/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (C) 1998 by the FundsXpress, INC.
*
* All rights reserved.
*
* Export of this software from the United States of America may require
* a specific license from the United States Government. It is the
* responsibility of any person or organization contemplating export to
* obtain such a license before exporting.
*
* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
* distribute this software and its documentation for any purpose and
* without fee is hereby granted, provided that the above copyright
* notice appear in all copies and that both that copyright notice and
* this permission notice appear in supporting documentation, and that
* the name of FundsXpress. not be used in advertising or publicity pertaining
* to distribution of the software without specific, written prior
* permission. FundsXpress makes no representations about the suitability of
* this software for any purpose. It is provided "as is" without express
* or implied warranty.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "k5-int.h"
#include "dk.h"
/* the spec says that the confounder size and padding are specific to
the encryption algorithm. This code (dk_encrypt_length and
dk_encrypt) assume the confounder is always the blocksize, and the
padding is always zero bytes up to the blocksize. If these
assumptions ever fails, the keytype table should be extended to
include these bits of info. */
void
const struct krb5_hash_provider *hash,
{
}
const struct krb5_enc_provider *enc,
const struct krb5_hash_provider *hash,
{
/*
* Derive the encryption and hmac keys.
* This routine is optimized to fetch the DK
* from the original key's DK list.
*/
(krb5_keyblock *)key,
if (ret)
return (ret);
return(KRB5_BAD_MSIZE);
return(ENOMEM);
}
/* put together the plaintext */
goto cleanup;
/* encrypt the plaintext */
/*
* Always use the derived encryption key here.
*/
goto cleanup;
else
/* hash the plaintext */
#ifdef _KERNEL
goto cleanup;
}
#else
goto cleanup;
}
#endif /* _KERNEL */
/* update ivec */
/* ret is set correctly by the prior call */
return(ret);
}
/* Not necessarily "AES", per se, but "a CBC+CTS mode block cipher
with a 96-bit truncated HMAC". */
/*ARGSUSED*/
void
const struct krb5_enc_provider *enc;
const struct krb5_hash_provider *hash;
{
/* No roundup, since CTS requires no padding once we've hit the
block size. */
}
/*ARGSUSED*/
static krb5_error_code
const struct krb5_hash_provider *hash,
{
return (KRB5_CRYPTO_INTERNAL);
#ifdef _KERNEL
#else
#endif /* _KERNEL */
if (ret)
else
/* truncate the HMAC output accordingly */
return (ret);
}
const struct krb5_enc_provider *enc,
const struct krb5_hash_provider *hash,
const krb5_keyblock *key,
{
/*
* Derive the encryption and hmac keys.
* This routine is optimized to fetch the DK
* from the original key's DK list.
*/
(krb5_keyblock *)key,
if (ret)
return (ret);
/* key->length, ivec will be tested in enc->encrypt */
return(KRB5_BAD_MSIZE);
return(ENOMEM);
}
goto cleanup;
/* Ciphertext stealing; there should be no more. */
goto cleanup;
}
/* encrypt the plaintext */
goto cleanup;
} else {
}
/* hash the plaintext */
goto cleanup;
goto cleanup;
}
/* update ivec */
}
/* ret is set correctly by the prior call */
return(ret);
}