/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1990 Mentat Inc.
* Copyright (c) 2012 Joyent, Inc. All rights reserved.
* Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved.
*/
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/dlpi.h>
#include <sys/stropts.h>
#include <sys/sysmacros.h>
#include <sys/strsubr.h>
#include <sys/strlog.h>
#include <sys/strsun.h>
#include <sys/zone.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/xti_inet.h>
#include <sys/ddi.h>
#include <sys/suntpi.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/kobj.h>
#include <sys/modctl.h>
#include <sys/atomic.h>
#include <sys/policy.h>
#include <sys/priv.h>
#include <sys/taskq.h>
#include <sys/systm.h>
#include <sys/param.h>
#include <sys/kmem.h>
#include <sys/sdt.h>
#include <sys/socket.h>
#include <sys/vtrace.h>
#include <sys/isa_defs.h>
#include <sys/mac.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/route.h>
#include <sys/sockio.h>
#include <netinet/in.h>
#include <net/if_dl.h>
#include <inet/common.h>
#include <inet/mi.h>
#include <inet/mib2.h>
#include <inet/nd.h>
#include <inet/arp.h>
#include <inet/snmpcom.h>
#include <inet/optcom.h>
#include <inet/kstatcom.h>
#include <netinet/igmp_var.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet/sctp.h>
#include <inet/ip.h>
#include <inet/ip_impl.h>
#include <inet/ip6.h>
#include <inet/ip6_asp.h>
#include <inet/tcp.h>
#include <inet/tcp_impl.h>
#include <inet/ip_multi.h>
#include <inet/ip_if.h>
#include <inet/ip_ire.h>
#include <inet/ip_ftable.h>
#include <inet/ip_rts.h>
#include <inet/ip_ndp.h>
#include <inet/ip_listutils.h>
#include <netinet/igmp.h>
#include <netinet/ip_mroute.h>
#include <inet/ipp_common.h>
#include <net/pfkeyv2.h>
#include <inet/sadb.h>
#include <inet/ipsec_impl.h>
#include <inet/iptun/iptun_impl.h>
#include <inet/ipdrop.h>
#include <inet/ip_netinfo.h>
#include <inet/ilb_ip.h>
#include <sys/ethernet.h>
#include <net/if_types.h>
#include <sys/cpuvar.h>
#include <ipp/ipp.h>
#include <ipp/ipp_impl.h>
#include <ipp/ipgpc/ipgpc.h>
#include <sys/pattr.h>
#include <inet/ipclassifier.h>
#include <inet/sctp_ip.h>
#include <inet/sctp/sctp_impl.h>
#include <inet/udp_impl.h>
#include <inet/rawip_impl.h>
#include <inet/rts_impl.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tnet.h>
#include <sys/squeue_impl.h>
#include <inet/ip_arp.h>
#include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */
/*
* Values for squeue switch:
* IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
* IP_SQUEUE_ENTER: SQ_PROCESS
* IP_SQUEUE_FILL: SQ_FILL
*/
int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */
int ip_squeue_flag;
/*
* Setable in /etc/system
*/
int ip_poll_normal_ms = 100;
int ip_poll_normal_ticks = 0;
int ip_modclose_ackwait_ms = 3000;
/*
* It would be nice to have these present only in DEBUG systems, but the
* current design of the global symbol checking logic requires them to be
* unconditionally present.
*/
uint_t ip_thread_data; /* TSD key for debug support */
krwlock_t ip_thread_rwlock;
list_t ip_thread_list;
/*
* Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
*/
struct listptr_s {
mblk_t *lp_head; /* pointer to the head of the list */
mblk_t *lp_tail; /* pointer to the tail of the list */
};
typedef struct listptr_s listptr_t;
/*
* This is used by ip_snmp_get_mib2_ip_route_media and
* ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
*/
typedef struct iproutedata_s {
uint_t ird_idx;
uint_t ird_flags; /* see below */
listptr_t ird_route; /* ipRouteEntryTable */
listptr_t ird_netmedia; /* ipNetToMediaEntryTable */
listptr_t ird_attrs; /* ipRouteAttributeTable */
} iproutedata_t;
/* Include ire_testhidden and IRE_IF_CLONE routes */
#define IRD_REPORT_ALL 0x01
/*
* Cluster specific hooks. These should be NULL when booted as a non-cluster
*/
/*
* Hook functions to enable cluster networking
* On non-clustered systems these vectors must always be NULL.
*
* Hook function to Check ip specified ip address is a shared ip address
* in the cluster
*
*/
int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
/*
* Hook function to generate cluster wide ip fragment identifier
*/
uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
void *args) = NULL;
/*
* Hook function to generate cluster wide SPI.
*/
void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
void *) = NULL;
/*
* Hook function to verify if the SPI is already utlized.
*/
int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
/*
* Hook function to delete the SPI from the cluster wide repository.
*/
void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
/*
* Hook function to inform the cluster when packet received on an IDLE SA
*/
void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
in6_addr_t, in6_addr_t, void *) = NULL;
/*
* Synchronization notes:
*
* IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
* MT level protection given by STREAMS. IP uses a combination of its own
* internal serialization mechanism and standard Solaris locking techniques.
* The internal serialization is per phyint. This is used to serialize
* plumbing operations, IPMP operations, most set ioctls, etc.
*
* Plumbing is a long sequence of operations involving message
* exchanges between IP, ARP and device drivers. Many set ioctls are typically
* involved in plumbing operations. A natural model is to serialize these
* ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
* parallel without any interference. But various set ioctls on hme0 are best
* serialized, along with IPMP operations and processing of DLPI control
* messages received from drivers on a per phyint basis. This serialization is
* provided by the ipsq_t and primitives operating on this. Details can
* be found in ip_if.c above the core primitives operating on ipsq_t.
*
* Lookups of an ipif or ill by a thread return a refheld ipif / ill.
* Simiarly lookup of an ire by a thread also returns a refheld ire.
* In addition ipif's and ill's referenced by the ire are also indirectly
* refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
* directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
* address of an ipif has to go through the ipsq_t. This ensures that only
* one such exclusive operation proceeds at any time on the ipif. It then
* waits for all refcnts
* associated with this ipif to come down to zero. The address is changed
* only after the ipif has been quiesced. Then the ipif is brought up again.
* More details are described above the comment in ip_sioctl_flags.
*
* Packet processing is based mostly on IREs and are fully multi-threaded
* using standard Solaris MT techniques.
*
* There are explicit locks in IP to handle:
* - The ip_g_head list maintained by mi_open_link() and friends.
*
* - The reassembly data structures (one lock per hash bucket)
*
* - conn_lock is meant to protect conn_t fields. The fields actually
* protected by conn_lock are documented in the conn_t definition.
*
* - ire_lock to protect some of the fields of the ire, IRE tables
* (one lock per hash bucket). Refer to ip_ire.c for details.
*
* - ndp_g_lock and ncec_lock for protecting NCEs.
*
* - ill_lock protects fields of the ill and ipif. Details in ip.h
*
* - ill_g_lock: This is a global reader/writer lock. Protects the following
* * The AVL tree based global multi list of all ills.
* * The linked list of all ipifs of an ill
* * The <ipsq-xop> mapping
* * <ill-phyint> association
* Insertion/deletion of an ill in the system, insertion/deletion of an ipif
* into an ill, changing the <ipsq-xop> mapping of an ill, changing the
* <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
* writer for the actual duration of the insertion/deletion/change.
*
* - ill_lock: This is a per ill mutex.
* It protects some members of the ill_t struct; see ip.h for details.
* It also protects the <ill-phyint> assoc.
* It also protects the list of ipifs hanging off the ill.
*
* - ipsq_lock: This is a per ipsq_t mutex lock.
* This protects some members of the ipsq_t struct; see ip.h for details.
* It also protects the <ipsq-ipxop> mapping
*
* - ipx_lock: This is a per ipxop_t mutex lock.
* This protects some members of the ipxop_t struct; see ip.h for details.
*
* - phyint_lock: This is a per phyint mutex lock. Protects just the
* phyint_flags
*
* - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
* This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
* uniqueness check also done atomically.
*
* - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
* group list linked by ill_usesrc_grp_next. It also protects the
* ill_usesrc_ifindex field. It is taken as a writer when a member of the
* group is being added or deleted. This lock is taken as a reader when
* walking the list/group(eg: to get the number of members in a usesrc group).
* Note, it is only necessary to take this lock if the ill_usesrc_grp_next
* field is changing state i.e from NULL to non-NULL or vice-versa. For
* example, it is not necessary to take this lock in the initial portion
* of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
* operations are executed exclusively and that ensures that the "usesrc
* group state" cannot change. The "usesrc group state" change can happen
* only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
*
* Changing <ill-phyint>, <ipsq-xop> assocications:
*
* To change the <ill-phyint> association, the ill_g_lock must be held
* as writer, and the ill_locks of both the v4 and v6 instance of the ill
* must be held.
*
* To change the <ipsq-xop> association, the ill_g_lock must be held as
* writer, the ipsq_lock must be held, and one must be writer on the ipsq.
* This is only done when ills are added or removed from IPMP groups.
*
* To add or delete an ipif from the list of ipifs hanging off the ill,
* ill_g_lock (writer) and ill_lock must be held and the thread must be
* a writer on the associated ipsq.
*
* To add or delete an ill to the system, the ill_g_lock must be held as
* writer and the thread must be a writer on the associated ipsq.
*
* To add or delete an ilm to an ill, the ill_lock must be held and the thread
* must be a writer on the associated ipsq.
*
* Lock hierarchy
*
* Some lock hierarchy scenarios are listed below.
*
* ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
* ill_g_lock -> ill_lock(s) -> phyint_lock
* ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
* ill_g_lock -> ip_addr_avail_lock
* conn_lock -> irb_lock -> ill_lock -> ire_lock
* ill_g_lock -> ip_g_nd_lock
* ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
* ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
* arl_lock -> ill_lock
* ips_ire_dep_lock -> irb_lock
*
* When more than 1 ill lock is needed to be held, all ill lock addresses
* are sorted on address and locked starting from highest addressed lock
* downward.
*
* Multicast scenarios
* ips_ill_g_lock -> ill_mcast_lock
* conn_ilg_lock -> ips_ill_g_lock -> ill_lock
* ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
* ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
* ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
* ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
*
* IPsec scenarios
*
* ipsa_lock -> ill_g_lock -> ill_lock
* ill_g_usesrc_lock -> ill_g_lock -> ill_lock
*
* Trusted Solaris scenarios
*
* igsa_lock -> gcgrp_rwlock -> gcgrp_lock
* igsa_lock -> gcdb_lock
* gcgrp_rwlock -> ire_lock
* gcgrp_rwlock -> gcdb_lock
*
* squeue(sq_lock), flow related (ft_lock, fe_lock) locking
*
* cpu_lock --> ill_lock --> sqset_lock --> sq_lock
* sq_lock -> conn_lock -> QLOCK(q)
* ill_lock -> ft_lock -> fe_lock
*
* Routing/forwarding table locking notes:
*
* Lock acquisition order: Radix tree lock, irb_lock.
* Requirements:
* i. Walker must not hold any locks during the walker callback.
* ii Walker must not see a truncated tree during the walk because of any node
* deletion.
* iii Existing code assumes ire_bucket is valid if it is non-null and is used
* in many places in the code to walk the irb list. Thus even if all the
* ires in a bucket have been deleted, we still can't free the radix node
* until the ires have actually been inactive'd (freed).
*
* Tree traversal - Need to hold the global tree lock in read mode.
* Before dropping the global tree lock, need to either increment the ire_refcnt
* to ensure that the radix node can't be deleted.
*
* Tree add - Need to hold the global tree lock in write mode to add a
* radix node. To prevent the node from being deleted, increment the
* irb_refcnt, after the node is added to the tree. The ire itself is
* added later while holding the irb_lock, but not the tree lock.
*
* Tree delete - Need to hold the global tree lock and irb_lock in write mode.
* All associated ires must be inactive (i.e. freed), and irb_refcnt
* must be zero.
*
* Walker - Increment irb_refcnt before calling the walker callback. Hold the
* global tree lock (read mode) for traversal.
*
* IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
* hence we will acquire irb_lock while holding ips_ire_dep_lock.
*
* IPsec notes :
*
* IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
* in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
* ip_xmit_attr_t has the
* information used by the IPsec code for applying the right level of
* protection. The information initialized by IP in the ip_xmit_attr_t
* is determined by the per-socket policy or global policy in the system.
* For inbound datagrams, the ip_recv_attr_t
* starts out with nothing in it. It gets filled
* with the right information if it goes through the AH/ESP code, which
* happens if the incoming packet is secure. The information initialized
* by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
* the policy requirements needed by per-socket policy or global policy
* is met or not.
*
* For fully connected sockets i.e dst, src [addr, port] is known,
* conn_policy_cached is set indicating that policy has been cached.
* conn_in_enforce_policy may or may not be set depending on whether
* there is a global policy match or per-socket policy match.
* Policy inheriting happpens in ip_policy_set once the destination is known.
* Once the right policy is set on the conn_t, policy cannot change for
* this socket. This makes life simpler for TCP (UDP ?) where
* re-transmissions go out with the same policy. For symmetry, policy
* is cached for fully connected UDP sockets also. Thus if policy is cached,
* it also implies that policy is latched i.e policy cannot change
* on these sockets. As we have the right policy on the conn, we don't
* have to lookup global policy for every outbound and inbound datagram
* and thus serving as an optimization. Note that a global policy change
* does not affect fully connected sockets if they have policy. If fully
* connected sockets did not have any policy associated with it, global
* policy change may affect them.
*
* IP Flow control notes:
* ---------------------
* Non-TCP streams are flow controlled by IP. The way this is accomplished
* differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
* ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
* GLDv3. Otherwise packets are sent down to lower layers using STREAMS
* functions.
*
* Per Tx ring udp flow control:
* This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
* the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
*
* The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
* To achieve best performance, outgoing traffic need to be fanned out among
* these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
* traffic out of the NIC and it takes a fanout hint. UDP connections pass
* the address of connp as fanout hint to mac_tx(). Under flow controlled
* condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
* cookie points to a specific Tx ring that is blocked. The cookie is used to
* hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
* point to drain_lists (idl_t's). These drain list will store the blocked UDP
* connp's. The drain list is not a single list but a configurable number of
* lists.
*
* The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
* has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
* which is equal to 128. This array in turn contains a pointer to idl_t[],
* the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
* list will point to the list of connp's that are flow controlled.
*
* --------------- ------- ------- -------
* |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
* | --------------- ------- ------- -------
* | --------------- ------- ------- -------
* |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
* ---------------- | --------------- ------- ------- -------
* |idl_tx_list[0]|->| --------------- ------- ------- -------
* ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
* | --------------- ------- ------- -------
* . . . . .
* | --------------- ------- ------- -------
* |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
* --------------- ------- ------- -------
* --------------- ------- ------- -------
* |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
* | --------------- ------- ------- -------
* | --------------- ------- ------- -------
* ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
* |idl_tx_list[1]|->| --------------- ------- ------- -------
* ---------------- | . . . .
* | --------------- ------- ------- -------
* |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
* --------------- ------- ------- -------
* .....
* ----------------
* |idl_tx_list[n]|-> ...
* ----------------
*
* When mac_tx() returns a cookie, the cookie is hashed into an index into
* ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
* to insert the conn onto. conn_drain_insert() asserts flow control for the
* sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
* Further, conn_blocked is set to indicate that the conn is blocked.
*
* GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie
* passed in the call to ill_flow_enable() identifies the blocked Tx ring and
* is again hashed to locate the appropriate idl_tx_list, which is then
* drained via conn_walk_drain(). conn_walk_drain() goes through each conn in
* the drain list and calls conn_drain_remove() to clear flow control (via
* calling su_txq_full() or clearing QFULL), and remove the conn from the
* drain list.
*
* Note that the drain list is not a single list but a (configurable) array of
* lists (8 elements by default). Synchronization between drain insertion and
* flow control wakeup is handled by using idl_txl->txl_lock, and only
* conn_drain_insert() and conn_drain_remove() manipulate the drain list.
*
* Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
* On the send side, if the packet cannot be sent down to the driver by IP
* (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
* caller, who may then invoke ixa_check_drain_insert() to insert the conn on
* the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow
* control has been relieved, the blocked conns in the 0'th drain list are
* drained as in the non-STREAMS case.
*
* In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
* is done when the conn is inserted into the drain list (conn_drain_insert())
* and cleared when the conn is removed from the it (conn_drain_remove()).
*
* IPQOS notes:
*
* IPQoS Policies are applied to packets using IPPF (IP Policy framework)
* and IPQoS modules. IPPF includes hooks in IP at different control points
* (callout positions) which direct packets to IPQoS modules for policy
* processing. Policies, if present, are global.
*
* The callout positions are located in the following paths:
* o local_in (packets destined for this host)
* o local_out (packets orginating from this host )
* o fwd_in (packets forwarded by this m/c - inbound)
* o fwd_out (packets forwarded by this m/c - outbound)
* Hooks at these callout points can be enabled/disabled using the ndd variable
* ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
* By default all the callout positions are enabled.
*
* Outbound (local_out)
* Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
*
* Inbound (local_in)
* Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
*
* Forwarding (in and out)
* Hooks are placed in ire_recv_forward_v4/v6.
*
* IP Policy Framework processing (IPPF processing)
* Policy processing for a packet is initiated by ip_process, which ascertains
* that the classifier (ipgpc) is loaded and configured, failing which the
* packet resumes normal processing in IP. If the clasifier is present, the
* packet is acted upon by one or more IPQoS modules (action instances), per
* filters configured in ipgpc and resumes normal IP processing thereafter.
* An action instance can drop a packet in course of its processing.
*
* Zones notes:
*
* The partitioning rules for networking are as follows:
* 1) Packets coming from a zone must have a source address belonging to that
* zone.
* 2) Packets coming from a zone can only be sent on a physical interface on
* which the zone has an IP address.
* 3) Between two zones on the same machine, packet delivery is only allowed if
* there's a matching route for the destination and zone in the forwarding
* table.
* 4) The TCP and UDP port spaces are per-zone; that is, two processes in
* different zones can bind to the same port with the wildcard address
* (INADDR_ANY).
*
* The granularity of interface partitioning is at the logical interface level.
* Therefore, every zone has its own IP addresses, and incoming packets can be
* attributed to a zone unambiguously. A logical interface is placed into a zone
* using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
* structure. Rule (1) is implemented by modifying the source address selection
* algorithm so that the list of eligible addresses is filtered based on the
* sending process zone.
*
* The Internet Routing Entries (IREs) are either exclusive to a zone or shared
* across all zones, depending on their type. Here is the break-up:
*
* IRE type Shared/exclusive
* -------- ----------------
* IRE_BROADCAST Exclusive
* IRE_DEFAULT (default routes) Shared (*)
* IRE_LOCAL Exclusive (x)
* IRE_LOOPBACK Exclusive
* IRE_PREFIX (net routes) Shared (*)
* IRE_IF_NORESOLVER (interface routes) Exclusive
* IRE_IF_RESOLVER (interface routes) Exclusive
* IRE_IF_CLONE (interface routes) Exclusive
* IRE_HOST (host routes) Shared (*)
*
* (*) A zone can only use a default or off-subnet route if the gateway is
* directly reachable from the zone, that is, if the gateway's address matches
* one of the zone's logical interfaces.
*
* (x) IRE_LOCAL are handled a bit differently.
* When ip_restrict_interzone_loopback is set (the default),
* ire_route_recursive restricts loopback using an IRE_LOCAL
* between zone to the case when L2 would have conceptually looped the packet
* back, i.e. the loopback which is required since neither Ethernet drivers
* nor Ethernet hardware loops them back. This is the case when the normal
* routes (ignoring IREs with different zoneids) would send out the packet on
* the same ill as the ill with which is IRE_LOCAL is associated.
*
* Multiple zones can share a common broadcast address; typically all zones
* share the 255.255.255.255 address. Incoming as well as locally originated
* broadcast packets must be dispatched to all the zones on the broadcast
* network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
* since some zones may not be on the 10.16.72/24 network. To handle this, each
* zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
* sent to every zone that has an IRE_BROADCAST entry for the destination
* address on the input ill, see ip_input_broadcast().
*
* Applications in different zones can join the same multicast group address.
* The same logic applies for multicast as for broadcast. ip_input_multicast
* dispatches packets to all zones that have members on the physical interface.
*/
/*
* Squeue Fanout flags:
* 0: No fanout.
* 1: Fanout across all squeues
*/
boolean_t ip_squeue_fanout = 0;
/*
* Maximum dups allowed per packet.
*/
uint_t ip_max_frag_dups = 10;
static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp, boolean_t isv6);
static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
ip_recv_attr_t *);
static void icmp_options_update(ipha_t *);
static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *);
static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
ip_recv_attr_t *);
static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
ip_recv_attr_t *);
mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
char *ip_dot_addr(ipaddr_t, char *);
mblk_t *ip_carve_mp(mblk_t **, ssize_t);
int ip_close(queue_t *, int);
static char *ip_dot_saddr(uchar_t *, char *);
static void ip_lrput(queue_t *, mblk_t *);
ipaddr_t ip_net_mask(ipaddr_t);
char *ip_nv_lookup(nv_t *, int);
void ip_rput(queue_t *, mblk_t *);
static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
void *dummy_arg);
int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
ip_stack_t *, boolean_t);
static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
boolean_t);
static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
ip_stack_t *ipst, boolean_t);
static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
ip_stack_t *ipst, boolean_t);
static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
ip_stack_t *ipst);
static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
ip_stack_t *ipst);
static void ip_snmp_get2_v4(ire_t *, iproutedata_t *);
static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
int ip_snmp_set(queue_t *, int, int, uchar_t *, int);
static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
mblk_t *);
static void conn_drain_init(ip_stack_t *);
static void conn_drain_fini(ip_stack_t *);
static void conn_drain(conn_t *connp, boolean_t closing);
static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
static void *ip_stack_init(netstackid_t stackid, netstack_t *ns);
static void ip_stack_shutdown(netstackid_t stackid, void *arg);
static void ip_stack_fini(netstackid_t stackid, void *arg);
static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t,
const in6_addr_t *);
static int ip_squeue_switch(int);
static void *ip_kstat_init(netstackid_t, ip_stack_t *);
static void ip_kstat_fini(netstackid_t, kstat_t *);
static int ip_kstat_update(kstat_t *kp, int rw);
static void *icmp_kstat_init(netstackid_t);
static void icmp_kstat_fini(netstackid_t, kstat_t *);
static int icmp_kstat_update(kstat_t *kp, int rw);
static void *ip_kstat2_init(netstackid_t, ip_stat_t *);
static void ip_kstat2_fini(netstackid_t, kstat_t *);
static void ipobs_init(ip_stack_t *);
static void ipobs_fini(ip_stack_t *);
static int ip_tp_cpu_update(cpu_setup_t, int, void *);
ipaddr_t ip_g_all_ones = IP_HOST_MASK;
static long ip_rput_pullups;
int dohwcksum = 1; /* use h/w cksum if supported by the hardware */
vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
int ip_debug;
/*
* Multirouting/CGTP stuff
*/
int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */
/*
* IP tunables related declarations. Definitions are in ip_tunables.c
*/
extern mod_prop_info_t ip_propinfo_tbl[];
extern int ip_propinfo_count;
/*
* Table of IP ioctls encoding the various properties of the ioctl and
* indexed based on the last byte of the ioctl command. Occasionally there
* is a clash, and there is more than 1 ioctl with the same last byte.
* In such a case 1 ioctl is encoded in the ndx table and the remaining
* ioctls are encoded in the misc table. An entry in the ndx table is
* retrieved by indexing on the last byte of the ioctl command and comparing
* the ioctl command with the value in the ndx table. In the event of a
* mismatch the misc table is then searched sequentially for the desired
* ioctl command.
*
* Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
*/
ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV,
MISC_CMD, ip_siocaddrt, NULL },
/* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV,
MISC_CMD, ip_siocdelrt, NULL },
/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
IF_CMD, ip_sioctl_get_addr, NULL },
/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
IPI_MODOK | IPI_GET_CMD,
IF_CMD, ip_sioctl_get_flags, NULL },
/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* copyin size cannot be coded for SIOCGIFCONF */
/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
MISC_CMD, ip_sioctl_get_ifconf, NULL },
/* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_mtu, NULL },
/* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
IF_CMD, ip_sioctl_get_mtu, NULL },
/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_brdaddr, NULL },
/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
IF_CMD, ip_sioctl_metric, NULL },
/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* See 166-168 below for extended SIOC*XARP ioctls */
/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
ARP_CMD, ip_sioctl_arp, NULL },
/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
ARP_CMD, ip_sioctl_arp, NULL },
/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
ARP_CMD, ip_sioctl_arp, NULL },
/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
MISC_CMD, if_unitsel, if_unitsel_restart },
/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
IPI_PRIV | IPI_WR | IPI_MODOK,
IF_CMD, ip_sioctl_sifname, NULL },
/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
MISC_CMD, ip_sioctl_get_ifnum, NULL },
/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
IF_CMD, ip_sioctl_get_muxid, NULL },
/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
/* Both if and lif variants share same func */
/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
IF_CMD, ip_sioctl_get_lifindex, NULL },
/* Both if and lif variants share same func */
/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
/* copyin size cannot be coded for SIOCGIFCONF */
/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
MISC_CMD, ip_sioctl_get_ifconf, NULL },
/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
ip_sioctl_removeif_restart },
/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
IPI_GET_CMD | IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_addif, NULL },
#define SIOCLIFADDR_NDX 112
/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
IPI_GET_CMD | IPI_MODOK,
LIF_CMD, ip_sioctl_get_flags, NULL },
/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
ip_sioctl_get_lifconf, NULL },
/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_mtu, NULL },
/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
LIF_CMD, ip_sioctl_get_mtu, NULL },
/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_brdaddr, NULL },
/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_metric, NULL },
/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
IPI_PRIV | IPI_WR | IPI_MODOK,
LIF_CMD, ip_sioctl_slifname,
ip_sioctl_slifname_restart },
/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
MISC_CMD, ip_sioctl_get_lifnum, NULL },
/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_token, NULL },
/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_lnkinfo, NULL },
/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
LIF_CMD, ip_siocdelndp_v6, NULL },
/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
LIF_CMD, ip_siocqueryndp_v6, NULL },
/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
LIF_CMD, ip_siocsetndp_v6, NULL },
/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
MISC_CMD, ip_sioctl_tmyaddr, NULL },
/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
MISC_CMD, ip_sioctl_tonlink, NULL },
/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
MISC_CMD, ip_sioctl_tmysite, NULL },
/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
/* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
LIF_CMD, ip_sioctl_get_binding, NULL },
/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* These are handled in ip_sioctl_copyin_setup itself */
/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
MISC_CMD, NULL, NULL },
/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
MISC_CMD, NULL, NULL },
/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
ip_sioctl_get_lifconf, NULL },
/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
XARP_CMD, ip_sioctl_arp, NULL },
/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
XARP_CMD, ip_sioctl_arp, NULL },
/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
XARP_CMD, ip_sioctl_arp, NULL },
/* SIOCPOPSOCKFS is not handled by IP */
/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
ip_sioctl_slifzone_restart },
/* 172-174 are SCTP ioctls and not handled by IP */
/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD,
ip_sioctl_get_lifusesrc, 0 },
/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_slifusesrc,
NULL },
/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
ip_sioctl_get_lifsrcof, NULL },
/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
MSFILT_CMD, ip_sioctl_msfilter, NULL },
/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
MSFILT_CMD, ip_sioctl_msfilter, NULL },
/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
MSFILT_CMD, ip_sioctl_msfilter, NULL },
/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
MSFILT_CMD, ip_sioctl_msfilter, NULL },
/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
/* SIOCSENABLESDP is handled by SDP */
/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
/* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
ip_sioctl_ilb_cmd, NULL },
/* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
/* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
/* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
/* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
/* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
};
int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
{ I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
{ I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
{ I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
{ I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
{ ND_GET, 0, 0, 0, NULL, NULL },
{ ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
{ IP_IOCTL, 0, 0, 0, NULL, NULL },
{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
MISC_CMD, mrt_ioctl},
{ SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
MISC_CMD, mrt_ioctl},
{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
MISC_CMD, mrt_ioctl}
};
int ip_misc_ioctl_count =
sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
int conn_drain_nthreads; /* Number of drainers reqd. */
/* Settable in /etc/system */
/* Defined in ip_ire.c */
extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
static nv_t ire_nv_arr[] = {
{ IRE_BROADCAST, "BROADCAST" },
{ IRE_LOCAL, "LOCAL" },
{ IRE_LOOPBACK, "LOOPBACK" },
{ IRE_DEFAULT, "DEFAULT" },
{ IRE_PREFIX, "PREFIX" },
{ IRE_IF_NORESOLVER, "IF_NORESOL" },
{ IRE_IF_RESOLVER, "IF_RESOLV" },
{ IRE_IF_CLONE, "IF_CLONE" },
{ IRE_HOST, "HOST" },
{ IRE_MULTICAST, "MULTICAST" },
{ IRE_NOROUTE, "NOROUTE" },
{ 0 }
};
nv_t *ire_nv_tbl = ire_nv_arr;
/* Simple ICMP IP Header Template */
static ipha_t icmp_ipha = {
IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
};
struct module_info ip_mod_info = {
IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
IP_MOD_LOWAT
};
/*
* Duplicate static symbols within a module confuses mdb; so we avoid the
* problem by making the symbols here distinct from those in udp.c.
*/
/*
* Entry points for IP as a device and as a module.
* We have separate open functions for the /dev/ip and /dev/ip6 devices.
*/
static struct qinit iprinitv4 = {
(pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
&ip_mod_info
};
struct qinit iprinitv6 = {
(pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
&ip_mod_info
};
static struct qinit ipwinit = {
(pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
&ip_mod_info
};
static struct qinit iplrinit = {
(pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
&ip_mod_info
};
static struct qinit iplwinit = {
(pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
&ip_mod_info
};
/* For AF_INET aka /dev/ip */
struct streamtab ipinfov4 = {
&iprinitv4, &ipwinit, &iplrinit, &iplwinit
};
/* For AF_INET6 aka /dev/ip6 */
struct streamtab ipinfov6 = {
&iprinitv6, &ipwinit, &iplrinit, &iplwinit
};
#ifdef DEBUG
boolean_t skip_sctp_cksum = B_FALSE;
#endif
/*
* Generate an ICMP fragmentation needed message.
* When called from ip_output side a minimal ip_recv_attr_t needs to be
* constructed by the caller.
*/
void
icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
{
icmph_t icmph;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
mp = icmp_pkt_err_ok(mp, ira);
if (mp == NULL)
return;
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_DEST_UNREACHABLE;
icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
icmph.icmph_du_mtu = htons((uint16_t)mtu);
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
}
/*
* icmp_inbound_v4 deals with ICMP messages that are handled by IP.
* If the ICMP message is consumed by IP, i.e., it should not be delivered
* to any IPPROTO_ICMP raw sockets, then it returns NULL.
* Likewise, if the ICMP error is misformed (too short, etc), then it
* returns NULL. The caller uses this to determine whether or not to send
* to raw sockets.
*
* All error messages are passed to the matching transport stream.
*
* The following cases are handled by icmp_inbound:
* 1) It needs to send a reply back and possibly delivering it
* to the "interested" upper clients.
* 2) Return the mblk so that the caller can pass it to the RAW socket clients.
* 3) It needs to change some values in IP only.
* 4) It needs to change some values in IP and upper layers e.g TCP
* by delivering an error to the upper layers.
*
* We handle the above three cases in the context of IPsec in the
* following way :
*
* 1) Send the reply back in the same way as the request came in.
* If it came in encrypted, it goes out encrypted. If it came in
* clear, it goes out in clear. Thus, this will prevent chosen
* plain text attack.
* 2) The client may or may not expect things to come in secure.
* If it comes in secure, the policy constraints are checked
* before delivering it to the upper layers. If it comes in
* clear, ipsec_inbound_accept_clear will decide whether to
* accept this in clear or not. In both the cases, if the returned
* message (IP header + 8 bytes) that caused the icmp message has
* AH/ESP headers, it is sent up to AH/ESP for validation before
* sending up. If there are only 8 bytes of returned message, then
* upper client will not be notified.
* 3) Check with global policy to see whether it matches the constaints.
* But this will be done only if icmp_accept_messages_in_clear is
* zero.
* 4) If we need to change both in IP and ULP, then the decision taken
* while affecting the values in IP and while delivering up to TCP
* should be the same.
*
* There are two cases.
*
* a) If we reject data at the IP layer (ipsec_check_global_policy()
* failed), we will not deliver it to the ULP, even though they
* are *willing* to accept in *clear*. This is fine as our global
* disposition to icmp messages asks us reject the datagram.
*
* b) If we accept data at the IP layer (ipsec_check_global_policy()
* succeeded or icmp_accept_messages_in_clear is 1), and not able
* to deliver it to ULP (policy failed), it can lead to
* consistency problems. The cases known at this time are
* ICMP_DESTINATION_UNREACHABLE messages with following code
* values :
*
* - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
* and Upper layer rejects. Then the communication will
* come to a stop. This is solved by making similar decisions
* at both levels. Currently, when we are unable to deliver
* to the Upper Layer (due to policy failures) while IP has
* adjusted dce_pmtu, the next outbound datagram would
* generate a local ICMP_FRAGMENTATION_NEEDED message - which
* will be with the right level of protection. Thus the right
* value will be communicated even if we are not able to
* communicate when we get from the wire initially. But this
* assumes there would be at least one outbound datagram after
* IP has adjusted its dce_pmtu value. To make things
* simpler, we accept in clear after the validation of
* AH/ESP headers.
*
* - Other ICMP ERRORS : We may not be able to deliver it to the
* upper layer depending on the level of protection the upper
* layer expects and the disposition in ipsec_inbound_accept_clear().
* ipsec_inbound_accept_clear() decides whether a given ICMP error
* should be accepted in clear when the Upper layer expects secure.
* Thus the communication may get aborted by some bad ICMP
* packets.
*/
mblk_t *
icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
{
icmph_t *icmph;
ipha_t *ipha; /* Outer header */
int ip_hdr_length; /* Outer header length */
boolean_t interested;
ipif_t *ipif;
uint32_t ts;
uint32_t *tsp;
timestruc_t now;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
zoneid_t zoneid = ira->ira_zoneid;
int len_needed;
mblk_t *mp_ret = NULL;
ipha = (ipha_t *)mp->b_rptr;
BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
ip_hdr_length = ira->ira_ip_hdr_length;
if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
freemsg(mp);
return (NULL);
}
/* Last chance to get real. */
ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
if (ipha == NULL) {
BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
freemsg(mp);
return (NULL);
}
}
/* The IP header will always be a multiple of four bytes */
icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
icmph->icmph_code));
/*
* We will set "interested" to "true" if we should pass a copy to
* the transport or if we handle the packet locally.
*/
interested = B_FALSE;
switch (icmph->icmph_type) {
case ICMP_ECHO_REPLY:
BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
break;
case ICMP_DEST_UNREACHABLE:
if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
break;
case ICMP_SOURCE_QUENCH:
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
break;
case ICMP_REDIRECT:
if (!ipst->ips_ip_ignore_redirect)
interested = B_TRUE;
BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
break;
case ICMP_ECHO_REQUEST:
/*
* Whether to respond to echo requests that come in as IP
* broadcasts or as IP multicast is subject to debate
* (what isn't?). We aim to please, you pick it.
* Default is do it.
*/
if (ira->ira_flags & IRAF_MULTICAST) {
/* multicast: respond based on tunable */
interested = ipst->ips_ip_g_resp_to_echo_mcast;
} else if (ira->ira_flags & IRAF_BROADCAST) {
/* broadcast: respond based on tunable */
interested = ipst->ips_ip_g_resp_to_echo_bcast;
} else {
/* unicast: always respond */
interested = B_TRUE;
}
BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
if (!interested) {
/* We never pass these to RAW sockets */
freemsg(mp);
return (NULL);
}
/* Check db_ref to make sure we can modify the packet. */
if (mp->b_datap->db_ref > 1) {
mblk_t *mp1;
mp1 = copymsg(mp);
freemsg(mp);
if (!mp1) {
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
return (NULL);
}
mp = mp1;
ipha = (ipha_t *)mp->b_rptr;
icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
}
icmph->icmph_type = ICMP_ECHO_REPLY;
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
icmp_send_reply_v4(mp, ipha, icmph, ira);
return (NULL);
case ICMP_ROUTER_ADVERTISEMENT:
case ICMP_ROUTER_SOLICITATION:
break;
case ICMP_TIME_EXCEEDED:
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
break;
case ICMP_PARAM_PROBLEM:
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
break;
case ICMP_TIME_STAMP_REQUEST:
/* Response to Time Stamp Requests is local policy. */
if (ipst->ips_ip_g_resp_to_timestamp) {
if (ira->ira_flags & IRAF_MULTIBROADCAST)
interested =
ipst->ips_ip_g_resp_to_timestamp_bcast;
else
interested = B_TRUE;
}
if (!interested) {
/* We never pass these to RAW sockets */
freemsg(mp);
return (NULL);
}
/* Make sure we have enough of the packet */
len_needed = ip_hdr_length + ICMPH_SIZE +
3 * sizeof (uint32_t);
if (mp->b_wptr - mp->b_rptr < len_needed) {
ipha = ip_pullup(mp, len_needed, ira);
if (ipha == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards - ip_pullup",
mp, ill);
freemsg(mp);
return (NULL);
}
/* Refresh following the pullup. */
icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
}
BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
/* Check db_ref to make sure we can modify the packet. */
if (mp->b_datap->db_ref > 1) {
mblk_t *mp1;
mp1 = copymsg(mp);
freemsg(mp);
if (!mp1) {
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
return (NULL);
}
mp = mp1;
ipha = (ipha_t *)mp->b_rptr;
icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
}
icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
tsp = (uint32_t *)&icmph[1];
tsp++; /* Skip past 'originate time' */
/* Compute # of milliseconds since midnight */
gethrestime(&now);
ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
NSEC2MSEC(now.tv_nsec);
*tsp++ = htonl(ts); /* Lay in 'receive time' */
*tsp++ = htonl(ts); /* Lay in 'send time' */
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
icmp_send_reply_v4(mp, ipha, icmph, ira);
return (NULL);
case ICMP_TIME_STAMP_REPLY:
BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
break;
case ICMP_INFO_REQUEST:
/* Per RFC 1122 3.2.2.7, ignore this. */
case ICMP_INFO_REPLY:
break;
case ICMP_ADDRESS_MASK_REQUEST:
if (ira->ira_flags & IRAF_MULTIBROADCAST) {
interested =
ipst->ips_ip_respond_to_address_mask_broadcast;
} else {
interested = B_TRUE;
}
if (!interested) {
/* We never pass these to RAW sockets */
freemsg(mp);
return (NULL);
}
len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
if (mp->b_wptr - mp->b_rptr < len_needed) {
ipha = ip_pullup(mp, len_needed, ira);
if (ipha == NULL) {
BUMP_MIB(ill->ill_ip_mib,
ipIfStatsInTruncatedPkts);
ip_drop_input("ipIfStatsInTruncatedPkts", mp,
ill);
freemsg(mp);
return (NULL);
}
/* Refresh following the pullup. */
icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
}
BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
/* Check db_ref to make sure we can modify the packet. */
if (mp->b_datap->db_ref > 1) {
mblk_t *mp1;
mp1 = copymsg(mp);
freemsg(mp);
if (!mp1) {
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
return (NULL);
}
mp = mp1;
ipha = (ipha_t *)mp->b_rptr;
icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
}
/*
* Need the ipif with the mask be the same as the source
* address of the mask reply. For unicast we have a specific
* ipif. For multicast/broadcast we only handle onlink
* senders, and use the source address to pick an ipif.
*/
ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
if (ipif == NULL) {
/* Broadcast or multicast */
ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
if (ipif == NULL) {
freemsg(mp);
return (NULL);
}
}
icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
ipif_refrele(ipif);
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
icmp_send_reply_v4(mp, ipha, icmph, ira);
return (NULL);
case ICMP_ADDRESS_MASK_REPLY:
BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
break;
default:
interested = B_TRUE; /* Pass up to transport */
BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
break;
}
/*
* See if there is an ICMP client to avoid an extra copymsg/freemsg
* if there isn't one.
*/
if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
/* If there is an ICMP client and we want one too, copy it. */
if (!interested) {
/* Caller will deliver to RAW sockets */
return (mp);
}
mp_ret = copymsg(mp);
if (mp_ret == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
}
} else if (!interested) {
/* Neither we nor raw sockets are interested. Drop packet now */
freemsg(mp);
return (NULL);
}
/*
* ICMP error or redirect packet. Make sure we have enough of
* the header and that db_ref == 1 since we might end up modifying
* the packet.
*/
if (mp->b_cont != NULL) {
if (ip_pullup(mp, -1, ira) == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards - ip_pullup",
mp, ill);
freemsg(mp);
return (mp_ret);
}
}
if (mp->b_datap->db_ref > 1) {
mblk_t *mp1;
mp1 = copymsg(mp);
if (mp1 == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
freemsg(mp);
return (mp_ret);
}
freemsg(mp);
mp = mp1;
}
/*
* In case mp has changed, verify the message before any further
* processes.
*/
ipha = (ipha_t *)mp->b_rptr;
icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
freemsg(mp);
return (mp_ret);
}
switch (icmph->icmph_type) {
case ICMP_REDIRECT:
icmp_redirect_v4(mp, ipha, icmph, ira);
break;
case ICMP_DEST_UNREACHABLE:
if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
/* Update DCE and adjust MTU is icmp header if needed */
icmp_inbound_too_big_v4(icmph, ira);
}
/* FALLTHRU */
default:
icmp_inbound_error_fanout_v4(mp, icmph, ira);
break;
}
return (mp_ret);
}
/*
* Send an ICMP echo, timestamp or address mask reply.
* The caller has already updated the payload part of the packet.
* We handle the ICMP checksum, IP source address selection and feed
* the packet into ip_output_simple.
*/
static void
icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
ip_recv_attr_t *ira)
{
uint_t ip_hdr_length = ira->ira_ip_hdr_length;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
ip_xmit_attr_t ixas;
/* Send out an ICMP packet */
icmph->icmph_checksum = 0;
icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
/* Reset time to live. */
ipha->ipha_ttl = ipst->ips_ip_def_ttl;
{
/* Swap source and destination addresses */
ipaddr_t tmp;
tmp = ipha->ipha_src;
ipha->ipha_src = ipha->ipha_dst;
ipha->ipha_dst = tmp;
}
ipha->ipha_ident = 0;
if (!IS_SIMPLE_IPH(ipha))
icmp_options_update(ipha);
bzero(&ixas, sizeof (ixas));
ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
ixas.ixa_zoneid = ira->ira_zoneid;
ixas.ixa_cred = kcred;
ixas.ixa_cpid = NOPID;
ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
ixas.ixa_ifindex = 0;
ixas.ixa_ipst = ipst;
ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
/*
* This packet should go out the same way as it
* came in i.e in clear, independent of the IPsec policy
* for transmitting packets.
*/
ixas.ixa_flags |= IXAF_NO_IPSEC;
} else {
if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
/* Note: mp already consumed and ip_drop_packet done */
return;
}
}
if (ira->ira_flags & IRAF_MULTIBROADCAST) {
/*
* Not one or our addresses (IRE_LOCALs), thus we let
* ip_output_simple pick the source.
*/
ipha->ipha_src = INADDR_ANY;
ixas.ixa_flags |= IXAF_SET_SOURCE;
}
/* Should we send with DF and use dce_pmtu? */
if (ipst->ips_ipv4_icmp_return_pmtu) {
ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
}
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
(void) ip_output_simple(mp, &ixas);
ixa_cleanup(&ixas);
}
/*
* Verify the ICMP messages for either for ICMP error or redirect packet.
* The caller should have fully pulled up the message. If it's a redirect
* packet, only basic checks on IP header will be done; otherwise, verify
* the packet by looking at the included ULP header.
*
* Called before icmp_inbound_error_fanout_v4 is called.
*/
static boolean_t
icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
{
ill_t *ill = ira->ira_ill;
int hdr_length;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
conn_t *connp;
ipha_t *ipha; /* Inner IP header */
ipha = (ipha_t *)&icmph[1];
if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
goto truncated;
hdr_length = IPH_HDR_LENGTH(ipha);
if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
goto discard_pkt;
if (hdr_length < sizeof (ipha_t))
goto truncated;
if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
goto truncated;
/*
* Stop here for ICMP_REDIRECT.
*/
if (icmph->icmph_type == ICMP_REDIRECT)
return (B_TRUE);
/*
* ICMP errors only.
*/
switch (ipha->ipha_protocol) {
case IPPROTO_UDP:
/*
* Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
* transport header.
*/
if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
mp->b_wptr)
goto truncated;
break;
case IPPROTO_TCP: {
tcpha_t *tcpha;
/*
* Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
* transport header.
*/
if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
mp->b_wptr)
goto truncated;
tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
ipst);
if (connp == NULL)
goto discard_pkt;
if ((connp->conn_verifyicmp != NULL) &&
!connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
CONN_DEC_REF(connp);
goto discard_pkt;
}
CONN_DEC_REF(connp);
break;
}
case IPPROTO_SCTP:
/*
* Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
* transport header.
*/
if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
mp->b_wptr)
goto truncated;
break;
case IPPROTO_ESP:
case IPPROTO_AH:
break;
case IPPROTO_ENCAP:
if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
mp->b_wptr)
goto truncated;
break;
default:
break;
}
return (B_TRUE);
discard_pkt:
/* Bogus ICMP error. */
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
return (B_FALSE);
truncated:
/* We pulled up everthing already. Must be truncated */
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
return (B_FALSE);
}
/* Table from RFC 1191 */
static int icmp_frag_size_table[] =
{ 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
/*
* Process received ICMP Packet too big.
* Just handles the DCE create/update, including using the above table of
* PMTU guesses. The caller is responsible for validating the packet before
* passing it in and also to fanout the ICMP error to any matching transport
* conns. Assumes the message has been fully pulled up and verified.
*
* Before getting here, the caller has called icmp_inbound_verify_v4()
* that should have verified with ULP to prevent undoing the changes we're
* going to make to DCE. For example, TCP might have verified that the packet
* which generated error is in the send window.
*
* In some cases modified this MTU in the ICMP header packet; the caller
* should pass to the matching ULP after this returns.
*/
static void
icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
{
dce_t *dce;
int old_mtu;
int mtu, orig_mtu;
ipaddr_t dst;
boolean_t disable_pmtud;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
uint_t hdr_length;
ipha_t *ipha;
/* Caller already pulled up everything. */
ipha = (ipha_t *)&icmph[1];
ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
ASSERT(ill != NULL);
hdr_length = IPH_HDR_LENGTH(ipha);
/*
* We handle path MTU for source routed packets since the DCE
* is looked up using the final destination.
*/
dst = ip_get_dst(ipha);
dce = dce_lookup_and_add_v4(dst, ipst);
if (dce == NULL) {
/* Couldn't add a unique one - ENOMEM */
ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
ntohl(dst)));
return;
}
/* Check for MTU discovery advice as described in RFC 1191 */
mtu = ntohs(icmph->icmph_du_mtu);
orig_mtu = mtu;
disable_pmtud = B_FALSE;
mutex_enter(&dce->dce_lock);
if (dce->dce_flags & DCEF_PMTU)
old_mtu = dce->dce_pmtu;
else
old_mtu = ill->ill_mtu;
if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
uint32_t length;
int i;
/*
* Use the table from RFC 1191 to figure out
* the next "plateau" based on the length in
* the original IP packet.
*/
length = ntohs(ipha->ipha_length);
DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
uint32_t, length);
if (old_mtu <= length &&
old_mtu >= length - hdr_length) {
/*
* Handle broken BSD 4.2 systems that
* return the wrong ipha_length in ICMP
* errors.
*/
ip1dbg(("Wrong mtu: sent %d, dce %d\n",
length, old_mtu));
length -= hdr_length;
}
for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
if (length > icmp_frag_size_table[i])
break;
}
if (i == A_CNT(icmp_frag_size_table)) {
/* Smaller than IP_MIN_MTU! */
ip1dbg(("Too big for packet size %d\n",
length));
disable_pmtud = B_TRUE;
mtu = ipst->ips_ip_pmtu_min;
} else {
mtu = icmp_frag_size_table[i];
ip1dbg(("Calculated mtu %d, packet size %d, "
"before %d\n", mtu, length, old_mtu));
if (mtu < ipst->ips_ip_pmtu_min) {
mtu = ipst->ips_ip_pmtu_min;
disable_pmtud = B_TRUE;
}
}
}
if (disable_pmtud)
dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
else
dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
dce->dce_pmtu = MIN(old_mtu, mtu);
/* Prepare to send the new max frag size for the ULP. */
icmph->icmph_du_zero = 0;
icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu);
DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
dce, int, orig_mtu, int, mtu);
/* We now have a PMTU for sure */
dce->dce_flags |= DCEF_PMTU;
dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
mutex_exit(&dce->dce_lock);
/*
* After dropping the lock the new value is visible to everyone.
* Then we bump the generation number so any cached values reinspect
* the dce_t.
*/
dce_increment_generation(dce);
dce_refrele(dce);
}
/*
* If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
* calls this function.
*/
static mblk_t *
icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
{
int length;
ASSERT(mp->b_datap->db_type == M_DATA);
/* icmp_inbound_v4 has already pulled up the whole error packet */
ASSERT(mp->b_cont == NULL);
/*
* The length that we want to overlay is the inner header
* and what follows it.
*/
length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
/*
* Overlay the inner header and whatever follows it over the
* outer header.
*/
bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
/* Adjust for what we removed */
mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
return (mp);
}
/*
* Try to pass the ICMP message upstream in case the ULP cares.
*
* If the packet that caused the ICMP error is secure, we send
* it to AH/ESP to make sure that the attached packet has a
* valid association. ipha in the code below points to the
* IP header of the packet that caused the error.
*
* For IPsec cases, we let the next-layer-up (which has access to
* cached policy on the conn_t, or can query the SPD directly)
* subtract out any IPsec overhead if they must. We therefore make no
* adjustments here for IPsec overhead.
*
* IFN could have been generated locally or by some router.
*
* LOCAL : ire_send_wire (before calling ipsec_out_process) can call
* icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
* This happens because IP adjusted its value of MTU on an
* earlier IFN message and could not tell the upper layer,
* the new adjusted value of MTU e.g. Packet was encrypted
* or there was not enough information to fanout to upper
* layers. Thus on the next outbound datagram, ire_send_wire
* generates the IFN, where IPsec processing has *not* been
* done.
*
* Note that we retain ixa_fragsize across IPsec thus once
* we have picking ixa_fragsize and entered ipsec_out_process we do
* no change the fragsize even if the path MTU changes before
* we reach ip_output_post_ipsec.
*
* In the local case, IRAF_LOOPBACK will be set indicating
* that IFN was generated locally.
*
* ROUTER : IFN could be secure or non-secure.
*
* * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
* packet in error has AH/ESP headers to validate the AH/ESP
* headers. AH/ESP will verify whether there is a valid SA or
* not and send it back. We will fanout again if we have more
* data in the packet.
*
* If the packet in error does not have AH/ESP, we handle it
* like any other case.
*
* * NON_SECURE : If the packet in error has AH/ESP headers, we send it
* up to AH/ESP for validation. AH/ESP will verify whether there is a
* valid SA or not and send it back. We will fanout again if
* we have more data in the packet.
*
* If the packet in error does not have AH/ESP, we handle it
* like any other case.
*
* The caller must have called icmp_inbound_verify_v4.
*/
static void
icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
{
uint16_t *up; /* Pointer to ports in ULP header */
uint32_t ports; /* reversed ports for fanout */
ipha_t ripha; /* With reversed addresses */
ipha_t *ipha; /* Inner IP header */
uint_t hdr_length; /* Inner IP header length */
tcpha_t *tcpha;
conn_t *connp;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
ill_t *rill = ira->ira_rill;
/* Caller already pulled up everything. */
ipha = (ipha_t *)&icmph[1];
ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
ASSERT(mp->b_cont == NULL);
hdr_length = IPH_HDR_LENGTH(ipha);
ira->ira_protocol = ipha->ipha_protocol;
/*
* We need a separate IP header with the source and destination
* addresses reversed to do fanout/classification because the ipha in
* the ICMP error is in the form we sent it out.
*/
ripha.ipha_src = ipha->ipha_dst;
ripha.ipha_dst = ipha->ipha_src;
ripha.ipha_protocol = ipha->ipha_protocol;
ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
ripha.ipha_protocol, ntohl(ipha->ipha_src),
ntohl(ipha->ipha_dst),
icmph->icmph_type, icmph->icmph_code));
switch (ipha->ipha_protocol) {
case IPPROTO_UDP:
up = (uint16_t *)((uchar_t *)ipha + hdr_length);
/* Attempt to find a client stream based on port. */
ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
ntohs(up[0]), ntohs(up[1])));
/* Note that we send error to all matches. */
ira->ira_flags |= IRAF_ICMP_ERROR;
ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
ira->ira_flags &= ~IRAF_ICMP_ERROR;
return;
case IPPROTO_TCP:
/*
* Find a TCP client stream for this packet.
* Note that we do a reverse lookup since the header is
* in the form we sent it out.
*/
tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
ipst);
if (connp == NULL)
goto discard_pkt;
if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
(ira->ira_flags & IRAF_IPSEC_SECURE)) {
mp = ipsec_check_inbound_policy(mp, connp,
ipha, NULL, ira);
if (mp == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
/* Note that mp is NULL */
ip_drop_input("ipIfStatsInDiscards", mp, ill);
CONN_DEC_REF(connp);
return;
}
}
ira->ira_flags |= IRAF_ICMP_ERROR;
ira->ira_ill = ira->ira_rill = NULL;
if (IPCL_IS_TCP(connp)) {
SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
connp->conn_recvicmp, connp, ira, SQ_FILL,
SQTAG_TCP_INPUT_ICMP_ERR);
} else {
/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
(connp->conn_recv)(connp, mp, NULL, ira);
CONN_DEC_REF(connp);
}
ira->ira_ill = ill;
ira->ira_rill = rill;
ira->ira_flags &= ~IRAF_ICMP_ERROR;
return;
case IPPROTO_SCTP:
up = (uint16_t *)((uchar_t *)ipha + hdr_length);
/* Find a SCTP client stream for this packet. */
((uint16_t *)&ports)[0] = up[1];
((uint16_t *)&ports)[1] = up[0];
ira->ira_flags |= IRAF_ICMP_ERROR;
ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
ira->ira_flags &= ~IRAF_ICMP_ERROR;
return;
case IPPROTO_ESP:
case IPPROTO_AH:
if (!ipsec_loaded(ipss)) {
ip_proto_not_sup(mp, ira);
return;
}
if (ipha->ipha_protocol == IPPROTO_ESP)
mp = ipsecesp_icmp_error(mp, ira);
else
mp = ipsecah_icmp_error(mp, ira);
if (mp == NULL)
return;
/* Just in case ipsec didn't preserve the NULL b_cont */
if (mp->b_cont != NULL) {
if (!pullupmsg(mp, -1))
goto discard_pkt;
}
/*
* Note that ira_pktlen and ira_ip_hdr_length are no longer
* correct, but we don't use them any more here.
*
* If succesful, the mp has been modified to not include
* the ESP/AH header so we can fanout to the ULP's icmp
* error handler.
*/
if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
goto truncated;
/* Verify the modified message before any further processes. */
ipha = (ipha_t *)mp->b_rptr;
hdr_length = IPH_HDR_LENGTH(ipha);
icmph = (icmph_t *)&mp->b_rptr[hdr_length];
if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
freemsg(mp);
return;
}
icmp_inbound_error_fanout_v4(mp, icmph, ira);
return;
case IPPROTO_ENCAP: {
/* Look for self-encapsulated packets that caused an error */
ipha_t *in_ipha;
/*
* Caller has verified that length has to be
* at least the size of IP header.
*/
ASSERT(hdr_length >= sizeof (ipha_t));
/*
* Check the sanity of the inner IP header like
* we did for the outer header.
*/
in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
goto discard_pkt;
}
if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
goto discard_pkt;
}
/* Check for Self-encapsulated tunnels */
if (in_ipha->ipha_src == ipha->ipha_src &&
in_ipha->ipha_dst == ipha->ipha_dst) {
mp = icmp_inbound_self_encap_error_v4(mp, ipha,
in_ipha);
if (mp == NULL)
goto discard_pkt;
/*
* Just in case self_encap didn't preserve the NULL
* b_cont
*/
if (mp->b_cont != NULL) {
if (!pullupmsg(mp, -1))
goto discard_pkt;
}
/*
* Note that ira_pktlen and ira_ip_hdr_length are no
* longer correct, but we don't use them any more here.
*/
if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
goto truncated;
/*
* Verify the modified message before any further
* processes.
*/
ipha = (ipha_t *)mp->b_rptr;
hdr_length = IPH_HDR_LENGTH(ipha);
icmph = (icmph_t *)&mp->b_rptr[hdr_length];
if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
freemsg(mp);
return;
}
/*
* The packet in error is self-encapsualted.
* And we are finding it further encapsulated
* which we could not have possibly generated.
*/
if (ipha->ipha_protocol == IPPROTO_ENCAP) {
goto discard_pkt;
}
icmp_inbound_error_fanout_v4(mp, icmph, ira);
return;
}
/* No self-encapsulated */
/* FALLTHRU */
}
case IPPROTO_IPV6:
if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
&ripha.ipha_dst, ipst)) != NULL) {
ira->ira_flags |= IRAF_ICMP_ERROR;
connp->conn_recvicmp(connp, mp, NULL, ira);
CONN_DEC_REF(connp);
ira->ira_flags &= ~IRAF_ICMP_ERROR;
return;
}
/*
* No IP tunnel is interested, fallthrough and see
* if a raw socket will want it.
*/
/* FALLTHRU */
default:
ira->ira_flags |= IRAF_ICMP_ERROR;
ip_fanout_proto_v4(mp, &ripha, ira);
ira->ira_flags &= ~IRAF_ICMP_ERROR;
return;
}
/* NOTREACHED */
discard_pkt:
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
ip_drop_input("ipIfStatsInDiscards", mp, ill);
freemsg(mp);
return;
truncated:
/* We pulled up everthing already. Must be truncated */
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
freemsg(mp);
}
/*
* Common IP options parser.
*
* Setup routine: fill in *optp with options-parsing state, then
* tail-call ipoptp_next to return the first option.
*/
uint8_t
ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
{
uint32_t totallen; /* total length of all options */
totallen = ipha->ipha_version_and_hdr_length -
(uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
totallen <<= 2;
optp->ipoptp_next = (uint8_t *)(&ipha[1]);
optp->ipoptp_end = optp->ipoptp_next + totallen;
optp->ipoptp_flags = 0;
return (ipoptp_next(optp));
}
/* Like above but without an ipha_t */
uint8_t
ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
{
optp->ipoptp_next = opt;
optp->ipoptp_end = optp->ipoptp_next + totallen;
optp->ipoptp_flags = 0;
return (ipoptp_next(optp));
}
/*
* Common IP options parser: extract next option.
*/
uint8_t
ipoptp_next(ipoptp_t *optp)
{
uint8_t *end = optp->ipoptp_end;
uint8_t *cur = optp->ipoptp_next;
uint8_t opt, len, pointer;
/*
* If cur > end already, then the ipoptp_end or ipoptp_next pointer
* has been corrupted.
*/
ASSERT(cur <= end);
if (cur == end)
return (IPOPT_EOL);
opt = cur[IPOPT_OPTVAL];
/*
* Skip any NOP options.
*/
while (opt == IPOPT_NOP) {
cur++;
if (cur == end)
return (IPOPT_EOL);
opt = cur[IPOPT_OPTVAL];
}
if (opt == IPOPT_EOL)
return (IPOPT_EOL);
/*
* Option requiring a length.
*/
if ((cur + 1) >= end) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (IPOPT_EOL);
}
len = cur[IPOPT_OLEN];
if (len < 2) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (IPOPT_EOL);
}
optp->ipoptp_cur = cur;
optp->ipoptp_len = len;
optp->ipoptp_next = cur + len;
if (cur + len > end) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (IPOPT_EOL);
}
/*
* For the options which require a pointer field, make sure
* its there, and make sure it points to either something
* inside this option, or the end of the option.
*/
switch (opt) {
case IPOPT_RR:
case IPOPT_TS:
case IPOPT_LSRR:
case IPOPT_SSRR:
if (len <= IPOPT_OFFSET) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (opt);
}
pointer = cur[IPOPT_OFFSET];
if (pointer - 1 > len) {
optp->ipoptp_flags |= IPOPTP_ERROR;
return (opt);
}
break;
}
/*
* Sanity check the pointer field based on the type of the
* option.
*/
switch (opt) {
case IPOPT_RR:
case IPOPT_SSRR:
case IPOPT_LSRR:
if (pointer < IPOPT_MINOFF_SR)
optp->ipoptp_flags |= IPOPTP_ERROR;
break;
case IPOPT_TS:
if (pointer < IPOPT_MINOFF_IT)
optp->ipoptp_flags |= IPOPTP_ERROR;
/*
* Note that the Internet Timestamp option also
* contains two four bit fields (the Overflow field,
* and the Flag field), which follow the pointer
* field. We don't need to check that these fields
* fall within the length of the option because this
* was implicitely done above. We've checked that the
* pointer value is at least IPOPT_MINOFF_IT, and that
* it falls within the option. Since IPOPT_MINOFF_IT >
* IPOPT_POS_OV_FLG, we don't need the explicit check.
*/
ASSERT(len > IPOPT_POS_OV_FLG);
break;
}
return (opt);
}
/*
* Use the outgoing IP header to create an IP_OPTIONS option the way
* it was passed down from the application.
*
* This is compatible with BSD in that it returns
* the reverse source route with the final destination
* as the last entry. The first 4 bytes of the option
* will contain the final destination.
*/
int
ip_opt_get_user(conn_t *connp, uchar_t *buf)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
uint32_t len = 0;
uchar_t *buf1 = buf;
uint32_t totallen;
ipaddr_t dst;
ip_pkt_t *ipp = &connp->conn_xmit_ipp;
if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
return (0);
totallen = ipp->ipp_ipv4_options_len;
if (totallen & 0x3)
return (0);
buf += IP_ADDR_LEN; /* Leave room for final destination */
len += IP_ADDR_LEN;
bzero(buf1, IP_ADDR_LEN);
dst = connp->conn_faddr_v4;
for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
int off;
opt = opts.ipoptp_cur;
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
break;
}
optlen = opts.ipoptp_len;
switch (optval) {
case IPOPT_SSRR:
case IPOPT_LSRR:
/*
* Insert destination as the first entry in the source
* route and move down the entries on step.
* The last entry gets placed at buf1.
*/
buf[IPOPT_OPTVAL] = optval;
buf[IPOPT_OLEN] = optlen;
buf[IPOPT_OFFSET] = optlen;
off = optlen - IP_ADDR_LEN;
if (off < 0) {
/* No entries in source route */
break;
}
/* Last entry in source route if not already set */
if (dst == INADDR_ANY)
bcopy(opt + off, buf1, IP_ADDR_LEN);
off -= IP_ADDR_LEN;
while (off > 0) {
bcopy(opt + off,
buf + off + IP_ADDR_LEN,
IP_ADDR_LEN);
off -= IP_ADDR_LEN;
}
/* ipha_dst into first slot */
bcopy(&dst, buf + off + IP_ADDR_LEN,
IP_ADDR_LEN);
buf += optlen;
len += optlen;
break;
default:
bcopy(opt, buf, optlen);
buf += optlen;
len += optlen;
break;
}
}
done:
/* Pad the resulting options */
while (len & 0x3) {
*buf++ = IPOPT_EOL;
len++;
}
return (len);
}
/*
* Update any record route or timestamp options to include this host.
* Reverse any source route option.
* This routine assumes that the options are well formed i.e. that they
* have already been checked.
*/
static void
icmp_options_update(ipha_t *ipha)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
ipaddr_t src; /* Our local address */
ipaddr_t dst;
ip2dbg(("icmp_options_update\n"));
src = ipha->ipha_src;
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
opt = opts.ipoptp_cur;
ip2dbg(("icmp_options_update: opt %d, len %d\n",
optval, opts.ipoptp_len));
switch (optval) {
int off1, off2;
case IPOPT_SSRR:
case IPOPT_LSRR:
/*
* Reverse the source route. The first entry
* should be the next to last one in the current
* source route (the last entry is our address).
* The last entry should be the final destination.
*/
off1 = IPOPT_MINOFF_SR - 1;
off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
if (off2 < 0) {
/* No entries in source route */
ip1dbg((
"icmp_options_update: bad src route\n"));
break;
}
bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
off2 -= IP_ADDR_LEN;
while (off1 < off2) {
bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
bcopy((char *)opt + off2, (char *)opt + off1,
IP_ADDR_LEN);
bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
off1 += IP_ADDR_LEN;
off2 -= IP_ADDR_LEN;
}
opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
break;
}
}
}
/*
* Process received ICMP Redirect messages.
* Assumes the caller has verified that the headers are in the pulled up mblk.
* Consumes mp.
*/
static void
icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
{
ire_t *ire, *nire;
ire_t *prev_ire;
ipaddr_t src, dst, gateway;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
ipha_t *inner_ipha; /* Inner IP header */
/* Caller already pulled up everything. */
inner_ipha = (ipha_t *)&icmph[1];
src = ipha->ipha_src;
dst = inner_ipha->ipha_dst;
gateway = icmph->icmph_rd_gateway;
/* Make sure the new gateway is reachable somehow. */
ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
/*
* Make sure we had a route for the dest in question and that
* that route was pointing to the old gateway (the source of the
* redirect packet.)
* We do longest match and then compare ire_gateway_addr below.
*/
prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
/*
* Check that
* the redirect was not from ourselves
* the new gateway and the old gateway are directly reachable
*/
if (prev_ire == NULL || ire == NULL ||
(prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
(prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
!(ire->ire_type & IRE_IF_ALL) ||
prev_ire->ire_gateway_addr != src) {
BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
freemsg(mp);
if (ire != NULL)
ire_refrele(ire);
if (prev_ire != NULL)
ire_refrele(prev_ire);
return;
}
ire_refrele(prev_ire);
ire_refrele(ire);
/*
* TODO: more precise handling for cases 0, 2, 3, the latter two
* require TOS routing
*/
switch (icmph->icmph_code) {
case 0:
case 1:
/* TODO: TOS specificity for cases 2 and 3 */
case 2:
case 3:
break;
default:
BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
freemsg(mp);
return;
}
/*
* Create a Route Association. This will allow us to remember that
* someone we believe told us to use the particular gateway.
*/
ire = ire_create(
(uchar_t *)&dst, /* dest addr */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&gateway, /* gateway addr */
IRE_HOST,
NULL, /* ill */
ALL_ZONES,
(RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
NULL, /* tsol_gc_t */
ipst);
if (ire == NULL) {
freemsg(mp);
return;
}
nire = ire_add(ire);
/* Check if it was a duplicate entry */
if (nire != NULL && nire != ire) {
ASSERT(nire->ire_identical_ref > 1);
ire_delete(nire);
ire_refrele(nire);
nire = NULL;
}
ire = nire;
if (ire != NULL) {
ire_refrele(ire); /* Held in ire_add */
/* tell routing sockets that we received a redirect */
ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
(RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
(RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
}
/*
* Delete any existing IRE_HOST type redirect ires for this destination.
* This together with the added IRE has the effect of
* modifying an existing redirect.
*/
prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
if (prev_ire != NULL) {
if (prev_ire ->ire_flags & RTF_DYNAMIC)
ire_delete(prev_ire);
ire_refrele(prev_ire);
}
freemsg(mp);
}
/*
* Generate an ICMP parameter problem message.
* When called from ip_output side a minimal ip_recv_attr_t needs to be
* constructed by the caller.
*/
static void
icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
{
icmph_t icmph;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
mp = icmp_pkt_err_ok(mp, ira);
if (mp == NULL)
return;
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_PARAM_PROBLEM;
icmph.icmph_pp_ptr = ptr;
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
}
/*
* Build and ship an IPv4 ICMP message using the packet data in mp, and
* the ICMP header pointed to by "stuff". (May be called as writer.)
* Note: assumes that icmp_pkt_err_ok has been called to verify that
* an icmp error packet can be sent.
* Assigns an appropriate source address to the packet. If ipha_dst is
* one of our addresses use it for source. Otherwise let ip_output_simple
* pick the source address.
*/
static void
icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
{
ipaddr_t dst;
icmph_t *icmph;
ipha_t *ipha;
uint_t len_needed;
size_t msg_len;
mblk_t *mp1;
ipaddr_t src;
ire_t *ire;
ip_xmit_attr_t ixas;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
ipha = (ipha_t *)mp->b_rptr;
bzero(&ixas, sizeof (ixas));
ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
ixas.ixa_zoneid = ira->ira_zoneid;
ixas.ixa_ifindex = 0;
ixas.ixa_ipst = ipst;
ixas.ixa_cred = kcred;
ixas.ixa_cpid = NOPID;
ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
if (ira->ira_flags & IRAF_IPSEC_SECURE) {
/*
* Apply IPsec based on how IPsec was applied to
* the packet that had the error.
*
* If it was an outbound packet that caused the ICMP
* error, then the caller will have setup the IRA
* appropriately.
*/
if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
/* Note: mp already consumed and ip_drop_packet done */
return;
}
} else {
/*
* This is in clear. The icmp message we are building
* here should go out in clear, independent of our policy.
*/
ixas.ixa_flags |= IXAF_NO_IPSEC;
}
/* Remember our eventual destination */
dst = ipha->ipha_src;
/*
* If the packet was for one of our unicast addresses, make
* sure we respond with that as the source. Otherwise
* have ip_output_simple pick the source address.
*/
ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
(IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
if (ire != NULL) {
ire_refrele(ire);
src = ipha->ipha_dst;
} else {
src = INADDR_ANY;
ixas.ixa_flags |= IXAF_SET_SOURCE;
}
/*
* Check if we can send back more then 8 bytes in addition to
* the IP header. We try to send 64 bytes of data and the internal
* header in the special cases of ipv4 encapsulated ipv4 or ipv6.
*/
len_needed = IPH_HDR_LENGTH(ipha);
if (ipha->ipha_protocol == IPPROTO_ENCAP ||
ipha->ipha_protocol == IPPROTO_IPV6) {
if (!pullupmsg(mp, -1)) {
BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
freemsg(mp);
return;
}
ipha = (ipha_t *)mp->b_rptr;
if (ipha->ipha_protocol == IPPROTO_ENCAP) {
len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
len_needed));
} else {
ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
len_needed += ip_hdr_length_v6(mp, ip6h);
}
}
len_needed += ipst->ips_ip_icmp_return;
msg_len = msgdsize(mp);
if (msg_len > len_needed) {
(void) adjmsg(mp, len_needed - msg_len);
msg_len = len_needed;
}
mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
if (mp1 == NULL) {
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
freemsg(mp);
return;
}
mp1->b_cont = mp;
mp = mp1;
/*
* Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
* node generates be accepted in peace by all on-host destinations.
* If we do NOT assume that all on-host destinations trust
* self-generated ICMP messages, then rework here, ip6.c, and spd.c.
* (Look for IXAF_TRUSTED_ICMP).
*/
ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
ipha = (ipha_t *)mp->b_rptr;
mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
*ipha = icmp_ipha;
ipha->ipha_src = src;
ipha->ipha_dst = dst;
ipha->ipha_ttl = ipst->ips_ip_def_ttl;
msg_len += sizeof (icmp_ipha) + len;
if (msg_len > IP_MAXPACKET) {
(void) adjmsg(mp, IP_MAXPACKET - msg_len);
msg_len = IP_MAXPACKET;
}
ipha->ipha_length = htons((uint16_t)msg_len);
icmph = (icmph_t *)&ipha[1];
bcopy(stuff, icmph, len);
icmph->icmph_checksum = 0;
icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
(void) ip_output_simple(mp, &ixas);
ixa_cleanup(&ixas);
}
/*
* Determine if an ICMP error packet can be sent given the rate limit.
* The limit consists of an average frequency (icmp_pkt_err_interval measured
* in milliseconds) and a burst size. Burst size number of packets can
* be sent arbitrarely closely spaced.
* The state is tracked using two variables to implement an approximate
* token bucket filter:
* icmp_pkt_err_last - lbolt value when the last burst started
* icmp_pkt_err_sent - number of packets sent in current burst
*/
boolean_t
icmp_err_rate_limit(ip_stack_t *ipst)
{
clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
uint_t refilled; /* Number of packets refilled in tbf since last */
/* Guard against changes by loading into local variable */
uint_t err_interval = ipst->ips_ip_icmp_err_interval;
if (err_interval == 0)
return (B_FALSE);
if (ipst->ips_icmp_pkt_err_last > now) {
/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
ipst->ips_icmp_pkt_err_last = 0;
ipst->ips_icmp_pkt_err_sent = 0;
}
/*
* If we are in a burst update the token bucket filter.
* Update the "last" time to be close to "now" but make sure
* we don't loose precision.
*/
if (ipst->ips_icmp_pkt_err_sent != 0) {
refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
if (refilled > ipst->ips_icmp_pkt_err_sent) {
ipst->ips_icmp_pkt_err_sent = 0;
} else {
ipst->ips_icmp_pkt_err_sent -= refilled;
ipst->ips_icmp_pkt_err_last += refilled * err_interval;
}
}
if (ipst->ips_icmp_pkt_err_sent == 0) {
/* Start of new burst */
ipst->ips_icmp_pkt_err_last = now;
}
if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
ipst->ips_icmp_pkt_err_sent++;
ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
ipst->ips_icmp_pkt_err_sent));
return (B_FALSE);
}
ip1dbg(("icmp_err_rate_limit: dropped\n"));
return (B_TRUE);
}
/*
* Check if it is ok to send an IPv4 ICMP error packet in
* response to the IPv4 packet in mp.
* Free the message and return null if no
* ICMP error packet should be sent.
*/
static mblk_t *
icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
{
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
icmph_t *icmph;
ipha_t *ipha;
uint_t len_needed;
if (!mp)
return (NULL);
ipha = (ipha_t *)mp->b_rptr;
if (ip_csum_hdr(ipha)) {
BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
freemsg(mp);
return (NULL);
}
if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
CLASSD(ipha->ipha_dst) ||
CLASSD(ipha->ipha_src) ||
(ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
/* Note: only errors to the fragment with offset 0 */
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
freemsg(mp);
return (NULL);
}
if (ipha->ipha_protocol == IPPROTO_ICMP) {
/*
* Check the ICMP type. RFC 1122 sez: don't send ICMP
* errors in response to any ICMP errors.
*/
len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
if (mp->b_wptr - mp->b_rptr < len_needed) {
if (!pullupmsg(mp, len_needed)) {
BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
freemsg(mp);
return (NULL);
}
ipha = (ipha_t *)mp->b_rptr;
}
icmph = (icmph_t *)
(&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
switch (icmph->icmph_type) {
case ICMP_DEST_UNREACHABLE:
case ICMP_SOURCE_QUENCH:
case ICMP_TIME_EXCEEDED:
case ICMP_PARAM_PROBLEM:
case ICMP_REDIRECT:
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
freemsg(mp);
return (NULL);
default:
break;
}
}
/*
* If this is a labeled system, then check to see if we're allowed to
* send a response to this particular sender. If not, then just drop.
*/
if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
freemsg(mp);
return (NULL);
}
if (icmp_err_rate_limit(ipst)) {
/*
* Only send ICMP error packets every so often.
* This should be done on a per port/source basis,
* but for now this will suffice.
*/
freemsg(mp);
return (NULL);
}
return (mp);
}
/*
* Called when a packet was sent out the same link that it arrived on.
* Check if it is ok to send a redirect and then send it.
*/
void
ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
ip_recv_attr_t *ira)
{
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
ipaddr_t src, nhop;
mblk_t *mp1;
ire_t *nhop_ire;
/*
* Check the source address to see if it originated
* on the same logical subnet it is going back out on.
* If so, we should be able to send it a redirect.
* Avoid sending a redirect if the destination
* is directly connected (i.e., we matched an IRE_ONLINK),
* or if the packet was source routed out this interface.
*
* We avoid sending a redirect if the
* destination is directly connected
* because it is possible that multiple
* IP subnets may have been configured on
* the link, and the source may not
* be on the same subnet as ip destination,
* even though they are on the same
* physical link.
*/
if ((ire->ire_type & IRE_ONLINK) ||
ip_source_routed(ipha, ipst))
return;
nhop_ire = ire_nexthop(ire);
if (nhop_ire == NULL)
return;
nhop = nhop_ire->ire_addr;
if (nhop_ire->ire_type & IRE_IF_CLONE) {
ire_t *ire2;
/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
mutex_enter(&nhop_ire->ire_lock);
ire2 = nhop_ire->ire_dep_parent;
if (ire2 != NULL)
ire_refhold(ire2);
mutex_exit(&nhop_ire->ire_lock);
ire_refrele(nhop_ire);
nhop_ire = ire2;
}
if (nhop_ire == NULL)
return;
ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
src = ipha->ipha_src;
/*
* We look at the interface ire for the nexthop,
* to see if ipha_src is in the same subnet
* as the nexthop.
*/
if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
/*
* The source is directly connected.
*/
mp1 = copymsg(mp);
if (mp1 != NULL) {
icmp_send_redirect(mp1, nhop, ira);
}
}
ire_refrele(nhop_ire);
}
/*
* Generate an ICMP redirect message.
*/
static void
icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
{
icmph_t icmph;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
mp = icmp_pkt_err_ok(mp, ira);
if (mp == NULL)
return;
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_REDIRECT;
icmph.icmph_code = 1;
icmph.icmph_rd_gateway = gateway;
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
}
/*
* Generate an ICMP time exceeded message.
*/
void
icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
{
icmph_t icmph;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
mp = icmp_pkt_err_ok(mp, ira);
if (mp == NULL)
return;
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_TIME_EXCEEDED;
icmph.icmph_code = code;
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
}
/*
* Generate an ICMP unreachable message.
* When called from ip_output side a minimal ip_recv_attr_t needs to be
* constructed by the caller.
*/
void
icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
{
icmph_t icmph;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
mp = icmp_pkt_err_ok(mp, ira);
if (mp == NULL)
return;
bzero(&icmph, sizeof (icmph_t));
icmph.icmph_type = ICMP_DEST_UNREACHABLE;
icmph.icmph_code = code;
BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
}
/*
* Latch in the IPsec state for a stream based the policy in the listener
* and the actions in the ip_recv_attr_t.
* Called directly from TCP and SCTP.
*/
boolean_t
ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
{
ASSERT(lconnp->conn_policy != NULL);
ASSERT(connp->conn_policy == NULL);
IPPH_REFHOLD(lconnp->conn_policy);
connp->conn_policy = lconnp->conn_policy;
if (ira->ira_ipsec_action != NULL) {
if (connp->conn_latch == NULL) {
connp->conn_latch = iplatch_create();
if (connp->conn_latch == NULL)
return (B_FALSE);
}
ipsec_latch_inbound(connp, ira);
}
return (B_TRUE);
}
/*
* Verify whether or not the IP address is a valid local address.
* Could be a unicast, including one for a down interface.
* If allow_mcbc then a multicast or broadcast address is also
* acceptable.
*
* In the case of a broadcast/multicast address, however, the
* upper protocol is expected to reset the src address
* to zero when we return IPVL_MCAST/IPVL_BCAST so that
* no packets are emitted with broadcast/multicast address as
* source address (that violates hosts requirements RFC 1122)
* The addresses valid for bind are:
* (1) - INADDR_ANY (0)
* (2) - IP address of an UP interface
* (3) - IP address of a DOWN interface
* (4) - valid local IP broadcast addresses. In this case
* the conn will only receive packets destined to
* the specified broadcast address.
* (5) - a multicast address. In this case
* the conn will only receive packets destined to
* the specified multicast address. Note: the
* application still has to issue an
* IP_ADD_MEMBERSHIP socket option.
*
* In all the above cases, the bound address must be valid in the current zone.
* When the address is loopback, multicast or broadcast, there might be many
* matching IREs so bind has to look up based on the zone.
*/
ip_laddr_t
ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
ip_stack_t *ipst, boolean_t allow_mcbc)
{
ire_t *src_ire;
ASSERT(src_addr != INADDR_ANY);
src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
/*
* If an address other than in6addr_any is requested,
* we verify that it is a valid address for bind
* Note: Following code is in if-else-if form for
* readability compared to a condition check.
*/
if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
/*
* (2) Bind to address of local UP interface
*/
ire_refrele(src_ire);
return (IPVL_UNICAST_UP);
} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
/*
* (4) Bind to broadcast address
*/
ire_refrele(src_ire);
if (allow_mcbc)
return (IPVL_BCAST);
else
return (IPVL_BAD);
} else if (CLASSD(src_addr)) {
/* (5) bind to multicast address. */
if (src_ire != NULL)
ire_refrele(src_ire);
if (allow_mcbc)
return (IPVL_MCAST);
else
return (IPVL_BAD);
} else {
ipif_t *ipif;
/*
* (3) Bind to address of local DOWN interface?
* (ipif_lookup_addr() looks up all interfaces
* but we do not get here for UP interfaces
* - case (2) above)
*/
if (src_ire != NULL)
ire_refrele(src_ire);
ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
if (ipif == NULL)
return (IPVL_BAD);
/* Not a useful source? */
if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
ipif_refrele(ipif);
return (IPVL_BAD);
}
ipif_refrele(ipif);
return (IPVL_UNICAST_DOWN);
}
}
/*
* Insert in the bind fanout for IPv4 and IPv6.
* The caller should already have used ip_laddr_verify_v*() before calling
* this.
*/
int
ip_laddr_fanout_insert(conn_t *connp)
{
int error;
/*
* Allow setting new policies. For example, disconnects result
* in us being called. As we would have set conn_policy_cached
* to B_TRUE before, we should set it to B_FALSE, so that policy
* can change after the disconnect.
*/
connp->conn_policy_cached = B_FALSE;
error = ipcl_bind_insert(connp);
if (error != 0) {
if (connp->conn_anon_port) {
(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
connp->conn_mlp_type, connp->conn_proto,
ntohs(connp->conn_lport), B_FALSE);
}
connp->conn_mlp_type = mlptSingle;
}
return (error);
}
/*
* Verify that both the source and destination addresses are valid. If
* IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
* i.e. have no route to it. Protocols like TCP want to verify destination
* reachability, while tunnels do not.
*
* Determine the route, the interface, and (optionally) the source address
* to use to reach a given destination.
* Note that we allow connect to broadcast and multicast addresses when
* IPDF_ALLOW_MCBC is set.
* first_hop and dst_addr are normally the same, but if source routing
* they will differ; in that case the first_hop is what we'll use for the
* routing lookup but the dce and label checks will be done on dst_addr,
*
* If uinfo is set, then we fill in the best available information
* we have for the destination. This is based on (in priority order) any
* metrics and path MTU stored in a dce_t, route metrics, and finally the
* ill_mtu/ill_mc_mtu.
*
* Tsol note: If we have a source route then dst_addr != firsthop. But we
* always do the label check on dst_addr.
*/
int
ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
{
ire_t *ire = NULL;
int error = 0;
ipaddr_t setsrc; /* RTF_SETSRC */
zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */
ip_stack_t *ipst = ixa->ixa_ipst;
dce_t *dce;
uint_t pmtu;
uint_t generation;
nce_t *nce;
ill_t *ill = NULL;
boolean_t multirt = B_FALSE;
ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
/*
* We never send to zero; the ULPs map it to the loopback address.
* We can't allow it since we use zero to mean unitialized in some
* places.
*/
ASSERT(dst_addr != INADDR_ANY);
if (is_system_labeled()) {
ts_label_t *tsl = NULL;
error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
if (error != 0)
return (error);
if (tsl != NULL) {
/* Update the label */
ip_xmit_attr_replace_tsl(ixa, tsl);
}
}
setsrc = INADDR_ANY;
/*
* Select a route; For IPMP interfaces, we would only select
* a "hidden" route (i.e., going through a specific under_ill)
* if ixa_ifindex has been specified.
*/
ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
&generation, &setsrc, &error, &multirt);
ASSERT(ire != NULL); /* IRE_NOROUTE if none found */
if (error != 0)
goto bad_addr;
/*
* ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
* If IPDF_VERIFY_DST is set, the destination must be reachable;
* Otherwise the destination needn't be reachable.
*
* If we match on a reject or black hole, then we've got a
* local failure. May as well fail out the connect() attempt,
* since it's never going to succeed.
*/
if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
/*
* If we're verifying destination reachability, we always want
* to complain here.
*
* If we're not verifying destination reachability but the
* destination has a route, we still want to fail on the
* temporary address and broadcast address tests.
*
* In both cases do we let the code continue so some reasonable
* information is returned to the caller. That enables the
* caller to use (and even cache) the IRE. conn_ip_ouput will
* use the generation mismatch path to check for the unreachable
* case thereby avoiding any specific check in the main path.
*/
ASSERT(generation == IRE_GENERATION_VERIFY);
if (flags & IPDF_VERIFY_DST) {
/*
* Set errno but continue to set up ixa_ire to be
* the RTF_REJECT|RTF_BLACKHOLE IRE.
* That allows callers to use ip_output to get an
* ICMP error back.
*/
if (!(ire->ire_type & IRE_HOST))
error = ENETUNREACH;
else
error = EHOSTUNREACH;
}
}
if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
!(flags & IPDF_ALLOW_MCBC)) {
ire_refrele(ire);
ire = ire_reject(ipst, B_FALSE);
generation = IRE_GENERATION_VERIFY;
error = ENETUNREACH;
}
/* Cache things */
if (ixa->ixa_ire != NULL)
ire_refrele_notr(ixa->ixa_ire);
#ifdef DEBUG
ire_refhold_notr(ire);
ire_refrele(ire);
#endif
ixa->ixa_ire = ire;
ixa->ixa_ire_generation = generation;
/*
* Ensure that ixa_dce is always set any time that ixa_ire is set,
* since some callers will send a packet to conn_ip_output() even if
* there's an error.
*/
if (flags & IPDF_UNIQUE_DCE) {
/* Fallback to the default dce if allocation fails */
dce = dce_lookup_and_add_v4(dst_addr, ipst);
if (dce != NULL)
generation = dce->dce_generation;
else
dce = dce_lookup_v4(dst_addr, ipst, &generation);
} else {
dce = dce_lookup_v4(dst_addr, ipst, &generation);
}
ASSERT(dce != NULL);
if (ixa->ixa_dce != NULL)
dce_refrele_notr(ixa->ixa_dce);
#ifdef DEBUG
dce_refhold_notr(dce);
dce_refrele(dce);
#endif
ixa->ixa_dce = dce;
ixa->ixa_dce_generation = generation;
/*
* For multicast with multirt we have a flag passed back from
* ire_lookup_multi_ill_v4 since we don't have an IRE for each
* possible multicast address.
* We also need a flag for multicast since we can't check
* whether RTF_MULTIRT is set in ixa_ire for multicast.
*/
if (multirt) {
ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
} else {
ixa->ixa_postfragfn = ire->ire_postfragfn;
ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
}
if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
/* Get an nce to cache. */
nce = ire_to_nce(ire, firsthop, NULL);
if (nce == NULL) {
/* Allocation failure? */
ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
} else {
if (ixa->ixa_nce != NULL)
nce_refrele(ixa->ixa_nce);
ixa->ixa_nce = nce;
}
}
/*
* If the source address is a loopback address, the
* destination had best be local or multicast.
* If we are sending to an IRE_LOCAL using a loopback source then
* it had better be the same zoneid.
*/
if (*src_addrp == htonl(INADDR_LOOPBACK)) {
if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
ire = NULL; /* Stored in ixa_ire */
error = EADDRNOTAVAIL;
goto bad_addr;
}
if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
ire = NULL; /* Stored in ixa_ire */
error = EADDRNOTAVAIL;
goto bad_addr;
}
}
if (ire->ire_type & IRE_BROADCAST) {
/*
* If the ULP didn't have a specified source, then we
* make sure we reselect the source when sending
* broadcasts out different interfaces.
*/
if (flags & IPDF_SELECT_SRC)
ixa->ixa_flags |= IXAF_SET_SOURCE;
else
ixa->ixa_flags &= ~IXAF_SET_SOURCE;
}
/*
* Does the caller want us to pick a source address?
*/
if (flags & IPDF_SELECT_SRC) {
ipaddr_t src_addr;
/*
* We use use ire_nexthop_ill to avoid the under ipmp
* interface for source address selection. Note that for ipmp
* probe packets, ixa_ifindex would have been specified, and
* the ip_select_route() invocation would have picked an ire
* will ire_ill pointing at an under interface.
*/
ill = ire_nexthop_ill(ire);
/* If unreachable we have no ill but need some source */
if (ill == NULL) {
src_addr = htonl(INADDR_LOOPBACK);
/* Make sure we look for a better source address */
generation = SRC_GENERATION_VERIFY;
} else {
error = ip_select_source_v4(ill, setsrc, dst_addr,
ixa->ixa_multicast_ifaddr, zoneid,
ipst, &src_addr, &generation, NULL);
if (error != 0) {
ire = NULL; /* Stored in ixa_ire */
goto bad_addr;
}
}
/*
* We allow the source address to to down.
* However, we check that we don't use the loopback address
* as a source when sending out on the wire.
*/
if ((src_addr == htonl(INADDR_LOOPBACK)) &&
!(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
ire = NULL; /* Stored in ixa_ire */
error = EADDRNOTAVAIL;
goto bad_addr;
}
*src_addrp = src_addr;
ixa->ixa_src_generation = generation;
}
/*
* Make sure we don't leave an unreachable ixa_nce in place
* since ip_select_route is used when we unplumb i.e., remove
* references on ixa_ire, ixa_nce, and ixa_dce.
*/
nce = ixa->ixa_nce;
if (nce != NULL && nce->nce_is_condemned) {
nce_refrele(nce);
ixa->ixa_nce = NULL;
ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
}
/*
* The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
* However, we can't do it for IPv4 multicast or broadcast.
*/
if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
/*
* Set initial value for fragmentation limit. Either conn_ip_output
* or ULP might updates it when there are routing changes.
* Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
*/
pmtu = ip_get_pmtu(ixa);
ixa->ixa_fragsize = pmtu;
/* Make sure ixa_fragsize and ixa_pmtu remain identical */
if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
ixa->ixa_pmtu = pmtu;
/*
* Extract information useful for some transports.
* First we look for DCE metrics. Then we take what we have in
* the metrics in the route, where the offlink is used if we have
* one.
*/
if (uinfo != NULL) {
bzero(uinfo, sizeof (*uinfo));
if (dce->dce_flags & DCEF_UINFO)
*uinfo = dce->dce_uinfo;
rts_merge_metrics(uinfo, &ire->ire_metrics);
/* Allow ire_metrics to decrease the path MTU from above */
if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
uinfo->iulp_mtu = pmtu;
uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
}
if (ill != NULL)
ill_refrele(ill);
return (error);
bad_addr:
if (ire != NULL)
ire_refrele(ire);
if (ill != NULL)
ill_refrele(ill);
/*
* Make sure we don't leave an unreachable ixa_nce in place
* since ip_select_route is used when we unplumb i.e., remove
* references on ixa_ire, ixa_nce, and ixa_dce.
*/
nce = ixa->ixa_nce;
if (nce != NULL && nce->nce_is_condemned) {
nce_refrele(nce);
ixa->ixa_nce = NULL;
ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
}
return (error);
}
/*
* Get the base MTU for the case when path MTU discovery is not used.
* Takes the MTU of the IRE into account.
*/
uint_t
ip_get_base_mtu(ill_t *ill, ire_t *ire)
{
uint_t mtu;
uint_t iremtu = ire->ire_metrics.iulp_mtu;
if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
mtu = ill->ill_mc_mtu;
else
mtu = ill->ill_mtu;
if (iremtu != 0 && iremtu < mtu)
mtu = iremtu;
return (mtu);
}
/*
* Get the PMTU for the attributes. Handles both IPv4 and IPv6.
* Assumes that ixa_ire, dce, and nce have already been set up.
*
* The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
* We avoid path MTU discovery if it is disabled with ndd.
* Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
*
* NOTE: We also used to turn it off for source routed packets. That
* is no longer required since the dce is per final destination.
*/
uint_t
ip_get_pmtu(ip_xmit_attr_t *ixa)
{
ip_stack_t *ipst = ixa->ixa_ipst;
dce_t *dce;
nce_t *nce;
ire_t *ire;
uint_t pmtu;
ire = ixa->ixa_ire;
dce = ixa->ixa_dce;
nce = ixa->ixa_nce;
/*
* If path MTU discovery has been turned off by ndd, then we ignore
* any dce_pmtu and for IPv4 we will not set DF.
*/
if (!ipst->ips_ip_path_mtu_discovery)
ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
pmtu = IP_MAXPACKET;
/*
* Decide whether whether IPv4 sets DF
* For IPv6 "no DF" means to use the 1280 mtu
*/
if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
} else {
ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
if (!(ixa->ixa_flags & IXAF_IS_IPV4))
pmtu = IPV6_MIN_MTU;
}
/* Check if the PMTU is to old before we use it */
if ((dce->dce_flags & DCEF_PMTU) &&
TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
ipst->ips_ip_pathmtu_interval) {
/*
* Older than 20 minutes. Drop the path MTU information.
*/
mutex_enter(&dce->dce_lock);
dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
mutex_exit(&dce->dce_lock);
dce_increment_generation(dce);
}
/* The metrics on the route can lower the path MTU */
if (ire->ire_metrics.iulp_mtu != 0 &&
ire->ire_metrics.iulp_mtu < pmtu)
pmtu = ire->ire_metrics.iulp_mtu;
/*
* If the path MTU is smaller than some minimum, we still use dce_pmtu
* above (would be 576 for IPv4 and 1280 for IPv6), but we clear
* IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
*/
if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
if (dce->dce_flags & DCEF_PMTU) {
if (dce->dce_pmtu < pmtu)
pmtu = dce->dce_pmtu;
if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
} else {
ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
}
} else {
ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
}
}
/*
* If we have an IRE_LOCAL we use the loopback mtu instead of
* the ill for going out the wire i.e., IRE_LOCAL gets the same
* mtu as IRE_LOOPBACK.
*/
if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
uint_t loopback_mtu;
loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
if (loopback_mtu < pmtu)
pmtu = loopback_mtu;
} else if (nce != NULL) {
/*
* Make sure we don't exceed the interface MTU.
* In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
* an ill. We'd use the above IP_MAXPACKET in that case just
* to tell the transport something larger than zero.
*/
if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
if (nce->nce_common->ncec_ill != nce->nce_ill &&
nce->nce_ill->ill_mc_mtu < pmtu) {
/*
* for interfaces in an IPMP group, the mtu of
* the nce_ill (under_ill) could be different
* from the mtu of the ncec_ill, so we take the
* min of the two.
*/
pmtu = nce->nce_ill->ill_mc_mtu;
}
} else {
if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
pmtu = nce->nce_common->ncec_ill->ill_mtu;
if (nce->nce_common->ncec_ill != nce->nce_ill &&
nce->nce_ill->ill_mtu < pmtu) {
/*
* for interfaces in an IPMP group, the mtu of
* the nce_ill (under_ill) could be different
* from the mtu of the ncec_ill, so we take the
* min of the two.
*/
pmtu = nce->nce_ill->ill_mtu;
}
}
}
/*
* Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
* Only applies to IPv6.
*/
if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
switch (ixa->ixa_use_min_mtu) {
case IPV6_USE_MIN_MTU_MULTICAST:
if (ire->ire_type & IRE_MULTICAST)
pmtu = IPV6_MIN_MTU;
break;
case IPV6_USE_MIN_MTU_ALWAYS:
pmtu = IPV6_MIN_MTU;
break;
case IPV6_USE_MIN_MTU_NEVER:
break;
}
} else {
/* Default is IPV6_USE_MIN_MTU_MULTICAST */
if (ire->ire_type & IRE_MULTICAST)
pmtu = IPV6_MIN_MTU;
}
}
/*
* After receiving an ICMPv6 "packet too big" message with a
* MTU < 1280, and for multirouted IPv6 packets, the IP layer
* will insert a 8-byte fragment header in every packet. We compensate
* for those cases by returning a smaller path MTU to the ULP.
*
* In the case of CGTP then ip_output will add a fragment header.
* Make sure there is room for it by telling a smaller number
* to the transport.
*
* When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
* so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
* which is the size of the packets it can send.
*/
if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
(ire->ire_flags & RTF_MULTIRT) ||
(ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
pmtu -= sizeof (ip6_frag_t);
ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
}
}
return (pmtu);
}
/*
* Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
* the final piece where we don't. Return a pointer to the first mblk in the
* result, and update the pointer to the next mblk to chew on. If anything
* goes wrong (i.e., dupb fails), we waste everything in sight and return a
* NULL pointer.
*/
mblk_t *
ip_carve_mp(mblk_t **mpp, ssize_t len)
{
mblk_t *mp0;
mblk_t *mp1;
mblk_t *mp2;
if (!len || !mpp || !(mp0 = *mpp))
return (NULL);
/* If we aren't going to consume the first mblk, we need a dup. */
if (mp0->b_wptr - mp0->b_rptr > len) {
mp1 = dupb(mp0);
if (mp1) {
/* Partition the data between the two mblks. */
mp1->b_wptr = mp1->b_rptr + len;
mp0->b_rptr = mp1->b_wptr;
/*
* after adjustments if mblk not consumed is now
* unaligned, try to align it. If this fails free
* all messages and let upper layer recover.
*/
if (!OK_32PTR(mp0->b_rptr)) {
if (!pullupmsg(mp0, -1)) {
freemsg(mp0);
freemsg(mp1);
*mpp = NULL;
return (NULL);
}
}
}
return (mp1);
}
/* Eat through as many mblks as we need to get len bytes. */
len -= mp0->b_wptr - mp0->b_rptr;
for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
if (mp2->b_wptr - mp2->b_rptr > len) {
/*
* We won't consume the entire last mblk. Like
* above, dup and partition it.
*/
mp1->b_cont = dupb(mp2);
mp1 = mp1->b_cont;
if (!mp1) {
/*
* Trouble. Rather than go to a lot of
* trouble to clean up, we free the messages.
* This won't be any worse than losing it on
* the wire.
*/
freemsg(mp0);
freemsg(mp2);
*mpp = NULL;
return (NULL);
}
mp1->b_wptr = mp1->b_rptr + len;
mp2->b_rptr = mp1->b_wptr;
/*
* after adjustments if mblk not consumed is now
* unaligned, try to align it. If this fails free
* all messages and let upper layer recover.
*/
if (!OK_32PTR(mp2->b_rptr)) {
if (!pullupmsg(mp2, -1)) {
freemsg(mp0);
freemsg(mp2);
*mpp = NULL;
return (NULL);
}
}
*mpp = mp2;
return (mp0);
}
/* Decrement len by the amount we just got. */
len -= mp2->b_wptr - mp2->b_rptr;
}
/*
* len should be reduced to zero now. If not our caller has
* screwed up.
*/
if (len) {
/* Shouldn't happen! */
freemsg(mp0);
*mpp = NULL;
return (NULL);
}
/*
* We consumed up to exactly the end of an mblk. Detach the part
* we are returning from the rest of the chain.
*/
mp1->b_cont = NULL;
*mpp = mp2;
return (mp0);
}
/* The ill stream is being unplumbed. Called from ip_close */
int
ip_modclose(ill_t *ill)
{
boolean_t success;
ipsq_t *ipsq;
ipif_t *ipif;
queue_t *q = ill->ill_rq;
ip_stack_t *ipst = ill->ill_ipst;
int i;
arl_ill_common_t *ai = ill->ill_common;
/*
* The punlink prior to this may have initiated a capability
* negotiation. But ipsq_enter will block until that finishes or
* times out.
*/
success = ipsq_enter(ill, B_FALSE, NEW_OP);
/*
* Open/close/push/pop is guaranteed to be single threaded
* per stream by STREAMS. FS guarantees that all references
* from top are gone before close is called. So there can't
* be another close thread that has set CONDEMNED on this ill.
* and cause ipsq_enter to return failure.
*/
ASSERT(success);
ipsq = ill->ill_phyint->phyint_ipsq;
/*
* Mark it condemned. No new reference will be made to this ill.
* Lookup functions will return an error. Threads that try to
* increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
* that the refcnt will drop down to zero.
*/
mutex_enter(&ill->ill_lock);
ill->ill_state_flags |= ILL_CONDEMNED;
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
ipif->ipif_state_flags |= IPIF_CONDEMNED;
}
/*
* Wake up anybody waiting to enter the ipsq. ipsq_enter
* returns error if ILL_CONDEMNED is set
*/
cv_broadcast(&ill->ill_cv);
mutex_exit(&ill->ill_lock);
/*
* Send all the deferred DLPI messages downstream which came in
* during the small window right before ipsq_enter(). We do this
* without waiting for the ACKs because all the ACKs for M_PROTO
* messages are ignored in ip_rput() when ILL_CONDEMNED is set.
*/
ill_dlpi_send_deferred(ill);
/*
* Shut down fragmentation reassembly.
* ill_frag_timer won't start a timer again.
* Now cancel any existing timer
*/
(void) untimeout(ill->ill_frag_timer_id);
(void) ill_frag_timeout(ill, 0);
/*
* Call ill_delete to bring down the ipifs, ilms and ill on
* this ill. Then wait for the refcnts to drop to zero.
* ill_is_freeable checks whether the ill is really quiescent.
* Then make sure that threads that are waiting to enter the
* ipsq have seen the error returned by ipsq_enter and have
* gone away. Then we call ill_delete_tail which does the
* DL_UNBIND_REQ with the driver and then qprocsoff.
*/
ill_delete(ill);
mutex_enter(&ill->ill_lock);
while (!ill_is_freeable(ill))
cv_wait(&ill->ill_cv, &ill->ill_lock);
while (ill->ill_waiters)
cv_wait(&ill->ill_cv, &ill->ill_lock);
mutex_exit(&ill->ill_lock);
/*
* ill_delete_tail drops reference on ill_ipst, but we need to keep
* it held until the end of the function since the cleanup
* below needs to be able to use the ip_stack_t.
*/
netstack_hold(ipst->ips_netstack);
/* qprocsoff is done via ill_delete_tail */
ill_delete_tail(ill);
/*
* synchronously wait for arp stream to unbind. After this, we
* cannot get any data packets up from the driver.
*/
arp_unbind_complete(ill);
ASSERT(ill->ill_ipst == NULL);
/*
* Walk through all conns and qenable those that have queued data.
* Close synchronization needs this to
* be done to ensure that all upper layers blocked
* due to flow control to the closing device
* get unblocked.
*/
ip1dbg(("ip_wsrv: walking\n"));
for (i = 0; i < TX_FANOUT_SIZE; i++) {
conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
}
/*
* ai can be null if this is an IPv6 ill, or if the IPv4
* stream is being torn down before ARP was plumbed (e.g.,
* /sbin/ifconfig plumbing a stream twice, and encountering
* an error
*/
if (ai != NULL) {
ASSERT(!ill->ill_isv6);
mutex_enter(&ai->ai_lock);
ai->ai_ill = NULL;
if (ai->ai_arl == NULL) {
mutex_destroy(&ai->ai_lock);
kmem_free(ai, sizeof (*ai));
} else {
cv_signal(&ai->ai_ill_unplumb_done);
mutex_exit(&ai->ai_lock);
}
}
mutex_enter(&ipst->ips_ip_mi_lock);
mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
mutex_exit(&ipst->ips_ip_mi_lock);
/*
* credp could be null if the open didn't succeed and ip_modopen
* itself calls ip_close.
*/
if (ill->ill_credp != NULL)
crfree(ill->ill_credp);
mutex_destroy(&ill->ill_saved_ire_lock);
mutex_destroy(&ill->ill_lock);
rw_destroy(&ill->ill_mcast_lock);
mutex_destroy(&ill->ill_mcast_serializer);
list_destroy(&ill->ill_nce);
/*
* Now we are done with the module close pieces that
* need the netstack_t.
*/
netstack_rele(ipst->ips_netstack);
mi_close_free((IDP)ill);
q->q_ptr = WR(q)->q_ptr = NULL;
ipsq_exit(ipsq);
return (0);
}
/*
* This is called as part of close() for IP, UDP, ICMP, and RTS
* in order to quiesce the conn.
*/
void
ip_quiesce_conn(conn_t *connp)
{
boolean_t drain_cleanup_reqd = B_FALSE;
boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
boolean_t ilg_cleanup_reqd = B_FALSE;
ip_stack_t *ipst;
ASSERT(!IPCL_IS_TCP(connp));
ipst = connp->conn_netstack->netstack_ip;
/*
* Mark the conn as closing, and this conn must not be
* inserted in future into any list. Eg. conn_drain_insert(),
* won't insert this conn into the conn_drain_list.
*
* conn_idl, and conn_ilg cannot get set henceforth.
*/
mutex_enter(&connp->conn_lock);
ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
connp->conn_state_flags |= CONN_CLOSING;
if (connp->conn_idl != NULL)
drain_cleanup_reqd = B_TRUE;
if (connp->conn_oper_pending_ill != NULL)
conn_ioctl_cleanup_reqd = B_TRUE;
if (connp->conn_dhcpinit_ill != NULL) {
ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
ill_set_inputfn(connp->conn_dhcpinit_ill);
connp->conn_dhcpinit_ill = NULL;
}
if (connp->conn_ilg != NULL)
ilg_cleanup_reqd = B_TRUE;
mutex_exit(&connp->conn_lock);
if (conn_ioctl_cleanup_reqd)
conn_ioctl_cleanup(connp);
if (is_system_labeled() && connp->conn_anon_port) {
(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
connp->conn_mlp_type, connp->conn_proto,
ntohs(connp->conn_lport), B_FALSE);
connp->conn_anon_port = 0;
}
connp->conn_mlp_type = mlptSingle;
/*
* Remove this conn from any fanout list it is on.
* and then wait for any threads currently operating
* on this endpoint to finish
*/
ipcl_hash_remove(connp);
/*
* Remove this conn from the drain list, and do any other cleanup that
* may be required. (TCP conns are never flow controlled, and
* conn_idl will be NULL.)
*/
if (drain_cleanup_reqd && connp->conn_idl != NULL) {
idl_t *idl = connp->conn_idl;
mutex_enter(&idl->idl_lock);
conn_drain(connp, B_TRUE);
mutex_exit(&idl->idl_lock);
}
if (connp == ipst->ips_ip_g_mrouter)
(void) ip_mrouter_done(ipst);
if (ilg_cleanup_reqd)
ilg_delete_all(connp);
/*
* Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
* callers from write side can't be there now because close
* is in progress. The only other caller is ipcl_walk
* which checks for the condemned flag.
*/
mutex_enter(&connp->conn_lock);
connp->conn_state_flags |= CONN_CONDEMNED;
while (connp->conn_ref != 1)
cv_wait(&connp->conn_cv, &connp->conn_lock);
connp->conn_state_flags |= CONN_QUIESCED;
mutex_exit(&connp->conn_lock);
}
/* ARGSUSED */
int
ip_close(queue_t *q, int flags)
{
conn_t *connp;
/*
* Call the appropriate delete routine depending on whether this is
* a module or device.
*/
if (WR(q)->q_next != NULL) {
/* This is a module close */
return (ip_modclose((ill_t *)q->q_ptr));
}
connp = q->q_ptr;
ip_quiesce_conn(connp);
qprocsoff(q);
/*
* Now we are truly single threaded on this stream, and can
* delete the things hanging off the connp, and finally the connp.
* We removed this connp from the fanout list, it cannot be
* accessed thru the fanouts, and we already waited for the
* conn_ref to drop to 0. We are already in close, so
* there cannot be any other thread from the top. qprocsoff
* has completed, and service has completed or won't run in
* future.
*/
ASSERT(connp->conn_ref == 1);
inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
connp->conn_ref--;
ipcl_conn_destroy(connp);
q->q_ptr = WR(q)->q_ptr = NULL;
return (0);
}
/*
* Wapper around putnext() so that ip_rts_request can merely use
* conn_recv.
*/
/*ARGSUSED2*/
static void
ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
{
conn_t *connp = (conn_t *)arg1;
putnext(connp->conn_rq, mp);
}
/* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
/* ARGSUSED */
static void
ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
{
freemsg(mp);
}
/*
* Called when the module is about to be unloaded
*/
void
ip_ddi_destroy(void)
{
/* This needs to be called before destroying any transports. */
mutex_enter(&cpu_lock);
unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
mutex_exit(&cpu_lock);
tnet_fini();
icmp_ddi_g_destroy();
rts_ddi_g_destroy();
udp_ddi_g_destroy();
sctp_ddi_g_destroy();
tcp_ddi_g_destroy();
ilb_ddi_g_destroy();
dce_g_destroy();
ipsec_policy_g_destroy();
ipcl_g_destroy();
ip_net_g_destroy();
ip_ire_g_fini();
inet_minor_destroy(ip_minor_arena_sa);
#if defined(_LP64)
inet_minor_destroy(ip_minor_arena_la);
#endif
#ifdef DEBUG
list_destroy(&ip_thread_list);
rw_destroy(&ip_thread_rwlock);
tsd_destroy(&ip_thread_data);
#endif
netstack_unregister(NS_IP);
}
/*
* First step in cleanup.
*/
/* ARGSUSED */
static void
ip_stack_shutdown(netstackid_t stackid, void *arg)
{
ip_stack_t *ipst = (ip_stack_t *)arg;
kt_did_t ktid;
#ifdef NS_DEBUG
printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
#endif
/*
* Perform cleanup for special interfaces (loopback and IPMP).
*/
ip_interface_cleanup(ipst);
/*
* The *_hook_shutdown()s start the process of notifying any
* consumers that things are going away.... nothing is destroyed.
*/
ipv4_hook_shutdown(ipst);
ipv6_hook_shutdown(ipst);
arp_hook_shutdown(ipst);
mutex_enter(&ipst->ips_capab_taskq_lock);
ktid = ipst->ips_capab_taskq_thread->t_did;
ipst->ips_capab_taskq_quit = B_TRUE;
cv_signal(&ipst->ips_capab_taskq_cv);
mutex_exit(&ipst->ips_capab_taskq_lock);
/*
* In rare occurrences, particularly on virtual hardware where CPUs can
* be de-scheduled, the thread that we just signaled will not run until
* after we have gotten through parts of ip_stack_fini. If that happens
* then we'll try to grab the ips_capab_taskq_lock as part of returning
* from cv_wait which no longer exists.
*/
thread_join(ktid);
}
/*
* Free the IP stack instance.
*/
static void
ip_stack_fini(netstackid_t stackid, void *arg)
{
ip_stack_t *ipst = (ip_stack_t *)arg;
int ret;
#ifdef NS_DEBUG
printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
#endif
/*
* At this point, all of the notifications that the events and
* protocols are going away have been run, meaning that we can
* now set about starting to clean things up.
*/
ipobs_fini(ipst);
ipv4_hook_destroy(ipst);
ipv6_hook_destroy(ipst);
arp_hook_destroy(ipst);
ip_net_destroy(ipst);
ipmp_destroy(ipst);
ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
ipst->ips_ip_mibkp = NULL;
icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
ipst->ips_icmp_mibkp = NULL;
ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
ipst->ips_ip_kstat = NULL;
bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
ipst->ips_ip6_kstat = NULL;
bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
kmem_free(ipst->ips_propinfo_tbl,
ip_propinfo_count * sizeof (mod_prop_info_t));
ipst->ips_propinfo_tbl = NULL;
dce_stack_destroy(ipst);
ip_mrouter_stack_destroy(ipst);
/*
* Quiesce all of our timers. Note we set the quiesce flags before we
* call untimeout. The slowtimers may actually kick off another instance
* of the non-slow timers.
*/
mutex_enter(&ipst->ips_igmp_timer_lock);
ipst->ips_igmp_timer_quiesce = B_TRUE;
mutex_exit(&ipst->ips_igmp_timer_lock);
mutex_enter(&ipst->ips_mld_timer_lock);
ipst->ips_mld_timer_quiesce = B_TRUE;
mutex_exit(&ipst->ips_mld_timer_lock);
mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
mutex_enter(&ipst->ips_mld_slowtimeout_lock);
ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
mutex_exit(&ipst->ips_mld_slowtimeout_lock);
ret = untimeout(ipst->ips_igmp_timeout_id);
if (ret == -1) {
ASSERT(ipst->ips_igmp_timeout_id == 0);
} else {
ASSERT(ipst->ips_igmp_timeout_id != 0);
ipst->ips_igmp_timeout_id = 0;
}
ret = untimeout(ipst->ips_igmp_slowtimeout_id);
if (ret == -1) {
ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
} else {
ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
ipst->ips_igmp_slowtimeout_id = 0;
}
ret = untimeout(ipst->ips_mld_timeout_id);
if (ret == -1) {
ASSERT(ipst->ips_mld_timeout_id == 0);
} else {
ASSERT(ipst->ips_mld_timeout_id != 0);
ipst->ips_mld_timeout_id = 0;
}
ret = untimeout(ipst->ips_mld_slowtimeout_id);
if (ret == -1) {
ASSERT(ipst->ips_mld_slowtimeout_id == 0);
} else {
ASSERT(ipst->ips_mld_slowtimeout_id != 0);
ipst->ips_mld_slowtimeout_id = 0;
}
ip_ire_fini(ipst);
ip6_asp_free(ipst);
conn_drain_fini(ipst);
ipcl_destroy(ipst);
mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
ipst->ips_ndp4 = NULL;
kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
ipst->ips_ndp6 = NULL;
if (ipst->ips_loopback_ksp != NULL) {
kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
ipst->ips_loopback_ksp = NULL;
}
mutex_destroy(&ipst->ips_capab_taskq_lock);
cv_destroy(&ipst->ips_capab_taskq_cv);
rw_destroy(&ipst->ips_srcid_lock);
mutex_destroy(&ipst->ips_ip_mi_lock);
rw_destroy(&ipst->ips_ill_g_usesrc_lock);
mutex_destroy(&ipst->ips_igmp_timer_lock);
mutex_destroy(&ipst->ips_mld_timer_lock);
mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
mutex_destroy(&ipst->ips_ip_addr_avail_lock);
rw_destroy(&ipst->ips_ill_g_lock);
kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
ipst->ips_phyint_g_list = NULL;
kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
ipst->ips_ill_g_heads = NULL;
ldi_ident_release(ipst->ips_ldi_ident);
kmem_free(ipst, sizeof (*ipst));
}
/*
* This function is called from the TSD destructor, and is used to debug
* reference count issues in IP. See block comment in <inet/ip_if.h> for
* details.
*/
static void
ip_thread_exit(void *phash)
{
th_hash_t *thh = phash;
rw_enter(&ip_thread_rwlock, RW_WRITER);
list_remove(&ip_thread_list, thh);
rw_exit(&ip_thread_rwlock);
mod_hash_destroy_hash(thh->thh_hash);
kmem_free(thh, sizeof (*thh));
}
/*
* Called when the IP kernel module is loaded into the kernel
*/
void
ip_ddi_init(void)
{
ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
/*
* For IP and TCP the minor numbers should start from 2 since we have 4
* initial devices: ip, ip6, tcp, tcp6.
*/
/*
* If this is a 64-bit kernel, then create two separate arenas -
* one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
* other for socket apps in the range 2^^18 through 2^^32-1.
*/
ip_minor_arena_la = NULL;
ip_minor_arena_sa = NULL;
#if defined(_LP64)
if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
cmn_err(CE_PANIC,
"ip_ddi_init: ip_minor_arena_sa creation failed\n");
}
if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
cmn_err(CE_PANIC,
"ip_ddi_init: ip_minor_arena_la creation failed\n");
}
#else
if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
cmn_err(CE_PANIC,
"ip_ddi_init: ip_minor_arena_sa creation failed\n");
}
#endif
ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
ipcl_g_init();
ip_ire_g_init();
ip_net_g_init();
#ifdef DEBUG
tsd_create(&ip_thread_data, ip_thread_exit);
rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
list_create(&ip_thread_list, sizeof (th_hash_t),
offsetof(th_hash_t, thh_link));
#endif
ipsec_policy_g_init();
tcp_ddi_g_init();
sctp_ddi_g_init();
dce_g_init();
/*
* We want to be informed each time a stack is created or
* destroyed in the kernel, so we can maintain the
* set of udp_stack_t's.
*/
netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
ip_stack_fini);
tnet_init();
udp_ddi_g_init();
rts_ddi_g_init();
icmp_ddi_g_init();
ilb_ddi_g_init();
/* This needs to be called after all transports are initialized. */
mutex_enter(&cpu_lock);
register_cpu_setup_func(ip_tp_cpu_update, NULL);
mutex_exit(&cpu_lock);
}
/*
* Initialize the IP stack instance.
*/
static void *
ip_stack_init(netstackid_t stackid, netstack_t *ns)
{
ip_stack_t *ipst;
size_t arrsz;
major_t major;
#ifdef NS_DEBUG
printf("ip_stack_init(stack %d)\n", stackid);
#endif
ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
ipst->ips_netstack = ns;
ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
KM_SLEEP);
ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
KM_SLEEP);
ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
ipst->ips_igmp_deferred_next = INFINITY;
mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
ipst->ips_mld_deferred_next = INFINITY;
mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
ipcl_init(ipst);
ip_ire_init(ipst);
ip6_asp_init(ipst);
ipif_init(ipst);
conn_drain_init(ipst);
ip_mrouter_stack_init(ipst);
dce_stack_init(ipst);
ipst->ips_ip_multirt_log_interval = 1000;
ipst->ips_ill_index = 1;
ipst->ips_saved_ip_forwarding = -1;
ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */
arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
ipst->ips_ip6_kstat =
ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
ipst->ips_ip_src_id = 1;
rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
ipst->ips_src_generation = SRC_GENERATION_INITIAL;
ip_net_init(ipst, ns);
ipv4_hook_init(ipst);
ipv6_hook_init(ipst);
arp_hook_init(ipst);
ipmp_init(ipst);
ipobs_init(ipst);
/*
* Create the taskq dispatcher thread and initialize related stuff.
*/
mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
major = mod_name_to_major(INET_NAME);
(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
return (ipst);
}
/*
* Allocate and initialize a DLPI template of the specified length. (May be
* called as writer.)
*/
mblk_t *
ip_dlpi_alloc(size_t len, t_uscalar_t prim)
{
mblk_t *mp;
mp = allocb(len, BPRI_MED);
if (!mp)
return (NULL);
/*
* DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
* of which we don't seem to use) are sent with M_PCPROTO, and
* that other DLPI are M_PROTO.
*/
if (prim == DL_INFO_REQ) {
mp->b_datap->db_type = M_PCPROTO;
} else {
mp->b_datap->db_type = M_PROTO;
}
mp->b_wptr = mp->b_rptr + len;
bzero(mp->b_rptr, len);
((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
return (mp);
}
/*
* Allocate and initialize a DLPI notification. (May be called as writer.)
*/
mblk_t *
ip_dlnotify_alloc(uint_t notification, uint_t data)
{
dl_notify_ind_t *notifyp;
mblk_t *mp;
if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
return (NULL);
notifyp = (dl_notify_ind_t *)mp->b_rptr;
notifyp->dl_notification = notification;
notifyp->dl_data = data;
return (mp);
}
mblk_t *
ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
{
dl_notify_ind_t *notifyp;
mblk_t *mp;
if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
return (NULL);
notifyp = (dl_notify_ind_t *)mp->b_rptr;
notifyp->dl_notification = notification;
notifyp->dl_data1 = data1;
notifyp->dl_data2 = data2;
return (mp);
}
/*
* Debug formatting routine. Returns a character string representation of the
* addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address
* in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
*
* Once the ndd table-printing interfaces are removed, this can be changed to
* standard dotted-decimal form.
*/
char *
ip_dot_addr(ipaddr_t addr, char *buf)
{
uint8_t *ap = (uint8_t *)&addr;
(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
return (buf);
}
/*
* Write the given MAC address as a printable string in the usual colon-
* separated format.
*/
const char *
mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
{
char *bp;
if (alen == 0 || buflen < 4)
return ("?");
bp = buf;
for (;;) {
/*
* If there are more MAC address bytes available, but we won't
* have any room to print them, then add "..." to the string
* instead. See below for the 'magic number' explanation.
*/
if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
(void) strcpy(bp, "...");
break;
}
(void) sprintf(bp, "%02x", *addr++);
bp += 2;
if (--alen == 0)
break;
*bp++ = ':';
buflen -= 3;
/*
* At this point, based on the first 'if' statement above,
* either alen == 1 and buflen >= 3, or alen > 1 and
* buflen >= 4. The first case leaves room for the final "xx"
* number and trailing NUL byte. The second leaves room for at
* least "...". Thus the apparently 'magic' numbers chosen for
* that statement.
*/
}
return (buf);
}
/*
* Called when it is conceptually a ULP that would sent the packet
* e.g., port unreachable and protocol unreachable. Check that the packet
* would have passed the IPsec global policy before sending the error.
*
* Send an ICMP error after patching up the packet appropriately.
* Uses ip_drop_input and bumps the appropriate MIB.
*/
void
ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
ip_recv_attr_t *ira)
{
ipha_t *ipha;
boolean_t secure;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
netstack_t *ns = ipst->ips_netstack;
ipsec_stack_t *ipss = ns->netstack_ipsec;
secure = ira->ira_flags & IRAF_IPSEC_SECURE;
/*
* We are generating an icmp error for some inbound packet.
* Called from all ip_fanout_(udp, tcp, proto) functions.
* Before we generate an error, check with global policy
* to see whether this is allowed to enter the system. As
* there is no "conn", we are checking with global policy.
*/
ipha = (ipha_t *)mp->b_rptr;
if (secure || ipss->ipsec_inbound_v4_policy_present) {
mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
if (mp == NULL)
return;
}
/* We never send errors for protocols that we do implement */
if (ira->ira_protocol == IPPROTO_ICMP ||
ira->ira_protocol == IPPROTO_IGMP) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
freemsg(mp);
return;
}
/*
* Have to correct checksum since
* the packet might have been
* fragmented and the reassembly code in ip_rput
* does not restore the IP checksum.
*/
ipha->ipha_hdr_checksum = 0;
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
switch (icmp_type) {
case ICMP_DEST_UNREACHABLE:
switch (icmp_code) {
case ICMP_PROTOCOL_UNREACHABLE:
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
break;
case ICMP_PORT_UNREACHABLE:
BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
ip_drop_input("ipIfStatsNoPorts", mp, ill);
break;
}
icmp_unreachable(mp, icmp_code, ira);
break;
default:
#ifdef DEBUG
panic("ip_fanout_send_icmp_v4: wrong type");
/*NOTREACHED*/
#else
freemsg(mp);
break;
#endif
}
}
/*
* Used to send an ICMP error message when a packet is received for
* a protocol that is not supported. The mblk passed as argument
* is consumed by this function.
*/
void
ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
{
ipha_t *ipha;
ipha = (ipha_t *)mp->b_rptr;
if (ira->ira_flags & IRAF_IS_IPV4) {
ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
ICMP_PROTOCOL_UNREACHABLE, ira);
} else {
ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
ICMP6_PARAMPROB_NEXTHEADER, ira);
}
}
/*
* Deliver a rawip packet to the given conn, possibly applying ipsec policy.
* Handles IPv4 and IPv6.
* We are responsible for disposing of mp, such as by freemsg() or putnext()
* Caller is responsible for dropping references to the conn.
*/
void
ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
ip_recv_attr_t *ira)
{
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
boolean_t secure;
uint_t protocol = ira->ira_protocol;
iaflags_t iraflags = ira->ira_flags;
queue_t *rq;
secure = iraflags & IRAF_IPSEC_SECURE;
rq = connp->conn_rq;
if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
switch (protocol) {
case IPPROTO_ICMPV6:
BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
break;
case IPPROTO_ICMP:
BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
break;
default:
BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
break;
}
freemsg(mp);
return;
}
ASSERT(!(IPCL_IS_IPTUN(connp)));
if (((iraflags & IRAF_IS_IPV4) ?
CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
secure) {
mp = ipsec_check_inbound_policy(mp, connp, ipha,
ip6h, ira);
if (mp == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
/* Note that mp is NULL */
ip_drop_input("ipIfStatsInDiscards", mp, ill);
return;
}
}
if (iraflags & IRAF_ICMP_ERROR) {
(connp->conn_recvicmp)(connp, mp, NULL, ira);
} else {
ill_t *rill = ira->ira_rill;
BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
ira->ira_ill = ira->ira_rill = NULL;
/* Send it upstream */
(connp->conn_recv)(connp, mp, NULL, ira);
ira->ira_ill = ill;
ira->ira_rill = rill;
}
}
/*
* Handle protocols with which IP is less intimate. There
* can be more than one stream bound to a particular
* protocol. When this is the case, normally each one gets a copy
* of any incoming packets.
*
* IPsec NOTE :
*
* Don't allow a secure packet going up a non-secure connection.
* We don't allow this because
*
* 1) Reply might go out in clear which will be dropped at
* the sending side.
* 2) If the reply goes out in clear it will give the
* adversary enough information for getting the key in
* most of the cases.
*
* Moreover getting a secure packet when we expect clear
* implies that SA's were added without checking for
* policy on both ends. This should not happen once ISAKMP
* is used to negotiate SAs as SAs will be added only after
* verifying the policy.
*
* Zones notes:
* Earlier in ip_input on a system with multiple shared-IP zones we
* duplicate the multicast and broadcast packets and send them up
* with each explicit zoneid that exists on that ill.
* This means that here we can match the zoneid with SO_ALLZONES being special.
*/
void
ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
{
mblk_t *mp1;
ipaddr_t laddr;
conn_t *connp, *first_connp, *next_connp;
connf_t *connfp;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
laddr = ipha->ipha_dst;
connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
mutex_enter(&connfp->connf_lock);
connp = connfp->connf_head;
for (connp = connfp->connf_head; connp != NULL;
connp = connp->conn_next) {
/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
(!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
break;
}
}
if (connp == NULL) {
/*
* No one bound to these addresses. Is
* there a client that wants all
* unclaimed datagrams?
*/
mutex_exit(&connfp->connf_lock);
ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
ICMP_PROTOCOL_UNREACHABLE, ira);
return;
}
ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
CONN_INC_REF(connp);
first_connp = connp;
connp = connp->conn_next;
for (;;) {
while (connp != NULL) {
/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
(!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
tsol_receive_local(mp, &laddr, IPV4_VERSION,
ira, connp)))
break;
connp = connp->conn_next;
}
if (connp == NULL) {
/* No more interested clients */
connp = first_connp;
break;
}
if (((mp1 = dupmsg(mp)) == NULL) &&
((mp1 = copymsg(mp)) == NULL)) {
/* Memory allocation failed */
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", mp, ill);
connp = first_connp;
break;
}
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
ira);
mutex_enter(&connfp->connf_lock);
/* Follow the next pointer before releasing the conn. */
next_connp = connp->conn_next;
CONN_DEC_REF(connp);
connp = next_connp;
}
/* Last one. Send it upstream. */
mutex_exit(&connfp->connf_lock);
ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
CONN_DEC_REF(connp);
}
/*
* If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
* pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk
* is not consumed.
*
* One of three things can happen, all of which affect the passed-in mblk:
*
* 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk..
*
* 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
* ESP packet, and is passed along to ESP for consumption. Return NULL.
*
* 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL.
*/
mblk_t *
zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
{
int shift, plen, iph_len;
ipha_t *ipha;
udpha_t *udpha;
uint32_t *spi;
uint32_t esp_ports;
uint8_t *orptr;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
ipha = (ipha_t *)mp->b_rptr;
iph_len = ira->ira_ip_hdr_length;
plen = ira->ira_pktlen;
if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
/*
* Most likely a keepalive for the benefit of an intervening
* NAT. These aren't for us, per se, so drop it.
*
* RFC 3947/8 doesn't say for sure what to do for 2-3
* byte packets (keepalives are 1-byte), but we'll drop them
* also.
*/
ip_drop_packet(mp, B_TRUE, ira->ira_ill,
DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
return (NULL);
}
if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
/* might as well pull it all up - it might be ESP. */
if (!pullupmsg(mp, -1)) {
ip_drop_packet(mp, B_TRUE, ira->ira_ill,
DROPPER(ipss, ipds_esp_nomem),
&ipss->ipsec_dropper);
return (NULL);
}
ipha = (ipha_t *)mp->b_rptr;
}
spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
if (*spi == 0) {
/* UDP packet - remove 0-spi. */
shift = sizeof (uint32_t);
} else {
/* ESP-in-UDP packet - reduce to ESP. */
ipha->ipha_protocol = IPPROTO_ESP;
shift = sizeof (udpha_t);
}
/* Fix IP header */
ira->ira_pktlen = (plen - shift);
ipha->ipha_length = htons(ira->ira_pktlen);
ipha->ipha_hdr_checksum = 0;
orptr = mp->b_rptr;
mp->b_rptr += shift;
udpha = (udpha_t *)(orptr + iph_len);
if (*spi == 0) {
ASSERT((uint8_t *)ipha == orptr);
udpha->uha_length = htons(plen - shift - iph_len);
iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */
esp_ports = 0;
} else {
esp_ports = *((uint32_t *)udpha);
ASSERT(esp_ports != 0);
}
ovbcopy(orptr, orptr + shift, iph_len);
if (esp_ports != 0) /* Punt up for ESP processing. */ {
ipha = (ipha_t *)(orptr + shift);
ira->ira_flags |= IRAF_ESP_UDP_PORTS;
ira->ira_esp_udp_ports = esp_ports;
ip_fanout_v4(mp, ipha, ira);
return (NULL);
}
return (mp);
}
/*
* Deliver a udp packet to the given conn, possibly applying ipsec policy.
* Handles IPv4 and IPv6.
* We are responsible for disposing of mp, such as by freemsg() or putnext()
* Caller is responsible for dropping references to the conn.
*/
void
ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
ip_recv_attr_t *ira)
{
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
boolean_t secure;
iaflags_t iraflags = ira->ira_flags;
secure = iraflags & IRAF_IPSEC_SECURE;
if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
!canputnext(connp->conn_rq)) {
BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
freemsg(mp);
return;
}
if (((iraflags & IRAF_IS_IPV4) ?
CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
secure) {
mp = ipsec_check_inbound_policy(mp, connp, ipha,
ip6h, ira);
if (mp == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
/* Note that mp is NULL */
ip_drop_input("ipIfStatsInDiscards", mp, ill);
return;
}
}
/*
* Since this code is not used for UDP unicast we don't need a NAT_T
* check. Only ip_fanout_v4 has that check.
*/
if (ira->ira_flags & IRAF_ICMP_ERROR) {
(connp->conn_recvicmp)(connp, mp, NULL, ira);
} else {
ill_t *rill = ira->ira_rill;
BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
ira->ira_ill = ira->ira_rill = NULL;
/* Send it upstream */
(connp->conn_recv)(connp, mp, NULL, ira);
ira->ira_ill = ill;
ira->ira_rill = rill;
}
}
/*
* Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
* (Unicast fanout is handled in ip_input_v4.)
*
* If SO_REUSEADDR is set all multicast and broadcast packets
* will be delivered to all conns bound to the same port.
*
* If there is at least one matching AF_INET receiver, then we will
* ignore any AF_INET6 receivers.
* In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
* AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
* packets.
*
* Zones notes:
* Earlier in ip_input on a system with multiple shared-IP zones we
* duplicate the multicast and broadcast packets and send them up
* with each explicit zoneid that exists on that ill.
* This means that here we can match the zoneid with SO_ALLZONES being special.
*/
void
ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
ip_recv_attr_t *ira)
{
ipaddr_t laddr;
in6_addr_t v6faddr;
conn_t *connp;
connf_t *connfp;
ipaddr_t faddr;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
laddr = ipha->ipha_dst;
faddr = ipha->ipha_src;
connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
mutex_enter(&connfp->connf_lock);
connp = connfp->connf_head;
/*
* If SO_REUSEADDR has been set on the first we send the
* packet to all clients that have joined the group and
* match the port.
*/
while (connp != NULL) {
if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
conn_wantpacket(connp, ira, ipha) &&
(!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
break;
connp = connp->conn_next;
}
if (connp == NULL)
goto notfound;
CONN_INC_REF(connp);
if (connp->conn_reuseaddr) {
conn_t *first_connp = connp;
conn_t *next_connp;
mblk_t *mp1;
connp = connp->conn_next;
for (;;) {
while (connp != NULL) {
if (IPCL_UDP_MATCH(connp, lport, laddr,
fport, faddr) &&
conn_wantpacket(connp, ira, ipha) &&
(!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
tsol_receive_local(mp, &laddr, IPV4_VERSION,
ira, connp)))
break;
connp = connp->conn_next;
}
if (connp == NULL) {
/* No more interested clients */
connp = first_connp;
break;
}
if (((mp1 = dupmsg(mp)) == NULL) &&
((mp1 = copymsg(mp)) == NULL)) {
/* Memory allocation failed */
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", mp, ill);
connp = first_connp;
break;
}
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
IP_STAT(ipst, ip_udp_fanmb);
ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
NULL, ira);
mutex_enter(&connfp->connf_lock);
/* Follow the next pointer before releasing the conn */
next_connp = connp->conn_next;
CONN_DEC_REF(connp);
connp = next_connp;
}
}
/* Last one. Send it upstream. */
mutex_exit(&connfp->connf_lock);
IP_STAT(ipst, ip_udp_fanmb);
ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
CONN_DEC_REF(connp);
return;
notfound:
mutex_exit(&connfp->connf_lock);
/*
* IPv6 endpoints bound to multicast IPv4-mapped addresses
* have already been matched above, since they live in the IPv4
* fanout tables. This implies we only need to
* check for IPv6 in6addr_any endpoints here.
* Thus we compare using ipv6_all_zeros instead of the destination
* address, except for the multicast group membership lookup which
* uses the IPv4 destination.
*/
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
mutex_enter(&connfp->connf_lock);
connp = connfp->connf_head;
/*
* IPv4 multicast packet being delivered to an AF_INET6
* in6addr_any endpoint.
* Need to check conn_wantpacket(). Note that we use conn_wantpacket()
* and not conn_wantpacket_v6() since any multicast membership is
* for an IPv4-mapped multicast address.
*/
while (connp != NULL) {
if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
fport, v6faddr) &&
conn_wantpacket(connp, ira, ipha) &&
(!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
break;
connp = connp->conn_next;
}
if (connp == NULL) {
/*
* No one bound to this port. Is
* there a client that wants all
* unclaimed datagrams?
*/
mutex_exit(&connfp->connf_lock);
if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
NULL) {
ASSERT(ira->ira_protocol == IPPROTO_UDP);
ip_fanout_proto_v4(mp, ipha, ira);
} else {
/*
* We used to attempt to send an icmp error here, but
* since this is known to be a multicast packet
* and we don't send icmp errors in response to
* multicast, just drop the packet and give up sooner.
*/
BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
freemsg(mp);
}
return;
}
ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
/*
* If SO_REUSEADDR has been set on the first we send the
* packet to all clients that have joined the group and
* match the port.
*/
if (connp->conn_reuseaddr) {
conn_t *first_connp = connp;
conn_t *next_connp;
mblk_t *mp1;
CONN_INC_REF(connp);
connp = connp->conn_next;
for (;;) {
while (connp != NULL) {
if (IPCL_UDP_MATCH_V6(connp, lport,
ipv6_all_zeros, fport, v6faddr) &&
conn_wantpacket(connp, ira, ipha) &&
(!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
tsol_receive_local(mp, &laddr, IPV4_VERSION,
ira, connp)))
break;
connp = connp->conn_next;
}
if (connp == NULL) {
/* No more interested clients */
connp = first_connp;
break;
}
if (((mp1 = dupmsg(mp)) == NULL) &&
((mp1 = copymsg(mp)) == NULL)) {
/* Memory allocation failed */
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", mp, ill);
connp = first_connp;
break;
}
CONN_INC_REF(connp);
mutex_exit(&connfp->connf_lock);
IP_STAT(ipst, ip_udp_fanmb);
ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
NULL, ira);
mutex_enter(&connfp->connf_lock);
/* Follow the next pointer before releasing the conn */
next_connp = connp->conn_next;
CONN_DEC_REF(connp);
connp = next_connp;
}
}
/* Last one. Send it upstream. */
mutex_exit(&connfp->connf_lock);
IP_STAT(ipst, ip_udp_fanmb);
ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
CONN_DEC_REF(connp);
}
/*
* Split an incoming packet's IPv4 options into the label and the other options.
* If 'allocate' is set it does memory allocation for the ip_pkt_t, including
* clearing out any leftover label or options.
* Otherwise it just makes ipp point into the packet.
*
* Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
*/
int
ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
{
uchar_t *opt;
uint32_t totallen;
uint32_t optval;
uint32_t optlen;
ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
ipp->ipp_hoplimit = ipha->ipha_ttl;
ipp->ipp_type_of_service = ipha->ipha_type_of_service;
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
/*
* Get length (in 4 byte octets) of IP header options.
*/
totallen = ipha->ipha_version_and_hdr_length -
(uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
if (totallen == 0) {
if (!allocate)
return (0);
/* Clear out anything from a previous packet */
if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
kmem_free(ipp->ipp_ipv4_options,
ipp->ipp_ipv4_options_len);
ipp->ipp_ipv4_options = NULL;
ipp->ipp_ipv4_options_len = 0;
ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
}
if (ipp->ipp_fields & IPPF_LABEL_V4) {
kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
ipp->ipp_label_v4 = NULL;
ipp->ipp_label_len_v4 = 0;
ipp->ipp_fields &= ~IPPF_LABEL_V4;
}
return (0);
}
totallen <<= 2;
opt = (uchar_t *)&ipha[1];
if (!is_system_labeled()) {
copyall:
if (!allocate) {
if (totallen != 0) {
ipp->ipp_ipv4_options = opt;
ipp->ipp_ipv4_options_len = totallen;
ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
}
return (0);
}
/* Just copy all of options */
if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
if (totallen == ipp->ipp_ipv4_options_len) {
bcopy(opt, ipp->ipp_ipv4_options, totallen);
return (0);
}
kmem_free(ipp->ipp_ipv4_options,
ipp->ipp_ipv4_options_len);
ipp->ipp_ipv4_options = NULL;
ipp->ipp_ipv4_options_len = 0;
ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
}
if (totallen == 0)
return (0);
ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
if (ipp->ipp_ipv4_options == NULL)
return (ENOMEM);
ipp->ipp_ipv4_options_len = totallen;
ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
bcopy(opt, ipp->ipp_ipv4_options, totallen);
return (0);
}
if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
ipp->ipp_label_v4 = NULL;
ipp->ipp_label_len_v4 = 0;
ipp->ipp_fields &= ~IPPF_LABEL_V4;
}
/*
* Search for CIPSO option.
* We assume CIPSO is first in options if it is present.
* If it isn't, then ipp_opt_ipv4_options will not include the options
* prior to the CIPSO option.
*/
while (totallen != 0) {
switch (optval = opt[IPOPT_OPTVAL]) {
case IPOPT_EOL:
return (0);
case IPOPT_NOP:
optlen = 1;
break;
default:
if (totallen <= IPOPT_OLEN)
return (EINVAL);
optlen = opt[IPOPT_OLEN];
if (optlen < 2)
return (EINVAL);
}
if (optlen > totallen)
return (EINVAL);
switch (optval) {
case IPOPT_COMSEC:
if (!allocate) {
ipp->ipp_label_v4 = opt;
ipp->ipp_label_len_v4 = optlen;
ipp->ipp_fields |= IPPF_LABEL_V4;
} else {
ipp->ipp_label_v4 = kmem_alloc(optlen,
KM_NOSLEEP);
if (ipp->ipp_label_v4 == NULL)
return (ENOMEM);
ipp->ipp_label_len_v4 = optlen;
ipp->ipp_fields |= IPPF_LABEL_V4;
bcopy(opt, ipp->ipp_label_v4, optlen);
}
totallen -= optlen;
opt += optlen;
/* Skip padding bytes until we get to a multiple of 4 */
while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
totallen--;
opt++;
}
/* Remaining as ipp_ipv4_options */
goto copyall;
}
totallen -= optlen;
opt += optlen;
}
/* No CIPSO found; return everything as ipp_ipv4_options */
totallen = ipha->ipha_version_and_hdr_length -
(uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
totallen <<= 2;
opt = (uchar_t *)&ipha[1];
goto copyall;
}
/*
* Efficient versions of lookup for an IRE when we only
* match the address.
* For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
* Does not handle multicast addresses.
*/
uint_t
ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
{
ire_t *ire;
uint_t result;
ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
ASSERT(ire != NULL);
if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
result = IRE_NOROUTE;
else
result = ire->ire_type;
ire_refrele(ire);
return (result);
}
/*
* Efficient versions of lookup for an IRE when we only
* match the address.
* For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
* Does not handle multicast addresses.
*/
uint_t
ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
{
ire_t *ire;
uint_t result;
ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
ASSERT(ire != NULL);
if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
result = IRE_NOROUTE;
else
result = ire->ire_type;
ire_refrele(ire);
return (result);
}
/*
* Nobody should be sending
* packets up this stream
*/
static void
ip_lrput(queue_t *q, mblk_t *mp)
{
switch (mp->b_datap->db_type) {
case M_FLUSH:
/* Turn around */
if (*mp->b_rptr & FLUSHW) {
*mp->b_rptr &= ~FLUSHR;
qreply(q, mp);
return;
}
break;
}
freemsg(mp);
}
/* Nobody should be sending packets down this stream */
/* ARGSUSED */
void
ip_lwput(queue_t *q, mblk_t *mp)
{
freemsg(mp);
}
/*
* Move the first hop in any source route to ipha_dst and remove that part of
* the source route. Called by other protocols. Errors in option formatting
* are ignored - will be handled by ip_output_options. Return the final
* destination (either ipha_dst or the last entry in a source route.)
*/
ipaddr_t
ip_massage_options(ipha_t *ipha, netstack_t *ns)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
int i;
ip_stack_t *ipst = ns->netstack_ip;
ip2dbg(("ip_massage_options\n"));
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
switch (optval) {
uint8_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg(("ip_massage_options: bad src route\n"));
break;
}
optlen = opts.ipoptp_len;
off = opt[IPOPT_OFFSET];
off--;
redo_srr:
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg(("ip_massage_options: end of SR\n"));
break;
}
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
ip1dbg(("ip_massage_options: next hop 0x%x\n",
ntohl(dst)));
/*
* Check if our address is present more than
* once as consecutive hops in source route.
* XXX verify per-interface ip_forwarding
* for source route?
*/
if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
off += IP_ADDR_LEN;
goto redo_srr;
}
if (dst == htonl(INADDR_LOOPBACK)) {
ip1dbg(("ip_massage_options: loopback addr in "
"source route!\n"));
break;
}
/*
* Update ipha_dst to be the first hop and remove the
* first hop from the source route (by overwriting
* part of the option with NOP options).
*/
ipha->ipha_dst = dst;
/* Put the last entry in dst */
off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
3;
bcopy(&opt[off], &dst, IP_ADDR_LEN);
ip1dbg(("ip_massage_options: last hop 0x%x\n",
ntohl(dst)));
/* Move down and overwrite */
opt[IP_ADDR_LEN] = opt[0];
opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
for (i = 0; i < IP_ADDR_LEN; i++)
opt[i] = IPOPT_NOP;
break;
}
}
return (dst);
}
/*
* Return the network mask
* associated with the specified address.
*/
ipaddr_t
ip_net_mask(ipaddr_t addr)
{
uchar_t *up = (uchar_t *)&addr;
ipaddr_t mask = 0;
uchar_t *maskp = (uchar_t *)&mask;
#if defined(__i386) || defined(__amd64)
#define TOTALLY_BRAIN_DAMAGED_C_COMPILER
#endif
#ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER
maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
#endif
if (CLASSD(addr)) {
maskp[0] = 0xF0;
return (mask);
}
/* We assume Class E default netmask to be 32 */
if (CLASSE(addr))
return (0xffffffffU);
if (addr == 0)
return (0);
maskp[0] = 0xFF;
if ((up[0] & 0x80) == 0)
return (mask);
maskp[1] = 0xFF;
if ((up[0] & 0xC0) == 0x80)
return (mask);
maskp[2] = 0xFF;
if ((up[0] & 0xE0) == 0xC0)
return (mask);
/* Otherwise return no mask */
return ((ipaddr_t)0);
}
/* Name/Value Table Lookup Routine */
char *
ip_nv_lookup(nv_t *nv, int value)
{
if (!nv)
return (NULL);
for (; nv->nv_name; nv++) {
if (nv->nv_value == value)
return (nv->nv_name);
}
return ("unknown");
}
static int
ip_wait_for_info_ack(ill_t *ill)
{
int err;
mutex_enter(&ill->ill_lock);
while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
/*
* Return value of 0 indicates a pending signal.
*/
err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
if (err == 0) {
mutex_exit(&ill->ill_lock);
return (EINTR);
}
}
mutex_exit(&ill->ill_lock);
/*
* ip_rput_other could have set an error in ill_error on
* receipt of M_ERROR.
*/
return (ill->ill_error);
}
/*
* This is a module open, i.e. this is a control stream for access
* to a DLPI device. We allocate an ill_t as the instance data in
* this case.
*/
static int
ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
ill_t *ill;
int err;
zoneid_t zoneid;
netstack_t *ns;
ip_stack_t *ipst;
/*
* Prevent unprivileged processes from pushing IP so that
* they can't send raw IP.
*/
if (secpolicy_net_rawaccess(credp) != 0)
return (EPERM);
ns = netstack_find_by_cred(credp);
ASSERT(ns != NULL);
ipst = ns->netstack_ip;
ASSERT(ipst != NULL);
/*
* For exclusive stacks we set the zoneid to zero
* to make IP operate as if in the global zone.
*/
if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
zoneid = GLOBAL_ZONEID;
else
zoneid = crgetzoneid(credp);
ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
q->q_ptr = WR(q)->q_ptr = ill;
ill->ill_ipst = ipst;
ill->ill_zoneid = zoneid;
/*
* ill_init initializes the ill fields and then sends down
* down a DL_INFO_REQ after calling qprocson.
*/
err = ill_init(q, ill);
if (err != 0) {
mi_free(ill);
netstack_rele(ipst->ips_netstack);
q->q_ptr = NULL;
WR(q)->q_ptr = NULL;
return (err);
}
/*
* Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
*
* ill_init initializes the ipsq marking this thread as
* writer
*/
ipsq_exit(ill->ill_phyint->phyint_ipsq);
err = ip_wait_for_info_ack(ill);
if (err == 0)
ill->ill_credp = credp;
else
goto fail;
crhold(credp);
mutex_enter(&ipst->ips_ip_mi_lock);
err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
sflag, credp);
mutex_exit(&ipst->ips_ip_mi_lock);
fail:
if (err) {
(void) ip_close(q, 0);
return (err);
}
return (0);
}
/* For /dev/ip aka AF_INET open */
int
ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
}
/* For /dev/ip6 aka AF_INET6 open */
int
ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
}
/* IP open routine. */
int
ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
boolean_t isv6)
{
conn_t *connp;
major_t maj;
zoneid_t zoneid;
netstack_t *ns;
ip_stack_t *ipst;
/* Allow reopen. */
if (q->q_ptr != NULL)
return (0);
if (sflag & MODOPEN) {
/* This is a module open */
return (ip_modopen(q, devp, flag, sflag, credp));
}
if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
/*
* Non streams based socket looking for a stream
* to access IP
*/
return (ip_helper_stream_setup(q, devp, flag, sflag,
credp, isv6));
}
ns = netstack_find_by_cred(credp);
ASSERT(ns != NULL);
ipst = ns->netstack_ip;
ASSERT(ipst != NULL);
/*
* For exclusive stacks we set the zoneid to zero
* to make IP operate as if in the global zone.
*/
if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
zoneid = GLOBAL_ZONEID;
else
zoneid = crgetzoneid(credp);
/*
* We are opening as a device. This is an IP client stream, and we
* allocate an conn_t as the instance data.
*/
connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
/*
* ipcl_conn_create did a netstack_hold. Undo the hold that was
* done by netstack_find_by_cred()
*/
netstack_rele(ipst->ips_netstack);
connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
connp->conn_ixa->ixa_zoneid = zoneid;
connp->conn_zoneid = zoneid;
connp->conn_rq = q;
q->q_ptr = WR(q)->q_ptr = connp;
/* Minor tells us which /dev entry was opened */
if (isv6) {
connp->conn_family = AF_INET6;
connp->conn_ipversion = IPV6_VERSION;
connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
} else {
connp->conn_family = AF_INET;
connp->conn_ipversion = IPV4_VERSION;
connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
}
if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
connp->conn_minor_arena = ip_minor_arena_la;
} else {
/*
* Either minor numbers in the large arena were exhausted
* or a non socket application is doing the open.
* Try to allocate from the small arena.
*/
if ((connp->conn_dev =
inet_minor_alloc(ip_minor_arena_sa)) == 0) {
/* CONN_DEC_REF takes care of netstack_rele() */
q->q_ptr = WR(q)->q_ptr = NULL;
CONN_DEC_REF(connp);
return (EBUSY);
}
connp->conn_minor_arena = ip_minor_arena_sa;
}
maj = getemajor(*devp);
*devp = makedevice(maj, (minor_t)connp->conn_dev);
/*
* connp->conn_cred is crfree()ed in ipcl_conn_destroy()
*/
connp->conn_cred = credp;
connp->conn_cpid = curproc->p_pid;
/* Cache things in ixa without an extra refhold */
ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
connp->conn_ixa->ixa_cred = connp->conn_cred;
connp->conn_ixa->ixa_cpid = connp->conn_cpid;
if (is_system_labeled())
connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
/*
* Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
*/
connp->conn_recv = ip_conn_input;
connp->conn_recvicmp = ip_conn_input_icmp;
crhold(connp->conn_cred);
/*
* If the caller has the process-wide flag set, then default to MAC
* exempt mode. This allows read-down to unlabeled hosts.
*/
if (getpflags(NET_MAC_AWARE, credp) != 0)
connp->conn_mac_mode = CONN_MAC_AWARE;
connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
connp->conn_rq = q;
connp->conn_wq = WR(q);
/* Non-zero default values */
connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
/*
* Make the conn globally visible to walkers
*/
ASSERT(connp->conn_ref == 1);
mutex_enter(&connp->conn_lock);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
qprocson(q);
return (0);
}
/*
* Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
* all of them are copied to the conn_t. If the req is "zero", the policy is
* zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
* fields.
* We keep only the latest setting of the policy and thus policy setting
* is not incremental/cumulative.
*
* Requests to set policies with multiple alternative actions will
* go through a different API.
*/
int
ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
{
uint_t ah_req = 0;
uint_t esp_req = 0;
uint_t se_req = 0;
ipsec_act_t *actp = NULL;
uint_t nact;
ipsec_policy_head_t *ph;
boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
int error = 0;
netstack_t *ns = connp->conn_netstack;
ip_stack_t *ipst = ns->netstack_ip;
ipsec_stack_t *ipss = ns->netstack_ipsec;
#define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
/*
* The IP_SEC_OPT option does not allow variable length parameters,
* hence a request cannot be NULL.
*/
if (req == NULL)
return (EINVAL);
ah_req = req->ipsr_ah_req;
esp_req = req->ipsr_esp_req;
se_req = req->ipsr_self_encap_req;
/* Don't allow setting self-encap without one or more of AH/ESP. */
if (se_req != 0 && esp_req == 0 && ah_req == 0)
return (EINVAL);
/*
* Are we dealing with a request to reset the policy (i.e.
* zero requests).
*/
is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
(esp_req & REQ_MASK) == 0 &&
(se_req & REQ_MASK) == 0);
if (!is_pol_reset) {
/*
* If we couldn't load IPsec, fail with "protocol
* not supported".
* IPsec may not have been loaded for a request with zero
* policies, so we don't fail in this case.
*/
mutex_enter(&ipss->ipsec_loader_lock);
if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
mutex_exit(&ipss->ipsec_loader_lock);
return (EPROTONOSUPPORT);
}
mutex_exit(&ipss->ipsec_loader_lock);
/*
* Test for valid requests. Invalid algorithms
* need to be tested by IPsec code because new
* algorithms can be added dynamically.
*/
if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
(esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
(se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
return (EINVAL);
}
/*
* Only privileged users can issue these
* requests.
*/
if (((ah_req & IPSEC_PREF_NEVER) ||
(esp_req & IPSEC_PREF_NEVER) ||
(se_req & IPSEC_PREF_NEVER)) &&
secpolicy_ip_config(cr, B_FALSE) != 0) {
return (EPERM);
}
/*
* The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
* are mutually exclusive.
*/
if (((ah_req & REQ_MASK) == REQ_MASK) ||
((esp_req & REQ_MASK) == REQ_MASK) ||
((se_req & REQ_MASK) == REQ_MASK)) {
/* Both of them are set */
return (EINVAL);
}
}
ASSERT(MUTEX_HELD(&connp->conn_lock));
/*
* If we have already cached policies in conn_connect(), don't
* let them change now. We cache policies for connections
* whose src,dst [addr, port] is known.
*/
if (connp->conn_policy_cached) {
return (EINVAL);
}
/*
* We have a zero policies, reset the connection policy if already
* set. This will cause the connection to inherit the
* global policy, if any.
*/
if (is_pol_reset) {
if (connp->conn_policy != NULL) {
IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
connp->conn_policy = NULL;
}
connp->conn_in_enforce_policy = B_FALSE;
connp->conn_out_enforce_policy = B_FALSE;
return (0);
}
ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
ipst->ips_netstack);
if (ph == NULL)
goto enomem;
ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
if (actp == NULL)
goto enomem;
/*
* Always insert IPv4 policy entries, since they can also apply to
* ipv6 sockets being used in ipv4-compat mode.
*/
if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
IPSEC_TYPE_INBOUND, ns))
goto enomem;
is_pol_inserted = B_TRUE;
if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
IPSEC_TYPE_OUTBOUND, ns))
goto enomem;
/*
* We're looking at a v6 socket, also insert the v6-specific
* entries.
*/
if (connp->conn_family == AF_INET6) {
if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
IPSEC_TYPE_INBOUND, ns))
goto enomem;
if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
IPSEC_TYPE_OUTBOUND, ns))
goto enomem;
}
ipsec_actvec_free(actp, nact);
/*
* If the requests need security, set enforce_policy.
* If the requests are IPSEC_PREF_NEVER, one should
* still set conn_out_enforce_policy so that ip_set_destination
* marks the ip_xmit_attr_t appropriatly. This is needed so that
* for connections that we don't cache policy in at connect time,
* if global policy matches in ip_output_attach_policy, we
* don't wrongly inherit global policy. Similarly, we need
* to set conn_in_enforce_policy also so that we don't verify
* policy wrongly.
*/
if ((ah_req & REQ_MASK) != 0 ||
(esp_req & REQ_MASK) != 0 ||
(se_req & REQ_MASK) != 0) {
connp->conn_in_enforce_policy = B_TRUE;
connp->conn_out_enforce_policy = B_TRUE;
}
return (error);
#undef REQ_MASK
/*
* Common memory-allocation-failure exit path.
*/
enomem:
if (actp != NULL)
ipsec_actvec_free(actp, nact);
if (is_pol_inserted)
ipsec_polhead_flush(ph, ns);
return (ENOMEM);
}
/*
* Set socket options for joining and leaving multicast groups.
* Common to IPv4 and IPv6; inet6 indicates the type of socket.
* The caller has already check that the option name is consistent with
* the address family of the socket.
*/
int
ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
{
int *i1 = (int *)invalp;
int error = 0;
ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
struct ip_mreq *v4_mreqp;
struct ipv6_mreq *v6_mreqp;
struct group_req *greqp;
ire_t *ire;
boolean_t done = B_FALSE;
ipaddr_t ifaddr;
in6_addr_t v6group;
uint_t ifindex;
boolean_t mcast_opt = B_TRUE;
mcast_record_t fmode;
int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
switch (name) {
case IP_ADD_MEMBERSHIP:
case IPV6_JOIN_GROUP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_JOIN_GROUP:
fmode = MODE_IS_EXCLUDE;
optfn = ip_opt_add_group;
break;
case IP_DROP_MEMBERSHIP:
case IPV6_LEAVE_GROUP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_LEAVE_GROUP:
fmode = MODE_IS_INCLUDE;
optfn = ip_opt_delete_group;
break;
default:
ASSERT(0);
}
if (mcast_opt) {
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
greqp = (struct group_req *)i1;
if (greqp->gr_group.ss_family == AF_INET) {
sin = (struct sockaddr_in *)&(greqp->gr_group);
IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
} else {
if (!inet6)
return (EINVAL); /* Not on INET socket */
sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
v6group = sin6->sin6_addr;
}
ifaddr = INADDR_ANY;
ifindex = greqp->gr_interface;
} else if (inet6) {
v6_mreqp = (struct ipv6_mreq *)i1;
v6group = v6_mreqp->ipv6mr_multiaddr;
ifaddr = INADDR_ANY;
ifindex = v6_mreqp->ipv6mr_interface;
} else {
v4_mreqp = (struct ip_mreq *)i1;
IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
ifindex = 0;
}
/*
* In the multirouting case, we need to replicate
* the request on all interfaces that will take part
* in replication. We do so because multirouting is
* reflective, thus we will probably receive multi-
* casts on those interfaces.
* The ip_multirt_apply_membership() succeeds if
* the operation succeeds on at least one interface.
*/
if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
ipaddr_t group;
IN6_V4MAPPED_TO_IPADDR(&v6group, group);
ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
} else {
ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
}
if (ire != NULL) {
if (ire->ire_flags & RTF_MULTIRT) {
error = ip_multirt_apply_membership(optfn, ire, connp,
checkonly, &v6group, fmode, &ipv6_all_zeros);
done = B_TRUE;
}
ire_refrele(ire);
}
if (!done) {
error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
fmode, &ipv6_all_zeros);
}
return (error);
}
/*
* Set socket options for joining and leaving multicast groups
* for specific sources.
* Common to IPv4 and IPv6; inet6 indicates the type of socket.
* The caller has already check that the option name is consistent with
* the address family of the socket.
*/
int
ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
{
int *i1 = (int *)invalp;
int error = 0;
ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
struct ip_mreq_source *imreqp;
struct group_source_req *gsreqp;
in6_addr_t v6group, v6src;
uint32_t ifindex;
ipaddr_t ifaddr;
boolean_t mcast_opt = B_TRUE;
mcast_record_t fmode;
ire_t *ire;
boolean_t done = B_FALSE;
int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
switch (name) {
case IP_BLOCK_SOURCE:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_BLOCK_SOURCE:
fmode = MODE_IS_EXCLUDE;
optfn = ip_opt_add_group;
break;
case IP_UNBLOCK_SOURCE:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_UNBLOCK_SOURCE:
fmode = MODE_IS_EXCLUDE;
optfn = ip_opt_delete_group;
break;
case IP_ADD_SOURCE_MEMBERSHIP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_JOIN_SOURCE_GROUP:
fmode = MODE_IS_INCLUDE;
optfn = ip_opt_add_group;
break;
case IP_DROP_SOURCE_MEMBERSHIP:
mcast_opt = B_FALSE;
/* FALLTHRU */
case MCAST_LEAVE_SOURCE_GROUP:
fmode = MODE_IS_INCLUDE;
optfn = ip_opt_delete_group;
break;
default:
ASSERT(0);
}
if (mcast_opt) {
gsreqp = (struct group_source_req *)i1;
ifindex = gsreqp->gsr_interface;
if (gsreqp->gsr_group.ss_family == AF_INET) {
struct sockaddr_in *s;
s = (struct sockaddr_in *)&gsreqp->gsr_group;
IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
s = (struct sockaddr_in *)&gsreqp->gsr_source;
IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
} else {
struct sockaddr_in6 *s6;
if (!inet6)
return (EINVAL); /* Not on INET socket */
s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
v6group = s6->sin6_addr;
s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
v6src = s6->sin6_addr;
}
ifaddr = INADDR_ANY;
} else {
imreqp = (struct ip_mreq_source *)i1;
IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
ifindex = 0;
}
/*
* Handle src being mapped INADDR_ANY by changing it to unspecified.
*/
if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
v6src = ipv6_all_zeros;
/*
* In the multirouting case, we need to replicate
* the request as noted in the mcast cases above.
*/
if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
ipaddr_t group;
IN6_V4MAPPED_TO_IPADDR(&v6group, group);
ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
} else {
ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
}
if (ire != NULL) {
if (ire->ire_flags & RTF_MULTIRT) {
error = ip_multirt_apply_membership(optfn, ire, connp,
checkonly, &v6group, fmode, &v6src);
done = B_TRUE;
}
ire_refrele(ire);
}
if (!done) {
error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
fmode, &v6src);
}
return (error);
}
/*
* Given a destination address and a pointer to where to put the information
* this routine fills in the mtuinfo.
* The socket must be connected.
* For sctp conn_faddr is the primary address.
*/
int
ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
{
uint32_t pmtu = IP_MAXPACKET;
uint_t scopeid;
if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
return (-1);
/* In case we never sent or called ip_set_destination_v4/v6 */
if (ixa->ixa_ire != NULL)
pmtu = ip_get_pmtu(ixa);
if (ixa->ixa_flags & IXAF_SCOPEID_SET)
scopeid = ixa->ixa_scopeid;
else
scopeid = 0;
bzero(mtuinfo, sizeof (*mtuinfo));
mtuinfo->ip6m_addr.sin6_family = AF_INET6;
mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
mtuinfo->ip6m_mtu = pmtu;
return (sizeof (struct ip6_mtuinfo));
}
/*
* When the src multihoming is changed from weak to [strong, preferred]
* ip_ire_rebind_walker is called to walk the list of all ire_t entries
* and identify routes that were created by user-applications in the
* unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
* currently defined. These routes are then 'rebound', i.e., their ire_ill
* is selected by finding an interface route for the gateway.
*/
/* ARGSUSED */
void
ip_ire_rebind_walker(ire_t *ire, void *notused)
{
if (!ire->ire_unbound || ire->ire_ill != NULL)
return;
ire_rebind(ire);
ire_delete(ire);
}
/*
* When the src multihoming is changed from [strong, preferred] to weak,
* ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
* set any entries that were created by user-applications in the unbound state
* (i.e., without RTA_IFP) back to having a NULL ire_ill.
*/
/* ARGSUSED */
void
ip_ire_unbind_walker(ire_t *ire, void *notused)
{
ire_t *new_ire;
if (!ire->ire_unbound || ire->ire_ill == NULL)
return;
if (ire->ire_ipversion == IPV6_VERSION) {
new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
&ire->ire_gateway_addr_v6, ire->ire_type, NULL,
ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
} else {
new_ire = ire_create((uchar_t *)&ire->ire_addr,
(uchar_t *)&ire->ire_mask,
(uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
}
if (new_ire == NULL)
return;
new_ire->ire_unbound = B_TRUE;
/*
* The bound ire must first be deleted so that we don't return
* the existing one on the attempt to add the unbound new_ire.
*/
ire_delete(ire);
new_ire = ire_add(new_ire);
if (new_ire != NULL)
ire_refrele(new_ire);
}
/*
* When the settings of ip*_strict_src_multihoming tunables are changed,
* all cached routes need to be recomputed. This recomputation needs to be
* done when going from weaker to stronger modes so that the cached ire
* for the connection does not violate the current ip*_strict_src_multihoming
* setting. It also needs to be done when going from stronger to weaker modes,
* so that we fall back to matching on the longest-matching-route (as opposed
* to a shorter match that may have been selected in the strong mode
* to satisfy src_multihoming settings).
*
* The cached ixa_ire entires for all conn_t entries are marked as
* "verify" so that they will be recomputed for the next packet.
*/
void
conn_ire_revalidate(conn_t *connp, void *arg)
{
boolean_t isv6 = (boolean_t)arg;
if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
(!isv6 && connp->conn_ipversion != IPV4_VERSION))
return;
connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
}
/*
* Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
* When an ipf is passed here for the first time, if
* we already have in-order fragments on the queue, we convert from the fast-
* path reassembly scheme to the hard-case scheme. From then on, additional
* fragments are reassembled here. We keep track of the start and end offsets
* of each piece, and the number of holes in the chain. When the hole count
* goes to zero, we are done!
*
* The ipf_count will be updated to account for any mblk(s) added (pointed to
* by mp) or subtracted (freeb()ed dups), upon return the caller must update
* ipfb_count and ill_frag_count by the difference of ipf_count before and
* after the call to ip_reassemble().
*/
int
ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
size_t msg_len)
{
uint_t end;
mblk_t *next_mp;
mblk_t *mp1;
uint_t offset;
boolean_t incr_dups = B_TRUE;
boolean_t offset_zero_seen = B_FALSE;
boolean_t pkt_boundary_checked = B_FALSE;
/* If start == 0 then ipf_nf_hdr_len has to be set. */
ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
/* Add in byte count */
ipf->ipf_count += msg_len;
if (ipf->ipf_end) {
/*
* We were part way through in-order reassembly, but now there
* is a hole. We walk through messages already queued, and
* mark them for hard case reassembly. We know that up till
* now they were in order starting from offset zero.
*/
offset = 0;
for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
IP_REASS_SET_START(mp1, offset);
if (offset == 0) {
ASSERT(ipf->ipf_nf_hdr_len != 0);
offset = -ipf->ipf_nf_hdr_len;
}
offset += mp1->b_wptr - mp1->b_rptr;
IP_REASS_SET_END(mp1, offset);
}
/* One hole at the end. */
ipf->ipf_hole_cnt = 1;
/* Brand it as a hard case, forever. */
ipf->ipf_end = 0;
}
/* Walk through all the new pieces. */
do {
end = start + (mp->b_wptr - mp->b_rptr);
/*
* If start is 0, decrease 'end' only for the first mblk of
* the fragment. Otherwise 'end' can get wrong value in the
* second pass of the loop if first mblk is exactly the
* size of ipf_nf_hdr_len.
*/
if (start == 0 && !offset_zero_seen) {
/* First segment */
ASSERT(ipf->ipf_nf_hdr_len != 0);
end -= ipf->ipf_nf_hdr_len;
offset_zero_seen = B_TRUE;
}
next_mp = mp->b_cont;
/*
* We are checking to see if there is any interesing data
* to process. If there isn't and the mblk isn't the
* one which carries the unfragmentable header then we
* drop it. It's possible to have just the unfragmentable
* header come through without any data. That needs to be
* saved.
*
* If the assert at the top of this function holds then the
* term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code
* is infrequently traveled enough that the test is left in
* to protect against future code changes which break that
* invariant.
*/
if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
/* Empty. Blast it. */
IP_REASS_SET_START(mp, 0);
IP_REASS_SET_END(mp, 0);
/*
* If the ipf points to the mblk we are about to free,
* update ipf to point to the next mblk (or NULL
* if none).
*/
if (ipf->ipf_mp->b_cont == mp)
ipf->ipf_mp->b_cont = next_mp;
freeb(mp);
continue;
}
mp->b_cont = NULL;
IP_REASS_SET_START(mp, start);
IP_REASS_SET_END(mp, end);
if (!ipf->ipf_tail_mp) {
ipf->ipf_tail_mp = mp;
ipf->ipf_mp->b_cont = mp;
if (start == 0 || !more) {
ipf->ipf_hole_cnt = 1;
/*
* if the first fragment comes in more than one
* mblk, this loop will be executed for each
* mblk. Need to adjust hole count so exiting
* this routine will leave hole count at 1.
*/
if (next_mp)
ipf->ipf_hole_cnt++;
} else
ipf->ipf_hole_cnt = 2;
continue;
} else if (ipf->ipf_last_frag_seen && !more &&
!pkt_boundary_checked) {
/*
* We check datagram boundary only if this fragment
* claims to be the last fragment and we have seen a
* last fragment in the past too. We do this only
* once for a given fragment.
*
* start cannot be 0 here as fragments with start=0
* and MF=0 gets handled as a complete packet. These
* fragments should not reach here.
*/
if (start + msgdsize(mp) !=
IP_REASS_END(ipf->ipf_tail_mp)) {
/*
* We have two fragments both of which claim
* to be the last fragment but gives conflicting
* information about the whole datagram size.
* Something fishy is going on. Drop the
* fragment and free up the reassembly list.
*/
return (IP_REASS_FAILED);
}
/*
* We shouldn't come to this code block again for this
* particular fragment.
*/
pkt_boundary_checked = B_TRUE;
}
/* New stuff at or beyond tail? */
offset = IP_REASS_END(ipf->ipf_tail_mp);
if (start >= offset) {
if (ipf->ipf_last_frag_seen) {
/* current fragment is beyond last fragment */
return (IP_REASS_FAILED);
}
/* Link it on end. */
ipf->ipf_tail_mp->b_cont = mp;
ipf->ipf_tail_mp = mp;
if (more) {
if (start != offset)
ipf->ipf_hole_cnt++;
} else if (start == offset && next_mp == NULL)
ipf->ipf_hole_cnt--;
continue;
}
mp1 = ipf->ipf_mp->b_cont;
offset = IP_REASS_START(mp1);
/* New stuff at the front? */
if (start < offset) {
if (start == 0) {
if (end >= offset) {
/* Nailed the hole at the begining. */
ipf->ipf_hole_cnt--;
}
} else if (end < offset) {
/*
* A hole, stuff, and a hole where there used
* to be just a hole.
*/
ipf->ipf_hole_cnt++;
}
mp->b_cont = mp1;
/* Check for overlap. */
while (end > offset) {
if (end < IP_REASS_END(mp1)) {
mp->b_wptr -= end - offset;
IP_REASS_SET_END(mp, offset);
BUMP_MIB(ill->ill_ip_mib,
ipIfStatsReasmPartDups);
break;
}
/* Did we cover another hole? */
if ((mp1->b_cont &&
IP_REASS_END(mp1) !=
IP_REASS_START(mp1->b_cont) &&
end >= IP_REASS_START(mp1->b_cont)) ||
(!ipf->ipf_last_frag_seen && !more)) {
ipf->ipf_hole_cnt--;
}
/* Clip out mp1. */
if ((mp->b_cont = mp1->b_cont) == NULL) {
/*
* After clipping out mp1, this guy
* is now hanging off the end.
*/
ipf->ipf_tail_mp = mp;
}
IP_REASS_SET_START(mp1, 0);
IP_REASS_SET_END(mp1, 0);
/* Subtract byte count */
ipf->ipf_count -= mp1->b_datap->db_lim -
mp1->b_datap->db_base;
freeb(mp1);
BUMP_MIB(ill->ill_ip_mib,
ipIfStatsReasmPartDups);
mp1 = mp->b_cont;
if (!mp1)
break;
offset = IP_REASS_START(mp1);
}
ipf->ipf_mp->b_cont = mp;
continue;
}
/*
* The new piece starts somewhere between the start of the head
* and before the end of the tail.
*/
for (; mp1; mp1 = mp1->b_cont) {
offset = IP_REASS_END(mp1);
if (start < offset) {
if (end <= offset) {
/* Nothing new. */
IP_REASS_SET_START(mp, 0);
IP_REASS_SET_END(mp, 0);
/* Subtract byte count */
ipf->ipf_count -= mp->b_datap->db_lim -
mp->b_datap->db_base;
if (incr_dups) {
ipf->ipf_num_dups++;
incr_dups = B_FALSE;
}
freeb(mp);
BUMP_MIB(ill->ill_ip_mib,
ipIfStatsReasmDuplicates);
break;
}
/*
* Trim redundant stuff off beginning of new
* piece.
*/
IP_REASS_SET_START(mp, offset);
mp->b_rptr += offset - start;
BUMP_MIB(ill->ill_ip_mib,
ipIfStatsReasmPartDups);
start = offset;
if (!mp1->b_cont) {
/*
* After trimming, this guy is now
* hanging off the end.
*/
mp1->b_cont = mp;
ipf->ipf_tail_mp = mp;
if (!more) {
ipf->ipf_hole_cnt--;
}
break;
}
}
if (start >= IP_REASS_START(mp1->b_cont))
continue;
/* Fill a hole */
if (start > offset)
ipf->ipf_hole_cnt++;
mp->b_cont = mp1->b_cont;
mp1->b_cont = mp;
mp1 = mp->b_cont;
offset = IP_REASS_START(mp1);
if (end >= offset) {
ipf->ipf_hole_cnt--;
/* Check for overlap. */
while (end > offset) {
if (end < IP_REASS_END(mp1)) {
mp->b_wptr -= end - offset;
IP_REASS_SET_END(mp, offset);
/*
* TODO we might bump
* this up twice if there is
* overlap at both ends.
*/
BUMP_MIB(ill->ill_ip_mib,
ipIfStatsReasmPartDups);
break;
}
/* Did we cover another hole? */
if ((mp1->b_cont &&
IP_REASS_END(mp1)
!= IP_REASS_START(mp1->b_cont) &&
end >=
IP_REASS_START(mp1->b_cont)) ||
(!ipf->ipf_last_frag_seen &&
!more)) {
ipf->ipf_hole_cnt--;
}
/* Clip out mp1. */
if ((mp->b_cont = mp1->b_cont) ==
NULL) {
/*
* After clipping out mp1,
* this guy is now hanging
* off the end.
*/
ipf->ipf_tail_mp = mp;
}
IP_REASS_SET_START(mp1, 0);
IP_REASS_SET_END(mp1, 0);
/* Subtract byte count */
ipf->ipf_count -=
mp1->b_datap->db_lim -
mp1->b_datap->db_base;
freeb(mp1);
BUMP_MIB(ill->ill_ip_mib,
ipIfStatsReasmPartDups);
mp1 = mp->b_cont;
if (!mp1)
break;
offset = IP_REASS_START(mp1);
}
}
break;
}
} while (start = end, mp = next_mp);
/* Fragment just processed could be the last one. Remember this fact */
if (!more)
ipf->ipf_last_frag_seen = B_TRUE;
/* Still got holes? */
if (ipf->ipf_hole_cnt)
return (IP_REASS_PARTIAL);
/* Clean up overloaded fields to avoid upstream disasters. */
for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
IP_REASS_SET_START(mp1, 0);
IP_REASS_SET_END(mp1, 0);
}
return (IP_REASS_COMPLETE);
}
/*
* Fragmentation reassembly. Each ILL has a hash table for
* queuing packets undergoing reassembly for all IPIFs
* associated with the ILL. The hash is based on the packet
* IP ident field. The ILL frag hash table was allocated
* as a timer block at the time the ILL was created. Whenever
* there is anything on the reassembly queue, the timer will
* be running. Returns the reassembled packet if reassembly completes.
*/
mblk_t *
ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
{
uint32_t frag_offset_flags;
mblk_t *t_mp;
ipaddr_t dst;
uint8_t proto = ipha->ipha_protocol;
uint32_t sum_val;
uint16_t sum_flags;
ipf_t *ipf;
ipf_t **ipfp;
ipfb_t *ipfb;
uint16_t ident;
uint32_t offset;
ipaddr_t src;
uint_t hdr_length;
uint32_t end;
mblk_t *mp1;
mblk_t *tail_mp;
size_t count;
size_t msg_len;
uint8_t ecn_info = 0;
uint32_t packet_size;
boolean_t pruned = B_FALSE;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
/*
* Drop the fragmented as early as possible, if
* we don't have resource(s) to re-assemble.
*/
if (ipst->ips_ip_reass_queue_bytes == 0) {
freemsg(mp);
return (NULL);
}
/* Check for fragmentation offset; return if there's none */
if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
(IPH_MF | IPH_OFFSET)) == 0)
return (mp);
/*
* We utilize hardware computed checksum info only for UDP since
* IP fragmentation is a normal occurrence for the protocol. In
* addition, checksum offload support for IP fragments carrying
* UDP payload is commonly implemented across network adapters.
*/
ASSERT(ira->ira_rill != NULL);
if (proto == IPPROTO_UDP && dohwcksum &&
ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
(DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
mblk_t *mp1 = mp->b_cont;
int32_t len;
/* Record checksum information from the packet */
sum_val = (uint32_t)DB_CKSUM16(mp);
sum_flags = DB_CKSUMFLAGS(mp);
/* IP payload offset from beginning of mblk */
offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
if ((sum_flags & HCK_PARTIALCKSUM) &&
(mp1 == NULL || mp1->b_cont == NULL) &&
offset >= DB_CKSUMSTART(mp) &&
((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
uint32_t adj;
/*
* Partial checksum has been calculated by hardware
* and attached to the packet; in addition, any
* prepended extraneous data is even byte aligned.
* If any such data exists, we adjust the checksum;
* this would also handle any postpended data.
*/
IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
mp, mp1, len, adj);
/* One's complement subtract extraneous checksum */
if (adj >= sum_val)
sum_val = ~(adj - sum_val) & 0xFFFF;
else
sum_val -= adj;
}
} else {
sum_val = 0;
sum_flags = 0;
}
/* Clear hardware checksumming flag */
DB_CKSUMFLAGS(mp) = 0;
ident = ipha->ipha_ident;
offset = (frag_offset_flags << 3) & 0xFFFF;
src = ipha->ipha_src;
dst = ipha->ipha_dst;
hdr_length = IPH_HDR_LENGTH(ipha);
end = ntohs(ipha->ipha_length) - hdr_length;
/* If end == 0 then we have a packet with no data, so just free it */
if (end == 0) {
freemsg(mp);
return (NULL);
}
/* Record the ECN field info. */
ecn_info = (ipha->ipha_type_of_service & 0x3);
if (offset != 0) {
/*
* If this isn't the first piece, strip the header, and
* add the offset to the end value.
*/
mp->b_rptr += hdr_length;
end += offset;
}
/* Handle vnic loopback of fragments */
if (mp->b_datap->db_ref > 2)
msg_len = 0;
else
msg_len = MBLKSIZE(mp);
tail_mp = mp;
while (tail_mp->b_cont != NULL) {
tail_mp = tail_mp->b_cont;
if (tail_mp->b_datap->db_ref <= 2)
msg_len += MBLKSIZE(tail_mp);
}
/* If the reassembly list for this ILL will get too big, prune it */
if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
ipst->ips_ip_reass_queue_bytes) {
DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
uint_t, ill->ill_frag_count,
uint_t, ipst->ips_ip_reass_queue_bytes);
ill_frag_prune(ill,
(ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
(ipst->ips_ip_reass_queue_bytes - msg_len));
pruned = B_TRUE;
}
ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
mutex_enter(&ipfb->ipfb_lock);
ipfp = &ipfb->ipfb_ipf;
/* Try to find an existing fragment queue for this packet. */
for (;;) {
ipf = ipfp[0];
if (ipf != NULL) {
/*
* It has to match on ident and src/dst address.
*/
if (ipf->ipf_ident == ident &&
ipf->ipf_src == src &&
ipf->ipf_dst == dst &&
ipf->ipf_protocol == proto) {
/*
* If we have received too many
* duplicate fragments for this packet
* free it.
*/
if (ipf->ipf_num_dups > ip_max_frag_dups) {
ill_frag_free_pkts(ill, ipfb, ipf, 1);
freemsg(mp);
mutex_exit(&ipfb->ipfb_lock);
return (NULL);
}
/* Found it. */
break;
}
ipfp = &ipf->ipf_hash_next;
continue;
}
/*
* If we pruned the list, do we want to store this new
* fragment?. We apply an optimization here based on the
* fact that most fragments will be received in order.
* So if the offset of this incoming fragment is zero,
* it is the first fragment of a new packet. We will
* keep it. Otherwise drop the fragment, as we have
* probably pruned the packet already (since the
* packet cannot be found).
*/
if (pruned && offset != 0) {
mutex_exit(&ipfb->ipfb_lock);
freemsg(mp);
return (NULL);
}
if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) {
/*
* Too many fragmented packets in this hash
* bucket. Free the oldest.
*/
ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
}
/* New guy. Allocate a frag message. */
mp1 = allocb(sizeof (*ipf), BPRI_MED);
if (mp1 == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", mp, ill);
freemsg(mp);
reass_done:
mutex_exit(&ipfb->ipfb_lock);
return (NULL);
}
BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
mp1->b_cont = mp;
/* Initialize the fragment header. */
ipf = (ipf_t *)mp1->b_rptr;
ipf->ipf_mp = mp1;
ipf->ipf_ptphn = ipfp;
ipfp[0] = ipf;
ipf->ipf_hash_next = NULL;
ipf->ipf_ident = ident;
ipf->ipf_protocol = proto;
ipf->ipf_src = src;
ipf->ipf_dst = dst;
ipf->ipf_nf_hdr_len = 0;
/* Record reassembly start time. */
ipf->ipf_timestamp = gethrestime_sec();
/* Record ipf generation and account for frag header */
ipf->ipf_gen = ill->ill_ipf_gen++;
ipf->ipf_count = MBLKSIZE(mp1);
ipf->ipf_last_frag_seen = B_FALSE;
ipf->ipf_ecn = ecn_info;
ipf->ipf_num_dups = 0;
ipfb->ipfb_frag_pkts++;
ipf->ipf_checksum = 0;
ipf->ipf_checksum_flags = 0;
/* Store checksum value in fragment header */
if (sum_flags != 0) {
sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
ipf->ipf_checksum = sum_val;
ipf->ipf_checksum_flags = sum_flags;
}
/*
* We handle reassembly two ways. In the easy case,
* where all the fragments show up in order, we do
* minimal bookkeeping, and just clip new pieces on
* the end. If we ever see a hole, then we go off
* to ip_reassemble which has to mark the pieces and
* keep track of the number of holes, etc. Obviously,
* the point of having both mechanisms is so we can
* handle the easy case as efficiently as possible.
*/
if (offset == 0) {
/* Easy case, in-order reassembly so far. */
ipf->ipf_count += msg_len;
ipf->ipf_tail_mp = tail_mp;
/*
* Keep track of next expected offset in
* ipf_end.
*/
ipf->ipf_end = end;
ipf->ipf_nf_hdr_len = hdr_length;
} else {
/* Hard case, hole at the beginning. */
ipf->ipf_tail_mp = NULL;
/*
* ipf_end == 0 means that we have given up
* on easy reassembly.
*/
ipf->ipf_end = 0;
/* Forget checksum offload from now on */
ipf->ipf_checksum_flags = 0;
/*
* ipf_hole_cnt is set by ip_reassemble.
* ipf_count is updated by ip_reassemble.
* No need to check for return value here
* as we don't expect reassembly to complete
* or fail for the first fragment itself.
*/
(void) ip_reassemble(mp, ipf,
(frag_offset_flags & IPH_OFFSET) << 3,
(frag_offset_flags & IPH_MF), ill, msg_len);
}
/* Update per ipfb and ill byte counts */
ipfb->ipfb_count += ipf->ipf_count;
ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
/* If the frag timer wasn't already going, start it. */
mutex_enter(&ill->ill_lock);
ill_frag_timer_start(ill);
mutex_exit(&ill->ill_lock);
goto reass_done;
}
/*
* If the packet's flag has changed (it could be coming up
* from an interface different than the previous, therefore
* possibly different checksum capability), then forget about
* any stored checksum states. Otherwise add the value to
* the existing one stored in the fragment header.
*/
if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
sum_val += ipf->ipf_checksum;
sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
ipf->ipf_checksum = sum_val;
} else if (ipf->ipf_checksum_flags != 0) {
/* Forget checksum offload from now on */
ipf->ipf_checksum_flags = 0;
}
/*
* We have a new piece of a datagram which is already being
* reassembled. Update the ECN info if all IP fragments
* are ECN capable. If there is one which is not, clear
* all the info. If there is at least one which has CE
* code point, IP needs to report that up to transport.
*/
if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
if (ecn_info == IPH_ECN_CE)
ipf->ipf_ecn = IPH_ECN_CE;
} else {
ipf->ipf_ecn = IPH_ECN_NECT;
}
if (offset && ipf->ipf_end == offset) {
/* The new fragment fits at the end */
ipf->ipf_tail_mp->b_cont = mp;
/* Update the byte count */
ipf->ipf_count += msg_len;
/* Update per ipfb and ill byte counts */
ipfb->ipfb_count += msg_len;
ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
atomic_add_32(&ill->ill_frag_count, msg_len);
if (frag_offset_flags & IPH_MF) {
/* More to come. */
ipf->ipf_end = end;
ipf->ipf_tail_mp = tail_mp;
goto reass_done;
}
} else {
/* Go do the hard cases. */
int ret;
if (offset == 0)
ipf->ipf_nf_hdr_len = hdr_length;
/* Save current byte count */
count = ipf->ipf_count;
ret = ip_reassemble(mp, ipf,
(frag_offset_flags & IPH_OFFSET) << 3,
(frag_offset_flags & IPH_MF), ill, msg_len);
/* Count of bytes added and subtracted (freeb()ed) */
count = ipf->ipf_count - count;
if (count) {
/* Update per ipfb and ill byte counts */
ipfb->ipfb_count += count;
ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
atomic_add_32(&ill->ill_frag_count, count);
}
if (ret == IP_REASS_PARTIAL) {
goto reass_done;
} else if (ret == IP_REASS_FAILED) {
/* Reassembly failed. Free up all resources */
ill_frag_free_pkts(ill, ipfb, ipf, 1);
for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
IP_REASS_SET_START(t_mp, 0);
IP_REASS_SET_END(t_mp, 0);
}
freemsg(mp);
goto reass_done;
}
/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
}
/*
* We have completed reassembly. Unhook the frag header from
* the reassembly list.
*
* Before we free the frag header, record the ECN info
* to report back to the transport.
*/
ecn_info = ipf->ipf_ecn;
BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
ipfp = ipf->ipf_ptphn;
/* We need to supply these to caller */
if ((sum_flags = ipf->ipf_checksum_flags) != 0)
sum_val = ipf->ipf_checksum;
else
sum_val = 0;
mp1 = ipf->ipf_mp;
count = ipf->ipf_count;
ipf = ipf->ipf_hash_next;
if (ipf != NULL)
ipf->ipf_ptphn = ipfp;
ipfp[0] = ipf;
atomic_add_32(&ill->ill_frag_count, -count);
ASSERT(ipfb->ipfb_count >= count);
ipfb->ipfb_count -= count;
ipfb->ipfb_frag_pkts--;
mutex_exit(&ipfb->ipfb_lock);
/* Ditch the frag header. */
mp = mp1->b_cont;
freeb(mp1);
/* Restore original IP length in header. */
packet_size = (uint32_t)msgdsize(mp);
if (packet_size > IP_MAXPACKET) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
ip_drop_input("Reassembled packet too large", mp, ill);
freemsg(mp);
return (NULL);
}
if (DB_REF(mp) > 1) {
mblk_t *mp2 = copymsg(mp);
if (mp2 == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", mp, ill);
freemsg(mp);
return (NULL);
}
freemsg(mp);
mp = mp2;
}
ipha = (ipha_t *)mp->b_rptr;
ipha->ipha_length = htons((uint16_t)packet_size);
/* We're now complete, zip the frag state */
ipha->ipha_fragment_offset_and_flags = 0;
/* Record the ECN info. */
ipha->ipha_type_of_service &= 0xFC;
ipha->ipha_type_of_service |= ecn_info;
/* Update the receive attributes */
ira->ira_pktlen = packet_size;
ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
/* Reassembly is successful; set checksum information in packet */
DB_CKSUM16(mp) = (uint16_t)sum_val;
DB_CKSUMFLAGS(mp) = sum_flags;
DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
return (mp);
}
/*
* Pullup function that should be used for IP input in order to
* ensure we do not loose the L2 source address; we need the l2 source
* address for IP_RECVSLLA and for ndp_input.
*
* We return either NULL or b_rptr.
*/
void *
ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
{
ill_t *ill = ira->ira_ill;
if (ip_rput_pullups++ == 0) {
(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
"ip_pullup: %s forced us to "
" pullup pkt, hdr len %ld, hdr addr %p",
ill->ill_name, len, (void *)mp->b_rptr);
}
if (!(ira->ira_flags & IRAF_L2SRC_SET))
ip_setl2src(mp, ira, ira->ira_rill);
ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
if (!pullupmsg(mp, len))
return (NULL);
else
return (mp->b_rptr);
}
/*
* Make sure ira_l2src has an address. If we don't have one fill with zeros.
* When called from the ULP ira_rill will be NULL hence the caller has to
* pass in the ill.
*/
/* ARGSUSED */
void
ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
{
const uchar_t *addr;
int alen;
if (ira->ira_flags & IRAF_L2SRC_SET)
return;
ASSERT(ill != NULL);
alen = ill->ill_phys_addr_length;
ASSERT(alen <= sizeof (ira->ira_l2src));
if (ira->ira_mhip != NULL &&
(addr = ira->ira_mhip->mhi_saddr) != NULL) {
bcopy(addr, ira->ira_l2src, alen);
} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
(addr = ill->ill_phys_addr) != NULL) {
bcopy(addr, ira->ira_l2src, alen);
} else {
bzero(ira->ira_l2src, alen);
}
ira->ira_flags |= IRAF_L2SRC_SET;
}
/*
* check ip header length and align it.
*/
mblk_t *
ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
{
ill_t *ill = ira->ira_ill;
ssize_t len;
len = MBLKL(mp);
if (!OK_32PTR(mp->b_rptr))
IP_STAT(ill->ill_ipst, ip_notaligned);
else
IP_STAT(ill->ill_ipst, ip_recv_pullup);
/* Guard against bogus device drivers */
if (len < 0) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
freemsg(mp);
return (NULL);
}
if (len == 0) {
/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
mblk_t *mp1 = mp->b_cont;
if (!(ira->ira_flags & IRAF_L2SRC_SET))
ip_setl2src(mp, ira, ira->ira_rill);
ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
freeb(mp);
mp = mp1;
if (mp == NULL)
return (NULL);
if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
return (mp);
}
if (ip_pullup(mp, min_size, ira) == NULL) {
if (msgdsize(mp) < min_size) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
} else {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", mp, ill);
}
freemsg(mp);
return (NULL);
}
return (mp);
}
/*
* Common code for IPv4 and IPv6 to check and pullup multi-mblks
*/
mblk_t *
ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
uint_t min_size, ip_recv_attr_t *ira)
{
ill_t *ill = ira->ira_ill;
/*
* Make sure we have data length consistent
* with the IP header.
*/
if (mp->b_cont == NULL) {
/* pkt_len is based on ipha_len, not the mblk length */
if (pkt_len < min_size) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
freemsg(mp);
return (NULL);
}
if (len < 0) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
freemsg(mp);
return (NULL);
}
/* Drop any pad */
mp->b_wptr = rptr + pkt_len;
} else if ((len += msgdsize(mp->b_cont)) != 0) {
ASSERT(pkt_len >= min_size);
if (pkt_len < min_size) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
freemsg(mp);
return (NULL);
}
if (len < 0) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
freemsg(mp);
return (NULL);
}
/* Drop any pad */
(void) adjmsg(mp, -len);
/*
* adjmsg may have freed an mblk from the chain, hence
* invalidate any hw checksum here. This will force IP to
* calculate the checksum in sw, but only for this packet.
*/
DB_CKSUMFLAGS(mp) = 0;
IP_STAT(ill->ill_ipst, ip_multimblk);
}
return (mp);
}
/*
* Check that the IPv4 opt_len is consistent with the packet and pullup
* the options.
*/
mblk_t *
ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
ip_recv_attr_t *ira)
{
ill_t *ill = ira->ira_ill;
ssize_t len;
/* Assume no IPv6 packets arrive over the IPv4 queue */
if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
freemsg(mp);
return (NULL);
}
if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
freemsg(mp);
return (NULL);
}
/*
* Recompute complete header length and make sure we
* have access to all of it.
*/
len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
if (len > (mp->b_wptr - mp->b_rptr)) {
if (len > pkt_len) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
freemsg(mp);
return (NULL);
}
if (ip_pullup(mp, len, ira) == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", mp, ill);
freemsg(mp);
return (NULL);
}
}
return (mp);
}
/*
* Returns a new ire, or the same ire, or NULL.
* If a different IRE is returned, then it is held; the caller
* needs to release it.
* In no case is there any hold/release on the ire argument.
*/
ire_t *
ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
{
ire_t *new_ire;
ill_t *ire_ill;
uint_t ifindex;
ip_stack_t *ipst = ill->ill_ipst;
boolean_t strict_check = B_FALSE;
/*
* IPMP common case: if IRE and ILL are in the same group, there's no
* issue (e.g. packet received on an underlying interface matched an
* IRE_LOCAL on its associated group interface).
*/
ASSERT(ire->ire_ill != NULL);
if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
return (ire);
/*
* Do another ire lookup here, using the ingress ill, to see if the
* interface is in a usesrc group.
* As long as the ills belong to the same group, we don't consider
* them to be arriving on the wrong interface. Thus, if the switch
* is doing inbound load spreading, we won't drop packets when the
* ip*_strict_dst_multihoming switch is on.
* We also need to check for IPIF_UNNUMBERED point2point interfaces
* where the local address may not be unique. In this case we were
* at the mercy of the initial ire lookup and the IRE_LOCAL it
* actually returned. The new lookup, which is more specific, should
* only find the IRE_LOCAL associated with the ingress ill if one
* exists.
*/
if (ire->ire_ipversion == IPV4_VERSION) {
if (ipst->ips_ip_strict_dst_multihoming)
strict_check = B_TRUE;
new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
IRE_LOCAL, ill, ALL_ZONES, NULL,
(MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
} else {
ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
if (ipst->ips_ipv6_strict_dst_multihoming)
strict_check = B_TRUE;
new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
IRE_LOCAL, ill, ALL_ZONES, NULL,
(MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
}
/*
* If the same ire that was returned in ip_input() is found then this
* is an indication that usesrc groups are in use. The packet
* arrived on a different ill in the group than the one associated with
* the destination address. If a different ire was found then the same
* IP address must be hosted on multiple ills. This is possible with
* unnumbered point2point interfaces. We switch to use this new ire in
* order to have accurate interface statistics.
*/
if (new_ire != NULL) {
/* Note: held in one case but not the other? Caller handles */
if (new_ire != ire)
return (new_ire);
/* Unchanged */
ire_refrele(new_ire);
return (ire);
}
/*
* Chase pointers once and store locally.
*/
ASSERT(ire->ire_ill != NULL);
ire_ill = ire->ire_ill;
ifindex = ill->ill_usesrc_ifindex;
/*
* Check if it's a legal address on the 'usesrc' interface.
* For IPMP data addresses the IRE_LOCAL is the upper, hence we
* can just check phyint_ifindex.
*/
if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
return (ire);
}
/*
* If the ip*_strict_dst_multihoming switch is on then we can
* only accept this packet if the interface is marked as routing.
*/
if (!(strict_check))
return (ire);
if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
return (ire);
}
return (NULL);
}
/*
* This function is used to construct a mac_header_info_s from a
* DL_UNITDATA_IND message.
* The address fields in the mhi structure points into the message,
* thus the caller can't use those fields after freeing the message.
*
* We determine whether the packet received is a non-unicast packet
* and in doing so, determine whether or not it is broadcast vs multicast.
* For it to be a broadcast packet, we must have the appropriate mblk_t
* hanging off the ill_t. If this is either not present or doesn't match
* the destination mac address in the DL_UNITDATA_IND, the packet is deemed
* to be multicast. Thus NICs that have no broadcast address (or no
* capability for one, such as point to point links) cannot return as
* the packet being broadcast.
*/
void
ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
{
dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
mblk_t *bmp;
uint_t extra_offset;
bzero(mhip, sizeof (struct mac_header_info_s));
mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
if (ill->ill_sap_length < 0)
extra_offset = 0;
else
extra_offset = ill->ill_sap_length;
mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
extra_offset;
mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
extra_offset;
if (!ind->dl_group_address)
return;
/* Multicast or broadcast */
mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
if (ind->dl_dest_addr_offset > sizeof (*ind) &&
ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
(bmp = ill->ill_bcast_mp) != NULL) {
dl_unitdata_req_t *dlur;
uint8_t *bphys_addr;
dlur = (dl_unitdata_req_t *)bmp->b_rptr;
bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
extra_offset;
if (bcmp(mhip->mhi_daddr, bphys_addr,
ind->dl_dest_addr_length) == 0)
mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
}
}
/*
* This function is used to construct a mac_header_info_s from a
* M_DATA fastpath message from a DLPI driver.
* The address fields in the mhi structure points into the message,
* thus the caller can't use those fields after freeing the message.
*
* We determine whether the packet received is a non-unicast packet
* and in doing so, determine whether or not it is broadcast vs multicast.
* For it to be a broadcast packet, we must have the appropriate mblk_t
* hanging off the ill_t. If this is either not present or doesn't match
* the destination mac address in the DL_UNITDATA_IND, the packet is deemed
* to be multicast. Thus NICs that have no broadcast address (or no
* capability for one, such as point to point links) cannot return as
* the packet being broadcast.
*/
void
ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
{
mblk_t *bmp;
struct ether_header *pether;
bzero(mhip, sizeof (struct mac_header_info_s));
mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
pether = (struct ether_header *)((char *)mp->b_rptr
- sizeof (struct ether_header));
/*
* Make sure the interface is an ethernet type, since we don't
* know the header format for anything but Ethernet. Also make
* sure we are pointing correctly above db_base.
*/
if (ill->ill_type != IFT_ETHER)
return;
retry:
if ((uchar_t *)pether < mp->b_datap->db_base)
return;
/* Is there a VLAN tag? */
if (ill->ill_isv6) {
if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
pether = (struct ether_header *)((char *)pether - 4);
goto retry;
}
} else {
if (pether->ether_type != htons(ETHERTYPE_IP)) {
pether = (struct ether_header *)((char *)pether - 4);
goto retry;
}
}
mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
if (!(mhip->mhi_daddr[0] & 0x01))
return;
/* Multicast or broadcast */
mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
if ((bmp = ill->ill_bcast_mp) != NULL) {
dl_unitdata_req_t *dlur;
uint8_t *bphys_addr;
uint_t addrlen;
dlur = (dl_unitdata_req_t *)bmp->b_rptr;
addrlen = dlur->dl_dest_addr_length;
if (ill->ill_sap_length < 0) {
bphys_addr = (uchar_t *)dlur +
dlur->dl_dest_addr_offset;
addrlen += ill->ill_sap_length;
} else {
bphys_addr = (uchar_t *)dlur +
dlur->dl_dest_addr_offset +
ill->ill_sap_length;
addrlen -= ill->ill_sap_length;
}
if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
}
}
/*
* Handle anything but M_DATA messages
* We see the DL_UNITDATA_IND which are part
* of the data path, and also the other messages from the driver.
*/
void
ip_rput_notdata(ill_t *ill, mblk_t *mp)
{
mblk_t *first_mp;
struct iocblk *iocp;
struct mac_header_info_s mhi;
switch (DB_TYPE(mp)) {
case M_PROTO:
case M_PCPROTO: {
if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
DL_UNITDATA_IND) {
/* Go handle anything other than data elsewhere. */
ip_rput_dlpi(ill, mp);
return;
}
first_mp = mp;
mp = first_mp->b_cont;
first_mp->b_cont = NULL;
if (mp == NULL) {
freeb(first_mp);
return;
}
ip_dlur_to_mhi(ill, first_mp, &mhi);
if (ill->ill_isv6)
ip_input_v6(ill, NULL, mp, &mhi);
else
ip_input(ill, NULL, mp, &mhi);
/* Ditch the DLPI header. */
freeb(first_mp);
return;
}
case M_IOCACK:
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case DL_IOC_HDR_INFO:
ill_fastpath_ack(ill, mp);
return;
default:
putnext(ill->ill_rq, mp);
return;
}
/* FALLTHRU */
case M_ERROR:
case M_HANGUP:
mutex_enter(&ill->ill_lock);
if (ill->ill_state_flags & ILL_CONDEMNED) {
mutex_exit(&ill->ill_lock);
freemsg(mp);
return;
}
ill_refhold_locked(ill);
mutex_exit(&ill->ill_lock);
qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
B_FALSE);
return;
case M_CTL:
putnext(ill->ill_rq, mp);
return;
case M_IOCNAK:
ip1dbg(("got iocnak "));
iocp = (struct iocblk *)mp->b_rptr;
switch (iocp->ioc_cmd) {
case DL_IOC_HDR_INFO:
ip_rput_other(NULL, ill->ill_rq, mp, NULL);
return;
default:
break;
}
/* FALLTHRU */
default:
putnext(ill->ill_rq, mp);
return;
}
}
/* Read side put procedure. Packets coming from the wire arrive here. */
void
ip_rput(queue_t *q, mblk_t *mp)
{
ill_t *ill;
union DL_primitives *dl;
ill = (ill_t *)q->q_ptr;
if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
/*
* If things are opening or closing, only accept high-priority
* DLPI messages. (On open ill->ill_ipif has not yet been
* created; on close, things hanging off the ill may have been
* freed already.)
*/
dl = (union DL_primitives *)mp->b_rptr;
if (DB_TYPE(mp) != M_PCPROTO ||
dl->dl_primitive == DL_UNITDATA_IND) {
inet_freemsg(mp);
return;
}
}
if (DB_TYPE(mp) == M_DATA) {
struct mac_header_info_s mhi;
ip_mdata_to_mhi(ill, mp, &mhi);
ip_input(ill, NULL, mp, &mhi);
} else {
ip_rput_notdata(ill, mp);
}
}
/*
* Move the information to a copy.
*/
mblk_t *
ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
{
mblk_t *mp1;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
IP_STAT(ipst, ip_db_ref);
/* Make sure we have ira_l2src before we loose the original mblk */
if (!(ira->ira_flags & IRAF_L2SRC_SET))
ip_setl2src(mp, ira, ira->ira_rill);
mp1 = copymsg(mp);
if (mp1 == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", mp, ill);
freemsg(mp);
return (NULL);
}
/* preserve the hardware checksum flags and data, if present */
if (DB_CKSUMFLAGS(mp) != 0) {
DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
DB_CKSUM16(mp1) = DB_CKSUM16(mp);
}
freemsg(mp);
return (mp1);
}
static void
ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
t_uscalar_t err)
{
if (dl_err == DL_SYSERR) {
(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
"%s: %s failed: DL_SYSERR (errno %u)\n",
ill->ill_name, dl_primstr(prim), err);
return;
}
(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
"%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
dl_errstr(dl_err));
}
/*
* ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
* than DL_UNITDATA_IND messages. If we need to process this message
* exclusively, we call qwriter_ip, in which case we also need to call
* ill_refhold before that, since qwriter_ip does an ill_refrele.
*/
void
ip_rput_dlpi(ill_t *ill, mblk_t *mp)
{
dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
queue_t *q = ill->ill_rq;
t_uscalar_t prim = dloa->dl_primitive;
t_uscalar_t reqprim = DL_PRIM_INVAL;
DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
char *, dl_primstr(prim), ill_t *, ill);
ip1dbg(("ip_rput_dlpi"));
/*
* If we received an ACK but didn't send a request for it, then it
* can't be part of any pending operation; discard up-front.
*/
switch (prim) {
case DL_ERROR_ACK:
reqprim = dlea->dl_error_primitive;
ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
"(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
dlea->dl_unix_errno));
break;
case DL_OK_ACK:
reqprim = dloa->dl_correct_primitive;
break;
case DL_INFO_ACK:
reqprim = DL_INFO_REQ;
break;
case DL_BIND_ACK:
reqprim = DL_BIND_REQ;
break;
case DL_PHYS_ADDR_ACK:
reqprim = DL_PHYS_ADDR_REQ;
break;
case DL_NOTIFY_ACK:
reqprim = DL_NOTIFY_REQ;
break;
case DL_CAPABILITY_ACK:
reqprim = DL_CAPABILITY_REQ;
break;
}
if (prim != DL_NOTIFY_IND) {
if (reqprim == DL_PRIM_INVAL ||
!ill_dlpi_pending(ill, reqprim)) {
/* Not a DLPI message we support or expected */
freemsg(mp);
return;
}
ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
dl_primstr(reqprim)));
}
switch (reqprim) {
case DL_UNBIND_REQ:
/*
* NOTE: we mark the unbind as complete even if we got a
* DL_ERROR_ACK, since there's not much else we can do.
*/
mutex_enter(&ill->ill_lock);
ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
cv_signal(&ill->ill_cv);
mutex_exit(&ill->ill_lock);
break;
case DL_ENABMULTI_REQ:
if (prim == DL_OK_ACK) {
if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
ill->ill_dlpi_multicast_state = IDS_OK;
}
break;
}
/*
* The message is one we're waiting for (or DL_NOTIFY_IND), but we
* need to become writer to continue to process it. Because an
* exclusive operation doesn't complete until replies to all queued
* DLPI messages have been received, we know we're in the middle of an
* exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
*
* As required by qwriter_ip(), we refhold the ill; it will refrele.
* Since this is on the ill stream we unconditionally bump up the
* refcount without doing ILL_CAN_LOOKUP().
*/
ill_refhold(ill);
if (prim == DL_NOTIFY_IND)
qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
else
qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
}
/*
* Handling of DLPI messages that require exclusive access to the ipsq.
*
* Need to do ipsq_pending_mp_get on ioctl completion, which could
* happen here. (along with mi_copy_done)
*/
/* ARGSUSED */
static void
ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
{
dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
int err = 0;
ill_t *ill = (ill_t *)q->q_ptr;
ipif_t *ipif = NULL;
mblk_t *mp1 = NULL;
conn_t *connp = NULL;
t_uscalar_t paddrreq;
mblk_t *mp_hw;
boolean_t success;
boolean_t ioctl_aborted = B_FALSE;
boolean_t log = B_TRUE;
DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
ip1dbg(("ip_rput_dlpi_writer .."));
ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
ASSERT(IAM_WRITER_ILL(ill));
ipif = ipsq->ipsq_xop->ipx_pending_ipif;
/*
* The current ioctl could have been aborted by the user and a new
* ioctl to bring up another ill could have started. We could still
* get a response from the driver later.
*/
if (ipif != NULL && ipif->ipif_ill != ill)
ioctl_aborted = B_TRUE;
switch (dloa->dl_primitive) {
case DL_ERROR_ACK:
ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
dl_primstr(dlea->dl_error_primitive)));
DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
char *, dl_primstr(dlea->dl_error_primitive),
ill_t *, ill);
switch (dlea->dl_error_primitive) {
case DL_DISABMULTI_REQ:
ill_dlpi_done(ill, dlea->dl_error_primitive);
break;
case DL_PROMISCON_REQ:
case DL_PROMISCOFF_REQ:
case DL_UNBIND_REQ:
case DL_ATTACH_REQ:
case DL_INFO_REQ:
ill_dlpi_done(ill, dlea->dl_error_primitive);
break;
case DL_NOTIFY_REQ:
ill_dlpi_done(ill, DL_NOTIFY_REQ);
log = B_FALSE;
break;
case DL_PHYS_ADDR_REQ:
/*
* For IPv6 only, there are two additional
* phys_addr_req's sent to the driver to get the
* IPv6 token and lla. This allows IP to acquire
* the hardware address format for a given interface
* without having built in knowledge of the hardware
* address. ill_phys_addr_pend keeps track of the last
* DL_PAR sent so we know which response we are
* dealing with. ill_dlpi_done will update
* ill_phys_addr_pend when it sends the next req.
* We don't complete the IOCTL until all three DL_PARs
* have been attempted, so set *_len to 0 and break.
*/
paddrreq = ill->ill_phys_addr_pend;
ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
if (paddrreq == DL_IPV6_TOKEN) {
ill->ill_token_length = 0;
log = B_FALSE;
break;
} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
ill->ill_nd_lla_len = 0;
log = B_FALSE;
break;
}
/*
* Something went wrong with the DL_PHYS_ADDR_REQ.
* We presumably have an IOCTL hanging out waiting
* for completion. Find it and complete the IOCTL
* with the error noted.
* However, ill_dl_phys was called on an ill queue
* (from SIOCSLIFNAME), thus conn_pending_ill is not
* set. But the ioctl is known to be pending on ill_wq.
*/
if (!ill->ill_ifname_pending)
break;
ill->ill_ifname_pending = 0;
if (!ioctl_aborted)
mp1 = ipsq_pending_mp_get(ipsq, &connp);
if (mp1 != NULL) {
/*
* This operation (SIOCSLIFNAME) must have
* happened on the ill. Assert there is no conn
*/
ASSERT(connp == NULL);
q = ill->ill_wq;
}
break;
case DL_BIND_REQ:
ill_dlpi_done(ill, DL_BIND_REQ);
if (ill->ill_ifname_pending)
break;
mutex_enter(&ill->ill_lock);
ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
mutex_exit(&ill->ill_lock);
/*
* Something went wrong with the bind. We presumably
* have an IOCTL hanging out waiting for completion.
* Find it, take down the interface that was coming
* up, and complete the IOCTL with the error noted.
*/
if (!ioctl_aborted)
mp1 = ipsq_pending_mp_get(ipsq, &connp);
if (mp1 != NULL) {
/*
* This might be a result of a DL_NOTE_REPLUMB
* notification. In that case, connp is NULL.
*/
if (connp != NULL)
q = CONNP_TO_WQ(connp);
(void) ipif_down(ipif, NULL, NULL);
/* error is set below the switch */
}
break;
case DL_ENABMULTI_REQ:
ill_dlpi_done(ill, DL_ENABMULTI_REQ);
if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
ill->ill_dlpi_multicast_state = IDS_FAILED;
if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
printf("ip: joining multicasts failed (%d)"
" on %s - will use link layer "
"broadcasts for multicast\n",
dlea->dl_errno, ill->ill_name);
/*
* Set up for multi_bcast; We are the
* writer, so ok to access ill->ill_ipif
* without any lock.
*/
mutex_enter(&ill->ill_phyint->phyint_lock);
ill->ill_phyint->phyint_flags |=
PHYI_MULTI_BCAST;
mutex_exit(&ill->ill_phyint->phyint_lock);
}
freemsg(mp); /* Don't want to pass this up */
return;
case DL_CAPABILITY_REQ:
ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
"DL_CAPABILITY REQ\n"));
if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
ill->ill_dlpi_capab_state = IDCS_FAILED;
ill_capability_done(ill);
freemsg(mp);
return;
}
/*
* Note the error for IOCTL completion (mp1 is set when
* ready to complete ioctl). If ill_ifname_pending_err is
* set, an error occured during plumbing (ill_ifname_pending),
* so we want to report that error.
*
* NOTE: there are two addtional DL_PHYS_ADDR_REQ's
* (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
* expected to get errack'd if the driver doesn't support
* these flags (e.g. ethernet). log will be set to B_FALSE
* if these error conditions are encountered.
*/
if (mp1 != NULL) {
if (ill->ill_ifname_pending_err != 0) {
err = ill->ill_ifname_pending_err;
ill->ill_ifname_pending_err = 0;
} else {
err = dlea->dl_unix_errno ?
dlea->dl_unix_errno : ENXIO;
}
/*
* If we're plumbing an interface and an error hasn't already
* been saved, set ill_ifname_pending_err to the error passed
* up. Ignore the error if log is B_FALSE (see comment above).
*/
} else if (log && ill->ill_ifname_pending &&
ill->ill_ifname_pending_err == 0) {
ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
dlea->dl_unix_errno : ENXIO;
}
if (log)
ip_dlpi_error(ill, dlea->dl_error_primitive,
dlea->dl_errno, dlea->dl_unix_errno);
break;
case DL_CAPABILITY_ACK:
ill_capability_ack(ill, mp);
/*
* The message has been handed off to ill_capability_ack
* and must not be freed below
*/
mp = NULL;
break;
case DL_INFO_ACK:
/* Call a routine to handle this one. */
ill_dlpi_done(ill, DL_INFO_REQ);
ip_ll_subnet_defaults(ill, mp);
ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
return;
case DL_BIND_ACK:
/*
* We should have an IOCTL waiting on this unless
* sent by ill_dl_phys, in which case just return
*/
ill_dlpi_done(ill, DL_BIND_REQ);
if (ill->ill_ifname_pending) {
DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
ill_t *, ill, mblk_t *, mp);
break;
}
mutex_enter(&ill->ill_lock);
ill->ill_dl_up = 1;
ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
mutex_exit(&ill->ill_lock);
if (!ioctl_aborted)
mp1 = ipsq_pending_mp_get(ipsq, &connp);
if (mp1 == NULL) {
DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
break;
}
/*
* mp1 was added by ill_dl_up(). if that is a result of
* a DL_NOTE_REPLUMB notification, connp could be NULL.
*/
if (connp != NULL)
q = CONNP_TO_WQ(connp);
/*
* We are exclusive. So nothing can change even after
* we get the pending mp.
*/
ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
/*
* Now bring up the resolver; when that is complete, we'll
* create IREs. Note that we intentionally mirror what
* ipif_up() would have done, because we got here by way of
* ill_dl_up(), which stopped ipif_up()'s processing.
*/
if (ill->ill_isv6) {
/*
* v6 interfaces.
* Unlike ARP which has to do another bind
* and attach, once we get here we are
* done with NDP
*/
(void) ipif_resolver_up(ipif, Res_act_initial);
if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
err = ipif_up_done_v6(ipif);
} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
/*
* ARP and other v4 external resolvers.
* Leave the pending mblk intact so that
* the ioctl completes in ip_rput().
*/
if (connp != NULL)
mutex_enter(&connp->conn_lock);
mutex_enter(&ill->ill_lock);
success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
mutex_exit(&ill->ill_lock);
if (connp != NULL)
mutex_exit(&connp->conn_lock);
if (success) {
err = ipif_resolver_up(ipif, Res_act_initial);
if (err == EINPROGRESS) {
freemsg(mp);
return;
}
mp1 = ipsq_pending_mp_get(ipsq, &connp);
} else {
/* The conn has started closing */
err = EINTR;
}
} else {
/*
* This one is complete. Reply to pending ioctl.
*/
(void) ipif_resolver_up(ipif, Res_act_initial);
err = ipif_up_done(ipif);
}
if ((err == 0) && (ill->ill_up_ipifs)) {
err = ill_up_ipifs(ill, q, mp1);
if (err == EINPROGRESS) {
freemsg(mp);
return;
}
}
/*
* If we have a moved ipif to bring up, and everything has
* succeeded to this point, bring it up on the IPMP ill.
* Otherwise, leave it down -- the admin can try to bring it
* up by hand if need be.
*/
if (ill->ill_move_ipif != NULL) {
if (err != 0) {
ill->ill_move_ipif = NULL;
} else {
ipif = ill->ill_move_ipif;
ill->ill_move_ipif = NULL;
err = ipif_up(ipif, q, mp1);
if (err == EINPROGRESS) {
freemsg(mp);
return;
}
}
}
break;
case DL_NOTIFY_IND: {
dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
uint_t orig_mtu, orig_mc_mtu;
switch (notify->dl_notification) {
case DL_NOTE_PHYS_ADDR:
err = ill_set_phys_addr(ill, mp);
break;
case DL_NOTE_REPLUMB:
/*
* Directly return after calling ill_replumb().
* Note that we should not free mp as it is reused
* in the ill_replumb() function.
*/
err = ill_replumb(ill, mp);
return;
case DL_NOTE_FASTPATH_FLUSH:
nce_flush(ill, B_FALSE);
break;
case DL_NOTE_SDU_SIZE:
case DL_NOTE_SDU_SIZE2:
/*
* The dce and fragmentation code can cope with
* this changing while packets are being sent.
* When packets are sent ip_output will discover
* a change.
*
* Change the MTU size of the interface.
*/
mutex_enter(&ill->ill_lock);
orig_mtu = ill->ill_mtu;
orig_mc_mtu = ill->ill_mc_mtu;
switch (notify->dl_notification) {
case DL_NOTE_SDU_SIZE:
ill->ill_current_frag =
(uint_t)notify->dl_data;
ill->ill_mc_mtu = (uint_t)notify->dl_data;
break;
case DL_NOTE_SDU_SIZE2:
ill->ill_current_frag =
(uint_t)notify->dl_data1;
ill->ill_mc_mtu = (uint_t)notify->dl_data2;
break;
}
if (ill->ill_current_frag > ill->ill_max_frag)
ill->ill_max_frag = ill->ill_current_frag;
if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
ill->ill_mtu = ill->ill_current_frag;
/*
* If ill_user_mtu was set (via
* SIOCSLIFLNKINFO), clamp ill_mtu at it.
*/
if (ill->ill_user_mtu != 0 &&
ill->ill_user_mtu < ill->ill_mtu)
ill->ill_mtu = ill->ill_user_mtu;
if (ill->ill_user_mtu != 0 &&
ill->ill_user_mtu < ill->ill_mc_mtu)
ill->ill_mc_mtu = ill->ill_user_mtu;
if (ill->ill_isv6) {
if (ill->ill_mtu < IPV6_MIN_MTU)
ill->ill_mtu = IPV6_MIN_MTU;
if (ill->ill_mc_mtu < IPV6_MIN_MTU)
ill->ill_mc_mtu = IPV6_MIN_MTU;
} else {
if (ill->ill_mtu < IP_MIN_MTU)
ill->ill_mtu = IP_MIN_MTU;
if (ill->ill_mc_mtu < IP_MIN_MTU)
ill->ill_mc_mtu = IP_MIN_MTU;
}
} else if (ill->ill_mc_mtu > ill->ill_mtu) {
ill->ill_mc_mtu = ill->ill_mtu;
}
mutex_exit(&ill->ill_lock);
/*
* Make sure all dce_generation checks find out
* that ill_mtu/ill_mc_mtu has changed.
*/
if (orig_mtu != ill->ill_mtu ||
orig_mc_mtu != ill->ill_mc_mtu) {
dce_increment_all_generations(ill->ill_isv6,
ill->ill_ipst);
}
/*
* Refresh IPMP meta-interface MTU if necessary.
*/
if (IS_UNDER_IPMP(ill))
ipmp_illgrp_refresh_mtu(ill->ill_grp);
break;
case DL_NOTE_LINK_UP:
case DL_NOTE_LINK_DOWN: {
/*
* We are writer. ill / phyint / ipsq assocs stable.
* The RUNNING flag reflects the state of the link.
*/
phyint_t *phyint = ill->ill_phyint;
uint64_t new_phyint_flags;
boolean_t changed = B_FALSE;
boolean_t went_up;
went_up = notify->dl_notification == DL_NOTE_LINK_UP;
mutex_enter(&phyint->phyint_lock);
new_phyint_flags = went_up ?
phyint->phyint_flags | PHYI_RUNNING :
phyint->phyint_flags & ~PHYI_RUNNING;
if (IS_IPMP(ill)) {
new_phyint_flags = went_up ?
new_phyint_flags & ~PHYI_FAILED :
new_phyint_flags | PHYI_FAILED;
}
if (new_phyint_flags != phyint->phyint_flags) {
phyint->phyint_flags = new_phyint_flags;
changed = B_TRUE;
}
mutex_exit(&phyint->phyint_lock);
/*
* ill_restart_dad handles the DAD restart and routing
* socket notification logic.
*/
if (changed) {
ill_restart_dad(phyint->phyint_illv4, went_up);
ill_restart_dad(phyint->phyint_illv6, went_up);
}
break;
}
case DL_NOTE_PROMISC_ON_PHYS: {
phyint_t *phyint = ill->ill_phyint;
mutex_enter(&phyint->phyint_lock);
phyint->phyint_flags |= PHYI_PROMISC;
mutex_exit(&phyint->phyint_lock);
break;
}
case DL_NOTE_PROMISC_OFF_PHYS: {
phyint_t *phyint = ill->ill_phyint;
mutex_enter(&phyint->phyint_lock);
phyint->phyint_flags &= ~PHYI_PROMISC;
mutex_exit(&phyint->phyint_lock);
break;
}
case DL_NOTE_CAPAB_RENEG:
/*
* Something changed on the driver side.
* It wants us to renegotiate the capabilities
* on this ill. One possible cause is the aggregation
* interface under us where a port got added or
* went away.
*
* If the capability negotiation is already done
* or is in progress, reset the capabilities and
* mark the ill's ill_capab_reneg to be B_TRUE,
* so that when the ack comes back, we can start
* the renegotiation process.
*
* Note that if ill_capab_reneg is already B_TRUE
* (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
* the capability resetting request has been sent
* and the renegotiation has not been started yet;
* nothing needs to be done in this case.
*/
ipsq_current_start(ipsq, ill->ill_ipif, 0);
ill_capability_reset(ill, B_TRUE);
ipsq_current_finish(ipsq);
break;
case DL_NOTE_ALLOWED_IPS:
ill_set_allowed_ips(ill, mp);
break;
default:
ip0dbg(("ip_rput_dlpi_writer: unknown notification "
"type 0x%x for DL_NOTIFY_IND\n",
notify->dl_notification));
break;
}
/*
* As this is an asynchronous operation, we
* should not call ill_dlpi_done
*/
break;
}
case DL_NOTIFY_ACK: {
dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
if (noteack->dl_notifications & DL_NOTE_LINK_UP)
ill->ill_note_link = 1;
ill_dlpi_done(ill, DL_NOTIFY_REQ);
break;
}
case DL_PHYS_ADDR_ACK: {
/*
* As part of plumbing the interface via SIOCSLIFNAME,
* ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
* whose answers we receive here. As each answer is received,
* we call ill_dlpi_done() to dispatch the next request as
* we're processing the current one. Once all answers have
* been received, we use ipsq_pending_mp_get() to dequeue the
* outstanding IOCTL and reply to it. (Because ill_dl_phys()
* is invoked from an ill queue, conn_oper_pending_ill is not
* available, but we know the ioctl is pending on ill_wq.)
*/
uint_t paddrlen, paddroff;
uint8_t *addr;
paddrreq = ill->ill_phys_addr_pend;
paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
addr = mp->b_rptr + paddroff;
ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
if (paddrreq == DL_IPV6_TOKEN) {
/*
* bcopy to low-order bits of ill_token
*
* XXX Temporary hack - currently, all known tokens
* are 64 bits, so I'll cheat for the moment.
*/
bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
ill->ill_token_length = paddrlen;
break;
} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
ASSERT(ill->ill_nd_lla_mp == NULL);
ill_set_ndmp(ill, mp, paddroff, paddrlen);
mp = NULL;
break;
} else if (paddrreq == DL_CURR_DEST_ADDR) {
ASSERT(ill->ill_dest_addr_mp == NULL);
ill->ill_dest_addr_mp = mp;
ill->ill_dest_addr = addr;
mp = NULL;
if (ill->ill_isv6) {
ill_setdesttoken(ill);
ipif_setdestlinklocal(ill->ill_ipif);
}
break;
}
ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
ASSERT(ill->ill_phys_addr_mp == NULL);
if (!ill->ill_ifname_pending)
break;
ill->ill_ifname_pending = 0;
if (!ioctl_aborted)
mp1 = ipsq_pending_mp_get(ipsq, &connp);
if (mp1 != NULL) {
ASSERT(connp == NULL);
q = ill->ill_wq;
}
/*
* If any error acks received during the plumbing sequence,
* ill_ifname_pending_err will be set. Break out and send up
* the error to the pending ioctl.
*/
if (ill->ill_ifname_pending_err != 0) {
err = ill->ill_ifname_pending_err;
ill->ill_ifname_pending_err = 0;
break;
}
ill->ill_phys_addr_mp = mp;
ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
mp = NULL;
/*
* If paddrlen or ill_phys_addr_length is zero, the DLPI
* provider doesn't support physical addresses. We check both
* paddrlen and ill_phys_addr_length because sppp (PPP) does
* not have physical addresses, but historically adversises a
* physical address length of 0 in its DL_INFO_ACK, but 6 in
* its DL_PHYS_ADDR_ACK.
*/
if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
ill->ill_phys_addr = NULL;
} else if (paddrlen != ill->ill_phys_addr_length) {
ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
paddrlen, ill->ill_phys_addr_length));
err = EINVAL;
break;
}
if (ill->ill_nd_lla_mp == NULL) {
if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
err = ENOMEM;
break;
}
ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
}
if (ill->ill_isv6) {
ill_setdefaulttoken(ill);
ipif_setlinklocal(ill->ill_ipif);
}
break;
}
case DL_OK_ACK:
ip2dbg(("DL_OK_ACK %s (0x%x)\n",
dl_primstr((int)dloa->dl_correct_primitive),
dloa->dl_correct_primitive));
DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
char *, dl_primstr(dloa->dl_correct_primitive),
ill_t *, ill);
switch (dloa->dl_correct_primitive) {
case DL_ENABMULTI_REQ:
case DL_DISABMULTI_REQ:
ill_dlpi_done(ill, dloa->dl_correct_primitive);
break;
case DL_PROMISCON_REQ:
case DL_PROMISCOFF_REQ:
case DL_UNBIND_REQ:
case DL_ATTACH_REQ:
ill_dlpi_done(ill, dloa->dl_correct_primitive);
break;
}
break;
default:
break;
}
freemsg(mp);
if (mp1 == NULL)
return;
/*
* The operation must complete without EINPROGRESS since
* ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise,
* the operation will be stuck forever inside the IPSQ.
*/
ASSERT(err != EINPROGRESS);
DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
ipif_t *, NULL);
switch (ipsq->ipsq_xop->ipx_current_ioctl) {
case 0:
ipsq_current_finish(ipsq);
break;
case SIOCSLIFNAME:
case IF_UNITSEL: {
ill_t *ill_other = ILL_OTHER(ill);
/*
* If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
* ill has a peer which is in an IPMP group, then place ill
* into the same group. One catch: although ifconfig plumbs
* the appropriate IPMP meta-interface prior to plumbing this
* ill, it is possible for multiple ifconfig applications to
* race (or for another application to adjust plumbing), in
* which case the IPMP meta-interface we need will be missing.
* If so, kick the phyint out of the group.
*/
if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
ipmp_grp_t *grp = ill->ill_phyint->phyint_grp;
ipmp_illgrp_t *illg;
illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
if (illg == NULL)
ipmp_phyint_leave_grp(ill->ill_phyint);
else
ipmp_ill_join_illgrp(ill, illg);
}
if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
else
ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
break;
}
case SIOCLIFADDIF:
ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
break;
default:
ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
break;
}
}
/*
* ip_rput_other is called by ip_rput to handle messages modifying the global
* state in IP. If 'ipsq' is non-NULL, caller is writer on it.
*/
/* ARGSUSED */
void
ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
{
ill_t *ill = q->q_ptr;
struct iocblk *iocp;
ip1dbg(("ip_rput_other "));
if (ipsq != NULL) {
ASSERT(IAM_WRITER_IPSQ(ipsq));
ASSERT(ipsq->ipsq_xop ==
ill->ill_phyint->phyint_ipsq->ipsq_xop);
}
switch (mp->b_datap->db_type) {
case M_ERROR:
case M_HANGUP:
/*
* The device has a problem. We force the ILL down. It can
* be brought up again manually using SIOCSIFFLAGS (via
* ifconfig or equivalent).
*/
ASSERT(ipsq != NULL);
if (mp->b_rptr < mp->b_wptr)
ill->ill_error = (int)(*mp->b_rptr & 0xFF);
if (ill->ill_error == 0)
ill->ill_error = ENXIO;
if (!ill_down_start(q, mp))
return;
ipif_all_down_tail(ipsq, q, mp, NULL);
break;
case M_IOCNAK: {
iocp = (struct iocblk *)mp->b_rptr;
ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
/*
* If this was the first attempt, turn off the fastpath
* probing.
*/
mutex_enter(&ill->ill_lock);
if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
ill->ill_dlpi_fastpath_state = IDS_FAILED;
mutex_exit(&ill->ill_lock);
/*
* don't flush the nce_t entries: we use them
* as an index to the ncec itself.
*/
ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
ill->ill_name));
} else {
mutex_exit(&ill->ill_lock);
}
freemsg(mp);
break;
}
default:
ASSERT(0);
break;
}
}
/*
* Update any source route, record route or timestamp options
* When it fails it has consumed the message and BUMPed the MIB.
*/
boolean_t
ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
ip_recv_attr_t *ira)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
ipaddr_t ifaddr;
uint32_t ts;
timestruc_t now;
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
ip2dbg(("ip_forward_options\n"));
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_forward_options: opt %d, len %d\n",
optval, opts.ipoptp_len));
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
/* Check if adminstratively disabled */
if (!ipst->ips_ip_forward_src_routed) {
BUMP_MIB(dst_ill->ill_ip_mib,
ipIfStatsForwProhibits);
ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
mp, dst_ill);
icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
ira);
return (B_FALSE);
}
if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
/*
* Must be partial since ip_input_options
* checked for strict.
*/
break;
}
off = opt[IPOPT_OFFSET];
off--;
redo_srr:
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg((
"ip_forward_options: end of SR\n"));
break;
}
/* Pick a reasonable address on the outbound if */
ASSERT(dst_ill != NULL);
if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
NULL) != 0) {
/* No source! Shouldn't happen */
ifaddr = INADDR_ANY;
}
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
ip1dbg(("ip_forward_options: next hop 0x%x\n",
ntohl(dst)));
/*
* Check if our address is present more than
* once as consecutive hops in source route.
*/
if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
off += IP_ADDR_LEN;
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
goto redo_srr;
}
ipha->ipha_dst = dst;
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
break;
case IPOPT_RR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* No more room - ignore */
ip1dbg((
"ip_forward_options: end of RR\n"));
break;
}
/* Pick a reasonable address on the outbound if */
ASSERT(dst_ill != NULL);
if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
NULL) != 0) {
/* No source! Shouldn't happen */
ifaddr = INADDR_ANY;
}
bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
break;
case IPOPT_TS:
/* Insert timestamp if there is room */
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
/* Verify that the address matched */
off = opt[IPOPT_OFFSET] - 1;
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
/* Not for us */
break;
}
/* FALLTHRU */
case IPOPT_TS_TSANDADDR:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
/*
* ip_*put_options should have already
* dropped this packet.
*/
cmn_err(CE_PANIC, "ip_forward_options: "
"unknown IT - bug in ip_input_options?\n");
return (B_TRUE); /* Keep "lint" happy */
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
/* Increase overflow counter */
off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
opt[IPOPT_POS_OV_FLG] =
(uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
(off << 4));
break;
}
off = opt[IPOPT_OFFSET] - 1;
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
case IPOPT_TS_TSANDADDR:
/* Pick a reasonable addr on the outbound if */
ASSERT(dst_ill != NULL);
if (ip_select_source_v4(dst_ill, INADDR_ANY,
dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
NULL, NULL) != 0) {
/* No source! Shouldn't happen */
ifaddr = INADDR_ANY;
}
bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
/* FALLTHRU */
case IPOPT_TS_TSONLY:
off = opt[IPOPT_OFFSET] - 1;
/* Compute # of milliseconds since midnight */
gethrestime(&now);
ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
NSEC2MSEC(now.tv_nsec);
bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
break;
}
break;
}
}
return (B_TRUE);
}
/*
* Call ill_frag_timeout to do garbage collection. ill_frag_timeout
* returns 'true' if there are still fragments left on the queue, in
* which case we restart the timer.
*/
void
ill_frag_timer(void *arg)
{
ill_t *ill = (ill_t *)arg;
boolean_t frag_pending;
ip_stack_t *ipst = ill->ill_ipst;
time_t timeout;
mutex_enter(&ill->ill_lock);
ASSERT(!ill->ill_fragtimer_executing);
if (ill->ill_state_flags & ILL_CONDEMNED) {
ill->ill_frag_timer_id = 0;
mutex_exit(&ill->ill_lock);
return;
}
ill->ill_fragtimer_executing = 1;
mutex_exit(&ill->ill_lock);
timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
ipst->ips_ip_reassembly_timeout);
frag_pending = ill_frag_timeout(ill, timeout);
/*
* Restart the timer, if we have fragments pending or if someone
* wanted us to be scheduled again.
*/
mutex_enter(&ill->ill_lock);
ill->ill_fragtimer_executing = 0;
ill->ill_frag_timer_id = 0;
if (frag_pending || ill->ill_fragtimer_needrestart)
ill_frag_timer_start(ill);
mutex_exit(&ill->ill_lock);
}
void
ill_frag_timer_start(ill_t *ill)
{
ip_stack_t *ipst = ill->ill_ipst;
clock_t timeo_ms;
ASSERT(MUTEX_HELD(&ill->ill_lock));
/* If the ill is closing or opening don't proceed */
if (ill->ill_state_flags & ILL_CONDEMNED)
return;
if (ill->ill_fragtimer_executing) {
/*
* ill_frag_timer is currently executing. Just record the
* the fact that we want the timer to be restarted.
* ill_frag_timer will post a timeout before it returns,
* ensuring it will be called again.
*/
ill->ill_fragtimer_needrestart = 1;
return;
}
if (ill->ill_frag_timer_id == 0) {
timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
ipst->ips_ip_reassembly_timeout) * SECONDS;
/*
* The timer is neither running nor is the timeout handler
* executing. Post a timeout so that ill_frag_timer will be
* called
*/
ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
MSEC_TO_TICK(timeo_ms >> 1));
ill->ill_fragtimer_needrestart = 0;
}
}
/*
* Update any source route, record route or timestamp options.
* Check that we are at end of strict source route.
* The options have already been checked for sanity in ip_input_options().
*/
boolean_t
ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
ipaddr_t ifaddr;
uint32_t ts;
timestruc_t now;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
ip2dbg(("ip_input_local_options\n"));
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_input_local_options: opt %d, len %d\n",
optval, optlen));
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg(("ip_input_local_options: end of SR\n"));
break;
}
/*
* This will only happen if two consecutive entries
* in the source route contains our address or if
* it is a packet with a loose source route which
* reaches us before consuming the whole source route
*/
ip1dbg(("ip_input_local_options: not end of SR\n"));
if (optval == IPOPT_SSRR) {
goto bad_src_route;
}
/*
* Hack: instead of dropping the packet truncate the
* source route to what has been used by filling the
* rest with IPOPT_NOP.
*/
opt[IPOPT_OLEN] = (uint8_t)off;
while (off < optlen) {
opt[off++] = IPOPT_NOP;
}
break;
case IPOPT_RR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* No more room - ignore */
ip1dbg((
"ip_input_local_options: end of RR\n"));
break;
}
/* Pick a reasonable address on the outbound if */
if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
NULL) != 0) {
/* No source! Shouldn't happen */
ifaddr = INADDR_ANY;
}
bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
break;
case IPOPT_TS:
/* Insert timestamp if there is romm */
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
/* Verify that the address matched */
off = opt[IPOPT_OFFSET] - 1;
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
/* Not for us */
break;
}
/* FALLTHRU */
case IPOPT_TS_TSANDADDR:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
/*
* ip_*put_options should have already
* dropped this packet.
*/
cmn_err(CE_PANIC, "ip_input_local_options: "
"unknown IT - bug in ip_input_options?\n");
return (B_TRUE); /* Keep "lint" happy */
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
/* Increase overflow counter */
off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
opt[IPOPT_POS_OV_FLG] =
(uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
(off << 4));
break;
}
off = opt[IPOPT_OFFSET] - 1;
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
case IPOPT_TS_TSANDADDR:
/* Pick a reasonable addr on the outbound if */
if (ip_select_source_v4(ill, INADDR_ANY,
ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
&ifaddr, NULL, NULL) != 0) {
/* No source! Shouldn't happen */
ifaddr = INADDR_ANY;
}
bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
/* FALLTHRU */
case IPOPT_TS_TSONLY:
off = opt[IPOPT_OFFSET] - 1;
/* Compute # of milliseconds since midnight */
gethrestime(&now);
ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
NSEC2MSEC(now.tv_nsec);
bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
break;
}
break;
}
}
return (B_TRUE);
bad_src_route:
/* make sure we clear any indication of a hardware checksum */
DB_CKSUMFLAGS(mp) = 0;
ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
return (B_FALSE);
}
/*
* Process IP options in an inbound packet. Always returns the nexthop.
* Normally this is the passed in nexthop, but if there is an option
* that effects the nexthop (such as a source route) that will be returned.
* Sets *errorp if there is an error, in which case an ICMP error has been sent
* and mp freed.
*/
ipaddr_t
ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
ip_recv_attr_t *ira, int *errorp)
{
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
intptr_t code = 0;
ire_t *ire;
ip2dbg(("ip_input_options\n"));
*errorp = 0;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_input_options: opt %d, len %d\n",
optval, optlen));
/*
* Note: we need to verify the checksum before we
* modify anything thus this routine only extracts the next
* hop dst from any source route.
*/
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
if (optval == IPOPT_SSRR) {
ip1dbg(("ip_input_options: not next"
" strict source route 0x%x\n",
ntohl(dst)));
code = (char *)&ipha->ipha_dst -
(char *)ipha;
goto param_prob; /* RouterReq's */
}
ip2dbg(("ip_input_options: "
"not next source route 0x%x\n",
ntohl(dst)));
break;
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_input_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OLEN] -
(char *)ipha;
goto param_prob;
}
off = opt[IPOPT_OFFSET];
off--;
redo_srr:
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg(("ip_input_options: end of SR\n"));
break;
}
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
ip1dbg(("ip_input_options: next hop 0x%x\n",
ntohl(dst)));
/*
* Check if our address is present more than
* once as consecutive hops in source route.
* XXX verify per-interface ip_forwarding
* for source route?
*/
if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
off += IP_ADDR_LEN;
goto redo_srr;
}
if (dst == htonl(INADDR_LOOPBACK)) {
ip1dbg(("ip_input_options: loopback addr in "
"source route!\n"));
goto bad_src_route;
}
/*
* For strict: verify that dst is directly
* reachable.
*/
if (optval == IPOPT_SSRR) {
ire = ire_ftable_lookup_v4(dst, 0, 0,
IRE_INTERFACE, NULL, ALL_ZONES,
ira->ira_tsl,
MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
NULL);
if (ire == NULL) {
ip1dbg(("ip_input_options: SSRR not "
"directly reachable: 0x%x\n",
ntohl(dst)));
goto bad_src_route;
}
ire_refrele(ire);
}
/*
* Defer update of the offset and the record route
* until the packet is forwarded.
*/
break;
case IPOPT_RR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_input_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OLEN] -
(char *)ipha;
goto param_prob;
}
break;
case IPOPT_TS:
/*
* Verify that length >= 5 and that there is either
* room for another timestamp or that the overflow
* counter is not maxed out.
*/
code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
if (optlen < IPOPT_MINLEN_IT) {
goto param_prob;
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_input_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OFFSET] -
(char *)ipha;
goto param_prob;
}
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_TSANDADDR:
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
code = (char *)&opt[IPOPT_POS_OV_FLG] -
(char *)ipha;
goto param_prob;
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
(opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
/*
* No room and the overflow counter is 15
* already.
*/
goto param_prob;
}
break;
}
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
return (dst);
}
ip1dbg(("ip_input_options: error processing IP options."));
code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
param_prob:
/* make sure we clear any indication of a hardware checksum */
DB_CKSUMFLAGS(mp) = 0;
ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
icmp_param_problem(mp, (uint8_t)code, ira);
*errorp = -1;
return (dst);
bad_src_route:
/* make sure we clear any indication of a hardware checksum */
DB_CKSUMFLAGS(mp) = 0;
ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
*errorp = -1;
return (dst);
}
/*
* IP & ICMP info in >=14 msg's ...
* - ip fixed part (mib2_ip_t)
* - icmp fixed part (mib2_icmp_t)
* - ipAddrEntryTable (ip 20) all IPv4 ipifs
* - ipRouteEntryTable (ip 21) all IPv4 IREs
* - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries
* - ipRouteAttributeTable (ip 102) labeled routes
* - ip multicast membership (ip_member_t)
* - ip multicast source filtering (ip_grpsrc_t)
* - igmp fixed part (struct igmpstat)
* - multicast routing stats (struct mrtstat)
* - multicast routing vifs (array of struct vifctl)
* - multicast routing routes (array of struct mfcctl)
* - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
* One per ill plus one generic
* - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
* One per ill plus one generic
* - ipv6RouteEntry all IPv6 IREs
* - ipv6RouteAttributeTable (ip6 102) labeled routes
* - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries
* - ipv6AddrEntry all IPv6 ipifs
* - ipv6 multicast membership (ipv6_member_t)
* - ipv6 multicast source filtering (ipv6_grpsrc_t)
*
* NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
* already filled in by the caller.
* If legacy_req is true then MIB structures needs to be truncated to their
* legacy sizes before being returned.
* Return value of 0 indicates that no messages were sent and caller
* should free mpctl.
*/
int
ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
{
ip_stack_t *ipst;
sctp_stack_t *sctps;
if (q->q_next != NULL) {
ipst = ILLQ_TO_IPST(q);
} else {
ipst = CONNQ_TO_IPST(q);
}
ASSERT(ipst != NULL);
sctps = ipst->ips_netstack->netstack_sctp;
if (mpctl == NULL || mpctl->b_cont == NULL) {
return (0);
}
/*
* For the purposes of the (broken) packet shell use
* of the level we make sure MIB2_TCP/MIB2_UDP can be used
* to make TCP and UDP appear first in the list of mib items.
* TBD: We could expand this and use it in netstat so that
* the kernel doesn't have to produce large tables (connections,
* routes, etc) when netstat only wants the statistics or a particular
* table.
*/
if (!(level == MIB2_TCP || level == MIB2_UDP)) {
if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
return (1);
}
}
if (level != MIB2_TCP) {
if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
return (1);
}
}
if (level != MIB2_UDP) {
if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
return (1);
}
}
if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
ipst, legacy_req)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
legacy_req)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
legacy_req)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
legacy_req)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
return (1);
}
mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
if (mpctl == NULL)
return (1);
mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
if (mpctl == NULL)
return (1);
if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
return (1);
}
if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
return (1);
}
freemsg(mpctl);
return (1);
}
/* Get global (legacy) IPv4 statistics */
static mblk_t *
ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
ip_stack_t *ipst, boolean_t legacy_req)
{
mib2_ip_t old_ip_mib;
struct opthdr *optp;
mblk_t *mp2ctl;
mib2_ipAddrEntry_t mae;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
/* fixed length IP structure... */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = 0;
SET_MIB(old_ip_mib.ipForwarding,
(WE_ARE_FORWARDING(ipst) ? 1 : 2));
SET_MIB(old_ip_mib.ipDefaultTTL,
(uint32_t)ipst->ips_ip_def_ttl);
SET_MIB(old_ip_mib.ipReasmTimeout,
ipst->ips_ip_reassembly_timeout);
SET_MIB(old_ip_mib.ipAddrEntrySize,
(legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
sizeof (mib2_ipAddrEntry_t));
SET_MIB(old_ip_mib.ipRouteEntrySize,
sizeof (mib2_ipRouteEntry_t));
SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
sizeof (mib2_ipNetToMediaEntry_t));
SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
SET_MIB(old_ip_mib.ipRouteAttributeSize,
sizeof (mib2_ipAttributeEntry_t));
SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
/*
* Grab the statistics from the new IP MIB
*/
SET_MIB(old_ip_mib.ipInReceives,
(uint32_t)ipmib->ipIfStatsHCInReceives);
SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
SET_MIB(old_ip_mib.ipForwDatagrams,
(uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
SET_MIB(old_ip_mib.ipInUnknownProtos,
ipmib->ipIfStatsInUnknownProtos);
SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
SET_MIB(old_ip_mib.ipInDelivers,
(uint32_t)ipmib->ipIfStatsHCInDelivers);
SET_MIB(old_ip_mib.ipOutRequests,
(uint32_t)ipmib->ipIfStatsHCOutRequests);
SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
/* ipRoutingDiscards is not being used */
SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
SET_MIB(old_ip_mib.ipReasmDuplicates,
ipmib->ipIfStatsReasmDuplicates);
SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
SET_MIB(old_ip_mib.rawipInOverflows,
ipmib->rawipIfStatsInOverflows);
SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
SET_MIB(old_ip_mib.ipOutSwitchIPv6,
ipmib->ipIfStatsOutSwitchIPVersion);
if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
(int)sizeof (old_ip_mib))) {
ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
(uint_t)sizeof (old_ip_mib)));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Per interface IPv4 statistics */
static mblk_t *
ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
boolean_t legacy_req)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ill_walk_context_t ctx;
mblk_t *mp_tail = NULL;
mib2_ipIfStatsEntry_t global_ip_mib;
mib2_ipAddrEntry_t mae;
/*
* Make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = MIB2_IP_TRAFFIC_STATS;
/* Include "unknown interface" ip_mib */
ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
ipst->ips_ip_mib.ipIfStatsIfIndex =
MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
(ipst->ips_ip_forwarding ? 1 : 2));
SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
(uint32_t)ipst->ips_ip_def_ttl);
SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
sizeof (mib2_ipIfStatsEntry_t));
SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
sizeof (mib2_ipAddrEntry_t));
SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
sizeof (mib2_ipRouteEntry_t));
SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
sizeof (mib2_ipNetToMediaEntry_t));
SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
sizeof (ip_member_t));
SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
sizeof (ip_grpsrc_t));
bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
if (legacy_req) {
SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
}
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
"failed to allocate %u bytes\n",
(uint_t)sizeof (global_ip_mib)));
}
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V4(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
ill->ill_ip_mib->ipIfStatsIfIndex =
ill->ill_phyint->phyint_ifindex;
SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
(ipst->ips_ip_forwarding ? 1 : 2));
SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
(uint32_t)ipst->ips_ip_def_ttl);
ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)ill->ill_ip_mib,
(int)sizeof (*ill->ill_ip_mib))) {
ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
"failed to allocate %u bytes\n",
(uint_t)sizeof (*ill->ill_ip_mib)));
}
}
rw_exit(&ipst->ips_ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
"level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
if (mp2ctl == NULL)
return (NULL);
return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
legacy_req));
}
/* Global IPv4 ICMP statistics */
static mblk_t *
ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* Make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_ICMP;
optp->name = 0;
if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
(int)sizeof (ipst->ips_icmp_mib))) {
ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
(uint_t)sizeof (ipst->ips_icmp_mib)));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Global IPv4 IGMP statistics */
static mblk_t *
ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = EXPER_IGMP;
optp->name = 0;
if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
(int)sizeof (ipst->ips_igmpstat))) {
ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
(uint_t)sizeof (ipst->ips_igmpstat)));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Global IPv4 Multicast Routing statistics */
static mblk_t *
ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = EXPER_DVMRP;
optp->name = 0;
if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
ip0dbg(("ip_mroute_stats: failed\n"));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv4 address information */
static mblk_t *
ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
boolean_t legacy_req)
{
struct opthdr *optp;
mblk_t *mp2ctl;
mblk_t *mp_tail = NULL;
ill_t *ill;
ipif_t *ipif;
uint_t bitval;
mib2_ipAddrEntry_t mae;
size_t mae_size;
zoneid_t zoneid;
ill_walk_context_t ctx;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
sizeof (mib2_ipAddrEntry_t);
/* ipAddrEntryTable */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = MIB2_IP_ADDR;
zoneid = Q_TO_CONN(q)->conn_zoneid;
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V4(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
if (ipif->ipif_zoneid != zoneid &&
ipif->ipif_zoneid != ALL_ZONES)
continue;
/* Sum of count from dead IRE_LO* and our current */
mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
if (ipif->ipif_ire_local != NULL) {
mae.ipAdEntInfo.ae_ibcnt +=
ipif->ipif_ire_local->ire_ib_pkt_count;
}
mae.ipAdEntInfo.ae_obcnt = 0;
mae.ipAdEntInfo.ae_focnt = 0;
ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
OCTET_LENGTH);
mae.ipAdEntIfIndex.o_length =
mi_strlen(mae.ipAdEntIfIndex.o_bytes);
mae.ipAdEntAddr = ipif->ipif_lcl_addr;
mae.ipAdEntNetMask = ipif->ipif_net_mask;
mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
mae.ipAdEntInfo.ae_subnet_len =
ip_mask_to_plen(ipif->ipif_net_mask);
mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
for (bitval = 1;
bitval &&
!(bitval & ipif->ipif_brd_addr);
bitval <<= 1)
noop;
mae.ipAdEntBcastAddr = bitval;
mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric;
mae.ipAdEntInfo.ae_broadcast_addr =
ipif->ipif_brd_addr;
mae.ipAdEntInfo.ae_pp_dst_addr =
ipif->ipif_pp_dst_addr;
mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
ill->ill_flags | ill->ill_phyint->phyint_flags;
mae.ipAdEntRetransmitTime =
ill->ill_reachable_retrans_time;
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&mae, (int)mae_size)) {
ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
"allocate %u bytes\n", (uint_t)mae_size));
}
}
}
rw_exit(&ipst->ips_ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv6 address information */
static mblk_t *
ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
boolean_t legacy_req)
{
struct opthdr *optp;
mblk_t *mp2ctl;
mblk_t *mp_tail = NULL;
ill_t *ill;
ipif_t *ipif;
mib2_ipv6AddrEntry_t mae6;
size_t mae6_size;
zoneid_t zoneid;
ill_walk_context_t ctx;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
mae6_size = (legacy_req) ?
LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
sizeof (mib2_ipv6AddrEntry_t);
/* ipv6AddrEntryTable */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = MIB2_IP6_ADDR;
zoneid = Q_TO_CONN(q)->conn_zoneid;
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
if (ipif->ipif_zoneid != zoneid &&
ipif->ipif_zoneid != ALL_ZONES)
continue;
/* Sum of count from dead IRE_LO* and our current */
mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
if (ipif->ipif_ire_local != NULL) {
mae6.ipv6AddrInfo.ae_ibcnt +=
ipif->ipif_ire_local->ire_ib_pkt_count;
}
mae6.ipv6AddrInfo.ae_obcnt = 0;
mae6.ipv6AddrInfo.ae_focnt = 0;
ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
OCTET_LENGTH);
mae6.ipv6AddrIfIndex.o_length =
mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
mae6.ipv6AddrPfxLength =
ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
mae6.ipv6AddrInfo.ae_subnet_len =
mae6.ipv6AddrPfxLength;
mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
/* Type: stateless(1), stateful(2), unknown(3) */
if (ipif->ipif_flags & IPIF_ADDRCONF)
mae6.ipv6AddrType = 1;
else
mae6.ipv6AddrType = 2;
/* Anycast: true(1), false(2) */
if (ipif->ipif_flags & IPIF_ANYCAST)
mae6.ipv6AddrAnycastFlag = 1;
else
mae6.ipv6AddrAnycastFlag = 2;
/*
* Address status: preferred(1), deprecated(2),
* invalid(3), inaccessible(4), unknown(5)
*/
if (ipif->ipif_flags & IPIF_NOLOCAL)
mae6.ipv6AddrStatus = 3;
else if (ipif->ipif_flags & IPIF_DEPRECATED)
mae6.ipv6AddrStatus = 2;
else
mae6.ipv6AddrStatus = 1;
mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
mae6.ipv6AddrInfo.ae_metric =
ipif->ipif_ill->ill_metric;
mae6.ipv6AddrInfo.ae_pp_dst_addr =
ipif->ipif_v6pp_dst_addr;
mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
ill->ill_flags | ill->ill_phyint->phyint_flags;
mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
mae6.ipv6AddrIdentifier = ill->ill_token;
mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
mae6.ipv6AddrRetransmitTime =
ill->ill_reachable_retrans_time;
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&mae6, (int)mae6_size)) {
ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
"allocate %u bytes\n",
(uint_t)mae6_size));
}
}
}
rw_exit(&ipst->ips_ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv4 multicast group membership. */
static mblk_t *
ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ipif_t *ipif;
ilm_t *ilm;
ip_member_t ipm;
mblk_t *mp_tail = NULL;
ill_walk_context_t ctx;
zoneid_t zoneid;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/* ipGroupMember table */
optp = (struct opthdr *)&mpctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = EXPER_IP_GROUP_MEMBERSHIP;
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V4(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
/* Make sure the ill isn't going away. */
if (!ill_check_and_refhold(ill))
continue;
rw_exit(&ipst->ips_ill_g_lock);
rw_enter(&ill->ill_mcast_lock, RW_READER);
for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
if (ilm->ilm_zoneid != zoneid &&
ilm->ilm_zoneid != ALL_ZONES)
continue;
/* Is there an ipif for ilm_ifaddr? */
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
if (!IPIF_IS_CONDEMNED(ipif) &&
ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
ilm->ilm_ifaddr != INADDR_ANY)
break;
}
if (ipif != NULL) {
ipif_get_name(ipif,
ipm.ipGroupMemberIfIndex.o_bytes,
OCTET_LENGTH);
} else {
ill_get_name(ill,
ipm.ipGroupMemberIfIndex.o_bytes,
OCTET_LENGTH);
}
ipm.ipGroupMemberIfIndex.o_length =
mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
ipm.ipGroupMemberAddress = ilm->ilm_addr;
ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&ipm, (int)sizeof (ipm))) {
ip1dbg(("ip_snmp_get_mib2_ip_group: "
"failed to allocate %u bytes\n",
(uint_t)sizeof (ipm)));
}
}
rw_exit(&ill->ill_mcast_lock);
ill_refrele(ill);
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
}
rw_exit(&ipst->ips_ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv6 multicast group membership. */
static mblk_t *
ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ilm_t *ilm;
ipv6_member_t ipm6;
mblk_t *mp_tail = NULL;
ill_walk_context_t ctx;
zoneid_t zoneid;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/* ip6GroupMember table */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
/* Make sure the ill isn't going away. */
if (!ill_check_and_refhold(ill))
continue;
rw_exit(&ipst->ips_ill_g_lock);
/*
* Normally we don't have any members on under IPMP interfaces.
* We report them as a debugging aid.
*/
rw_enter(&ill->ill_mcast_lock, RW_READER);
ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
if (ilm->ilm_zoneid != zoneid &&
ilm->ilm_zoneid != ALL_ZONES)
continue; /* not this zone */
ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
if (!snmp_append_data2(mpctl->b_cont,
&mp_tail,
(char *)&ipm6, (int)sizeof (ipm6))) {
ip1dbg(("ip_snmp_get_mib2_ip6_group: "
"failed to allocate %u bytes\n",
(uint_t)sizeof (ipm6)));
}
}
rw_exit(&ill->ill_mcast_lock);
ill_refrele(ill);
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
}
rw_exit(&ipst->ips_ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IP multicast filtered sources */
static mblk_t *
ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ipif_t *ipif;
ilm_t *ilm;
ip_grpsrc_t ips;
mblk_t *mp_tail = NULL;
ill_walk_context_t ctx;
zoneid_t zoneid;
int i;
slist_t *sl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/* ipGroupSource table */
optp = (struct opthdr *)&mpctl->b_rptr[
sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = EXPER_IP_GROUP_SOURCES;
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V4(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
/* Make sure the ill isn't going away. */
if (!ill_check_and_refhold(ill))
continue;
rw_exit(&ipst->ips_ill_g_lock);
rw_enter(&ill->ill_mcast_lock, RW_READER);
for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
sl = ilm->ilm_filter;
if (ilm->ilm_zoneid != zoneid &&
ilm->ilm_zoneid != ALL_ZONES)
continue;
if (SLIST_IS_EMPTY(sl))
continue;
/* Is there an ipif for ilm_ifaddr? */
for (ipif = ill->ill_ipif; ipif != NULL;
ipif = ipif->ipif_next) {
if (!IPIF_IS_CONDEMNED(ipif) &&
ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
ilm->ilm_ifaddr != INADDR_ANY)
break;
}
if (ipif != NULL) {
ipif_get_name(ipif,
ips.ipGroupSourceIfIndex.o_bytes,
OCTET_LENGTH);
} else {
ill_get_name(ill,
ips.ipGroupSourceIfIndex.o_bytes,
OCTET_LENGTH);
}
ips.ipGroupSourceIfIndex.o_length =
mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
ips.ipGroupSourceGroup = ilm->ilm_addr;
for (i = 0; i < sl->sl_numsrc; i++) {
if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
continue;
IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
ips.ipGroupSourceAddress);
if (snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&ips, (int)sizeof (ips)) == 0) {
ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
" failed to allocate %u bytes\n",
(uint_t)sizeof (ips)));
}
}
}
rw_exit(&ill->ill_mcast_lock);
ill_refrele(ill);
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
}
rw_exit(&ipst->ips_ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* IPv6 multicast filtered sources. */
static mblk_t *
ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ilm_t *ilm;
ipv6_grpsrc_t ips6;
mblk_t *mp_tail = NULL;
ill_walk_context_t ctx;
zoneid_t zoneid;
int i;
slist_t *sl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/* ip6GroupMember table */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = EXPER_IP6_GROUP_SOURCES;
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
/* Make sure the ill isn't going away. */
if (!ill_check_and_refhold(ill))
continue;
rw_exit(&ipst->ips_ill_g_lock);
/*
* Normally we don't have any members on under IPMP interfaces.
* We report them as a debugging aid.
*/
rw_enter(&ill->ill_mcast_lock, RW_READER);
ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
sl = ilm->ilm_filter;
if (ilm->ilm_zoneid != zoneid &&
ilm->ilm_zoneid != ALL_ZONES)
continue;
if (SLIST_IS_EMPTY(sl))
continue;
ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
for (i = 0; i < sl->sl_numsrc; i++) {
ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&ips6, (int)sizeof (ips6))) {
ip1dbg(("ip_snmp_get_mib2_ip6_"
"group_src: failed to allocate "
"%u bytes\n",
(uint_t)sizeof (ips6)));
}
}
}
rw_exit(&ill->ill_mcast_lock);
ill_refrele(ill);
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
}
rw_exit(&ipst->ips_ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Multicast routing virtual interface table. */
static mblk_t *
ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = EXPER_DVMRP;
optp->name = EXPER_DVMRP_VIF;
if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
ip0dbg(("ip_mroute_vif: failed\n"));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/* Multicast routing table. */
static mblk_t *
ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
/*
* make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = EXPER_DVMRP;
optp->name = EXPER_DVMRP_MRT;
if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
ip0dbg(("ip_mroute_mrt: failed\n"));
}
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/*
* Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
* in one IRE walk.
*/
static mblk_t *
ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl; /* Returned */
mblk_t *mp3ctl; /* nettomedia */
mblk_t *mp4ctl; /* routeattrs */
iproutedata_t ird;
zoneid_t zoneid;
/*
* make copies of the original message
* - mp2ctl is returned unchanged to the caller for his use
* - mpctl is sent upstream as ipRouteEntryTable
* - mp3ctl is sent upstream as ipNetToMediaEntryTable
* - mp4ctl is sent upstream as ipRouteAttributeTable
*/
mp2ctl = copymsg(mpctl);
mp3ctl = copymsg(mpctl);
mp4ctl = copymsg(mpctl);
if (mp3ctl == NULL || mp4ctl == NULL) {
freemsg(mp4ctl);
freemsg(mp3ctl);
freemsg(mp2ctl);
freemsg(mpctl);
return (NULL);
}
bzero(&ird, sizeof (ird));
ird.ird_route.lp_head = mpctl->b_cont;
ird.ird_netmedia.lp_head = mp3ctl->b_cont;
ird.ird_attrs.lp_head = mp4ctl->b_cont;
/*
* If the level has been set the special EXPER_IP_AND_ALL_IRES value,
* then also include ire_testhidden IREs and IRE_IF_CLONE. This is
* intended a temporary solution until a proper MIB API is provided
* that provides complete filtering/caller-opt-in.
*/
if (level == EXPER_IP_AND_ALL_IRES)
ird.ird_flags |= IRD_REPORT_ALL;
zoneid = Q_TO_CONN(q)->conn_zoneid;
ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
/* ipRouteEntryTable in mpctl */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = MIB2_IP_ROUTE;
optp->len = msgdsize(ird.ird_route.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
/* ipNetToMediaEntryTable in mp3ctl */
ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = MIB2_IP_MEDIA;
optp->len = msgdsize(ird.ird_netmedia.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mp3ctl);
/* ipRouteAttributeTable in mp4ctl */
optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP;
optp->name = EXPER_IP_RTATTR;
optp->len = msgdsize(ird.ird_attrs.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
if (optp->len == 0)
freemsg(mp4ctl);
else
qreply(q, mp4ctl);
return (mp2ctl);
}
/*
* Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
* ipv6NetToMediaEntryTable in an NDP walk.
*/
static mblk_t *
ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl; /* Returned */
mblk_t *mp3ctl; /* nettomedia */
mblk_t *mp4ctl; /* routeattrs */
iproutedata_t ird;
zoneid_t zoneid;
/*
* make copies of the original message
* - mp2ctl is returned unchanged to the caller for his use
* - mpctl is sent upstream as ipv6RouteEntryTable
* - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
* - mp4ctl is sent upstream as ipv6RouteAttributeTable
*/
mp2ctl = copymsg(mpctl);
mp3ctl = copymsg(mpctl);
mp4ctl = copymsg(mpctl);
if (mp3ctl == NULL || mp4ctl == NULL) {
freemsg(mp4ctl);
freemsg(mp3ctl);
freemsg(mp2ctl);
freemsg(mpctl);
return (NULL);
}
bzero(&ird, sizeof (ird));
ird.ird_route.lp_head = mpctl->b_cont;
ird.ird_netmedia.lp_head = mp3ctl->b_cont;
ird.ird_attrs.lp_head = mp4ctl->b_cont;
/*
* If the level has been set the special EXPER_IP_AND_ALL_IRES value,
* then also include ire_testhidden IREs and IRE_IF_CLONE. This is
* intended a temporary solution until a proper MIB API is provided
* that provides complete filtering/caller-opt-in.
*/
if (level == EXPER_IP_AND_ALL_IRES)
ird.ird_flags |= IRD_REPORT_ALL;
zoneid = Q_TO_CONN(q)->conn_zoneid;
ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = MIB2_IP6_ROUTE;
optp->len = msgdsize(ird.ird_route.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
/* ipv6NetToMediaEntryTable in mp3ctl */
ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = MIB2_IP6_MEDIA;
optp->len = msgdsize(ird.ird_netmedia.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mp3ctl);
/* ipv6RouteAttributeTable in mp4ctl */
optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = EXPER_IP_RTATTR;
optp->len = msgdsize(ird.ird_attrs.lp_head);
ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
if (optp->len == 0)
freemsg(mp4ctl);
else
qreply(q, mp4ctl);
return (mp2ctl);
}
/*
* IPv6 mib: One per ill
*/
static mblk_t *
ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
boolean_t legacy_req)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ill_walk_context_t ctx;
mblk_t *mp_tail = NULL;
mib2_ipv6AddrEntry_t mae6;
mib2_ipIfStatsEntry_t *ise;
size_t ise_size, iae_size;
/*
* Make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
/* fixed length IPv6 structure ... */
if (legacy_req) {
ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
mib2_ipIfStatsEntry_t);
iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
} else {
ise_size = sizeof (mib2_ipIfStatsEntry_t);
iae_size = sizeof (mib2_ipv6AddrEntry_t);
}
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_IP6;
optp->name = 0;
/* Include "unknown interface" ip6_mib */
ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
ipst->ips_ip6_mib.ipIfStatsIfIndex =
MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
ipst->ips_ipv6_forwarding ? 1 : 2);
SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
ipst->ips_ipv6_def_hops);
SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
sizeof (mib2_ipIfStatsEntry_t));
SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
sizeof (mib2_ipv6AddrEntry_t));
SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
sizeof (mib2_ipv6RouteEntry_t));
SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
sizeof (mib2_ipv6NetToMediaEntry_t));
SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
sizeof (ipv6_member_t));
SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
sizeof (ipv6_grpsrc_t));
/*
* Synchronize 64- and 32-bit counters
*/
SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
ipIfStatsHCInReceives);
SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
ipIfStatsHCInDelivers);
SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
ipIfStatsHCOutRequests);
SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
ipIfStatsHCOutForwDatagrams);
SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
ipIfStatsHCOutMcastPkts);
SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
ipIfStatsHCInMcastPkts);
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&ipst->ips_ip6_mib, (int)ise_size)) {
ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
(uint_t)ise_size));
} else if (legacy_req) {
/* Adjust the EntrySize fields for legacy requests. */
ise =
(mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
SET_MIB(ise->ipIfStatsEntrySize, ise_size);
SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
}
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
ill->ill_ip_mib->ipIfStatsIfIndex =
ill->ill_phyint->phyint_ifindex;
SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
ipst->ips_ipv6_forwarding ? 1 : 2);
SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
ill->ill_max_hops);
/*
* Synchronize 64- and 32-bit counters
*/
SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
ipIfStatsHCInReceives);
SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
ipIfStatsHCInDelivers);
SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
ipIfStatsHCOutRequests);
SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
ipIfStatsHCOutForwDatagrams);
SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
ipIfStatsHCOutMcastPkts);
SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
ipIfStatsHCInMcastPkts);
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)ill->ill_ip_mib, (int)ise_size)) {
ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
"%u bytes\n", (uint_t)ise_size));
} else if (legacy_req) {
/* Adjust the EntrySize fields for legacy requests. */
ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
(int)ise_size);
SET_MIB(ise->ipIfStatsEntrySize, ise_size);
SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
}
}
rw_exit(&ipst->ips_ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/*
* ICMPv6 mib: One per ill
*/
static mblk_t *
ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
{
struct opthdr *optp;
mblk_t *mp2ctl;
ill_t *ill;
ill_walk_context_t ctx;
mblk_t *mp_tail = NULL;
/*
* Make a copy of the original message
*/
mp2ctl = copymsg(mpctl);
/* fixed length ICMPv6 structure ... */
optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
optp->level = MIB2_ICMP6;
optp->name = 0;
/* Include "unknown interface" icmp6_mib */
ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
MIB2_UNKNOWN_INTERFACE; /* netstat flag */
ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
sizeof (mib2_ipv6IfIcmpEntry_t);
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)&ipst->ips_icmp6_mib,
(int)sizeof (ipst->ips_icmp6_mib))) {
ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
(uint_t)sizeof (ipst->ips_icmp6_mib)));
}
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V6(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
ill->ill_phyint->phyint_ifindex;
if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
(char *)ill->ill_icmp6_mib,
(int)sizeof (*ill->ill_icmp6_mib))) {
ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
"%u bytes\n",
(uint_t)sizeof (*ill->ill_icmp6_mib)));
}
}
rw_exit(&ipst->ips_ill_g_lock);
optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
(int)optp->level, (int)optp->name, (int)optp->len));
qreply(q, mpctl);
return (mp2ctl);
}
/*
* ire_walk routine to create both ipRouteEntryTable and
* ipRouteAttributeTable in one IRE walk
*/
static void
ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
{
ill_t *ill;
mib2_ipRouteEntry_t *re;
mib2_ipAttributeEntry_t iaes;
tsol_ire_gw_secattr_t *attrp;
tsol_gc_t *gc = NULL;
tsol_gcgrp_t *gcgrp = NULL;
ip_stack_t *ipst = ire->ire_ipst;
ASSERT(ire->ire_ipversion == IPV4_VERSION);
if (!(ird->ird_flags & IRD_REPORT_ALL)) {
if (ire->ire_testhidden)
return;
if (ire->ire_type & IRE_IF_CLONE)
return;
}
if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
return;
if ((attrp = ire->ire_gw_secattr) != NULL) {
mutex_enter(&attrp->igsa_lock);
if ((gc = attrp->igsa_gc) != NULL) {
gcgrp = gc->gc_grp;
ASSERT(gcgrp != NULL);
rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
}
mutex_exit(&attrp->igsa_lock);
}
/*
* Return all IRE types for route table... let caller pick and choose
*/
re->ipRouteDest = ire->ire_addr;
ill = ire->ire_ill;
re->ipRouteIfIndex.o_length = 0;
if (ill != NULL) {
ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
re->ipRouteIfIndex.o_length =
mi_strlen(re->ipRouteIfIndex.o_bytes);
}
re->ipRouteMetric1 = -1;
re->ipRouteMetric2 = -1;
re->ipRouteMetric3 = -1;
re->ipRouteMetric4 = -1;
re->ipRouteNextHop = ire->ire_gateway_addr;
/* indirect(4), direct(3), or invalid(2) */
if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
re->ipRouteType = 2;
else if (ire->ire_type & IRE_ONLINK)
re->ipRouteType = 3;
else
re->ipRouteType = 4;
re->ipRouteProto = -1;
re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
re->ipRouteMask = ire->ire_mask;
re->ipRouteMetric5 = -1;
re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
re->ipRouteInfo.re_frag_flag = 0;
re->ipRouteInfo.re_rtt = 0;
re->ipRouteInfo.re_src_addr = 0;
re->ipRouteInfo.re_ref = ire->ire_refcnt;
re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count;
re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
re->ipRouteInfo.re_flags = ire->ire_flags;
/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
if (ire->ire_type & IRE_INTERFACE) {
ire_t *child;
rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
child = ire->ire_dep_children;
while (child != NULL) {
re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
child = child->ire_dep_sib_next;
}
rw_exit(&ipst->ips_ire_dep_lock);
}
if (ire->ire_flags & RTF_DYNAMIC) {
re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT;
} else {
re->ipRouteInfo.re_ire_type = ire->ire_type;
}
if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
(char *)re, (int)sizeof (*re))) {
ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
(uint_t)sizeof (*re)));
}
if (gc != NULL) {
iaes.iae_routeidx = ird->ird_idx;
iaes.iae_doi = gc->gc_db->gcdb_doi;
iaes.iae_slrange = gc->gc_db->gcdb_slrange;
if (!snmp_append_data2(ird->ird_attrs.lp_head,
&ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
"bytes\n", (uint_t)sizeof (iaes)));
}
}
/* bump route index for next pass */
ird->ird_idx++;
kmem_free(re, sizeof (*re));
if (gcgrp != NULL)
rw_exit(&gcgrp->gcgrp_rwlock);
}
/*
* ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
*/
static void
ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
{
ill_t *ill;
mib2_ipv6RouteEntry_t *re;
mib2_ipAttributeEntry_t iaes;
tsol_ire_gw_secattr_t *attrp;
tsol_gc_t *gc = NULL;
tsol_gcgrp_t *gcgrp = NULL;
ip_stack_t *ipst = ire->ire_ipst;
ASSERT(ire->ire_ipversion == IPV6_VERSION);
if (!(ird->ird_flags & IRD_REPORT_ALL)) {
if (ire->ire_testhidden)
return;
if (ire->ire_type & IRE_IF_CLONE)
return;
}
if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
return;
if ((attrp = ire->ire_gw_secattr) != NULL) {
mutex_enter(&attrp->igsa_lock);
if ((gc = attrp->igsa_gc) != NULL) {
gcgrp = gc->gc_grp;
ASSERT(gcgrp != NULL);
rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
}
mutex_exit(&attrp->igsa_lock);
}
/*
* Return all IRE types for route table... let caller pick and choose
*/
re->ipv6RouteDest = ire->ire_addr_v6;
re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */
re->ipv6RouteIfIndex.o_length = 0;
ill = ire->ire_ill;
if (ill != NULL) {
ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
re->ipv6RouteIfIndex.o_length =
mi_strlen(re->ipv6RouteIfIndex.o_bytes);
}
ASSERT(!(ire->ire_type & IRE_BROADCAST));
mutex_enter(&ire->ire_lock);
re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
mutex_exit(&ire->ire_lock);
/* remote(4), local(3), or discard(2) */
if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
re->ipv6RouteType = 2;
else if (ire->ire_type & IRE_ONLINK)
re->ipv6RouteType = 3;
else
re->ipv6RouteType = 4;
re->ipv6RouteProtocol = -1;
re->ipv6RoutePolicy = 0;
re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time;
re->ipv6RouteNextHopRDI = 0;
re->ipv6RouteWeight = 0;
re->ipv6RouteMetric = 0;
re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
re->ipv6RouteInfo.re_frag_flag = 0;
re->ipv6RouteInfo.re_rtt = 0;
re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros;
re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count;
re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
re->ipv6RouteInfo.re_ref = ire->ire_refcnt;
re->ipv6RouteInfo.re_flags = ire->ire_flags;
/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
if (ire->ire_type & IRE_INTERFACE) {
ire_t *child;
rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
child = ire->ire_dep_children;
while (child != NULL) {
re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
child = child->ire_dep_sib_next;
}
rw_exit(&ipst->ips_ire_dep_lock);
}
if (ire->ire_flags & RTF_DYNAMIC) {
re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT;
} else {
re->ipv6RouteInfo.re_ire_type = ire->ire_type;
}
if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
(char *)re, (int)sizeof (*re))) {
ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
(uint_t)sizeof (*re)));
}
if (gc != NULL) {
iaes.iae_routeidx = ird->ird_idx;
iaes.iae_doi = gc->gc_db->gcdb_doi;
iaes.iae_slrange = gc->gc_db->gcdb_slrange;
if (!snmp_append_data2(ird->ird_attrs.lp_head,
&ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
"bytes\n", (uint_t)sizeof (iaes)));
}
}
/* bump route index for next pass */
ird->ird_idx++;
kmem_free(re, sizeof (*re));
if (gcgrp != NULL)
rw_exit(&gcgrp->gcgrp_rwlock);
}
/*
* ncec_walk routine to create ipv6NetToMediaEntryTable
*/
static int
ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
{
ill_t *ill;
mib2_ipv6NetToMediaEntry_t ntme;
ill = ncec->ncec_ill;
/* skip arpce entries, and loopback ncec entries */
if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
return (0);
/*
* Neighbor cache entry attached to IRE with on-link
* destination.
* We report all IPMP groups on ncec_ill which is normally the upper.
*/
ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
if (ncec->ncec_lladdr != NULL) {
bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
ntme.ipv6NetToMediaPhysAddress.o_length);
}
/*
* Note: Returns ND_* states. Should be:
* reachable(1), stale(2), delay(3), probe(4),
* invalid(5), unknown(6)
*/
ntme.ipv6NetToMediaState = ncec->ncec_state;
ntme.ipv6NetToMediaLastUpdated = 0;
/* other(1), dynamic(2), static(3), local(4) */
if (NCE_MYADDR(ncec)) {
ntme.ipv6NetToMediaType = 4;
} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
ntme.ipv6NetToMediaType = 1; /* proxy */
} else if (ncec->ncec_flags & NCE_F_STATIC) {
ntme.ipv6NetToMediaType = 3;
} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
ntme.ipv6NetToMediaType = 1;
} else {
ntme.ipv6NetToMediaType = 2;
}
if (!snmp_append_data2(ird->ird_netmedia.lp_head,
&ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
(uint_t)sizeof (ntme)));
}
return (0);
}
int
nce2ace(ncec_t *ncec)
{
int flags = 0;
if (NCE_ISREACHABLE(ncec))
flags |= ACE_F_RESOLVED;
if (ncec->ncec_flags & NCE_F_AUTHORITY)
flags |= ACE_F_AUTHORITY;
if (ncec->ncec_flags & NCE_F_PUBLISH)
flags |= ACE_F_PUBLISH;
if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
flags |= ACE_F_PERMANENT;
if (NCE_MYADDR(ncec))
flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
if (ncec->ncec_flags & NCE_F_UNVERIFIED)
flags |= ACE_F_UNVERIFIED;
if (ncec->ncec_flags & NCE_F_AUTHORITY)
flags |= ACE_F_AUTHORITY;
if (ncec->ncec_flags & NCE_F_DELAYED)
flags |= ACE_F_DELAYED;
return (flags);
}
/*
* ncec_walk routine to create ipNetToMediaEntryTable
*/
static int
ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
{
ill_t *ill;
mib2_ipNetToMediaEntry_t ntme;
const char *name = "unknown";
ipaddr_t ncec_addr;
ill = ncec->ncec_ill;
if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
ill->ill_net_type == IRE_LOOPBACK)
return (0);
/* We report all IPMP groups on ncec_ill which is normally the upper. */
name = ill->ill_name;
/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
if (NCE_MYADDR(ncec)) {
ntme.ipNetToMediaType = 4;
} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
ntme.ipNetToMediaType = 1;
} else {
ntme.ipNetToMediaType = 3;
}
ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
ntme.ipNetToMediaIfIndex.o_length);
IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
ncec_addr = INADDR_BROADCAST;
bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
sizeof (ncec_addr));
/*
* map all the flags to the ACE counterpart.
*/
ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
ntme.ipNetToMediaPhysAddress.o_length =
MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
if (!NCE_ISREACHABLE(ncec))
ntme.ipNetToMediaPhysAddress.o_length = 0;
else {
if (ncec->ncec_lladdr != NULL) {
bcopy(ncec->ncec_lladdr,
ntme.ipNetToMediaPhysAddress.o_bytes,
ntme.ipNetToMediaPhysAddress.o_length);
}
}
if (!snmp_append_data2(ird->ird_netmedia.lp_head,
&ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
(uint_t)sizeof (ntme)));
}
return (0);
}
/*
* return (0) if invalid set request, 1 otherwise, including non-tcp requests
*/
/* ARGSUSED */
int
ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
{
switch (level) {
case MIB2_IP:
case MIB2_ICMP:
switch (name) {
default:
break;
}
return (1);
default:
return (1);
}
}
/*
* When there exists both a 64- and 32-bit counter of a particular type
* (i.e., InReceives), only the 64-bit counters are added.
*/
void
ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
{
UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
o2->ipIfStatsInWrongIPVersion);
UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
o2->ipIfStatsInWrongIPVersion);
UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
o2->ipIfStatsOutSwitchIPVersion);
UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
o2->ipIfStatsHCInForwDatagrams);
UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
o2->ipIfStatsHCOutForwDatagrams);
UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
o2->ipIfStatsHCOutMcastOctets);
UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
}
void
ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
{
UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
o2->ipv6IfIcmpInRouterSolicits);
UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
o2->ipv6IfIcmpInRouterAdvertisements);
UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
o2->ipv6IfIcmpInNeighborSolicits);
UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
o2->ipv6IfIcmpInNeighborAdvertisements);
UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
o2->ipv6IfIcmpInGroupMembQueries);
UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
o2->ipv6IfIcmpInGroupMembResponses);
UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
o2->ipv6IfIcmpInGroupMembReductions);
UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
o2->ipv6IfIcmpOutDestUnreachs);
UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
o2->ipv6IfIcmpOutAdminProhibs);
UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
o2->ipv6IfIcmpOutParmProblems);
UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
o2->ipv6IfIcmpOutRouterSolicits);
UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
o2->ipv6IfIcmpOutRouterAdvertisements);
UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
o2->ipv6IfIcmpOutNeighborSolicits);
UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
o2->ipv6IfIcmpOutNeighborAdvertisements);
UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
o2->ipv6IfIcmpOutGroupMembQueries);
UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
o2->ipv6IfIcmpOutGroupMembResponses);
UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
o2->ipv6IfIcmpOutGroupMembReductions);
UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
o2->ipv6IfIcmpInBadNeighborAdvertisements);
UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
o2->ipv6IfIcmpInBadNeighborSolicitations);
UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
o2->ipv6IfIcmpInGroupMembTotal);
UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
o2->ipv6IfIcmpInGroupMembBadQueries);
UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
o2->ipv6IfIcmpInGroupMembBadReports);
UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
o2->ipv6IfIcmpInGroupMembOurReports);
}
/*
* Called before the options are updated to check if this packet will
* be source routed from here.
* This routine assumes that the options are well formed i.e. that they
* have already been checked.
*/
boolean_t
ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
if (IS_SIMPLE_IPH(ipha)) {
ip2dbg(("not source routed\n"));
return (B_FALSE);
}
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_source_routed: opt %d, len %d\n",
optval, optlen));
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
/*
* If dst is one of our addresses and there are some
* entries left in the source route return (true).
*/
if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
ip2dbg(("ip_source_routed: not next"
" source route 0x%x\n",
ntohl(dst)));
return (B_FALSE);
}
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
ip1dbg(("ip_source_routed: end of SR\n"));
return (B_FALSE);
}
return (B_TRUE);
}
}
ip2dbg(("not source routed\n"));
return (B_FALSE);
}
/*
* ip_unbind is called by the transports to remove a conn from
* the fanout table.
*/
void
ip_unbind(conn_t *connp)
{
ASSERT(!MUTEX_HELD(&connp->conn_lock));
if (is_system_labeled() && connp->conn_anon_port) {
(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
connp->conn_mlp_type, connp->conn_proto,
ntohs(connp->conn_lport), B_FALSE);
connp->conn_anon_port = 0;
}
connp->conn_mlp_type = mlptSingle;
ipcl_hash_remove(connp);
}
/*
* Used for deciding the MSS size for the upper layer. Thus
* we need to check the outbound policy values in the conn.
*/
int
conn_ipsec_length(conn_t *connp)
{
ipsec_latch_t *ipl;
ipl = connp->conn_latch;
if (ipl == NULL)
return (0);
if (connp->conn_ixa->ixa_ipsec_policy == NULL)
return (0);
return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
}
/*
* Returns an estimate of the IPsec headers size. This is used if
* we don't want to call into IPsec to get the exact size.
*/
int
ipsec_out_extra_length(ip_xmit_attr_t *ixa)
{
ipsec_action_t *a;
if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
return (0);
a = ixa->ixa_ipsec_action;
if (a == NULL) {
ASSERT(ixa->ixa_ipsec_policy != NULL);
a = ixa->ixa_ipsec_policy->ipsp_act;
}
ASSERT(a != NULL);
return (a->ipa_ovhd);
}
/*
* If there are any source route options, return the true final
* destination. Otherwise, return the destination.
*/
ipaddr_t
ip_get_dst(ipha_t *ipha)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
uint32_t off;
dst = ipha->ipha_dst;
if (IS_SIMPLE_IPH(ipha))
return (dst);
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
switch (optval) {
case IPOPT_SSRR:
case IPOPT_LSRR:
off = opt[IPOPT_OFFSET];
/*
* If one of the conditions is true, it means
* end of options and dst already has the right
* value.
*/
if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
off = optlen - IP_ADDR_LEN;
bcopy(&opt[off], &dst, IP_ADDR_LEN);
}
return (dst);
default:
break;
}
}
return (dst);
}
/*
* Outbound IP fragmentation routine.
* Assumes the caller has checked whether or not fragmentation should
* be allowed. Here we copy the DF bit from the header to all the generated
* fragments.
*/
int
ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
{
int i1;
int hdr_len;
mblk_t *hdr_mp;
ipha_t *ipha;
int ip_data_end;
int len;
mblk_t *mp = mp_orig;
int offset;
ill_t *ill = nce->nce_ill;
ip_stack_t *ipst = ill->ill_ipst;
mblk_t *carve_mp;
uint32_t frag_flag;
uint_t priority = mp->b_band;
int error = 0;
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
if (pkt_len != msgdsize(mp)) {
ip0dbg(("Packet length mismatch: %d, %ld\n",
pkt_len, msgdsize(mp)));
freemsg(mp);
return (EINVAL);
}
if (max_frag == 0) {
ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
ip_drop_output("FragFails: zero max_frag", mp, ill);
freemsg(mp);
return (EINVAL);
}
ASSERT(MBLKL(mp) >= sizeof (ipha_t));
ipha = (ipha_t *)mp->b_rptr;
ASSERT(ntohs(ipha->ipha_length) == pkt_len);
frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
/*
* Establish the starting offset. May not be zero if we are fragging
* a fragment that is being forwarded.
*/
offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
/* TODO why is this test needed? */
if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
/* TODO: notify ulp somehow */
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
ip_drop_output("FragFails: bad starting offset", mp, ill);
freemsg(mp);
return (EINVAL);
}
hdr_len = IPH_HDR_LENGTH(ipha);
ipha->ipha_hdr_checksum = 0;
/*
* Establish the number of bytes maximum per frag, after putting
* in the header.
*/
len = (max_frag - hdr_len) & ~7;
/* Get a copy of the header for the trailing frags */
hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
mp);
if (hdr_mp == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
ip_drop_output("FragFails: no hdr_mp", mp, ill);
freemsg(mp);
return (ENOBUFS);
}
/* Store the starting offset, with the MoreFrags flag. */
i1 = offset | IPH_MF | frag_flag;
ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
/* Establish the ending byte offset, based on the starting offset. */
offset <<= 3;
ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
/* Store the length of the first fragment in the IP header. */
i1 = len + hdr_len;
ASSERT(i1 <= IP_MAXPACKET);
ipha->ipha_length = htons((uint16_t)i1);
/*
* Compute the IP header checksum for the first frag. We have to
* watch out that we stop at the end of the header.
*/
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
/*
* Now carve off the first frag. Note that this will include the
* original IP header.
*/
if (!(mp = ip_carve_mp(&mp_orig, i1))) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
freeb(hdr_mp);
freemsg(mp_orig);
return (ENOBUFS);
}
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
ixa_cookie);
if (error != 0 && error != EWOULDBLOCK) {
/* No point in sending the other fragments */
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
freeb(hdr_mp);
freemsg(mp_orig);
return (error);
}
/* No need to redo state machine in loop */
ixaflags &= ~IXAF_REACH_CONF;
/* Advance the offset to the second frag starting point. */
offset += len;
/*
* Update hdr_len from the copied header - there might be less options
* in the later fragments.
*/
hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
/* Loop until done. */
for (;;) {
uint16_t offset_and_flags;
uint16_t ip_len;
if (ip_data_end - offset > len) {
/*
* Carve off the appropriate amount from the original
* datagram.
*/
if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
mp = NULL;
break;
}
/*
* More frags after this one. Get another copy
* of the header.
*/
if (carve_mp->b_datap->db_ref == 1 &&
hdr_mp->b_wptr - hdr_mp->b_rptr <
carve_mp->b_rptr - carve_mp->b_datap->db_base) {
/* Inline IP header */
carve_mp->b_rptr -= hdr_mp->b_wptr -
hdr_mp->b_rptr;
bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
hdr_mp->b_wptr - hdr_mp->b_rptr);
mp = carve_mp;
} else {
if (!(mp = copyb(hdr_mp))) {
freemsg(carve_mp);
break;
}
/* Get priority marking, if any. */
mp->b_band = priority;
mp->b_cont = carve_mp;
}
ipha = (ipha_t *)mp->b_rptr;
offset_and_flags = IPH_MF;
} else {
/*
* Last frag. Consume the header. Set len to
* the length of this last piece.
*/
len = ip_data_end - offset;
/*
* Carve off the appropriate amount from the original
* datagram.
*/
if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
mp = NULL;
break;
}
if (carve_mp->b_datap->db_ref == 1 &&
hdr_mp->b_wptr - hdr_mp->b_rptr <
carve_mp->b_rptr - carve_mp->b_datap->db_base) {
/* Inline IP header */
carve_mp->b_rptr -= hdr_mp->b_wptr -
hdr_mp->b_rptr;
bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
hdr_mp->b_wptr - hdr_mp->b_rptr);
mp = carve_mp;
freeb(hdr_mp);
hdr_mp = mp;
} else {
mp = hdr_mp;
/* Get priority marking, if any. */
mp->b_band = priority;
mp->b_cont = carve_mp;
}
ipha = (ipha_t *)mp->b_rptr;
/* A frag of a frag might have IPH_MF non-zero */
offset_and_flags =
ntohs(ipha->ipha_fragment_offset_and_flags) &
IPH_MF;
}
offset_and_flags |= (uint16_t)(offset >> 3);
offset_and_flags |= (uint16_t)frag_flag;
/* Store the offset and flags in the IP header. */
ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
/* Store the length in the IP header. */
ip_len = (uint16_t)(len + hdr_len);
ipha->ipha_length = htons(ip_len);
/*
* Set the IP header checksum. Note that mp is just
* the header, so this is easy to pass to ip_csum.
*/
ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
nolzid, ixa_cookie);
/* All done if we just consumed the hdr_mp. */
if (mp == hdr_mp) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
return (error);
}
if (error != 0 && error != EWOULDBLOCK) {
DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
mblk_t *, hdr_mp);
/* No point in sending the other fragments */
break;
}
/* Otherwise, advance and loop. */
offset += len;
}
/* Clean up following allocation failure. */
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
ip_drop_output("FragFails: loop ended", NULL, ill);
if (mp != hdr_mp)
freeb(hdr_mp);
if (mp != mp_orig)
freemsg(mp_orig);
return (error);
}
/*
* Copy the header plus those options which have the copy bit set
*/
static mblk_t *
ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
mblk_t *src)
{
mblk_t *mp;
uchar_t *up;
/*
* Quick check if we need to look for options without the copy bit
* set
*/
mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
if (!mp)
return (mp);
mp->b_rptr += ipst->ips_ip_wroff_extra;
if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
bcopy(rptr, mp->b_rptr, hdr_len);
mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
return (mp);
}
up = mp->b_rptr;
bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
up += IP_SIMPLE_HDR_LENGTH;
rptr += IP_SIMPLE_HDR_LENGTH;
hdr_len -= IP_SIMPLE_HDR_LENGTH;
while (hdr_len > 0) {
uint32_t optval;
uint32_t optlen;
optval = *rptr;
if (optval == IPOPT_EOL)
break;
if (optval == IPOPT_NOP)
optlen = 1;
else
optlen = rptr[1];
if (optval & IPOPT_COPY) {
bcopy(rptr, up, optlen);
up += optlen;
}
rptr += optlen;
hdr_len -= optlen;
}
/*
* Make sure that we drop an even number of words by filling
* with EOL to the next word boundary.
*/
for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
hdr_len & 0x3; hdr_len++)
*up++ = IPOPT_EOL;
mp->b_wptr = up;
/* Update header length */
mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
return (mp);
}
/*
* Update any source route, record route, or timestamp options when
* sending a packet back to ourselves.
* Check that we are at end of strict source route.
* The options have been sanity checked by ip_output_options().
*/
void
ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
uint32_t ts;
timestruc_t now;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
break;
}
/*
* This will only happen if two consecutive entries
* in the source route contains our address or if
* it is a packet with a loose source route which
* reaches us before consuming the whole source route
*/
if (optval == IPOPT_SSRR) {
return;
}
/*
* Hack: instead of dropping the packet truncate the
* source route to what has been used by filling the
* rest with IPOPT_NOP.
*/
opt[IPOPT_OLEN] = (uint8_t)off;
while (off < optlen) {
opt[off++] = IPOPT_NOP;
}
break;
case IPOPT_RR:
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* No more room - ignore */
ip1dbg((
"ip_output_local_options: end of RR\n"));
break;
}
dst = htonl(INADDR_LOOPBACK);
bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
break;
case IPOPT_TS:
/* Insert timestamp if there is romm */
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
/* Verify that the address matched */
off = opt[IPOPT_OFFSET] - 1;
bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
/* Not for us */
break;
}
/* FALLTHRU */
case IPOPT_TS_TSANDADDR:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
/*
* ip_*put_options should have already
* dropped this packet.
*/
cmn_err(CE_PANIC, "ip_output_local_options: "
"unknown IT - bug in ip_output_options?\n");
return; /* Keep "lint" happy */
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
/* Increase overflow counter */
off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
opt[IPOPT_POS_OV_FLG] = (uint8_t)
(opt[IPOPT_POS_OV_FLG] & 0x0F) |
(off << 4);
break;
}
off = opt[IPOPT_OFFSET] - 1;
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
case IPOPT_TS_TSANDADDR:
dst = htonl(INADDR_LOOPBACK);
bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
opt[IPOPT_OFFSET] += IP_ADDR_LEN;
/* FALLTHRU */
case IPOPT_TS_TSONLY:
off = opt[IPOPT_OFFSET] - 1;
/* Compute # of milliseconds since midnight */
gethrestime(&now);
ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
NSEC2MSEC(now.tv_nsec);
bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
break;
}
break;
}
}
}
/*
* Prepend an M_DATA fastpath header, and if none present prepend a
* DL_UNITDATA_REQ. Frees the mblk on failure.
*
* nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
* If there is a change to them, the nce will be deleted (condemned) and
* a new nce_t will be created when packets are sent. Thus we need no locks
* to access those fields.
*
* We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
* we place b_band in dl_priority.dl_max.
*/
static mblk_t *
ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
{
uint_t hlen;
mblk_t *mp1;
uint_t priority;
uchar_t *rptr;
rptr = mp->b_rptr;
ASSERT(DB_TYPE(mp) == M_DATA);
priority = mp->b_band;
ASSERT(nce != NULL);
if ((mp1 = nce->nce_fp_mp) != NULL) {
hlen = MBLKL(mp1);
/*
* Check if we have enough room to prepend fastpath
* header
*/
if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
rptr -= hlen;
bcopy(mp1->b_rptr, rptr, hlen);
/*
* Set the b_rptr to the start of the link layer
* header
*/
mp->b_rptr = rptr;
return (mp);
}
mp1 = copyb(mp1);
if (mp1 == NULL) {
ill_t *ill = nce->nce_ill;
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
ip_drop_output("ipIfStatsOutDiscards", mp, ill);
freemsg(mp);
return (NULL);
}
mp1->b_band = priority;
mp1->b_cont = mp;
DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
DB_LSOMSS(mp1) = DB_LSOMSS(mp);
DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
/*
* XXX disable ICK_VALID and compute checksum
* here; can happen if nce_fp_mp changes and
* it can't be copied now due to insufficient
* space. (unlikely, fp mp can change, but it
* does not increase in length)
*/
return (mp1);
}
mp1 = copyb(nce->nce_dlur_mp);
if (mp1 == NULL) {
ill_t *ill = nce->nce_ill;
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
ip_drop_output("ipIfStatsOutDiscards", mp, ill);
freemsg(mp);
return (NULL);
}
mp1->b_cont = mp;
if (priority != 0) {
mp1->b_band = priority;
((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
priority;
}
return (mp1);
}
/*
* Finish the outbound IPsec processing. This function is called from
* ipsec_out_process() if the IPsec packet was processed
* synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
* asynchronously.
*
* This is common to IPv4 and IPv6.
*/
int
ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
{
iaflags_t ixaflags = ixa->ixa_flags;
uint_t pktlen;
/* AH/ESP don't update ixa_pktlen when they modify the packet */
if (ixaflags & IXAF_IS_IPV4) {
ipha_t *ipha = (ipha_t *)mp->b_rptr;
ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
pktlen = ntohs(ipha->ipha_length);
} else {
ip6_t *ip6h = (ip6_t *)mp->b_rptr;
ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
}
/*
* We release any hard reference on the SAs here to make
* sure the SAs can be garbage collected. ipsr_sa has a soft reference
* on the SAs.
* If in the future we want the hard latching of the SAs in the
* ip_xmit_attr_t then we should remove this.
*/
if (ixa->ixa_ipsec_esp_sa != NULL) {
IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
ixa->ixa_ipsec_esp_sa = NULL;
}
if (ixa->ixa_ipsec_ah_sa != NULL) {
IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
ixa->ixa_ipsec_ah_sa = NULL;
}
/* Do we need to fragment? */
if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
pktlen > ixa->ixa_fragsize) {
if (ixaflags & IXAF_IS_IPV4) {
ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
/*
* We check for the DF case in ipsec_out_process
* hence this only handles the non-DF case.
*/
return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
pktlen, ixa->ixa_fragsize,
ixa->ixa_xmit_hint, ixa->ixa_zoneid,
ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
&ixa->ixa_cookie));
} else {
mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
if (mp == NULL) {
/* MIB and ip_drop_output already done */
return (ENOMEM);
}
pktlen += sizeof (ip6_frag_t);
if (pktlen > ixa->ixa_fragsize) {
return (ip_fragment_v6(mp, ixa->ixa_nce,
ixa->ixa_flags, pktlen,
ixa->ixa_fragsize, ixa->ixa_xmit_hint,
ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
ixa->ixa_postfragfn, &ixa->ixa_cookie));
}
}
}
return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
ixa->ixa_no_loop_zoneid, NULL));
}
/*
* Finish the inbound IPsec processing. This function is called from
* ipsec_out_process() if the IPsec packet was processed
* synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
* asynchronously.
*
* This is common to IPv4 and IPv6.
*/
void
ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
{
iaflags_t iraflags = ira->ira_flags;
/* Length might have changed */
if (iraflags & IRAF_IS_IPV4) {
ipha_t *ipha = (ipha_t *)mp->b_rptr;
ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
ira->ira_pktlen = ntohs(ipha->ipha_length);
ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
ira->ira_protocol = ipha->ipha_protocol;
ip_fanout_v4(mp, ipha, ira);
} else {
ip6_t *ip6h = (ip6_t *)mp->b_rptr;
uint8_t *nexthdrp;
ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
&nexthdrp)) {
/* Malformed packet */
BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
freemsg(mp);
return;
}
ira->ira_protocol = *nexthdrp;
ip_fanout_v6(mp, ip6h, ira);
}
}
/*
* Select which AH & ESP SA's to use (if any) for the outbound packet.
*
* If this function returns B_TRUE, the requested SA's have been filled
* into the ixa_ipsec_*_sa pointers.
*
* If the function returns B_FALSE, the packet has been "consumed", most
* likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
*
* The SA references created by the protocol-specific "select"
* function will be released in ip_output_post_ipsec.
*/
static boolean_t
ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
{
boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
ipsec_policy_t *pp;
ipsec_action_t *ap;
ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
ASSERT((ixa->ixa_ipsec_policy != NULL) ||
(ixa->ixa_ipsec_action != NULL));
ap = ixa->ixa_ipsec_action;
if (ap == NULL) {
pp = ixa->ixa_ipsec_policy;
ASSERT(pp != NULL);
ap = pp->ipsp_act;
ASSERT(ap != NULL);
}
/*
* We have an action. now, let's select SA's.
* A side effect of setting ixa_ipsec_*_sa is that it will
* be cached in the conn_t.
*/
if (ap->ipa_want_esp) {
if (ixa->ixa_ipsec_esp_sa == NULL) {
need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
IPPROTO_ESP);
}
ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
}
if (ap->ipa_want_ah) {
if (ixa->ixa_ipsec_ah_sa == NULL) {
need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
IPPROTO_AH);
}
ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
/*
* The ESP and AH processing order needs to be preserved
* when both protocols are required (ESP should be applied
* before AH for an outbound packet). Force an ESP ACQUIRE
* when both ESP and AH are required, and an AH ACQUIRE
* is needed.
*/
if (ap->ipa_want_esp && need_ah_acquire)
need_esp_acquire = B_TRUE;
}
/*
* Send an ACQUIRE (extended, regular, or both) if we need one.
* Release SAs that got referenced, but will not be used until we
* acquire _all_ of the SAs we need.
*/
if (need_ah_acquire || need_esp_acquire) {
if (ixa->ixa_ipsec_ah_sa != NULL) {
IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
ixa->ixa_ipsec_ah_sa = NULL;
}
if (ixa->ixa_ipsec_esp_sa != NULL) {
IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
ixa->ixa_ipsec_esp_sa = NULL;
}
sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Handle IPsec output processing.
* This function is only entered once for a given packet.
* We try to do things synchronously, but if we need to have user-level
* set up SAs, or ESP or AH uses asynchronous kEF, then the operation
* will be completed
* - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
* - when asynchronous ESP is done it will do AH
*
* In all cases we come back in ip_output_post_ipsec() to fragment and
* send out the packet.
*/
int
ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
{
ill_t *ill = ixa->ixa_nce->nce_ill;
ip_stack_t *ipst = ixa->ixa_ipst;
ipsec_stack_t *ipss;
ipsec_policy_t *pp;
ipsec_action_t *ap;
ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
ASSERT((ixa->ixa_ipsec_policy != NULL) ||
(ixa->ixa_ipsec_action != NULL));
ipss = ipst->ips_netstack->netstack_ipsec;
if (!ipsec_loaded(ipss)) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
ip_drop_packet(mp, B_TRUE, ill,
DROPPER(ipss, ipds_ip_ipsec_not_loaded),
&ipss->ipsec_dropper);
return (ENOTSUP);
}
ap = ixa->ixa_ipsec_action;
if (ap == NULL) {
pp = ixa->ixa_ipsec_policy;
ASSERT(pp != NULL);
ap = pp->ipsp_act;
ASSERT(ap != NULL);
}
/* Handle explicit drop action and bypass. */
switch (ap->ipa_act.ipa_type) {
case IPSEC_ACT_DISCARD:
case IPSEC_ACT_REJECT:
ip_drop_packet(mp, B_FALSE, ill,
DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
return (EHOSTUNREACH); /* IPsec policy failure */
case IPSEC_ACT_BYPASS:
return (ip_output_post_ipsec(mp, ixa));
}
/*
* The order of processing is first insert a IP header if needed.
* Then insert the ESP header and then the AH header.
*/
if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
/*
* First get the outer IP header before sending
* it to ESP.
*/
ipha_t *oipha, *iipha;
mblk_t *outer_mp, *inner_mp;
if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
(void) mi_strlog(ill->ill_rq, 0,
SL_ERROR|SL_TRACE|SL_CONSOLE,
"ipsec_out_process: "
"Self-Encapsulation failed: Out of memory\n");
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
ip_drop_output("ipIfStatsOutDiscards", mp, ill);
freemsg(mp);
return (ENOBUFS);
}
inner_mp = mp;
ASSERT(inner_mp->b_datap->db_type == M_DATA);
oipha = (ipha_t *)outer_mp->b_rptr;
iipha = (ipha_t *)inner_mp->b_rptr;
*oipha = *iipha;
outer_mp->b_wptr += sizeof (ipha_t);
oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
sizeof (ipha_t));
oipha->ipha_protocol = IPPROTO_ENCAP;
oipha->ipha_version_and_hdr_length =
IP_SIMPLE_HDR_VERSION;
oipha->ipha_hdr_checksum = 0;
oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
outer_mp->b_cont = inner_mp;
mp = outer_mp;
ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
}
/* If we need to wait for a SA then we can't return any errno */
if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
(ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
!ipsec_out_select_sa(mp, ixa))
return (0);
/*
* By now, we know what SA's to use. Toss over to ESP & AH
* to do the heavy lifting.
*/
if (ap->ipa_want_esp) {
ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
if (mp == NULL) {
/*
* Either it failed or is pending. In the former case
* ipIfStatsInDiscards was increased.
*/
return (0);
}
}
if (ap->ipa_want_ah) {
ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
if (mp == NULL) {
/*
* Either it failed or is pending. In the former case
* ipIfStatsInDiscards was increased.
*/
return (0);
}
}
/*
* We are done with IPsec processing. Send it over
* the wire.
*/
return (ip_output_post_ipsec(mp, ixa));
}
/*
* ioctls that go through a down/up sequence may need to wait for the down
* to complete. This involves waiting for the ire and ipif refcnts to go down
* to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
*/
/* ARGSUSED */
void
ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
{
struct iocblk *iocp;
mblk_t *mp1;
ip_ioctl_cmd_t *ipip;
int err;
sin_t *sin;
struct lifreq *lifr;
struct ifreq *ifr;
iocp = (struct iocblk *)mp->b_rptr;
ASSERT(ipsq != NULL);
/* Existence of mp1 verified in ip_wput_nondata */
mp1 = mp->b_cont->b_cont;
ipip = ip_sioctl_lookup(iocp->ioc_cmd);
if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
/*
* Special case where ipx_current_ipif is not set:
* ill_phyint_reinit merged the v4 and v6 into a single ipsq.
* We are here as were not able to complete the operation in
* ipif_set_values because we could not become exclusive on
* the new ipsq.
*/
ill_t *ill = q->q_ptr;
ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
}
ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
if (ipip->ipi_cmd_type == IF_CMD) {
/* This a old style SIOC[GS]IF* command */
ifr = (struct ifreq *)mp1->b_rptr;
sin = (sin_t *)&ifr->ifr_addr;
} else if (ipip->ipi_cmd_type == LIF_CMD) {
/* This a new style SIOC[GS]LIF* command */
lifr = (struct lifreq *)mp1->b_rptr;
sin = (sin_t *)&lifr->lifr_addr;
} else {
sin = NULL;
}
err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
q, mp, ipip, mp1->b_rptr);
DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
int, ipip->ipi_cmd,
ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
}
/*
* ioctl processing
*
* ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
* the ioctl command in the ioctl tables, determines the copyin data size
* from the ipi_copyin_size field, and does an mi_copyin() of that size.
*
* ioctl processing then continues when the M_IOCDATA makes its way down to
* ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its
* associated 'conn' is refheld till the end of the ioctl and the general
* ioctl processing function ip_process_ioctl() is called to extract the
* arguments and process the ioctl. To simplify extraction, ioctl commands
* are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
* `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
* is used to extract the ioctl's arguments.
*
* ip_process_ioctl determines if the ioctl needs to be serialized, and if
* so goes thru the serialization primitive ipsq_try_enter. Then the
* appropriate function to handle the ioctl is called based on the entry in
* the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
* which also refreleases the 'conn' that was refheld at the start of the
* ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
*
* Many exclusive ioctls go thru an internal down up sequence as part of
* the operation. For example an attempt to change the IP address of an
* ipif entails ipif_down, set address, ipif_up. Bringing down the interface
* does all the cleanup such as deleting all ires that use this address.
* Then we need to wait till all references to the interface go away.
*/
void
ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
{
struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
ip_ioctl_cmd_t *ipip = arg;
ip_extract_func_t *extract_funcp;
cmd_info_t ci;
int err;
boolean_t entered_ipsq = B_FALSE;
ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
if (ipip == NULL)
ipip = ip_sioctl_lookup(iocp->ioc_cmd);
/*
* SIOCLIFADDIF needs to go thru a special path since the
* ill may not exist yet. This happens in the case of lo0
* which is created using this ioctl.
*/
if (ipip->ipi_cmd == SIOCLIFADDIF) {
err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
return;
}
ci.ci_ipif = NULL;
switch (ipip->ipi_cmd_type) {
case MISC_CMD:
case MSFILT_CMD:
/*
* All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
*/
if (ipip->ipi_cmd == IF_UNITSEL) {
/* ioctl comes down the ill */
ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
ipif_refhold(ci.ci_ipif);
}
err = 0;
ci.ci_sin = NULL;
ci.ci_sin6 = NULL;
ci.ci_lifr = NULL;
extract_funcp = NULL;
break;
case IF_CMD:
case LIF_CMD:
extract_funcp = ip_extract_lifreq;
break;
case ARP_CMD:
case XARP_CMD:
extract_funcp = ip_extract_arpreq;
break;
default:
ASSERT(0);
}
if (extract_funcp != NULL) {
err = (*extract_funcp)(q, mp, ipip, &ci);
if (err != 0) {
DTRACE_PROBE4(ipif__ioctl,
char *, "ip_process_ioctl finish err",
int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
return;
}
/*
* All of the extraction functions return a refheld ipif.
*/
ASSERT(ci.ci_ipif != NULL);
}
if (!(ipip->ipi_flags & IPI_WR)) {
/*
* A return value of EINPROGRESS means the ioctl is
* either queued and waiting for some reason or has
* already completed.
*/
err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
ci.ci_lifr);
if (ci.ci_ipif != NULL) {
DTRACE_PROBE4(ipif__ioctl,
char *, "ip_process_ioctl finish RD",
int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
ipif_t *, ci.ci_ipif);
ipif_refrele(ci.ci_ipif);
} else {
DTRACE_PROBE4(ipif__ioctl,
char *, "ip_process_ioctl finish RD",
int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
}
ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
return;
}
ASSERT(ci.ci_ipif != NULL);
/*
* If ipsq is non-NULL, we are already being called exclusively
*/
ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
if (ipsq == NULL) {
ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
NEW_OP, B_TRUE);
if (ipsq == NULL) {
ipif_refrele(ci.ci_ipif);
return;
}
entered_ipsq = B_TRUE;
}
/*
* Release the ipif so that ipif_down and friends that wait for
* references to go away are not misled about the current ipif_refcnt
* values. We are writer so we can access the ipif even after releasing
* the ipif.
*/
ipif_refrele(ci.ci_ipif);
ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
/*
* A return value of EINPROGRESS means the ioctl is
* either queued and waiting for some reason or has
* already completed.
*/
err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
int, ipip->ipi_cmd,
ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
ipif_t *, ci.ci_ipif);
ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
if (entered_ipsq)
ipsq_exit(ipsq);
}
/*
* Complete the ioctl. Typically ioctls use the mi package and need to
* do mi_copyout/mi_copy_done.
*/
void
ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
{
conn_t *connp = NULL;
if (err == EINPROGRESS)
return;
if (CONN_Q(q)) {
connp = Q_TO_CONN(q);
ASSERT(connp->conn_ref >= 2);
}
switch (mode) {
case COPYOUT:
if (err == 0)
mi_copyout(q, mp);
else
mi_copy_done(q, mp, err);
break;
case NO_COPYOUT:
mi_copy_done(q, mp, err);
break;
default:
ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */
break;
}
/*
* The conn refhold and ioctlref placed on the conn at the start of the
* ioctl are released here.
*/
if (connp != NULL) {
CONN_DEC_IOCTLREF(connp);
CONN_OPER_PENDING_DONE(connp);
}
if (ipsq != NULL)
ipsq_current_finish(ipsq);
}
/* Handles all non data messages */
void
ip_wput_nondata(queue_t *q, mblk_t *mp)
{
mblk_t *mp1;
struct iocblk *iocp;
ip_ioctl_cmd_t *ipip;
conn_t *connp;
cred_t *cr;
char *proto_str;
if (CONN_Q(q))
connp = Q_TO_CONN(q);
else
connp = NULL;
switch (DB_TYPE(mp)) {
case M_IOCTL:
/*
* IOCTL processing begins in ip_sioctl_copyin_setup which
* will arrange to copy in associated control structures.
*/
ip_sioctl_copyin_setup(q, mp);
return;
case M_IOCDATA:
/*
* Ensure that this is associated with one of our trans-
* parent ioctls. If it's not ours, discard it if we're
* running as a driver, or pass it on if we're a module.
*/
iocp = (struct iocblk *)mp->b_rptr;
ipip = ip_sioctl_lookup(iocp->ioc_cmd);
if (ipip == NULL) {
if (q->q_next == NULL) {
goto nak;
} else {
putnext(q, mp);
}
return;
}
if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
/*
* The ioctl is one we recognise, but is not consumed
* by IP as a module and we are a module, so we drop
*/
goto nak;
}
/* IOCTL continuation following copyin or copyout. */
if (mi_copy_state(q, mp, NULL) == -1) {
/*
* The copy operation failed. mi_copy_state already
* cleaned up, so we're out of here.
*/
return;
}
/*
* If we just completed a copy in, we become writer and
* continue processing in ip_sioctl_copyin_done. If it
* was a copy out, we call mi_copyout again. If there is
* nothing more to copy out, it will complete the IOCTL.
*/
if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
mi_copy_done(q, mp, EPROTO);
return;
}
/*
* Check for cases that need more copying. A return
* value of 0 means a second copyin has been started,
* so we return; a return value of 1 means no more
* copying is needed, so we continue.
*/
if (ipip->ipi_cmd_type == MSFILT_CMD &&
MI_COPY_COUNT(mp) == 1) {
if (ip_copyin_msfilter(q, mp) == 0)
return;
}
/*
* Refhold the conn, till the ioctl completes. This is
* needed in case the ioctl ends up in the pending mp
* list. Every mp in the ipx_pending_mp list must have
* a refhold on the conn to resume processing. The
* refhold is released when the ioctl completes
* (whether normally or abnormally). An ioctlref is also
* placed on the conn to prevent TCP from removing the
* queue needed to send the ioctl reply back.
* In all cases ip_ioctl_finish is called to finish
* the ioctl and release the refholds.
*/
if (connp != NULL) {
/* This is not a reentry */
CONN_INC_REF(connp);
CONN_INC_IOCTLREF(connp);
} else {
if (!(ipip->ipi_flags & IPI_MODOK)) {
mi_copy_done(q, mp, EINVAL);
return;
}
}
ip_process_ioctl(NULL, q, mp, ipip);
} else {
mi_copyout(q, mp);
}
return;
case M_IOCNAK:
/*
* The only way we could get here is if a resolver didn't like
* an IOCTL we sent it. This shouldn't happen.
*/
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
((struct iocblk *)mp->b_rptr)->ioc_cmd);
freemsg(mp);
return;
case M_IOCACK:
/* /dev/ip shouldn't see this */
goto nak;
case M_FLUSH:
if (*mp->b_rptr & FLUSHW)
flushq(q, FLUSHALL);
if (q->q_next) {
putnext(q, mp);
return;
}
if (*mp->b_rptr & FLUSHR) {
*mp->b_rptr &= ~FLUSHW;
qreply(q, mp);
return;
}
freemsg(mp);
return;
case M_CTL:
break;
case M_PROTO:
case M_PCPROTO:
/*
* The only PROTO messages we expect are SNMP-related.
*/
switch (((union T_primitives *)mp->b_rptr)->type) {
case T_SVR4_OPTMGMT_REQ:
ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
"flags %x\n",
((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
if (connp == NULL) {
proto_str = "T_SVR4_OPTMGMT_REQ";
goto protonak;
}
/*
* All Solaris components should pass a db_credp
* for this TPI message, hence we ASSERT.
* But in case there is some other M_PROTO that looks
* like a TPI message sent by some other kernel
* component, we check and return an error.
*/
cr = msg_getcred(mp, NULL);
ASSERT(cr != NULL);
if (cr == NULL) {
mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
if (mp != NULL)
qreply(q, mp);
return;
}
if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
proto_str = "Bad SNMPCOM request?";
goto protonak;
}
return;
default:
ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
(int)*(uint_t *)mp->b_rptr));
freemsg(mp);
return;
}
default:
break;
}
if (q->q_next) {
putnext(q, mp);
} else
freemsg(mp);
return;
nak:
iocp->ioc_error = EINVAL;
mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_count = 0;
qreply(q, mp);
return;
protonak:
cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
qreply(q, mp);
}
/*
* Process IP options in an outbound packet. Verify that the nexthop in a
* strict source route is onlink.
* Returns non-zero if something fails in which case an ICMP error has been
* sent and mp freed.
*
* Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
*/
int
ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
{
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
ipaddr_t dst;
intptr_t code = 0;
ire_t *ire;
ip_stack_t *ipst = ixa->ixa_ipst;
ip_recv_attr_t iras;
ip2dbg(("ip_output_options\n"));
dst = ipha->ipha_dst;
for (optval = ipoptp_first(&opts, ipha);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
optlen = opts.ipoptp_len;
ip2dbg(("ip_output_options: opt %d, len %d\n",
optval, optlen));
switch (optval) {
uint32_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_output_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OLEN] -
(char *)ipha;
goto param_prob;
}
off = opt[IPOPT_OFFSET];
ip1dbg(("ip_output_options: next hop 0x%x\n",
ntohl(dst)));
/*
* For strict: verify that dst is directly
* reachable.
*/
if (optval == IPOPT_SSRR) {
ire = ire_ftable_lookup_v4(dst, 0, 0,
IRE_INTERFACE, NULL, ALL_ZONES,
ixa->ixa_tsl,
MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
NULL);
if (ire == NULL) {
ip1dbg(("ip_output_options: SSRR not"
" directly reachable: 0x%x\n",
ntohl(dst)));
goto bad_src_route;
}
ire_refrele(ire);
}
break;
case IPOPT_RR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_output_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OLEN] -
(char *)ipha;
goto param_prob;
}
break;
case IPOPT_TS:
/*
* Verify that length >=5 and that there is either
* room for another timestamp or that the overflow
* counter is not maxed out.
*/
code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
if (optlen < IPOPT_MINLEN_IT) {
goto param_prob;
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
ip1dbg((
"ip_output_options: bad option offset\n"));
code = (char *)&opt[IPOPT_OFFSET] -
(char *)ipha;
goto param_prob;
}
switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
case IPOPT_TS_TSONLY:
off = IPOPT_TS_TIMELEN;
break;
case IPOPT_TS_TSANDADDR:
case IPOPT_TS_PRESPEC:
case IPOPT_TS_PRESPEC_RFC791:
off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
break;
default:
code = (char *)&opt[IPOPT_POS_OV_FLG] -
(char *)ipha;
goto param_prob;
}
if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
(opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
/*
* No room and the overflow counter is 15
* already.
*/
goto param_prob;
}
break;
}
}
if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
return (0);
ip1dbg(("ip_output_options: error processing IP options."));
code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
param_prob:
bzero(&iras, sizeof (iras));
iras.ira_ill = iras.ira_rill = ill;
iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
iras.ira_rifindex = iras.ira_ruifindex;
iras.ira_flags = IRAF_IS_IPV4;
ip_drop_output("ip_output_options", mp, ill);
icmp_param_problem(mp, (uint8_t)code, &iras);
ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
return (-1);
bad_src_route:
bzero(&iras, sizeof (iras));
iras.ira_ill = iras.ira_rill = ill;
iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
iras.ira_rifindex = iras.ira_ruifindex;
iras.ira_flags = IRAF_IS_IPV4;
ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
return (-1);
}
/*
* The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
* conn_drain_list_cnt can be changed by setting conn_drain_nthreads
* thru /etc/system.
*/
#define CONN_MAXDRAINCNT 64
static void
conn_drain_init(ip_stack_t *ipst)
{
int i, j;
idl_tx_list_t *itl_tx;
ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
if ((ipst->ips_conn_drain_list_cnt == 0) ||
(ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
/*
* Default value of the number of drainers is the
* number of cpus, subject to maximum of 8 drainers.
*/
if (boot_max_ncpus != -1)
ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
else
ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
}
ipst->ips_idl_tx_list =
kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
for (i = 0; i < TX_FANOUT_SIZE; i++) {
itl_tx = &ipst->ips_idl_tx_list[i];
itl_tx->txl_drain_list =
kmem_zalloc(ipst->ips_conn_drain_list_cnt *
sizeof (idl_t), KM_SLEEP);
mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
MUTEX_DEFAULT, NULL);
itl_tx->txl_drain_list[j].idl_itl = itl_tx;
}
}
}
static void
conn_drain_fini(ip_stack_t *ipst)
{
int i;
idl_tx_list_t *itl_tx;
for (i = 0; i < TX_FANOUT_SIZE; i++) {
itl_tx = &ipst->ips_idl_tx_list[i];
kmem_free(itl_tx->txl_drain_list,
ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
}
kmem_free(ipst->ips_idl_tx_list,
TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
ipst->ips_idl_tx_list = NULL;
}
/*
* Flow control has blocked us from proceeding. Insert the given conn in one
* of the conn drain lists. When flow control is unblocked, either ip_wsrv()
* (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
* will call conn_walk_drain(). See the flow control notes at the top of this
* file for more details.
*/
void
conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
{
idl_t *idl = tx_list->txl_drain_list;
uint_t index;
ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
mutex_enter(&connp->conn_lock);
if (connp->conn_state_flags & CONN_CLOSING) {
/*
* The conn is closing as a result of which CONN_CLOSING
* is set. Return.
*/
mutex_exit(&connp->conn_lock);
return;
} else if (connp->conn_idl == NULL) {
/*
* Assign the next drain list round robin. We dont' use
* a lock, and thus it may not be strictly round robin.
* Atomicity of load/stores is enough to make sure that
* conn_drain_list_index is always within bounds.
*/
index = tx_list->txl_drain_index;
ASSERT(index < ipst->ips_conn_drain_list_cnt);
connp->conn_idl = &tx_list->txl_drain_list[index];
index++;
if (index == ipst->ips_conn_drain_list_cnt)
index = 0;
tx_list->txl_drain_index = index;
} else {
ASSERT(connp->conn_idl->idl_itl == tx_list);
}
mutex_exit(&connp->conn_lock);
idl = connp->conn_idl;
mutex_enter(&idl->idl_lock);
if ((connp->conn_drain_prev != NULL) ||
(connp->conn_state_flags & CONN_CLOSING)) {
/*
* The conn is either already in the drain list or closing.
* (We needed to check for CONN_CLOSING again since close can
* sneak in between dropping conn_lock and acquiring idl_lock.)
*/
mutex_exit(&idl->idl_lock);
return;
}
/*
* The conn is not in the drain list. Insert it at the
* tail of the drain list. The drain list is circular
* and doubly linked. idl_conn points to the 1st element
* in the list.
*/
if (idl->idl_conn == NULL) {
idl->idl_conn = connp;
connp->conn_drain_next = connp;
connp->conn_drain_prev = connp;
} else {
conn_t *head = idl->idl_conn;
connp->conn_drain_next = head;
connp->conn_drain_prev = head->conn_drain_prev;
head->conn_drain_prev->conn_drain_next = connp;
head->conn_drain_prev = connp;
}
/*
* For non streams based sockets assert flow control.
*/
conn_setqfull(connp, NULL);
mutex_exit(&idl->idl_lock);
}
static void
conn_drain_remove(conn_t *connp)
{
idl_t *idl = connp->conn_idl;
if (idl != NULL) {
/*
* Remove ourself from the drain list.
*/
if (connp->conn_drain_next == connp) {
/* Singleton in the list */
ASSERT(connp->conn_drain_prev == connp);
idl->idl_conn = NULL;
} else {
connp->conn_drain_prev->conn_drain_next =
connp->conn_drain_next;
connp->conn_drain_next->conn_drain_prev =
connp->conn_drain_prev;
if (idl->idl_conn == connp)
idl->idl_conn = connp->conn_drain_next;
}
/*
* NOTE: because conn_idl is associated with a specific drain
* list which in turn is tied to the index the TX ring
* (txl_cookie) hashes to, and because the TX ring can change
* over the lifetime of the conn_t, we must clear conn_idl so
* a subsequent conn_drain_insert() will set conn_idl again
* based on the latest txl_cookie.
*/
connp->conn_idl = NULL;
}
connp->conn_drain_next = NULL;
connp->conn_drain_prev = NULL;
conn_clrqfull(connp, NULL);
/*
* For streams based sockets open up flow control.
*/
if (!IPCL_IS_NONSTR(connp))
enableok(connp->conn_wq);
}
/*
* This conn is closing, and we are called from ip_close. OR
* this conn is draining because flow-control on the ill has been relieved.
*
* We must also need to remove conn's on this idl from the list, and also
* inform the sockfs upcalls about the change in flow-control.
*/
static void
conn_drain(conn_t *connp, boolean_t closing)
{
idl_t *idl;
conn_t *next_connp;
/*
* connp->conn_idl is stable at this point, and no lock is needed
* to check it. If we are called from ip_close, close has already
* set CONN_CLOSING, thus freezing the value of conn_idl, and
* called us only because conn_idl is non-null. If we are called thru
* service, conn_idl could be null, but it cannot change because
* service is single-threaded per queue, and there cannot be another
* instance of service trying to call conn_drain_insert on this conn
* now.
*/
ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
/*
* If the conn doesn't exist or is not on a drain list, bail.
*/
if (connp == NULL || connp->conn_idl == NULL ||
connp->conn_drain_prev == NULL) {
return;
}
idl = connp->conn_idl;
ASSERT(MUTEX_HELD(&idl->idl_lock));
if (!closing) {
next_connp = connp->conn_drain_next;
while (next_connp != connp) {
conn_t *delconnp = next_connp;
next_connp = next_connp->conn_drain_next;
conn_drain_remove(delconnp);
}
ASSERT(connp->conn_drain_next == idl->idl_conn);
}
conn_drain_remove(connp);
}
/*
* Write service routine. Shared perimeter entry point.
* The device queue's messages has fallen below the low water mark and STREAMS
* has backenabled the ill_wq. Send sockfs notification about flow-control on
* each waiting conn.
*/
void
ip_wsrv(queue_t *q)
{
ill_t *ill;
ill = (ill_t *)q->q_ptr;
if (ill->ill_state_flags == 0) {
ip_stack_t *ipst = ill->ill_ipst;
/*
* The device flow control has opened up.
* Walk through conn drain lists and qenable the
* first conn in each list. This makes sense only
* if the stream is fully plumbed and setup.
* Hence the ill_state_flags check above.
*/
ip1dbg(("ip_wsrv: walking\n"));
conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
enableok(ill->ill_wq);
}
}
/*
* Callback to disable flow control in IP.
*
* This is a mac client callback added when the DLD_CAPAB_DIRECT capability
* is enabled.
*
* When MAC_TX() is not able to send any more packets, dld sets its queue
* to QFULL and enable the STREAMS flow control. Later, when the underlying
* driver is able to continue to send packets, it calls mac_tx_(ring_)update()
* function and wakes up corresponding mac worker threads, which in turn
* calls this callback function, and disables flow control.
*/
void
ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
{
ill_t *ill = (ill_t *)arg;
ip_stack_t *ipst = ill->ill_ipst;
idl_tx_list_t *idl_txl;
idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
mutex_enter(&idl_txl->txl_lock);
/* add code to to set a flag to indicate idl_txl is enabled */
conn_walk_drain(ipst, idl_txl);
mutex_exit(&idl_txl->txl_lock);
}
/*
* Flow control has been relieved and STREAMS has backenabled us; drain
* all the conn lists on `tx_list'.
*/
static void
conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
{
int i;
idl_t *idl;
IP_STAT(ipst, ip_conn_walk_drain);
for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
idl = &tx_list->txl_drain_list[i];
mutex_enter(&idl->idl_lock);
conn_drain(idl->idl_conn, B_FALSE);
mutex_exit(&idl->idl_lock);
}
}
/*
* Determine if the ill and multicast aspects of that packets
* "matches" the conn.
*/
boolean_t
conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
{
ill_t *ill = ira->ira_rill;
zoneid_t zoneid = ira->ira_zoneid;
uint_t in_ifindex;
ipaddr_t dst, src;
dst = ipha->ipha_dst;
src = ipha->ipha_src;
/*
* conn_incoming_ifindex is set by IP_BOUND_IF which limits
* unicast, broadcast and multicast reception to
* conn_incoming_ifindex.
* conn_wantpacket is called for unicast, broadcast and
* multicast packets.
*/
in_ifindex = connp->conn_incoming_ifindex;
/* mpathd can bind to the under IPMP interface, which we allow */
if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
if (!IS_UNDER_IPMP(ill))
return (B_FALSE);
if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
return (B_FALSE);
}
if (!IPCL_ZONE_MATCH(connp, zoneid))
return (B_FALSE);
if (!(ira->ira_flags & IRAF_MULTICAST))
return (B_TRUE);
if (connp->conn_multi_router) {
/* multicast packet and multicast router socket: send up */
return (B_TRUE);
}
if (ipha->ipha_protocol == IPPROTO_PIM ||
ipha->ipha_protocol == IPPROTO_RSVP)
return (B_TRUE);
return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
}
void
conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
{
if (IPCL_IS_NONSTR(connp)) {
(*connp->conn_upcalls->su_txq_full)
(connp->conn_upper_handle, B_TRUE);
if (flow_stopped != NULL)
*flow_stopped = B_TRUE;
} else {
queue_t *q = connp->conn_wq;
ASSERT(q != NULL);
if (!(q->q_flag & QFULL)) {
mutex_enter(QLOCK(q));
if (!(q->q_flag & QFULL)) {
/* still need to set QFULL */
q->q_flag |= QFULL;
/* set flow_stopped to true under QLOCK */
if (flow_stopped != NULL)
*flow_stopped = B_TRUE;
mutex_exit(QLOCK(q));
} else {
/* flow_stopped is left unchanged */
mutex_exit(QLOCK(q));
}
}
}
}
void
conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
{
if (IPCL_IS_NONSTR(connp)) {
(*connp->conn_upcalls->su_txq_full)
(connp->conn_upper_handle, B_FALSE);
if (flow_stopped != NULL)
*flow_stopped = B_FALSE;
} else {
queue_t *q = connp->conn_wq;
ASSERT(q != NULL);
if (q->q_flag & QFULL) {
mutex_enter(QLOCK(q));
if (q->q_flag & QFULL) {
q->q_flag &= ~QFULL;
/* set flow_stopped to false under QLOCK */
if (flow_stopped != NULL)
*flow_stopped = B_FALSE;
mutex_exit(QLOCK(q));
if (q->q_flag & QWANTW)
qbackenable(q, 0);
} else {
/* flow_stopped is left unchanged */
mutex_exit(QLOCK(q));
}
}
}
mutex_enter(&connp->conn_lock);
connp->conn_blocked = B_FALSE;
mutex_exit(&connp->conn_lock);
}
/*
* Return the length in bytes of the IPv4 headers (base header, label, and
* other IP options) that will be needed based on the
* ip_pkt_t structure passed by the caller.
*
* The returned length does not include the length of the upper level
* protocol (ULP) header.
* The caller needs to check that the length doesn't exceed the max for IPv4.
*/
int
ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
{
int len;
len = IP_SIMPLE_HDR_LENGTH;
if (ipp->ipp_fields & IPPF_LABEL_V4) {
ASSERT(ipp->ipp_label_len_v4 != 0);
/* We need to round up here */
len += (ipp->ipp_label_len_v4 + 3) & ~3;
}
if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
ASSERT(ipp->ipp_ipv4_options_len != 0);
ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
len += ipp->ipp_ipv4_options_len;
}
return (len);
}
/*
* All-purpose routine to build an IPv4 header with options based
* on the abstract ip_pkt_t.
*
* The caller has to set the source and destination address as well as
* ipha_length. The caller has to massage any source route and compensate
* for the ULP pseudo-header checksum due to the source route.
*/
void
ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
uint8_t protocol)
{
ipha_t *ipha = (ipha_t *)buf;
uint8_t *cp;
/* Initialize IPv4 header */
ipha->ipha_type_of_service = ipp->ipp_type_of_service;
ipha->ipha_length = 0; /* Caller will set later */
ipha->ipha_ident = 0;
ipha->ipha_fragment_offset_and_flags = 0;
ipha->ipha_ttl = ipp->ipp_unicast_hops;
ipha->ipha_protocol = protocol;
ipha->ipha_hdr_checksum = 0;
if ((ipp->ipp_fields & IPPF_ADDR) &&
IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
ipha->ipha_src = ipp->ipp_addr_v4;
cp = (uint8_t *)&ipha[1];
if (ipp->ipp_fields & IPPF_LABEL_V4) {
ASSERT(ipp->ipp_label_len_v4 != 0);
bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
cp += ipp->ipp_label_len_v4;
/* We need to round up here */
while ((uintptr_t)cp & 0x3) {
*cp++ = IPOPT_NOP;
}
}
if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
ASSERT(ipp->ipp_ipv4_options_len != 0);
ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
cp += ipp->ipp_ipv4_options_len;
}
ipha->ipha_version_and_hdr_length =
(uint8_t)((IP_VERSION << 4) + buf_len / 4);
ASSERT((int)(cp - buf) == buf_len);
}
/* Allocate the private structure */
static int
ip_priv_alloc(void **bufp)
{
void *buf;
if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
return (ENOMEM);
*bufp = buf;
return (0);
}
/* Function to delete the private structure */
void
ip_priv_free(void *buf)
{
ASSERT(buf != NULL);
kmem_free(buf, sizeof (ip_priv_t));
}
/*
* The entry point for IPPF processing.
* If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
* routine just returns.
*
* When called, ip_process generates an ipp_packet_t structure
* which holds the state information for this packet and invokes the
* the classifier (via ipp_packet_process). The classification, depending on
* configured filters, results in a list of actions for this packet. Invoking
* an action may cause the packet to be dropped, in which case we return NULL.
* proc indicates the callout position for
* this packet and ill is the interface this packet arrived on or will leave
* on (inbound and outbound resp.).
*
* We do the processing on the rill (mapped to the upper if ipmp), but MIB
* on the ill corrsponding to the destination IP address.
*/
mblk_t *
ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
{
ip_priv_t *priv;
ipp_action_id_t aid;
int rc = 0;
ipp_packet_t *pp;
/* If the classifier is not loaded, return */
if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
return (mp);
}
ASSERT(mp != NULL);
/* Allocate the packet structure */
rc = ipp_packet_alloc(&pp, "ip", aid);
if (rc != 0)
goto drop;
/* Allocate the private structure */
rc = ip_priv_alloc((void **)&priv);
if (rc != 0) {
ipp_packet_free(pp);
goto drop;
}
priv->proc = proc;
priv->ill_index = ill_get_upper_ifindex(rill);
ipp_packet_set_private(pp, priv, ip_priv_free);
ipp_packet_set_data(pp, mp);
/* Invoke the classifier */
rc = ipp_packet_process(&pp);
if (pp != NULL) {
mp = ipp_packet_get_data(pp);
ipp_packet_free(pp);
if (rc != 0)
goto drop;
return (mp);
} else {
/* No mp to trace in ip_drop_input/ip_drop_output */
mp = NULL;
}
drop:
if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
ip_drop_input("ip_process", mp, ill);
} else {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
ip_drop_output("ip_process", mp, ill);
}
freemsg(mp);
return (NULL);
}
/*
* Propagate a multicast group membership operation (add/drop) on
* all the interfaces crossed by the related multirt routes.
* The call is considered successful if the operation succeeds
* on at least one interface.
*
* This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
* multicast addresses with the ire argument being the first one.
* We walk the bucket to find all the of those.
*
* Common to IPv4 and IPv6.
*/
static int
ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
mcast_record_t fmode, const in6_addr_t *v6src)
{
ire_t *ire_gw;
irb_t *irb;
int ifindex;
int error = 0;
int result;
ip_stack_t *ipst = ire->ire_ipst;
ipaddr_t group;
boolean_t isv6;
int match_flags;
if (IN6_IS_ADDR_V4MAPPED(v6group)) {
IN6_V4MAPPED_TO_IPADDR(v6group, group);
isv6 = B_FALSE;
} else {
isv6 = B_TRUE;
}
irb = ire->ire_bucket;
ASSERT(irb != NULL);
result = 0;
irb_refhold(irb);
for (; ire != NULL; ire = ire->ire_next) {
if ((ire->ire_flags & RTF_MULTIRT) == 0)
continue;
/* We handle -ifp routes by matching on the ill if set */
match_flags = MATCH_IRE_TYPE;
if (ire->ire_ill != NULL)
match_flags |= MATCH_IRE_ILL;
if (isv6) {
if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
continue;
ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
match_flags, 0, ipst, NULL);
} else {
if (ire->ire_addr != group)
continue;
ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
match_flags, 0, ipst, NULL);
}
/* No interface route exists for the gateway; skip this ire. */
if (ire_gw == NULL)
continue;
if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
ire_refrele(ire_gw);
continue;
}
ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */
ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
/*
* The operation is considered a success if
* it succeeds at least once on any one interface.
*/
error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
fmode, v6src);
if (error == 0)
result = CGTP_MCAST_SUCCESS;
ire_refrele(ire_gw);
}
irb_refrele(irb);
/*
* Consider the call as successful if we succeeded on at least
* one interface. Otherwise, return the last encountered error.
*/
return (result == CGTP_MCAST_SUCCESS ? 0 : error);
}
/*
* Return the expected CGTP hooks version number.
*/
int
ip_cgtp_filter_supported(void)
{
return (ip_cgtp_filter_rev);
}
/*
* CGTP hooks can be registered by invoking this function.
* Checks that the version number matches.
*/
int
ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
{
netstack_t *ns;
ip_stack_t *ipst;
if (ops->cfo_filter_rev != CGTP_FILTER_REV)
return (ENOTSUP);
ns = netstack_find_by_stackid(stackid);
if (ns == NULL)
return (EINVAL);
ipst = ns->netstack_ip;
ASSERT(ipst != NULL);
if (ipst->ips_ip_cgtp_filter_ops != NULL) {
netstack_rele(ns);
return (EALREADY);
}
ipst->ips_ip_cgtp_filter_ops = ops;
ill_set_inputfn_all(ipst);
netstack_rele(ns);
return (0);
}
/*
* CGTP hooks can be unregistered by invoking this function.
* Returns ENXIO if there was no registration.
* Returns EBUSY if the ndd variable has not been turned off.
*/
int
ip_cgtp_filter_unregister(netstackid_t stackid)
{
netstack_t *ns;
ip_stack_t *ipst;
ns = netstack_find_by_stackid(stackid);
if (ns == NULL)
return (EINVAL);
ipst = ns->netstack_ip;
ASSERT(ipst != NULL);
if (ipst->ips_ip_cgtp_filter) {
netstack_rele(ns);
return (EBUSY);
}
if (ipst->ips_ip_cgtp_filter_ops == NULL) {
netstack_rele(ns);
return (ENXIO);
}
ipst->ips_ip_cgtp_filter_ops = NULL;
ill_set_inputfn_all(ipst);
netstack_rele(ns);
return (0);
}
/*
* Check whether there is a CGTP filter registration.
* Returns non-zero if there is a registration, otherwise returns zero.
* Note: returns zero if bad stackid.
*/
int
ip_cgtp_filter_is_registered(netstackid_t stackid)
{
netstack_t *ns;
ip_stack_t *ipst;
int ret;
ns = netstack_find_by_stackid(stackid);
if (ns == NULL)
return (0);
ipst = ns->netstack_ip;
ASSERT(ipst != NULL);
if (ipst->ips_ip_cgtp_filter_ops != NULL)
ret = 1;
else
ret = 0;
netstack_rele(ns);
return (ret);
}
static int
ip_squeue_switch(int val)
{
int rval;
switch (val) {
case IP_SQUEUE_ENTER_NODRAIN:
rval = SQ_NODRAIN;
break;
case IP_SQUEUE_ENTER:
rval = SQ_PROCESS;
break;
case IP_SQUEUE_FILL:
default:
rval = SQ_FILL;
break;
}
return (rval);
}
static void *
ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
{
kstat_t *ksp;
ip_stat_t template = {
{ "ip_udp_fannorm", KSTAT_DATA_UINT64 },
{ "ip_udp_fanmb", KSTAT_DATA_UINT64 },
{ "ip_recv_pullup", KSTAT_DATA_UINT64 },
{ "ip_db_ref", KSTAT_DATA_UINT64 },
{ "ip_notaligned", KSTAT_DATA_UINT64 },
{ "ip_multimblk", KSTAT_DATA_UINT64 },
{ "ip_opt", KSTAT_DATA_UINT64 },
{ "ipsec_proto_ahesp", KSTAT_DATA_UINT64 },
{ "ip_conn_flputbq", KSTAT_DATA_UINT64 },
{ "ip_conn_walk_drain", KSTAT_DATA_UINT64 },
{ "ip_out_sw_cksum", KSTAT_DATA_UINT64 },
{ "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 },
{ "ip_in_sw_cksum", KSTAT_DATA_UINT64 },
{ "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 },
{ "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 },
{ "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 },
{ "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 },
{ "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 },
{ "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 },
{ "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
{ "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
{ "conn_in_recvdstaddr", KSTAT_DATA_UINT64 },
{ "conn_in_recvopts", KSTAT_DATA_UINT64 },
{ "conn_in_recvif", KSTAT_DATA_UINT64 },
{ "conn_in_recvslla", KSTAT_DATA_UINT64 },
{ "conn_in_recvucred", KSTAT_DATA_UINT64 },
{ "conn_in_recvttl", KSTAT_DATA_UINT64 },
{ "conn_in_recvhopopts", KSTAT_DATA_UINT64 },
{ "conn_in_recvhoplimit", KSTAT_DATA_UINT64 },
{ "conn_in_recvdstopts", KSTAT_DATA_UINT64 },
{ "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 },
{ "conn_in_recvrthdr", KSTAT_DATA_UINT64 },
{ "conn_in_recvpktinfo", KSTAT_DATA_UINT64 },
{ "conn_in_recvtclass", KSTAT_DATA_UINT64 },
{ "conn_in_timestamp", KSTAT_DATA_UINT64 },
};
ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL, stackid);
if (ksp == NULL)
return (NULL);
bcopy(&template, ip_statisticsp, sizeof (template));
ksp->ks_data = (void *)ip_statisticsp;
ksp->ks_private = (void *)(uintptr_t)stackid;
kstat_install(ksp);
return (ksp);
}
static void
ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
{
if (ksp != NULL) {
ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
kstat_delete_netstack(ksp, stackid);
}
}
static void *
ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
{
kstat_t *ksp;
ip_named_kstat_t template = {
{ "forwarding", KSTAT_DATA_UINT32, 0 },
{ "defaultTTL", KSTAT_DATA_UINT32, 0 },
{ "inReceives", KSTAT_DATA_UINT64, 0 },
{ "inHdrErrors", KSTAT_DATA_UINT32, 0 },
{ "inAddrErrors", KSTAT_DATA_UINT32, 0 },
{ "forwDatagrams", KSTAT_DATA_UINT64, 0 },
{ "inUnknownProtos", KSTAT_DATA_UINT32, 0 },
{ "inDiscards", KSTAT_DATA_UINT32, 0 },
{ "inDelivers", KSTAT_DATA_UINT64, 0 },
{ "outRequests", KSTAT_DATA_UINT64, 0 },
{ "outDiscards", KSTAT_DATA_UINT32, 0 },
{ "outNoRoutes", KSTAT_DATA_UINT32, 0 },
{ "reasmTimeout", KSTAT_DATA_UINT32, 0 },
{ "reasmReqds", KSTAT_DATA_UINT32, 0 },
{ "reasmOKs", KSTAT_DATA_UINT32, 0 },
{ "reasmFails", KSTAT_DATA_UINT32, 0 },
{ "fragOKs", KSTAT_DATA_UINT32, 0 },
{ "fragFails", KSTAT_DATA_UINT32, 0 },
{ "fragCreates", KSTAT_DATA_UINT32, 0 },
{ "addrEntrySize", KSTAT_DATA_INT32, 0 },
{ "routeEntrySize", KSTAT_DATA_INT32, 0 },
{ "netToMediaEntrySize", KSTAT_DATA_INT32, 0 },
{ "routingDiscards", KSTAT_DATA_UINT32, 0 },
{ "inErrs", KSTAT_DATA_UINT32, 0 },
{ "noPorts", KSTAT_DATA_UINT32, 0 },
{ "inCksumErrs", KSTAT_DATA_UINT32, 0 },
{ "reasmDuplicates", KSTAT_DATA_UINT32, 0 },
{ "reasmPartDups", KSTAT_DATA_UINT32, 0 },
{ "forwProhibits", KSTAT_DATA_UINT32, 0 },
{ "udpInCksumErrs", KSTAT_DATA_UINT32, 0 },
{ "udpInOverflows", KSTAT_DATA_UINT32, 0 },
{ "rawipInOverflows", KSTAT_DATA_UINT32, 0 },
{ "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 },
{ "ipsecInFailed", KSTAT_DATA_INT32, 0 },
{ "memberEntrySize", KSTAT_DATA_INT32, 0 },
{ "inIPv6", KSTAT_DATA_UINT32, 0 },
{ "outIPv6", KSTAT_DATA_UINT32, 0 },
{ "outSwitchIPv6", KSTAT_DATA_UINT32, 0 },
};
ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
if (ksp == NULL || ksp->ks_data == NULL)
return (NULL);
template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
template.netToMediaEntrySize.value.i32 =
sizeof (mib2_ipNetToMediaEntry_t);
template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
bcopy(&template, ksp->ks_data, sizeof (template));
ksp->ks_update = ip_kstat_update;
ksp->ks_private = (void *)(uintptr_t)stackid;
kstat_install(ksp);
return (ksp);
}
static void
ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
{
if (ksp != NULL) {
ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
kstat_delete_netstack(ksp, stackid);
}
}
static int
ip_kstat_update(kstat_t *kp, int rw)
{
ip_named_kstat_t *ipkp;
mib2_ipIfStatsEntry_t ipmib;
ill_walk_context_t ctx;
ill_t *ill;
netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
netstack_t *ns;
ip_stack_t *ipst;
if (kp == NULL || kp->ks_data == NULL)
return (EIO);
if (rw == KSTAT_WRITE)
return (EACCES);
ns = netstack_find_by_stackid(stackid);
if (ns == NULL)
return (-1);
ipst = ns->netstack_ip;
if (ipst == NULL) {
netstack_rele(ns);
return (-1);
}
ipkp = (ip_named_kstat_t *)kp->ks_data;
bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_V4(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill))
ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
rw_exit(&ipst->ips_ill_g_lock);
ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding;
ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL;
ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives;
ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors;
ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors;
ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos;
ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards;
ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers;
ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests;
ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards;
ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes;
ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds;
ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs;
ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails;
ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs;
ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails;
ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates;
ipkp->routingDiscards.value.ui32 = 0;
ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs;
ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts;
ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs;
ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates;
ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups;
ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits;
ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs;
ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows;
ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows;
ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded;
ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed;
ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion;
ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion;
ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
netstack_rele(ns);
return (0);
}
static void *
icmp_kstat_init(netstackid_t stackid)
{
kstat_t *ksp;
icmp_named_kstat_t template = {
{ "inMsgs", KSTAT_DATA_UINT32 },
{ "inErrors", KSTAT_DATA_UINT32 },
{ "inDestUnreachs", KSTAT_DATA_UINT32 },
{ "inTimeExcds", KSTAT_DATA_UINT32 },
{ "inParmProbs", KSTAT_DATA_UINT32 },
{ "inSrcQuenchs", KSTAT_DATA_UINT32 },
{ "inRedirects", KSTAT_DATA_UINT32 },
{ "inEchos", KSTAT_DATA_UINT32 },
{ "inEchoReps", KSTAT_DATA_UINT32 },
{ "inTimestamps", KSTAT_DATA_UINT32 },
{ "inTimestampReps", KSTAT_DATA_UINT32 },
{ "inAddrMasks", KSTAT_DATA_UINT32 },
{ "inAddrMaskReps", KSTAT_DATA_UINT32 },
{ "outMsgs", KSTAT_DATA_UINT32 },
{ "outErrors", KSTAT_DATA_UINT32 },
{ "outDestUnreachs", KSTAT_DATA_UINT32 },
{ "outTimeExcds", KSTAT_DATA_UINT32 },
{ "outParmProbs", KSTAT_DATA_UINT32 },
{ "outSrcQuenchs", KSTAT_DATA_UINT32 },
{ "outRedirects", KSTAT_DATA_UINT32 },
{ "outEchos", KSTAT_DATA_UINT32 },
{ "outEchoReps", KSTAT_DATA_UINT32 },
{ "outTimestamps", KSTAT_DATA_UINT32 },
{ "outTimestampReps", KSTAT_DATA_UINT32 },
{ "outAddrMasks", KSTAT_DATA_UINT32 },
{ "outAddrMaskReps", KSTAT_DATA_UINT32 },
{ "inChksumErrs", KSTAT_DATA_UINT32 },
{ "inUnknowns", KSTAT_DATA_UINT32 },
{ "inFragNeeded", KSTAT_DATA_UINT32 },
{ "outFragNeeded", KSTAT_DATA_UINT32 },
{ "outDrops", KSTAT_DATA_UINT32 },
{ "inOverFlows", KSTAT_DATA_UINT32 },
{ "inBadRedirects", KSTAT_DATA_UINT32 },
};
ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
if (ksp == NULL || ksp->ks_data == NULL)
return (NULL);
bcopy(&template, ksp->ks_data, sizeof (template));
ksp->ks_update = icmp_kstat_update;
ksp->ks_private = (void *)(uintptr_t)stackid;
kstat_install(ksp);
return (ksp);
}
static void
icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
{
if (ksp != NULL) {
ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
kstat_delete_netstack(ksp, stackid);
}
}
static int
icmp_kstat_update(kstat_t *kp, int rw)
{
icmp_named_kstat_t *icmpkp;
netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
netstack_t *ns;
ip_stack_t *ipst;
if ((kp == NULL) || (kp->ks_data == NULL))
return (EIO);
if (rw == KSTAT_WRITE)
return (EACCES);
ns = netstack_find_by_stackid(stackid);
if (ns == NULL)
return (-1);
ipst = ns->netstack_ip;
if (ipst == NULL) {
netstack_rele(ns);
return (-1);
}
icmpkp = (icmp_named_kstat_t *)kp->ks_data;
icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs;
icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors;
icmpkp->inDestUnreachs.value.ui32 =
ipst->ips_icmp_mib.icmpInDestUnreachs;
icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds;
icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs;
icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs;
icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects;
icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos;
icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps;
icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps;
icmpkp->inTimestampReps.value.ui32 =
ipst->ips_icmp_mib.icmpInTimestampReps;
icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks;
icmpkp->inAddrMaskReps.value.ui32 =
ipst->ips_icmp_mib.icmpInAddrMaskReps;
icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs;
icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors;
icmpkp->outDestUnreachs.value.ui32 =
ipst->ips_icmp_mib.icmpOutDestUnreachs;
icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds;
icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs;
icmpkp->outSrcQuenchs.value.ui32 =
ipst->ips_icmp_mib.icmpOutSrcQuenchs;
icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects;
icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos;
icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps;
icmpkp->outTimestamps.value.ui32 =
ipst->ips_icmp_mib.icmpOutTimestamps;
icmpkp->outTimestampReps.value.ui32 =
ipst->ips_icmp_mib.icmpOutTimestampReps;
icmpkp->outAddrMasks.value.ui32 =
ipst->ips_icmp_mib.icmpOutAddrMasks;
icmpkp->outAddrMaskReps.value.ui32 =
ipst->ips_icmp_mib.icmpOutAddrMaskReps;
icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs;
icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns;
icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded;
icmpkp->outFragNeeded.value.ui32 =
ipst->ips_icmp_mib.icmpOutFragNeeded;
icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops;
icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows;
icmpkp->inBadRedirects.value.ui32 =
ipst->ips_icmp_mib.icmpInBadRedirects;
netstack_rele(ns);
return (0);
}
/*
* This is the fanout function for raw socket opened for SCTP. Note
* that it is called after SCTP checks that there is no socket which
* wants a packet. Then before SCTP handles this out of the blue packet,
* this function is called to see if there is any raw socket for SCTP.
* If there is and it is bound to the correct address, the packet will
* be sent to that socket. Note that only one raw socket can be bound to
* a port. This is assured in ipcl_sctp_hash_insert();
*/
void
ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
ip_recv_attr_t *ira)
{
conn_t *connp;
queue_t *rq;
boolean_t secure;
ill_t *ill = ira->ira_ill;
ip_stack_t *ipst = ill->ill_ipst;
ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp;
iaflags_t iraflags = ira->ira_flags;
ill_t *rill = ira->ira_rill;
secure = iraflags & IRAF_IPSEC_SECURE;
connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
ira, ipst);
if (connp == NULL) {
/*
* Although raw sctp is not summed, OOB chunks must be.
* Drop the packet here if the sctp checksum failed.
*/
if (iraflags & IRAF_SCTP_CSUM_ERR) {
SCTPS_BUMP_MIB(sctps, sctpChecksumError);
freemsg(mp);
return;
}
ira->ira_ill = ira->ira_rill = NULL;
sctp_ootb_input(mp, ira, ipst);
ira->ira_ill = ill;
ira->ira_rill = rill;
return;
}
rq = connp->conn_rq;
if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
CONN_DEC_REF(connp);
BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
freemsg(mp);
return;
}
if (((iraflags & IRAF_IS_IPV4) ?
CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
secure) {
mp = ipsec_check_inbound_policy(mp, connp, ipha,
ip6h, ira);
if (mp == NULL) {
BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
/* Note that mp is NULL */
ip_drop_input("ipIfStatsInDiscards", mp, ill);
CONN_DEC_REF(connp);
return;
}
}
if (iraflags & IRAF_ICMP_ERROR) {
(connp->conn_recvicmp)(connp, mp, NULL, ira);
} else {
ill_t *rill = ira->ira_rill;
BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
/* This is the SOCK_RAW, IPPROTO_SCTP case. */
ira->ira_ill = ira->ira_rill = NULL;
(connp->conn_recv)(connp, mp, NULL, ira);
ira->ira_ill = ill;
ira->ira_rill = rill;
}
CONN_DEC_REF(connp);
}
/*
* Free a packet that has the link-layer dl_unitdata_req_t or fast-path
* header before the ip payload.
*/
static void
ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
{
int len = (mp->b_wptr - mp->b_rptr);
mblk_t *ip_mp;
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
if (is_fp_mp || len != fp_mp_len) {
if (len > fp_mp_len) {
/*
* fastpath header and ip header in the first mblk
*/
mp->b_rptr += fp_mp_len;
} else {
/*
* ip_xmit_attach_llhdr had to prepend an mblk to
* attach the fastpath header before ip header.
*/
ip_mp = mp->b_cont;
freeb(mp);
mp = ip_mp;
mp->b_rptr += (fp_mp_len - len);
}
} else {
ip_mp = mp->b_cont;
freeb(mp);
mp = ip_mp;
}
ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
freemsg(mp);
}
/*
* Normal post fragmentation function.
*
* Send a packet using the passed in nce. This handles both IPv4 and IPv6
* using the same state machine.
*
* We return an error on failure. In particular we return EWOULDBLOCK
* when the driver flow controls. In that case this ensures that ip_wsrv runs
* (currently by canputnext failure resulting in backenabling from GLD.)
* This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
* indication that they can flow control until ip_wsrv() tells then to restart.
*
* If the nce passed by caller is incomplete, this function
* queues the packet and if necessary, sends ARP request and bails.
* If the Neighbor Cache passed is fully resolved, we simply prepend
* the link-layer header to the packet, do ipsec hw acceleration
* work if necessary, and send the packet out on the wire.
*/
/* ARGSUSED6 */
int
ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
{
queue_t *wq;
ill_t *ill = nce->nce_ill;
ip_stack_t *ipst = ill->ill_ipst;
uint64_t delta;
boolean_t isv6 = ill->ill_isv6;
boolean_t fp_mp;
ncec_t *ncec = nce->nce_common;
int64_t now = LBOLT_FASTPATH64;
boolean_t is_probe;
DTRACE_PROBE1(ip__xmit, nce_t *, nce);
ASSERT(mp != NULL);
ASSERT(mp->b_datap->db_type == M_DATA);
ASSERT(pkt_len == msgdsize(mp));
/*
* If we have already been here and are coming back after ARP/ND.
* the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
* in that case since they have seen the packet when it came here
* the first time.
*/
if (ixaflags & IXAF_NO_TRACE)
goto sendit;
if (ixaflags & IXAF_IS_IPV4) {
ipha_t *ipha = (ipha_t *)mp->b_rptr;
ASSERT(!isv6);
ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
!(ixaflags & IXAF_NO_PFHOOK)) {
int error;
FW_HOOKS(ipst->ips_ip4_physical_out_event,
ipst->ips_ipv4firewall_physical_out,
NULL, ill, ipha, mp, mp, 0, ipst, error);
DTRACE_PROBE1(ip4__physical__out__end,
mblk_t *, mp);
if (mp == NULL)
return (error);
/* The length could have changed */
pkt_len = msgdsize(mp);
}
if (ipst->ips_ip4_observe.he_interested) {
/*
* Note that for TX the zoneid is the sending
* zone, whether or not MLP is in play.
* Since the szone argument is the IP zoneid (i.e.,
* zero for exclusive-IP zones) and ipobs wants
* the system zoneid, we map it here.
*/
szone = IP_REAL_ZONEID(szone, ipst);
/*
* On the outbound path the destination zone will be
* unknown as we're sending this packet out on the
* wire.
*/
ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
ill, ipst);
}
DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill,
ipha_t *, ipha, ip6_t *, NULL, int, 0);
} else {
ip6_t *ip6h = (ip6_t *)mp->b_rptr;
ASSERT(isv6);
ASSERT(pkt_len ==
ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
!(ixaflags & IXAF_NO_PFHOOK)) {
int error;
FW_HOOKS6(ipst->ips_ip6_physical_out_event,
ipst->ips_ipv6firewall_physical_out,
NULL, ill, ip6h, mp, mp, 0, ipst, error);
DTRACE_PROBE1(ip6__physical__out__end,
mblk_t *, mp);
if (mp == NULL)
return (error);
/* The length could have changed */
pkt_len = msgdsize(mp);
}
if (ipst->ips_ip6_observe.he_interested) {
/* See above */
szone = IP_REAL_ZONEID(szone, ipst);
ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
ill, ipst);
}
DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill,
ipha_t *, NULL, ip6_t *, ip6h, int, 0);
}
sendit:
/*
* We check the state without a lock because the state can never
* move "backwards" to initial or incomplete.
*/
switch (ncec->ncec_state) {
case ND_REACHABLE:
case ND_STALE:
case ND_DELAY:
case ND_PROBE:
mp = ip_xmit_attach_llhdr(mp, nce);
if (mp == NULL) {
/*
* ip_xmit_attach_llhdr has increased
* ipIfStatsOutDiscards and called ip_drop_output()
*/
return (ENOBUFS);
}
/*
* check if nce_fastpath completed and we tagged on a
* copy of nce_fp_mp in ip_xmit_attach_llhdr().
*/
fp_mp = (mp->b_datap->db_type == M_DATA);
if (fp_mp &&
(ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
ill_dld_direct_t *idd;
idd = &ill->ill_dld_capab->idc_direct;
/*
* Send the packet directly to DLD, where it
* may be queued depending on the availability
* of transmit resources at the media layer.
* Return value should be taken into
* account and flow control the TCP.
*/
BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
pkt_len);
if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
(uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
} else {
uintptr_t cookie;
if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
mp, (uintptr_t)xmit_hint, 0)) != 0) {
if (ixacookie != NULL)
*ixacookie = cookie;
return (EWOULDBLOCK);
}
}
} else {
wq = ill->ill_wq;
if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
!canputnext(wq)) {
if (ixacookie != NULL)
*ixacookie = 0;
ip_xmit_flowctl_drop(ill, mp, fp_mp,
nce->nce_fp_mp != NULL ?
MBLKL(nce->nce_fp_mp) : 0);
return (EWOULDBLOCK);
}
BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
pkt_len);
putnext(wq, mp);
}
/*
* The rest of this function implements Neighbor Unreachability
* detection. Determine if the ncec is eligible for NUD.
*/
if (ncec->ncec_flags & NCE_F_NONUD)
return (0);
ASSERT(ncec->ncec_state != ND_INCOMPLETE);
/*
* Check for upper layer advice
*/
if (ixaflags & IXAF_REACH_CONF) {
timeout_id_t tid;
/*
* It should be o.k. to check the state without
* a lock here, at most we lose an advice.
*/
ncec->ncec_last = TICK_TO_MSEC(now);
if (ncec->ncec_state != ND_REACHABLE) {
mutex_enter(&ncec->ncec_lock);
ncec->ncec_state = ND_REACHABLE;
tid = ncec->ncec_timeout_id;
ncec->ncec_timeout_id = 0;
mutex_exit(&ncec->ncec_lock);
(void) untimeout(tid);
if (ip_debug > 2) {
/* ip1dbg */
pr_addr_dbg("ip_xmit: state"
" for %s changed to"
" REACHABLE\n", AF_INET6,
&ncec->ncec_addr);
}
}
return (0);
}
delta = TICK_TO_MSEC(now) - ncec->ncec_last;
ip1dbg(("ip_xmit: delta = %" PRId64
" ill_reachable_time = %d \n", delta,
ill->ill_reachable_time));
if (delta > (uint64_t)ill->ill_reachable_time) {
mutex_enter(&ncec->ncec_lock);
switch (ncec->ncec_state) {
case ND_REACHABLE:
ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
/* FALLTHROUGH */
case ND_STALE:
/*
* ND_REACHABLE is identical to
* ND_STALE in this specific case. If
* reachable time has expired for this
* neighbor (delta is greater than
* reachable time), conceptually, the
* neighbor cache is no longer in
* REACHABLE state, but already in
* STALE state. So the correct
* transition here is to ND_DELAY.
*/
ncec->ncec_state = ND_DELAY;
mutex_exit(&ncec->ncec_lock);
nce_restart_timer(ncec,
ipst->ips_delay_first_probe_time);
if (ip_debug > 3) {
/* ip2dbg */
pr_addr_dbg("ip_xmit: state"
" for %s changed to"
" DELAY\n", AF_INET6,
&ncec->ncec_addr);
}
break;
case ND_DELAY:
case ND_PROBE:
mutex_exit(&ncec->ncec_lock);
/* Timers have already started */
break;
case ND_UNREACHABLE:
/*
* nce_timer has detected that this ncec
* is unreachable and initiated deleting
* this ncec.
* This is a harmless race where we found the
* ncec before it was deleted and have
* just sent out a packet using this
* unreachable ncec.
*/
mutex_exit(&ncec->ncec_lock);
break;
default:
ASSERT(0);
mutex_exit(&ncec->ncec_lock);
}
}
return (0);
case ND_INCOMPLETE:
/*
* the state could have changed since we didn't hold the lock.
* Re-verify state under lock.
*/
is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
mutex_enter(&ncec->ncec_lock);
if (NCE_ISREACHABLE(ncec)) {
mutex_exit(&ncec->ncec_lock);
goto sendit;
}
/* queue the packet */
nce_queue_mp(ncec, mp, is_probe);
mutex_exit(&ncec->ncec_lock);
DTRACE_PROBE2(ip__xmit__incomplete,
(ncec_t *), ncec, (mblk_t *), mp);
return (0);
case ND_INITIAL:
/*
* State could have changed since we didn't hold the lock, so
* re-verify state.
*/
is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
mutex_enter(&ncec->ncec_lock);
if (NCE_ISREACHABLE(ncec)) {
mutex_exit(&ncec->ncec_lock);
goto sendit;
}
nce_queue_mp(ncec, mp, is_probe);
if (ncec->ncec_state == ND_INITIAL) {
ncec->ncec_state = ND_INCOMPLETE;
mutex_exit(&ncec->ncec_lock);
/*
* figure out the source we want to use
* and resolve it.
*/
ip_ndp_resolve(ncec);
} else {
mutex_exit(&ncec->ncec_lock);
}
return (0);
case ND_UNREACHABLE:
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
mp, ill);
freemsg(mp);
return (0);
default:
ASSERT(0);
BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
ip_drop_output("ipIfStatsOutDiscards - ND_other",
mp, ill);
freemsg(mp);
return (ENETUNREACH);
}
}
/*
* Return B_TRUE if the buffers differ in length or content.
* This is used for comparing extension header buffers.
* Note that an extension header would be declared different
* even if all that changed was the next header value in that header i.e.
* what really changed is the next extension header.
*/
boolean_t
ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
uint_t blen)
{
if (!b_valid)
blen = 0;
if (alen != blen)
return (B_TRUE);
if (alen == 0)
return (B_FALSE); /* Both zero length */
return (bcmp(abuf, bbuf, alen));
}
/*
* Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
* Return B_FALSE if memory allocation fails - don't change any state!
*/
boolean_t
ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
const void *src, uint_t srclen)
{
void *dst;
if (!src_valid)
srclen = 0;
ASSERT(*dstlenp == 0);
if (src != NULL && srclen != 0) {
dst = mi_alloc(srclen, BPRI_MED);
if (dst == NULL)
return (B_FALSE);
} else {
dst = NULL;
}
if (*dstp != NULL)
mi_free(*dstp);
*dstp = dst;
*dstlenp = dst == NULL ? 0 : srclen;
return (B_TRUE);
}
/*
* Replace what is in *dst, *dstlen with the source.
* Assumes ip_allocbuf has already been called.
*/
void
ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
const void *src, uint_t srclen)
{
if (!src_valid)
srclen = 0;
ASSERT(*dstlenp == srclen);
if (src != NULL && srclen != 0)
bcopy(src, *dstp, srclen);
}
/*
* Free the storage pointed to by the members of an ip_pkt_t.
*/
void
ip_pkt_free(ip_pkt_t *ipp)
{
uint_t fields = ipp->ipp_fields;
if (fields & IPPF_HOPOPTS) {
kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
ipp->ipp_hopopts = NULL;
ipp->ipp_hopoptslen = 0;
}
if (fields & IPPF_RTHDRDSTOPTS) {
kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
ipp->ipp_rthdrdstopts = NULL;
ipp->ipp_rthdrdstoptslen = 0;
}
if (fields & IPPF_DSTOPTS) {
kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
ipp->ipp_dstopts = NULL;
ipp->ipp_dstoptslen = 0;
}
if (fields & IPPF_RTHDR) {
kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
ipp->ipp_rthdr = NULL;
ipp->ipp_rthdrlen = 0;
}
if (fields & IPPF_IPV4_OPTIONS) {
kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
ipp->ipp_ipv4_options = NULL;
ipp->ipp_ipv4_options_len = 0;
}
if (fields & IPPF_LABEL_V4) {
kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
ipp->ipp_label_v4 = NULL;
ipp->ipp_label_len_v4 = 0;
}
if (fields & IPPF_LABEL_V6) {
kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
ipp->ipp_label_v6 = NULL;
ipp->ipp_label_len_v6 = 0;
}
ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
}
/*
* Copy from src to dst and allocate as needed.
* Returns zero or ENOMEM.
*
* The caller must initialize dst to zero.
*/
int
ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
{
uint_t fields = src->ipp_fields;
/* Start with fields that don't require memory allocation */
dst->ipp_fields = fields &
~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
dst->ipp_addr = src->ipp_addr;
dst->ipp_unicast_hops = src->ipp_unicast_hops;
dst->ipp_hoplimit = src->ipp_hoplimit;
dst->ipp_tclass = src->ipp_tclass;
dst->ipp_type_of_service = src->ipp_type_of_service;
if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
return (0);
if (fields & IPPF_HOPOPTS) {
dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
if (dst->ipp_hopopts == NULL) {
ip_pkt_free(dst);
return (ENOMEM);
}
dst->ipp_fields |= IPPF_HOPOPTS;
bcopy(src->ipp_hopopts, dst->ipp_hopopts,
src->ipp_hopoptslen);
dst->ipp_hopoptslen = src->ipp_hopoptslen;
}
if (fields & IPPF_RTHDRDSTOPTS) {
dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
kmflag);
if (dst->ipp_rthdrdstopts == NULL) {
ip_pkt_free(dst);
return (ENOMEM);
}
dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
src->ipp_rthdrdstoptslen);
dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
}
if (fields & IPPF_DSTOPTS) {
dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
if (dst->ipp_dstopts == NULL) {
ip_pkt_free(dst);
return (ENOMEM);
}
dst->ipp_fields |= IPPF_DSTOPTS;
bcopy(src->ipp_dstopts, dst->ipp_dstopts,
src->ipp_dstoptslen);
dst->ipp_dstoptslen = src->ipp_dstoptslen;
}
if (fields & IPPF_RTHDR) {
dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
if (dst->ipp_rthdr == NULL) {
ip_pkt_free(dst);
return (ENOMEM);
}
dst->ipp_fields |= IPPF_RTHDR;
bcopy(src->ipp_rthdr, dst->ipp_rthdr,
src->ipp_rthdrlen);
dst->ipp_rthdrlen = src->ipp_rthdrlen;
}
if (fields & IPPF_IPV4_OPTIONS) {
dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
kmflag);
if (dst->ipp_ipv4_options == NULL) {
ip_pkt_free(dst);
return (ENOMEM);
}
dst->ipp_fields |= IPPF_IPV4_OPTIONS;
bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
src->ipp_ipv4_options_len);
dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
}
if (fields & IPPF_LABEL_V4) {
dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
if (dst->ipp_label_v4 == NULL) {
ip_pkt_free(dst);
return (ENOMEM);
}
dst->ipp_fields |= IPPF_LABEL_V4;
bcopy(src->ipp_label_v4, dst->ipp_label_v4,
src->ipp_label_len_v4);
dst->ipp_label_len_v4 = src->ipp_label_len_v4;
}
if (fields & IPPF_LABEL_V6) {
dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
if (dst->ipp_label_v6 == NULL) {
ip_pkt_free(dst);
return (ENOMEM);
}
dst->ipp_fields |= IPPF_LABEL_V6;
bcopy(src->ipp_label_v6, dst->ipp_label_v6,
src->ipp_label_len_v6);
dst->ipp_label_len_v6 = src->ipp_label_len_v6;
}
if (fields & IPPF_FRAGHDR) {
dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
if (dst->ipp_fraghdr == NULL) {
ip_pkt_free(dst);
return (ENOMEM);
}
dst->ipp_fields |= IPPF_FRAGHDR;
bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
src->ipp_fraghdrlen);
dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
}
return (0);
}
/*
* Returns INADDR_ANY if no source route
*/
ipaddr_t
ip_pkt_source_route_v4(const ip_pkt_t *ipp)
{
ipaddr_t nexthop = INADDR_ANY;
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint8_t optlen;
uint32_t totallen;
if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
return (INADDR_ANY);
totallen = ipp->ipp_ipv4_options_len;
if (totallen & 0x3)
return (INADDR_ANY);
for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
opt = opts.ipoptp_cur;
switch (optval) {
uint8_t off;
case IPOPT_SSRR:
case IPOPT_LSRR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
break;
}
optlen = opts.ipoptp_len;
off = opt[IPOPT_OFFSET];
off--;
if (optlen < IP_ADDR_LEN ||
off > optlen - IP_ADDR_LEN) {
/* End of source route */
break;
}
bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
if (nexthop == htonl(INADDR_LOOPBACK)) {
/* Ignore */
nexthop = INADDR_ANY;
break;
}
break;
}
}
return (nexthop);
}
/*
* Reverse a source route.
*/
void
ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
{
ipaddr_t tmp;
ipoptp_t opts;
uchar_t *opt;
uint8_t optval;
uint32_t totallen;
if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
return;
totallen = ipp->ipp_ipv4_options_len;
if (totallen & 0x3)
return;
for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
optval != IPOPT_EOL;
optval = ipoptp_next(&opts)) {
uint8_t off1, off2;
opt = opts.ipoptp_cur;
switch (optval) {
case IPOPT_SSRR:
case IPOPT_LSRR:
if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
break;
}
off1 = IPOPT_MINOFF_SR - 1;
off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
while (off2 > off1) {
bcopy(opt + off2, &tmp, IP_ADDR_LEN);
bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
bcopy(&tmp, opt + off2, IP_ADDR_LEN);
off2 -= IP_ADDR_LEN;
off1 += IP_ADDR_LEN;
}
opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
break;
}
}
}
/*
* Returns NULL if no routing header
*/
in6_addr_t *
ip_pkt_source_route_v6(const ip_pkt_t *ipp)
{
in6_addr_t *nexthop = NULL;
ip6_rthdr0_t *rthdr;
if (!(ipp->ipp_fields & IPPF_RTHDR))
return (NULL);
rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
if (rthdr->ip6r0_segleft == 0)
return (NULL);
nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
return (nexthop);
}
zoneid_t
ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
zoneid_t lookup_zoneid)
{
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
ire_t *ire;
int ire_flags = MATCH_IRE_TYPE;
zoneid_t zoneid = ALL_ZONES;
if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
return (ALL_ZONES);
if (lookup_zoneid != ALL_ZONES)
ire_flags |= MATCH_IRE_ZONEONLY;
ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
if (ire != NULL) {
zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
ire_refrele(ire);
}
return (zoneid);
}
zoneid_t
ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
{
ip_stack_t *ipst = ira->ira_ill->ill_ipst;
ire_t *ire;
int ire_flags = MATCH_IRE_TYPE;
zoneid_t zoneid = ALL_ZONES;
if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
return (ALL_ZONES);
if (IN6_IS_ADDR_LINKLOCAL(addr))
ire_flags |= MATCH_IRE_ILL;
if (lookup_zoneid != ALL_ZONES)
ire_flags |= MATCH_IRE_ZONEONLY;
ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
if (ire != NULL) {
zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
ire_refrele(ire);
}
return (zoneid);
}
/*
* IP obserability hook support functions.
*/
static void
ipobs_init(ip_stack_t *ipst)
{
netid_t id;
id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
VERIFY(ipst->ips_ip4_observe_pr != NULL);
ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
VERIFY(ipst->ips_ip6_observe_pr != NULL);
}
static void
ipobs_fini(ip_stack_t *ipst)
{
VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
}
/*
* hook_pkt_observe_t is composed in network byte order so that the
* entire mblk_t chain handed into hook_run can be used as-is.
* The caveat is that use of the fields, such as the zone fields,
* requires conversion into host byte order first.
*/
void
ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
const ill_t *ill, ip_stack_t *ipst)
{
hook_pkt_observe_t *hdr;
uint64_t grifindex;
mblk_t *imp;
imp = allocb(sizeof (*hdr), BPRI_HI);
if (imp == NULL)
return;
hdr = (hook_pkt_observe_t *)imp->b_rptr;
/*
* b_wptr is set to make the apparent size of the data in the mblk_t
* to exclude the pointers at the end of hook_pkt_observer_t.
*/
imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
imp->b_cont = mp;
ASSERT(DB_TYPE(mp) == M_DATA);
if (IS_UNDER_IPMP(ill))
grifindex = ipmp_ill_get_ipmp_ifindex(ill);
else
grifindex = 0;
hdr->hpo_version = 1;
hdr->hpo_htype = htons(htype);
hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
hdr->hpo_grifindex = htonl(grifindex);
hdr->hpo_zsrc = htonl(zsrc);
hdr->hpo_zdst = htonl(zdst);
hdr->hpo_pkt = imp;
hdr->hpo_ctx = ipst->ips_netstack;
if (ill->ill_isv6) {
hdr->hpo_family = AF_INET6;
(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
ipst->ips_ipv6observing, (hook_data_t)hdr);
} else {
hdr->hpo_family = AF_INET;
(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
ipst->ips_ipv4observing, (hook_data_t)hdr);
}
imp->b_cont = NULL;
freemsg(imp);
}
/*
* Utility routine that checks if `v4srcp' is a valid address on underlying
* interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif
* associated with `v4srcp' on success. NOTE: if this is not called from
* inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
* group during or after this lookup.
*/
boolean_t
ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
{
ipif_t *ipif;
ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
if (ipif != NULL) {
if (ipifp != NULL)
*ipifp = ipif;
else
ipif_refrele(ipif);
return (B_TRUE);
}
ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
*v4srcp));
return (B_FALSE);
}
/*
* Transport protocol call back function for CPU state change.
*/
/* ARGSUSED */
static int
ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
{
processorid_t cpu_seqid;
netstack_handle_t nh;
netstack_t *ns;
ASSERT(MUTEX_HELD(&cpu_lock));
switch (what) {
case CPU_CONFIG:
case CPU_ON:
case CPU_INIT:
case CPU_CPUPART_IN:
cpu_seqid = cpu[id]->cpu_seqid;
netstack_next_init(&nh);
while ((ns = netstack_next(&nh)) != NULL) {
tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
netstack_rele(ns);
}
netstack_next_fini(&nh);
break;
case CPU_UNCONFIG:
case CPU_OFF:
case CPU_CPUPART_OUT:
/*
* Nothing to do. We don't remove the per CPU stats from
* the IP stack even when the CPU goes offline.
*/
break;
default:
break;
}
return (0);
}