
ip6_t *ip6h;
ipsec_in_t *ii;
boolean_t ill_need_rele = B_FALSE;
boolean_t rill_need_rele = B_FALSE;
boolean_t ire_need_rele = B_FALSE;
ii = (ipsec_in_t *)ipsec_mp->b_rptr;
ASSERT(ii->ipsec_in_ill_index != 0);
mp = ipsec_mp->b_cont;
ASSERT(mp != NULL);
if (ill == NULL) {
ASSERT(recv_ill == NULL);
/*
* We need to get the original queue on which ip_rput_local
* or ip_rput_data_v6 was called.
*/
ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index,
!ii->ipsec_in_v4, NULL, NULL, NULL, NULL);
ill_need_rele = B_TRUE;
if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) {
recv_ill = ill_lookup_on_ifindex(
ii->ipsec_in_rill_index, !ii->ipsec_in_v4,
NULL, NULL, NULL, NULL);
rill_need_rele = B_TRUE;
} else {
recv_ill = ill;
}
if ((ill == NULL) || (recv_ill == NULL)) {
ip0dbg(("ip_fanout_proto_again: interface "
"disappeared\n"));
if (ill != NULL)
ill_refrele(ill);
if (recv_ill != NULL)
ill_refrele(recv_ill);
freemsg(ipsec_mp);
return;
}
}
ASSERT(ill != NULL && recv_ill != NULL);
if (mp->b_datap->db_type == M_CTL) {
/*
* AH/ESP is returning the ICMP message after
* removing their headers. Fanout again till
* it gets to the right protocol.
*/
if (ii->ipsec_in_v4) {
icmph_t *icmph;
int iph_hdr_length;
int hdr_length;
ipha = (ipha_t *)mp->b_rptr;
iph_hdr_length = IPH_HDR_LENGTH(ipha);
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1];
hdr_length = IPH_HDR_LENGTH(ipha);
/*
* icmp_inbound_error_fanout may need to do pullupmsg.
* Reset the type to M_DATA.
*/
mp->b_datap->db_type = M_DATA;
icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp,
icmph, ipha, iph_hdr_length, hdr_length, B_TRUE,
B_FALSE, ill, ii->ipsec_in_zoneid);
} else {
icmp6_t *icmp6;
int hdr_length;
ip6h = (ip6_t *)mp->b_rptr;
/* Don't call hdr_length_v6() unless you have to. */
if (ip6h->ip6_nxt != IPPROTO_ICMPV6)
hdr_length = ip_hdr_length_v6(mp, ip6h);
else
hdr_length = IPV6_HDR_LEN;
icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]);
/*
* icmp_inbound_error_fanout_v6 may need to do
* pullupmsg. Reset the type to M_DATA.
*/
mp->b_datap->db_type = M_DATA;
icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp,
ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid);
}
if (ill_need_rele)
ill_refrele(ill);
if (rill_need_rele)
ill_refrele(recv_ill);
return;
}
if (ii->ipsec_in_v4) {
ipha = (ipha_t *)mp->b_rptr;
dst = ipha->ipha_dst;
if (CLASSD(dst)) {
/*
* Multicast has to be delivered to all streams.
*/
dst = INADDR_BROADCAST;
}
if (ire == NULL) {
ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid,
MBLK_GETLABEL(mp));
if (ire == NULL) {
if (ill_need_rele)
ill_refrele(ill);
if (rill_need_rele)
ill_refrele(recv_ill);
ip1dbg(("ip_fanout_proto_again: "
"IRE not found"));
freemsg(ipsec_mp);
return;
}
ire_need_rele = B_TRUE;
}
switch (ipha->ipha_protocol) {
case IPPROTO_UDP:
ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire,
recv_ill);
if (ire_need_rele)
ire_refrele(ire);
break;
case IPPROTO_TCP:
if (!ire_need_rele)
IRE_REFHOLD(ire);
mp = ip_tcp_input(mp, ipha, ill, B_TRUE,
ire, ipsec_mp, 0, ill->ill_rq, NULL);
IRE_REFRELE(ire);
if (mp != NULL)
squeue_enter_chain(GET_SQUEUE(mp), mp,
mp, 1, SQTAG_IP_PROTO_AGAIN);
break;
case IPPROTO_SCTP:
if (!ire_need_rele)
IRE_REFHOLD(ire);
ip_sctp_input(mp, ipha, ill, B_TRUE, ire,
ipsec_mp, 0, ill->ill_rq, dst);
break;
default:
ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire,
recv_ill);
if (ire_need_rele)
ire_refrele(ire);
break;
}
} else {
uint32_t rput_flags = 0;
ip6h = (ip6_t *)mp->b_rptr;
v6dstp = &ip6h->ip6_dst;
/*
* XXX Assumes ip_rput_v6 sets ll_multicast only for multicast
* address.
*
* Currently, we don't store that state in the IPSEC_IN
* message, and we may need to.
*/
rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ?
IP6_IN_LLMCAST : 0);
ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags,
NULL, NULL);
}
if (ill_need_rele)
ill_refrele(ill);
if (rill_need_rele)
ill_refrele(recv_ill);
}
/*
* Call ill_frag_timeout to do garbage collection. ill_frag_timeout
* returns 'true' if there are still fragments left on the queue, in
* which case we restart the timer.
*/
void
ill_frag_timer(void *arg)
{
ill_t *ill = (ill_t *)arg;
boolean_t frag_pending;
mutex_enter(&ill->ill_lock);
ASSERT(!ill->ill_fragtimer_executing);
if (ill->ill_state_flags & ILL_CONDEMNED) {
ill->ill_frag_timer_id = 0;
mutex_exit(&ill->ill_lock);
return;
}
ill->ill_fragtimer_executing = 1;
mutex_exit(&ill->ill_lock);
frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout);
/*
* Restart the timer, if we have fragments pending or if someone
* wanted us to be scheduled again.
*/
mutex_enter(&ill->ill_lock);
ill->ill_fragtimer_executing = 0;
ill->ill_frag_timer_id = 0;
if (frag_pending || ill->ill_fragtimer_needrestart)
ill_frag_timer_start(ill);
mutex_exit(&ill->ill_lock);
}
void
ill_frag_timer_start(ill_t *ill)
{
ASSERT(MUTEX_HELD(&ill->ill_lock));
/* If the ill is closing or opening don't proceed */
if (ill->ill_state_flags & ILL_CONDEMNED)
return;
if (ill->ill_fragtimer_executing) {
/*
* ill_frag_timer is currently executing. Just record the
* the fact that we want the timer to be restarted.
* ill_frag_timer will post a timeout before it returns,
* ensuring it will be called again.
*/
ill->ill_fragtimer_needrestart = 1;
return;
}
if (ill->ill_frag_timer_id == 0) {
/*
* The timer is neither running nor is the timeout handler
* executing. Post a timeout so that ill_frag_timer will be
* called
*/
ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
MSEC_TO_TICK(ip_g_frag_timo_ms >> 1));
ill->ill_fragtimer_needrestart = 0;
}
}
/*
* This routine is needed for loopback when forwarding multicasts.
*
* IPQoS Notes:
* IPPF processing is done in fanout routines.
* Policy processing is done only if IPP_lOCAL_IN is enabled. Further,
* processing for IPSec packets is done when it comes back in clear.
* NOTE : The callers of this function need to do the ire_refrele for the
* ire that is being passed in.
*/
void
ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
ill_t *recv_ill)
{
ill_t *ill = (ill_t *)q->q_ptr;
uint32_t sum;
uint32_t u1;
uint32_t u2;
int hdr_length;
boolean_t mctl_present;
mblk_t *first_mp = mp;
mblk_t *hada_mp = NULL;
ipha_t *inner_ipha;
TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START,
"ip_rput_locl_start: q %p", q);
ASSERT(ire->ire_ipversion == IPV4_VERSION);
#define rptr ((uchar_t *)ipha)
#define iphs ((uint16_t *)ipha)
/*
* no UDP or TCP packet should come here anymore.
*/
ASSERT((ipha->ipha_protocol != IPPROTO_TCP) &&
(ipha->ipha_protocol != IPPROTO_UDP));
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
if (mctl_present &&
((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) {
ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t));
/*
* It's an IPsec accelerated packet.
* Keep a pointer to the data attributes around until
* we allocate the ipsec_info_t.
*/
IPSECHW_DEBUG(IPSECHW_PKT,
("ip_rput_local: inbound HW accelerated IPsec pkt\n"));
hada_mp = first_mp;
hada_mp->b_cont = NULL;
/*
* Since it is accelerated, it comes directly from
* the ill and the data attributes is followed by
* the packet data.
*/
ASSERT(mp->b_datap->db_type != M_CTL);
first_mp = mp;
mctl_present = B_FALSE;
}
/*
* IF M_CTL is not present, then ipsec_in_is_secure
* should return B_TRUE. There is a case where loopback
* packets has an M_CTL in the front with all the
* IPSEC options set to IPSEC_PREF_NEVER - which means
* ipsec_in_is_secure will return B_FALSE. As loopback
* packets never comes here, it is safe to ASSERT the
* following.
*/
ASSERT(!mctl_present || ipsec_in_is_secure(first_mp));
/* u1 is # words of IP options */
u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
+ IP_SIMPLE_HDR_LENGTH_IN_WORDS);
if (u1) {
if (!ip_options_cksum(q, mp, ipha, ire)) {
if (hada_mp != NULL)
freemsg(hada_mp);
return;
}
} else {
/* Check the IP header checksum. */
#define uph ((uint16_t *)ipha)
sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] +
uph[6] + uph[7] + uph[8] + uph[9];
#undef uph
/* finish doing IP checksum */
sum = (sum & 0xFFFF) + (sum >> 16);
sum = ~(sum + (sum >> 16)) & 0xFFFF;
/*
* Don't verify header checksum if this packet is coming
* back from AH/ESP as we already did it.
*/
if (!mctl_present && (sum && sum != 0xFFFF)) {
BUMP_MIB(&ip_mib, ipInCksumErrs);
goto drop_pkt;
}
}
/*
* Count for SNMP of inbound packets for ire. As ip_proto_input
* might be called more than once for secure packets, count only
* the first time.
*/
if (!mctl_present) {
UPDATE_IB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
}
/* Check for fragmentation offset. */
u2 = ntohs(ipha->ipha_fragment_offset_and_flags);
u1 = u2 & (IPH_MF | IPH_OFFSET);
if (u1) {
/*
* We re-assemble fragments before we do the AH/ESP
* processing. Thus, M_CTL should not be present
* while we are re-assembling.
*/
ASSERT(!mctl_present);
ASSERT(first_mp == mp);
if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) {
return;
}
/*
* Make sure that first_mp points back to mp as
* the mp we came in with could have changed in
* ip_rput_fragment().
*/
ipha = (ipha_t *)mp->b_rptr;
first_mp = mp;
}
/*
* Clear hardware checksumming flag as it is currently only
* used by TCP and UDP.
*/
DB_CKSUMFLAGS(mp) = 0;
/* Now we have a complete datagram, destined for this machine. */
u1 = IPH_HDR_LENGTH(ipha);
switch (ipha->ipha_protocol) {
case IPPROTO_ICMP: {
ire_t *ire_zone;
ilm_t *ilm;
mblk_t *mp1;
zoneid_t last_zoneid;
if (CLASSD(ipha->ipha_dst) &&
!(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) {
ASSERT(ire->ire_type == IRE_BROADCAST);
/*
* In the multicast case, applications may have joined
* the group from different zones, so we need to deliver
* the packet to each of them. Loop through the
* multicast memberships structures (ilm) on the receive
* ill and send a copy of the packet up each matching
* one. However, we don't do this for multicasts sent on
* the loopback interface (PHYI_LOOPBACK flag set) as
* they must stay in the sender's zone.
*
* ilm_add_v6() ensures that ilms in the same zone are
* contiguous in the ill_ilm list. We use this property
* to avoid sending duplicates needed when two
* applications in the same zone join the same group on
* different logical interfaces: we ignore the ilm if
* its zoneid is the same as the last matching one.
* In addition, the sending of the packet for
* ire_zoneid is delayed until all of the other ilms
* have been exhausted.
*/
last_zoneid = -1;
ILM_WALKER_HOLD(recv_ill);
for (ilm = recv_ill->ill_ilm; ilm != NULL;
ilm = ilm->ilm_next) {
if ((ilm->ilm_flags & ILM_DELETED) ||
ipha->ipha_dst != ilm->ilm_addr ||
ilm->ilm_zoneid == last_zoneid ||
ilm->ilm_zoneid == ire->ire_zoneid ||
ilm->ilm_zoneid == ALL_ZONES ||
!(ilm->ilm_ipif->ipif_flags & IPIF_UP))
continue;
mp1 = ip_copymsg(first_mp);
if (mp1 == NULL)
continue;
icmp_inbound(q, mp1, B_TRUE, ill,
0, sum, mctl_present, B_TRUE,
recv_ill, ilm->ilm_zoneid);
last_zoneid = ilm->ilm_zoneid;
}
ILM_WALKER_RELE(recv_ill);
} else if (ire->ire_type == IRE_BROADCAST) {
/*
* In the broadcast case, there may be many zones
* which need a copy of the packet delivered to them.
* There is one IRE_BROADCAST per broadcast address
* and per zone; we walk those using a helper function.
* In addition, the sending of the packet for ire is
* delayed until all of the other ires have been
* processed.
*/
IRB_REFHOLD(ire->ire_bucket);
ire_zone = NULL;
while ((ire_zone = ire_get_next_bcast_ire(ire_zone,
ire)) != NULL) {
mp1 = ip_copymsg(first_mp);
if (mp1 == NULL)
continue;
UPDATE_IB_PKT_COUNT(ire_zone);
ire_zone->ire_last_used_time = lbolt;
icmp_inbound(q, mp1, B_TRUE, ill,
0, sum, mctl_present, B_TRUE,
recv_ill, ire_zone->ire_zoneid);
}
IRB_REFRELE(ire->ire_bucket);
}
icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST),
ill, 0, sum, mctl_present, B_TRUE, recv_ill,
ire->ire_zoneid);
TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
"ip_rput_locl_end: q %p (%S)", q, "icmp");
return;
}
case IPPROTO_IGMP:
/*
* If we are not willing to accept IGMP packets in clear,
* then check with global policy.
*/
if (igmp_accept_clear_messages == 0) {
first_mp = ipsec_check_global_policy(first_mp, NULL,
ipha, NULL, mctl_present);
if (first_mp == NULL)
return;
}
if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) {
freemsg(first_mp);
ip1dbg(("ip_proto_input: zone all cannot accept raw"));
BUMP_MIB(&ip_mib, ipInDiscards);
return;
}
if ((mp = igmp_input(q, mp, ill)) == NULL) {
/* Bad packet - discarded by igmp_input */
TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
"ip_rput_locl_end: q %p (%S)", q, "igmp");
if (mctl_present)
freeb(first_mp);
return;
}
/*
* igmp_input() may have returned the pulled up message.
* So first_mp and ipha need to be reinitialized.
*/
ipha = (ipha_t *)mp->b_rptr;
if (mctl_present)
first_mp->b_cont = mp;
else
first_mp = mp;
if (ipcl_proto_search(ipha->ipha_protocol) == NULL) {
/* No user-level listener for IGMP packets */
goto drop_pkt;
}
/* deliver to local raw users */
break;
case IPPROTO_PIM:
/*
* If we are not willing to accept PIM packets in clear,
* then check with global policy.
*/
if (pim_accept_clear_messages == 0) {
first_mp = ipsec_check_global_policy(first_mp, NULL,
ipha, NULL, mctl_present);
if (first_mp == NULL)
return;
}
if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) {
freemsg(first_mp);
ip1dbg(("ip_proto_input: zone all cannot accept PIM"));
BUMP_MIB(&ip_mib, ipInDiscards);
return;
}
if (pim_input(q, mp) != 0) {
/* Bad packet - discarded by pim_input */
TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
"ip_rput_locl_end: q %p (%S)", q, "pim");
if (mctl_present)
freeb(first_mp);
return;
}
/*
* pim_input() may have pulled up the message so ipha needs to
* be reinitialized.
*/
ipha = (ipha_t *)mp->b_rptr;
if (ipcl_proto_search(ipha->ipha_protocol) == NULL) {
/* No user-level listener for PIM packets */
goto drop_pkt;
}
/* deliver to local raw users */
break;
case IPPROTO_ENCAP:
/*
* Handle self-encapsulated packets (IP-in-IP where
* the inner addresses == the outer addresses).
*/
hdr_length = IPH_HDR_LENGTH(ipha);
if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
mp->b_wptr) {
if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
sizeof (ipha_t) - mp->b_rptr)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
return;
}
ipha = (ipha_t *)mp->b_rptr;
}
inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
/*
* Check the sanity of the inner IP header.
*/
if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
return;
}
if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) {
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
return;
}
if (inner_ipha->ipha_src == ipha->ipha_src &&
inner_ipha->ipha_dst == ipha->ipha_dst) {
ipsec_in_t *ii;
/*
* Self-encapsulated tunnel packet. Remove
* the outer IP header and fanout again.
* We also need to make sure that the inner
* header is pulled up until options.
*/
mp->b_rptr = (uchar_t *)inner_ipha;
ipha = inner_ipha;
hdr_length = IPH_HDR_LENGTH(ipha);
if ((uchar_t *)ipha + hdr_length > mp->b_wptr) {
if (!pullupmsg(mp, (uchar_t *)ipha +
+ hdr_length - mp->b_rptr)) {
freemsg(first_mp);
return;
}
ipha = (ipha_t *)mp->b_rptr;
}
if (!mctl_present) {
ASSERT(first_mp == mp);
/*
* This means that somebody is sending
* Self-encapsualted packets without AH/ESP.
* If AH/ESP was present, we would have already
* allocated the first_mp.
*/
if ((first_mp = ipsec_in_alloc(B_TRUE)) ==
NULL) {
ip1dbg(("ip_proto_input: IPSEC_IN "
"allocation failure.\n"));
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(mp);
return;
}
first_mp->b_cont = mp;
}
/*
* We generally store the ill_index if we need to
* do IPSEC processing as we lose the ill queue when
* we come back. But in this case, we never should
* have to store the ill_index here as it should have
* been stored previously when we processed the
* AH/ESP header in this routine or for non-ipsec
* cases, we still have the queue. But for some bad
* packets from the wire, we can get to IPSEC after
* this and we better store the index for that case.
*/
ill = (ill_t *)q->q_ptr;
ii = (ipsec_in_t *)first_mp->b_rptr;
ii->ipsec_in_ill_index =
ill->ill_phyint->phyint_ifindex;
ii->ipsec_in_rill_index =
recv_ill->ill_phyint->phyint_ifindex;
if (ii->ipsec_in_decaps) {
/*
* This packet is self-encapsulated multiple
* times. We don't want to recurse infinitely.
* To keep it simple, drop the packet.
*/
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(first_mp);
return;
}
ii->ipsec_in_decaps = B_TRUE;
ip_fanout_proto_again(first_mp, recv_ill, recv_ill,
ire);
return;
}
break;
case IPPROTO_AH:
case IPPROTO_ESP: {
/*
* Fast path for AH/ESP. If this is the first time
* we are sending a datagram to AH/ESP, allocate
* a IPSEC_IN message and prepend it. Otherwise,
* just fanout.
*/
int ipsec_rc;
ipsec_in_t *ii;
IP_STAT(ipsec_proto_ahesp);
if (!mctl_present) {
ASSERT(first_mp == mp);
if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) {
ip1dbg(("ip_proto_input: IPSEC_IN "
"allocation failure.\n"));
freemsg(hada_mp); /* okay ifnull */
BUMP_MIB(&ip_mib, ipInDiscards);
freemsg(mp);
return;
}
/*
* Store the ill_index so that when we come back
* from IPSEC we ride on the same queue.
*/
ill = (ill_t *)q->q_ptr;
ii = (ipsec_in_t *)first_mp->b_rptr;
ii->ipsec_in_ill_index =
ill->ill_phyint->phyint_ifindex;
ii->ipsec_in_rill_index =
recv_ill->ill_phyint->phyint_ifindex;
first_mp->b_cont = mp;
/*
* Cache hardware acceleration info.
*/
if (hada_mp != NULL) {
IPSECHW_DEBUG(IPSECHW_PKT,
("ip_rput_local: caching data attr.\n"));
ii->ipsec_in_accelerated = B_TRUE;
ii->ipsec_in_da = hada_mp;
hada_mp = NULL;
}
} else {
ii = (ipsec_in_t *)first_mp->b_rptr;
}
if (!ipsec_loaded()) {
ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP,
ire->ire_zoneid);
return;
}
/* select inbound SA and have IPsec process the pkt */
if (ipha->ipha_protocol == IPPROTO_ESP) {
esph_t *esph = ipsec_inbound_esp_sa(first_mp);
if (esph == NULL)
return;
ASSERT(ii->ipsec_in_esp_sa != NULL);
ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL);
ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func(
first_mp, esph);
} else {
ah_t *ah = ipsec_inbound_ah_sa(first_mp);
if (ah == NULL)
return;
ASSERT(ii->ipsec_in_ah_sa != NULL);
ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL);
ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func(
first_mp, ah);
}
switch (ipsec_rc) {
case IPSEC_STATUS_SUCCESS:
break;
case IPSEC_STATUS_FAILED:
BUMP_MIB(&ip_mib, ipInDiscards);
/* FALLTHRU */
case IPSEC_STATUS_PENDING:
return;
}
/* we're done with IPsec processing, send it up */
ip_fanout_proto_again(first_mp, ill, recv_ill, ire);
return;
}
default:
break;
}
if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) {
ip1dbg(("ip_proto_input: zone %d cannot accept raw IP",
ire->ire_zoneid));
goto drop_pkt;
}
/*
* Handle protocols with which IP is less intimate. There
* can be more than one stream bound to a particular
* protocol. When this is the case, each one gets a copy
* of any incoming packets.
*/
ip_fanout_proto(q, first_mp, ill, ipha,
IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present,
B_TRUE, recv_ill, ire->ire_zoneid);
TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
"ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto");
return;
drop_pkt:
freemsg(first_mp);
if (hada_mp != NULL)
freeb(hada_mp);
TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
"ip_rput_locl_end: q %p (%S)", q, "droppkt");
#undef rptr
#undef iphs
}
/*
* Update any source route, record route or timestamp options.
* Check that we are at end of strict source route.
* The options have already been checked for sanity in ip_rput_options().
*/
static boolean_t
ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
uint32_t ts;
ire_t *dst_ire;
timestruc_t now;
zoneid_t zoneid;
ill_t *ill;
ASSERT(ire->ire_ipversion == IPV4_VERSION);
ip2dbg(("ip_rput_local_options\n"));
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_rput_local_options: opt %d, len %d\n",
optval, optlen));
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg(("ip_rput_local_options: end of SR\n"));
break;
}
/*
* This will only happen if two consecutive entries
* in the source route contains our address or if
* it is a packet with a loose source route which
* reaches us before consuming the whole source route
*/
ip1dbg(("ip_rput_local_options: not end of SR\n"));
if (optval == IPOPT_SSRR) {
goto bad_src_route;
}
/*
* Hack: instead of dropping the packet truncate the
* source route to what has been used by filling the
* rest with IPOPT_NOP.
*/
opt[IPOPT_OLEN] = (uint8_t)off;
while (off < optlen) {
opt[off++] = IPOPT_NOP;
}
break;
case IPOPT_RR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* No more room - ignore */
ip1dbg((
"ip_rput_local_options: end of RR\n"));
break;
}
bcopy(&ire->ire_src_addr, (char *)opt + off,
IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
break;
case IPOPT_TS:
/* Insert timestamp if there is romm */
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
/* Verify that the address matched */
off = opt[IPOPT_OFFSET] - 1;
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (dst_ire == NULL) {
/* Not for us */
break;
}
ire_refrele(dst_ire);
/* FALLTHRU */
case IPOPT_TS_TSANDADDR:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
/*
* ip_*put_options should have already
* dropped this packet.
*/
cmn_err(CE_PANIC, "ip_rput_local_options: "
"unknown IT - bug in ip_rput_options?\n");
return (B_TRUE); /* Keep "lint" happy */
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
/* Increase overflow counter */
off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
opt[IPOPT_POS_OV_FLG] =
(uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
(off << 4));
break;
}
off = opt[IPOPT_OFFSET] - 1;
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
case IPOPT_TS_TSANDADDR:
bcopy(&ire->ire_src_addr, (char *)opt + off,
IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
/* FALLTHRU */
case IPOPT_TS_TSONLY:
off = opt[IPOPT_OFFSET] - 1;
/* Compute # of milliseconds since midnight */
gethrestime(&now);
ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
now.tv_nsec / (NANOSEC / MILLISEC);
bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
break;
}
break;
}
}
return (B_TRUE);
bad_src_route:
q = WR(q);
if (q->q_next != NULL)
ill = q->q_ptr;
else
ill = NULL;
/* make sure we clear any indication of a hardware checksum */
DB_CKSUMFLAGS(mp) = 0;
zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill);
if (zoneid == ALL_ZONES)
freemsg(mp);
else
icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid);
return (B_FALSE);
}
/*
* Process IP options in an inbound packet. If an option affects the
* effective destination address, return the next hop address via dstp.
* Returns -1 if something fails in which case an ICMP error has been sent
* and mp freed.
*/
static int
ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
intptr_t code = 0;
ire_t *ire = NULL;
zoneid_t zoneid;
ill_t *ill;
ip2dbg(("ip_rput_options\n"));
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_rput_options: opt %d, len %d\n",
optval, optlen));
/*
* Note: we need to verify the checksum before we
* modify anything thus this routine only extracts the next
* hop dst from any source route.
*/
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (ire == NULL) {
if (optval == IPOPT_SSRR) {
ip1dbg(("ip_rput_options: not next"
" strict source route 0x%x\n",
ntohl(dst)));
code = (char *)&ipha->ipha_dst -
(char *)ipha;
goto param_prob; /* RouterReq's */
}
ip2dbg(("ip_rput_options: "
"not next source route 0x%x\n",
ntohl(dst)));
break;
}
ire_refrele(ire);
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_rput_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OLEN] -
(char *)ipha;
goto param_prob;
}
off = opt[IPOPT_OFFSET];
off--;
redo_srr:
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg(("ip_rput_options: end of SR\n"));
break;
}
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
ip1dbg(("ip_rput_options: next hop 0x%x\n",
ntohl(dst)));
/*
* Check if our address is present more than
* once as consecutive hops in source route.
* XXX verify per-interface ip_forwarding
* for source route?
*/
ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (ire != NULL) {
ire_refrele(ire);
off += IP_ADDR_LEN;
goto redo_srr;
}
if (dst == htonl(INADDR_LOOPBACK)) {
ip1dbg(("ip_rput_options: loopback addr in "
"source route!\n"));
goto bad_src_route;
}
/*
* For strict: verify that dst is directly
* reachable.
*/
if (optval == IPOPT_SSRR) {
ire = ire_ftable_lookup(dst, 0, 0,
IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0,
MBLK_GETLABEL(mp),
MATCH_IRE_TYPE | MATCH_IRE_SECATTR);
if (ire == NULL) {
ip1dbg(("ip_rput_options: SSRR not "
"directly reachable: 0x%x\n",
ntohl(dst)));
goto bad_src_route;
}
ire_refrele(ire);
}
/*
* Defer update of the offset and the record route
* until the packet is forwarded.
*/
break;
case IPOPT_RR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_rput_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OLEN] -
(char *)ipha;
goto param_prob;
}
break;
case IPOPT_TS:
/*
* Verify that length >= 5 and that there is either
* room for another timestamp or that the overflow
* counter is not maxed out.
*/
code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
if (optlen < IPOPT_MINLEN_IT) {
goto param_prob;
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_rput_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OFFSET] -
(char *)ipha;
goto param_prob;
}
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_TSANDADDR:
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
code = (char *)&opt[IPOPT_POS_OV_FLG] -
(char *)ipha;
goto param_prob;
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
(opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
/*
* No room and the overflow counter is 15
* already.
*/
goto param_prob;
}
break;
}
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
*dstp = dst;
return (0);
}
ip1dbg(("ip_rput_options: error processing IP options."));
code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
param_prob:
q = WR(q);
if (q->q_next != NULL)
ill = q->q_ptr;
else
ill = NULL;
/* make sure we clear any indication of a hardware checksum */
DB_CKSUMFLAGS(mp) = 0;
/* Don't know whether this is for non-global or global/forwarding */
zoneid = ipif_lookup_addr_zoneid(dst, ill);
if (zoneid == ALL_ZONES)
freemsg(mp);
else
icmp_param_problem(q, mp, (uint8_t)code, zoneid);
return (-1);
bad_src_route:
q = WR(q);
if (q->q_next != NULL)
ill = q->q_ptr;
else
ill = NULL;
/* make sure we clear any indication of a hardware checksum */
DB_CKSUMFLAGS(mp) = 0;
zoneid = ipif_lookup_addr_zoneid(dst, ill);
if (zoneid == ALL_ZONES)
freemsg(mp);
else
icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid);
return (-1);
}
/*
* IP & ICMP info in >=14 msg's ...
* - ip fixed part (mib2_ip_t)
* - icmp fixed part (mib2_icmp_t)
* - ipAddrEntryTable (ip 20) all IPv4 ipifs
* - ipRouteEntryTable (ip 21) all IPv4 IREs
* - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations
* - ipRouteAttributeTable (ip 102) labeled routes
* - ip multicast membership (ip_member_t)
* - ip multicast source filtering (ip_grpsrc_t)
* - igmp fixed part (struct igmpstat)
* - multicast routing stats (struct mrtstat)
* - multicast routing vifs (array of struct vifctl)
* - multicast routing routes (array of struct mfcctl)
* - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
* One per ill plus one generic
* - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
* One per ill plus one generic
* - ipv6RouteEntry all IPv6 IREs
* - ipv6RouteAttributeTable (ip6 102) labeled routes
* - ipv6NetToMediaEntry all Neighbor Cache entries
* - ipv6AddrEntry all IPv6 ipifs
* - ipv6 multicast membership (ipv6_member_t)
* - ipv6 multicast source filtering (ipv6_grpsrc_t)
*
* IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not
* already present.
* NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
* already filled in by the caller.
* Return value of 0 indicates that no messages were sent and caller
* should free mpctl.
*/
int
ip_snmp_get(queue_t *q, mblk_t *mpctl)
{
if (mpctl == NULL || mpctl->b_cont == NULL) {
return (0);
}
if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) {
return (1);
}
if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) {
return (1);
}
freemsg(mpctl);
return (1);
}
/* Get global IPv4 statistics */
static mblk_t *
ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
/* fixed length IP structure... */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = 0;
SET_MIB(ip_mib.ipForwarding,
(WE_ARE_FORWARDING ? 1 : 2));
SET_MIB(ip_mib.ipDefaultTTL,
(uint32_t)ip_def_ttl);
SET_MIB(ip_mib.ipReasmTimeout,
ip_g_frag_timeout);
SET_MIB(ip_mib.ipAddrEntrySize,
sizeof (mib2_ipAddrEntry_t));
SET_MIB(ip_mib.ipRouteEntrySize,
sizeof (mib2_ipRouteEntry_t));
SET_MIB(ip_mib.ipNetToMediaEntrySize,
sizeof (mib2_ipNetToMediaEntry_t));
SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t));
SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib,
(int)sizeof (ip_mib))) {
ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
(uint_t)sizeof (ip_mib)));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Global IPv4 ICMP statistics */
static mblk_t *
ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* Make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_ICMP;
optp->name = 0;
if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib,
(int)sizeof (icmp_mib))) {
ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
(uint_t)sizeof (icmp_mib)));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Global IPv4 IGMP statistics */
static mblk_t *
ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = EXPER_IGMP;
optp->name = 0;
if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat,
(int)sizeof (igmpstat))) {
ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
(uint_t)sizeof (igmpstat)));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Global IPv4 Multicast Routing statistics */
static mblk_t *
ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = EXPER_DVMRP;
optp->name = 0;
if (!ip_mroute_stats(mpctl->b_cont)) {
ip0dbg(("ip_mroute_stats: failed\n"));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv4 address information */
static mblk_t *
ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
mblk_t *mp_tail = NULL;
ill_t *ill;
ipif_t *ipif;
uint_t bitval;
mib2_ipAddrEntry_t mae;
zoneid_t zoneid;
ill_walk_context_t ctx;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
/* ipAddrEntryTable */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = MIB2_IP_ADDR;
zoneid = Q_TO_CONN(q)->conn_zoneid;
rw_enter(&ill_g_lock, RW_READER);
ill = ILL_START_WALK_V4(&ctx);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
if (ipif->ipif_zoneid != zoneid &&
ipif->ipif_zoneid != ALL_ZONES)
continue;
mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count;
mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count;
(void) ipif_get_name(ipif,
mae.ipAdEntIfIndex.o_bytes,
OCTET_LENGTH);
mae.ipAdEntIfIndex.o_length =
mi_strlen(mae.ipAdEntIfIndex.o_bytes);
mae.ipAdEntAddr = ipif->ipif_lcl_addr;
mae.ipAdEntNetMask = ipif->ipif_net_mask;
mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
mae.ipAdEntInfo.ae_subnet_len =
ip_mask_to_plen(ipif->ipif_net_mask);
mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr;
for (bitval = 1;
bitval &&
!(bitval & ipif->ipif_brd_addr);
bitval <<= 1)
noop;
mae.ipAdEntBcastAddr = bitval;
mae.ipAdEntReasmMaxSize = 65535;
mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu;
mae.ipAdEntInfo.ae_metric = ipif->ipif_metric;
mae.ipAdEntInfo.ae_broadcast_addr =
ipif->ipif_brd_addr;
mae.ipAdEntInfo.ae_pp_dst_addr =
ipif->ipif_pp_dst_addr;
mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
ill->ill_flags | ill->ill_phyint->phyint_flags;
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) {
ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
"allocate %u bytes\n",
(uint_t)sizeof (mib2_ipAddrEntry_t)));
}
}
}
rw_exit(&ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv6 address information */
static mblk_t *
ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
mblk_t *mp_tail = NULL;
ill_t *ill;
ipif_t *ipif;
mib2_ipv6AddrEntry_t mae6;
zoneid_t zoneid;
ill_walk_context_t ctx;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
/* ipv6AddrEntryTable */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = MIB2_IP6_ADDR;
zoneid = Q_TO_CONN(q)->conn_zoneid;
rw_enter(&ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
if (ipif->ipif_zoneid != zoneid &&
ipif->ipif_zoneid != ALL_ZONES)
continue;
mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count;
mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count;
(void) ipif_get_name(ipif,
mae6.ipv6AddrIfIndex.o_bytes,
OCTET_LENGTH);
mae6.ipv6AddrIfIndex.o_length =
mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
mae6.ipv6AddrPfxLength =
ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
mae6.ipv6AddrInfo.ae_subnet_len =
mae6.ipv6AddrPfxLength;
mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr;
/* Type: stateless(1), stateful(2), unknown(3) */
if (ipif->ipif_flags & IPIF_ADDRCONF)
mae6.ipv6AddrType = 1;
else
mae6.ipv6AddrType = 2;
/* Anycast: true(1), false(2) */
if (ipif->ipif_flags & IPIF_ANYCAST)
mae6.ipv6AddrAnycastFlag = 1;
else
mae6.ipv6AddrAnycastFlag = 2;
/*
* Address status: preferred(1), deprecated(2),
* invalid(3), inaccessible(4), unknown(5)
*/
if (ipif->ipif_flags & IPIF_NOLOCAL)
mae6.ipv6AddrStatus = 3;
else if (ipif->ipif_flags & IPIF_DEPRECATED)
mae6.ipv6AddrStatus = 2;
else
mae6.ipv6AddrStatus = 1;
mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu;
mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric;
mae6.ipv6AddrInfo.ae_pp_dst_addr =
ipif->ipif_v6pp_dst_addr;
mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
ill->ill_flags | ill->ill_phyint->phyint_flags;
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&mae6,
(int)sizeof (mib2_ipv6AddrEntry_t))) {
ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
"allocate %u bytes\n",
(uint_t)sizeof (mib2_ipv6AddrEntry_t)));
}
}
}
rw_exit(&ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv4 multicast group membership. */
static mblk_t *
ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ipif_t *ipif;
ilm_t *ilm;
ip_member_t ipm;
mblk_t *mp_tail = NULL;
ill_walk_context_t ctx;
zoneid_t zoneid;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/* ipGroupMember table */
optp = (struct opthdr *)&mpctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = EXPER_IP_GROUP_MEMBERSHIP;
rw_enter(&ill_g_lock, RW_READER);
ill = ILL_START_WALK_V4(&ctx);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
ILM_WALKER_HOLD(ill);
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
if (ipif->ipif_zoneid != zoneid &&
ipif->ipif_zoneid != ALL_ZONES)
continue; /* not this zone */
(void) ipif_get_name(ipif,
ipm.ipGroupMemberIfIndex.o_bytes,
OCTET_LENGTH);
ipm.ipGroupMemberIfIndex.o_length =
mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
ASSERT(ilm->ilm_ipif != NULL);
ASSERT(ilm->ilm_ill == NULL);
if (ilm->ilm_ipif != ipif)
continue;
ipm.ipGroupMemberAddress = ilm->ilm_addr;
ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&ipm, (int)sizeof (ipm))) {
ip1dbg(("ip_snmp_get_mib2_ip_group: "
"failed to allocate %u bytes\n",
(uint_t)sizeof (ipm)));
}
}
}
ILM_WALKER_RELE(ill);
}
rw_exit(&ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv6 multicast group membership. */
static mblk_t *
ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ilm_t *ilm;
ipv6_member_t ipm6;
mblk_t *mp_tail = NULL;
ill_walk_context_t ctx;
zoneid_t zoneid;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/* ip6GroupMember table */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
rw_enter(&ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
ILM_WALKER_HOLD(ill);
ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
ASSERT(ilm->ilm_ipif == NULL);
ASSERT(ilm->ilm_ill != NULL);
if (ilm->ilm_zoneid != zoneid)
continue; /* not this zone */
ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
if (!snmp_append_data2(mpctl->b_cont,
&mp_tail,
(char *)&ipm6, (int)sizeof (ipm6))) {
ip1dbg(("ip_snmp_get_mib2_ip6_group: "
"failed to allocate %u bytes\n",
(uint_t)sizeof (ipm6)));
}
}
ILM_WALKER_RELE(ill);
}
rw_exit(&ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IP multicast filtered sources */
static mblk_t *
ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ipif_t *ipif;
ilm_t *ilm;
ip_grpsrc_t ips;
mblk_t *mp_tail = NULL;
ill_walk_context_t ctx;
zoneid_t zoneid;
int i;
slist_t *sl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/* ipGroupSource table */
optp = (struct opthdr *)&mpctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = EXPER_IP_GROUP_SOURCES;
rw_enter(&ill_g_lock, RW_READER);
ill = ILL_START_WALK_V4(&ctx);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
ILM_WALKER_HOLD(ill);
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
if (ipif->ipif_zoneid != zoneid)
continue; /* not this zone */
(void) ipif_get_name(ipif,
ips.ipGroupSourceIfIndex.o_bytes,
OCTET_LENGTH);
ips.ipGroupSourceIfIndex.o_length =
mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
ASSERT(ilm->ilm_ipif != NULL);
ASSERT(ilm->ilm_ill == NULL);
sl = ilm->ilm_filter;
if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl))
continue;
ips.ipGroupSourceGroup = ilm->ilm_addr;
for (i = 0; i < sl->sl_numsrc; i++) {
if (!IN6_IS_ADDR_V4MAPPED(
&sl->sl_addr[i]))
continue;
IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
ips.ipGroupSourceAddress);
if (snmp_append_data2(mpctl->b_cont,
&mp_tail, (char *)&ips,
(int)sizeof (ips)) == 0) {
ip1dbg(("ip_snmp_get_mib2_"
"ip_group_src: failed to "
"allocate %u bytes\n",
(uint_t)sizeof (ips)));
}
}
}
}
ILM_WALKER_RELE(ill);
}
rw_exit(&ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv6 multicast filtered sources. */
static mblk_t *
ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ilm_t *ilm;
ipv6_grpsrc_t ips6;
mblk_t *mp_tail = NULL;
ill_walk_context_t ctx;
zoneid_t zoneid;
int i;
slist_t *sl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/* ip6GroupMember table */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = EXPER_IP6_GROUP_SOURCES;
rw_enter(&ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
ILM_WALKER_HOLD(ill);
ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
ASSERT(ilm->ilm_ipif == NULL);
ASSERT(ilm->ilm_ill != NULL);
sl = ilm->ilm_filter;
if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl))
continue;
ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
for (i = 0; i < sl->sl_numsrc; i++) {
ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&ips6, (int)sizeof (ips6))) {
ip1dbg(("ip_snmp_get_mib2_ip6_"
"group_src: failed to allocate "
"%u bytes\n",
(uint_t)sizeof (ips6)));
}
}
}
ILM_WALKER_RELE(ill);
}
rw_exit(&ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Multicast routing virtual interface table. */
static mblk_t *
ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = EXPER_DVMRP;
optp->name = EXPER_DVMRP_VIF;
if (!ip_mroute_vif(mpctl->b_cont)) {
ip0dbg(("ip_mroute_vif: failed\n"));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Multicast routing table. */
static mblk_t *
ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = EXPER_DVMRP;
optp->name = EXPER_DVMRP_MRT;
if (!ip_mroute_mrt(mpctl->b_cont)) {
ip0dbg(("ip_mroute_mrt: failed\n"));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/*
* Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
* in one IRE walk.
*/
static mblk_t *
ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl; /* Returned */
mblk_t *mp3ctl; /* nettomedia */
mblk_t *mp4ctl; /* routeattrs */
iproutedata_t ird;
zoneid_t zoneid;
/*
* make copies of the original message
* - mp2ctl is returned unchanged to the caller for his use
* - mpctl is sent upstream as ipRouteEntryTable
* - mp3ctl is sent upstream as ipNetToMediaEntryTable
* - mp4ctl is sent upstream as ipRouteAttributeTable
*/
mp2ctl = copymsg(mpctl);
mp3ctl = copymsg(mpctl);
mp4ctl = copymsg(mpctl);
if (mp3ctl == NULL || mp4ctl == NULL) {
freemsg(mp4ctl);
freemsg(mp3ctl);
freemsg(mp2ctl);
freemsg(mpctl);
return (NULL);
}
bzero(&ird, sizeof (ird));
ird.ird_route.lp_head = mpctl->b_cont;
ird.ird_netmedia.lp_head = mp3ctl->b_cont;
ird.ird_attrs.lp_head = mp4ctl->b_cont;
zoneid = Q_TO_CONN(q)->conn_zoneid;
ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid);
if (zoneid == GLOBAL_ZONEID) {
/*
* Those IREs are used by Mobile-IP; since mipagent(1M) requires
* the sys_net_config privilege, it can only run in the global
* zone, so we don't display these IREs in the other zones.
*/
ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird);
ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL);
}
/* ipRouteEntryTable in mpctl */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = MIB2_IP_ROUTE;
optp->len = msgdsize(ird.ird_route.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
/* ipNetToMediaEntryTable in mp3ctl */
optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = MIB2_IP_MEDIA;
optp->len = msgdsize(ird.ird_netmedia.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mp3ctl);
/* ipRouteAttributeTable in mp4ctl */
optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = EXPER_IP_RTATTR;
optp->len = msgdsize(ird.ird_attrs.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
if (optp->len == 0)
freemsg(mp4ctl);
else
qreply(q, mp4ctl);
return (mp2ctl);
}
/*
* Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
* ipv6NetToMediaEntryTable in an NDP walk.
*/
static mblk_t *
ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl; /* Returned */
mblk_t *mp3ctl; /* nettomedia */
mblk_t *mp4ctl; /* routeattrs */
iproutedata_t ird;
zoneid_t zoneid;
/*
* make copies of the original message
* - mp2ctl is returned unchanged to the caller for his use
* - mpctl is sent upstream as ipv6RouteEntryTable
* - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
* - mp4ctl is sent upstream as ipv6RouteAttributeTable
*/
mp2ctl = copymsg(mpctl);
mp3ctl = copymsg(mpctl);
mp4ctl = copymsg(mpctl);
if (mp3ctl == NULL || mp4ctl == NULL) {
freemsg(mp4ctl);
freemsg(mp3ctl);
freemsg(mp2ctl);
freemsg(mpctl);
return (NULL);
}
bzero(&ird, sizeof (ird));
ird.ird_route.lp_head = mpctl->b_cont;
ird.ird_netmedia.lp_head = mp3ctl->b_cont;
ird.ird_attrs.lp_head = mp4ctl->b_cont;
zoneid = Q_TO_CONN(q)->conn_zoneid;
ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = MIB2_IP6_ROUTE;
optp->len = msgdsize(ird.ird_route.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
/* ipv6NetToMediaEntryTable in mp3ctl */
ndp_walk(NULL, ip_snmp_get2_v6_media, &ird);
optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = MIB2_IP6_MEDIA;
optp->len = msgdsize(ird.ird_netmedia.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mp3ctl);
/* ipv6RouteAttributeTable in mp4ctl */
optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = EXPER_IP_RTATTR;
optp->len = msgdsize(ird.ird_attrs.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
if (optp->len == 0)
freemsg(mp4ctl);
else
qreply(q, mp4ctl);
return (mp2ctl);
}
/*
* ICMPv6 mib: One per ill
*/
static mblk_t *
ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ill_walk_context_t ctx;
mblk_t *mp_tail = NULL;
/*
* Make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
/* fixed length IPv6 structure ... */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = 0;
/* Include "unknown interface" ip6_mib */
ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */
SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2);
SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops);
SET_MIB(ip6_mib.ipv6IfStatsEntrySize,
sizeof (mib2_ipv6IfStatsEntry_t));
SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t));
SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t));
SET_MIB(ip6_mib.ipv6NetToMediaEntrySize,
sizeof (mib2_ipv6NetToMediaEntry_t));
SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t));
SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t));
if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib,
(int)sizeof (ip6_mib))) {
ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
(uint_t)sizeof (ip6_mib)));
}
rw_enter(&ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
ill->ill_ip6_mib->ipv6IfIndex =
ill->ill_phyint->phyint_ifindex;
SET_MIB(ill->ill_ip6_mib->ipv6Forwarding,
ipv6_forward ? 1 : 2);
SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit,
ill->ill_max_hops);
SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize,
sizeof (mib2_ipv6IfStatsEntry_t));
SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize,
sizeof (mib2_ipv6AddrEntry_t));
SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize,
sizeof (mib2_ipv6RouteEntry_t));
SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize,
sizeof (mib2_ipv6NetToMediaEntry_t));
SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize,
sizeof (ipv6_member_t));
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)ill->ill_ip6_mib,
(int)sizeof (*ill->ill_ip6_mib))) {
ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
"%u bytes\n",
(uint_t)sizeof (*ill->ill_ip6_mib)));
}
}
rw_exit(&ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/*
* ICMPv6 mib: One per ill
*/
static mblk_t *
ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ill_walk_context_t ctx;
mblk_t *mp_tail = NULL;
/*
* Make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
/* fixed length ICMPv6 structure ... */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_ICMP6;
optp->name = 0;
/* Include "unknown interface" icmp6_mib */
icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */
icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t);
if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib,
(int)sizeof (icmp6_mib))) {
ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
(uint_t)sizeof (icmp6_mib)));
}
rw_enter(&ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
ill->ill_phyint->phyint_ifindex;
ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
sizeof (mib2_ipv6IfIcmpEntry_t);
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)ill->ill_icmp6_mib,
(int)sizeof (*ill->ill_icmp6_mib))) {
ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
"%u bytes\n",
(uint_t)sizeof (*ill->ill_icmp6_mib)));
}
}
rw_exit(&ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/*
* ire_walk routine to create both ipRouteEntryTable and
* ipNetToMediaEntryTable in one IRE walk
*/
static void
ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
{
ill_t *ill;
ipif_t *ipif;
mblk_t *llmp;
dl_unitdata_req_t *dlup;
mib2_ipRouteEntry_t *re;
mib2_ipNetToMediaEntry_t ntme;
mib2_ipAttributeEntry_t *iae, *iaeptr;
ipaddr_t gw_addr;
tsol_ire_gw_secattr_t *attrp;
tsol_gc_t *gc = NULL;
tsol_gcgrp_t *gcgrp = NULL;
uint_t sacnt = 0;
int i;
ASSERT(ire->ire_ipversion == IPV4_VERSION);
if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
return;
if ((attrp = ire->ire_gw_secattr) != NULL) {
mutex_enter(&attrp->igsa_lock);
if ((gc = attrp->igsa_gc) != NULL) {
gcgrp = gc->gc_grp;
ASSERT(gcgrp != NULL);
rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
sacnt = 1;
} else if ((gcgrp = attrp->igsa_gcgrp) != NULL) {
rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
gc = gcgrp->gcgrp_head;
sacnt = gcgrp->gcgrp_count;
}
mutex_exit(&attrp->igsa_lock);
/* do nothing if there's no gc to report */
if (gc == NULL) {
ASSERT(sacnt == 0);
if (gcgrp != NULL) {
/* we might as well drop the lock now */
rw_exit(&gcgrp->gcgrp_rwlock);
gcgrp = NULL;
}
attrp = NULL;
}
ASSERT(gc == NULL || (gcgrp != NULL &&
RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)));
}
ASSERT(sacnt == 0 || gc != NULL);
if (sacnt != 0 &&
(iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) {
kmem_free(re, sizeof (*re));
rw_exit(&gcgrp->gcgrp_rwlock);
return;
}
/*
* Return all IRE types for route table... let caller pick and choose
*/
re->ipRouteDest = ire->ire_addr;
ipif = ire->ire_ipif;
re->ipRouteIfIndex.o_length = 0;
if (ire->ire_type == IRE_CACHE) {
ill = (ill_t *)ire->ire_stq->q_ptr;
re->ipRouteIfIndex.o_length =
ill->ill_name_length == 0 ? 0 :
MIN(OCTET_LENGTH, ill->ill_name_length - 1);
bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes,
re->ipRouteIfIndex.o_length);
} else if (ipif != NULL) {
(void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes,
OCTET_LENGTH);
re->ipRouteIfIndex.o_length =
mi_strlen(re->ipRouteIfIndex.o_bytes);
}
re->ipRouteMetric1 = -1;
re->ipRouteMetric2 = -1;
re->ipRouteMetric3 = -1;
re->ipRouteMetric4 = -1;
gw_addr = ire->ire_gateway_addr;
if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST))
re->ipRouteNextHop = ire->ire_src_addr;
else
re->ipRouteNextHop = gw_addr;
/* indirect(4), direct(3), or invalid(2) */
if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
re->ipRouteType = 2;
else
re->ipRouteType = (gw_addr != 0) ? 4 : 3;
re->ipRouteProto = -1;
re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
re->ipRouteMask = ire->ire_mask;
re->ipRouteMetric5 = -1;
re->ipRouteInfo.re_max_frag = ire->ire_max_frag;
re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag;
re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt;
if (ire->ire_nce &&
ire->ire_nce->nce_state == ND_REACHABLE)
llmp = ire->ire_nce->nce_res_mp;
else
llmp = NULL;
re->ipRouteInfo.re_ref = ire->ire_refcnt;
re->ipRouteInfo.re_src_addr = ire->ire_src_addr;
re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count;
re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
re->ipRouteInfo.re_flags = ire->ire_flags;
re->ipRouteInfo.re_in_ill.o_length = 0;
if (ire->ire_flags & RTF_DYNAMIC) {
re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT;
} else {
re->ipRouteInfo.re_ire_type = ire->ire_type;
}
if (ire->ire_in_ill != NULL) {
re->ipRouteInfo.re_in_ill.o_length =
ire->ire_in_ill->ill_name_length == 0 ? 0 :
MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1);
bcopy(ire->ire_in_ill->ill_name,
re->ipRouteInfo.re_in_ill.o_bytes,
re->ipRouteInfo.re_in_ill.o_length);
}
re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr;
if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
(char *)re, (int)sizeof (*re))) {
ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
(uint_t)sizeof (*re)));
}
for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) {
iaeptr->iae_routeidx = ird->ird_idx;
iaeptr->iae_doi = gc->gc_db->gcdb_doi;
iaeptr->iae_slrange = gc->gc_db->gcdb_slrange;
}
if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail,
(char *)iae, sacnt * sizeof (*iae))) {
ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
(unsigned)(sacnt * sizeof (*iae))));
}
if (ire->ire_type != IRE_CACHE || gw_addr != 0)
goto done;
/*
* only IRE_CACHE entries that are for a directly connected subnet
* get appended to net -> phys addr table
* (others in arp)
*/
ntme.ipNetToMediaIfIndex.o_length = 0;
ill = ire_to_ill(ire);
ASSERT(ill != NULL);
ntme.ipNetToMediaIfIndex.o_length =
ill->ill_name_length == 0 ? 0 :
MIN(OCTET_LENGTH, ill->ill_name_length - 1);
bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes,
ntme.ipNetToMediaIfIndex.o_length);
ntme.ipNetToMediaPhysAddress.o_length = 0;
if (llmp) {
uchar_t *addr;
dlup = (dl_unitdata_req_t *)llmp->b_rptr;
/* Remove sap from address */
if (ill->ill_sap_length < 0)
addr = llmp->b_rptr + dlup->dl_dest_addr_offset;
else
addr = llmp->b_rptr + dlup->dl_dest_addr_offset +
ill->ill_sap_length;
ntme.ipNetToMediaPhysAddress.o_length =
MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes,
ntme.ipNetToMediaPhysAddress.o_length);
}
ntme.ipNetToMediaNetAddress = ire->ire_addr;
/* assume dynamic (may be changed in arp) */
ntme.ipNetToMediaType = 3;
ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t);
bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
ntme.ipNetToMediaInfo.ntm_mask.o_length);
ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED;
if (!snmp_append_data2(ird->ird_netmedia.lp_head,
&ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
(uint_t)sizeof (ntme)));
}
done:
/* bump route index for next pass */
ird->ird_idx++;
kmem_free(re, sizeof (*re));
if (sacnt != 0)
kmem_free(iae, sacnt * sizeof (*iae));
if (gcgrp != NULL)
rw_exit(&gcgrp->gcgrp_rwlock);
}
/*
* ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
*/
static void
ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
{
ill_t *ill;
ipif_t *ipif;
mib2_ipv6RouteEntry_t *re;
mib2_ipAttributeEntry_t *iae, *iaeptr;
in6_addr_t gw_addr_v6;
tsol_ire_gw_secattr_t *attrp;
tsol_gc_t *gc = NULL;
tsol_gcgrp_t *gcgrp = NULL;
uint_t sacnt = 0;
int i;
ASSERT(ire->ire_ipversion == IPV6_VERSION);
if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
return;
if ((attrp = ire->ire_gw_secattr) != NULL) {
mutex_enter(&attrp->igsa_lock);
if ((gc = attrp->igsa_gc) != NULL) {
gcgrp = gc->gc_grp;
ASSERT(gcgrp != NULL);
rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
sacnt = 1;
} else if ((gcgrp = attrp->igsa_gcgrp) != NULL) {
rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
gc = gcgrp->gcgrp_head;
sacnt = gcgrp->gcgrp_count;
}
mutex_exit(&attrp->igsa_lock);
/* do nothing if there's no gc to report */
if (gc == NULL) {
ASSERT(sacnt == 0);
if (gcgrp != NULL) {
/* we might as well drop the lock now */
rw_exit(&gcgrp->gcgrp_rwlock);
gcgrp = NULL;
}
attrp = NULL;
}
ASSERT(gc == NULL || (gcgrp != NULL &&
RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)));
}
ASSERT(sacnt == 0 || gc != NULL);
if (sacnt != 0 &&
(iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) {
kmem_free(re, sizeof (*re));
rw_exit(&gcgrp->gcgrp_rwlock);
return;
}
/*
* Return all IRE types for route table... let caller pick and choose
*/
re->ipv6RouteDest = ire->ire_addr_v6;
re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */
re->ipv6RouteIfIndex.o_length = 0;
ipif = ire->ire_ipif;
if (ire->ire_type == IRE_CACHE) {
ill = (ill_t *)ire->ire_stq->q_ptr;
re->ipv6RouteIfIndex.o_length =
ill->ill_name_length == 0 ? 0 :
MIN(OCTET_LENGTH, ill->ill_name_length - 1);
bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes,
re->ipv6RouteIfIndex.o_length);
} else if (ipif != NULL) {
(void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes,
OCTET_LENGTH);
re->ipv6RouteIfIndex.o_length =
mi_strlen(re->ipv6RouteIfIndex.o_bytes);
}
ASSERT(!(ire->ire_type & IRE_BROADCAST));
mutex_enter(&ire->ire_lock);
gw_addr_v6 = ire->ire_gateway_addr_v6;
mutex_exit(&ire->ire_lock);
if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK))
re->ipv6RouteNextHop = ire->ire_src_addr_v6;
else
re->ipv6RouteNextHop = gw_addr_v6;
/* remote(4), local(3), or discard(2) */
if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
re->ipv6RouteType = 2;
else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6))
re->ipv6RouteType = 3;
else
re->ipv6RouteType = 4;
re->ipv6RouteProtocol = -1;
re->ipv6RoutePolicy = 0;
re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time;
re->ipv6RouteNextHopRDI = 0;
re->ipv6RouteWeight = 0;
re->ipv6RouteMetric = 0;
re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag;
re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag;
re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt;
re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6;
re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count;
re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
re->ipv6RouteInfo.re_ref = ire->ire_refcnt;
re->ipv6RouteInfo.re_flags = ire->ire_flags;
if (ire->ire_flags & RTF_DYNAMIC) {
re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT;
} else {
re->ipv6RouteInfo.re_ire_type = ire->ire_type;
}
if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
(char *)re, (int)sizeof (*re))) {
ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
(uint_t)sizeof (*re)));
}
for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) {
iaeptr->iae_routeidx = ird->ird_idx;
iaeptr->iae_doi = gc->gc_db->gcdb_doi;
iaeptr->iae_slrange = gc->gc_db->gcdb_slrange;
}
if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail,
(char *)iae, sacnt * sizeof (*iae))) {
ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
(unsigned)(sacnt * sizeof (*iae))));
}
/* bump route index for next pass */
ird->ird_idx++;
kmem_free(re, sizeof (*re));
if (sacnt != 0)
kmem_free(iae, sacnt * sizeof (*iae));
if (gcgrp != NULL)
rw_exit(&gcgrp->gcgrp_rwlock);
}
/*
* ndp_walk routine to create ipv6NetToMediaEntryTable
*/
static int
ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird)
{
ill_t *ill;
mib2_ipv6NetToMediaEntry_t ntme;
dl_unitdata_req_t *dl;
ill = nce->nce_ill;
if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */
return (0);
/*
* Neighbor cache entry attached to IRE with on-link
* destination.
*/
ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
ntme.ipv6NetToMediaNetAddress = nce->nce_addr;
if ((ill->ill_flags & ILLF_XRESOLV) &&
(nce->nce_res_mp != NULL)) {
dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr);
ntme.ipv6NetToMediaPhysAddress.o_length =
dl->dl_dest_addr_length;
} else {
ntme.ipv6NetToMediaPhysAddress.o_length =
ill->ill_phys_addr_length;
}
if (nce->nce_res_mp != NULL) {
bcopy((char *)nce->nce_res_mp->b_rptr +
NCE_LL_ADDR_OFFSET(ill),
ntme.ipv6NetToMediaPhysAddress.o_bytes,
ntme.ipv6NetToMediaPhysAddress.o_length);
} else {
bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes,
ill->ill_phys_addr_length);
}
/*
* Note: Returns ND_* states. Should be:
* reachable(1), stale(2), delay(3), probe(4),
* invalid(5), unknown(6)
*/
ntme.ipv6NetToMediaState = nce->nce_state;
ntme.ipv6NetToMediaLastUpdated = 0;
/* other(1), dynamic(2), static(3), local(4) */
if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) {
ntme.ipv6NetToMediaType = 4;
} else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) {
ntme.ipv6NetToMediaType = 1;
} else {
ntme.ipv6NetToMediaType = 2;
}
if (!snmp_append_data2(ird->ird_netmedia.lp_head,
&ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
(uint_t)sizeof (ntme)));
}
return (0);
}
/*
* return (0) if invalid set request, 1 otherwise, including non-tcp requests
*/
/* ARGSUSED */
int
ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
{
switch (level) {
case MIB2_IP:
case MIB2_ICMP:
switch (name) {
default:
break;
}
return (1);
default:
return (1);
}
}
/*
* Called before the options are updated to check if this packet will
* be source routed from here.
* This routine assumes that the options are well formed i.e. that they
* have already been checked.
*/
static boolean_t
ip_source_routed(ipha_t *ipha)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
ire_t *ire;
if (IS_SIMPLE_IPH(ipha)) {
ip2dbg(("not source routed\n"));
return (B_FALSE);
}
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_source_routed: opt %d, len %d\n",
optval, optlen));
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
/*
* If dst is one of our addresses and there are some
* entries left in the source route return (true).
*/
ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (ire == NULL) {
ip2dbg(("ip_source_routed: not next"
" source route 0x%x\n",
ntohl(dst)));
return (B_FALSE);
}
ire_refrele(ire);
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg(("ip_source_routed: end of SR\n"));
return (B_FALSE);
}
return (B_TRUE);
}
}
ip2dbg(("not source routed\n"));
return (B_FALSE);
}
/*
* Check if the packet contains any source route.
*/
static boolean_t
ip_source_route_included(ipha_t *ipha)
{
ipoptp_t opts;
uint8_t optval;
if (IS_SIMPLE_IPH(ipha))
return (B_FALSE);
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
switch (optval) {
case IPOPT_SSRR:
case IPOPT_LSRR:
return (B_TRUE);
}
}
return (B_FALSE);
}
/*
* Called when the IRE expiration timer fires.
*/
/* ARGSUSED */
void
ip_trash_timer_expire(void *args)
{
int flush_flag = 0;
/*
* ip_ire_expire_id is protected by ip_trash_timer_lock.
* This lock makes sure that a new invocation of this function
* that occurs due to an almost immediate timer firing will not
* progress beyond this point until the current invocation is done
*/
mutex_enter(&ip_trash_timer_lock);
ip_ire_expire_id = 0;
mutex_exit(&ip_trash_timer_lock);
/* Periodic timer */
if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) {
/*
* Remove all IRE_CACHE entries since they might
* contain arp information.
*/
flush_flag |= FLUSH_ARP_TIME;
ip_ire_arp_time_elapsed = 0;
IP_STAT(ip_ire_arp_timer_expired);
}
if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) {
/* Remove all redirects */
flush_flag |= FLUSH_REDIRECT_TIME;
ip_ire_rd_time_elapsed = 0;
IP_STAT(ip_ire_redirect_timer_expired);
}
if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) {
/* Increase path mtu */
flush_flag |= FLUSH_MTU_TIME;
ip_ire_pmtu_time_elapsed = 0;
IP_STAT(ip_ire_pmtu_timer_expired);
}
/*
* Optimize for the case when there are no redirects in the
* ftable, that is, no need to walk the ftable in that case.
*/
if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) {
ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire,
(char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL,
ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES);
}
if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) {
ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE,
ire_expire, (char *)(uintptr_t)flush_flag,
IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES);
}
if (flush_flag & FLUSH_MTU_TIME) {
/*
* Walk all IPv6 IRE's and update them
* Note that ARP and redirect timers are not
* needed since NUD handles stale entries.
*/
flush_flag = FLUSH_MTU_TIME;
ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag,
ALL_ZONES);
}
ip_ire_arp_time_elapsed += ip_timer_interval;
ip_ire_rd_time_elapsed += ip_timer_interval;
ip_ire_pmtu_time_elapsed += ip_timer_interval;
/*
* Hold the lock to serialize timeout calls and prevent
* stale values in ip_ire_expire_id. Otherwise it is possible
* for the timer to fire and a new invocation of this function
* to start before the return value of timeout has been stored
* in ip_ire_expire_id by the current invocation.
*/
mutex_enter(&ip_trash_timer_lock);
ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL,
MSEC_TO_TICK(ip_timer_interval));
mutex_exit(&ip_trash_timer_lock);
}
/*
* Called by the memory allocator subsystem directly, when the system
* is running low on memory.
*/
/* ARGSUSED */
void
ip_trash_ire_reclaim(void *args)
{
ire_cache_count_t icc;
ire_cache_reclaim_t icr;
ncc_cache_count_t ncc;
nce_cache_reclaim_t ncr;
uint_t delete_cnt;
/*
* Memory reclaim call back.
* Count unused, offlink, pmtu, and onlink IRE_CACHE entries.
* Then, with a target of freeing 1/Nth of IRE_CACHE
* entries, determine what fraction to free for
* each category of IRE_CACHE entries giving absolute priority
* in the order of onlink, pmtu, offlink, unused (e.g. no pmtu
* entry will be freed unless all offlink entries are freed).
*/
icc.icc_total = 0;
icc.icc_unused = 0;
icc.icc_offlink = 0;
icc.icc_pmtu = 0;
icc.icc_onlink = 0;
ire_walk(ire_cache_count, (char *)&icc);
/*
* Free NCEs for IPv6 like the onlink ires.
*/
ncc.ncc_total = 0;
ncc.ncc_host = 0;
ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc);
ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink +
icc.icc_pmtu + icc.icc_onlink);
delete_cnt = icc.icc_total/ip_ire_reclaim_fraction;
IP_STAT(ip_trash_ire_reclaim_calls);
if (delete_cnt == 0)
return;
IP_STAT(ip_trash_ire_reclaim_success);
/* Always delete all unused offlink entries */
icr.icr_unused = 1;
if (delete_cnt <= icc.icc_unused) {
/*
* Only need to free unused entries. In other words,
* there are enough unused entries to free to meet our
* target number of freed ire cache entries.
*/
icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0;
ncr.ncr_host = 0;
} else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) {
/*
* Only need to free unused entries, plus a fraction of offlink
* entries. It follows from the first if statement that
* icc_offlink is non-zero, and that delete_cnt != icc_unused.
*/
delete_cnt -= icc.icc_unused;
/* Round up # deleted by truncating fraction */
icr.icr_offlink = icc.icc_offlink / delete_cnt;
icr.icr_pmtu = icr.icr_onlink = 0;
ncr.ncr_host = 0;
} else if (delete_cnt <=
icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) {
/*
* Free all unused and offlink entries, plus a fraction of
* pmtu entries. It follows from the previous if statement
* that icc_pmtu is non-zero, and that
* delete_cnt != icc_unused + icc_offlink.
*/
icr.icr_offlink = 1;
delete_cnt -= icc.icc_unused + icc.icc_offlink;
/* Round up # deleted by truncating fraction */
icr.icr_pmtu = icc.icc_pmtu / delete_cnt;
icr.icr_onlink = 0;
ncr.ncr_host = 0;
} else {
/*
* Free all unused, offlink, and pmtu entries, plus a fraction
* of onlink entries. If we're here, then we know that
* icc_onlink is non-zero, and that
* delete_cnt != icc_unused + icc_offlink + icc_pmtu.
*/
icr.icr_offlink = icr.icr_pmtu = 1;
delete_cnt -= icc.icc_unused + icc.icc_offlink +
icc.icc_pmtu;
/* Round up # deleted by truncating fraction */
icr.icr_onlink = icc.icc_onlink / delete_cnt;
/* Using the same delete fraction as for onlink IREs */
ncr.ncr_host = ncc.ncc_host / delete_cnt;
}
#ifdef DEBUG
ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d "
"fractions %d/%d/%d/%d\n",
icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total,
icc.icc_unused, icc.icc_offlink,
icc.icc_pmtu, icc.icc_onlink,
icr.icr_unused, icr.icr_offlink,
icr.icr_pmtu, icr.icr_onlink));
#endif
ire_walk(ire_cache_reclaim, (char *)&icr);
if (ncr.ncr_host != 0)
ndp_walk(NULL, (pfi_t)ndp_cache_reclaim,
(uchar_t *)&ncr);
#ifdef DEBUG
icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0;
icc.icc_pmtu = 0; icc.icc_onlink = 0;
ire_walk(ire_cache_count, (char *)&icc);
ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n",
icc.icc_total, icc.icc_unused, icc.icc_offlink,
icc.icc_pmtu, icc.icc_onlink));
#endif
}
/*
* ip_unbind is called when a copy of an unbind request is received from the
* upper level protocol. We remove this conn from any fanout hash list it is
* on, and zero out the bind information. No reply is expected up above.
*/
mblk_t *
ip_unbind(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
ASSERT(!MUTEX_HELD(&connp->conn_lock));
if (is_system_labeled() && connp->conn_anon_port) {
(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
connp->conn_mlp_type, connp->conn_ulp,
ntohs(connp->conn_lport), B_FALSE);
connp->conn_anon_port = 0;
}
connp->conn_mlp_type = mlptSingle;
ipcl_hash_remove(connp);
ASSERT(mp->b_cont == NULL);
/*
* Convert mp into a T_OK_ACK
*/
mp = mi_tpi_ok_ack_alloc(mp);
/*
* should not happen in practice... T_OK_ACK is smaller than the
* original message.
*/
if (mp == NULL)
return (NULL);
/*
* Don't bzero the ports if its TCP since TCP still needs the
* lport to remove it from its own bind hash. TCP will do the
* cleanup.
*/
if (!IPCL_IS_TCP(connp))
bzero(&connp->u_port, sizeof (connp->u_port));
return (mp);
}
/*
* Write side put procedure. Outbound data, IOCTLs, responses from
* resolvers, etc, come down through here.
*
* arg2 is always a queue_t *.
* When that queue is an ill_t (i.e. q_next != NULL), then arg must be
* the zoneid.
* When that queue is not an ill_t, then arg must be a conn_t pointer.
*/
void
ip_output(void *arg, mblk_t *mp, void *arg2, int caller)
{
conn_t *connp = NULL;
queue_t *q = (queue_t *)arg2;
ipha_t *ipha;
#define rptr ((uchar_t *)ipha)
ire_t *ire = NULL;
ire_t *sctp_ire = NULL;
uint32_t v_hlen_tos_len;
ipaddr_t dst;
mblk_t *first_mp = NULL;
boolean_t mctl_present;
ipsec_out_t *io;
int match_flags;
ill_t *attach_ill = NULL;
/* Bind to IPIF_NOFAILOVER ill etc. */
ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */
ipif_t *dst_ipif;
boolean_t multirt_need_resolve = B_FALSE;
mblk_t *copy_mp = NULL;
int err;
zoneid_t zoneid;
int adjust;
uint16_t iplen;
boolean_t need_decref = B_FALSE;
boolean_t ignore_dontroute = B_FALSE;
boolean_t ignore_nexthop = B_FALSE;
boolean_t ip_nexthop = B_FALSE;
ipaddr_t nexthop_addr;
#ifdef _BIG_ENDIAN
#define V_HLEN (v_hlen_tos_len >> 24)
#else
#define V_HLEN (v_hlen_tos_len & 0xFF)
#endif
TRACE_1(TR_FAC_IP, TR_IP_WPUT_START,
"ip_wput_start: q %p", q);
/*
* ip_wput fast path
*/
/* is packet from ARP ? */
if (q->q_next != NULL) {
zoneid = (zoneid_t)(uintptr_t)arg;
goto qnext;
}
connp = (conn_t *)arg;
ASSERT(connp != NULL);
zoneid = connp->conn_zoneid;
/* is queue flow controlled? */
if ((q->q_first != NULL || connp->conn_draining) &&
(caller == IP_WPUT)) {
ASSERT(!need_decref);
(void) putq(q, mp);
return;
}
/* Multidata transmit? */
if (DB_TYPE(mp) == M_MULTIDATA) {
/*
* We should never get here, since all Multidata messages
* originating from tcp should have been directed over to
* tcp_multisend() in the first place.
*/
BUMP_MIB(&ip_mib, ipOutDiscards);
freemsg(mp);
return;
} else if (DB_TYPE(mp) != M_DATA)
goto notdata;
if (mp->b_flag & MSGHASREF) {
ASSERT(connp->conn_ulp == IPPROTO_SCTP);
mp->b_flag &= ~MSGHASREF;
SCTP_EXTRACT_IPINFO(mp, sctp_ire);
need_decref = B_TRUE;
}
ipha = (ipha_t *)mp->b_rptr;
/* is IP header non-aligned or mblk smaller than basic IP header */
#ifndef SAFETY_BEFORE_SPEED
if (!OK_32PTR(rptr) ||
(mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH)
goto hdrtoosmall;
#endif
ASSERT(OK_32PTR(ipha));
/*
* This function assumes that mp points to an IPv4 packet. If it's the
* wrong version, we'll catch it again in ip_output_v6.
*
* Note that this is *only* locally-generated output here, and never
* forwarded data, and that we need to deal only with transports that
* don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to
* label.)
*/
if (is_system_labeled() &&
(ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) &&
!connp->conn_ulp_labeled) {
err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust,
connp->conn_mac_exempt);
ipha = (ipha_t *)mp->b_rptr;
if (err != 0) {
first_mp = mp;
if (err == EINVAL)
goto icmp_parameter_problem;
ip2dbg(("ip_wput: label check failed (%d)\n", err));
goto drop_pkt;
}
iplen = ntohs(ipha->ipha_length) + adjust;
ipha->ipha_length = htons(iplen);
}
/*
* If there is a policy, try to attach an ipsec_out in
* the front. At the end, first_mp either points to a
* M_DATA message or IPSEC_OUT message linked to a
* M_DATA message. We have to do it now as we might
* lose the "conn" if we go through ip_newroute.
*/
if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) {
if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL,
ipha->ipha_protocol)) == NULL)) {
if (need_decref)
CONN_DEC_REF(connp);
return;
} else {
ASSERT(mp->b_datap->db_type == M_CTL);
first_mp = mp;
mp = mp->b_cont;
mctl_present = B_TRUE;
}
} else {
first_mp = mp;
mctl_present = B_FALSE;
}
v_hlen_tos_len = ((uint32_t *)ipha)[0];
/* is wrong version or IP options present */
if (V_HLEN != IP_SIMPLE_HDR_VERSION)
goto version_hdrlen_check;
dst = ipha->ipha_dst;
if (connp->conn_nofailover_ill != NULL) {
attach_ill = conn_get_held_ill(connp,
&connp->conn_nofailover_ill, &err);
if (err == ILL_LOOKUP_FAILED) {
if (need_decref)
CONN_DEC_REF(connp);
freemsg(first_mp);
return;
}
}
/* is packet multicast? */
if (CLASSD(dst))
goto multicast;
if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) ||
(connp->conn_nexthop_set)) {
/*
* If the destination is a broadcast or a loopback
* address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go
* through the standard path. But in the case of local
* destination only SO_DONTROUTE and IP_NEXTHOP go through
* the standard path not IP_XMIT_IF.
*/
ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) &&
(ire->ire_type != IRE_LOOPBACK))) {
if ((connp->conn_dontroute ||
connp->conn_nexthop_set) && (ire != NULL) &&
(ire->ire_type == IRE_LOCAL))
goto standard_path;
if (ire != NULL) {
ire_refrele(ire);
/* No more access to ire */
ire = NULL;
}
/*
* bypass routing checks and go directly to
* interface.
*/
if (connp->conn_dontroute) {
goto dontroute;
} else if (connp->conn_nexthop_set) {
ip_nexthop = B_TRUE;
nexthop_addr = connp->conn_nexthop_v4;
goto send_from_ill;
}
/*
* If IP_XMIT_IF socket option is set,
* then we allow unicast and multicast
* packets to go through the ill. It is
* quite possible that the destination
* is not in the ire cache table and we
* do not want to go to ip_newroute()
* instead we call ip_newroute_ipif.
*/
xmit_ill = conn_get_held_ill(connp,
&connp->conn_xmit_if_ill, &err);
if (err == ILL_LOOKUP_FAILED) {
if (attach_ill != NULL)
ill_refrele(attach_ill);
if (need_decref)
CONN_DEC_REF(connp);
freemsg(first_mp);
return;
}
goto send_from_ill;
}
standard_path:
/* Must be a broadcast, a loopback or a local ire */
if (ire != NULL) {
ire_refrele(ire);
/* No more access to ire */
ire = NULL;
}
}
if (attach_ill != NULL)
goto send_from_ill;
/*
* We cache IRE_CACHEs to avoid lookups. We don't do
* this for the tcp global queue and listen end point
* as it does not really have a real destination to
* talk to. This is also true for SCTP.
*/
if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) &&
!connp->conn_fully_bound) {
ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
if (ire == NULL)
goto noirefound;
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "end");
/*
* Check if the ire has the RTF_MULTIRT flag, inherited
* from an IRE_OFFSUBNET ire entry in ip_newroute().
*/
if (ire->ire_flags & RTF_MULTIRT) {
/*
* Force the TTL of multirouted packets if required.
* The TTL of such packets is bounded by the
* ip_multirt_ttl ndd variable.
*/
if ((ip_multirt_ttl > 0) &&
(ipha->ipha_ttl > ip_multirt_ttl)) {
ip2dbg(("ip_wput: forcing multirt TTL to %d "
"(was %d), dst 0x%08x\n",
ip_multirt_ttl, ipha->ipha_ttl,
ntohl(ire->ire_addr)));
ipha->ipha_ttl = ip_multirt_ttl;
}
/*
* We look at this point if there are pending
* unresolved routes. ire_multirt_resolvable()
* checks in O(n) that all IRE_OFFSUBNET ire
* entries for the packet's destination and
* flagged RTF_MULTIRT are currently resolved.
* If some remain unresolved, we make a copy
* of the current message. It will be used
* to initiate additional route resolutions.
*/
multirt_need_resolve =
ire_multirt_need_resolve(ire->ire_addr,
MBLK_GETLABEL(first_mp));
ip2dbg(("ip_wput[TCP]: ire %p, "
"multirt_need_resolve %d, first_mp %p\n",
(void *)ire, multirt_need_resolve,
(void *)first_mp));
if (multirt_need_resolve) {
copy_mp = copymsg(first_mp);
if (copy_mp != NULL) {
MULTIRT_DEBUG_TAG(copy_mp);
}
}
}
ip_wput_ire(q, first_mp, ire, connp, caller, zoneid);
/*
* Try to resolve another multiroute if
* ire_multirt_need_resolve() deemed it necessary.
*/
if (copy_mp != NULL) {
ip_newroute(q, copy_mp, dst, NULL, connp, zoneid);
}
if (need_decref)
CONN_DEC_REF(connp);
return;
}
/*
* Access to conn_ire_cache. (protected by conn_lock)
*
* IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab
* the ire bucket lock here to check for CONDEMNED as it is okay to
* send a packet or two with the IRE_CACHE that is going away.
* Access to the ire requires an ire refhold on the ire prior to
* its use since an interface unplumb thread may delete the cached
* ire and release the refhold at any time.
*
* Caching an ire in the conn_ire_cache
*
* o Caching an ire pointer in the conn requires a strict check for
* IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant
* ires before cleaning up the conns. So the caching of an ire pointer
* in the conn is done after making sure under the bucket lock that the
* ire has not yet been marked CONDEMNED. Otherwise we will end up
* caching an ire after the unplumb thread has cleaned up the conn.
* If the conn does not send a packet subsequently the unplumb thread
* will be hanging waiting for the ire count to drop to zero.
*
* o We also need to atomically test for a null conn_ire_cache and
* set the conn_ire_cache under the the protection of the conn_lock
* to avoid races among concurrent threads trying to simultaneously
* cache an ire in the conn_ire_cache.
*/
mutex_enter(&connp->conn_lock);
ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache;
if (ire != NULL && ire->ire_addr == dst &&
!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
IRE_REFHOLD(ire);
mutex_exit(&connp->conn_lock);
} else {
boolean_t cached = B_FALSE;
connp->conn_ire_cache = NULL;
mutex_exit(&connp->conn_lock);
/* Release the old ire */
if (ire != NULL && sctp_ire == NULL)
IRE_REFRELE_NOTR(ire);
ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
if (ire == NULL)
goto noirefound;
IRE_REFHOLD_NOTR(ire);
mutex_enter(&connp->conn_lock);
if (!(connp->conn_state_flags & CONN_CLOSING) &&
connp->conn_ire_cache == NULL) {
rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
connp->conn_ire_cache = ire;
cached = B_TRUE;
}
rw_exit(&ire->ire_bucket->irb_lock);
}
mutex_exit(&connp->conn_lock);
/*
* We can continue to use the ire but since it was
* not cached, we should drop the extra reference.
*/
if (!cached)
IRE_REFRELE_NOTR(ire);
}
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "end");
/*
* Check if the ire has the RTF_MULTIRT flag, inherited
* from an IRE_OFFSUBNET ire entry in ip_newroute().
*/
if (ire->ire_flags & RTF_MULTIRT) {
/*
* Force the TTL of multirouted packets if required.
* The TTL of such packets is bounded by the
* ip_multirt_ttl ndd variable.
*/
if ((ip_multirt_ttl > 0) &&
(ipha->ipha_ttl > ip_multirt_ttl)) {
ip2dbg(("ip_wput: forcing multirt TTL to %d "
"(was %d), dst 0x%08x\n",
ip_multirt_ttl, ipha->ipha_ttl,
ntohl(ire->ire_addr)));
ipha->ipha_ttl = ip_multirt_ttl;
}
/*
* At this point, we check to see if there are any pending
* unresolved routes. ire_multirt_resolvable()
* checks in O(n) that all IRE_OFFSUBNET ire
* entries for the packet's destination and
* flagged RTF_MULTIRT are currently resolved.
* If some remain unresolved, we make a copy
* of the current message. It will be used
* to initiate additional route resolutions.
*/
multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr,
MBLK_GETLABEL(first_mp));
ip2dbg(("ip_wput[not TCP]: ire %p, "
"multirt_need_resolve %d, first_mp %p\n",
(void *)ire, multirt_need_resolve, (void *)first_mp));
if (multirt_need_resolve) {
copy_mp = copymsg(first_mp);
if (copy_mp != NULL) {
MULTIRT_DEBUG_TAG(copy_mp);
}
}
}
ip_wput_ire(q, first_mp, ire, connp, caller, zoneid);
/*
* Try to resolve another multiroute if
* ire_multirt_resolvable() deemed it necessary
*/
if (copy_mp != NULL) {
ip_newroute(q, copy_mp, dst, NULL, connp, zoneid);
}
if (need_decref)
CONN_DEC_REF(connp);
return;
qnext:
/*
* Upper Level Protocols pass down complete IP datagrams
* as M_DATA messages. Everything else is a sideshow.
*
* 1) We could be re-entering ip_wput because of ip_neworute
* in which case we could have a IPSEC_OUT message. We
* need to pass through ip_wput like other datagrams and
* hence cannot branch to ip_wput_nondata.
*
* 2) ARP, AH, ESP, and other clients who are on the module
* instance of IP stream, give us something to deal with.
* We will handle AH and ESP here and rest in ip_wput_nondata.
*
* 3) ICMP replies also could come here.
*/
if (DB_TYPE(mp) != M_DATA) {
notdata:
if (DB_TYPE(mp) == M_CTL) {
/*
* M_CTL messages are used by ARP, AH and ESP to
* communicate with IP. We deal with IPSEC_IN and
* IPSEC_OUT here. ip_wput_nondata handles other
* cases.
*/
ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr;
if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) {
first_mp = mp->b_cont;
first_mp->b_flag &= ~MSGHASREF;
ASSERT(connp->conn_ulp == IPPROTO_SCTP);
SCTP_EXTRACT_IPINFO(first_mp, sctp_ire);
CONN_DEC_REF(connp);
connp = NULL;
}
if (ii->ipsec_info_type == IPSEC_IN) {
/*
* Either this message goes back to
* IPSEC for further processing or to
* ULP after policy checks.
*/
ip_fanout_proto_again(mp, NULL, NULL, NULL);
return;
} else if (ii->ipsec_info_type == IPSEC_OUT) {
io = (ipsec_out_t *)ii;
if (io->ipsec_out_proc_begin) {
/*
* IPSEC processing has already started.
* Complete it.
* IPQoS notes: We don't care what is
* in ipsec_out_ill_index since this
* won't be processed for IPQoS policies
* in ipsec_out_process.
*/
ipsec_out_process(q, mp, NULL,
io->ipsec_out_ill_index);
return;
} else {
connp = (q->q_next != NULL) ?
NULL : Q_TO_CONN(q);
first_mp = mp;
mp = mp->b_cont;
mctl_present = B_TRUE;
}
zoneid = io->ipsec_out_zoneid;
ASSERT(zoneid != ALL_ZONES);
} else if (ii->ipsec_info_type == IPSEC_CTL) {
/*
* It's an IPsec control message requesting
* an SADB update to be sent to the IPsec
* hardware acceleration capable ills.
*/
ipsec_ctl_t *ipsec_ctl =
(ipsec_ctl_t *)mp->b_rptr;
ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa;
uint_t satype = ipsec_ctl->ipsec_ctl_sa_type;
mblk_t *cmp = mp->b_cont;
ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t));
ASSERT(cmp != NULL);
freeb(mp);
ill_ipsec_capab_send_all(satype, cmp, sa);
return;
} else {
/*
* This must be ARP or special TSOL signaling.
*/
ip_wput_nondata(NULL, q, mp, NULL);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "nondata");
return;
}
} else {
/*
* This must be non-(ARP/AH/ESP) messages.
*/
ASSERT(!need_decref);
ip_wput_nondata(NULL, q, mp, NULL);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "nondata");
return;
}
} else {
first_mp = mp;
mctl_present = B_FALSE;
}
ASSERT(first_mp != NULL);
/*
* ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if
* to make sure that this packet goes out on the same interface it
* came in. We handle that here.
*/
if (mctl_present) {
uint_t ifindex;
io = (ipsec_out_t *)first_mp->b_rptr;
if (io->ipsec_out_attach_if ||
io->ipsec_out_xmit_if ||
io->ipsec_out_ip_nexthop) {
ill_t *ill;
/*
* We may have lost the conn context if we are
* coming here from ip_newroute(). Copy the
* nexthop information.
*/
if (io->ipsec_out_ip_nexthop) {
ip_nexthop = B_TRUE;
nexthop_addr = io->ipsec_out_nexthop_addr;
ipha = (ipha_t *)mp->b_rptr;
dst = ipha->ipha_dst;
goto send_from_ill;
} else {
ASSERT(io->ipsec_out_ill_index != 0);
ifindex = io->ipsec_out_ill_index;
ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
NULL, NULL, NULL, NULL);
/*
* ipsec_out_xmit_if bit is used to tell
* ip_wput to use the ill to send outgoing data
* as we have no conn when data comes from ICMP
* error msg routines. Currently this feature is
* only used by ip_mrtun_forward routine.
*/
if (io->ipsec_out_xmit_if) {
xmit_ill = ill;
if (xmit_ill == NULL) {
ip1dbg(("ip_output:bad ifindex "
"for xmit_ill %d\n",
ifindex));
freemsg(first_mp);
BUMP_MIB(&ip_mib,
ipOutDiscards);
ASSERT(!need_decref);
return;
}
/* Free up the ipsec_out_t mblk */
ASSERT(first_mp->b_cont == mp);
first_mp->b_cont = NULL;
freeb(first_mp);
/* Just send the IP header+ICMP+data */
first_mp = mp;
ipha = (ipha_t *)mp->b_rptr;
dst = ipha->ipha_dst;
goto send_from_ill;
} else {
attach_ill = ill;
}
if (attach_ill == NULL) {
ASSERT(xmit_ill == NULL);
ip1dbg(("ip_output: bad ifindex for "
"(BIND TO IPIF_NOFAILOVER) %d\n",
ifindex));
freemsg(first_mp);
BUMP_MIB(&ip_mib, ipOutDiscards);
ASSERT(!need_decref);
return;
}
}
}
}
ASSERT(xmit_ill == NULL);
/* We have a complete IP datagram heading outbound. */
ipha = (ipha_t *)mp->b_rptr;
#ifndef SPEED_BEFORE_SAFETY
/*
* Make sure we have a full-word aligned message and that at least
* a simple IP header is accessible in the first message. If not,
* try a pullup.
*/
if (!OK_32PTR(rptr) ||
(mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) {
hdrtoosmall:
if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) {
BUMP_MIB(&ip_mib, ipOutDiscards);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "pullupfailed");
if (first_mp == NULL)
first_mp = mp;
goto drop_pkt;
}
/* This function assumes that mp points to an IPv4 packet. */
if (is_system_labeled() && q->q_next == NULL &&
(*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) &&
!connp->conn_ulp_labeled) {
err = tsol_check_label(BEST_CRED(mp, connp), &mp,
&adjust, connp->conn_mac_exempt);
ipha = (ipha_t *)mp->b_rptr;
if (first_mp != NULL)
first_mp->b_cont = mp;
if (err != 0) {
if (first_mp == NULL)
first_mp = mp;
if (err == EINVAL)
goto icmp_parameter_problem;
ip2dbg(("ip_wput: label check failed (%d)\n",
err));
goto drop_pkt;
}
iplen = ntohs(ipha->ipha_length) + adjust;
ipha->ipha_length = htons(iplen);
}
ipha = (ipha_t *)mp->b_rptr;
if (first_mp == NULL) {
ASSERT(attach_ill == NULL && xmit_ill == NULL);
/*
* If we got here because of "goto hdrtoosmall"
* We need to attach a IPSEC_OUT.
*/
if (connp->conn_out_enforce_policy) {
if (((mp = ipsec_attach_ipsec_out(mp, connp,
NULL, ipha->ipha_protocol)) == NULL)) {
if (need_decref)
CONN_DEC_REF(connp);
return;
} else {
ASSERT(mp->b_datap->db_type == M_CTL);
first_mp = mp;
mp = mp->b_cont;
mctl_present = B_TRUE;
}
} else {
first_mp = mp;
mctl_present = B_FALSE;
}
}
}
#endif
/* Most of the code below is written for speed, not readability */
v_hlen_tos_len = ((uint32_t *)ipha)[0];
/*
* If ip_newroute() fails, we're going to need a full
* header for the icmp wraparound.
*/
if (V_HLEN != IP_SIMPLE_HDR_VERSION) {
uint_t v_hlen;
version_hdrlen_check:
ASSERT(first_mp != NULL);
v_hlen = V_HLEN;
/*
* siphon off IPv6 packets coming down from transport
* layer modules here.
* Note: high-order bit carries NUD reachability confirmation
*/
if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) {
/*
* XXX implement a IPv4 and IPv6 packet counter per
* conn and switch when ratio exceeds e.g. 10:1
*/
#ifdef notyet
if (q->q_next == NULL) /* Avoid ill queue */
ip_setqinfo(RD(q), B_TRUE, B_TRUE);
#endif
BUMP_MIB(&ip_mib, ipOutIPv6);
ASSERT(xmit_ill == NULL);
if (attach_ill != NULL)
ill_refrele(attach_ill);
if (need_decref)
mp->b_flag |= MSGHASREF;
(void) ip_output_v6(arg, first_mp, arg2, caller);
return;
}
if ((v_hlen >> 4) != IP_VERSION) {
BUMP_MIB(&ip_mib, ipOutDiscards);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "badvers");
goto drop_pkt;
}
/*
* Is the header length at least 20 bytes?
*
* Are there enough bytes accessible in the header? If
* not, try a pullup.
*/
v_hlen &= 0xF;
v_hlen <<= 2;
if (v_hlen < IP_SIMPLE_HDR_LENGTH) {
BUMP_MIB(&ip_mib, ipOutDiscards);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "badlen");
goto drop_pkt;
}
if (v_hlen > (mp->b_wptr - rptr)) {
if (!pullupmsg(mp, v_hlen)) {
BUMP_MIB(&ip_mib, ipOutDiscards);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "badpullup2");
goto drop_pkt;
}
ipha = (ipha_t *)mp->b_rptr;
}
/*
* Move first entry from any source route into ipha_dst and
* verify the options
*/
if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) {
ASSERT(xmit_ill == NULL);
if (attach_ill != NULL)
ill_refrele(attach_ill);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "badopts");
if (need_decref)
CONN_DEC_REF(connp);
return;
}
}
dst = ipha->ipha_dst;
/*
* Try to get an IRE_CACHE for the destination address. If we can't,
* we have to run the packet through ip_newroute which will take
* the appropriate action to arrange for an IRE_CACHE, such as querying
* a resolver, or assigning a default gateway, etc.
*/
if (CLASSD(dst)) {
ipif_t *ipif;
uint32_t setsrc = 0;
multicast:
ASSERT(first_mp != NULL);
ASSERT(xmit_ill == NULL);
ip2dbg(("ip_wput: CLASSD\n"));
if (connp == NULL) {
/*
* Use the first good ipif on the ill.
* XXX Should this ever happen? (Appears
* to show up with just ppp and no ethernet due
* to in.rdisc.)
* However, ire_send should be able to
* call ip_wput_ire directly.
*
* XXX Also, this can happen for ICMP and other packets
* with multicast source addresses. Perhaps we should
* fix things so that we drop the packet in question,
* but for now, just run with it.
*/
ill_t *ill = (ill_t *)q->q_ptr;
/*
* Don't honor attach_if for this case. If ill
* is part of the group, ipif could belong to
* any ill and we cannot maintain attach_ill
* and ipif_ill same anymore and the assert
* below would fail.
*/
if (mctl_present && io->ipsec_out_attach_if) {
io->ipsec_out_ill_index = 0;
io->ipsec_out_attach_if = B_FALSE;
ASSERT(attach_ill != NULL);
ill_refrele(attach_ill);
attach_ill = NULL;
}
ASSERT(attach_ill == NULL);
ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID);
if (ipif == NULL) {
if (need_decref)
CONN_DEC_REF(connp);
freemsg(first_mp);
return;
}
ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n",
ntohl(dst), ill->ill_name));
} else {
/*
* If both IP_MULTICAST_IF and IP_XMIT_IF are set,
* IP_XMIT_IF is honoured.
* Block comment above this function explains the
* locking mechanism used here
*/
xmit_ill = conn_get_held_ill(connp,
&connp->conn_xmit_if_ill, &err);
if (err == ILL_LOOKUP_FAILED) {
ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n"));
goto drop_pkt;
}
if (xmit_ill == NULL) {
ipif = conn_get_held_ipif(connp,
&connp->conn_multicast_ipif, &err);
if (err == IPIF_LOOKUP_FAILED) {
ip1dbg(("ip_wput: No ipif for "
"multicast\n"));
BUMP_MIB(&ip_mib, ipOutNoRoutes);
goto drop_pkt;
}
}
if (xmit_ill != NULL) {
ipif = ipif_get_next_ipif(NULL, xmit_ill);
if (ipif == NULL) {
ip1dbg(("ip_wput: No ipif for "
"IP_XMIT_IF\n"));
BUMP_MIB(&ip_mib, ipOutNoRoutes);
goto drop_pkt;
}
} else if (ipif == NULL || ipif->ipif_isv6) {
/*
* We must do this ipif determination here
* else we could pass through ip_newroute
* and come back here without the conn context.
*
* Note: we do late binding i.e. we bind to
* the interface when the first packet is sent.
* For performance reasons we do not rebind on
* each packet but keep the binding until the
* next IP_MULTICAST_IF option.
*
* conn_multicast_{ipif,ill} are shared between
* IPv4 and IPv6 and AF_INET6 sockets can
* send both IPv4 and IPv6 packets. Hence
* we have to check that "isv6" matches above.
*/
if (ipif != NULL)
ipif_refrele(ipif);
ipif = ipif_lookup_group(dst, zoneid);
if (ipif == NULL) {
ip1dbg(("ip_wput: No ipif for "
"multicast\n"));
BUMP_MIB(&ip_mib, ipOutNoRoutes);
goto drop_pkt;
}
err = conn_set_held_ipif(connp,
&connp->conn_multicast_ipif, ipif);
if (err == IPIF_LOOKUP_FAILED) {
ipif_refrele(ipif);
ip1dbg(("ip_wput: No ipif for "
"multicast\n"));
BUMP_MIB(&ip_mib, ipOutNoRoutes);
goto drop_pkt;
}
}
}
ASSERT(!ipif->ipif_isv6);
/*
* As we may lose the conn by the time we reach ip_wput_ire,
* we copy conn_multicast_loop and conn_dontroute on to an
* ipsec_out. In case if this datagram goes out secure,
* we need the ill_index also. Copy that also into the
* ipsec_out.
*/
if (mctl_present) {
io = (ipsec_out_t *)first_mp->b_rptr;
ASSERT(first_mp->b_datap->db_type == M_CTL);
ASSERT(io->ipsec_out_type == IPSEC_OUT);
} else {
ASSERT(mp == first_mp);
if ((first_mp = allocb(sizeof (ipsec_info_t),
BPRI_HI)) == NULL) {
ipif_refrele(ipif);
first_mp = mp;
goto drop_pkt;
}
first_mp->b_datap->db_type = M_CTL;
first_mp->b_wptr += sizeof (ipsec_info_t);
/* ipsec_out_secure is B_FALSE now */
bzero(first_mp->b_rptr, sizeof (ipsec_info_t));
io = (ipsec_out_t *)first_mp->b_rptr;
io->ipsec_out_type = IPSEC_OUT;
io->ipsec_out_len = sizeof (ipsec_out_t);
io->ipsec_out_use_global_policy = B_TRUE;
first_mp->b_cont = mp;
mctl_present = B_TRUE;
}
if (attach_ill != NULL) {
ASSERT(attach_ill == ipif->ipif_ill);
match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
/*
* Check if we need an ire that will not be
* looked up by anybody else i.e. HIDDEN.
*/
if (ill_is_probeonly(attach_ill)) {
match_flags |= MATCH_IRE_MARK_HIDDEN;
}
io->ipsec_out_ill_index =
attach_ill->ill_phyint->phyint_ifindex;
io->ipsec_out_attach_if = B_TRUE;
} else {
match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
io->ipsec_out_ill_index =
ipif->ipif_ill->ill_phyint->phyint_ifindex;
}
if (connp != NULL) {
io->ipsec_out_multicast_loop =
connp->conn_multicast_loop;
io->ipsec_out_dontroute = connp->conn_dontroute;
io->ipsec_out_zoneid = connp->conn_zoneid;
}
/*
* If the application uses IP_MULTICAST_IF with
* different logical addresses of the same ILL, we
* need to make sure that the soruce address of
* the packet matches the logical IP address used
* in the option. We do it by initializing ipha_src
* here. This should keep IPSEC also happy as
* when we return from IPSEC processing, we don't
* have to worry about getting the right address on
* the packet. Thus it is sufficient to look for
* IRE_CACHE using MATCH_IRE_ILL rathen than
* MATCH_IRE_IPIF.
*
* NOTE : We need to do it for non-secure case also as
* this might go out secure if there is a global policy
* match in ip_wput_ire. For bind to IPIF_NOFAILOVER
* address, the source should be initialized already and
* hence we won't be initializing here.
*
* As we do not have the ire yet, it is possible that
* we set the source address here and then later discover
* that the ire implies the source address to be assigned
* through the RTF_SETSRC flag.
* In that case, the setsrc variable will remind us
* that overwritting the source address by the one
* of the RTF_SETSRC-flagged ire is allowed.
*/
if (ipha->ipha_src == INADDR_ANY &&
(connp == NULL || !connp->conn_unspec_src)) {
ipha->ipha_src = ipif->ipif_src_addr;
setsrc = RTF_SETSRC;
}
/*
* Find an IRE which matches the destination and the outgoing
* queue (i.e. the outgoing interface.)
* For loopback use a unicast IP address for
* the ire lookup.
*/
if (ipif->ipif_ill->ill_phyint->phyint_flags &
PHYI_LOOPBACK) {
dst = ipif->ipif_lcl_addr;
}
/*
* If IP_XMIT_IF is set, we branch out to ip_newroute_ipif.
* We don't need to lookup ire in ctable as the packet
* needs to be sent to the destination through the specified
* ill irrespective of ires in the cache table.
*/
ire = NULL;
if (xmit_ill == NULL) {
ire = ire_ctable_lookup(dst, 0, 0, ipif,
zoneid, MBLK_GETLABEL(mp), match_flags);
}
/*
* refrele attach_ill as its not needed anymore.
*/
if (attach_ill != NULL) {
ill_refrele(attach_ill);
attach_ill = NULL;
}
if (ire == NULL) {
/*
* Multicast loopback and multicast forwarding is
* done in ip_wput_ire.
*
* Mark this packet to make it be delivered to
* ip_wput_ire after the new ire has been
* created.
*
* The call to ip_newroute_ipif takes into account
* the setsrc reminder. In any case, we take care
* of the RTF_MULTIRT flag.
*/
mp->b_prev = mp->b_next = NULL;
if (xmit_ill == NULL ||
xmit_ill->ill_ipif_up_count > 0) {
ip_newroute_ipif(q, first_mp, ipif, dst, connp,
setsrc | RTF_MULTIRT, zoneid);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "noire");
} else {
freemsg(first_mp);
}
ipif_refrele(ipif);
if (xmit_ill != NULL)
ill_refrele(xmit_ill);
if (need_decref)
CONN_DEC_REF(connp);
return;
}
ipif_refrele(ipif);
ipif = NULL;
ASSERT(xmit_ill == NULL);
/*
* Honor the RTF_SETSRC flag for multicast packets,
* if allowed by the setsrc reminder.
*/
if ((ire->ire_flags & RTF_SETSRC) && setsrc) {
ipha->ipha_src = ire->ire_src_addr;
}
/*
* Unconditionally force the TTL to 1 for
* multirouted multicast packets:
* multirouted multicast should not cross
* multicast routers.
*/
if (ire->ire_flags & RTF_MULTIRT) {
if (ipha->ipha_ttl > 1) {
ip2dbg(("ip_wput: forcing multicast "
"multirt TTL to 1 (was %d), dst 0x%08x\n",
ipha->ipha_ttl, ntohl(ire->ire_addr)));
ipha->ipha_ttl = 1;
}
}
} else {
ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
if ((ire != NULL) && (ire->ire_type &
(IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) {
ignore_dontroute = B_TRUE;
ignore_nexthop = B_TRUE;
}
if (ire != NULL) {
ire_refrele(ire);
ire = NULL;
}
/*
* Guard against coming in from arp in which case conn is NULL.
* Also guard against non M_DATA with dontroute set but
* destined to local, loopback or broadcast addresses.
*/
if (connp != NULL && connp->conn_dontroute &&
!ignore_dontroute) {
dontroute:
/*
* Set TTL to 1 if SO_DONTROUTE is set to prevent
* routing protocols from seeing false direct
* connectivity.
*/
ipha->ipha_ttl = 1;
/*
* If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL)
* along with SO_DONTROUTE, higher precedence is
* given to IP_XMIT_IF and the IP_XMIT_IF ipif is used.
*/
if (connp->conn_xmit_if_ill == NULL) {
/* If suitable ipif not found, drop packet */
dst_ipif = ipif_lookup_onlink_addr(dst, zoneid);
if (dst_ipif == NULL) {
ip1dbg(("ip_wput: no route for "
"dst using SO_DONTROUTE\n"));
BUMP_MIB(&ip_mib, ipOutNoRoutes);
mp->b_prev = mp->b_next = NULL;
if (first_mp == NULL)
first_mp = mp;
goto drop_pkt;
} else {
/*
* If suitable ipif has been found, set
* xmit_ill to the corresponding
* ipif_ill because we'll be following
* the IP_XMIT_IF logic.
*/
ASSERT(xmit_ill == NULL);
xmit_ill = dst_ipif->ipif_ill;
mutex_enter(&xmit_ill->ill_lock);
if (!ILL_CAN_LOOKUP(xmit_ill)) {
mutex_exit(&xmit_ill->ill_lock);
xmit_ill = NULL;
ipif_refrele(dst_ipif);
ip1dbg(("ip_wput: no route for"
" dst using"
" SO_DONTROUTE\n"));
BUMP_MIB(&ip_mib,
ipOutNoRoutes);
mp->b_prev = mp->b_next = NULL;
if (first_mp == NULL)
first_mp = mp;
goto drop_pkt;
}
ill_refhold_locked(xmit_ill);
mutex_exit(&xmit_ill->ill_lock);
ipif_refrele(dst_ipif);
}
}
}
/*
* If we are bound to IPIF_NOFAILOVER address, look for
* an IRE_CACHE matching the ill.
*/
send_from_ill:
if (attach_ill != NULL) {
ipif_t *attach_ipif;
match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
/*
* Check if we need an ire that will not be
* looked up by anybody else i.e. HIDDEN.
*/
if (ill_is_probeonly(attach_ill)) {
match_flags |= MATCH_IRE_MARK_HIDDEN;
}
attach_ipif = ipif_get_next_ipif(NULL, attach_ill);
if (attach_ipif == NULL) {
ip1dbg(("ip_wput: No ipif for attach_ill\n"));
goto drop_pkt;
}
ire = ire_ctable_lookup(dst, 0, 0, attach_ipif,
zoneid, MBLK_GETLABEL(mp), match_flags);
ipif_refrele(attach_ipif);
} else if (xmit_ill != NULL || (connp != NULL &&
connp->conn_xmit_if_ill != NULL)) {
/*
* Mark this packet as originated locally
*/
mp->b_prev = mp->b_next = NULL;
/*
* xmit_ill could be NULL if SO_DONTROUTE
* is also set.
*/
if (xmit_ill == NULL) {
xmit_ill = conn_get_held_ill(connp,
&connp->conn_xmit_if_ill, &err);
if (err == ILL_LOOKUP_FAILED) {
if (need_decref)
CONN_DEC_REF(connp);
freemsg(first_mp);
return;
}
if (xmit_ill == NULL) {
if (connp->conn_dontroute)
goto dontroute;
goto send_from_ill;
}
}
/*
* could be SO_DONTROUTE case also.
* check at least one interface is UP as
* spcified by this ILL, and then call
* ip_newroute_ipif()
*/
if (xmit_ill->ill_ipif_up_count > 0) {
ipif_t *ipif;
ipif = ipif_get_next_ipif(NULL, xmit_ill);
if (ipif != NULL) {
ip_newroute_ipif(q, first_mp, ipif,
dst, connp, 0, zoneid);
ipif_refrele(ipif);
ip1dbg(("ip_wput: ip_unicast_if\n"));
}
} else {
freemsg(first_mp);
}
ill_refrele(xmit_ill);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "unicast_if");
if (need_decref)
CONN_DEC_REF(connp);
return;
} else if (ip_nexthop || (connp != NULL &&
(connp->conn_nexthop_set)) && !ignore_nexthop) {
if (!ip_nexthop) {
ip_nexthop = B_TRUE;
nexthop_addr = connp->conn_nexthop_v4;
}
match_flags = MATCH_IRE_MARK_PRIVATE_ADDR |
MATCH_IRE_GW;
ire = ire_ctable_lookup(dst, nexthop_addr, 0,
NULL, zoneid, MBLK_GETLABEL(mp), match_flags);
} else {
ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
}
if (!ire) {
/*
* Make sure we don't load spread if this
* is IPIF_NOFAILOVER case.
*/
if ((attach_ill != NULL) ||
(ip_nexthop && !ignore_nexthop)) {
if (mctl_present) {
io = (ipsec_out_t *)first_mp->b_rptr;
ASSERT(first_mp->b_datap->db_type ==
M_CTL);
ASSERT(io->ipsec_out_type == IPSEC_OUT);
} else {
ASSERT(mp == first_mp);
first_mp = allocb(
sizeof (ipsec_info_t), BPRI_HI);
if (first_mp == NULL) {
first_mp = mp;
goto drop_pkt;
}
first_mp->b_datap->db_type = M_CTL;
first_mp->b_wptr +=
sizeof (ipsec_info_t);
/* ipsec_out_secure is B_FALSE now */
bzero(first_mp->b_rptr,
sizeof (ipsec_info_t));
io = (ipsec_out_t *)first_mp->b_rptr;
io->ipsec_out_type = IPSEC_OUT;
io->ipsec_out_len =
sizeof (ipsec_out_t);
io->ipsec_out_use_global_policy =
B_TRUE;
first_mp->b_cont = mp;
mctl_present = B_TRUE;
}
if (attach_ill != NULL) {
io->ipsec_out_ill_index = attach_ill->
ill_phyint->phyint_ifindex;
io->ipsec_out_attach_if = B_TRUE;
} else {
io->ipsec_out_ip_nexthop = ip_nexthop;
io->ipsec_out_nexthop_addr =
nexthop_addr;
}
}
noirefound:
/*
* Mark this packet as having originated on
* this machine. This will be noted in
* ire_add_then_send, which needs to know
* whether to run it back through ip_wput or
* ip_rput following successful resolution.
*/
mp->b_prev = NULL;
mp->b_next = NULL;
ip_newroute(q, first_mp, dst, NULL, connp, zoneid);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "newroute");
if (attach_ill != NULL)
ill_refrele(attach_ill);
if (xmit_ill != NULL)
ill_refrele(xmit_ill);
if (need_decref)
CONN_DEC_REF(connp);
return;
}
}
/* We now know where we are going with it. */
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "end");
/*
* Check if the ire has the RTF_MULTIRT flag, inherited
* from an IRE_OFFSUBNET ire entry in ip_newroute.
*/
if (ire->ire_flags & RTF_MULTIRT) {
/*
* Force the TTL of multirouted packets if required.
* The TTL of such packets is bounded by the
* ip_multirt_ttl ndd variable.
*/
if ((ip_multirt_ttl > 0) &&
(ipha->ipha_ttl > ip_multirt_ttl)) {
ip2dbg(("ip_wput: forcing multirt TTL to %d "
"(was %d), dst 0x%08x\n",
ip_multirt_ttl, ipha->ipha_ttl,
ntohl(ire->ire_addr)));
ipha->ipha_ttl = ip_multirt_ttl;
}
/*
* At this point, we check to see if there are any pending
* unresolved routes. ire_multirt_resolvable()
* checks in O(n) that all IRE_OFFSUBNET ire
* entries for the packet's destination and
* flagged RTF_MULTIRT are currently resolved.
* If some remain unresolved, we make a copy
* of the current message. It will be used
* to initiate additional route resolutions.
*/
multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr,
MBLK_GETLABEL(first_mp));
ip2dbg(("ip_wput[noirefound]: ire %p, "
"multirt_need_resolve %d, first_mp %p\n",
(void *)ire, multirt_need_resolve, (void *)first_mp));
if (multirt_need_resolve) {
copy_mp = copymsg(first_mp);
if (copy_mp != NULL) {
MULTIRT_DEBUG_TAG(copy_mp);
}
}
}
ip_wput_ire(q, first_mp, ire, connp, caller, zoneid);
/*
* Try to resolve another multiroute if
* ire_multirt_resolvable() deemed it necessary.
* At this point, we need to distinguish
* multicasts from other packets. For multicasts,
* we call ip_newroute_ipif() and request that both
* multirouting and setsrc flags are checked.
*/
if (copy_mp != NULL) {
if (CLASSD(dst)) {
ipif_t *ipif = ipif_lookup_group(dst, zoneid);
if (ipif) {
ip_newroute_ipif(q, copy_mp, ipif, dst, connp,
RTF_SETSRC | RTF_MULTIRT, zoneid);
ipif_refrele(ipif);
} else {
MULTIRT_DEBUG_UNTAG(copy_mp);
freemsg(copy_mp);
copy_mp = NULL;
}
} else {
ip_newroute(q, copy_mp, dst, NULL, connp, zoneid);
}
}
if (attach_ill != NULL)
ill_refrele(attach_ill);
if (xmit_ill != NULL)
ill_refrele(xmit_ill);
if (need_decref)
CONN_DEC_REF(connp);
return;
icmp_parameter_problem:
/* could not have originated externally */
ASSERT(mp->b_prev == NULL);
if (ip_hdr_complete(ipha, zoneid) == 0) {
BUMP_MIB(&ip_mib, ipOutNoRoutes);
/* it's the IP header length that's in trouble */
icmp_param_problem(q, first_mp, 0, zoneid);
first_mp = NULL;
}
drop_pkt:
ip1dbg(("ip_wput: dropped packet\n"));
if (ire != NULL)
ire_refrele(ire);
if (need_decref)
CONN_DEC_REF(connp);
freemsg(first_mp);
if (attach_ill != NULL)
ill_refrele(attach_ill);
if (xmit_ill != NULL)
ill_refrele(xmit_ill);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
"ip_wput_end: q %p (%S)", q, "droppkt");
}
/*
* If this is a conn_t queue, then we pass in the conn. This includes the
* zoneid.
* Otherwise, this is a message coming back from ARP or for an ill_t queue,
* in which case we use the global zoneid since those are all part of
* the global zone.
*/
void
ip_wput(queue_t *q, mblk_t *mp)
{
if (CONN_Q(q))
ip_output(Q_TO_CONN(q), mp, q, IP_WPUT);
else
ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT);
}
/*
*
* The following rules must be observed when accessing any ipif or ill
* that has been cached in the conn. Typically conn_nofailover_ill,
* conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill.
*
* Access: The ipif or ill pointed to from the conn can be accessed under
* the protection of the conn_lock or after it has been refheld under the
* protection of the conn lock. In addition the IPIF_CAN_LOOKUP or
* ILL_CAN_LOOKUP macros must be used before actually doing the refhold.
* The reason for this is that a concurrent unplumb could actually be
* cleaning up these cached pointers by walking the conns and might have
* finished cleaning up the conn in question. The macros check that an
* unplumb has not yet started on the ipif or ill.
*
* Caching: An ipif or ill pointer may be cached in the conn only after
* making sure that an unplumb has not started. So the caching is done
* while holding both the conn_lock and the ill_lock and after using the
* ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED
* flag before starting the cleanup of conns.
*
* The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock
* On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock
* or a reference to the ipif or a reference to an ire that references the
* ipif. An ipif does not change its ill except for failover/failback. Since
* failover/failback happens only after bringing down the ipif and making sure
* the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock
* the above holds.
*/
ipif_t *
conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err)
{
ipif_t *ipif;
ill_t *ill;
*err = 0;
rw_enter(&ill_g_lock, RW_READER);
mutex_enter(&connp->conn_lock);
ipif = *ipifp;
if (ipif != NULL) {
ill = ipif->ipif_ill;
mutex_enter(&ill->ill_lock);
if (IPIF_CAN_LOOKUP(ipif)) {
ipif_refhold_locked(ipif);
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
rw_exit(&ill_g_lock);
return (ipif);
} else {
*err = IPIF_LOOKUP_FAILED;
}
mutex_exit(&ill->ill_lock);
}
mutex_exit(&connp->conn_lock);
rw_exit(&ill_g_lock);
return (NULL);
}
ill_t *
conn_get_held_ill(conn_t *connp, ill_t **illp, int *err)
{
ill_t *ill;
*err = 0;
mutex_enter(&connp->conn_lock);
ill = *illp;
if (ill != NULL) {
mutex_enter(&ill->ill_lock);
if (ILL_CAN_LOOKUP(ill)) {
ill_refhold_locked(ill);
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
return (ill);
} else {
*err = ILL_LOOKUP_FAILED;
}
mutex_exit(&ill->ill_lock);
}
mutex_exit(&connp->conn_lock);
return (NULL);
}
static int
conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif)
{
ill_t *ill;
ill = ipif->ipif_ill;
mutex_enter(&connp->conn_lock);
mutex_enter(&ill->ill_lock);
if (IPIF_CAN_LOOKUP(ipif)) {
*ipifp = ipif;
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
return (0);
}
mutex_exit(&ill->ill_lock);
mutex_exit(&connp->conn_lock);
return (IPIF_LOOKUP_FAILED);
}
/*
* This is called if the outbound datagram needs fragmentation.
*
* NOTE : This function does not ire_refrele the ire argument passed in.
*/
static void
ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid)
{
ipha_t *ipha;
mblk_t *mp;
uint32_t v_hlen_tos_len;
uint32_t max_frag;
uint32_t frag_flag;
boolean_t dont_use;
if (ipsec_mp->b_datap->db_type == M_CTL) {
mp = ipsec_mp->b_cont;
} else {
mp = ipsec_mp;
}
ipha = (ipha_t *)mp->b_rptr;
v_hlen_tos_len = ((uint32_t *)ipha)[0];
#ifdef _BIG_ENDIAN
#define V_HLEN (v_hlen_tos_len >> 24)
#define LENGTH (v_hlen_tos_len & 0xFFFF)
#else
#define V_HLEN (v_hlen_tos_len & 0xFF)
#define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
#endif
#ifndef SPEED_BEFORE_SAFETY
/*
* Check that ipha_length is consistent with
* the mblk length
*/
if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) {
ip0dbg(("Packet length mismatch: %d, %ld\n",
LENGTH, msgdsize(mp)));
freemsg(ipsec_mp);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
"ip_wput_ire_fragmentit: mp %p (%S)", mp,
"packet length mismatch");
return;
}
#endif
/*
* Don't use frag_flag if pre-built packet or source
* routed or if multicast (since multicast packets do not solicit
* ICMP "packet too big" messages). Get the values of
* max_frag and frag_flag atomically by acquiring the
* ire_lock.
*/
mutex_enter(&ire->ire_lock);
max_frag = ire->ire_max_frag;
frag_flag = ire->ire_frag_flag;
mutex_exit(&ire->ire_lock);
dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) ||
(V_HLEN != IP_SIMPLE_HDR_VERSION &&
ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst));
ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag,
(dont_use ? 0 : frag_flag), zoneid);
}
/*
* Used for deciding the MSS size for the upper layer. Thus
* we need to check the outbound policy values in the conn.
*/
int
conn_ipsec_length(conn_t *connp)
{
ipsec_latch_t *ipl;
ipl = connp->conn_latch;
if (ipl == NULL)
return (0);
if (ipl->ipl_out_policy == NULL)
return (0);
return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd);
}
/*
* Returns an estimate of the IPSEC headers size. This is used if
* we don't want to call into IPSEC to get the exact size.
*/
int
ipsec_out_extra_length(mblk_t *ipsec_mp)
{
ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr;
ipsec_action_t *a;
ASSERT(io->ipsec_out_type == IPSEC_OUT);
if (!io->ipsec_out_secure)
return (0);
a = io->ipsec_out_act;
if (a == NULL) {
ASSERT(io->ipsec_out_policy != NULL);
a = io->ipsec_out_policy->ipsp_act;
}
ASSERT(a != NULL);
return (a->ipa_ovhd);
}
/*
* Returns an estimate of the IPSEC headers size. This is used if
* we don't want to call into IPSEC to get the exact size.
*/
int
ipsec_in_extra_length(mblk_t *ipsec_mp)
{
ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
ipsec_action_t *a;
ASSERT(ii->ipsec_in_type == IPSEC_IN);
a = ii->ipsec_in_action;
return (a == NULL ? 0 : a->ipa_ovhd);
}
/*
* If there are any source route options, return the true final
* destination. Otherwise, return the destination.
*/
ipaddr_t
ip_get_dst(ipha_t *ipha)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
uint32_t off;
dst = ipha->ipha_dst;
if (IS_SIMPLE_IPH(ipha))
return (dst);
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
switch (optval) {
case IPOPT_SSRR:
case IPOPT_LSRR:
off = opt[IPOPT_OFFSET];
/*
* If one of the conditions is true, it means
* end of options and dst already has the right
* value.
*/
if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
off = optlen - IP_ADDR_LEN;
bcopy(&opt[off], &dst, IP_ADDR_LEN);
}
return (dst);
default:
break;
}
}
return (dst);
}
mblk_t *
ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
conn_t *connp, boolean_t unspec_src, zoneid_t zoneid)
{
ipsec_out_t *io;
mblk_t *first_mp;
boolean_t policy_present;
first_mp = mp;
if (mp->b_datap->db_type == M_CTL) {
io = (ipsec_out_t *)first_mp->b_rptr;
/*
* ip_wput[_v6] attaches an IPSEC_OUT in two cases.
*
* 1) There is per-socket policy (including cached global
* policy) or a policy on the IP-in-IP tunnel.
* 2) There is no per-socket policy, but it is
* a multicast packet that needs to go out
* on a specific interface. This is the case
* where (ip_wput and ip_wput_multicast) attaches
* an IPSEC_OUT and sets ipsec_out_secure B_FALSE.
*
* In case (2) we check with global policy to
* see if there is a match and set the ill_index
* appropriately so that we can lookup the ire
* properly in ip_wput_ipsec_out.
*/
/*
* ipsec_out_use_global_policy is set to B_FALSE
* in ipsec_in_to_out(). Refer to that function for
* details.
*/
if ((io->ipsec_out_latch == NULL) &&
(io->ipsec_out_use_global_policy)) {
return (ip_wput_attach_policy(first_mp, ipha, ip6h,
ire, connp, unspec_src, zoneid));
}
if (!io->ipsec_out_secure) {
/*
* If this is not a secure packet, drop
* the IPSEC_OUT mp and treat it as a clear
* packet. This happens when we are sending
* a ICMP reply back to a clear packet. See
* ipsec_in_to_out() for details.
*/
mp = first_mp->b_cont;
freeb(first_mp);
}
return (mp);
}
/*
* See whether we need to attach a global policy here. We
* don't depend on the conn (as it could be null) for deciding
* what policy this datagram should go through because it
* should have happened in ip_wput if there was some
* policy. This normally happens for connections which are not
* fully bound preventing us from caching policies in
* ip_bind. Packets coming from the TCP listener/global queue
* - which are non-hard_bound - could also be affected by
* applying policy here.
*
* If this packet is coming from tcp global queue or listener,
* we will be applying policy here. This may not be *right*
* if these packets are coming from the detached connection as
* it could have gone in clear before. This happens only if a
* TCP connection started when there is no policy and somebody
* added policy before it became detached. Thus packets of the
* detached connection could go out secure and the other end
* would drop it because it will be expecting in clear. The
* converse is not true i.e if somebody starts a TCP
* connection and deletes the policy, all the packets will
* still go out with the policy that existed before deleting
* because ip_unbind sends up policy information which is used
* by TCP on subsequent ip_wputs. The right solution is to fix
* TCP to attach a dummy IPSEC_OUT and set
* ipsec_out_use_global_policy to B_FALSE. As this might
* affect performance for normal cases, we are not doing it.
* Thus, set policy before starting any TCP connections.
*
* NOTE - We might apply policy even for a hard bound connection
* - for which we cached policy in ip_bind - if somebody added
* global policy after we inherited the policy in ip_bind.
* This means that the packets that were going out in clear
* previously would start going secure and hence get dropped
* on the other side. To fix this, TCP attaches a dummy
* ipsec_out and make sure that we don't apply global policy.
*/
if (ipha != NULL)
policy_present = ipsec_outbound_v4_policy_present;
else
policy_present = ipsec_outbound_v6_policy_present;
if (!policy_present)
return (mp);
return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src,
zoneid));
}
ire_t *
conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill)
{
ipaddr_t addr;
ire_t *save_ire;
irb_t *irb;
ill_group_t *illgrp;
int err;
save_ire = ire;
addr = ire->ire_addr;
ASSERT(ire->ire_type == IRE_BROADCAST);
illgrp = connp->conn_outgoing_ill->ill_group;
if (illgrp == NULL) {
*conn_outgoing_ill = conn_get_held_ill(connp,
&connp->conn_outgoing_ill, &err);
if (err == ILL_LOOKUP_FAILED) {
ire_refrele(save_ire);
return (NULL);
}
return (save_ire);
}
/*
* If IP_BOUND_IF has been done, conn_outgoing_ill will be set.
* If it is part of the group, we need to send on the ire
* that has been cleared of IRE_MARK_NORECV and that belongs
* to this group. This is okay as IP_BOUND_IF really means
* any ill in the group. We depend on the fact that the
* first ire in the group is always cleared of IRE_MARK_NORECV
* if such an ire exists. This is possible only if you have
* at least one ill in the group that has not failed.
*
* First get to the ire that matches the address and group.
*
* We don't look for an ire with a matching zoneid because a given zone
* won't always have broadcast ires on all ills in the group.
*/
irb = ire->ire_bucket;
rw_enter(&irb->irb_lock, RW_READER);
if (ire->ire_marks & IRE_MARK_NORECV) {
/*
* If the current zone only has an ire broadcast for this
* address marked NORECV, the ire we want is ahead in the
* bucket, so we look it up deliberately ignoring the zoneid.
*/
for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
if (ire->ire_addr != addr)
continue;
/* skip over deleted ires */
if (ire->ire_marks & IRE_MARK_CONDEMNED)
continue;
}
}
while (ire != NULL) {
/*
* If a new interface is coming up, we could end up
* seeing the loopback ire and the non-loopback ire
* may not have been added yet. So check for ire_stq
*/
if (ire->ire_stq != NULL && (ire->ire_addr != addr ||
ire->ire_ipif->ipif_ill->ill_group == illgrp)) {
break;
}
ire = ire->ire_next;
}
if (ire != NULL && ire->ire_addr == addr &&
ire->ire_ipif->ipif_ill->ill_group == illgrp) {
IRE_REFHOLD(ire);
rw_exit(&irb->irb_lock);
ire_refrele(save_ire);
*conn_outgoing_ill = ire_to_ill(ire);
/*
* Refhold the ill to make the conn_outgoing_ill
* independent of the ire. ip_wput_ire goes in a loop
* and may refrele the ire. Since we have an ire at this
* point we don't need to use ILL_CAN_LOOKUP on the ill.
*/
ill_refhold(*conn_outgoing_ill);
return (ire);
}
rw_exit(&irb->irb_lock);
ip1dbg(("conn_set_outgoing_ill: No matching ire\n"));
/*
* If we can't find a suitable ire, return the original ire.
*/
return (save_ire);
}
/*
* This function does the ire_refrele of the ire passed in as the
* argument. As this function looks up more ires i.e broadcast ires,
* it needs to REFRELE them. Currently, for simplicity we don't
* differentiate the one passed in and looked up here. We always
* REFRELE.
* IPQoS Notes:
* IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for
* IPSec packets are done in ipsec_out_process.
*
*/
void
ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller,
zoneid_t zoneid)
{
ipha_t *ipha;
#define rptr ((uchar_t *)ipha)
queue_t *stq;
#define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex)
uint32_t v_hlen_tos_len;
uint32_t ttl_protocol;
ipaddr_t src;
ipaddr_t dst;
uint32_t cksum;
ipaddr_t orig_src;
ire_t *ire1;
mblk_t *next_mp;
uint_t hlen;
uint16_t *up;
uint32_t max_frag = ire->ire_max_frag;
ill_t *ill = ire_to_ill(ire);
int clusterwide;
uint16_t ip_hdr_included; /* IP header included by ULP? */
int ipsec_len;
mblk_t *first_mp;
ipsec_out_t *io;
boolean_t conn_dontroute; /* conn value for multicast */
boolean_t conn_multicast_loop; /* conn value for multicast */
boolean_t multicast_forward; /* Should we forward ? */
boolean_t unspec_src;
ill_t *conn_outgoing_ill = NULL;
ill_t *ire_ill;
ill_t *ire1_ill;
ill_t *out_ill;
uint32_t ill_index = 0;
boolean_t multirt_send = B_FALSE;
int err;
ipxmit_state_t pktxmit_state;
TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START,
"ip_wput_ire_start: q %p", q);
multicast_forward = B_FALSE;
unspec_src = (connp != NULL && connp->conn_unspec_src);
if (ire->ire_flags & RTF_MULTIRT) {
/*
* Multirouting case. The bucket where ire is stored
* probably holds other RTF_MULTIRT flagged ire
* to the destination. In this call to ip_wput_ire,
* we attempt to send the packet through all
* those ires. Thus, we first ensure that ire is the
* first RTF_MULTIRT ire in the bucket,
* before walking the ire list.
*/
ire_t *first_ire;
irb_t *irb = ire->ire_bucket;
ASSERT(irb != NULL);
/* Make sure we do not omit any multiroute ire. */
IRB_REFHOLD(irb);
for (first_ire = irb->irb_ire;
first_ire != NULL;
first_ire = first_ire->ire_next) {
if ((first_ire->ire_flags & RTF_MULTIRT) &&
(first_ire->ire_addr == ire->ire_addr) &&
!(first_ire->ire_marks &
(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)))
break;
}
if ((first_ire != NULL) && (first_ire != ire)) {
IRE_REFHOLD(first_ire);
ire_refrele(ire);
ire = first_ire;
ill = ire_to_ill(ire);
}
IRB_REFRELE(irb);
}
/*
* conn_outgoing_ill is used only in the broadcast loop.
* for performance we don't grab the mutexs in the fastpath
*/
if ((connp != NULL) &&
(connp->conn_xmit_if_ill == NULL) &&
(ire->ire_type == IRE_BROADCAST) &&
((connp->conn_nofailover_ill != NULL) ||
(connp->conn_outgoing_ill != NULL))) {
/*
* Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF
* option. So, see if this endpoint is bound to a
* IPIF_NOFAILOVER address. If so, honor it. This implies
* that if the interface is failed, we will still send
* the packet on the same ill which is what we want.
*/
conn_outgoing_ill = conn_get_held_ill(connp,
&connp->conn_nofailover_ill, &err);
if (err == ILL_LOOKUP_FAILED) {
ire_refrele(ire);
freemsg(mp);
return;
}
if (conn_outgoing_ill == NULL) {
/*
* Choose a good ill in the group to send the
* packets on.
*/
ire = conn_set_outgoing_ill(connp, ire,
&conn_outgoing_ill);
if (ire == NULL) {
freemsg(mp);
return;
}
}
}
if (mp->b_datap->db_type != M_CTL) {
ipha = (ipha_t *)mp->b_rptr;
} else {
io = (ipsec_out_t *)mp->b_rptr;
ASSERT(io->ipsec_out_type == IPSEC_OUT);
ASSERT(zoneid == io->ipsec_out_zoneid);
ASSERT(zoneid != ALL_ZONES);
ipha = (ipha_t *)mp->b_cont->b_rptr;
dst = ipha->ipha_dst;
/*
* For the multicast case, ipsec_out carries conn_dontroute and
* conn_multicast_loop as conn may not be available here. We
* need this for multicast loopback and forwarding which is done
* later in the code.
*/
if (CLASSD(dst)) {
conn_dontroute = io->ipsec_out_dontroute;
conn_multicast_loop = io->ipsec_out_multicast_loop;
/*
* If conn_dontroute is not set or conn_multicast_loop
* is set, we need to do forwarding/loopback. For
* datagrams from ip_wput_multicast, conn_dontroute is
* set to B_TRUE and conn_multicast_loop is set to
* B_FALSE so that we neither do forwarding nor
* loopback.
*/
if (!conn_dontroute || conn_multicast_loop)
multicast_forward = B_TRUE;
}
}
if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid &&
ire->ire_zoneid != ALL_ZONES) {
/*
* When a zone sends a packet to another zone, we try to deliver
* the packet under the same conditions as if the destination
* was a real node on the network. To do so, we look for a
* matching route in the forwarding table.
* RTF_REJECT and RTF_BLACKHOLE are handled just like
* ip_newroute() does.
* Note that IRE_LOCAL are special, since they are used
* when the zoneid doesn't match in some cases. This means that
* we need to handle ipha_src differently since ire_src_addr
* belongs to the receiving zone instead of the sending zone.
* When ip_restrict_interzone_loopback is set, then
* ire_cache_lookup() ensures that IRE_LOCAL are only used
* for loopback between zones when the logical "Ethernet" would
* have looped them back.
*/
ire_t *src_ire;
src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0,
NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE |
MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE));
if (src_ire != NULL &&
!(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) &&
(!ip_restrict_interzone_loopback ||
ire_local_same_ill_group(ire, src_ire))) {
if (ipha->ipha_src == INADDR_ANY && !unspec_src)
ipha->ipha_src = src_ire->ire_src_addr;
ire_refrele(src_ire);
} else {
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
BUMP_MIB(&ip_mib, ipOutNoRoutes);
if (src_ire != NULL) {
if (src_ire->ire_flags & RTF_BLACKHOLE) {
ire_refrele(src_ire);
freemsg(mp);
return;
}
ire_refrele(src_ire);
}
if (ip_hdr_complete(ipha, zoneid)) {
/* Failed */
freemsg(mp);
return;
}
icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid);
return;
}
}
if (mp->b_datap->db_type == M_CTL ||
ipsec_outbound_v4_policy_present) {
mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp,
unspec_src, zoneid);
if (mp == NULL) {
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
}
first_mp = mp;
ipsec_len = 0;
if (first_mp->b_datap->db_type == M_CTL) {
io = (ipsec_out_t *)first_mp->b_rptr;
ASSERT(io->ipsec_out_type == IPSEC_OUT);
mp = first_mp->b_cont;
ipsec_len = ipsec_out_extra_length(first_mp);
ASSERT(ipsec_len >= 0);
/* We already picked up the zoneid from the M_CTL above */
ASSERT(zoneid == io->ipsec_out_zoneid);
ASSERT(zoneid != ALL_ZONES);
/*
* Drop M_CTL here if IPsec processing is not needed.
* (Non-IPsec use of M_CTL extracted any information it
* needed above).
*/
if (ipsec_len == 0) {
freeb(first_mp);
first_mp = mp;
}
}
/*
* Fast path for ip_wput_ire
*/
ipha = (ipha_t *)mp->b_rptr;
v_hlen_tos_len = ((uint32_t *)ipha)[0];
dst = ipha->ipha_dst;
/*
* ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED
* if the socket is a SOCK_RAW type. The transport checksum should
* be provided in the pre-built packet, so we don't need to compute it.
* Also, other application set flags, like DF, should not be altered.
* Other transport MUST pass down zero.
*/
ip_hdr_included = ipha->ipha_ident;
ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
if (CLASSD(dst)) {
ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n",
ntohl(dst),
ip_nv_lookup(ire_nv_tbl, ire->ire_type),
ntohl(ire->ire_addr)));
}
/* Macros to extract header fields from data already in registers */
#ifdef _BIG_ENDIAN
#define V_HLEN (v_hlen_tos_len >> 24)
#define LENGTH (v_hlen_tos_len & 0xFFFF)
#define PROTO (ttl_protocol & 0xFF)
#else
#define V_HLEN (v_hlen_tos_len & 0xFF)
#define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
#define PROTO (ttl_protocol >> 8)
#endif
orig_src = src = ipha->ipha_src;
/* (The loop back to "another" is explained down below.) */
another:;
/*
* Assign an ident value for this packet. We assign idents on
* a per destination basis out of the IRE. There could be
* other threads targeting the same destination, so we have to
* arrange for a atomic increment. Note that we use a 32-bit
* atomic add because it has better performance than its
* 16-bit sibling.
*
* If running in cluster mode and if the source address
* belongs to a replicated service then vector through
* cl_inet_ipident vector to allocate ip identifier
* NOTE: This is a contract private interface with the
* clustering group.
*/
clusterwide = 0;
if (cl_inet_ipident) {
ASSERT(cl_inet_isclusterwide);
if ((*cl_inet_isclusterwide)(IPPROTO_IP,
AF_INET, (uint8_t *)(uintptr_t)src)) {
ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP,
AF_INET, (uint8_t *)(uintptr_t)src,
(uint8_t *)(uintptr_t)dst);
clusterwide = 1;
}
}
if (!clusterwide) {
ipha->ipha_ident =
(uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
}
#ifndef _BIG_ENDIAN
ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
#endif
/*
* Set source address unless sent on an ill or conn_unspec_src is set.
* This is needed to obey conn_unspec_src when packets go through
* ip_newroute + arp.
* Assumes ip_newroute{,_multi} sets the source address as well.
*/
if (src == INADDR_ANY && !unspec_src) {
/*
* Assign the appropriate source address from the IRE if none
* was specified.
*/
ASSERT(ire->ire_ipversion == IPV4_VERSION);
/*
* With IP multipathing, broadcast packets are sent on the ire
* that has been cleared of IRE_MARK_NORECV and that belongs to
* the group. However, this ire might not be in the same zone so
* we can't always use its source address. We look for a
* broadcast ire in the same group and in the right zone.
*/
if (ire->ire_type == IRE_BROADCAST &&
ire->ire_zoneid != zoneid) {
ire_t *src_ire = ire_ctable_lookup(dst, 0,
IRE_BROADCAST, ire->ire_ipif, zoneid, NULL,
(MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP));
if (src_ire != NULL) {
src = src_ire->ire_src_addr;
ire_refrele(src_ire);
} else {
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
freemsg(first_mp);
BUMP_MIB(&ip_mib, ipOutDiscards);
return;
}
} else {
src = ire->ire_src_addr;
}
if (connp == NULL) {
ip1dbg(("ip_wput_ire: no connp and no src "
"address for dst 0x%x, using src 0x%x\n",
ntohl(dst),
ntohl(src)));
}
ipha->ipha_src = src;
}
stq = ire->ire_stq;
/*
* We only allow ire chains for broadcasts since there will
* be multiple IRE_CACHE entries for the same multicast
* address (one per ipif).
*/
next_mp = NULL;
/* broadcast packet */
if (ire->ire_type == IRE_BROADCAST)
goto broadcast;
/* loopback ? */
if (stq == NULL)
goto nullstq;
/* The ill_index for outbound ILL */
ill_index = Q_TO_INDEX(stq);
BUMP_MIB(&ip_mib, ipOutRequests);
ttl_protocol = ((uint16_t *)ipha)[4];
/* pseudo checksum (do it in parts for IP header checksum) */
cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
if (!IP_FLOW_CONTROLLED_ULP(PROTO)) {
queue_t *dev_q = stq->q_next;
/* flow controlled */
if ((dev_q->q_next || dev_q->q_first) &&
!canput(dev_q))
goto blocked;
if ((PROTO == IPPROTO_UDP) &&
(ip_hdr_included != IP_HDR_INCLUDED)) {
hlen = (V_HLEN & 0xF) << 2;
up = IPH_UDPH_CHECKSUMP(ipha, hlen);
if (*up != 0) {
IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO,
hlen, LENGTH, max_frag, ipsec_len, cksum);
/* Software checksum? */
if (DB_CKSUMFLAGS(mp) == 0) {
IP_STAT(ip_out_sw_cksum);
IP_STAT_UPDATE(
ip_udp_out_sw_cksum_bytes,
LENGTH - hlen);
}
}
}
} else if (ip_hdr_included != IP_HDR_INCLUDED) {
hlen = (V_HLEN & 0xF) << 2;
if (PROTO == IPPROTO_TCP) {
up = IPH_TCPH_CHECKSUMP(ipha, hlen);
/*
* The packet header is processed once and for all, even
* in the multirouting case. We disable hardware
* checksum if the packet is multirouted, as it will be
* replicated via several interfaces, and not all of
* them may have this capability.
*/
IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen,
LENGTH, max_frag, ipsec_len, cksum);
/* Software checksum? */
if (DB_CKSUMFLAGS(mp) == 0) {
IP_STAT(ip_out_sw_cksum);
IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes,
LENGTH - hlen);
}
} else {
sctp_hdr_t *sctph;
ASSERT(PROTO == IPPROTO_SCTP);
ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph)));
sctph = (sctp_hdr_t *)(mp->b_rptr + hlen);
/*
* Zero out the checksum field to ensure proper
* checksum calculation.
*/
sctph->sh_chksum = 0;
#ifdef DEBUG
if (!skip_sctp_cksum)
#endif
sctph->sh_chksum = sctp_cksum(mp, hlen);
}
}
/*
* If this is a multicast packet and originated from ip_wput
* we need to do loopback and forwarding checks. If it comes
* from ip_wput_multicast, we SHOULD not do this.
*/
if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback;
/* checksum */
cksum += ttl_protocol;
/* fragment the packet */
if (max_frag < (uint_t)(LENGTH + ipsec_len))
goto fragmentit;
/*
* Don't use frag_flag if packet is pre-built or source
* routed or if multicast (since multicast packets do
* not solicit ICMP "packet too big" messages).
*/
if ((ip_hdr_included != IP_HDR_INCLUDED) &&
(V_HLEN == IP_SIMPLE_HDR_VERSION ||
!ip_source_route_included(ipha)) &&
!CLASSD(ipha->ipha_dst))
ipha->ipha_fragment_offset_and_flags |=
htons(ire->ire_frag_flag);
if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
/* calculate IP header checksum */
cksum += ipha->ipha_ident;
cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF);
cksum += ipha->ipha_fragment_offset_and_flags;
/* IP options present */
hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS;
if (hlen)
goto checksumoptions;
/* calculate hdr checksum */
cksum = ((cksum & 0xFFFF) + (cksum >> 16));
cksum = ~(cksum + (cksum >> 16));
ipha->ipha_hdr_checksum = (uint16_t)cksum;
}
if (ipsec_len != 0) {
/*
* We will do the rest of the processing after
* we come back from IPSEC in ip_wput_ipsec_out().
*/
ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t));
io = (ipsec_out_t *)first_mp->b_rptr;
io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)->
ill_phyint->phyint_ifindex;
ipsec_out_process(q, first_mp, ire, ill_index);
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
/*
* In most cases, the emission loop below is entered only
* once. Only in the case where the ire holds the
* RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT
* flagged ires in the bucket, and send the packet
* through all crossed RTF_MULTIRT routes.
*/
if (ire->ire_flags & RTF_MULTIRT) {
multirt_send = B_TRUE;
}
do {
if (multirt_send) {
irb_t *irb;
/*
* We are in a multiple send case, need to get
* the next ire and make a duplicate of the packet.
* ire1 holds here the next ire to process in the
* bucket. If multirouting is expected,
* any non-RTF_MULTIRT ire that has the
* right destination address is ignored.
*/
irb = ire->ire_bucket;
ASSERT(irb != NULL);
IRB_REFHOLD(irb);
for (ire1 = ire->ire_next;
ire1 != NULL;
ire1 = ire1->ire_next) {
if ((ire1->ire_flags & RTF_MULTIRT) == 0)
continue;
if (ire1->ire_addr != ire->ire_addr)
continue;
if (ire1->ire_marks &
(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
continue;
/* Got one */
IRE_REFHOLD(ire1);
break;
}
IRB_REFRELE(irb);
if (ire1 != NULL) {
next_mp = copyb(mp);
if ((next_mp == NULL) ||
((mp->b_cont != NULL) &&
((next_mp->b_cont =
dupmsg(mp->b_cont)) == NULL))) {
freemsg(next_mp);
next_mp = NULL;
ire_refrele(ire1);
ire1 = NULL;
}
}
/* Last multiroute ire; don't loop anymore. */
if (ire1 == NULL) {
multirt_send = B_FALSE;
}
}
DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha,
mblk_t *, mp);
FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp);
DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
if (mp == NULL)
goto release_ire_and_ill;
mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT);
DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire);
pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE);
if ((pktxmit_state == SEND_FAILED) ||
(pktxmit_state == LLHDR_RESLV_FAILED)) {
ip2dbg(("ip_wput_ire: ip_xmit_v4 failed"
"- packet dropped\n"));
release_ire_and_ill:
ire_refrele(ire);
if (next_mp != NULL) {
freemsg(next_mp);
ire_refrele(ire1);
}
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
"ip_wput_ire_end: q %p (%S)",
q, "last copy out");
IRE_REFRELE(ire);
if (multirt_send) {
ASSERT(ire1);
/*
* Proceed with the next RTF_MULTIRT ire,
* Also set up the send-to queue accordingly.
*/
ire = ire1;
ire1 = NULL;
stq = ire->ire_stq;
mp = next_mp;
next_mp = NULL;
ipha = (ipha_t *)mp->b_rptr;
ill_index = Q_TO_INDEX(stq);
}
} while (multirt_send);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
/*
* ire->ire_type == IRE_BROADCAST (minimize diffs)
*/
broadcast:
{
/*
* Avoid broadcast storms by setting the ttl to 1
* for broadcasts. This parameter can be set
* via ndd, so make sure that for the SO_DONTROUTE
* case that ipha_ttl is always set to 1.
* In the event that we are replying to incoming
* ICMP packets, conn could be NULL.
*/
if ((connp != NULL) && connp->conn_dontroute)
ipha->ipha_ttl = 1;
else
ipha->ipha_ttl = ip_broadcast_ttl;
/*
* Note that we are not doing a IRB_REFHOLD here.
* Actually we don't care if the list changes i.e
* if somebody deletes an IRE from the list while
* we drop the lock, the next time we come around
* ire_next will be NULL and hence we won't send
* out multiple copies which is fine.
*/
rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
ire1 = ire->ire_next;
if (conn_outgoing_ill != NULL) {
while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) {
ASSERT(ire1 == ire->ire_next);
if (ire1 != NULL && ire1->ire_addr == dst) {
ire_refrele(ire);
ire = ire1;
IRE_REFHOLD(ire);
ire1 = ire->ire_next;
continue;
}
rw_exit(&ire->ire_bucket->irb_lock);
/* Did not find a matching ill */
ip1dbg(("ip_wput_ire: broadcast with no "
"matching IP_BOUND_IF ill %s\n",
conn_outgoing_ill->ill_name));
freemsg(first_mp);
if (ire != NULL)
ire_refrele(ire);
ill_refrele(conn_outgoing_ill);
return;
}
} else if (ire1 != NULL && ire1->ire_addr == dst) {
/*
* If the next IRE has the same address and is not one
* of the two copies that we need to send, try to see
* whether this copy should be sent at all. This
* assumes that we insert loopbacks first and then
* non-loopbacks. This is acheived by inserting the
* loopback always before non-loopback.
* This is used to send a single copy of a broadcast
* packet out all physical interfaces that have an
* matching IRE_BROADCAST while also looping
* back one copy (to ip_wput_local) for each
* matching physical interface. However, we avoid
* sending packets out different logical that match by
* having ipif_up/ipif_down supress duplicate
* IRE_BROADCASTS.
*
* This feature is currently used to get broadcasts
* sent to multiple interfaces, when the broadcast
* address being used applies to multiple interfaces.
* For example, a whole net broadcast will be
* replicated on every connected subnet of
* the target net.
*
* Each zone has its own set of IRE_BROADCASTs, so that
* we're able to distribute inbound packets to multiple
* zones who share a broadcast address. We avoid looping
* back outbound packets in different zones but on the
* same ill, as the application would see duplicates.
*
* If the interfaces are part of the same group,
* we would want to send only one copy out for
* whole group.
*
* This logic assumes that ire_add_v4() groups the
* IRE_BROADCAST entries so that those with the same
* ire_addr and ill_group are kept together.
*/
ire_ill = ire->ire_ipif->ipif_ill;
if (ire->ire_stq == NULL && ire1->ire_stq != NULL) {
if (ire_ill->ill_group != NULL &&
(ire->ire_marks & IRE_MARK_NORECV)) {
/*
* If the current zone only has an ire
* broadcast for this address marked
* NORECV, the ire we want is ahead in
* the bucket, so we look it up
* deliberately ignoring the zoneid.
*/
for (ire1 = ire->ire_bucket->irb_ire;
ire1 != NULL;
ire1 = ire1->ire_next) {
ire1_ill =
ire1->ire_ipif->ipif_ill;
if (ire1->ire_addr != dst)
continue;
/* skip over the current ire */
if (ire1 == ire)
continue;
/* skip over deleted ires */
if (ire1->ire_marks &
IRE_MARK_CONDEMNED)
continue;
/*
* non-loopback ire in our
* group: use it for the next
* pass in the loop
*/
if (ire1->ire_stq != NULL &&
ire1_ill->ill_group ==
ire_ill->ill_group)
break;
}
}
} else {
while (ire1 != NULL && ire1->ire_addr == dst) {
ire1_ill = ire1->ire_ipif->ipif_ill;
/*
* We can have two broadcast ires on the
* same ill in different zones; here
* we'll send a copy of the packet on
* each ill and the fanout code will
* call conn_wantpacket() to check that
* the zone has the broadcast address
* configured on the ill. If the two
* ires are in the same group we only
* send one copy up.
*/
if (ire1_ill != ire_ill &&
(ire1_ill->ill_group == NULL ||
ire_ill->ill_group == NULL ||
ire1_ill->ill_group !=
ire_ill->ill_group)) {
break;
}
ire1 = ire1->ire_next;
}
}
}
ASSERT(multirt_send == B_FALSE);
if (ire1 != NULL && ire1->ire_addr == dst) {
if ((ire->ire_flags & RTF_MULTIRT) &&
(ire1->ire_flags & RTF_MULTIRT)) {
/*
* We are in the multirouting case.
* The message must be sent at least
* on both ires. These ires have been
* inserted AFTER the standard ones
* in ip_rt_add(). There are thus no
* other ire entries for the destination
* address in the rest of the bucket
* that do not have the RTF_MULTIRT
* flag. We don't process a copy
* of the message here. This will be
* done in the final sending loop.
*/
multirt_send = B_TRUE;
} else {
next_mp = ip_copymsg(first_mp);
if (next_mp != NULL)
IRE_REFHOLD(ire1);
}
}
rw_exit(&ire->ire_bucket->irb_lock);
}
if (stq) {
/*
* A non-NULL send-to queue means this packet is going
* out of this machine.
*/
BUMP_MIB(&ip_mib, ipOutRequests);
ttl_protocol = ((uint16_t *)ipha)[4];
/*
* We accumulate the pseudo header checksum in cksum.
* This is pretty hairy code, so watch close. One
* thing to keep in mind is that UDP and TCP have
* stored their respective datagram lengths in their
* checksum fields. This lines things up real nice.
*/
cksum = (dst >> 16) + (dst & 0xFFFF) +
(src >> 16) + (src & 0xFFFF);
/*
* We assume the udp checksum field contains the
* length, so to compute the pseudo header checksum,
* all we need is the protocol number and src/dst.
*/
/* Provide the checksums for UDP and TCP. */
if ((PROTO == IPPROTO_TCP) &&
(ip_hdr_included != IP_HDR_INCLUDED)) {
/* hlen gets the number of uchar_ts in the IP header */
hlen = (V_HLEN & 0xF) << 2;
up = IPH_TCPH_CHECKSUMP(ipha, hlen);
IP_STAT(ip_out_sw_cksum);
IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes,
LENGTH - hlen);
*up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP);
if (*up == 0)
*up = 0xFFFF;
} else if (PROTO == IPPROTO_SCTP &&
(ip_hdr_included != IP_HDR_INCLUDED)) {
sctp_hdr_t *sctph;
hlen = (V_HLEN & 0xF) << 2;
ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph)));
sctph = (sctp_hdr_t *)(mp->b_rptr + hlen);
sctph->sh_chksum = 0;
#ifdef DEBUG
if (!skip_sctp_cksum)
#endif
sctph->sh_chksum = sctp_cksum(mp, hlen);
} else {
queue_t *dev_q = stq->q_next;
if ((dev_q->q_next || dev_q->q_first) &&
!canput(dev_q)) {
blocked:
ipha->ipha_ident = ip_hdr_included;
/*
* If we don't have a conn to apply
* backpressure, free the message.
* In the ire_send path, we don't know
* the position to requeue the packet. Rather
* than reorder packets, we just drop this
* packet.
*/
if (ip_output_queue && connp != NULL &&
caller != IRE_SEND) {
if (caller == IP_WSRV) {
connp->conn_did_putbq = 1;
(void) putbq(connp->conn_wq,
first_mp);
conn_drain_insert(connp);
/*
* This is the service thread,
* and the queue is already
* noenabled. The check for
* canput and the putbq is not
* atomic. So we need to check
* again.
*/
if (canput(stq->q_next))
connp->conn_did_putbq
= 0;
IP_STAT(ip_conn_flputbq);
} else {
/*
* We are not the service proc.
* ip_wsrv will be scheduled or
* is already running.
*/
(void) putq(connp->conn_wq,
first_mp);
}
} else {
BUMP_MIB(&ip_mib, ipOutDiscards);
freemsg(first_mp);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
"ip_wput_ire_end: q %p (%S)",
q, "discard");
}
ire_refrele(ire);
if (next_mp) {
ire_refrele(ire1);
freemsg(next_mp);
}
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
if ((PROTO == IPPROTO_UDP) &&
(ip_hdr_included != IP_HDR_INCLUDED)) {
/*
* hlen gets the number of uchar_ts in the
* IP header
*/
hlen = (V_HLEN & 0xF) << 2;
up = IPH_UDPH_CHECKSUMP(ipha, hlen);
max_frag = ire->ire_max_frag;
if (*up != 0) {
IP_CKSUM_XMIT(ire_ill, ire, mp, ipha,
up, PROTO, hlen, LENGTH, max_frag,
ipsec_len, cksum);
/* Software checksum? */
if (DB_CKSUMFLAGS(mp) == 0) {
IP_STAT(ip_out_sw_cksum);
IP_STAT_UPDATE(
ip_udp_out_sw_cksum_bytes,
LENGTH - hlen);
}
}
}
}
/*
* Need to do this even when fragmenting. The local
* loopback can be done without computing checksums
* but forwarding out other interface must be done
* after the IP checksum (and ULP checksums) have been
* computed.
*
* NOTE : multicast_forward is set only if this packet
* originated from ip_wput. For packets originating from
* ip_wput_multicast, it is not set.
*/
if (CLASSD(ipha->ipha_dst) && multicast_forward) {
multi_loopback:
ip2dbg(("ip_wput: multicast, loop %d\n",
conn_multicast_loop));
/* Forget header checksum offload */
DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
/*
* Local loopback of multicasts? Check the
* ill.
*
* Note that the loopback function will not come
* in through ip_rput - it will only do the
* client fanout thus we need to do an mforward
* as well. The is different from the BSD
* logic.
*/
if (ill != NULL) {
ilm_t *ilm;
ILM_WALKER_HOLD(ill);
ilm = ilm_lookup_ill(ill, ipha->ipha_dst,
ALL_ZONES);
ILM_WALKER_RELE(ill);
if (ilm != NULL) {
/*
* Pass along the virtual output q.
* ip_wput_local() will distribute the
* packet to all the matching zones,
* except the sending zone when
* IP_MULTICAST_LOOP is false.
*/
ip_multicast_loopback(q, ill, first_mp,
conn_multicast_loop ? 0 :
IP_FF_NO_MCAST_LOOP, zoneid);
}
}
if (ipha->ipha_ttl == 0) {
/*
* 0 => only to this host i.e. we are
* done. We are also done if this was the
* loopback interface since it is sufficient
* to loopback one copy of a multicast packet.
*/
freemsg(first_mp);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
"ip_wput_ire_end: q %p (%S)",
q, "loopback");
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
/*
* ILLF_MULTICAST is checked in ip_newroute
* i.e. we don't need to check it here since
* all IRE_CACHEs come from ip_newroute.
* For multicast traffic, SO_DONTROUTE is interpreted
* to mean only send the packet out the interface
* (optionally specified with IP_MULTICAST_IF)
* and do not forward it out additional interfaces.
* RSVP and the rsvp daemon is an example of a
* protocol and user level process that
* handles it's own routing. Hence, it uses the
* SO_DONTROUTE option to accomplish this.
*/
if (ip_g_mrouter && !conn_dontroute && ill != NULL) {
/* Unconditionally redo the checksum */
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
/*
* If this needs to go out secure, we need
* to wait till we finish the IPSEC
* processing.
*/
if (ipsec_len == 0 &&
ip_mforward(ill, ipha, mp)) {
freemsg(first_mp);
ip1dbg(("ip_wput: mforward failed\n"));
TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
"ip_wput_ire_end: q %p (%S)",
q, "mforward failed");
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
}
}
max_frag = ire->ire_max_frag;
cksum += ttl_protocol;
if (max_frag >= (uint_t)(LENGTH + ipsec_len)) {
/* No fragmentation required for this one. */
/*
* Don't use frag_flag if packet is pre-built or source
* routed or if multicast (since multicast packets do
* not solicit ICMP "packet too big" messages).
*/
if ((ip_hdr_included != IP_HDR_INCLUDED) &&
(V_HLEN == IP_SIMPLE_HDR_VERSION ||
!ip_source_route_included(ipha)) &&
!CLASSD(ipha->ipha_dst))
ipha->ipha_fragment_offset_and_flags |=
htons(ire->ire_frag_flag);
if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
/* Complete the IP header checksum. */
cksum += ipha->ipha_ident;
cksum += (v_hlen_tos_len >> 16)+
(v_hlen_tos_len & 0xFFFF);
cksum += ipha->ipha_fragment_offset_and_flags;
hlen = (V_HLEN & 0xF) -
IP_SIMPLE_HDR_LENGTH_IN_WORDS;
if (hlen) {
checksumoptions:
/*
* Account for the IP Options in the IP
* header checksum.
*/
up = (uint16_t *)(rptr+
IP_SIMPLE_HDR_LENGTH);
do {
cksum += up[0];
cksum += up[1];
up += 2;
} while (--hlen);
}
cksum = ((cksum & 0xFFFF) + (cksum >> 16));
cksum = ~(cksum + (cksum >> 16));
ipha->ipha_hdr_checksum = (uint16_t)cksum;
}
if (ipsec_len != 0) {
ipsec_out_process(q, first_mp, ire, ill_index);
if (!next_mp) {
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
goto next;
}
/*
* multirt_send has already been handled
* for broadcast, but not yet for multicast
* or IP options.
*/
if (next_mp == NULL) {
if (ire->ire_flags & RTF_MULTIRT) {
multirt_send = B_TRUE;
}
}
/*
* In most cases, the emission loop below is
* entered only once. Only in the case where
* the ire holds the RTF_MULTIRT flag, do we loop
* to process all RTF_MULTIRT ires in the bucket,
* and send the packet through all crossed
* RTF_MULTIRT routes.
*/
do {
if (multirt_send) {
irb_t *irb;
irb = ire->ire_bucket;
ASSERT(irb != NULL);
/*
* We are in a multiple send case,
* need to get the next IRE and make
* a duplicate of the packet.
*/
IRB_REFHOLD(irb);
for (ire1 = ire->ire_next;
ire1 != NULL;
ire1 = ire1->ire_next) {
if (!(ire1->ire_flags &
RTF_MULTIRT))
continue;
if (ire1->ire_addr !=
ire->ire_addr)
continue;
if (ire1->ire_marks &
(IRE_MARK_CONDEMNED|
IRE_MARK_HIDDEN))
continue;
/* Got one */
IRE_REFHOLD(ire1);
break;
}
IRB_REFRELE(irb);
if (ire1 != NULL) {
next_mp = copyb(mp);
if ((next_mp == NULL) ||
((mp->b_cont != NULL) &&
((next_mp->b_cont =
dupmsg(mp->b_cont))
== NULL))) {
freemsg(next_mp);
next_mp = NULL;
ire_refrele(ire1);
ire1 = NULL;
}
}
/*
* Last multiroute ire; don't loop
* anymore. The emission is over
* and next_mp is NULL.
*/
if (ire1 == NULL) {
multirt_send = B_FALSE;
}
}
out_ill = ire->ire_ipif->ipif_ill;
DTRACE_PROBE4(ip4__physical__out__start,
ill_t *, NULL,
ill_t *, out_ill,
ipha_t *, ipha, mblk_t *, mp);
FW_HOOKS(ip4_physical_out_event,
ipv4firewall_physical_out,
NULL, out_ill, ipha, mp, mp);
DTRACE_PROBE1(ip4__physical__out__end,
mblk_t *, mp);
if (mp == NULL)
goto release_ire_and_ill_2;
ASSERT(ipsec_len == 0);
mp->b_prev =
SET_BPREV_FLAG(IPP_LOCAL_OUT);
DTRACE_PROBE2(ip__xmit__2,
mblk_t *, mp, ire_t *, ire);
pktxmit_state = ip_xmit_v4(mp, ire,
NULL, B_TRUE);
if ((pktxmit_state == SEND_FAILED) ||
(pktxmit_state == LLHDR_RESLV_FAILED)) {
release_ire_and_ill_2:
if (next_mp) {
freemsg(next_mp);
ire_refrele(ire1);
}
ire_refrele(ire);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
"ip_wput_ire_end: q %p (%S)",
q, "discard MDATA");
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
if (multirt_send) {
/*
* We are in a multiple send case,
* need to re-enter the sending loop
* using the next ire.
*/
ire_refrele(ire);
ire = ire1;
stq = ire->ire_stq;
mp = next_mp;
next_mp = NULL;
ipha = (ipha_t *)mp->b_rptr;
ill_index = Q_TO_INDEX(stq);
}
} while (multirt_send);
if (!next_mp) {
/*
* Last copy going out (the ultra-common
* case). Note that we intentionally replicate
* the putnext rather than calling it before
* the next_mp check in hopes of a little
* tail-call action out of the compiler.
*/
TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
"ip_wput_ire_end: q %p (%S)",
q, "last copy out(1)");
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
/* More copies going out below. */
} else {
int offset;
fragmentit:
offset = ntohs(ipha->ipha_fragment_offset_and_flags);
/*
* If this would generate a icmp_frag_needed message,
* we need to handle it before we do the IPSEC
* processing. Otherwise, we need to strip the IPSEC
* headers before we send up the message to the ULPs
* which becomes messy and difficult.
*/
if (ipsec_len != 0) {
if ((max_frag < (unsigned int)(LENGTH +
ipsec_len)) && (offset & IPH_DF)) {
BUMP_MIB(&ip_mib, ipFragFails);
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum =
(uint16_t)ip_csum_hdr(ipha);
icmp_frag_needed(ire->ire_stq, first_mp,
max_frag, zoneid);
if (!next_mp) {
ire_refrele(ire);
if (conn_outgoing_ill != NULL) {
ill_refrele(
conn_outgoing_ill);
}
return;
}
} else {
/*
* This won't cause a icmp_frag_needed
* message. to be gnerated. Send it on
* the wire. Note that this could still
* cause fragmentation and all we
* do is the generation of the message
* to the ULP if needed before IPSEC.
*/
if (!next_mp) {
ipsec_out_process(q, first_mp,
ire, ill_index);
TRACE_2(TR_FAC_IP,
TR_IP_WPUT_IRE_END,
"ip_wput_ire_end: q %p "
"(%S)", q,
"last ipsec_out_process");
ire_refrele(ire);
if (conn_outgoing_ill != NULL) {
ill_refrele(
conn_outgoing_ill);
}
return;
}
ipsec_out_process(q, first_mp,
ire, ill_index);
}
} else {
/*
* Initiate IPPF processing. For
* fragmentable packets we finish
* all QOS packet processing before
* calling:
* ip_wput_ire_fragmentit->ip_wput_frag
*/
if (IPP_ENABLED(IPP_LOCAL_OUT)) {
ip_process(IPP_LOCAL_OUT, &mp,
ill_index);
if (mp == NULL) {
BUMP_MIB(&ip_mib,
ipOutDiscards);
if (next_mp != NULL) {
freemsg(next_mp);
ire_refrele(ire1);
}
ire_refrele(ire);
TRACE_2(TR_FAC_IP,
TR_IP_WPUT_IRE_END,
"ip_wput_ire: q %p (%S)",
q, "discard MDATA");
if (conn_outgoing_ill != NULL) {
ill_refrele(
conn_outgoing_ill);
}
return;
}
}
if (!next_mp) {
TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
"ip_wput_ire_end: q %p (%S)",
q, "last fragmentation");
ip_wput_ire_fragmentit(mp, ire,
zoneid);
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
ip_wput_ire_fragmentit(mp, ire, zoneid);
}
}
} else {
nullstq:
/* A NULL stq means the destination address is local. */
UPDATE_OB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
ASSERT(ire->ire_ipif != NULL);
if (!next_mp) {
/*
* Is there an "in" and "out" for traffic local
* to a host (loopback)? The code in Solaris doesn't
* explicitly draw a line in its code for in vs out,
* so we've had to draw a line in the sand: ip_wput_ire
* is considered to be the "output" side and
* ip_wput_local to be the "input" side.
*/
out_ill = ire->ire_ipif->ipif_ill;
DTRACE_PROBE4(ip4__loopback__out__start,
ill_t *, NULL, ill_t *, out_ill,
ipha_t *, ipha, mblk_t *, first_mp);
FW_HOOKS(ip4_loopback_out_event,
ipv4firewall_loopback_out,
NULL, out_ill, ipha, first_mp, mp);
DTRACE_PROBE1(ip4__loopback__out_end,
mblk_t *, first_mp);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
"ip_wput_ire_end: q %p (%S)",
q, "local address");
if (first_mp != NULL)
ip_wput_local(q, out_ill, ipha,
first_mp, ire, 0, ire->ire_zoneid);
ire_refrele(ire);
if (conn_outgoing_ill != NULL)
ill_refrele(conn_outgoing_ill);
return;
}
out_ill = ire->ire_ipif->ipif_ill;
DTRACE_PROBE4(ip4__loopback__out__start,
ill_t *, NULL, ill_t *, out_ill,
ipha_t *, ipha, mblk_t *, first_mp);
FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out,
NULL, out_ill, ipha, first_mp, mp);
DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp);
if (first_mp != NULL)
ip_wput_local(q, out_ill, ipha,
first_mp, ire, 0, ire->ire_zoneid);
}
next:
/*
* More copies going out to additional interfaces.
* ire1 has already been held. We don't need the
* "ire" anymore.
*/
ire_refrele(ire);
ire = ire1;
ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL);
mp = next_mp;
ASSERT(ire->ire_ipversion == IPV4_VERSION);
ill = ire_to_ill(ire);
first_mp = mp;
if (ipsec_len != 0) {
ASSERT(first_mp->b_datap->db_type == M_CTL);
mp = mp->b_cont;
}
dst = ire->ire_addr;
ipha = (ipha_t *)mp->b_rptr;
/*
* Restore src so that we will pick up ire->ire_src_addr if src was 0.
* Restore ipha_ident "no checksum" flag.
*/
src = orig_src;
ipha->ipha_ident = ip_hdr_included;
goto another;
#undef rptr
#undef Q_TO_INDEX
}
/*
* Routine to allocate a message that is used to notify the ULP about MDT.
* The caller may provide a pointer to the link-layer MDT capabilities,
* or NULL if MDT is to be disabled on the stream.
*/
mblk_t *
ip_mdinfo_alloc(ill_mdt_capab_t *isrc)
{
mblk_t *mp;
ip_mdt_info_t *mdti;
ill_mdt_capab_t *idst;
if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) {
DB_TYPE(mp) = M_CTL;
mp->b_wptr = mp->b_rptr + sizeof (*mdti);
mdti = (ip_mdt_info_t *)mp->b_rptr;
mdti->mdt_info_id = MDT_IOC_INFO_UPDATE;
idst = &(mdti->mdt_capab);
/*
* If the caller provides us with the capability, copy
* it over into our notification message; otherwise
* we zero out the capability portion.
*/
if (isrc != NULL)
bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst));
else
bzero((caddr_t)idst, sizeof (*idst));
}
return (mp);
}
/*
* Routine which determines whether MDT can be enabled on the destination
* IRE and IPC combination, and if so, allocates and returns the MDT
* notification mblk that may be used by ULP. We also check if we need to
* turn MDT back to 'on' when certain restrictions prohibiting us to allow
* MDT usage in the past have been lifted. This gets called during IP
* and ULP binding.
*/
mblk_t *
ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name,
ill_mdt_capab_t *mdt_cap)
{
mblk_t *mp;
boolean_t rc = B_FALSE;
ASSERT(dst_ire != NULL);
ASSERT(connp != NULL);
ASSERT(mdt_cap != NULL);
/*
* Currently, we only support simple TCP/{IPv4,IPv6} with
* Multidata, which is handled in tcp_multisend(). This
* is the reason why we do all these checks here, to ensure
* that we don't enable Multidata for the cases which we
* can't handle at the moment.
*/
do {
/* Only do TCP at the moment */
if (connp->conn_ulp != IPPROTO_TCP)
break;
/*
* IPSEC outbound policy present? Note that we get here
* after calling ipsec_conn_cache_policy() where the global
* policy checking is performed. conn_latch will be
* non-NULL as long as there's a policy defined,
* i.e. conn_out_enforce_policy may be NULL in such case
* when the connection is non-secure, and hence we check
* further if the latch refers to an outbound policy.
*/
if (CONN_IPSEC_OUT_ENCAPSULATED(connp))
break;
/* CGTP (multiroute) is enabled? */
if (dst_ire->ire_flags & RTF_MULTIRT)
break;
/* Outbound IPQoS enabled? */
if (IPP_ENABLED(IPP_LOCAL_OUT)) {
/*
* In this case, we disable MDT for this and all
* future connections going over the interface.
*/
mdt_cap->ill_mdt_on = 0;
break;
}
/* socket option(s) present? */
if (!CONN_IS_MD_FASTPATH(connp))
break;
rc = B_TRUE;
/* CONSTCOND */
} while (0);
/* Remember the result */
connp->conn_mdt_ok = rc;
if (!rc)
return (NULL);
else if (!mdt_cap->ill_mdt_on) {
/*
* If MDT has been previously turned off in the past, and we
* currently can do MDT (due to IPQoS policy removal, etc.)
* then enable it for this interface.
*/
mdt_cap->ill_mdt_on = 1;
ip1dbg(("ip_mdinfo_return: reenabling MDT for "
"interface %s\n", ill_name));
}
/* Allocate the MDT info mblk */
if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) {
ip0dbg(("ip_mdinfo_return: can't enable Multidata for "
"conn %p on %s (ENOMEM)\n", (void *)connp, ill_name));
return (NULL);
}
return (mp);
}
/*
* Create destination address attribute, and fill it with the physical
* destination address and SAP taken from the template DL_UNITDATA_REQ
* message block.
*/
boolean_t
ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp)
{
dl_unitdata_req_t *dlurp;
pattr_t *pa;
pattrinfo_t pa_info;
pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf;
uint_t das_len, das_off;
ASSERT(dlmp != NULL);
dlurp = (dl_unitdata_req_t *)dlmp->b_rptr;
das_len = dlurp->dl_dest_addr_length;
das_off = dlurp->dl_dest_addr_offset;
pa_info.type = PATTR_DSTADDRSAP;
pa_info.len = sizeof (**das) + das_len - 1;
/* create and associate the attribute */
pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
if (pa != NULL) {
ASSERT(*das != NULL);
(*das)->addr_is_group = 0;
(*das)->addr_len = (uint8_t)das_len;
bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len);
}
return (pa != NULL);
}
/*
* Create hardware checksum attribute and fill it with the values passed.
*/
boolean_t
ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset,
uint32_t stuff_offset, uint32_t end_offset, uint32_t flags)
{
pattr_t *pa;
pattrinfo_t pa_info;
ASSERT(mmd != NULL);
pa_info.type = PATTR_HCKSUM;
pa_info.len = sizeof (pattr_hcksum_t);
/* create and associate the attribute */
pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
if (pa != NULL) {
pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
hck->hcksum_start_offset = start_offset;
hck->hcksum_stuff_offset = stuff_offset;
hck->hcksum_end_offset = end_offset;
hck->hcksum_flags = flags;
}
return (pa != NULL);
}
/*
* Create zerocopy attribute and fill it with the specified flags
*/
boolean_t
ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags)
{
pattr_t *pa;
pattrinfo_t pa_info;
ASSERT(mmd != NULL);
pa_info.type = PATTR_ZCOPY;
pa_info.len = sizeof (pattr_zcopy_t);
/* create and associate the attribute */
pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
if (pa != NULL) {
pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf;
zcopy->zcopy_flags = flags;
}
return (pa != NULL);
}
/*
* Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message
* block chain. We could rewrite to handle arbitrary message block chains but
* that would make the code complicated and slow. Right now there three
* restrictions:
*
* 1. The first message block must contain the complete IP header and
* at least 1 byte of payload data.
* 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed
* so that we can use a single Multidata message.
* 3. No frag must be distributed over two or more message blocks so
* that we don't need more than two packet descriptors per frag.
*
* The above restrictions allow us to support userland applications (which
* will send down a single message block) and NFS over UDP (which will
* send down a chain of at most three message blocks).
*
* We also don't use MDT for payloads with less than or equal to
* ip_wput_frag_mdt_min bytes because it would cause too much overhead.
*/
boolean_t
ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len)
{
int blocks;
ssize_t total, missing, size;
ASSERT(mp != NULL);
ASSERT(hdr_len > 0);
size = MBLKL(mp) - hdr_len;
if (size <= 0)
return (B_FALSE);
/* The first mblk contains the header and some payload. */
blocks = 1;
total = size;
size %= len;
missing = (size == 0) ? 0 : (len - size);
mp = mp->b_cont;
while (mp != NULL) {
/*
* Give up if we encounter a zero length message block.
* In practice, this should rarely happen and therefore
* not worth the trouble of freeing and re-linking the
* mblk from the chain to handle such case.
*/
if ((size = MBLKL(mp)) == 0)
return (B_FALSE);
/* Too many payload buffers for a single Multidata message? */
if (++blocks > MULTIDATA_MAX_PBUFS)
return (B_FALSE);
total += size;
/* Is a frag distributed over two or more message blocks? */
if (missing > size)
return (B_FALSE);
size -= missing;
size %= len;
missing = (size == 0) ? 0 : (len - size);
mp = mp->b_cont;
}
return (total > ip_wput_frag_mdt_min);
}
/*
* Outbound IPv4 fragmentation routine using MDT.
*/
static void
ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len,
uint32_t frag_flag, int offset)
{
ipha_t *ipha_orig;
int i1, ip_data_end;
uint_t pkts, wroff, hdr_chunk_len, pbuf_idx;
mblk_t *hdr_mp, *md_mp = NULL;
unsigned char *hdr_ptr, *pld_ptr;
multidata_t *mmd;
ip_pdescinfo_t pdi;
ASSERT(DB_TYPE(mp) == M_DATA);
ASSERT(MBLKL(mp) > sizeof (ipha_t));
ipha_orig = (ipha_t *)mp->b_rptr;
mp->b_rptr += sizeof (ipha_t);
/* Calculate how many packets we will send out */
i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp);
pkts = (i1 + len - 1) / len;
ASSERT(pkts > 1);
/* Allocate a message block which will hold all the IP Headers. */
wroff = ip_wroff_extra;
hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH;
i1 = pkts * hdr_chunk_len;
/*
* Create the header buffer, Multidata and destination address
* and SAP attribute that should be associated with it.
*/
if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL ||
((hdr_mp->b_wptr += i1),
(mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) ||
!ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) {
freemsg(mp);
if (md_mp == NULL) {
freemsg(hdr_mp);
} else {
free_mmd: IP_STAT(ip_frag_mdt_discarded);
freemsg(md_mp);
}
IP_STAT(ip_frag_mdt_allocfail);
UPDATE_MIB(&ip_mib, ipOutDiscards, pkts);
return;
}
IP_STAT(ip_frag_mdt_allocd);
/*
* Add a payload buffer to the Multidata; this operation must not
* fail, or otherwise our logic in this routine is broken. There
* is no memory allocation done by the routine, so any returned
* failure simply tells us that we've done something wrong.
*
* A failure tells us that either we're adding the same payload
* buffer more than once, or we're trying to add more buffers than
* allowed. None of the above cases should happen, and we panic
* because either there's horrible heap corruption, and/or
* programming mistake.
*/
if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
goto pbuf_panic;
hdr_ptr = hdr_mp->b_rptr;
pld_ptr = mp->b_rptr;
/* Establish the ending byte offset, based on the starting offset. */
offset <<= 3;
ip_data_end = offset + ntohs(ipha_orig->ipha_length) -
IP_SIMPLE_HDR_LENGTH;
pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF;
while (pld_ptr < mp->b_wptr) {
ipha_t *ipha;
uint16_t offset_and_flags;
uint16_t ip_len;
int error;
ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr);
ipha = (ipha_t *)(hdr_ptr + wroff);
ASSERT(OK_32PTR(ipha));
*ipha = *ipha_orig;
if (ip_data_end - offset > len) {
offset_and_flags = IPH_MF;
} else {
/*
* Last frag. Set len to the length of this last piece.
*/
len = ip_data_end - offset;
/* A frag of a frag might have IPH_MF non-zero */
offset_and_flags =
ntohs(ipha->ipha_fragment_offset_and_flags) &
IPH_MF;
}
offset_and_flags |= (uint16_t)(offset >> 3);
offset_and_flags |= (uint16_t)frag_flag;
/* Store the offset and flags in the IP header. */
ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
/* Store the length in the IP header. */
ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH);
ipha->ipha_length = htons(ip_len);
/*
* Set the IP header checksum. Note that mp is just
* the header, so this is easy to pass to ip_csum.
*/
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
/*
* Record offset and size of header and data of the next packet
* in the multidata message.
*/
PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0);
PDESC_PLD_INIT(&pdi);
i1 = MIN(mp->b_wptr - pld_ptr, len);
ASSERT(i1 > 0);
PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1);
if (i1 == len) {
pld_ptr += len;
} else {
i1 = len - i1;
mp = mp->b_cont;
ASSERT(mp != NULL);
ASSERT(MBLKL(mp) >= i1);
/*
* Attach the next payload message block to the
* multidata message.
*/
if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
goto pbuf_panic;
PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1);
pld_ptr = mp->b_rptr + i1;
}
if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error,
KM_NOSLEEP)) == NULL) {
/*
* Any failure other than ENOMEM indicates that we
* have passed in invalid pdesc info or parameters
* to mmd_addpdesc, which must not happen.
*
* EINVAL is a result of failure on boundary checks
* against the pdesc info contents. It should not
* happen, and we panic because either there's
* horrible heap corruption, and/or programming
* mistake.
*/
if (error != ENOMEM) {
cmn_err(CE_PANIC, "ip_wput_frag_mdt: "
"pdesc logic error detected for "
"mmd %p pinfo %p (%d)\n",
(void *)mmd, (void *)&pdi, error);
/* NOTREACHED */
}
IP_STAT(ip_frag_mdt_addpdescfail);
/* Free unattached payload message blocks as well */
md_mp->b_cont = mp->b_cont;
goto free_mmd;
}
/* Advance fragment offset. */
offset += len;
/* Advance to location for next header in the buffer. */
hdr_ptr += hdr_chunk_len;
/* Did we reach the next payload message block? */
if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) {
mp = mp->b_cont;
/*
* Attach the next message block with payload
* data to the multidata message.
*/
if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
goto pbuf_panic;
pld_ptr = mp->b_rptr;
}
}
ASSERT(hdr_mp->b_wptr == hdr_ptr);
ASSERT(mp->b_wptr == pld_ptr);
/* Update IP statistics */
UPDATE_MIB(&ip_mib, ipFragCreates, pkts);
BUMP_MIB(&ip_mib, ipFragOKs);
IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts);
if (pkt_type == OB_PKT) {
ire->ire_ob_pkt_count += pkts;
if (ire->ire_ipif != NULL)
atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts);
} else {
/*
* The type is IB_PKT in the forwarding path and in
* the mobile IP case when the packet is being reverse-
* tunneled to the home agent.
*/
ire->ire_ib_pkt_count += pkts;
ASSERT(!IRE_IS_LOCAL(ire));
if (ire->ire_type & IRE_BROADCAST)
atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts);
else
atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts);
}
ire->ire_last_used_time = lbolt;
/* Send it down */
putnext(ire->ire_stq, md_mp);
return;
pbuf_panic:
cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic "
"error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp,
pbuf_idx);
/* NOTREACHED */
}
/*
* Outbound IP fragmentation routine.
*
* NOTE : This routine does not ire_refrele the ire that is passed in
* as the argument.
*/
static void
ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag,
uint32_t frag_flag, zoneid_t zoneid)
{
int i1;
mblk_t *ll_hdr_mp;
int ll_hdr_len;
int hdr_len;
mblk_t *hdr_mp;
ipha_t *ipha;
int ip_data_end;
int len;
mblk_t *mp = mp_orig, *mp1;
int offset;
queue_t *q;
uint32_t v_hlen_tos_len;
mblk_t *first_mp;
boolean_t mctl_present;
ill_t *ill;
ill_t *out_ill;
mblk_t *xmit_mp;
mblk_t *carve_mp;
ire_t *ire1 = NULL;
ire_t *save_ire = NULL;
mblk_t *next_mp = NULL;
boolean_t last_frag = B_FALSE;
boolean_t multirt_send = B_FALSE;
ire_t *first_ire = NULL;
irb_t *irb = NULL;
/*
* IPSEC does not allow hw accelerated packets to be fragmented
* This check is made in ip_wput_ipsec_out prior to coming here
* via ip_wput_ire_fragmentit.
*
* If at this point we have an ire whose ARP request has not
* been sent out, we call ip_xmit_v4->ire_arpresolve to trigger
* sending of ARP query and change ire's state to ND_INCOMPLETE.
* This packet and all fragmentable packets for this ire will
* continue to get dropped while ire_nce->nce_state remains in
* ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to
* ND_REACHABLE, all subsquent large packets for this ire will
* get fragemented and sent out by this function.
*/
if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
/* If nce_state is ND_INITIAL, trigger ARP query */
(void) ip_xmit_v4(NULL, ire, NULL, B_FALSE);
ip1dbg(("ip_wput_frag: mac address for ire is unresolved"
" - dropping packet\n"));
BUMP_MIB(&ip_mib, ipFragFails);
freemsg(mp);
return;
}
TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START,
"ip_wput_frag_start:");
if (mp->b_datap->db_type == M_CTL) {
first_mp = mp;
mp_orig = mp = mp->b_cont;
mctl_present = B_TRUE;
} else {
first_mp = mp;
mctl_present = B_FALSE;
}
ASSERT(MBLKL(mp) >= sizeof (ipha_t));
ipha = (ipha_t *)mp->b_rptr;
/*
* If the Don't Fragment flag is on, generate an ICMP destination
* unreachable, fragmentation needed.
*/
offset = ntohs(ipha->ipha_fragment_offset_and_flags);
if (offset & IPH_DF) {
BUMP_MIB(&ip_mib, ipFragFails);
/*
* Need to compute hdr checksum if called from ip_wput_ire.
* Note that ip_rput_forward verifies the checksum before
* calling this routine so in that case this is a noop.
*/
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid);
TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
"ip_wput_frag_end:(%S)",
"don't fragment");
return;
}
if (mctl_present)
freeb(first_mp);
/*
* Establish the starting offset. May not be zero if we are fragging
* a fragment that is being forwarded.
*/
offset = offset & IPH_OFFSET;
/* TODO why is this test needed? */
v_hlen_tos_len = ((uint32_t *)ipha)[0];
if (((max_frag - LENGTH) & ~7) < 8) {
/* TODO: notify ulp somehow */
BUMP_MIB(&ip_mib, ipFragFails);
freemsg(mp);
TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
"ip_wput_frag_end:(%S)",
"len < 8");
return;
}
hdr_len = (V_HLEN & 0xF) << 2;
ipha->ipha_hdr_checksum = 0;
/*
* Establish the number of bytes maximum per frag, after putting
* in the header.
*/
len = (max_frag - hdr_len) & ~7;
/* Check if we can use MDT to send out the frags. */
ASSERT(!IRE_IS_LOCAL(ire));
if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound &&
!(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) &&
(ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) &&
IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) {
ASSERT(ill->ill_mdt_capab != NULL);
if (!ill->ill_mdt_capab->ill_mdt_on) {
/*
* If MDT has been previously turned off in the past,
* and we currently can do MDT (due to IPQoS policy
* removal, etc.) then enable it for this interface.
*/
ill->ill_mdt_capab->ill_mdt_on = 1;
ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n",
ill->ill_name));
}
ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag,
offset);
return;
}
/* Get a copy of the header for the trailing frags */
hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset);
if (!hdr_mp) {
BUMP_MIB(&ip_mib, ipOutDiscards);
freemsg(mp);
TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
"ip_wput_frag_end:(%S)",
"couldn't copy hdr");
return;
}
if (DB_CRED(mp) != NULL)
mblk_setcred(hdr_mp, DB_CRED(mp));
/* Store the starting offset, with the MoreFrags flag. */
i1 = offset | IPH_MF | frag_flag;
ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
/* Establish the ending byte offset, based on the starting offset. */
offset <<= 3;
ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
/* Store the length of the first fragment in the IP header. */
i1 = len + hdr_len;
ASSERT(i1 <= IP_MAXPACKET);
ipha->ipha_length = htons((uint16_t)i1);
/*
* Compute the IP header checksum for the first frag. We have to
* watch out that we stop at the end of the header.
*/
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
/*
* Now carve off the first frag. Note that this will include the
* original IP header.
*/
if (!(mp = ip_carve_mp(&mp_orig, i1))) {
BUMP_MIB(&ip_mib, ipOutDiscards);
freeb(hdr_mp);
freemsg(mp_orig);
TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
"ip_wput_frag_end:(%S)",
"couldn't carve first");
return;
}
/*
* Multirouting case. Each fragment is replicated
* via all non-condemned RTF_MULTIRT routes
* currently resolved.
* We ensure that first_ire is the first RTF_MULTIRT
* ire in the bucket.
*/
if (ire->ire_flags & RTF_MULTIRT) {
irb = ire->ire_bucket;
ASSERT(irb != NULL);
multirt_send = B_TRUE;
/* Make sure we do not omit any multiroute ire. */
IRB_REFHOLD(irb);
for (first_ire = irb->irb_ire;
first_ire != NULL;
first_ire = first_ire->ire_next) {
if ((first_ire->ire_flags & RTF_MULTIRT) &&
(first_ire->ire_addr == ire->ire_addr) &&
!(first_ire->ire_marks &
(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)))
break;
}
if (first_ire != NULL) {
if (first_ire != ire) {
IRE_REFHOLD(first_ire);
/*
* Do not release the ire passed in
* as the argument.
*/
ire = first_ire;
} else {
first_ire = NULL;
}
}
IRB_REFRELE(irb);
/*
* Save the first ire; we will need to restore it
* for the trailing frags.
* We REFHOLD save_ire, as each iterated ire will be
* REFRELEd.
*/
save_ire = ire;
IRE_REFHOLD(save_ire);
}
/*
* First fragment emission loop.
* In most cases, the emission loop below is entered only
* once. Only in the case where the ire holds the RTF_MULTIRT
* flag, do we loop to process all RTF_MULTIRT ires in the
* bucket, and send the fragment through all crossed
* RTF_MULTIRT routes.
*/
do {
if (ire->ire_flags & RTF_MULTIRT) {
/*
* We are in a multiple send case, need to get
* the next ire and make a copy of the packet.
* ire1 holds here the next ire to process in the
* bucket. If multirouting is expected,
* any non-RTF_MULTIRT ire that has the
* right destination address is ignored.
*
* We have to take into account the MTU of
* each walked ire. max_frag is set by the
* the caller and generally refers to
* the primary ire entry. Here we ensure that
* no route with a lower MTU will be used, as
* fragments are carved once for all ires,
* then replicated.
*/
ASSERT(irb != NULL);
IRB_REFHOLD(irb);
for (ire1 = ire->ire_next;
ire1 != NULL;
ire1 = ire1->ire_next) {
if ((ire1->ire_flags & RTF_MULTIRT) == 0)
continue;
if (ire1->ire_addr != ire->ire_addr)
continue;
if (ire1->ire_marks &
(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
continue;
/*
* Ensure we do not exceed the MTU
* of the next route.
*/
if (ire1->ire_max_frag < max_frag) {
ip_multirt_bad_mtu(ire1, max_frag);
continue;
}
/* Got one. */
IRE_REFHOLD(ire1);
break;
}
IRB_REFRELE(irb);
if (ire1 != NULL) {
next_mp = copyb(mp);
if ((next_mp == NULL) ||
((mp->b_cont != NULL) &&
((next_mp->b_cont =
dupmsg(mp->b_cont)) == NULL))) {
freemsg(next_mp);
next_mp = NULL;
ire_refrele(ire1);
ire1 = NULL;
}
}
/* Last multiroute ire; don't loop anymore. */
if (ire1 == NULL) {
multirt_send = B_FALSE;
}
}
ll_hdr_len = 0;
LOCK_IRE_FP_MP(ire);
ll_hdr_mp = ire->ire_nce->nce_fp_mp;
if (ll_hdr_mp != NULL) {
ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA);
ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr;
} else {
ll_hdr_mp = ire->ire_nce->nce_res_mp;
}
/* If there is a transmit header, get a copy for this frag. */
/*
* TODO: should check db_ref before calling ip_carve_mp since
* it might give us a dup.
*/
if (!ll_hdr_mp) {
/* No xmit header. */
xmit_mp = mp;
/* We have a link-layer header that can fit in our mblk. */
} else if (mp->b_datap->db_ref == 1 &&
ll_hdr_len != 0 &&
ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) {
/* M_DATA fastpath */
mp->b_rptr -= ll_hdr_len;
bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len);
xmit_mp = mp;
/* Corner case if copyb has failed */
} else if (!(xmit_mp = copyb(ll_hdr_mp))) {
UNLOCK_IRE_FP_MP(ire);
BUMP_MIB(&ip_mib, ipOutDiscards);
freeb(hdr_mp);
freemsg(mp);
freemsg(mp_orig);
TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
"ip_wput_frag_end:(%S)",
"discard");
if (multirt_send) {
ASSERT(ire1);
ASSERT(next_mp);
freemsg(next_mp);
ire_refrele(ire1);
}
if (save_ire != NULL)
IRE_REFRELE(save_ire);
if (first_ire != NULL)
ire_refrele(first_ire);
return;
/*
* Case of res_mp OR the fastpath mp can't fit
* in the mblk
*/
} else {
xmit_mp->b_cont = mp;
if (DB_CRED(mp) != NULL)
mblk_setcred(xmit_mp, DB_CRED(mp));
/*
* Get priority marking, if any.
* We propagate the CoS marking from the
* original packet that went to QoS processing
* in ip_wput_ire to the newly carved mp.
*/
if (DB_TYPE(xmit_mp) == M_DATA)
xmit_mp->b_band = mp->b_band;
}
UNLOCK_IRE_FP_MP(ire);
q = ire->ire_stq;
BUMP_MIB(&ip_mib, ipFragCreates);
out_ill = (ill_t *)q->q_ptr;
DTRACE_PROBE4(ip4__physical__out__start,
ill_t *, NULL, ill_t *, out_ill,
ipha_t *, ipha, mblk_t *, xmit_mp);
FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
NULL, out_ill, ipha, xmit_mp, mp);
DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp);
if (xmit_mp != NULL) {
putnext(q, xmit_mp);
if (pkt_type != OB_PKT) {
/*
* Update the packet count of trailing
* RTF_MULTIRT ires.
*/
UPDATE_OB_PKT_COUNT(ire);
}
}
if (multirt_send) {
/*
* We are in a multiple send case; look for
* the next ire and re-enter the loop.
*/
ASSERT(ire1);
ASSERT(next_mp);
/* REFRELE the current ire before looping */
ire_refrele(ire);
ire = ire1;
ire1 = NULL;
mp = next_mp;
next_mp = NULL;
}
} while (multirt_send);
ASSERT(ire1 == NULL);
/* Restore the original ire; we need it for the trailing frags */
if (save_ire != NULL) {
/* REFRELE the last iterated ire */
ire_refrele(ire);
/* save_ire has been REFHOLDed */
ire = save_ire;
save_ire = NULL;
q = ire->ire_stq;
}
if (pkt_type == OB_PKT) {
UPDATE_OB_PKT_COUNT(ire);
} else {
UPDATE_IB_PKT_COUNT(ire);
}
/* Advance the offset to the second frag starting point. */
offset += len;
/*
* Update hdr_len from the copied header - there might be less options
* in the later fragments.
*/
hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
/* Loop until done. */
for (;;) {
uint16_t offset_and_flags;
uint16_t ip_len;
if (ip_data_end - offset > len) {
/*
* Carve off the appropriate amount from the original
* datagram.
*/
if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
mp = NULL;
break;
}
/*
* More frags after this one. Get another copy
* of the header.
*/
if (carve_mp->b_datap->db_ref == 1 &&
hdr_mp->b_wptr - hdr_mp->b_rptr <
carve_mp->b_rptr - carve_mp->b_datap->db_base) {
/* Inline IP header */
carve_mp->b_rptr -= hdr_mp->b_wptr -
hdr_mp->b_rptr;
bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
hdr_mp->b_wptr - hdr_mp->b_rptr);
mp = carve_mp;
} else {
if (!(mp = copyb(hdr_mp))) {
freemsg(carve_mp);
break;
}
/* Get priority marking, if any. */
mp->b_band = carve_mp->b_band;
mp->b_cont = carve_mp;
}
ipha = (ipha_t *)mp->b_rptr;
offset_and_flags = IPH_MF;
} else {
/*
* Last frag. Consume the header. Set len to
* the length of this last piece.
*/
len = ip_data_end - offset;
/*
* Carve off the appropriate amount from the original
* datagram.
*/
if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
mp = NULL;
break;
}
if (carve_mp->b_datap->db_ref == 1 &&
hdr_mp->b_wptr - hdr_mp->b_rptr <
carve_mp->b_rptr - carve_mp->b_datap->db_base) {
/* Inline IP header */
carve_mp->b_rptr -= hdr_mp->b_wptr -
hdr_mp->b_rptr;
bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
hdr_mp->b_wptr - hdr_mp->b_rptr);
mp = carve_mp;
freeb(hdr_mp);
hdr_mp = mp;
} else {
mp = hdr_mp;
/* Get priority marking, if any. */
mp->b_band = carve_mp->b_band;
mp->b_cont = carve_mp;
}
ipha = (ipha_t *)mp->b_rptr;
/* A frag of a frag might have IPH_MF non-zero */
offset_and_flags =
ntohs(ipha->ipha_fragment_offset_and_flags) &
IPH_MF;
}
offset_and_flags |= (uint16_t)(offset >> 3);
offset_and_flags |= (uint16_t)frag_flag;
/* Store the offset and flags in the IP header. */
ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
/* Store the length in the IP header. */
ip_len = (uint16_t)(len + hdr_len);
ipha->ipha_length = htons(ip_len);
/*
* Set the IP header checksum. Note that mp is just
* the header, so this is easy to pass to ip_csum.
*/
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
/* Attach a transmit header, if any, and ship it. */
if (pkt_type == OB_PKT) {
UPDATE_OB_PKT_COUNT(ire);
} else {
UPDATE_IB_PKT_COUNT(ire);
}
if (ire->ire_flags & RTF_MULTIRT) {
irb = ire->ire_bucket;
ASSERT(irb != NULL);
multirt_send = B_TRUE;
/*
* Save the original ire; we will need to restore it
* for the tailing frags.
*/
save_ire = ire;
IRE_REFHOLD(save_ire);
}
/*
* Emission loop for this fragment, similar
* to what is done for the first fragment.
*/
do {
if (multirt_send) {
/*
* We are in a multiple send case, need to get
* the next ire and make a copy of the packet.
*/
ASSERT(irb != NULL);
IRB_REFHOLD(irb);
for (ire1 = ire->ire_next;
ire1 != NULL;
ire1 = ire1->ire_next) {
if (!(ire1->ire_flags & RTF_MULTIRT))
continue;
if (ire1->ire_addr != ire->ire_addr)
continue;
if (ire1->ire_marks &
(IRE_MARK_CONDEMNED|
IRE_MARK_HIDDEN))
continue;
/*
* Ensure we do not exceed the MTU
* of the next route.
*/
if (ire1->ire_max_frag < max_frag) {
ip_multirt_bad_mtu(ire1,
max_frag);
continue;
}
/* Got one. */
IRE_REFHOLD(ire1);
break;
}
IRB_REFRELE(irb);
if (ire1 != NULL) {
next_mp = copyb(mp);
if ((next_mp == NULL) ||
((mp->b_cont != NULL) &&
((next_mp->b_cont =
dupmsg(mp->b_cont)) == NULL))) {
freemsg(next_mp);
next_mp = NULL;
ire_refrele(ire1);
ire1 = NULL;
}
}
/* Last multiroute ire; don't loop anymore. */
if (ire1 == NULL) {
multirt_send = B_FALSE;
}
}
/* Update transmit header */
ll_hdr_len = 0;
LOCK_IRE_FP_MP(ire);
ll_hdr_mp = ire->ire_nce->nce_fp_mp;
if (ll_hdr_mp != NULL) {
ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA);
ll_hdr_len = MBLKL(ll_hdr_mp);
} else {
ll_hdr_mp = ire->ire_nce->nce_res_mp;
}
if (!ll_hdr_mp) {
xmit_mp = mp;
/*
* We have link-layer header that can fit in
* our mblk.
*/
} else if (mp->b_datap->db_ref == 1 &&
ll_hdr_len != 0 &&
ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) {
/* M_DATA fastpath */
mp->b_rptr -= ll_hdr_len;
bcopy(ll_hdr_mp->b_rptr, mp->b_rptr,
ll_hdr_len);
xmit_mp = mp;
/*
* Case of res_mp OR the fastpath mp can't fit
* in the mblk
*/
} else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) {
xmit_mp->b_cont = mp;
if (DB_CRED(mp) != NULL)
mblk_setcred(xmit_mp, DB_CRED(mp));
/* Get priority marking, if any. */
if (DB_TYPE(xmit_mp) == M_DATA)
xmit_mp->b_band = mp->b_band;
/* Corner case if copyb failed */
} else {
/*
* Exit both the replication and
* fragmentation loops.
*/
UNLOCK_IRE_FP_MP(ire);
goto drop_pkt;
}
UNLOCK_IRE_FP_MP(ire);
BUMP_MIB(&ip_mib, ipFragCreates);
mp1 = mp;
out_ill = (ill_t *)q->q_ptr;
DTRACE_PROBE4(ip4__physical__out__start,
ill_t *, NULL, ill_t *, out_ill,
ipha_t *, ipha, mblk_t *, xmit_mp);
FW_HOOKS(ip4_physical_out_event,
ipv4firewall_physical_out,
NULL, out_ill, ipha, xmit_mp, mp);
DTRACE_PROBE1(ip4__physical__out__end,
mblk_t *, xmit_mp);
if (mp != mp1 && hdr_mp == mp1)
hdr_mp = mp;
if (mp != mp1 && mp_orig == mp1)
mp_orig = mp;
if (xmit_mp != NULL) {
putnext(q, xmit_mp);
if (pkt_type != OB_PKT) {
/*
* Update the packet count of trailing
* RTF_MULTIRT ires.
*/
UPDATE_OB_PKT_COUNT(ire);
}
}
/* All done if we just consumed the hdr_mp. */
if (mp == hdr_mp) {
last_frag = B_TRUE;
}
if (multirt_send) {
/*
* We are in a multiple send case; look for
* the next ire and re-enter the loop.
*/
ASSERT(ire1);
ASSERT(next_mp);
/* REFRELE the current ire before looping */
ire_refrele(ire);
ire = ire1;
ire1 = NULL;
q = ire->ire_stq;
mp = next_mp;
next_mp = NULL;
}
} while (multirt_send);
/*
* Restore the original ire; we need it for the
* trailing frags
*/
if (save_ire != NULL) {
ASSERT(ire1 == NULL);
/* REFRELE the last iterated ire */
ire_refrele(ire);
/* save_ire has been REFHOLDed */
ire = save_ire;
q = ire->ire_stq;
save_ire = NULL;
}
if (last_frag) {
BUMP_MIB(&ip_mib, ipFragOKs);
TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
"ip_wput_frag_end:(%S)",
"consumed hdr_mp");
if (first_ire != NULL)
ire_refrele(first_ire);
return;
}
/* Otherwise, advance and loop. */
offset += len;
}
drop_pkt:
/* Clean up following allocation failure. */
BUMP_MIB(&ip_mib, ipOutDiscards);
freemsg(mp);
if (mp != hdr_mp)
freeb(hdr_mp);
if (mp != mp_orig)
freemsg(mp_orig);
if (save_ire != NULL)
IRE_REFRELE(save_ire);
if (first_ire != NULL)
ire_refrele(first_ire);
TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
"ip_wput_frag_end:(%S)",
"end--alloc failure");
}
/*
* Copy the header plus those options which have the copy bit set
*/
static mblk_t *
ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset)
{
mblk_t *mp;
uchar_t *up;
/*
* Quick check if we need to look for options without the copy bit
* set
*/
mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI);
if (!mp)
return (mp);
mp->b_rptr += ip_wroff_extra;
if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
bcopy(rptr, mp->b_rptr, hdr_len);
mp->b_wptr += hdr_len + ip_wroff_extra;
return (mp);
}
up = mp->b_rptr;
bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
up += IP_SIMPLE_HDR_LENGTH;
rptr += IP_SIMPLE_HDR_LENGTH;
hdr_len -= IP_SIMPLE_HDR_LENGTH;
while (hdr_len > 0) {
uint32_t optval;
uint32_t optlen;
optval = *rptr;
if (optval == IPOPT_EOL)
break;
if (optval == IPOPT_NOP)
optlen = 1;
else
optlen = rptr[1];
if (optval & IPOPT_COPY) {
bcopy(rptr, up, optlen);
up += optlen;
}
rptr += optlen;
hdr_len -= optlen;
}
/*
* Make sure that we drop an even number of words by filling
* with EOL to the next word boundary.
*/
for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
hdr_len & 0x3; hdr_len++)
*up++ = IPOPT_EOL;
mp->b_wptr = up;
/* Update header length */
mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
return (mp);
}
/*
* Delivery to local recipients including fanout to multiple recipients.
* Does not do checksumming of UDP/TCP.
* Note: q should be the read side queue for either the ill or conn.
* Note: rq should be the read side q for the lower (ill) stream.
* We don't send packets to IPPF processing, thus the last argument
* to all the fanout calls are B_FALSE.
*/
void
ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire,
int fanout_flags, zoneid_t zoneid)
{
uint32_t protocol;
mblk_t *first_mp;
boolean_t mctl_present;
int ire_type;
#define rptr ((uchar_t *)ipha)
TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START,
"ip_wput_local_start: q %p", q);
if (ire != NULL) {
ire_type = ire->ire_type;
} else {
/*
* Only ip_multicast_loopback() calls us with a NULL ire. If the
* packet is not multicast, we can't tell the ire type.
*/
ASSERT(CLASSD(ipha->ipha_dst));
ire_type = IRE_BROADCAST;
}
first_mp = mp;
if (first_mp->b_datap->db_type == M_CTL) {
ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr;
if (!io->ipsec_out_secure) {
/*
* This ipsec_out_t was allocated in ip_wput
* for multicast packets to store the ill_index.
* As this is being delivered locally, we don't
* need this anymore.
*/
mp = first_mp->b_cont;
freeb(first_mp);
first_mp = mp;
mctl_present = B_FALSE;
} else {
/*
* Convert IPSEC_OUT to IPSEC_IN, preserving all
* security properties for the looped-back packet.
*/
mctl_present = B_TRUE;
mp = first_mp->b_cont;
ASSERT(mp != NULL);
ipsec_out_to_in(first_mp);
}
} else {
mctl_present = B_FALSE;
}
DTRACE_PROBE4(ip4__loopback__in__start,
ill_t *, ill, ill_t *, NULL,
ipha_t *, ipha, mblk_t *, first_mp);
FW_HOOKS(ip4_loopback_in_event, ipv4firewall_loopback_in,
ill, NULL, ipha, first_mp, mp);
DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp);
if (first_mp == NULL)
return;
loopback_packets++;
ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n",
ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid));
if (!IS_SIMPLE_IPH(ipha)) {
ip_wput_local_options(ipha);
}
protocol = ipha->ipha_protocol;
switch (protocol) {
case IPPROTO_ICMP: {
ire_t *ire_zone;
ilm_t *ilm;
mblk_t *mp1;
zoneid_t last_zoneid;
if (CLASSD(ipha->ipha_dst) &&
!(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) {
ASSERT(ire_type == IRE_BROADCAST);
/*
* In the multicast case, applications may have joined
* the group from different zones, so we need to deliver
* the packet to each of them. Loop through the
* multicast memberships structures (ilm) on the receive
* ill and send a copy of the packet up each matching
* one. However, we don't do this for multicasts sent on
* the loopback interface (PHYI_LOOPBACK flag set) as
* they must stay in the sender's zone.
*
* ilm_add_v6() ensures that ilms in the same zone are
* contiguous in the ill_ilm list. We use this property
* to avoid sending duplicates needed when two
* applications in the same zone join the same group on
* different logical interfaces: we ignore the ilm if
* it's zoneid is the same as the last matching one.
* In addition, the sending of the packet for
* ire_zoneid is delayed until all of the other ilms
* have been exhausted.
*/
last_zoneid = -1;
ILM_WALKER_HOLD(ill);
for (ilm = ill->ill_ilm; ilm != NULL;
ilm = ilm->ilm_next) {
if ((ilm->ilm_flags & ILM_DELETED) ||
ipha->ipha_dst != ilm->ilm_addr ||
ilm->ilm_zoneid == last_zoneid ||
ilm->ilm_zoneid == zoneid ||
!(ilm->ilm_ipif->ipif_flags & IPIF_UP))
continue;
mp1 = ip_copymsg(first_mp);
if (mp1 == NULL)
continue;
icmp_inbound(q, mp1, B_TRUE, ill, 0, 0,
mctl_present, B_FALSE, ill,
ilm->ilm_zoneid);
last_zoneid = ilm->ilm_zoneid;
}
ILM_WALKER_RELE(ill);
/*
* Loopback case: the sending endpoint has
* IP_MULTICAST_LOOP disabled, therefore we don't
* dispatch the multicast packet to the sending zone.
*/
if (fanout_flags & IP_FF_NO_MCAST_LOOP) {
freemsg(first_mp);
return;
}
} else if (ire_type == IRE_BROADCAST) {
/*
* In the broadcast case, there may be many zones
* which need a copy of the packet delivered to them.
* There is one IRE_BROADCAST per broadcast address
* and per zone; we walk those using a helper function.
* In addition, the sending of the packet for zoneid is
* delayed until all of the other ires have been
* processed.
*/
IRB_REFHOLD(ire->ire_bucket);
ire_zone = NULL;
while ((ire_zone = ire_get_next_bcast_ire(ire_zone,
ire)) != NULL) {
mp1 = ip_copymsg(first_mp);
if (mp1 == NULL)
continue;
UPDATE_IB_PKT_COUNT(ire_zone);
ire_zone->ire_last_used_time = lbolt;
icmp_inbound(q, mp1, B_TRUE, ill, 0, 0,
mctl_present, B_FALSE, ill,
ire_zone->ire_zoneid);
}
IRB_REFRELE(ire->ire_bucket);
}
icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0,
0, mctl_present, B_FALSE, ill, zoneid);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
"ip_wput_local_end: q %p (%S)",
q, "icmp");
return;
}
case IPPROTO_IGMP:
if ((mp = igmp_input(q, mp, ill)) == NULL) {
/* Bad packet - discarded by igmp_input */
TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
"ip_wput_local_end: q %p (%S)",
q, "igmp_input--bad packet");
if (mctl_present)
freeb(first_mp);
return;
}
/*
* igmp_input() may have returned the pulled up message.
* So first_mp and ipha need to be reinitialized.
*/
ipha = (ipha_t *)mp->b_rptr;
if (mctl_present)
first_mp->b_cont = mp;
else
first_mp = mp;
/* deliver to local raw users */
break;
case IPPROTO_ENCAP:
/*
* This case is covered by either ip_fanout_proto, or by
* the above security processing for self-tunneled packets.
*/
break;
case IPPROTO_UDP: {
uint16_t *up;
uint32_t ports;
up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) +
UDP_PORTS_OFFSET);
/* Force a 'valid' checksum. */
up[3] = 0;
ports = *(uint32_t *)up;
ip_fanout_udp(q, first_mp, ill, ipha, ports,
(ire_type == IRE_BROADCAST),
fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE,
ill, zoneid);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
"ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp");
return;
}
case IPPROTO_TCP: {
/*
* For TCP, discard broadcast packets.
*/
if ((ushort_t)ire_type == IRE_BROADCAST) {
freemsg(first_mp);
BUMP_MIB(&ip_mib, ipInDiscards);
ip2dbg(("ip_wput_local: discard broadcast\n"));
return;
}
if (mp->b_datap->db_type == M_DATA) {
/*
* M_DATA mblk, so init mblk (chain) for no struio().
*/
mblk_t *mp1 = mp;
do
mp1->b_datap->db_struioflag = 0;
while ((mp1 = mp1->b_cont) != NULL);
}
ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4)
<= mp->b_wptr);
ip_fanout_tcp(q, first_mp, ill, ipha,
fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
IP_FF_SYN_ADDIRE | IP_FF_IP6INFO,
mctl_present, B_FALSE, zoneid);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
"ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp");
return;
}
case IPPROTO_SCTP:
{
uint32_t ports;
bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports));
ip_fanout_sctp(first_mp, ill, ipha, ports,
fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
IP_FF_IP6INFO,
mctl_present, B_FALSE, 0, zoneid);
return;
}
default:
break;
}
/*
* Find a client for some other protocol. We give
* copies to multiple clients, if more than one is
* bound.
*/
ip_fanout_proto(q, first_mp, ill, ipha,
fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP,
mctl_present, B_FALSE, ill, zoneid);
TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
"ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto");
#undef rptr
}
/*
* Update any source route, record route, or timestamp options.
* Check that we are at end of strict source route.
* The options have been sanity checked by ip_wput_options().
*/
static void
ip_wput_local_options(ipha_t *ipha)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
uint32_t ts;
ire_t *ire;
timestruc_t now;
ip2dbg(("ip_wput_local_options\n"));
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
break;
}
/*
* This will only happen if two consecutive entries
* in the source route contains our address or if
* it is a packet with a loose source route which
* reaches us before consuming the whole source route
*/
ip1dbg(("ip_wput_local_options: not end of SR\n"));
if (optval == IPOPT_SSRR) {
return;
}
/*
* Hack: instead of dropping the packet truncate the
* source route to what has been used by filling the
* rest with IPOPT_NOP.
*/
opt[IPOPT_OLEN] = (uint8_t)off;
while (off < optlen) {
opt[off++] = IPOPT_NOP;
}
break;
case IPOPT_RR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* No more room - ignore */
ip1dbg((
"ip_wput_forward_options: end of RR\n"));
break;
}
dst = htonl(INADDR_LOOPBACK);
bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
break;
case IPOPT_TS:
/* Insert timestamp if there is romm */
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
/* Verify that the address matched */
off = opt[IPOPT_OFFSET] - 1;
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
if (ire == NULL) {
/* Not for us */
break;
}
ire_refrele(ire);
/* FALLTHRU */
case IPOPT_TS_TSANDADDR:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
/*
* ip_*put_options should have already
* dropped this packet.
*/
cmn_err(CE_PANIC, "ip_wput_local_options: "
"unknown IT - bug in ip_wput_options?\n");
return; /* Keep "lint" happy */
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
/* Increase overflow counter */
off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
opt[IPOPT_POS_OV_FLG] = (uint8_t)
(opt[IPOPT_POS_OV_FLG] & 0x0F) |
(off << 4);
break;
}
off = opt[IPOPT_OFFSET] - 1;
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
case IPOPT_TS_TSANDADDR:
dst = htonl(INADDR_LOOPBACK);
bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
/* FALLTHRU */
case IPOPT_TS_TSONLY:
off = opt[IPOPT_OFFSET] - 1;
/* Compute # of milliseconds since midnight */
gethrestime(&now);
ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
now.tv_nsec / (NANOSEC / MILLISEC);
bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
break;
}
break;
}
}
}
/*
* Send out a multicast packet on interface ipif.
* The sender does not have an conn.
* Caller verifies that this isn't a PHYI_LOOPBACK.
*/
void
ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid)
{
ipha_t *ipha;
ire_t *ire;
ipaddr_t dst;
mblk_t *first_mp;
/* igmp_sendpkt always allocates a ipsec_out_t */
ASSERT(mp->b_datap->db_type == M_CTL);
ASSERT(!ipif->ipif_isv6);
ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK));
first_mp = mp;
mp = first_mp->b_cont;
ASSERT(mp->b_datap->db_type == M_DATA);
ipha = (ipha_t *)mp->b_rptr;
/*
* Find an IRE which matches the destination and the outgoing
* queue (i.e. the outgoing interface.)
*/
if (ipif->ipif_flags & IPIF_POINTOPOINT)
dst = ipif->ipif_pp_dst_addr;
else
dst = ipha->ipha_dst;
/*
* The source address has already been initialized by the
* caller and hence matching on ILL (MATCH_IRE_ILL) would
* be sufficient rather than MATCH_IRE_IPIF.
*
* This function is used for sending IGMP packets. We need
* to make sure that we send the packet out of the interface
* (ipif->ipif_ill) where we joined the group. This is to
* prevent from switches doing IGMP snooping to send us multicast
* packets for a given group on the interface we have joined.
* If we can't find an ire, igmp_sendpkt has already initialized
* ipsec_out_attach_if so that this will not be load spread in
* ip_newroute_ipif.
*/
ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL,
MATCH_IRE_ILL);
if (!ire) {
/*
* Mark this packet to make it be delivered to
* ip_wput_ire after the new ire has been
* created.
*/
mp->b_prev = NULL;
mp->b_next = NULL;
ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC,
zoneid);
return;
}
/*
* Honor the RTF_SETSRC flag; this is the only case
* where we force this addr whatever the current src addr is,
* because this address is set by igmp_sendpkt(), and
* cannot be specified by any user.
*/
if (ire->ire_flags & RTF_SETSRC) {
ipha->ipha_src = ire->ire_src_addr;
}
ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid);
}
/*
* NOTE : This function does not ire_refrele the ire argument passed in.
*
* Copy the link layer header and do IPQoS if needed. Frees the mblk on
* failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN
* and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold
* the ire_lock to access the nce_fp_mp in this case.
* IPQoS assumes that the first M_DATA contains the IP header. So, if we are
* prepending a fastpath message IPQoS processing must precede it, we also set
* the b_band of the fastpath message to that of the mblk returned by IPQoS
* (IPQoS might have set the b_band for CoS marking).
* However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing
* must follow it so that IPQoS can mark the dl_priority field for CoS
* marking, if needed.
*/
static mblk_t *
ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index)
{
uint_t hlen;
ipha_t *ipha;
mblk_t *mp1;
boolean_t qos_done = B_FALSE;
uchar_t *ll_hdr;
#define rptr ((uchar_t *)ipha)
ipha = (ipha_t *)mp->b_rptr;
hlen = 0;
LOCK_IRE_FP_MP(ire);
if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) {
ASSERT(DB_TYPE(mp1) == M_DATA);
/* Initiate IPPF processing */
if ((proc != 0) && IPP_ENABLED(proc)) {
UNLOCK_IRE_FP_MP(ire);
ip_process(proc, &mp, ill_index);
if (mp == NULL)
return (NULL);
ipha = (ipha_t *)mp->b_rptr;
LOCK_IRE_FP_MP(ire);
if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) {
qos_done = B_TRUE;
goto no_fp_mp;
}
ASSERT(DB_TYPE(mp1) == M_DATA);
}
hlen = MBLKL(mp1);
/*
* Check if we have enough room to prepend fastpath
* header
*/
if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
ll_hdr = rptr - hlen;
bcopy(mp1->b_rptr, ll_hdr, hlen);
/*
* Set the b_rptr to the start of the link layer
* header
*/
mp->b_rptr = ll_hdr;
mp1 = mp;
} else {
mp1 = copyb(mp1);
if (mp1 == NULL)
goto unlock_err;
mp1->b_band = mp->b_band;
mp1->b_cont = mp;
/*
* certain system generated traffic may not
* have cred/label in ip header block. This
* is true even for a labeled system. But for
* labeled traffic, inherit the label in the
* new header.
*/
if (DB_CRED(mp) != NULL)
mblk_setcred(mp1, DB_CRED(mp));
/*
* XXX disable ICK_VALID and compute checksum
* here; can happen if nce_fp_mp changes and
* it can't be copied now due to insufficient
* space. (unlikely, fp mp can change, but it
* does not increase in length)
*/
}
UNLOCK_IRE_FP_MP(ire);
} else {
no_fp_mp:
mp1 = copyb(ire->ire_nce->nce_res_mp);
if (mp1 == NULL) {
unlock_err:
UNLOCK_IRE_FP_MP(ire);
freemsg(mp);
return (NULL);
}
UNLOCK_IRE_FP_MP(ire);
mp1->b_cont = mp;
/*
* certain system generated traffic may not
* have cred/label in ip header block. This
* is true even for a labeled system. But for
* labeled traffic, inherit the label in the
* new header.
*/
if (DB_CRED(mp) != NULL)
mblk_setcred(mp1, DB_CRED(mp));
if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) {
ip_process(proc, &mp1, ill_index);
if (mp1 == NULL)
return (NULL);
}
}
return (mp1);
#undef rptr
}
/*
* Finish the outbound IPsec processing for an IPv6 packet. This function
* is called from ipsec_out_process() if the IPsec packet was processed
* synchronously, or from {ah,esp}_kcf_callback() if it was processed
* asynchronously.
*/
void
ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill,
ire_t *ire_arg)
{
in6_addr_t *v6dstp;
ire_t *ire;
mblk_t *mp;
ip6_t *ip6h1;
uint_t ill_index;
ipsec_out_t *io;
boolean_t attach_if, hwaccel;
uint32_t flags = IP6_NO_IPPOLICY;
int match_flags;
zoneid_t zoneid;
boolean_t ill_need_rele = B_FALSE;
boolean_t ire_need_rele = B_FALSE;
mp = ipsec_mp->b_cont;
ip6h1 = (ip6_t *)mp->b_rptr;
io = (ipsec_out_t *)ipsec_mp->b_rptr;
ill_index = io->ipsec_out_ill_index;
if (io->ipsec_out_reachable) {
flags |= IPV6_REACHABILITY_CONFIRMATION;
}
attach_if = io->ipsec_out_attach_if;
hwaccel = io->ipsec_out_accelerated;
zoneid = io->ipsec_out_zoneid;
ASSERT(zoneid != ALL_ZONES);
match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
/* Multicast addresses should have non-zero ill_index. */
v6dstp = &ip6h->ip6_dst;
ASSERT(ip6h->ip6_nxt != IPPROTO_RAW);
ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0);
ASSERT(!attach_if || ill_index != 0);
if (ill_index != 0) {
if (ill == NULL) {
ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index,
B_TRUE);
/* Failure case frees things for us. */
if (ill == NULL)
return;
ill_need_rele = B_TRUE;
}
/*
* If this packet needs to go out on a particular interface
* honor it.
*/
if (attach_if) {
match_flags = MATCH_IRE_ILL;
/*
* Check if we need an ire that will not be
* looked up by anybody else i.e. HIDDEN.
*/
if (ill_is_probeonly(ill)) {
match_flags |= MATCH_IRE_MARK_HIDDEN;
}
}
}
ASSERT(mp != NULL);
if (IN6_IS_ADDR_MULTICAST(v6dstp)) {
boolean_t unspec_src;
ipif_t *ipif;
/*
* Use the ill_index to get the right ill.
*/
unspec_src = io->ipsec_out_unspec_src;
(void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif);
if (ipif == NULL) {
if (ill_need_rele)
ill_refrele(ill);
freemsg(ipsec_mp);
return;
}
if (ire_arg != NULL) {
ire = ire_arg;
} else {
ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif,
zoneid, MBLK_GETLABEL(mp), match_flags);
ire_need_rele = B_TRUE;
}
if (ire != NULL) {
ipif_refrele(ipif);
/*
* XXX Do the multicast forwarding now, as the IPSEC
* processing has been done.
*/
goto send;
}
ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n"));
mp->b_prev = NULL;
mp->b_next = NULL;
/*
* If the IPsec packet was processed asynchronously,
* drop it now.
*/
if (q == NULL) {
if (ill_need_rele)
ill_refrele(ill);
freemsg(ipsec_mp);
return;
}
ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp,
unspec_src, zoneid);
ipif_refrele(ipif);
} else {
if (attach_if) {
ipif_t *ipif;
ipif = ipif_get_next_ipif(NULL, ill);
if (ipif == NULL) {
if (ill_need_rele)
ill_refrele(ill);
freemsg(ipsec_mp);
return;
}
ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif,
zoneid, MBLK_GETLABEL(mp), match_flags);
ire_need_rele = B_TRUE;
ipif_refrele(ipif);
} else {
if (ire_arg != NULL) {
ire = ire_arg;
} else {
ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL);
ire_need_rele = B_TRUE;
}
}
if (ire != NULL)
goto send;
/*
* ire disappeared underneath.
*
* What we need to do here is the ip_newroute
* logic to get the ire without doing the IPSEC
* processing. Follow the same old path. But this
* time, ip_wput or ire_add_then_send will call us
* directly as all the IPSEC operations are done.
*/
ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n"));
mp->b_prev = NULL;
mp->b_next = NULL;
/*
* If the IPsec packet was processed asynchronously,
* drop it now.
*/
if (q == NULL) {
if (ill_need_rele)
ill_refrele(ill);
freemsg(ipsec_mp);
return;
}
ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill,
zoneid);
}
if (ill != NULL && ill_need_rele)
ill_refrele(ill);
return;
send:
if (ill != NULL && ill_need_rele)
ill_refrele(ill);
/* Local delivery */
if (ire->ire_stq == NULL) {
ill_t *out_ill;
ASSERT(q != NULL);
/* PFHooks: LOOPBACK_OUT */
out_ill = ire->ire_ipif->ipif_ill;
DTRACE_PROBE4(ip6__loopback__out__start,
ill_t *, NULL, ill_t *, out_ill,
ip6_t *, ip6h1, mblk_t *, ipsec_mp);
FW_HOOKS6(ip6_loopback_out_event, ipv6firewall_loopback_out,
NULL, out_ill, ip6h1, ipsec_mp, mp);
DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp);
if (ipsec_mp != NULL)
ip_wput_local_v6(RD(q), out_ill,
ip6h, ipsec_mp, ire, 0);
if (ire_need_rele)
ire_refrele(ire);
return;
}
/*
* Everything is done. Send it out on the wire.
* We force the insertion of a fragment header using the
* IPH_FRAG_HDR flag in two cases:
* - after reception of an ICMPv6 "packet too big" message
* with a MTU < 1280 (cf. RFC 2460 section 5)
* - for multirouted IPv6 packets, so that the receiver can
* discard duplicates according to their fragment identifier
*/
/* XXX fix flow control problems. */
if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag ||
(ire->ire_frag_flag & IPH_FRAG_HDR)) {
if (hwaccel) {
/*
* hardware acceleration does not handle these
* "slow path" cases.
*/
/* IPsec KSTATS: should bump bean counter here. */
if (ire_need_rele)
ire_refrele(ire);
freemsg(ipsec_mp);
return;
}
if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN !=
(mp->b_cont ? msgdsize(mp) :
mp->b_wptr - (uchar_t *)ip6h)) {
/* IPsec KSTATS: should bump bean counter here. */
ip0dbg(("Packet length mismatch: %d, %ld\n",
ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN,
msgdsize(mp)));
if (ire_need_rele)
ire_refrele(ire);
freemsg(ipsec_mp);
return;
}
ASSERT(mp->b_prev == NULL);
ip2dbg(("Fragmenting Size = %d, mtu = %d\n",
ntohs(ip6h->ip6_plen) +
IPV6_HDR_LEN, ire->ire_max_frag));
ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE,
ire->ire_max_frag);
} else {
UPDATE_OB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL);
}
if (ire_need_rele)
ire_refrele(ire);
freeb(ipsec_mp);
}
void
ipsec_hw_putnext(queue_t *q, mblk_t *mp)
{
mblk_t *hada_mp; /* attributes M_CTL mblk */
da_ipsec_t *hada; /* data attributes */
ill_t *ill = (ill_t *)q->q_ptr;
IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n"));
if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) {
/* IPsec KSTATS: Bump lose counter here! */
freemsg(mp);
return;
}
/*
* It's an IPsec packet that must be
* accelerated by the Provider, and the
* outbound ill is IPsec acceleration capable.
* Prepends the mblk with an IPHADA_M_CTL, and ship it
* to the ill.
* IPsec KSTATS: should bump packet counter here.
*/
hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI);
if (hada_mp == NULL) {
/* IPsec KSTATS: should bump packet counter here. */
freemsg(mp);
return;
}
hada_mp->b_datap->db_type = M_CTL;
hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada);
hada_mp->b_cont = mp;
hada = (da_ipsec_t *)hada_mp->b_rptr;
bzero(hada, sizeof (da_ipsec_t));
hada->da_type = IPHADA_M_CTL;
putnext(q, hada_mp);
}
/*
* Finish the outbound IPsec processing. This function is called from
* ipsec_out_process() if the IPsec packet was processed
* synchronously, or from {ah,esp}_kcf_callback() if it was processed
* asynchronously.
*/
void
ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill,
ire_t *ire_arg)
{
uint32_t v_hlen_tos_len;
ipaddr_t dst;
ipif_t *ipif = NULL;
ire_t *ire;
ire_t *ire1 = NULL;
mblk_t *next_mp = NULL;
uint32_t max_frag;
boolean_t multirt_send = B_FALSE;
mblk_t *mp;
mblk_t *mp1;
ipha_t *ipha1;
uint_t ill_index;
ipsec_out_t *io;
boolean_t attach_if;
int match_flags, offset;
irb_t *irb = NULL;
boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE;
zoneid_t zoneid;
uint32_t cksum;
uint16_t *up;
ipxmit_state_t pktxmit_state;
#ifdef _BIG_ENDIAN
#define LENGTH (v_hlen_tos_len & 0xFFFF)
#else
#define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
#endif
mp = ipsec_mp->b_cont;
ipha1 = (ipha_t *)mp->b_rptr;
ASSERT(mp != NULL);
v_hlen_tos_len = ((uint32_t *)ipha)[0];
dst = ipha->ipha_dst;
io = (ipsec_out_t *)ipsec_mp->b_rptr;
ill_index = io->ipsec_out_ill_index;
attach_if = io->ipsec_out_attach_if;
zoneid = io->ipsec_out_zoneid;
ASSERT(zoneid != ALL_ZONES);
match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
if (ill_index != 0) {
if (ill == NULL) {
ill = ip_grab_attach_ill(NULL, ipsec_mp,
ill_index, B_FALSE);
/* Failure case frees things for us. */
if (ill == NULL)
return;
ill_need_rele = B_TRUE;
}
/*
* If this packet needs to go out on a particular interface
* honor it.
*/
if (attach_if) {
match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
/*
* Check if we need an ire that will not be
* looked up by anybody else i.e. HIDDEN.
*/
if (ill_is_probeonly(ill)) {
match_flags |= MATCH_IRE_MARK_HIDDEN;
}
}
}
if (CLASSD(dst)) {
boolean_t conn_dontroute;
/*
* Use the ill_index to get the right ipif.
*/
conn_dontroute = io->ipsec_out_dontroute;
if (ill_index == 0)
ipif = ipif_lookup_group(dst, zoneid);
else
(void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif);
if (ipif == NULL) {
ip1dbg(("ip_wput_ipsec_out: No ipif for"
" multicast\n"));
BUMP_MIB(&ip_mib, ipOutNoRoutes);
freemsg(ipsec_mp);
goto done;
}
/*
* ipha_src has already been intialized with the
* value of the ipif in ip_wput. All we need now is
* an ire to send this downstream.
*/
ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid,
MBLK_GETLABEL(mp), match_flags);
if (ire != NULL) {
ill_t *ill1;
/*
* Do the multicast forwarding now, as the IPSEC
* processing has been done.
*/
if (ip_g_mrouter && !conn_dontroute &&
(ill1 = ire_to_ill(ire))) {
if (ip_mforward(ill1, ipha, mp)) {
freemsg(ipsec_mp);
ip1dbg(("ip_wput_ipsec_out: mforward "
"failed\n"));
ire_refrele(ire);
goto done;
}
}
goto send;
}
ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n"));
mp->b_prev = NULL;
mp->b_next = NULL;
/*
* If the IPsec packet was processed asynchronously,
* drop it now.
*/
if (q == NULL) {
freemsg(ipsec_mp);
goto done;
}
/*
* We may be using a wrong ipif to create the ire.
* But it is okay as the source address is assigned
* for the packet already. Next outbound packet would
* create the IRE with the right IPIF in ip_wput.
*
* Also handle RTF_MULTIRT routes.
*/
ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT,
zoneid);
} else {
if (attach_if) {
ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif,
zoneid, MBLK_GETLABEL(mp), match_flags);
} else {
if (ire_arg != NULL) {
ire = ire_arg;
ire_need_rele = B_FALSE;
} else {
ire = ire_cache_lookup(dst, zoneid,
MBLK_GETLABEL(mp));
}
}
if (ire != NULL) {
goto send;
}
/*
* ire disappeared underneath.
*
* What we need to do here is the ip_newroute
* logic to get the ire without doing the IPSEC
* processing. Follow the same old path. But this
* time, ip_wput or ire_add_then_put will call us
* directly as all the IPSEC operations are done.
*/
ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n"));
mp->b_prev = NULL;
mp->b_next = NULL;
/*
* If the IPsec packet was processed asynchronously,
* drop it now.
*/
if (q == NULL) {
freemsg(ipsec_mp);
goto done;
}
/*
* Since we're going through ip_newroute() again, we
* need to make sure we don't:
*
* 1.) Trigger the ASSERT() with the ipha_ident
* overloading.
* 2.) Redo transport-layer checksumming, since we've
* already done all that to get this far.
*
* The easiest way not do either of the above is to set
* the ipha_ident field to IP_HDR_INCLUDED.
*/
ipha->ipha_ident = IP_HDR_INCLUDED;
ip_newroute(q, ipsec_mp, dst, NULL,
(CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid);
}
goto done;
send:
if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) {
/*
* ESP NAT-Traversal packet.
*
* Just do software checksum for now.
*/
offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET;
IP_STAT(ip_out_sw_cksum);
IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes,
ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH));
#define iphs ((uint16_t *)ipha)
cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
iphs[9] + ntohs(htons(ipha->ipha_length) -
IP_SIMPLE_HDR_LENGTH);
#undef iphs
if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0)
cksum = 0xFFFF;
for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont)
if (mp1->b_wptr - mp1->b_rptr >=
offset + sizeof (uint16_t)) {
up = (uint16_t *)(mp1->b_rptr + offset);
*up = cksum;
break; /* out of for loop */
} else {
offset -= (mp->b_wptr - mp->b_rptr);
}
} /* Otherwise, just keep the all-zero checksum. */
if (ire->ire_stq == NULL) {
ill_t *out_ill;
/*
* Loopbacks go through ip_wput_local except for one case.
* We come here if we generate a icmp_frag_needed message
* after IPSEC processing is over. When this function calls
* ip_wput_ire_fragmentit, ip_wput_frag might end up calling
* icmp_frag_needed. The message generated comes back here
* through icmp_frag_needed -> icmp_pkt -> ip_wput ->
* ipsec_out_process -> ip_wput_ipsec_out. We need to set the
* source address as it is usually set in ip_wput_ire. As
* ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process
* and we end up here. We can't enter ip_wput_ire once the
* IPSEC processing is over and hence we need to do it here.
*/
ASSERT(q != NULL);
UPDATE_OB_PKT_COUNT(ire);
ire->ire_last_used_time = lbolt;
if (ipha->ipha_src == 0)
ipha->ipha_src = ire->ire_src_addr;
/* PFHooks: LOOPBACK_OUT */
out_ill = ire->ire_ipif->ipif_ill;
DTRACE_PROBE4(ip4__loopback__out__start,
ill_t *, NULL, ill_t *, out_ill,
ipha_t *, ipha1, mblk_t *, ipsec_mp);
FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out,
NULL, out_ill, ipha1, ipsec_mp, mp);
DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp);
if (ipsec_mp != NULL)
ip_wput_local(RD(q), out_ill,
ipha, ipsec_mp, ire, 0, zoneid);
if (ire_need_rele)
ire_refrele(ire);
goto done;
}
if (ire->ire_max_frag < (unsigned int)LENGTH) {
/*
* We are through with IPSEC processing.
* Fragment this and send it on the wire.
*/
if (io->ipsec_out_accelerated) {
/*
* The packet has been accelerated but must
* be fragmented. This should not happen
* since AH and ESP must not accelerate
* packets that need fragmentation, however
* the configuration could have changed
* since the AH or ESP processing.
* Drop packet.
* IPsec KSTATS: bump bean counter here.
*/
IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: "
"fragmented accelerated packet!\n"));
freemsg(ipsec_mp);
} else {
ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid);
}
if (ire_need_rele)
ire_refrele(ire);
goto done;
}
ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, "
"ipif %p\n", (void *)ipsec_mp, (void *)ire,
(void *)ire->ire_ipif, (void *)ipif));
/*
* Multiroute the secured packet, unless IPsec really
* requires the packet to go out only through a particular
* interface.
*/
if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) {
ire_t *first_ire;
irb = ire->ire_bucket;
ASSERT(irb != NULL);
/*
* This ire has been looked up as the one that
* goes through the given ipif;
* make sure we do not omit any other multiroute ire
* that may be present in the bucket before this one.
*/
IRB_REFHOLD(irb);
for (first_ire = irb->irb_ire;
first_ire != NULL;
first_ire = first_ire->ire_next) {
if ((first_ire->ire_flags & RTF_MULTIRT) &&
(first_ire->ire_addr == ire->ire_addr) &&
!(first_ire->ire_marks &
(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)))
break;
}
if ((first_ire != NULL) && (first_ire != ire)) {
/*
* Don't change the ire if the packet must
* be fragmented if sent via this new one.
*/
if (first_ire->ire_max_frag >= (unsigned int)LENGTH) {
IRE_REFHOLD(first_ire);
if (ire_need_rele)
ire_refrele(ire);
else
ire_need_rele = B_TRUE;
ire = first_ire;
}
}
IRB_REFRELE(irb);
multirt_send = B_TRUE;
max_frag = ire->ire_max_frag;
} else {
if ((ire->ire_flags & RTF_MULTIRT) && attach_if) {
ip1dbg(("ip_wput_ipsec_out: ignoring multirouting "
"flag, attach_if %d\n", attach_if));
}
}
/*
* In most cases, the emission loop below is entered only once.
* Only in the case where the ire holds the RTF_MULTIRT
* flag, we loop to process all RTF_MULTIRT ires in the
* bucket, and send the packet through all crossed
* RTF_MULTIRT routes.
*/
do {
if (multirt_send) {
/*
* ire1 holds here the next ire to process in the
* bucket. If multirouting is expected,
* any non-RTF_MULTIRT ire that has the
* right destination address is ignored.
*/
ASSERT(irb != NULL);
IRB_REFHOLD(irb);
for (ire1 = ire->ire_next;
ire1 != NULL;
ire1 = ire1->ire_next) {
if ((ire1->ire_flags & RTF_MULTIRT) == 0)
continue;
if (ire1->ire_addr != ire->ire_addr)
continue;
if (ire1->ire_marks &
(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
continue;
/* No loopback here */
if (ire1->ire_stq == NULL)
continue;
/*
* Ensure we do not exceed the MTU
* of the next route.
*/
if (ire1->ire_max_frag < (unsigned int)LENGTH) {
ip_multirt_bad_mtu(ire1, max_frag);
continue;
}
IRE_REFHOLD(ire1);
break;
}
IRB_REFRELE(irb);
if (ire1 != NULL) {
/*
* We are in a multiple send case, need to
* make a copy of the packet.
*/
next_mp = copymsg(ipsec_mp);
if (next_mp == NULL) {
ire_refrele(ire1);
ire1 = NULL;
}
}
}
/*
* Everything is done. Send it out on the wire
*
* ip_xmit_v4 will call ip_wput_attach_llhdr and then
* either send it on the wire or, in the case of
* HW acceleration, call ipsec_hw_putnext.
*/
if (ire->ire_nce &&
ire->ire_nce->nce_state != ND_REACHABLE) {
DTRACE_PROBE2(ip__wput__ipsec__bail,
(ire_t *), ire, (mblk_t *), ipsec_mp);
/*
* If ire's link-layer is unresolved (this
* would only happen if the incomplete ire
* was added to cachetable via forwarding path)
* don't bother going to ip_xmit_v4. Just drop the
* packet.
* There is a slight risk here, in that, if we
* have the forwarding path create an incomplete
* IRE, then until the IRE is completed, any
* transmitted IPSEC packets will be dropped
* instead of being queued waiting for resolution.
*
* But the likelihood of a forwarding packet and a wput
* packet sending to the same dst at the same time
* and there not yet be an ARP entry for it is small.
* Furthermore, if this actually happens, it might
* be likely that wput would generate multiple
* packets (and forwarding would also have a train
* of packets) for that destination. If this is
* the case, some of them would have been dropped
* anyway, since ARP only queues a few packets while
* waiting for resolution
*
* NOTE: We should really call ip_xmit_v4,
* and let it queue the packet and send the
* ARP query and have ARP come back thus:
* <ARP> ip_wput->ip_output->ip-wput_nondata->
* ip_xmit_v4->ip_wput_attach_llhdr + ipsec
* hw accel work. But it's too complex to get
* the IPsec hw acceleration approach to fit
* well with ip_xmit_v4 doing ARP without
* doing IPSEC simplification. For now, we just
* poke ip_xmit_v4 to trigger the arp resolve, so
* that we can continue with the send on the next
* attempt.
*
* XXX THis should be revisited, when
* the IPsec/IP interaction is cleaned up
*/
ip1dbg(("ip_wput_ipsec_out: ire is incomplete"
" - dropping packet\n"));
freemsg(ipsec_mp);
/*
* Call ip_xmit_v4() to trigger ARP query
* in case the nce_state is ND_INITIAL
*/
(void) ip_xmit_v4(NULL, ire, NULL, B_FALSE);
goto drop_pkt;
}
DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1,
mblk_t *, mp);
FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp);
DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
if (mp == NULL)
goto drop_pkt;
ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n"));
pktxmit_state = ip_xmit_v4(mp, ire,
(io->ipsec_out_accelerated ? io : NULL), B_FALSE);
if ((pktxmit_state == SEND_FAILED) ||
(pktxmit_state == LLHDR_RESLV_FAILED)) {
freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */
drop_pkt:
BUMP_MIB(&ip_mib, ipOutDiscards);
if (ire_need_rele)
ire_refrele(ire);
if (ire1 != NULL) {
ire_refrele(ire1);
freemsg(next_mp);
}
goto done;
}
freeb(ipsec_mp);
if (ire_need_rele)
ire_refrele(ire);
if (ire1 != NULL) {
ire = ire1;
ire_need_rele = B_TRUE;
ASSERT(next_mp);
ipsec_mp = next_mp;
mp = ipsec_mp->b_cont;
ire1 = NULL;
next_mp = NULL;
io = (ipsec_out_t *)ipsec_mp->b_rptr;
} else {
multirt_send = B_FALSE;
}
} while (multirt_send);
done:
if (ill != NULL && ill_need_rele)
ill_refrele(ill);
if (ipif != NULL)
ipif_refrele(ipif);
}
/*
* Get the ill corresponding to the specified ire, and compare its
* capabilities with the protocol and algorithms specified by the
* the SA obtained from ipsec_out. If they match, annotate the
* ipsec_out structure to indicate that the packet needs acceleration.
*
*
* A packet is eligible for outbound hardware acceleration if the
* following conditions are satisfied:
*
* 1. the packet will not be fragmented
* 2. the provider supports the algorithm
* 3. there is no pending control message being exchanged
* 4. snoop is not attached
* 5. the destination address is not a broadcast or multicast address.
*
* Rationale:
* - Hardware drivers do not support fragmentation with
* the current interface.
* - snoop, multicast, and broadcast may result in exposure of
* a cleartext datagram.
* We check all five of these conditions here.
*
* XXX would like to nuke "ire_t *" parameter here; problem is that
* IRE is only way to figure out if a v4 address is a broadcast and
* thus ineligible for acceleration...
*/
static void
ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire)
{
ipsec_out_t *io;
mblk_t *data_mp;
uint_t plen, overhead;
if ((sa->ipsa_flags & IPSA_F_HW) == 0)
return;
if (ill == NULL)
return;
/*
* Destination address is a broadcast or multicast. Punt.
*/
if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK|
IRE_LOCAL)))
return;
data_mp = ipsec_mp->b_cont;
if (ill->ill_isv6) {
ip6_t *ip6h = (ip6_t *)data_mp->b_rptr;
if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst))
return;
plen = ip6h->ip6_plen;
} else {
ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
if (CLASSD(ipha->ipha_dst))
return;
plen = ipha->ipha_length;
}
/*
* Is there a pending DLPI control message being exchanged
* between IP/IPsec and the DLS Provider? If there is, it
* could be a SADB update, and the state of the DLS Provider
* SADB might not be in sync with the SADB maintained by
* IPsec. To avoid dropping packets or using the wrong keying
* material, we do not accelerate this packet.
*/
if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: "
"ill_dlpi_pending! don't accelerate packet\n"));
return;
}
/*
* Is the Provider in promiscous mode? If it does, we don't
* accelerate the packet since it will bounce back up to the
* listeners in the clear.
*/
if (ill->ill_promisc_on_phys) {
IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: "
"ill in promiscous mode, don't accelerate packet\n"));
return;
}
/*
* Will the packet require fragmentation?
*/
/*
* IPsec ESP note: this is a pessimistic estimate, but the same
* as is used elsewhere.
* SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1)
* + 2-byte trailer
*/
overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE :
IPSEC_BASE_ESP_HDR_SIZE(sa);
if ((plen + overhead) > ill->ill_max_mtu)
return;
io = (ipsec_out_t *)ipsec_mp->b_rptr;
/*
* Can the ill accelerate this IPsec protocol and algorithm
* specified by the SA?
*/
if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index,
ill->ill_isv6, sa)) {
return;
}
/*
* Tell AH or ESP that the outbound ill is capable of
* accelerating this packet.
*/
io->ipsec_out_is_capab_ill = B_TRUE;
}
/*
* Select which AH & ESP SA's to use (if any) for the outbound packet.
*
* If this function returns B_TRUE, the requested SA's have been filled
* into the ipsec_out_*_sa pointers.
*
* If the function returns B_FALSE, the packet has been "consumed", most
* likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
*
* The SA references created by the protocol-specific "select"
* function will be released when the ipsec_mp is freed, thanks to the
* ipsec_out_free destructor -- see spd.c.
*/
static boolean_t
ipsec_out_select_sa(mblk_t *ipsec_mp)
{
boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
ipsec_out_t *io;
ipsec_policy_t *pp;
ipsec_action_t *ap;
io = (ipsec_out_t *)ipsec_mp->b_rptr;
ASSERT(io->ipsec_out_type == IPSEC_OUT);
ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
if (!io->ipsec_out_secure) {
/*
* We came here by mistake.
* Don't bother with ipsec processing
* We should "discourage" this path in the future.
*/
ASSERT(io->ipsec_out_proc_begin == B_FALSE);
return (B_FALSE);
}
ASSERT(io->ipsec_out_need_policy == B_FALSE);
ASSERT((io->ipsec_out_policy != NULL) ||
(io->ipsec_out_act != NULL));
ASSERT(io->ipsec_out_failed == B_FALSE);
/*
* IPSEC processing has started.
*/
io->ipsec_out_proc_begin = B_TRUE;
ap = io->ipsec_out_act;
if (ap == NULL) {
pp = io->ipsec_out_policy;
ASSERT(pp != NULL);
ap = pp->ipsp_act;
ASSERT(ap != NULL);
}
/*
* We have an action. now, let's select SA's.
* (In the future, we can cache this in the conn_t..)
*/
if (ap->ipa_want_esp) {
if (io->ipsec_out_esp_sa == NULL) {
need_esp_acquire = !ipsec_outbound_sa(ipsec_mp,
IPPROTO_ESP);
}
ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL);
}
if (ap->ipa_want_ah) {
if (io->ipsec_out_ah_sa == NULL) {
need_ah_acquire = !ipsec_outbound_sa(ipsec_mp,
IPPROTO_AH);
}
ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL);
/*
* The ESP and AH processing order needs to be preserved
* when both protocols are required (ESP should be applied
* before AH for an outbound packet). Force an ESP ACQUIRE
* when both ESP and AH are required, and an AH ACQUIRE
* is needed.
*/
if (ap->ipa_want_esp && need_ah_acquire)
need_esp_acquire = B_TRUE;
}
/*
* Send an ACQUIRE (extended, regular, or both) if we need one.
* Release SAs that got referenced, but will not be used until we
* acquire _all_ of the SAs we need.
*/
if (need_ah_acquire || need_esp_acquire) {
if (io->ipsec_out_ah_sa != NULL) {
IPSA_REFRELE(io->ipsec_out_ah_sa);
io->ipsec_out_ah_sa = NULL;
}
if (io->ipsec_out_esp_sa != NULL) {
IPSA_REFRELE(io->ipsec_out_esp_sa);
io->ipsec_out_esp_sa = NULL;
}
sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire);
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Process an IPSEC_OUT message and see what you can
* do with it.
* IPQoS Notes:
* We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for
* IPSec.
* XXX would like to nuke ire_t.
* XXX ill_index better be "real"
*/
void
ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index)
{
ipsec_out_t *io;
ipsec_policy_t *pp;
ipsec_action_t *ap;
ipha_t *ipha;
ip6_t *ip6h;
mblk_t *mp;
ill_t *ill;
zoneid_t zoneid;
ipsec_status_t ipsec_rc;
boolean_t ill_need_rele = B_FALSE;
io = (ipsec_out_t *)ipsec_mp->b_rptr;
ASSERT(io->ipsec_out_type == IPSEC_OUT);
ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
mp = ipsec_mp->b_cont;
/*
* Initiate IPPF processing. We do it here to account for packets
* coming here that don't have any policy (i.e. !io->ipsec_out_secure).
* We can check for ipsec_out_proc_begin even for such packets, as
* they will always be false (asserted below).
*/
if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) {
ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ?
io->ipsec_out_ill_index : ill_index);
if (mp == NULL) {
ip2dbg(("ipsec_out_process: packet dropped "\
"during IPPF processing\n"));
freeb(ipsec_mp);
BUMP_MIB(&ip_mib, ipOutDiscards);
return;
}
}
if (!io->ipsec_out_secure) {
/*
* We came here by mistake.
* Don't bother with ipsec processing
* Should "discourage" this path in the future.
*/
ASSERT(io->ipsec_out_proc_begin == B_FALSE);
goto done;
}
ASSERT(io->ipsec_out_need_policy == B_FALSE);
ASSERT((io->ipsec_out_policy != NULL) ||
(io->ipsec_out_act != NULL));
ASSERT(io->ipsec_out_failed == B_FALSE);
if (!ipsec_loaded()) {
ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
BUMP_MIB(&ip_mib, ipOutDiscards);
} else {
BUMP_MIB(&ip6_mib, ipv6OutDiscards);
}
ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire,
&ipdrops_ip_ipsec_not_loaded, &ip_dropper);
return;
}
/*
* IPSEC processing has started.
*/
io->ipsec_out_proc_begin = B_TRUE;
ap = io->ipsec_out_act;
if (ap == NULL) {
pp = io->ipsec_out_policy;
ASSERT(pp != NULL);
ap = pp->ipsp_act;
ASSERT(ap != NULL);
}
/*
* Save the outbound ill index. When the packet comes back
* from IPsec, we make sure the ill hasn't changed or disappeared
* before sending it the accelerated packet.
*/
if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) {
int ifindex;
ill = ire_to_ill(ire);
ifindex = ill->ill_phyint->phyint_ifindex;
io->ipsec_out_capab_ill_index = ifindex;
}
/*
* The order of processing is first insert a IP header if needed.
* Then insert the ESP header and then the AH header.
*/
if ((io->ipsec_out_se_done == B_FALSE) &&
(ap->ipa_want_se)) {
/*
* First get the outer IP header before sending
* it to ESP.
*/
ipha_t *oipha, *iipha;
mblk_t *outer_mp, *inner_mp;
if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
(void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE,
"ipsec_out_process: "
"Self-Encapsulation failed: Out of memory\n");
freemsg(ipsec_mp);
BUMP_MIB(&ip_mib, ipOutDiscards);
return;
}
inner_mp = ipsec_mp->b_cont;
ASSERT(inner_mp->b_datap->db_type == M_DATA);
oipha = (ipha_t *)outer_mp->b_rptr;
iipha = (ipha_t *)inner_mp->b_rptr;
*oipha = *iipha;
outer_mp->b_wptr += sizeof (ipha_t);
oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
sizeof (ipha_t));
oipha->ipha_protocol = IPPROTO_ENCAP;
oipha->ipha_version_and_hdr_length =
IP_SIMPLE_HDR_VERSION;
oipha->ipha_hdr_checksum = 0;
oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
outer_mp->b_cont = inner_mp;
ipsec_mp->b_cont = outer_mp;
io->ipsec_out_se_done = B_TRUE;
io->ipsec_out_tunnel = B_TRUE;
}
if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) ||
(ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) &&
!ipsec_out_select_sa(ipsec_mp))
return;
/*
* By now, we know what SA's to use. Toss over to ESP & AH
* to do the heavy lifting.
*/
zoneid = io->ipsec_out_zoneid;
ASSERT(zoneid != ALL_ZONES);
if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) {
ASSERT(io->ipsec_out_esp_sa != NULL);
io->ipsec_out_esp_done = B_TRUE;
/*
* Note that since hw accel can only apply one transform,
* not two, we skip hw accel for ESP if we also have AH
* This is an design limitation of the interface
* which should be revisited.
*/
ASSERT(ire != NULL);
if (io->ipsec_out_ah_sa == NULL) {
ill = (ill_t *)ire->ire_stq->q_ptr;
ipsec_out_is_accelerated(ipsec_mp,
io->ipsec_out_esp_sa, ill, ire);
}
ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp);
switch (ipsec_rc) {
case IPSEC_STATUS_SUCCESS:
break;
case IPSEC_STATUS_FAILED:
BUMP_MIB(&ip_mib, ipOutDiscards);
/* FALLTHRU */
case IPSEC_STATUS_PENDING:
return;
}
}
if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) {
ASSERT(io->ipsec_out_ah_sa != NULL);
io->ipsec_out_ah_done = B_TRUE;
if (ire == NULL) {
int idx = io->ipsec_out_capab_ill_index;
ill = ill_lookup_on_ifindex(idx, B_FALSE,
NULL, NULL, NULL, NULL);
ill_need_rele = B_TRUE;
} else {
ill = (ill_t *)ire->ire_stq->q_ptr;
}
ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill,
ire);
ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp);
switch (ipsec_rc) {
case IPSEC_STATUS_SUCCESS:
break;
case IPSEC_STATUS_FAILED:
BUMP_MIB(&ip_mib, ipOutDiscards);
/* FALLTHRU */
case IPSEC_STATUS_PENDING:
if (ill != NULL && ill_need_rele)
ill_refrele(ill);
return;
}
}
/*
* We are done with IPSEC processing. Send it over
* the wire.
*/
done:
mp = ipsec_mp->b_cont;
ipha = (ipha_t *)mp->b_rptr;
if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire);
} else {
ip6h = (ip6_t *)ipha;
ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire);
}
if (ill != NULL && ill_need_rele)
ill_refrele(ill);
}
/* ARGSUSED */
void
ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy)
{
opt_restart_t *or;
int err;
conn_t *connp;
ASSERT(CONN_Q(q));
connp = Q_TO_CONN(q);
ASSERT(first_mp->b_datap->db_type == M_CTL);
or = (opt_restart_t *)first_mp->b_rptr;
/*
* We don't need to pass any credentials here since this is just
* a restart. The credentials are passed in when svr4_optcom_req
* is called the first time (from ip_wput_nondata).
*/
if (or->or_type == T_SVR4_OPTMGMT_REQ) {
err = svr4_optcom_req(q, first_mp, NULL,
&ip_opt_obj);
} else {
ASSERT(or->or_type == T_OPTMGMT_REQ);
err = tpi_optcom_req(q, first_mp, NULL,
&ip_opt_obj);
}
if (err != EINPROGRESS) {
/* operation is done */
CONN_OPER_PENDING_DONE(connp);
}
}
/*
* ioctls that go through a down/up sequence may need to wait for the down
* to complete. This involves waiting for the ire and ipif refcnts to go down
* to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
*/
/* ARGSUSED */
void
ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
{
struct iocblk *iocp;
mblk_t *mp1;
ipif_t *ipif;
ip_ioctl_cmd_t *ipip;
int err;
sin_t *sin;
struct lifreq *lifr;
struct ifreq *ifr;
iocp = (struct iocblk *)mp->b_rptr;
ASSERT(ipsq != NULL);
/* Existence of mp1 verified in ip_wput_nondata */
mp1 = mp->b_cont->b_cont;
ipip = ip_sioctl_lookup(iocp->ioc_cmd);
if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
ill_t *ill;
/*
* Special case where ipsq_current_ipif may not be set.
* ill_phyint_reinit merged the v4 and v6 into a single ipsq.
* ill could also have become part of a ipmp group in the
* process, we are here as were not able to complete the
* operation in ipif_set_values because we could not become
* exclusive on the new ipsq, In such a case ipsq_current_ipif
* will not be set so we need to set it.
*/
ill = (ill_t *)q->q_ptr;
ipsq->ipsq_current_ipif = ill->ill_ipif;
ipsq->ipsq_last_cmd = ipip->ipi_cmd;
}
ipif = ipsq->ipsq_current_ipif;
ASSERT(ipif != NULL);
if (ipip->ipi_cmd_type == IF_CMD) {
/* This a old style SIOC[GS]IF* command */
ifr = (struct ifreq *)mp1->b_rptr;
sin = (sin_t *)&ifr->ifr_addr;
} else if (ipip->ipi_cmd_type == LIF_CMD) {
/* This a new style SIOC[GS]LIF* command */
lifr = (struct lifreq *)mp1->b_rptr;
sin = (sin_t *)&lifr->lifr_addr;
} else {
sin = NULL;
}
err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip,
(void *)mp1->b_rptr);
/* SIOCLIFREMOVEIF could have removed the ipif */
ip_ioctl_finish(q, mp, err,
ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT,
ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq);
}
/*
* ioctl processing
*
* ioctl processing starts with ip_sioctl_copyin_setup which looks up
* the ioctl command in the ioctl tables and determines the copyin data size
* from the ioctl property ipi_copyin_size, and does an mi_copyin() of that
* size.
*
* ioctl processing then continues when the M_IOCDATA makes its way down.
* Now the ioctl is looked up again in the ioctl table, and its properties are
* extracted. The associated 'conn' is then refheld till the end of the ioctl
* and the general ioctl processing function ip_process_ioctl is called.
* ip_process_ioctl determines if the ioctl needs to be serialized, and if
* so goes thru the serialization primitive ipsq_try_enter. Then the
* appropriate function to handle the ioctl is called based on the entry in
* the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
* which also refreleases the 'conn' that was refheld at the start of the
* ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
* ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq
* struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel.
*
* Many exclusive ioctls go thru an internal down up sequence as part of
* the operation. For example an attempt to change the IP address of an
* ipif entails ipif_down, set address, ipif_up. Bringing down the interface
* does all the cleanup such as deleting all ires that use this address.
* Then we need to wait till all references to the interface go away.
*/
void
ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
{
struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg;
cmd_info_t ci;
int err;
boolean_t entered_ipsq = B_FALSE;
ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
if (ipip == NULL)
ipip = ip_sioctl_lookup(iocp->ioc_cmd);
/*
* SIOCLIFADDIF needs to go thru a special path since the
* ill may not exist yet. This happens in the case of lo0
* which is created using this ioctl.
*/
if (ipip->ipi_cmd == SIOCLIFADDIF) {
err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
ip_ioctl_finish(q, mp, err,
ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT,
NULL, NULL);
return;
}
ci.ci_ipif = NULL;
switch (ipip->ipi_cmd_type) {
case IF_CMD:
case LIF_CMD:
/*
* ioctls that pass in a [l]ifreq appear here.
* ip_extract_lifreq_cmn returns a refheld ipif in
* ci.ci_ipif
*/
err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type,
ipip->ipi_flags, &ci, ip_process_ioctl);
if (err != 0) {
ip_ioctl_finish(q, mp, err,
ipip->ipi_flags & IPI_GET_CMD ?
COPYOUT : NO_COPYOUT, NULL, NULL);
return;
}
ASSERT(ci.ci_ipif != NULL);
break;
case TUN_CMD:
/*
* SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns
* a refheld ipif in ci.ci_ipif
*/
err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl);
if (err != 0) {
ip_ioctl_finish(q, mp, err,
ipip->ipi_flags & IPI_GET_CMD ?
COPYOUT : NO_COPYOUT, NULL, NULL);
return;
}
ASSERT(ci.ci_ipif != NULL);
break;
case MISC_CMD:
/*
* ioctls that neither pass in [l]ifreq or iftun_req come here
* For eg. SIOCGLIFCONF will appear here.
*/
switch (ipip->ipi_cmd) {
case IF_UNITSEL:
/* ioctl comes down the ill */
ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
ipif_refhold(ci.ci_ipif);
break;
case SIOCGMSFILTER:
case SIOCSMSFILTER:
case SIOCGIPMSFILTER:
case SIOCSIPMSFILTER:
err = ip_extract_msfilter(q, mp, &ci.ci_ipif,
ip_process_ioctl);
if (err != 0) {
ip_ioctl_finish(q, mp, err,
ipip->ipi_flags & IPI_GET_CMD ?
COPYOUT : NO_COPYOUT, NULL, NULL);
return;
}
break;
}
err = 0;
ci.ci_sin = NULL;
ci.ci_sin6 = NULL;
ci.ci_lifr = NULL;
break;
}
/*
* If ipsq is non-null, we are already being called exclusively
*/
ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
if (!(ipip->ipi_flags & IPI_WR)) {
/*
* A return value of EINPROGRESS means the ioctl is
* either queued and waiting for some reason or has
* already completed.
*/
err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
ci.ci_lifr);
if (ci.ci_ipif != NULL)
ipif_refrele(ci.ci_ipif);
ip_ioctl_finish(q, mp, err,
ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT,
NULL, NULL);
return;
}
ASSERT(ci.ci_ipif != NULL);
if (ipsq == NULL) {
ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp,
ip_process_ioctl, NEW_OP, B_TRUE);
entered_ipsq = B_TRUE;
}
/*
* Release the ipif so that ipif_down and friends that wait for
* references to go away are not misled about the current ipif_refcnt
* values. We are writer so we can access the ipif even after releasing
* the ipif.
*/
ipif_refrele(ci.ci_ipif);
if (ipsq == NULL)
return;
mutex_enter(&ipsq->ipsq_lock);
ASSERT(ipsq->ipsq_current_ipif == NULL);
ipsq->ipsq_current_ipif = ci.ci_ipif;
ipsq->ipsq_last_cmd = ipip->ipi_cmd;
mutex_exit(&ipsq->ipsq_lock);
mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock);
/*
* For most set ioctls that come here, this serves as a single point
* where we set the IPIF_CHANGING flag. This ensures that there won't
* be any new references to the ipif. This helps functions that go
* through this path and end up trying to wait for the refcnts
* associated with the ipif to go down to zero. Some exceptions are
* Failover, Failback, and Groupname commands that operate on more than
* just the ci.ci_ipif. These commands internally determine the
* set of ipif's they operate on and set and clear the IPIF_CHANGING
* flags on that set. Another exception is the Removeif command that
* sets the IPIF_CONDEMNED flag internally after identifying the right
* ipif to operate on.
*/
if (ipip->ipi_cmd != SIOCLIFREMOVEIF &&
ipip->ipi_cmd != SIOCLIFFAILOVER &&
ipip->ipi_cmd != SIOCLIFFAILBACK &&
ipip->ipi_cmd != SIOCSLIFGROUPNAME)
(ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING;
mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock);
/*
* A return value of EINPROGRESS means the ioctl is
* either queued and waiting for some reason or has
* already completed.
*/
err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
ci.ci_lifr);
/* SIOCLIFREMOVEIF could have removed the ipif */
ip_ioctl_finish(q, mp, err,
ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT,
ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq);
if (entered_ipsq)
ipsq_exit(ipsq, B_TRUE, B_TRUE);
}
/*
* Complete the ioctl. Typically ioctls use the mi package and need to
* do mi_copyout/mi_copy_done.
*/
void
ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode,
ipif_t *ipif, ipsq_t *ipsq)
{
conn_t *connp = NULL;
hook_nic_event_t *info;
if (err == EINPROGRESS)
return;
if (CONN_Q(q)) {
connp = Q_TO_CONN(q);
ASSERT(connp->conn_ref >= 2);
}
switch (mode) {
case COPYOUT:
if (err == 0)
mi_copyout(q, mp);
else
mi_copy_done(q, mp, err);
break;
case NO_COPYOUT:
mi_copy_done(q, mp, err);
break;
default:
/* An ioctl aborted through a conn close would take this path */
break;
}
/*
* The refhold placed at the start of the ioctl is released here.
*/
if (connp != NULL)
CONN_OPER_PENDING_DONE(connp);
/*
* If the ioctl were an exclusive ioctl it would have set
* IPIF_CHANGING at the start of the ioctl which is undone here.
*/
if (ipif != NULL) {
mutex_enter(&(ipif)->ipif_ill->ill_lock);
ipif->ipif_state_flags &= ~IPIF_CHANGING;
/*
* Unhook the nic event message from the ill and enqueue it into
* the nic event taskq.
*/
if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
if (ddi_taskq_dispatch(eventq_queue_nic,
ip_ne_queue_func, (void *)info, DDI_SLEEP)
== DDI_FAILURE) {
ip2dbg(("ip_ioctl_finish: ddi_taskq_dispatch"
"failed\n"));
if (info->hne_data != NULL)
kmem_free(info->hne_data,
info->hne_datalen);
kmem_free(info, sizeof (hook_nic_event_t));
}
ipif->ipif_ill->ill_nic_event_info = NULL;
}
mutex_exit(&(ipif)->ipif_ill->ill_lock);
}
/*
* Clear the current ipif in the ipsq at the completion of the ioctl.
* Note that a non-null ipsq_current_ipif prevents new ioctls from
* entering the ipsq
*/
if (ipsq != NULL) {
mutex_enter(&ipsq->ipsq_lock);
ipsq->ipsq_current_ipif = NULL;
mutex_exit(&ipsq->ipsq_lock);
}
}
/*
* This is called from ip_wput_nondata to resume a deferred TCP bind.
*/
/* ARGSUSED */
void
ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2)
{
conn_t *connp = arg;
tcp_t *tcp;
ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL);
tcp = connp->conn_tcp;
if (connp->conn_tcp->tcp_state == TCPS_CLOSED)
freemsg(mp);
else
tcp_rput_other(tcp, mp);
CONN_OPER_PENDING_DONE(connp);
}
/* Called from ip_wput for all non data messages */
/* ARGSUSED */
void
ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
{
mblk_t *mp1;
ire_t *ire, *fake_ire;
ill_t *ill;
struct iocblk *iocp;
ip_ioctl_cmd_t *ipip;
cred_t *cr;
conn_t *connp = NULL;
int cmd, err;
nce_t *nce;
ipif_t *ipif;
if (CONN_Q(q))
connp = Q_TO_CONN(q);
cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q));
/* Check if it is a queue to /dev/sctp. */
if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP &&
connp->conn_rq == NULL) {
sctp_wput(q, mp);
return;
}
switch (DB_TYPE(mp)) {
case M_IOCTL:
/*
* IOCTL processing begins in ip_sioctl_copyin_setup which
* will arrange to copy in associated control structures.
*/
ip_sioctl_copyin_setup(q, mp);
return;
case M_IOCDATA:
/*
* Ensure that this is associated with one of our trans-
* parent ioctls. If it's not ours, discard it if we're
* running as a driver, or pass it on if we're a module.
*/
iocp = (struct iocblk *)mp->b_rptr;
ipip = ip_sioctl_lookup(iocp->ioc_cmd);
if (ipip == NULL) {
if (q->q_next == NULL) {
goto nak;
} else {
putnext(q, mp);
}
return;
} else if ((q->q_next != NULL) &&
!(ipip->ipi_flags & IPI_MODOK)) {
/*
* the ioctl is one we recognise, but is not
* consumed by IP as a module, pass M_IOCDATA
* for processing downstream, but only for
* common Streams ioctls.
*/
if (ipip->ipi_flags & IPI_PASS_DOWN) {
putnext(q, mp);
return;
} else {
goto nak;
}
}
/* IOCTL continuation following copyin or copyout. */
if (mi_copy_state(q, mp, NULL) == -1) {
/*
* The copy operation failed. mi_copy_state already
* cleaned up, so we're out of here.
*/
return;
}
/*
* If we just completed a copy in, we become writer and
* continue processing in ip_sioctl_copyin_done. If it
* was a copy out, we call mi_copyout again. If there is
* nothing more to copy out, it will complete the IOCTL.
*/
if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
mi_copy_done(q, mp, EPROTO);
return;
}
/*
* Check for cases that need more copying. A return
* value of 0 means a second copyin has been started,
* so we return; a return value of 1 means no more
* copying is needed, so we continue.
*/
cmd = iocp->ioc_cmd;
if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER ||
cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) &&
MI_COPY_COUNT(mp) == 1) {
if (ip_copyin_msfilter(q, mp) == 0)
return;
}
/*
* Refhold the conn, till the ioctl completes. This is
* needed in case the ioctl ends up in the pending mp
* list. Every mp in the ill_pending_mp list and
* the ipsq_pending_mp must have a refhold on the conn
* to resume processing. The refhold is released when
* the ioctl completes. (normally or abnormally)
* In all cases ip_ioctl_finish is called to finish
* the ioctl.
*/
if (connp != NULL) {
/* This is not a reentry */
ASSERT(ipsq == NULL);
CONN_INC_REF(connp);
} else {
if (!(ipip->ipi_flags & IPI_MODOK)) {
mi_copy_done(q, mp, EINVAL);
return;
}
}
ip_process_ioctl(ipsq, q, mp, ipip);
} else {
mi_copyout(q, mp);
}
return;
nak:
iocp->ioc_error = EINVAL;
mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_count = 0;
qreply(q, mp);
return;
case M_IOCNAK:
/*
* The only way we could get here is if a resolver didn't like
* an IOCTL we sent it. This shouldn't happen.
*/
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x",
((struct iocblk *)mp->b_rptr)->ioc_cmd);
freemsg(mp);
return;
case M_IOCACK:
/* Finish socket ioctls passed through to ARP. */
ip_sioctl_iocack(q, mp);
return;
case M_FLUSH:
if (*mp->b_rptr & FLUSHW)
flushq(q, FLUSHALL);
if (q->q_next) {
/*
* M_FLUSH is sent up to IP by some drivers during
* unbind. ip_rput has already replied to it. We are
* here for the M_FLUSH that we originated in IP
* before sending the unbind request to the driver.
* Just free it as we don't queue packets in IP
* on the write side of the device instance.
*/
freemsg(mp);
return;
}
if (*mp->b_rptr & FLUSHR) {
*mp->b_rptr &= ~FLUSHW;
qreply(q, mp);
return;
}
freemsg(mp);
return;
case IRE_DB_REQ_TYPE:
/* An Upper Level Protocol wants a copy of an IRE. */
ip_ire_req(q, mp);
return;
case M_CTL:
if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t))
break;
if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type ==
TUN_HELLO) {
ASSERT(connp != NULL);
connp->conn_flags |= IPCL_IPTUN;
freeb(mp);
return;
}
if (connp != NULL && *(uint32_t *)mp->b_rptr ==
IP_ULP_OUT_LABELED) {
out_labeled_t *olp;
if (mp->b_wptr - mp->b_rptr != sizeof (*olp))
break;
olp = (out_labeled_t *)mp->b_rptr;
connp->conn_ulp_labeled = olp->out_qnext == q;
freemsg(mp);
return;
}
/* M_CTL messages are used by ARP to tell us things. */
if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t))
break;
switch (((arc_t *)mp->b_rptr)->arc_cmd) {
case AR_ENTRY_SQUERY:
ip_wput_ctl(q, mp);
return;
case AR_CLIENT_NOTIFY:
ip_arp_news(q, mp);
return;
case AR_DLPIOP_DONE:
ASSERT(q->q_next != NULL);
ill = (ill_t *)q->q_ptr;
/* qwriter_ip releases the refhold */
/* refhold on ill stream is ok without ILL_CAN_LOOKUP */
ill_refhold(ill);
(void) qwriter_ip(NULL, ill, q, mp, ip_arp_done,
CUR_OP, B_FALSE);
return;
case AR_ARP_CLOSING:
/*
* ARP (above us) is closing. If no ARP bringup is
* currently pending, ack the message so that ARP
* can complete its close. Also mark ill_arp_closing
* so that new ARP bringups will fail. If any
* ARP bringup is currently in progress, we will
* ack this when the current ARP bringup completes.
*/
ASSERT(q->q_next != NULL);
ill = (ill_t *)q->q_ptr;
mutex_enter(&ill->ill_lock);
ill->ill_arp_closing = 1;
if (!ill->ill_arp_bringup_pending) {
mutex_exit(&ill->ill_lock);
qreply(q, mp);
} else {
mutex_exit(&ill->ill_lock);
freemsg(mp);
}
return;
case AR_ARP_EXTEND:
/*
* The ARP module above us is capable of duplicate
* address detection. Old ATM drivers will not send
* this message.
*/
ASSERT(q->q_next != NULL);
ill = (ill_t *)q->q_ptr;
ill->ill_arp_extend = B_TRUE;
freemsg(mp);
return;
default:
break;
}
break;
case M_PROTO:
case M_PCPROTO:
/*
* The only PROTO messages we expect are ULP binds and
* copies of option negotiation acknowledgements.
*/
switch (((union T_primitives *)mp->b_rptr)->type) {
case O_T_BIND_REQ:
case T_BIND_REQ: {
/* Request can get queued in bind */
ASSERT(connp != NULL);
/*
* Both TCP and UDP call ip_bind_{v4,v6}() directly
* instead of going through this path. We only get
* here in the following cases:
*
* a. Bind retries, where ipsq is non-NULL.
* b. T_BIND_REQ is issued from non TCP/UDP
* transport, e.g. icmp for raw socket,
* in which case ipsq will be NULL.
*/
ASSERT(ipsq != NULL ||
(!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp)));
/* Don't increment refcnt if this is a re-entry */
if (ipsq == NULL)
CONN_INC_REF(connp);
mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp,
connp, NULL) : ip_bind_v4(q, mp, connp);
if (mp == NULL)
return;
if (IPCL_IS_TCP(connp)) {
/*
* In the case of TCP endpoint we
* come here only for bind retries
*/
ASSERT(ipsq != NULL);
CONN_INC_REF(connp);
squeue_fill(connp->conn_sqp, mp,
ip_resume_tcp_bind, connp,
SQTAG_BIND_RETRY);
return;
} else if (IPCL_IS_UDP(connp)) {
/*
* In the case of UDP endpoint we
* come here only for bind retries
*/
ASSERT(ipsq != NULL);
udp_resume_bind(connp, mp);
return;
}
qreply(q, mp);
CONN_OPER_PENDING_DONE(connp);
return;
}
case T_SVR4_OPTMGMT_REQ:
ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n",
((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
ASSERT(connp != NULL);
if (!snmpcom_req(q, mp, ip_snmp_set,
ip_snmp_get, cr)) {
/*
* Call svr4_optcom_req so that it can
* generate the ack. We don't come here
* if this operation is being restarted.
* ip_restart_optmgmt will drop the conn ref.
* In the case of ipsec option after the ipsec
* load is complete conn_restart_ipsec_waiter
* drops the conn ref.
*/
ASSERT(ipsq == NULL);
CONN_INC_REF(connp);
if (ip_check_for_ipsec_opt(q, mp))
return;
err = svr4_optcom_req(q, mp, cr, &ip_opt_obj);
if (err != EINPROGRESS) {
/* Operation is done */
CONN_OPER_PENDING_DONE(connp);
}
}
return;
case T_OPTMGMT_REQ:
ip2dbg(("ip_wput: T_OPTMGMT_REQ\n"));
/*
* Note: No snmpcom_req support through new
* T_OPTMGMT_REQ.
* Call tpi_optcom_req so that it can
* generate the ack.
*/
ASSERT(connp != NULL);
ASSERT(ipsq == NULL);
/*
* We don't come here for restart. ip_restart_optmgmt
* will drop the conn ref. In the case of ipsec option
* after the ipsec load is complete
* conn_restart_ipsec_waiter drops the conn ref.
*/
CONN_INC_REF(connp);
if (ip_check_for_ipsec_opt(q, mp))
return;
err = tpi_optcom_req(q, mp, cr, &ip_opt_obj);
if (err != EINPROGRESS) {
/* Operation is done */
CONN_OPER_PENDING_DONE(connp);
}
return;
case T_UNBIND_REQ:
mp = ip_unbind(q, mp);
qreply(q, mp);
return;
default:
/*
* Have to drop any DLPI messages coming down from
* arp (such as an info_req which would cause ip
* to receive an extra info_ack if it was passed
* through.
*/
ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n",
(int)*(uint_t *)mp->b_rptr));
freemsg(mp);
return;
}
/* NOTREACHED */
case IRE_DB_TYPE: {
nce_t *nce;
ill_t *ill;
in6_addr_t gw_addr_v6;
/*
* This is a response back from a resolver. It
* consists of a message chain containing:
* IRE_MBLK-->LL_HDR_MBLK->pkt
* The IRE_MBLK is the one we allocated in ip_newroute.
* The LL_HDR_MBLK is the DLPI header to use to get
* the attached packet, and subsequent ones for the
* same destination, transmitted.
*/
if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */
break;
/*
* First, check to make sure the resolution succeeded.
* If it failed, the second mblk will be empty.
* If it is, free the chain, dropping the packet.
* (We must ire_delete the ire; that frees the ire mblk)
* We're doing this now to support PVCs for ATM; it's
* a partial xresolv implementation. When we fully implement
* xresolv interfaces, instead of freeing everything here
* we'll initiate neighbor discovery.
*
* For v4 (ARP and other external resolvers) the resolver
* frees the message, so no check is needed. This check
* is required, though, for a full xresolve implementation.
* Including this code here now both shows how external
* resolvers can NACK a resolution request using an
* existing design that has no specific provisions for NACKs,
* and also takes into account that the current non-ARP
* external resolver has been coded to use this method of
* NACKing for all IPv6 (xresolv) cases,
* whether our xresolv implementation is complete or not.
*
*/
ire = (ire_t *)mp->b_rptr;
ill = ire_to_ill(ire);
mp1 = mp->b_cont; /* dl_unitdata_req */
if (mp1->b_rptr == mp1->b_wptr) {
if (ire->ire_ipversion == IPV6_VERSION) {
/*
* XRESOLV interface.
*/
ASSERT(ill->ill_flags & ILLF_XRESOLV);
mutex_enter(&ire->ire_lock);
gw_addr_v6 = ire->ire_gateway_addr_v6;
mutex_exit(&ire->ire_lock);
if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) {
nce = ndp_lookup_v6(ill,
&ire->ire_addr_v6, B_FALSE);
} else {
nce = ndp_lookup_v6(ill, &gw_addr_v6,
B_FALSE);
}
if (nce != NULL) {
nce_resolv_failed(nce);
ndp_delete(nce);
NCE_REFRELE(nce);
}
}
mp->b_cont = NULL;
freemsg(mp1); /* frees the pkt as well */
ASSERT(ire->ire_nce == NULL);
ire_delete((ire_t *)mp->b_rptr);
return;
}
/*
* Split them into IRE_MBLK and pkt and feed it into
* ire_add_then_send. Then in ire_add_then_send
* the IRE will be added, and then the packet will be
* run back through ip_wput. This time it will make
* it to the wire.
*/
mp->b_cont = NULL;
mp = mp1->b_cont; /* now, mp points to pkt */
mp1->b_cont = NULL;
ip1dbg(("ip_wput_nondata: reply from external resolver \n"));
if (ire->ire_ipversion == IPV6_VERSION) {
/*
* XRESOLV interface. Find the nce and put a copy
* of the dl_unitdata_req in nce_res_mp
*/
ASSERT(ill->ill_flags & ILLF_XRESOLV);
mutex_enter(&ire->ire_lock);
gw_addr_v6 = ire->ire_gateway_addr_v6;
mutex_exit(&ire->ire_lock);
if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) {
nce = ndp_lookup_v6(ill, &ire->ire_addr_v6,
B_FALSE);
} else {
nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE);
}
if (nce != NULL) {
/*
* We have to protect nce_res_mp here
* from being accessed by other threads
* while we change the mblk pointer.
* Other functions will also lock the nce when
* accessing nce_res_mp.
*
* The reason we change the mblk pointer
* here rather than copying the resolved address
* into the template is that, unlike with
* ethernet, we have no guarantee that the
* resolved address length will be
* smaller than or equal to the lla length
* with which the template was allocated,
* (for ethernet, they're equal)
* so we have to use the actual resolved
* address mblk - which holds the real
* dl_unitdata_req with the resolved address.
*
* Doing this is the same behavior as was
* previously used in the v4 ARP case.
*/
mutex_enter(&nce->nce_lock);
if (nce->nce_res_mp != NULL)
freemsg(nce->nce_res_mp);
nce->nce_res_mp = mp1;
mutex_exit(&nce->nce_lock);
/*
* We do a fastpath probe here because
* we have resolved the address without
* using Neighbor Discovery.
* In the non-XRESOLV v6 case, the fastpath
* probe is done right after neighbor
* discovery completes.
*/
if (nce->nce_res_mp != NULL) {
int res;
nce_fastpath_list_add(nce);
res = ill_fastpath_probe(ill,
nce->nce_res_mp);
if (res != 0 && res != EAGAIN)
nce_fastpath_list_delete(nce);
}
ire_add_then_send(q, ire, mp);
/*
* Now we have to clean out any packets
* that may have been queued on the nce
* while it was waiting for address resolution
* to complete.
*/
mutex_enter(&nce->nce_lock);
mp1 = nce->nce_qd_mp;
nce->nce_qd_mp = NULL;
mutex_exit(&nce->nce_lock);
while (mp1 != NULL) {
mblk_t *nxt_mp;
queue_t *fwdq = NULL;
ill_t *inbound_ill;
uint_t ifindex;
nxt_mp = mp1->b_next;
mp1->b_next = NULL;
/*
* Retrieve ifindex stored in
* ip_rput_data_v6()
*/
ifindex =
(uint_t)(uintptr_t)mp1->b_prev;
inbound_ill =
ill_lookup_on_ifindex(ifindex,
B_TRUE, NULL, NULL, NULL,
NULL);
mp1->b_prev = NULL;
if (inbound_ill != NULL)
fwdq = inbound_ill->ill_rq;
if (fwdq != NULL) {
put(fwdq, mp1);
ill_refrele(inbound_ill);
} else
put(WR(ill->ill_rq), mp1);
mp1 = nxt_mp;
}
NCE_REFRELE(nce);
} else { /* nce is NULL; clean up */
ire_delete(ire);
freemsg(mp);
freemsg(mp1);
return;
}
} else {
nce_t *arpce;
/*
* Link layer resolution succeeded. Recompute the
* ire_nce.
*/
ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST));
if ((arpce = ndp_lookup_v4(ill,
(ire->ire_gateway_addr != INADDR_ANY ?
&ire->ire_gateway_addr : &ire->ire_addr),
B_FALSE)) == NULL) {
freeb(ire->ire_mp);
freeb(mp1);
freemsg(mp);
return;
}
mutex_enter(&arpce->nce_lock);
arpce->nce_last = TICK_TO_MSEC(lbolt64);
if (arpce->nce_state == ND_REACHABLE) {
/*
* Someone resolved this before us;
* cleanup the res_mp. Since ire has
* not been added yet, the call to ire_add_v4
* from ire_add_then_send (when a dup is
* detected) will clean up the ire.
*/
freeb(mp1);
} else {
if (arpce->nce_res_mp != NULL)
freemsg(arpce->nce_res_mp);
arpce->nce_res_mp = mp1;
arpce->nce_state = ND_REACHABLE;
}
mutex_exit(&arpce->nce_lock);
if (ire->ire_marks & IRE_MARK_NOADD) {
/*
* this ire will not be added to the ire
* cache table, so we can set the ire_nce
* here, as there are no atomicity constraints.
*/
ire->ire_nce = arpce;
/*
* We are associating this nce with the ire
* so change the nce ref taken in
* ndp_lookup_v4() from
* NCE_REFHOLD to NCE_REFHOLD_NOTR
*/
NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
} else {
NCE_REFRELE(arpce);
}
ire_add_then_send(q, ire, mp);
}
return; /* All is well, the packet has been sent. */
}
case IRE_ARPRESOLVE_TYPE: {
if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */
break;
mp1 = mp->b_cont; /* dl_unitdata_req */
mp->b_cont = NULL;
/*
* First, check to make sure the resolution succeeded.
* If it failed, the second mblk will be empty.
*/
if (mp1->b_rptr == mp1->b_wptr) {
/* cleanup the incomplete ire, free queued packets */
freemsg(mp); /* fake ire */
freeb(mp1); /* dl_unitdata response */
return;
}
/*
* update any incomplete nce_t found. we lookup the ctable
* and find the nce from the ire->ire_nce because we need
* to pass the ire to ip_xmit_v4 later, and can find both
* ire and nce in one lookup from the ctable.
*/
fake_ire = (ire_t *)mp->b_rptr;
/*
* By the time we come back here from ARP
* the logical outgoing interface of the incomplete ire
* we added in ire_forward could have disappeared,
* causing the incomplete ire to also have
* dissapeared. So we need to retreive the
* proper ipif for the ire before looking
* in ctable; do the ctablelookup based on ire_ipif_seqid
*/
ill = q->q_ptr;
/* Get the outgoing ipif */
mutex_enter(&ill->ill_lock);
if (ill->ill_state_flags & ILL_CONDEMNED) {
mutex_exit(&ill->ill_lock);
freemsg(mp); /* fake ire */
freeb(mp1); /* dl_unitdata response */
return;
}
ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid);
if (ipif == NULL) {
mutex_exit(&ill->ill_lock);
ip1dbg(("logical intrf to incomplete ire vanished\n"));
freemsg(mp);
freeb(mp1);
return;
}
ipif_refhold_locked(ipif);
mutex_exit(&ill->ill_lock);
ire = ire_ctable_lookup(fake_ire->ire_addr,
fake_ire->ire_gateway_addr, IRE_CACHE,
ipif, fake_ire->ire_zoneid, NULL,
(MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY));
ipif_refrele(ipif);
if (ire == NULL) {
/*
* no ire was found; check if there is an nce
* for this lookup; if it has no ire's pointing at it
* cleanup.
*/
if ((nce = ndp_lookup_v4(ill,
(fake_ire->ire_gateway_addr != INADDR_ANY ?
&fake_ire->ire_gateway_addr : &fake_ire->ire_addr),
B_FALSE)) != NULL) {
/*
* cleanup: just reset nce.
* We check for refcnt 2 (one for the nce
* hash list + 1 for the ref taken by
* ndp_lookup_v4) to ensure that there are
* no ire's pointing at the nce.
*/
if (nce->nce_refcnt == 2) {
nce = nce_reinit(nce);
}
if (nce != NULL)
NCE_REFRELE(nce);
}
freeb(mp1); /* dl_unitdata response */
freemsg(mp); /* fake ire */
return;
}
nce = ire->ire_nce;
DTRACE_PROBE2(ire__arpresolve__type,
ire_t *, ire, nce_t *, nce);
ASSERT(nce->nce_state != ND_INITIAL);
mutex_enter(&nce->nce_lock);
nce->nce_last = TICK_TO_MSEC(lbolt64);
if (nce->nce_state == ND_REACHABLE) {
/*
* Someone resolved this before us;
* our response is not needed any more.
*/
mutex_exit(&nce->nce_lock);
freeb(mp1); /* dl_unitdata response */
} else {
if (nce->nce_res_mp != NULL) {
freemsg(nce->nce_res_mp);
/* existing dl_unitdata template */
}
nce->nce_res_mp = mp1;
nce->nce_state = ND_REACHABLE;
mutex_exit(&nce->nce_lock);
ire_fastpath(ire);
}
/*
* The cached nce_t has been updated to be reachable;
* Set the IRE_MARK_UNCACHED flag and free the fake_ire.
*/
fake_ire->ire_marks &= ~IRE_MARK_UNCACHED;
freemsg(mp);
/*
* send out queued packets.
*/
(void) ip_xmit_v4(NULL, ire, NULL, B_FALSE);
IRE_REFRELE(ire);
return;
}
default:
break;
}
if (q->q_next) {
putnext(q, mp);
} else
freemsg(mp);
}
/*
* Process IP options in an outbound packet. Modify the destination if there
* is a source route option.
* Returns non-zero if something fails in which case an ICMP error has been
* sent and mp freed.
*/
static int
ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha,
boolean_t mctl_present, zoneid_t zoneid)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
intptr_t code = 0;
mblk_t *mp;
ire_t *ire = NULL;
ip2dbg(("ip_wput_options\n"));
mp = ipsec_mp;
if (mctl_present) {
mp = ipsec_mp->b_cont;
}
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_wput_options: opt %d, len %d\n",
optval, optlen));
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_wput_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OLEN] -
(char *)ipha;
goto param_prob;
}
off = opt[IPOPT_OFFSET];
ip1dbg(("ip_wput_options: next hop 0x%x\n",
ntohl(dst)));
/*
* For strict: verify that dst is directly
* reachable.
*/
if (optval == IPOPT_SSRR) {
ire = ire_ftable_lookup(dst, 0, 0,
IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0,
MBLK_GETLABEL(mp),
MATCH_IRE_TYPE | MATCH_IRE_SECATTR);
if (ire == NULL) {
ip1dbg(("ip_wput_options: SSRR not"
" directly reachable: 0x%x\n",
ntohl(dst)));
goto bad_src_route;
}
ire_refrele(ire);
}
break;
case IPOPT_RR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_wput_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OLEN] -
(char *)ipha;
goto param_prob;
}
break;
case IPOPT_TS:
/*
* Verify that length >=5 and that there is either
* room for another timestamp or that the overflow
* counter is not maxed out.
*/
code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
if (optlen < IPOPT_MINLEN_IT) {
goto param_prob;
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_wput_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OFFSET] -
(char *)ipha;
goto param_prob;
}
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_TSANDADDR:
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
code = (char *)&opt[IPOPT_POS_OV_FLG] -
(char *)ipha;
goto param_prob;
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
(opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
/*
* No room and the overflow counter is 15
* already.
*/
goto param_prob;
}
break;
}
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
return (0);
ip1dbg(("ip_wput_options: error processing IP options."));
code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
param_prob:
/*
* Since ip_wput() isn't close to finished, we fill
* in enough of the header for credible error reporting.
*/
if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) {
/* Failed */
freemsg(ipsec_mp);
return (-1);
}
icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid);
return (-1);
bad_src_route:
/*
* Since ip_wput() isn't close to finished, we fill
* in enough of the header for credible error reporting.
*/
if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) {
/* Failed */
freemsg(ipsec_mp);
return (-1);
}
icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid);
return (-1);
}
/*
* The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
* conn_drain_list_cnt can be changed by setting conn_drain_nthreads
* thru /etc/system.
*/
#define CONN_MAXDRAINCNT 64
static void
conn_drain_init(void)
{
int i;
conn_drain_list_cnt = conn_drain_nthreads;
if ((conn_drain_list_cnt == 0) ||
(conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
/*
* Default value of the number of drainers is the
* number of cpus, subject to maximum of 8 drainers.
*/
if (boot_max_ncpus != -1)
conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
else
conn_drain_list_cnt = MIN(max_ncpus, 8);
}
conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t),
KM_SLEEP);
for (i = 0; i < conn_drain_list_cnt; i++) {
mutex_init(&conn_drain_list[i].idl_lock, NULL,
MUTEX_DEFAULT, NULL);
}
}
static void
conn_drain_fini(void)
{
int i;
for (i = 0; i < conn_drain_list_cnt; i++)
mutex_destroy(&conn_drain_list[i].idl_lock);
kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t));
conn_drain_list = NULL;
}
/*
* Note: For an overview of how flowcontrol is handled in IP please see the
* IP Flowcontrol notes at the top of this file.
*
* Flow control has blocked us from proceeding. Insert the given conn in one
* of the conn drain lists. These conn wq's will be qenabled later on when
* STREAMS flow control does a backenable. conn_walk_drain will enable
* the first conn in each of these drain lists. Each of these qenabled conns
* in turn enables the next in the list, after it runs, or when it closes,
* thus sustaining the drain process.
*
* The only possible calling sequence is ip_wsrv (on conn) -> ip_wput ->
* conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert
* running at any time, on a given conn, since there can be only 1 service proc
* running on a queue at any time.
*/
void
conn_drain_insert(conn_t *connp)
{
idl_t *idl;
uint_t index;
mutex_enter(&connp->conn_lock);
if (connp->conn_state_flags & CONN_CLOSING) {
/*
* The conn is closing as a result of which CONN_CLOSING
* is set. Return.
*/
mutex_exit(&connp->conn_lock);
return;
} else if (connp->conn_idl == NULL) {
/*
* Assign the next drain list round robin. We dont' use
* a lock, and thus it may not be strictly round robin.
* Atomicity of load/stores is enough to make sure that
* conn_drain_list_index is always within bounds.
*/
index = conn_drain_list_index;
ASSERT(index < conn_drain_list_cnt);
connp->conn_idl = &conn_drain_list[index];
index++;
if (index == conn_drain_list_cnt)
index = 0;
conn_drain_list_index = index;
}
mutex_exit(&connp->conn_lock);
mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
if ((connp->conn_drain_prev != NULL) ||
(connp->conn_state_flags & CONN_CLOSING)) {
/*
* The conn is already in the drain list, OR
* the conn is closing. We need to check again for
* the closing case again since close can happen
* after we drop the conn_lock, and before we
* acquire the CONN_DRAIN_LIST_LOCK.
*/
mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
return;
} else {
idl = connp->conn_idl;
}
/*
* The conn is not in the drain list. Insert it at the
* tail of the drain list. The drain list is circular
* and doubly linked. idl_conn points to the 1st element
* in the list.
*/
if (idl->idl_conn == NULL) {
idl->idl_conn = connp;
connp->conn_drain_next = connp;
connp->conn_drain_prev = connp;
} else {
conn_t *head = idl->idl_conn;
connp->conn_drain_next = head;
connp->conn_drain_prev = head->conn_drain_prev;
head->conn_drain_prev->conn_drain_next = connp;
head->conn_drain_prev = connp;
}
mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
}
/*
* This conn is closing, and we are called from ip_close. OR
* This conn has been serviced by ip_wsrv, and we need to do the tail
* processing.
* If this conn is part of the drain list, we may need to sustain the drain
* process by qenabling the next conn in the drain list. We may also need to
* remove this conn from the list, if it is done.
*/
static void
conn_drain_tail(conn_t *connp, boolean_t closing)
{
idl_t *idl;
/*
* connp->conn_idl is stable at this point, and no lock is needed
* to check it. If we are called from ip_close, close has already
* set CONN_CLOSING, thus freezing the value of conn_idl, and
* called us only because conn_idl is non-null. If we are called thru
* service, conn_idl could be null, but it cannot change because
* service is single-threaded per queue, and there cannot be another
* instance of service trying to call conn_drain_insert on this conn
* now.
*/
ASSERT(!closing || (connp->conn_idl != NULL));
/*
* If connp->conn_idl is null, the conn has not been inserted into any
* drain list even once since creation of the conn. Just return.
*/
if (connp->conn_idl == NULL)
return;
mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
if (connp->conn_drain_prev == NULL) {
/* This conn is currently not in the drain list. */
mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
return;
}
idl = connp->conn_idl;
if (idl->idl_conn_draining == connp) {
/*
* This conn is the current drainer. If this is the last conn
* in the drain list, we need to do more checks, in the 'if'
* below. Otherwwise we need to just qenable the next conn,
* to sustain the draining, and is handled in the 'else'
* below.
*/
if (connp->conn_drain_next == idl->idl_conn) {
/*
* This conn is the last in this list. This round
* of draining is complete. If idl_repeat is set,
* it means another flow enabling has happened from
* the driver/streams and we need to another round
* of draining.
* If there are more than 2 conns in the drain list,
* do a left rotate by 1, so that all conns except the
* conn at the head move towards the head by 1, and the
* the conn at the head goes to the tail. This attempts
* a more even share for all queues that are being
* drained.
*/
if ((connp->conn_drain_next != connp) &&
(idl->idl_conn->conn_drain_next != connp)) {
idl->idl_conn = idl->idl_conn->conn_drain_next;
}
if (idl->idl_repeat) {
qenable(idl->idl_conn->conn_wq);
idl->idl_conn_draining = idl->idl_conn;
idl->idl_repeat = 0;
} else {
idl->idl_conn_draining = NULL;
}
} else {
/*
* If the next queue that we are now qenable'ing,
* is closing, it will remove itself from this list
* and qenable the subsequent queue in ip_close().
* Serialization is acheived thru idl_lock.
*/
qenable(connp->conn_drain_next->conn_wq);
idl->idl_conn_draining = connp->conn_drain_next;
}
}
if (!connp->conn_did_putbq || closing) {
/*
* Remove ourself from the drain list, if we did not do
* a putbq, or if the conn is closing.
* Note: It is possible that q->q_first is non-null. It means
* that these messages landed after we did a enableok() in
* ip_wsrv. Thus STREAMS will call ip_wsrv once again to
* service them.
*/
if (connp->conn_drain_next == connp) {
/* Singleton in the list */
ASSERT(connp->conn_drain_prev == connp);
idl->idl_conn = NULL;
idl->idl_conn_draining = NULL;
} else {
connp->conn_drain_prev->conn_drain_next =
connp->conn_drain_next;
connp->conn_drain_next->conn_drain_prev =
connp->conn_drain_prev;
if (idl->idl_conn == connp)
idl->idl_conn = connp->conn_drain_next;
ASSERT(idl->idl_conn_draining != connp);
}
connp->conn_drain_next = NULL;
connp->conn_drain_prev = NULL;
}
mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
}
/*
* Write service routine. Shared perimeter entry point.
* ip_wsrv can be called in any of the following ways.
* 1. The device queue's messages has fallen below the low water mark
* and STREAMS has backenabled the ill_wq. We walk thru all the
* the drain lists and backenable the first conn in each list.
* 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the
* qenabled non-tcp upper layers. We start dequeing messages and call
* ip_wput for each message.
*/
void
ip_wsrv(queue_t *q)
{
conn_t *connp;
ill_t *ill;
mblk_t *mp;
if (q->q_next) {
ill = (ill_t *)q->q_ptr;
if (ill->ill_state_flags == 0) {
/*
* The device flow control has opened up.
* Walk through conn drain lists and qenable the
* first conn in each list. This makes sense only
* if the stream is fully plumbed and setup.
* Hence the if check above.
*/
ip1dbg(("ip_wsrv: walking\n"));
conn_walk_drain();
}
return;
}
connp = Q_TO_CONN(q);
ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp));
/*
* 1. Set conn_draining flag to signal that service is active.
*
* 2. ip_output determines whether it has been called from service,
* based on the last parameter. If it is IP_WSRV it concludes it
* has been called from service.
*
* 3. Message ordering is preserved by the following logic.
* i. A directly called ip_output (i.e. not thru service) will queue
* the message at the tail, if conn_draining is set (i.e. service
* is running) or if q->q_first is non-null.
*
* ii. If ip_output is called from service, and if ip_output cannot
* putnext due to flow control, it does a putbq.
*
* 4. noenable the queue so that a putbq from ip_wsrv does not reenable
* (causing an infinite loop).
*/
ASSERT(!connp->conn_did_putbq);
while ((q->q_first != NULL) && !connp->conn_did_putbq) {
connp->conn_draining = 1;
noenable(q);
while ((mp = getq(q)) != NULL) {
ASSERT(CONN_Q(q));
ip_output(Q_TO_CONN(q), mp, q, IP_WSRV);
if (connp->conn_did_putbq) {
/* ip_wput did a putbq */
break;
}
}
/*
* At this point, a thread coming down from top, calling
* ip_wput, may end up queueing the message. We have not yet
* enabled the queue, so ip_wsrv won't be called again.
* To avoid this race, check q->q_first again (in the loop)
* If the other thread queued the message before we call
* enableok(), we will catch it in the q->q_first check.
* If the other thread queues the message after we call
* enableok(), ip_wsrv will be called again by STREAMS.
*/
connp->conn_draining = 0;
enableok(q);
}
/* Enable the next conn for draining */
conn_drain_tail(connp, B_FALSE);
connp->conn_did_putbq = 0;
}
/*
* Walk the list of all conn's calling the function provided with the
* specified argument for each. Note that this only walks conn's that
* have been bound.
* Applies to both IPv4 and IPv6.
*/
static void
conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid)
{
conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size,
func, arg, zoneid);
conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size,
func, arg, zoneid);
conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size,
func, arg, zoneid);
conn_walk_fanout_table(ipcl_proto_fanout,
A_CNT(ipcl_proto_fanout), func, arg, zoneid);
conn_walk_fanout_table(ipcl_proto_fanout_v6,
A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid);
}
/*
* Flowcontrol has relieved, and STREAMS has backenabled us. For each list
* of conns that need to be drained, check if drain is already in progress.
* If so set the idl_repeat bit, indicating that the last conn in the list
* needs to reinitiate the drain once again, for the list. If drain is not
* in progress for the list, initiate the draining, by qenabling the 1st
* conn in the list. The drain is self-sustaining, each qenabled conn will
* in turn qenable the next conn, when it is done/blocked/closing.
*/
static void
conn_walk_drain(void)
{
int i;
idl_t *idl;
IP_STAT(ip_conn_walk_drain);
for (i = 0; i < conn_drain_list_cnt; i++) {
idl = &conn_drain_list[i];
mutex_enter(&idl->idl_lock);
if (idl->idl_conn == NULL) {
mutex_exit(&idl->idl_lock);
continue;
}
/*
* If this list is not being drained currently by
* an ip_wsrv thread, start the process.
*/
if (idl->idl_conn_draining == NULL) {
ASSERT(idl->idl_repeat == 0);
qenable(idl->idl_conn->conn_wq);
idl->idl_conn_draining = idl->idl_conn;
} else {
idl->idl_repeat = 1;
}
mutex_exit(&idl->idl_lock);
}
}
/*
* Walk an conn hash table of `count' buckets, calling func for each entry.
*/
static void
conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg,
zoneid_t zoneid)
{
conn_t *connp;
while (count-- > 0) {
mutex_enter(&connfp->connf_lock);
for (connp = connfp->connf_head; connp != NULL;
connp = connp->conn_next) {
if (zoneid == GLOBAL_ZONEID ||
zoneid == connp->conn_zoneid) {
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
(*func)(connp, arg);
mutex_enter(&connfp->connf_lock);
CONN_DEC_REF(connp);
}
}
mutex_exit(&connfp->connf_lock);
connfp++;
}
}
/* ipcl_walk routine invoked for ip_conn_report for each conn. */
static void
conn_report1(conn_t *connp, void *mp)
{
char buf1[INET6_ADDRSTRLEN];
char buf2[INET6_ADDRSTRLEN];
uint_t print_len, buf_len;
ASSERT(connp != NULL);
buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
if (buf_len <= 0)
return;
(void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)),
(void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)),
print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
"%5d %s/%05d %s/%05d\n",
(void *)connp, (void *)CONNP_TO_RQ(connp),
(void *)CONNP_TO_WQ(connp), connp->conn_zoneid,
buf1, connp->conn_lport,
buf2, connp->conn_fport);
if (print_len < buf_len) {
((mblk_t *)mp)->b_wptr += print_len;
} else {
((mblk_t *)mp)->b_wptr += buf_len;
}
}
/*
* Named Dispatch routine to produce a formatted report on all conns
* that are listed in one of the fanout tables.
* This report is accessed by using the ndd utility to "get" ND variable
* "ip_conn_status".
*/
/* ARGSUSED */
static int
ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
{
(void) mi_mpprintf(mp,
"CONN " MI_COL_HDRPAD_STR
"rfq " MI_COL_HDRPAD_STR
"stq " MI_COL_HDRPAD_STR
" zone local remote");
/*
* Because of the ndd constraint, at most we can have 64K buffer
* to put in all conn info. So to be more efficient, just
* allocate a 64K buffer here, assuming we need that large buffer.
* This should be OK as only privileged processes can do ndd /dev/ip.
*/
if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
/* The following may work even if we cannot get a large buf. */
(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
return (0);
}
conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid);
return (0);
}
/*
* Determine if the ill and multicast aspects of that packets
* "matches" the conn.
*/
boolean_t
conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags,
zoneid_t zoneid)
{
ill_t *in_ill;
boolean_t found;
ipif_t *ipif;
ire_t *ire;
ipaddr_t dst, src;
dst = ipha->ipha_dst;
src = ipha->ipha_src;
/*
* conn_incoming_ill is set by IP_BOUND_IF which limits
* unicast, broadcast and multicast reception to
* conn_incoming_ill. conn_wantpacket itself is called
* only for BROADCAST and multicast.
*
* 1) ip_rput supresses duplicate broadcasts if the ill
* is part of a group. Hence, we should be receiving
* just one copy of broadcast for the whole group.
* Thus, if it is part of the group the packet could
* come on any ill of the group and hence we need a
* match on the group. Otherwise, match on ill should
* be sufficient.
*
* 2) ip_rput does not suppress duplicate multicast packets.
* If there are two interfaces in a ill group and we have
* 2 applications (conns) joined a multicast group G on
* both the interfaces, ilm_lookup_ill filter in ip_rput
* will give us two packets because we join G on both the
* interfaces rather than nominating just one interface
* for receiving multicast like broadcast above. So,
* we have to call ilg_lookup_ill to filter out duplicate
* copies, if ill is part of a group.
*/
in_ill = connp->conn_incoming_ill;
if (in_ill != NULL) {
if (in_ill->ill_group == NULL) {
if (in_ill != ill)
return (B_FALSE);
} else if (in_ill->ill_group != ill->ill_group) {
return (B_FALSE);
}
}
if (!CLASSD(dst)) {
if (IPCL_ZONE_MATCH(connp, zoneid))
return (B_TRUE);
/*
* The conn is in a different zone; we need to check that this
* broadcast address is configured in the application's zone and
* on one ill in the group.
*/
ipif = ipif_get_next_ipif(NULL, ill);
if (ipif == NULL)
return (B_FALSE);
ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif,
connp->conn_zoneid, NULL,
(MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP));
ipif_refrele(ipif);
if (ire != NULL) {
ire_refrele(ire);
return (B_TRUE);
} else {
return (B_FALSE);
}
}
if ((fanout_flags & IP_FF_NO_MCAST_LOOP) &&
connp->conn_zoneid == zoneid) {
/*
* Loopback case: the sending endpoint has IP_MULTICAST_LOOP
* disabled, therefore we don't dispatch the multicast packet to
* the sending zone.
*/
return (B_FALSE);
}
if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) &&
connp->conn_zoneid != zoneid) {
/*
* Multicast packet on the loopback interface: we only match
* conns who joined the group in the specified zone.
*/
return (B_FALSE);
}
if (connp->conn_multi_router) {
/* multicast packet and multicast router socket: send up */
return (B_TRUE);
}
mutex_enter(&connp->conn_lock);
found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL);
mutex_exit(&connp->conn_lock);
return (found);
}
/*
* Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp.
*/
/* ARGSUSED */
static void
ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg)
{
ill_t *ill = (ill_t *)q->q_ptr;
mblk_t *mp1, *mp2;
ipif_t *ipif;
int err = 0;
conn_t *connp = NULL;
ipsq_t *ipsq;
arc_t *arc;
ip1dbg(("ip_arp_done(%s)\n", ill->ill_name));
ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t));
ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE);
ASSERT(IAM_WRITER_ILL(ill));
mp2 = mp->b_cont;
mp->b_cont = NULL;
/*
* We have now received the arp bringup completion message
* from ARP. Mark the arp bringup as done. Also if the arp
* stream has already started closing, send up the AR_ARP_CLOSING
* ack now since ARP is waiting in close for this ack.
*/
mutex_enter(&ill->ill_lock);
ill->ill_arp_bringup_pending = 0;
if (ill->ill_arp_closing) {
mutex_exit(&ill->ill_lock);
/* Let's reuse the mp for sending the ack */
arc = (arc_t *)mp->b_rptr;
mp->b_wptr = mp->b_rptr + sizeof (arc_t);
arc->arc_cmd = AR_ARP_CLOSING;
qreply(q, mp);
} else {
mutex_exit(&ill->ill_lock);
freeb(mp);
}
/* We should have an IOCTL waiting on this. */
ipsq = ill->ill_phyint->phyint_ipsq;
ipif = ipsq->ipsq_pending_ipif;
mp1 = ipsq_pending_mp_get(ipsq, &connp);
ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
if (mp1 == NULL) {
/* bringup was aborted by the user */
freemsg(mp2);
return;
}
ASSERT(connp != NULL);
q = CONNP_TO_WQ(connp);
/*
* If the DL_BIND_REQ fails, it is noted
* in arc_name_offset.
*/
err = *((int *)mp2->b_rptr);
if (err == 0) {
if (ipif->ipif_isv6) {
if ((err = ipif_up_done_v6(ipif)) != 0)
ip0dbg(("ip_arp_done: init failed\n"));
} else {
if ((err = ipif_up_done(ipif)) != 0)
ip0dbg(("ip_arp_done: init failed\n"));
}
} else {
ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n"));
}
freemsg(mp2);
if ((err == 0) && (ill->ill_up_ipifs)) {
err = ill_up_ipifs(ill, q, mp1);
if (err == EINPROGRESS)
return;
}
if (ill->ill_up_ipifs) {
ill_group_cleanup(ill);
}
/*
* The ioctl must complete now without EINPROGRESS
* since ipsq_pending_mp_get has removed the ioctl mblk
* from ipsq_pending_mp. Otherwise the ioctl will be
* stuck for ever in the ipsq.
*/
ASSERT(err != EINPROGRESS);
ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq);
}
/* Allocate the private structure */
static int
ip_priv_alloc(void **bufp)
{
void *buf;
if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
return (ENOMEM);
*bufp = buf;
return (0);
}
/* Function to delete the private structure */
void
ip_priv_free(void *buf)
{
ASSERT(buf != NULL);
kmem_free(buf, sizeof (ip_priv_t));
}
/*
* The entry point for IPPF processing.
* If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
* routine just returns.
*
* When called, ip_process generates an ipp_packet_t structure
* which holds the state information for this packet and invokes the
* the classifier (via ipp_packet_process). The classification, depending on
* configured filters, results in a list of actions for this packet. Invoking
* an action may cause the packet to be dropped, in which case the resulting
* mblk (*mpp) is NULL. proc indicates the callout position for
* this packet and ill_index is the interface this packet on or will leave
* on (inbound and outbound resp.).
*/
void
ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index)
{
mblk_t *mp;
ip_priv_t *priv;
ipp_action_id_t aid;
int rc = 0;
ipp_packet_t *pp;
#define IP_CLASS "ip"
/* If the classifier is not loaded, return */
if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
return;
}
mp = *mpp;
ASSERT(mp != NULL);
/* Allocate the packet structure */
rc = ipp_packet_alloc(&pp, IP_CLASS, aid);
if (rc != 0) {
*mpp = NULL;
freemsg(mp);
return;
}
/* Allocate the private structure */
rc = ip_priv_alloc((void **)&priv);
if (rc != 0) {
*mpp = NULL;
freemsg(mp);
ipp_packet_free(pp);
return;
}
priv->proc = proc;
priv->ill_index = ill_index;
ipp_packet_set_private(pp, priv, ip_priv_free);
ipp_packet_set_data(pp, mp);
/* Invoke the classifier */
rc = ipp_packet_process(&pp);
if (pp != NULL) {
mp = ipp_packet_get_data(pp);
ipp_packet_free(pp);
if (rc != 0) {
freemsg(mp);
*mpp = NULL;
}
} else {
*mpp = NULL;
}
#undef IP_CLASS
}
/*
* Propagate a multicast group membership operation (add/drop) on
* all the interfaces crossed by the related multirt routes.
* The call is considered successful if the operation succeeds
* on at least one interface.
*/
static int
ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp,
boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src,
mblk_t *first_mp)
{
ire_t *ire_gw;
irb_t *irb;
int error = 0;
opt_restart_t *or;
irb = ire->ire_bucket;
ASSERT(irb != NULL);
ASSERT(DB_TYPE(first_mp) == M_CTL);
or = (opt_restart_t *)first_mp->b_rptr;
IRB_REFHOLD(irb);
for (; ire != NULL; ire = ire->ire_next) {
if ((ire->ire_flags & RTF_MULTIRT) == 0)
continue;
if (ire->ire_addr != group)
continue;
ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0,
IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL,
MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE);
/* No resolver exists for the gateway; skip this ire. */
if (ire_gw == NULL)
continue;
/*
* This function can return EINPROGRESS. If so the operation
* will be restarted from ip_restart_optmgmt which will
* call ip_opt_set and option processing will restart for
* this option. So we may end up calling 'fn' more than once.
* This requires that 'fn' is idempotent except for the
* return value. The operation is considered a success if
* it succeeds at least once on any one interface.
*/
error = fn(connp, checkonly, group, ire_gw->ire_src_addr,
NULL, fmode, src, first_mp);
if (error == 0)
or->or_private = CGTP_MCAST_SUCCESS;
if (ip_debug > 0) {
ulong_t off;
char *ksym;
ksym = kobj_getsymname((uintptr_t)fn, &off);
ip2dbg(("ip_multirt_apply_membership: "
"called %s, multirt group 0x%08x via itf 0x%08x, "
"error %d [success %u]\n",
ksym ? ksym : "?",
ntohl(group), ntohl(ire_gw->ire_src_addr),
error, or->or_private));
}
ire_refrele(ire_gw);
if (error == EINPROGRESS) {
IRB_REFRELE(irb);
return (error);
}
}
IRB_REFRELE(irb);
/*
* Consider the call as successful if we succeeded on at least
* one interface. Otherwise, return the last encountered error.
*/
return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error);
}
/*
* Issue a warning regarding a route crossing an interface with an
* incorrect MTU. Only one message every 'ip_multirt_log_interval'
* amount of time is logged.
*/
static void
ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag)
{
hrtime_t current = gethrtime();
char buf[INET_ADDRSTRLEN];
/* Convert interval in ms to hrtime in ns */
if (multirt_bad_mtu_last_time +
((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <=
current) {
cmn_err(CE_WARN, "ip: ignoring multiroute "
"to %s, incorrect MTU %u (expected %u)\n",
ip_dot_addr(ire->ire_addr, buf),
ire->ire_max_frag, max_frag);
multirt_bad_mtu_last_time = current;
}
}
/*
* Get the CGTP (multirouting) filtering status.
* If 0, the CGTP hooks are transparent.
*/
/* ARGSUSED */
static int
ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
{
boolean_t *ip_cgtp_filter_value = (boolean_t *)cp;
(void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value);
return (0);
}
/*
* Set the CGTP (multirouting) filtering status.
* If the status is changed from active to transparent
* or from transparent to active, forward the new status
* to the filtering module (if loaded).
*/
/* ARGSUSED */
static int
ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
cred_t *ioc_cr)
{
long new_value;
boolean_t *ip_cgtp_filter_value = (boolean_t *)cp;
if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
new_value < 0 || new_value > 1) {
return (EINVAL);
}
/*
* Do not enable CGTP filtering - thus preventing the hooks
* from being invoked - if the version number of the
* filtering module hooks does not match.
*/
if ((ip_cgtp_filter_ops != NULL) &&
(ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) {
cmn_err(CE_WARN, "IP: CGTP filtering version mismatch "
"(module hooks version %d, expecting %d)\n",
ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV);
return (ENOTSUP);
}
if ((!*ip_cgtp_filter_value) && new_value) {
cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s",
ip_cgtp_filter_ops == NULL ?
" (module not loaded)" : "");
}
if (*ip_cgtp_filter_value && (!new_value)) {
cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s",
ip_cgtp_filter_ops == NULL ?
" (module not loaded)" : "");
}
if (ip_cgtp_filter_ops != NULL) {
int res;
if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) {
return (res);
}
}
*ip_cgtp_filter_value = (boolean_t)new_value;
return (0);
}
/*
* Return the expected CGTP hooks version number.
*/
int
ip_cgtp_filter_supported(void)
{
return (ip_cgtp_filter_rev);
}
/*
* CGTP hooks can be registered by directly touching ip_cgtp_filter_ops
* or by invoking this function. In the first case, the version number
* of the registered structure is checked at hooks activation time
* in ip_cgtp_filter_set().
*/
int
ip_cgtp_filter_register(cgtp_filter_ops_t *ops)
{
if (ops->cfo_filter_rev != CGTP_FILTER_REV)
return (ENOTSUP);
ip_cgtp_filter_ops = ops;
return (0);
}
static squeue_func_t
ip_squeue_switch(int val)
{
squeue_func_t rval = squeue_fill;
switch (val) {
case IP_SQUEUE_ENTER_NODRAIN:
rval = squeue_enter_nodrain;
break;
case IP_SQUEUE_ENTER:
rval = squeue_enter;
break;
default:
break;
}
return (rval);
}
/* ARGSUSED */
static int
ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
caddr_t addr, cred_t *cr)
{
int *v = (int *)addr;
long new_value;
if (ddi_strtol(value, NULL, 10, &new_value) != 0)
return (EINVAL);
ip_input_proc = ip_squeue_switch(new_value);
*v = new_value;
return (0);
}
/* ARGSUSED */
static int
ip_int_set(queue_t *q, mblk_t *mp, char *value,
caddr_t addr, cred_t *cr)
{
int *v = (int *)addr;
long new_value;
if (ddi_strtol(value, NULL, 10, &new_value) != 0)
return (EINVAL);
*v = new_value;
return (0);
}
static void
ip_kstat_init(void)
{
ip_named_kstat_t template = {
{ "forwarding", KSTAT_DATA_UINT32, 0 },
{ "defaultTTL", KSTAT_DATA_UINT32, 0 },
{ "inReceives", KSTAT_DATA_UINT32, 0 },
{ "inHdrErrors", KSTAT_DATA_UINT32, 0 },
{ "inAddrErrors", KSTAT_DATA_UINT32, 0 },
{ "forwDatagrams", KSTAT_DATA_UINT32, 0 },
{ "inUnknownProtos", KSTAT_DATA_UINT32, 0 },
{ "inDiscards", KSTAT_DATA_UINT32, 0 },
{ "inDelivers", KSTAT_DATA_UINT32, 0 },
{ "outRequests", KSTAT_DATA_UINT32, 0 },
{ "outDiscards", KSTAT_DATA_UINT32, 0 },
{ "outNoRoutes", KSTAT_DATA_UINT32, 0 },
{ "reasmTimeout", KSTAT_DATA_UINT32, 0 },
{ "reasmReqds", KSTAT_DATA_UINT32, 0 },
{ "reasmOKs", KSTAT_DATA_UINT32, 0 },
{ "reasmFails", KSTAT_DATA_UINT32, 0 },
{ "fragOKs", KSTAT_DATA_UINT32, 0 },
{ "fragFails", KSTAT_DATA_UINT32, 0 },
{ "fragCreates", KSTAT_DATA_UINT32, 0 },
{ "addrEntrySize", KSTAT_DATA_INT32, 0 },
{ "routeEntrySize", KSTAT_DATA_INT32, 0 },
{ "netToMediaEntrySize", KSTAT_DATA_INT32, 0 },
{ "routingDiscards", KSTAT_DATA_UINT32, 0 },
{ "inErrs", KSTAT_DATA_UINT32, 0 },
{ "noPorts", KSTAT_DATA_UINT32, 0 },
{ "inCksumErrs", KSTAT_DATA_UINT32, 0 },
{ "reasmDuplicates", KSTAT_DATA_UINT32, 0 },
{ "reasmPartDups", KSTAT_DATA_UINT32, 0 },
{ "forwProhibits", KSTAT_DATA_UINT32, 0 },
{ "udpInCksumErrs", KSTAT_DATA_UINT32, 0 },
{ "udpInOverflows", KSTAT_DATA_UINT32, 0 },
{ "rawipInOverflows", KSTAT_DATA_UINT32, 0 },
{ "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 },
{ "ipsecInFailed", KSTAT_DATA_INT32, 0 },
{ "memberEntrySize", KSTAT_DATA_INT32, 0 },
{ "inIPv6", KSTAT_DATA_UINT32, 0 },
{ "outIPv6", KSTAT_DATA_UINT32, 0 },
{ "outSwitchIPv6", KSTAT_DATA_UINT32, 0 },
};
ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
NUM_OF_FIELDS(ip_named_kstat_t),
0);
if (!ip_mibkp)
return;
template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2;
template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl;
template.reasmTimeout.value.ui32 = ip_g_frag_timeout;
template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
template.netToMediaEntrySize.value.i32 =
sizeof (mib2_ipNetToMediaEntry_t);
template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
bcopy(&template, ip_mibkp->ks_data, sizeof (template));
ip_mibkp->ks_update = ip_kstat_update;
kstat_install(ip_mibkp);
}
static void
ip_kstat_fini(void)
{
if (ip_mibkp != NULL) {
kstat_delete(ip_mibkp);
ip_mibkp = NULL;
}
}
static int
ip_kstat_update(kstat_t *kp, int rw)
{
ip_named_kstat_t *ipkp;
if (!kp || !kp->ks_data)
return (EIO);
if (rw == KSTAT_WRITE)
return (EACCES);
ipkp = (ip_named_kstat_t *)kp->ks_data;
ipkp->forwarding.value.ui32 = ip_mib.ipForwarding;
ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL;
ipkp->inReceives.value.ui32 = ip_mib.ipInReceives;
ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors;
ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors;
ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams;
ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos;
ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards;
ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers;
ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests;
ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards;
ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes;
ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout;
ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds;
ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs;
ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails;
ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs;
ipkp->fragFails.value.ui32 = ip_mib.ipFragFails;
ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates;
ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards;
ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs;
ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts;
ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs;
ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates;
ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups;
ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits;
ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs;
ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows;
ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows;
ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded;
ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed;
ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6;
ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6;
ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6;
return (0);
}
static void
icmp_kstat_init(void)
{
icmp_named_kstat_t template = {
{ "inMsgs", KSTAT_DATA_UINT32 },
{ "inErrors", KSTAT_DATA_UINT32 },
{ "inDestUnreachs", KSTAT_DATA_UINT32 },
{ "inTimeExcds", KSTAT_DATA_UINT32 },
{ "inParmProbs", KSTAT_DATA_UINT32 },
{ "inSrcQuenchs", KSTAT_DATA_UINT32 },
{ "inRedirects", KSTAT_DATA_UINT32 },
{ "inEchos", KSTAT_DATA_UINT32 },
{ "inEchoReps", KSTAT_DATA_UINT32 },
{ "inTimestamps", KSTAT_DATA_UINT32 },
{ "inTimestampReps", KSTAT_DATA_UINT32 },
{ "inAddrMasks", KSTAT_DATA_UINT32 },
{ "inAddrMaskReps", KSTAT_DATA_UINT32 },
{ "outMsgs", KSTAT_DATA_UINT32 },
{ "outErrors", KSTAT_DATA_UINT32 },
{ "outDestUnreachs", KSTAT_DATA_UINT32 },
{ "outTimeExcds", KSTAT_DATA_UINT32 },
{ "outParmProbs", KSTAT_DATA_UINT32 },
{ "outSrcQuenchs", KSTAT_DATA_UINT32 },
{ "outRedirects", KSTAT_DATA_UINT32 },
{ "outEchos", KSTAT_DATA_UINT32 },
{ "outEchoReps", KSTAT_DATA_UINT32 },
{ "outTimestamps", KSTAT_DATA_UINT32 },
{ "outTimestampReps", KSTAT_DATA_UINT32 },
{ "outAddrMasks", KSTAT_DATA_UINT32 },
{ "outAddrMaskReps", KSTAT_DATA_UINT32 },
{ "inChksumErrs", KSTAT_DATA_UINT32 },
{ "inUnknowns", KSTAT_DATA_UINT32 },
{ "inFragNeeded", KSTAT_DATA_UINT32 },
{ "outFragNeeded", KSTAT_DATA_UINT32 },
{ "outDrops", KSTAT_DATA_UINT32 },
{ "inOverFlows", KSTAT_DATA_UINT32 },
{ "inBadRedirects", KSTAT_DATA_UINT32 },
};
icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
NUM_OF_FIELDS(icmp_named_kstat_t),
0);
if (icmp_mibkp == NULL)
return;
bcopy(&template, icmp_mibkp->ks_data, sizeof (template));
icmp_mibkp->ks_update = icmp_kstat_update;
kstat_install(icmp_mibkp);
}
static void
icmp_kstat_fini(void)
{
if (icmp_mibkp != NULL) {
kstat_delete(icmp_mibkp);
icmp_mibkp = NULL;
}
}
static int
icmp_kstat_update(kstat_t *kp, int rw)
{
icmp_named_kstat_t *icmpkp;
if ((kp == NULL) || (kp->ks_data == NULL))
return (EIO);
if (rw == KSTAT_WRITE)
return (EACCES);
icmpkp = (icmp_named_kstat_t *)kp->ks_data;
icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs;
icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors;
icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs;
icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds;
icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs;
icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs;
icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects;
icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos;
icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps;
icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps;
icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps;
icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks;
icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps;
icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs;
icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors;
icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs;
icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds;
icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs;
icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs;
icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects;
icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos;
icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps;
icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps;
icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps;
icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks;
icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps;
icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs;
icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns;
icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded;
icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded;
icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops;
icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows;
icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects;
return (0);
}
/*
* This is the fanout function for raw socket opened for SCTP. Note
* that it is called after SCTP checks that there is no socket which
* wants a packet. Then before SCTP handles this out of the blue packet,
* this function is called to see if there is any raw socket for SCTP.
* If there is and it is bound to the correct address, the packet will
* be sent to that socket. Note that only one raw socket can be bound to
* a port. This is assured in ipcl_sctp_hash_insert();
*/
void
ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4,
uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy,
uint_t ipif_seqid, zoneid_t zoneid)
{
conn_t *connp;
queue_t *rq;
mblk_t *first_mp;
boolean_t secure;
ip6_t *ip6h;
first_mp = mp;
if (mctl_present) {
mp = first_mp->b_cont;
secure = ipsec_in_is_secure(first_mp);
ASSERT(mp != NULL);
} else {
secure = B_FALSE;
}
ip6h = (isv4) ? NULL : (ip6_t *)ipha;
connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha);
if (connp == NULL) {
sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid,
mctl_present);
return;
}
rq = connp->conn_rq;
if (!canputnext(rq)) {
CONN_DEC_REF(connp);
BUMP_MIB(&ip_mib, rawipInOverflows);
freemsg(first_mp);
return;
}
if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) :
CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) {
first_mp = ipsec_check_inbound_policy(first_mp, connp,
(isv4 ? ipha : NULL), ip6h, mctl_present);
if (first_mp == NULL) {
CONN_DEC_REF(connp);
return;
}
}
/*
* We probably should not send M_CTL message up to
* raw socket.
*/
if (mctl_present)
freeb(first_mp);
/* Initiate IPPF processing here if needed. */
if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) ||
(!isv4 && IP6_IN_IPP(flags))) {
ip_process(IPP_LOCAL_IN, &mp,
recv_ill->ill_phyint->phyint_ifindex);
if (mp == NULL) {
CONN_DEC_REF(connp);
return;
}
}
if (connp->conn_recvif || connp->conn_recvslla ||
((connp->conn_ipv6_recvpktinfo ||
(!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) &&
(flags & IP_FF_IP6INFO))) {
int in_flags = 0;
if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) {
in_flags = IPF_RECVIF;
}
if (connp->conn_recvslla) {
in_flags |= IPF_RECVSLLA;
}
if (isv4) {
mp = ip_add_info(mp, recv_ill, in_flags);
} else {
mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst);
if (mp == NULL) {
CONN_DEC_REF(connp);
return;
}
}
}
BUMP_MIB(&ip_mib, ipInDelivers);
/*
* We are sending the IPSEC_IN message also up. Refer
* to comments above this function.
*/
putnext(rq, mp);
CONN_DEC_REF(connp);
}
/*
* This function should be called only if all packet processing
* including fragmentation is complete. Callers of this function
* must set mp->b_prev to one of these values:
* {0, IPP_FWD_OUT, IPP_LOCAL_OUT}
* prior to handing over the mp as first argument to this function.
*
* If the ire passed by caller is incomplete, this function
* queues the packet and if necessary, sends ARP request and bails.
* If the ire passed is fully resolved, we simply prepend
* the link-layer header to the packet, do ipsec hw acceleration
* work if necessary, and send the packet out on the wire.
*
* NOTE: IPSEC will only call this function with fully resolved
* ires if hw acceleration is involved.
* TODO list :
* a Handle M_MULTIDATA so that
* tcp_multisend->tcp_multisend_data can
* call ip_xmit_v4 directly
* b Handle post-ARP work for fragments so that
* ip_wput_frag can call this function.
*/
ipxmit_state_t
ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled)
{
nce_t *arpce;
queue_t *q;
int ill_index;
mblk_t *nxt_mp, *first_mp;
boolean_t xmit_drop = B_FALSE;
ip_proc_t proc;
ill_t *out_ill;
arpce = ire->ire_nce;
ASSERT(arpce != NULL);
DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce);
mutex_enter(&arpce->nce_lock);
switch (arpce->nce_state) {
case ND_REACHABLE:
/* If there are other queued packets, queue this packet */
if (arpce->nce_qd_mp != NULL) {
if (mp != NULL)
nce_queue_mp_common(arpce, mp, B_FALSE);
mp = arpce->nce_qd_mp;
}
arpce->nce_qd_mp = NULL;
mutex_exit(&arpce->nce_lock);
/*
* Flush the queue. In the common case, where the
* ARP is already resolved, it will go through the
* while loop only once.
*/
while (mp != NULL) {
nxt_mp = mp->b_next;
mp->b_next = NULL;
/*
* This info is needed for IPQOS to do COS marking
* in ip_wput_attach_llhdr->ip_process.
*/
proc = (ip_proc_t)(uintptr_t)mp->b_prev;
mp->b_prev = NULL;
/* set up ill index for outbound qos processing */
out_ill = ire->ire_ipif->ipif_ill;
ill_index = out_ill->ill_phyint->phyint_ifindex;
first_mp = ip_wput_attach_llhdr(mp, ire, proc,
ill_index);
if (first_mp == NULL) {
xmit_drop = B_TRUE;
if (proc == IPP_FWD_OUT) {
BUMP_MIB(&ip_mib, ipInDiscards);
} else {
BUMP_MIB(&ip_mib, ipOutDiscards);
}
goto next_mp;
}
/* non-ipsec hw accel case */
if (io == NULL || !io->ipsec_out_accelerated) {
/* send it */
q = ire->ire_stq;
if (proc == IPP_FWD_OUT) {
UPDATE_IB_PKT_COUNT(ire);
} else {
UPDATE_OB_PKT_COUNT(ire);
}
ire->ire_last_used_time = lbolt;
if (flow_ctl_enabled || canputnext(q)) {
if (proc == IPP_FWD_OUT) {
BUMP_MIB(&ip_mib,
ipForwDatagrams);
}
if (mp == NULL)
goto next_mp;
putnext(q, first_mp);
} else {
BUMP_MIB(&ip_mib,
ipOutDiscards);
xmit_drop = B_TRUE;
freemsg(first_mp);
}
} else {
/*
* Safety Pup says: make sure this
* is going to the right interface!
*/
ill_t *ill1 =
(ill_t *)ire->ire_stq->q_ptr;
int ifindex =
ill1->ill_phyint->phyint_ifindex;
if (ifindex !=
io->ipsec_out_capab_ill_index) {
xmit_drop = B_TRUE;
freemsg(mp);
} else {
ipsec_hw_putnext(ire->ire_stq,
mp);
}
}
next_mp:
mp = nxt_mp;
} /* while (mp != NULL) */
if (xmit_drop)
return (SEND_FAILED);
else
return (SEND_PASSED);
case ND_INITIAL:
case ND_INCOMPLETE:
/*
* While we do send off packets to dests that
* use fully-resolved CGTP routes, we do not
* handle unresolved CGTP routes.
*/
ASSERT(!(ire->ire_flags & RTF_MULTIRT));
ASSERT(io == NULL || !io->ipsec_out_accelerated);
if (mp != NULL) {
/* queue the packet */
nce_queue_mp_common(arpce, mp, B_FALSE);
}
if (arpce->nce_state == ND_INCOMPLETE) {
mutex_exit(&arpce->nce_lock);
DTRACE_PROBE3(ip__xmit__incomplete,
(ire_t *), ire, (mblk_t *), mp,
(ipsec_out_t *), io);
return (LOOKUP_IN_PROGRESS);
}
arpce->nce_state = ND_INCOMPLETE;
mutex_exit(&arpce->nce_lock);
/*
* Note that ire_add() (called from ire_forward())
* holds a ref on the ire until ARP is completed.
*/
ire_arpresolve(ire, ire_to_ill(ire));
return (LOOKUP_IN_PROGRESS);
default:
ASSERT(0);
mutex_exit(&arpce->nce_lock);
return (LLHDR_RESLV_FAILED);
}
}
/*
* Return B_TRUE if the buffers differ in length or content.
* This is used for comparing extension header buffers.
* Note that an extension header would be declared different
* even if all that changed was the next header value in that header i.e.
* what really changed is the next extension header.
*/
boolean_t
ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
uint_t blen)
{
if (!b_valid)
blen = 0;
if (alen != blen)
return (B_TRUE);
if (alen == 0)
return (B_FALSE); /* Both zero length */
return (bcmp(abuf, bbuf, alen));
}
/*
* Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
* Return B_FALSE if memory allocation fails - don't change any state!
*/
boolean_t
ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
const void *src, uint_t srclen)
{
void *dst;
if (!src_valid)
srclen = 0;
ASSERT(*dstlenp == 0);
if (src != NULL && srclen != 0) {
dst = mi_alloc(srclen, BPRI_MED);
if (dst == NULL)
return (B_FALSE);
} else {
dst = NULL;
}
if (*dstp != NULL)
mi_free(*dstp);
*dstp = dst;
*dstlenp = dst == NULL ? 0 : srclen;
return (B_TRUE);
}
/*
* Replace what is in *dst, *dstlen with the source.
* Assumes ip_allocbuf has already been called.
*/
void
ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
const void *src, uint_t srclen)
{
if (!src_valid)
srclen = 0;
ASSERT(*dstlenp == srclen);
if (src != NULL && srclen != 0)
bcopy(src, *dstp, srclen);
}
/*
* Free the storage pointed to by the members of an ip6_pkt_t.
*/
void
ip6_pkt_free(ip6_pkt_t *ipp)
{
ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU));
if (ipp->ipp_fields & IPPF_HOPOPTS) {
kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
ipp->ipp_hopopts = NULL;
ipp->ipp_hopoptslen = 0;
}
if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
ipp->ipp_rtdstopts = NULL;
ipp->ipp_rtdstoptslen = 0;
}
if (ipp->ipp_fields & IPPF_DSTOPTS) {
kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
ipp->ipp_dstopts = NULL;
ipp->ipp_dstoptslen = 0;
}
if (ipp->ipp_fields & IPPF_RTHDR) {
kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
ipp->ipp_rthdr = NULL;
ipp->ipp_rthdrlen = 0;
}
ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
IPPF_RTHDR);
}