/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/sid.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/sdt.h>
#include <sys/fs/zfs.h>
#include <sys/mode.h>
#include <sys/policy.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_vfsops.h>
#include <sys/dmu.h>
#include <sys/dnode.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include "fs/fs_subr.h"
#include <acl/acl_common.h>
#define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
#define DENY ACE_ACCESS_DENIED_ACE_TYPE
#define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
#define MIN_ACE_TYPE ALLOW
#define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
#define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
#define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
#define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
#define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
#define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
#define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
ACE_DELETE|ACE_DELETE_CHILD)
#define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
#define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
#define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
#define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
#define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
#define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
ZFS_ACL_PROTECTED)
#define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
ZFS_ACL_OBJ_ACE)
#define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
static uint16_t
zfs_ace_v0_get_type(void *acep)
{
return (((zfs_oldace_t *)acep)->z_type);
}
static uint16_t
zfs_ace_v0_get_flags(void *acep)
{
return (((zfs_oldace_t *)acep)->z_flags);
}
static uint32_t
zfs_ace_v0_get_mask(void *acep)
{
return (((zfs_oldace_t *)acep)->z_access_mask);
}
static uint64_t
zfs_ace_v0_get_who(void *acep)
{
return (((zfs_oldace_t *)acep)->z_fuid);
}
static void
zfs_ace_v0_set_type(void *acep, uint16_t type)
{
((zfs_oldace_t *)acep)->z_type = type;
}
static void
zfs_ace_v0_set_flags(void *acep, uint16_t flags)
{
((zfs_oldace_t *)acep)->z_flags = flags;
}
static void
zfs_ace_v0_set_mask(void *acep, uint32_t mask)
{
((zfs_oldace_t *)acep)->z_access_mask = mask;
}
static void
zfs_ace_v0_set_who(void *acep, uint64_t who)
{
((zfs_oldace_t *)acep)->z_fuid = who;
}
/*ARGSUSED*/
static size_t
zfs_ace_v0_size(void *acep)
{
return (sizeof (zfs_oldace_t));
}
static size_t
zfs_ace_v0_abstract_size(void)
{
return (sizeof (zfs_oldace_t));
}
static int
zfs_ace_v0_mask_off(void)
{
return (offsetof(zfs_oldace_t, z_access_mask));
}
/*ARGSUSED*/
static int
zfs_ace_v0_data(void *acep, void **datap)
{
*datap = NULL;
return (0);
}
static acl_ops_t zfs_acl_v0_ops = {
zfs_ace_v0_get_mask,
zfs_ace_v0_set_mask,
zfs_ace_v0_get_flags,
zfs_ace_v0_set_flags,
zfs_ace_v0_get_type,
zfs_ace_v0_set_type,
zfs_ace_v0_get_who,
zfs_ace_v0_set_who,
zfs_ace_v0_size,
zfs_ace_v0_abstract_size,
zfs_ace_v0_mask_off,
zfs_ace_v0_data
};
static uint16_t
zfs_ace_fuid_get_type(void *acep)
{
return (((zfs_ace_hdr_t *)acep)->z_type);
}
static uint16_t
zfs_ace_fuid_get_flags(void *acep)
{
return (((zfs_ace_hdr_t *)acep)->z_flags);
}
static uint32_t
zfs_ace_fuid_get_mask(void *acep)
{
return (((zfs_ace_hdr_t *)acep)->z_access_mask);
}
static uint64_t
zfs_ace_fuid_get_who(void *args)
{
uint16_t entry_type;
zfs_ace_t *acep = args;
entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)
return (-1);
return (((zfs_ace_t *)acep)->z_fuid);
}
static void
zfs_ace_fuid_set_type(void *acep, uint16_t type)
{
((zfs_ace_hdr_t *)acep)->z_type = type;
}
static void
zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
{
((zfs_ace_hdr_t *)acep)->z_flags = flags;
}
static void
zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
{
((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
}
static void
zfs_ace_fuid_set_who(void *arg, uint64_t who)
{
zfs_ace_t *acep = arg;
uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)
return;
acep->z_fuid = who;
}
static size_t
zfs_ace_fuid_size(void *acep)
{
zfs_ace_hdr_t *zacep = acep;
uint16_t entry_type;
switch (zacep->z_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
return (sizeof (zfs_object_ace_t));
case ALLOW:
case DENY:
entry_type =
(((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
if (entry_type == ACE_OWNER ||
entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)
return (sizeof (zfs_ace_hdr_t));
/*FALLTHROUGH*/
default:
return (sizeof (zfs_ace_t));
}
}
static size_t
zfs_ace_fuid_abstract_size(void)
{
return (sizeof (zfs_ace_hdr_t));
}
static int
zfs_ace_fuid_mask_off(void)
{
return (offsetof(zfs_ace_hdr_t, z_access_mask));
}
static int
zfs_ace_fuid_data(void *acep, void **datap)
{
zfs_ace_t *zacep = acep;
zfs_object_ace_t *zobjp;
switch (zacep->z_hdr.z_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
zobjp = acep;
*datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
default:
*datap = NULL;
return (0);
}
}
static acl_ops_t zfs_acl_fuid_ops = {
zfs_ace_fuid_get_mask,
zfs_ace_fuid_set_mask,
zfs_ace_fuid_get_flags,
zfs_ace_fuid_set_flags,
zfs_ace_fuid_get_type,
zfs_ace_fuid_set_type,
zfs_ace_fuid_get_who,
zfs_ace_fuid_set_who,
zfs_ace_fuid_size,
zfs_ace_fuid_abstract_size,
zfs_ace_fuid_mask_off,
zfs_ace_fuid_data
};
/*
* The following three functions are provided for compatibility with
* older ZPL version in order to determine if the file use to have
* an external ACL and what version of ACL previously existed on the
* file. Would really be nice to not need this, sigh.
*/
uint64_t
zfs_external_acl(znode_t *zp)
{
zfs_acl_phys_t acl_phys;
int error;
if (zp->z_is_sa)
return (0);
/*
* Need to deal with a potential
* race where zfs_sa_upgrade could cause
* z_isa_sa to change.
*
* If the lookup fails then the state of z_is_sa should have
* changed.
*/
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
&acl_phys, sizeof (acl_phys))) == 0)
return (acl_phys.z_acl_extern_obj);
else {
/*
* after upgrade the SA_ZPL_ZNODE_ACL should have been
* removed
*/
VERIFY(zp->z_is_sa && error == ENOENT);
return (0);
}
}
/*
* Determine size of ACL in bytes
*
* This is more complicated than it should be since we have to deal
* with old external ACLs.
*/
static int
zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount,
zfs_acl_phys_t *aclphys)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
uint64_t acl_count;
int size;
int error;
ASSERT(MUTEX_HELD(&zp->z_acl_lock));
if (zp->z_is_sa) {
if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs),
&size)) != 0)
return (error);
*aclsize = size;
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs),
&acl_count, sizeof (acl_count))) != 0)
return (error);
*aclcount = acl_count;
} else {
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
aclphys, sizeof (*aclphys))) != 0)
return (error);
if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) {
*aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size);
*aclcount = aclphys->z_acl_size;
} else {
*aclsize = aclphys->z_acl_size;
*aclcount = aclphys->z_acl_count;
}
}
return (0);
}
int
zfs_znode_acl_version(znode_t *zp)
{
zfs_acl_phys_t acl_phys;
if (zp->z_is_sa)
return (ZFS_ACL_VERSION_FUID);
else {
int error;
/*
* Need to deal with a potential
* race where zfs_sa_upgrade could cause
* z_isa_sa to change.
*
* If the lookup fails then the state of z_is_sa should have
* changed.
*/
if ((error = sa_lookup(zp->z_sa_hdl,
SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
&acl_phys, sizeof (acl_phys))) == 0)
return (acl_phys.z_acl_version);
else {
/*
* After upgrade SA_ZPL_ZNODE_ACL should have
* been removed.
*/
VERIFY(zp->z_is_sa && error == ENOENT);
return (ZFS_ACL_VERSION_FUID);
}
}
}
static int
zfs_acl_version(int version)
{
if (version < ZPL_VERSION_FUID)
return (ZFS_ACL_VERSION_INITIAL);
else
return (ZFS_ACL_VERSION_FUID);
}
static int
zfs_acl_version_zp(znode_t *zp)
{
return (zfs_acl_version(zp->z_zfsvfs->z_version));
}
zfs_acl_t *
zfs_acl_alloc(int vers)
{
zfs_acl_t *aclp;
aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
offsetof(zfs_acl_node_t, z_next));
aclp->z_version = vers;
if (vers == ZFS_ACL_VERSION_FUID)
aclp->z_ops = zfs_acl_fuid_ops;
else
aclp->z_ops = zfs_acl_v0_ops;
return (aclp);
}
zfs_acl_node_t *
zfs_acl_node_alloc(size_t bytes)
{
zfs_acl_node_t *aclnode;
aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
if (bytes) {
aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP);
aclnode->z_allocdata = aclnode->z_acldata;
aclnode->z_allocsize = bytes;
aclnode->z_size = bytes;
}
return (aclnode);
}
static void
zfs_acl_node_free(zfs_acl_node_t *aclnode)
{
if (aclnode->z_allocsize)
kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
kmem_free(aclnode, sizeof (zfs_acl_node_t));
}
static void
zfs_acl_release_nodes(zfs_acl_t *aclp)
{
zfs_acl_node_t *aclnode;
while (aclnode = list_head(&aclp->z_acl)) {
list_remove(&aclp->z_acl, aclnode);
zfs_acl_node_free(aclnode);
}
aclp->z_acl_count = 0;
aclp->z_acl_bytes = 0;
}
void
zfs_acl_free(zfs_acl_t *aclp)
{
zfs_acl_release_nodes(aclp);
list_destroy(&aclp->z_acl);
kmem_free(aclp, sizeof (zfs_acl_t));
}
static boolean_t
zfs_acl_valid_ace_type(uint_t type, uint_t flags)
{
uint16_t entry_type;
switch (type) {
case ALLOW:
case DENY:
case ACE_SYSTEM_AUDIT_ACE_TYPE:
case ACE_SYSTEM_ALARM_ACE_TYPE:
entry_type = flags & ACE_TYPE_FLAGS;
return (entry_type == ACE_OWNER ||
entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE || entry_type == 0 ||
entry_type == ACE_IDENTIFIER_GROUP);
default:
if (type >= MIN_ACE_TYPE && type <= MAX_ACE_TYPE)
return (B_TRUE);
}
return (B_FALSE);
}
static boolean_t
zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
{
/*
* first check type of entry
*/
if (!zfs_acl_valid_ace_type(type, iflags))
return (B_FALSE);
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
if (aclp->z_version < ZFS_ACL_VERSION_FUID)
return (B_FALSE);
aclp->z_hints |= ZFS_ACL_OBJ_ACE;
}
/*
* next check inheritance level flags
*/
if (obj_type == VDIR &&
(iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
aclp->z_hints |= ZFS_INHERIT_ACE;
if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
if ((iflags & (ACE_FILE_INHERIT_ACE|
ACE_DIRECTORY_INHERIT_ACE)) == 0) {
return (B_FALSE);
}
}
return (B_TRUE);
}
static void *
zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who,
uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
{
zfs_acl_node_t *aclnode;
ASSERT(aclp);
if (start == NULL) {
aclnode = list_head(&aclp->z_acl);
if (aclnode == NULL)
return (NULL);
aclp->z_next_ace = aclnode->z_acldata;
aclp->z_curr_node = aclnode;
aclnode->z_ace_idx = 0;
}
aclnode = aclp->z_curr_node;
if (aclnode == NULL)
return (NULL);
if (aclnode->z_ace_idx >= aclnode->z_ace_count) {
aclnode = list_next(&aclp->z_acl, aclnode);
if (aclnode == NULL)
return (NULL);
else {
aclp->z_curr_node = aclnode;
aclnode->z_ace_idx = 0;
aclp->z_next_ace = aclnode->z_acldata;
}
}
if (aclnode->z_ace_idx < aclnode->z_ace_count) {
void *acep = aclp->z_next_ace;
size_t ace_size;
/*
* Make sure we don't overstep our bounds
*/
ace_size = aclp->z_ops.ace_size(acep);
if (((caddr_t)acep + ace_size) >
((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
return (NULL);
}
*iflags = aclp->z_ops.ace_flags_get(acep);
*type = aclp->z_ops.ace_type_get(acep);
*access_mask = aclp->z_ops.ace_mask_get(acep);
*who = aclp->z_ops.ace_who_get(acep);
aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size;
aclnode->z_ace_idx++;
return ((void *)acep);
}
return (NULL);
}
/*ARGSUSED*/
static uint64_t
zfs_ace_walk(void *datap, uint64_t cookie, int aclcnt,
uint16_t *flags, uint16_t *type, uint32_t *mask)
{
zfs_acl_t *aclp = datap;
zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie;
uint64_t who;
acep = zfs_acl_next_ace(aclp, acep, &who, mask,
flags, type);
return ((uint64_t)(uintptr_t)acep);
}
static zfs_acl_node_t *
zfs_acl_curr_node(zfs_acl_t *aclp)
{
ASSERT(aclp->z_curr_node);
return (aclp->z_curr_node);
}
/*
* Copy ACE to internal ZFS format.
* While processing the ACL each ACE will be validated for correctness.
* ACE FUIDs will be created later.
*/
int
zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp,
void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size,
zfs_fuid_info_t **fuidp, cred_t *cr)
{
int i;
uint16_t entry_type;
zfs_ace_t *aceptr = z_acl;
ace_t *acep = datap;
zfs_object_ace_t *zobjacep;
ace_object_t *aceobjp;
for (i = 0; i != aclcnt; i++) {
aceptr->z_hdr.z_access_mask = acep->a_access_mask;
aceptr->z_hdr.z_flags = acep->a_flags;
aceptr->z_hdr.z_type = acep->a_type;
entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
entry_type != ACE_EVERYONE) {
aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
cr, (entry_type == 0) ?
ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
}
/*
* Make sure ACE is valid
*/
if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type,
aceptr->z_hdr.z_flags) != B_TRUE)
return (SET_ERROR(EINVAL));
switch (acep->a_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
zobjacep = (zfs_object_ace_t *)aceptr;
aceobjp = (ace_object_t *)acep;
bcopy(aceobjp->a_obj_type, zobjacep->z_object_type,
sizeof (aceobjp->a_obj_type));
bcopy(aceobjp->a_inherit_obj_type,
zobjacep->z_inherit_type,
sizeof (aceobjp->a_inherit_obj_type));
acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
break;
default:
acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
}
aceptr = (zfs_ace_t *)((caddr_t)aceptr +
aclp->z_ops.ace_size(aceptr));
}
*size = (caddr_t)aceptr - (caddr_t)z_acl;
return (0);
}
/*
* Copy ZFS ACEs to fixed size ace_t layout
*/
static void
zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
void *datap, int filter)
{
uint64_t who;
uint32_t access_mask;
uint16_t iflags, type;
zfs_ace_hdr_t *zacep = NULL;
ace_t *acep = datap;
ace_object_t *objacep;
zfs_object_ace_t *zobjacep;
size_t ace_size;
uint16_t entry_type;
while (zacep = zfs_acl_next_ace(aclp, zacep,
&who, &access_mask, &iflags, &type)) {
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
if (filter) {
continue;
}
zobjacep = (zfs_object_ace_t *)zacep;
objacep = (ace_object_t *)acep;
bcopy(zobjacep->z_object_type,
objacep->a_obj_type,
sizeof (zobjacep->z_object_type));
bcopy(zobjacep->z_inherit_type,
objacep->a_inherit_obj_type,
sizeof (zobjacep->z_inherit_type));
ace_size = sizeof (ace_object_t);
break;
default:
ace_size = sizeof (ace_t);
break;
}
entry_type = (iflags & ACE_TYPE_FLAGS);
if ((entry_type != ACE_OWNER &&
entry_type != OWNING_GROUP &&
entry_type != ACE_EVERYONE)) {
acep->a_who = zfs_fuid_map_id(zfsvfs, who,
cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
ZFS_ACE_GROUP : ZFS_ACE_USER);
} else {
acep->a_who = (uid_t)(int64_t)who;
}
acep->a_access_mask = access_mask;
acep->a_flags = iflags;
acep->a_type = type;
acep = (ace_t *)((caddr_t)acep + ace_size);
}
}
static int
zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep,
zfs_oldace_t *z_acl, int aclcnt, size_t *size)
{
int i;
zfs_oldace_t *aceptr = z_acl;
for (i = 0; i != aclcnt; i++, aceptr++) {
aceptr->z_access_mask = acep[i].a_access_mask;
aceptr->z_type = acep[i].a_type;
aceptr->z_flags = acep[i].a_flags;
aceptr->z_fuid = acep[i].a_who;
/*
* Make sure ACE is valid
*/
if (zfs_ace_valid(obj_type, aclp, aceptr->z_type,
aceptr->z_flags) != B_TRUE)
return (SET_ERROR(EINVAL));
}
*size = (caddr_t)aceptr - (caddr_t)z_acl;
return (0);
}
/*
* convert old ACL format to new
*/
void
zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
{
zfs_oldace_t *oldaclp;
int i;
uint16_t type, iflags;
uint32_t access_mask;
uint64_t who;
void *cookie = NULL;
zfs_acl_node_t *newaclnode;
ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL);
/*
* First create the ACE in a contiguous piece of memory
* for zfs_copy_ace_2_fuid().
*
* We only convert an ACL once, so this won't happen
* everytime.
*/
oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
KM_SLEEP);
i = 0;
while (cookie = zfs_acl_next_ace(aclp, cookie, &who,
&access_mask, &iflags, &type)) {
oldaclp[i].z_flags = iflags;
oldaclp[i].z_type = type;
oldaclp[i].z_fuid = who;
oldaclp[i++].z_access_mask = access_mask;
}
newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
sizeof (zfs_object_ace_t));
aclp->z_ops = zfs_acl_fuid_ops;
VERIFY(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp,
oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
&newaclnode->z_size, NULL, cr) == 0);
newaclnode->z_ace_count = aclp->z_acl_count;
aclp->z_version = ZFS_ACL_VERSION;
kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
/*
* Release all previous ACL nodes
*/
zfs_acl_release_nodes(aclp);
list_insert_head(&aclp->z_acl, newaclnode);
aclp->z_acl_bytes = newaclnode->z_size;
aclp->z_acl_count = newaclnode->z_ace_count;
}
/*
* Convert unix access mask to v4 access mask
*/
static uint32_t
zfs_unix_to_v4(uint32_t access_mask)
{
uint32_t new_mask = 0;
if (access_mask & S_IXOTH)
new_mask |= ACE_EXECUTE;
if (access_mask & S_IWOTH)
new_mask |= ACE_WRITE_DATA;
if (access_mask & S_IROTH)
new_mask |= ACE_READ_DATA;
return (new_mask);
}
static void
zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
uint16_t access_type, uint64_t fuid, uint16_t entry_type)
{
uint16_t type = entry_type & ACE_TYPE_FLAGS;
aclp->z_ops.ace_mask_set(acep, access_mask);
aclp->z_ops.ace_type_set(acep, access_type);
aclp->z_ops.ace_flags_set(acep, entry_type);
if ((type != ACE_OWNER && type != OWNING_GROUP &&
type != ACE_EVERYONE))
aclp->z_ops.ace_who_set(acep, fuid);
}
/*
* Determine mode of file based on ACL.
*/
uint64_t
zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
uint64_t *pflags, uint64_t fuid, uint64_t fgid)
{
int entry_type;
mode_t mode;
mode_t seen = 0;
zfs_ace_hdr_t *acep = NULL;
uint64_t who;
uint16_t iflags, type;
uint32_t access_mask;
boolean_t an_exec_denied = B_FALSE;
mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
while (acep = zfs_acl_next_ace(aclp, acep, &who,
&access_mask, &iflags, &type)) {
if (!zfs_acl_valid_ace_type(type, iflags))
continue;
entry_type = (iflags & ACE_TYPE_FLAGS);
/*
* Skip over any inherit_only ACEs
*/
if (iflags & ACE_INHERIT_ONLY_ACE)
continue;
if (entry_type == ACE_OWNER || (entry_type == 0 &&
who == fuid)) {
if ((access_mask & ACE_READ_DATA) &&
(!(seen & S_IRUSR))) {
seen |= S_IRUSR;
if (type == ALLOW) {
mode |= S_IRUSR;
}
}
if ((access_mask & ACE_WRITE_DATA) &&
(!(seen & S_IWUSR))) {
seen |= S_IWUSR;
if (type == ALLOW) {
mode |= S_IWUSR;
}
}
if ((access_mask & ACE_EXECUTE) &&
(!(seen & S_IXUSR))) {
seen |= S_IXUSR;
if (type == ALLOW) {
mode |= S_IXUSR;
}
}
} else if (entry_type == OWNING_GROUP ||
(entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) {
if ((access_mask & ACE_READ_DATA) &&
(!(seen & S_IRGRP))) {
seen |= S_IRGRP;
if (type == ALLOW) {
mode |= S_IRGRP;
}
}
if ((access_mask & ACE_WRITE_DATA) &&
(!(seen & S_IWGRP))) {
seen |= S_IWGRP;
if (type == ALLOW) {
mode |= S_IWGRP;
}
}
if ((access_mask & ACE_EXECUTE) &&
(!(seen & S_IXGRP))) {
seen |= S_IXGRP;
if (type == ALLOW) {
mode |= S_IXGRP;
}
}
} else if (entry_type == ACE_EVERYONE) {
if ((access_mask & ACE_READ_DATA)) {
if (!(seen & S_IRUSR)) {
seen |= S_IRUSR;
if (type == ALLOW) {
mode |= S_IRUSR;
}
}
if (!(seen & S_IRGRP)) {
seen |= S_IRGRP;
if (type == ALLOW) {
mode |= S_IRGRP;
}
}
if (!(seen & S_IROTH)) {
seen |= S_IROTH;
if (type == ALLOW) {
mode |= S_IROTH;
}
}
}
if ((access_mask & ACE_WRITE_DATA)) {
if (!(seen & S_IWUSR)) {
seen |= S_IWUSR;
if (type == ALLOW) {
mode |= S_IWUSR;
}
}
if (!(seen & S_IWGRP)) {
seen |= S_IWGRP;
if (type == ALLOW) {
mode |= S_IWGRP;
}
}
if (!(seen & S_IWOTH)) {
seen |= S_IWOTH;
if (type == ALLOW) {
mode |= S_IWOTH;
}
}
}
if ((access_mask & ACE_EXECUTE)) {
if (!(seen & S_IXUSR)) {
seen |= S_IXUSR;
if (type == ALLOW) {
mode |= S_IXUSR;
}
}
if (!(seen & S_IXGRP)) {
seen |= S_IXGRP;
if (type == ALLOW) {
mode |= S_IXGRP;
}
}
if (!(seen & S_IXOTH)) {
seen |= S_IXOTH;
if (type == ALLOW) {
mode |= S_IXOTH;
}
}
}
} else {
/*
* Only care if this IDENTIFIER_GROUP or
* USER ACE denies execute access to someone,
* mode is not affected
*/
if ((access_mask & ACE_EXECUTE) && type == DENY)
an_exec_denied = B_TRUE;
}
}
/*
* Failure to allow is effectively a deny, so execute permission
* is denied if it was never mentioned or if we explicitly
* weren't allowed it.
*/
if (!an_exec_denied &&
((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
(mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
an_exec_denied = B_TRUE;
if (an_exec_denied)
*pflags &= ~ZFS_NO_EXECS_DENIED;
else
*pflags |= ZFS_NO_EXECS_DENIED;
return (mode);
}
/*
* Read an external acl object. If the intent is to modify, always
* create a new acl and leave any cached acl in place.
*/
static int
zfs_acl_node_read(znode_t *zp, boolean_t have_lock, zfs_acl_t **aclpp,
boolean_t will_modify)
{
zfs_acl_t *aclp;
int aclsize;
int acl_count;
zfs_acl_node_t *aclnode;
zfs_acl_phys_t znode_acl;
int version;
int error;
boolean_t drop_lock = B_FALSE;
ASSERT(MUTEX_HELD(&zp->z_acl_lock));
if (zp->z_acl_cached && !will_modify) {
*aclpp = zp->z_acl_cached;
return (0);
}
/*
* close race where znode could be upgrade while trying to
* read the znode attributes.
*
* But this could only happen if the file isn't already an SA
* znode
*/
if (!zp->z_is_sa && !have_lock) {
mutex_enter(&zp->z_lock);
drop_lock = B_TRUE;
}
version = zfs_znode_acl_version(zp);
if ((error = zfs_acl_znode_info(zp, &aclsize,
&acl_count, &znode_acl)) != 0) {
goto done;
}
aclp = zfs_acl_alloc(version);
aclp->z_acl_count = acl_count;
aclp->z_acl_bytes = aclsize;
aclnode = zfs_acl_node_alloc(aclsize);
aclnode->z_ace_count = aclp->z_acl_count;
aclnode->z_size = aclsize;
if (!zp->z_is_sa) {
if (znode_acl.z_acl_extern_obj) {
error = dmu_read(zp->z_zfsvfs->z_os,
znode_acl.z_acl_extern_obj, 0, aclnode->z_size,
aclnode->z_acldata, DMU_READ_PREFETCH);
} else {
bcopy(znode_acl.z_ace_data, aclnode->z_acldata,
aclnode->z_size);
}
} else {
error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zp->z_zfsvfs),
aclnode->z_acldata, aclnode->z_size);
}
if (error != 0) {
zfs_acl_free(aclp);
zfs_acl_node_free(aclnode);
/* convert checksum errors into IO errors */
if (error == ECKSUM)
error = SET_ERROR(EIO);
goto done;
}
list_insert_head(&aclp->z_acl, aclnode);
*aclpp = aclp;
if (!will_modify)
zp->z_acl_cached = aclp;
done:
if (drop_lock)
mutex_exit(&zp->z_lock);
return (error);
}
/*ARGSUSED*/
void
zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen,
boolean_t start, void *userdata)
{
zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata;
if (start) {
cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl);
} else {
cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl,
cb->cb_acl_node);
}
*dataptr = cb->cb_acl_node->z_acldata;
*length = cb->cb_acl_node->z_size;
}
int
zfs_acl_chown_setattr(znode_t *zp)
{
int error;
zfs_acl_t *aclp;
ASSERT(MUTEX_HELD(&zp->z_lock));
ASSERT(MUTEX_HELD(&zp->z_acl_lock));
if ((error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE)) == 0)
zp->z_mode = zfs_mode_compute(zp->z_mode, aclp,
&zp->z_pflags, zp->z_uid, zp->z_gid);
return (error);
}
/*
* common code for setting ACLs.
*
* This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
* zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
* already checked the acl and knows whether to inherit.
*/
int
zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
{
int error;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
dmu_object_type_t otype;
zfs_acl_locator_cb_t locate = { 0 };
uint64_t mode;
sa_bulk_attr_t bulk[5];
uint64_t ctime[2];
int count = 0;
mode = zp->z_mode;
mode = zfs_mode_compute(mode, aclp, &zp->z_pflags,
zp->z_uid, zp->z_gid);
zp->z_mode = mode;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
&mode, sizeof (mode));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, sizeof (zp->z_pflags));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
&ctime, sizeof (ctime));
if (zp->z_acl_cached) {
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = NULL;
}
/*
* Upgrade needed?
*/
if (!zfsvfs->z_use_fuids) {
otype = DMU_OT_OLDACL;
} else {
if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
(zfsvfs->z_version >= ZPL_VERSION_FUID))
zfs_acl_xform(zp, aclp, cr);
ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID);
otype = DMU_OT_ACL;
}
/*
* Arrgh, we have to handle old on disk format
* as well as newer (preferred) SA format.
*/
if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */
locate.cb_aclp = aclp;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs),
zfs_acl_data_locator, &locate, aclp->z_acl_bytes);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs),
NULL, &aclp->z_acl_count, sizeof (uint64_t));
} else { /* Painful legacy way */
zfs_acl_node_t *aclnode;
uint64_t off = 0;
zfs_acl_phys_t acl_phys;
uint64_t aoid;
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
&acl_phys, sizeof (acl_phys))) != 0)
return (error);
aoid = acl_phys.z_acl_extern_obj;
if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
/*
* If ACL was previously external and we are now
* converting to new ACL format then release old
* ACL object and create a new one.
*/
if (aoid &&
aclp->z_version != acl_phys.z_acl_version) {
error = dmu_object_free(zfsvfs->z_os, aoid, tx);
if (error)
return (error);
aoid = 0;
}
if (aoid == 0) {
aoid = dmu_object_alloc(zfsvfs->z_os,
otype, aclp->z_acl_bytes,
otype == DMU_OT_ACL ?
DMU_OT_SYSACL : DMU_OT_NONE,
otype == DMU_OT_ACL ?
DN_MAX_BONUSLEN : 0, tx);
} else {
(void) dmu_object_set_blocksize(zfsvfs->z_os,
aoid, aclp->z_acl_bytes, 0, tx);
}
acl_phys.z_acl_extern_obj = aoid;
for (aclnode = list_head(&aclp->z_acl); aclnode;
aclnode = list_next(&aclp->z_acl, aclnode)) {
if (aclnode->z_ace_count == 0)
continue;
dmu_write(zfsvfs->z_os, aoid, off,
aclnode->z_size, aclnode->z_acldata, tx);
off += aclnode->z_size;
}
} else {
void *start = acl_phys.z_ace_data;
/*
* Migrating back embedded?
*/
if (acl_phys.z_acl_extern_obj) {
error = dmu_object_free(zfsvfs->z_os,
acl_phys.z_acl_extern_obj, tx);
if (error)
return (error);
acl_phys.z_acl_extern_obj = 0;
}
for (aclnode = list_head(&aclp->z_acl); aclnode;
aclnode = list_next(&aclp->z_acl, aclnode)) {
if (aclnode->z_ace_count == 0)
continue;
bcopy(aclnode->z_acldata, start,
aclnode->z_size);
start = (caddr_t)start + aclnode->z_size;
}
}
/*
* If Old version then swap count/bytes to match old
* layout of znode_acl_phys_t.
*/
if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
acl_phys.z_acl_size = aclp->z_acl_count;
acl_phys.z_acl_count = aclp->z_acl_bytes;
} else {
acl_phys.z_acl_size = aclp->z_acl_bytes;
acl_phys.z_acl_count = aclp->z_acl_count;
}
acl_phys.z_acl_version = aclp->z_version;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
&acl_phys, sizeof (acl_phys));
}
/*
* Replace ACL wide bits, but first clear them.
*/
zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS;
zp->z_pflags |= aclp->z_hints;
if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0)
zp->z_pflags |= ZFS_ACL_TRIVIAL;
zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime, B_TRUE);
return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
}
static void
zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim,
zfs_acl_t *aclp)
{
void *acep = NULL;
uint64_t who;
int new_count, new_bytes;
int ace_size;
int entry_type;
uint16_t iflags, type;
uint32_t access_mask;
zfs_acl_node_t *newnode;
size_t abstract_size = aclp->z_ops.ace_abstract_size();
void *zacep;
boolean_t isdir;
trivial_acl_t masks;
new_count = new_bytes = 0;
isdir = (vtype == VDIR);
acl_trivial_access_masks((mode_t)mode, isdir, &masks);
newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);
zacep = newnode->z_acldata;
if (masks.allow0) {
zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
zacep = (void *)((uintptr_t)zacep + abstract_size);
new_count++;
new_bytes += abstract_size;
}
if (masks.deny1) {
zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
zacep = (void *)((uintptr_t)zacep + abstract_size);
new_count++;
new_bytes += abstract_size;
}
if (masks.deny2) {
zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
zacep = (void *)((uintptr_t)zacep + abstract_size);
new_count++;
new_bytes += abstract_size;
}
while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
&iflags, &type)) {
entry_type = (iflags & ACE_TYPE_FLAGS);
/*
* ACEs used to represent the file mode may be divided
* into an equivalent pair of inherit-only and regular
* ACEs, if they are inheritable.
* Skip regular ACEs, which are replaced by the new mode.
*/
if (split && (entry_type == ACE_OWNER ||
entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)) {
if (!isdir || !(iflags &
(ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
continue;
/*
* We preserve owner@, group@, or @everyone
* permissions, if they are inheritable, by
* copying them to inherit_only ACEs. This
* prevents inheritable permissions from being
* altered along with the file mode.
*/
iflags |= ACE_INHERIT_ONLY_ACE;
}
/*
* If this ACL has any inheritable ACEs, mark that in
* the hints (which are later masked into the pflags)
* so create knows to do inheritance.
*/
if (isdir && (iflags &
(ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
aclp->z_hints |= ZFS_INHERIT_ACE;
if ((type != ALLOW && type != DENY) ||
(iflags & ACE_INHERIT_ONLY_ACE)) {
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
aclp->z_hints |= ZFS_ACL_OBJ_ACE;
break;
}
} else {
/*
* Limit permissions granted by ACEs to be no greater
* than permissions of the requested group mode.
* Applies when the "aclmode" property is set to
* "groupmask".
*/
if ((type == ALLOW) && trim)
access_mask &= masks.group;
}
zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
ace_size = aclp->z_ops.ace_size(acep);
zacep = (void *)((uintptr_t)zacep + ace_size);
new_count++;
new_bytes += ace_size;
}
zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER);
zacep = (void *)((uintptr_t)zacep + abstract_size);
zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP);
zacep = (void *)((uintptr_t)zacep + abstract_size);
zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE);
new_count += 3;
new_bytes += abstract_size * 3;
zfs_acl_release_nodes(aclp);
aclp->z_acl_count = new_count;
aclp->z_acl_bytes = new_bytes;
newnode->z_ace_count = new_count;
newnode->z_size = new_bytes;
list_insert_tail(&aclp->z_acl, newnode);
}
int
zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
{
int error = 0;
mutex_enter(&zp->z_acl_lock);
mutex_enter(&zp->z_lock);
if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_DISCARD)
*aclp = zfs_acl_alloc(zfs_acl_version_zp(zp));
else
error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE);
if (error == 0) {
(*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS;
zfs_acl_chmod(ZTOV(zp)->v_type, mode, B_TRUE,
(zp->z_zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp);
}
mutex_exit(&zp->z_lock);
mutex_exit(&zp->z_acl_lock);
return (error);
}
/*
* Should ACE be inherited?
*/
static int
zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags)
{
int iflags = (acep_flags & 0xf);
if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
return (1);
else if (iflags & ACE_FILE_INHERIT_ACE)
return (!((vtype == VDIR) &&
(iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
return (0);
}
/*
* inherit inheritable ACEs from parent
*/
static zfs_acl_t *
zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp,
uint64_t mode)
{
void *pacep = NULL;
void *acep;
zfs_acl_node_t *aclnode;
zfs_acl_t *aclp = NULL;
uint64_t who;
uint32_t access_mask;
uint16_t iflags, newflags, type;
size_t ace_size;
void *data1, *data2;
size_t data1sz, data2sz;
uint_t aclinherit;
boolean_t isdir = (vtype == VDIR);
aclp = zfs_acl_alloc(paclp->z_version);
aclinherit = zfsvfs->z_acl_inherit;
if (aclinherit == ZFS_ACL_DISCARD || vtype == VLNK)
return (aclp);
while (pacep = zfs_acl_next_ace(paclp, pacep, &who,
&access_mask, &iflags, &type)) {
/*
* don't inherit bogus ACEs
*/
if (!zfs_acl_valid_ace_type(type, iflags))
continue;
/*
* Check if ACE is inheritable by this vnode
*/
if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) ||
!zfs_ace_can_use(vtype, iflags))
continue;
/*
* Strip inherited execute permission from file if
* not in mode
*/
if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW &&
!isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) {
access_mask &= ~ACE_EXECUTE;
}
/*
* Strip write_acl and write_owner from permissions
* when inheriting an ACE
*/
if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) {
access_mask &= ~RESTRICTED_CLEAR;
}
ace_size = aclp->z_ops.ace_size(pacep);
aclnode = zfs_acl_node_alloc(ace_size);
list_insert_tail(&aclp->z_acl, aclnode);
acep = aclnode->z_acldata;
zfs_set_ace(aclp, acep, access_mask, type,
who, iflags|ACE_INHERITED_ACE);
/*
* Copy special opaque data if any
*/
if ((data1sz = paclp->z_ops.ace_data(pacep, &data1)) != 0) {
VERIFY((data2sz = aclp->z_ops.ace_data(acep,
&data2)) == data1sz);
bcopy(data1, data2, data2sz);
}
aclp->z_acl_count++;
aclnode->z_ace_count++;
aclp->z_acl_bytes += aclnode->z_size;
newflags = aclp->z_ops.ace_flags_get(acep);
/*
* If ACE is not to be inherited further, or if the vnode is
* not a directory, remove all inheritance flags
*/
if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) {
newflags &= ~ALL_INHERIT;
aclp->z_ops.ace_flags_set(acep,
newflags|ACE_INHERITED_ACE);
continue;
}
/*
* This directory has an inheritable ACE
*/
aclp->z_hints |= ZFS_INHERIT_ACE;
/*
* If only FILE_INHERIT is set then turn on
* inherit_only
*/
if ((iflags & (ACE_FILE_INHERIT_ACE |
ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) {
newflags |= ACE_INHERIT_ONLY_ACE;
aclp->z_ops.ace_flags_set(acep,
newflags|ACE_INHERITED_ACE);
} else {
newflags &= ~ACE_INHERIT_ONLY_ACE;
aclp->z_ops.ace_flags_set(acep,
newflags|ACE_INHERITED_ACE);
}
}
return (aclp);
}
/*
* Create file system object initial permissions
* including inheritable ACEs.
* Also, create FUIDs for owner and group.
*/
int
zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids)
{
int error;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zfs_acl_t *paclp;
gid_t gid;
boolean_t trim = B_FALSE;
boolean_t inherited = B_FALSE;
bzero(acl_ids, sizeof (zfs_acl_ids_t));
acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode);
if (vsecp)
if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr,
&acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
return (error);
/*
* Determine uid and gid.
*/
if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay ||
((flag & IS_XATTR) && (vap->va_type == VDIR))) {
acl_ids->z_fuid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_uid, cr,
ZFS_OWNER, &acl_ids->z_fuidp);
acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_gid, cr,
ZFS_GROUP, &acl_ids->z_fuidp);
gid = vap->va_gid;
} else {
acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER,
cr, &acl_ids->z_fuidp);
acl_ids->z_fgid = 0;
if (vap->va_mask & AT_GID) {
acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_gid,
cr, ZFS_GROUP, &acl_ids->z_fuidp);
gid = vap->va_gid;
if (acl_ids->z_fgid != dzp->z_gid &&
!groupmember(vap->va_gid, cr) &&
secpolicy_vnode_create_gid(cr) != 0)
acl_ids->z_fgid = 0;
}
if (acl_ids->z_fgid == 0) {
if (dzp->z_mode & S_ISGID) {
char *domain;
uint32_t rid;
acl_ids->z_fgid = dzp->z_gid;
gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
cr, ZFS_GROUP);
if (zfsvfs->z_use_fuids &&
IS_EPHEMERAL(acl_ids->z_fgid)) {
domain = zfs_fuid_idx_domain(
&zfsvfs->z_fuid_idx,
FUID_INDEX(acl_ids->z_fgid));
rid = FUID_RID(acl_ids->z_fgid);
zfs_fuid_node_add(&acl_ids->z_fuidp,
domain, rid,
FUID_INDEX(acl_ids->z_fgid),
acl_ids->z_fgid, ZFS_GROUP);
}
} else {
acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs,
ZFS_GROUP, cr, &acl_ids->z_fuidp);
gid = crgetgid(cr);
}
}
}
/*
* If we're creating a directory, and the parent directory has the
* set-GID bit set, set in on the new directory.
* Otherwise, if the user is neither privileged nor a member of the
* file's new group, clear the file's set-GID bit.
*/
if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) &&
(vap->va_type == VDIR)) {
acl_ids->z_mode |= S_ISGID;
} else {
if ((acl_ids->z_mode & S_ISGID) &&
secpolicy_vnode_setids_setgids(cr, gid) != 0)
acl_ids->z_mode &= ~S_ISGID;
}
if (acl_ids->z_aclp == NULL) {
mutex_enter(&dzp->z_acl_lock);
mutex_enter(&dzp->z_lock);
if (!(flag & IS_ROOT_NODE) &&
(dzp->z_pflags & ZFS_INHERIT_ACE) &&
!(dzp->z_pflags & ZFS_XATTR)) {
VERIFY(0 == zfs_acl_node_read(dzp, B_TRUE,
&paclp, B_FALSE));
acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
vap->va_type, paclp, acl_ids->z_mode);
inherited = B_TRUE;
} else {
acl_ids->z_aclp =
zfs_acl_alloc(zfs_acl_version_zp(dzp));
acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
}
mutex_exit(&dzp->z_lock);
mutex_exit(&dzp->z_acl_lock);
if (vap->va_type == VDIR)
acl_ids->z_aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK &&
zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH &&
zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X)
trim = B_TRUE;
zfs_acl_chmod(vap->va_type, acl_ids->z_mode, B_FALSE, trim,
acl_ids->z_aclp);
}
if (inherited || vsecp) {
acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode,
acl_ids->z_aclp, &acl_ids->z_aclp->z_hints,
acl_ids->z_fuid, acl_ids->z_fgid);
if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0)
acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
}
return (0);
}
/*
* Free ACL and fuid_infop, but not the acl_ids structure
*/
void
zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
{
if (acl_ids->z_aclp)
zfs_acl_free(acl_ids->z_aclp);
if (acl_ids->z_fuidp)
zfs_fuid_info_free(acl_ids->z_fuidp);
acl_ids->z_aclp = NULL;
acl_ids->z_fuidp = NULL;
}
boolean_t
zfs_acl_ids_overquota(zfsvfs_t *zfsvfs, zfs_acl_ids_t *acl_ids)
{
return (zfs_fuid_overquota(zfsvfs, B_FALSE, acl_ids->z_fuid) ||
zfs_fuid_overquota(zfsvfs, B_TRUE, acl_ids->z_fgid));
}
/*
* Retrieve a file's ACL
*/
int
zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
{
zfs_acl_t *aclp;
ulong_t mask;
int error;
int count = 0;
int largeace = 0;
mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
if (mask == 0)
return (SET_ERROR(ENOSYS));
if (error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr))
return (error);
mutex_enter(&zp->z_acl_lock);
error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
if (error != 0) {
mutex_exit(&zp->z_acl_lock);
return (error);
}
/*
* Scan ACL to determine number of ACEs
*/
if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
void *zacep = NULL;
uint64_t who;
uint32_t access_mask;
uint16_t type, iflags;
while (zacep = zfs_acl_next_ace(aclp, zacep,
&who, &access_mask, &iflags, &type)) {
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
largeace++;
continue;
default:
count++;
}
}
vsecp->vsa_aclcnt = count;
} else
count = (int)aclp->z_acl_count;
if (mask & VSA_ACECNT) {
vsecp->vsa_aclcnt = count;
}
if (mask & VSA_ACE) {
size_t aclsz;
aclsz = count * sizeof (ace_t) +
sizeof (ace_object_t) * largeace;
vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
vsecp->vsa_aclentsz = aclsz;
if (aclp->z_version == ZFS_ACL_VERSION_FUID)
zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr,
vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
else {
zfs_acl_node_t *aclnode;
void *start = vsecp->vsa_aclentp;
for (aclnode = list_head(&aclp->z_acl); aclnode;
aclnode = list_next(&aclp->z_acl, aclnode)) {
bcopy(aclnode->z_acldata, start,
aclnode->z_size);
start = (caddr_t)start + aclnode->z_size;
}
ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp ==
aclp->z_acl_bytes);
}
}
if (mask & VSA_ACE_ACLFLAGS) {
vsecp->vsa_aclflags = 0;
if (zp->z_pflags & ZFS_ACL_DEFAULTED)
vsecp->vsa_aclflags |= ACL_DEFAULTED;
if (zp->z_pflags & ZFS_ACL_PROTECTED)
vsecp->vsa_aclflags |= ACL_PROTECTED;
if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
}
mutex_exit(&zp->z_acl_lock);
return (0);
}
int
zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, vtype_t obj_type,
vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
{
zfs_acl_t *aclp;
zfs_acl_node_t *aclnode;
int aclcnt = vsecp->vsa_aclcnt;
int error;
if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
return (SET_ERROR(EINVAL));
aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
aclp->z_hints = 0;
aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
if ((error = zfs_copy_ace_2_oldace(obj_type, aclp,
(ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
aclcnt, &aclnode->z_size)) != 0) {
zfs_acl_free(aclp);
zfs_acl_node_free(aclnode);
return (error);
}
} else {
if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp,
vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
&aclnode->z_size, fuidp, cr)) != 0) {
zfs_acl_free(aclp);
zfs_acl_node_free(aclnode);
return (error);
}
}
aclp->z_acl_bytes = aclnode->z_size;
aclnode->z_ace_count = aclcnt;
aclp->z_acl_count = aclcnt;
list_insert_head(&aclp->z_acl, aclnode);
/*
* If flags are being set then add them to z_hints
*/
if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
if (vsecp->vsa_aclflags & ACL_PROTECTED)
aclp->z_hints |= ZFS_ACL_PROTECTED;
if (vsecp->vsa_aclflags & ACL_DEFAULTED)
aclp->z_hints |= ZFS_ACL_DEFAULTED;
if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
}
*zaclp = aclp;
return (0);
}
/*
* Set a file's ACL
*/
int
zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
dmu_tx_t *tx;
int error;
zfs_acl_t *aclp;
zfs_fuid_info_t *fuidp = NULL;
boolean_t fuid_dirtied;
uint64_t acl_obj;
if (mask == 0)
return (SET_ERROR(ENOSYS));
if (zp->z_pflags & ZFS_IMMUTABLE)
return (SET_ERROR(EPERM));
if (error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr))
return (error);
error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
&aclp);
if (error)
return (error);
/*
* If ACL wide flags aren't being set then preserve any
* existing flags.
*/
if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
aclp->z_hints |=
(zp->z_pflags & V4_ACL_WIDE_FLAGS);
}
top:
mutex_enter(&zp->z_acl_lock);
mutex_enter(&zp->z_lock);
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
/*
* If old version and ACL won't fit in bonus and we aren't
* upgrading then take out necessary DMU holds
*/
if ((acl_obj = zfs_external_acl(zp)) != 0) {
if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
dmu_tx_hold_free(tx, acl_obj, 0,
DMU_OBJECT_END);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
aclp->z_acl_bytes);
} else {
dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
}
} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
}
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
mutex_exit(&zp->z_acl_lock);
mutex_exit(&zp->z_lock);
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
zfs_acl_free(aclp);
return (error);
}
error = zfs_aclset_common(zp, aclp, cr, tx);
ASSERT(error == 0);
ASSERT(zp->z_acl_cached == NULL);
zp->z_acl_cached = aclp;
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
if (fuidp)
zfs_fuid_info_free(fuidp);
dmu_tx_commit(tx);
done:
mutex_exit(&zp->z_lock);
mutex_exit(&zp->z_acl_lock);
return (error);
}
/*
* Check accesses of interest (AoI) against attributes of the dataset
* such as read-only. Returns zero if no AoI conflict with dataset
* attributes, otherwise an appropriate errno is returned.
*/
static int
zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
{
if ((v4_mode & WRITE_MASK) &&
(zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
(!IS_DEVVP(ZTOV(zp)) ||
(IS_DEVVP(ZTOV(zp)) && (v4_mode & WRITE_MASK_ATTRS)))) {
return (SET_ERROR(EROFS));
}
/*
* Only check for READONLY on non-directories.
*/
if ((v4_mode & WRITE_MASK_DATA) &&
(((ZTOV(zp)->v_type != VDIR) &&
(zp->z_pflags & (ZFS_READONLY | ZFS_IMMUTABLE))) ||
(ZTOV(zp)->v_type == VDIR &&
(zp->z_pflags & ZFS_IMMUTABLE)))) {
return (SET_ERROR(EPERM));
}
if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) &&
(zp->z_pflags & ZFS_NOUNLINK)) {
return (SET_ERROR(EPERM));
}
if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
(zp->z_pflags & ZFS_AV_QUARANTINED))) {
return (SET_ERROR(EACCES));
}
return (0);
}
/*
* The primary usage of this function is to loop through all of the
* ACEs in the znode, determining what accesses of interest (AoI) to
* the caller are allowed or denied. The AoI are expressed as bits in
* the working_mode parameter. As each ACE is processed, bits covered
* by that ACE are removed from the working_mode. This removal
* facilitates two things. The first is that when the working mode is
* empty (= 0), we know we've looked at all the AoI. The second is
* that the ACE interpretation rules don't allow a later ACE to undo
* something granted or denied by an earlier ACE. Removing the
* discovered access or denial enforces this rule. At the end of
* processing the ACEs, all AoI that were found to be denied are
* placed into the working_mode, giving the caller a mask of denied
* accesses. Returns:
* 0 if all AoI granted
* EACCES if the denied mask is non-zero
* other error if abnormal failure (e.g., IO error)
*
* A secondary usage of the function is to determine if any of the
* AoI are granted. If an ACE grants any access in
* the working_mode, we immediately short circuit out of the function.
* This mode is chosen by setting anyaccess to B_TRUE. The
* working_mode is not a denied access mask upon exit if the function
* is used in this manner.
*/
static int
zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
boolean_t anyaccess, cred_t *cr)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zfs_acl_t *aclp;
int error;
uid_t uid = crgetuid(cr);
uint64_t who;
uint16_t type, iflags;
uint16_t entry_type;
uint32_t access_mask;
uint32_t deny_mask = 0;
zfs_ace_hdr_t *acep = NULL;
boolean_t checkit;
uid_t gowner;
uid_t fowner;
zfs_fuid_map_ids(zp, cr, &fowner, &gowner);
mutex_enter(&zp->z_acl_lock);
error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
if (error != 0) {
mutex_exit(&zp->z_acl_lock);
return (error);
}
ASSERT(zp->z_acl_cached);
while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
&iflags, &type)) {
uint32_t mask_matched;
if (!zfs_acl_valid_ace_type(type, iflags))
continue;
if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE))
continue;
/* Skip ACE if it does not affect any AoI */
mask_matched = (access_mask & *working_mode);
if (!mask_matched)
continue;
entry_type = (iflags & ACE_TYPE_FLAGS);
checkit = B_FALSE;
switch (entry_type) {
case ACE_OWNER:
if (uid == fowner)
checkit = B_TRUE;
break;
case OWNING_GROUP:
who = gowner;
/*FALLTHROUGH*/
case ACE_IDENTIFIER_GROUP:
checkit = zfs_groupmember(zfsvfs, who, cr);
break;
case ACE_EVERYONE:
checkit = B_TRUE;
break;
/* USER Entry */
default:
if (entry_type == 0) {
uid_t newid;
newid = zfs_fuid_map_id(zfsvfs, who, cr,
ZFS_ACE_USER);
if (newid != IDMAP_WK_CREATOR_OWNER_UID &&
uid == newid)
checkit = B_TRUE;
break;
} else {
mutex_exit(&zp->z_acl_lock);
return (SET_ERROR(EIO));
}
}
if (checkit) {
if (type == DENY) {
DTRACE_PROBE3(zfs__ace__denies,
znode_t *, zp,
zfs_ace_hdr_t *, acep,
uint32_t, mask_matched);
deny_mask |= mask_matched;
} else {
DTRACE_PROBE3(zfs__ace__allows,
znode_t *, zp,
zfs_ace_hdr_t *, acep,
uint32_t, mask_matched);
if (anyaccess) {
mutex_exit(&zp->z_acl_lock);
return (0);
}
}
*working_mode &= ~mask_matched;
}
/* Are we done? */
if (*working_mode == 0)
break;
}
mutex_exit(&zp->z_acl_lock);
/* Put the found 'denies' back on the working mode */
if (deny_mask) {
*working_mode |= deny_mask;
return (SET_ERROR(EACCES));
} else if (*working_mode) {
return (-1);
}
return (0);
}
/*
* Return true if any access whatsoever granted, we don't actually
* care what access is granted.
*/
boolean_t
zfs_has_access(znode_t *zp, cred_t *cr)
{
uint32_t have = ACE_ALL_PERMS;
if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) {
uid_t owner;
owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
return (secpolicy_vnode_any_access(cr, ZTOV(zp), owner) == 0);
}
return (B_TRUE);
}
static int
zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int err;
*working_mode = v4_mode;
*check_privs = B_TRUE;
/*
* Short circuit empty requests
*/
if (v4_mode == 0 || zfsvfs->z_replay) {
*working_mode = 0;
return (0);
}
if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
*check_privs = B_FALSE;
return (err);
}
/*
* The caller requested that the ACL check be skipped. This
* would only happen if the caller checked VOP_ACCESS() with a
* 32 bit ACE mask and already had the appropriate permissions.
*/
if (skipaclchk) {
*working_mode = 0;
return (0);
}
return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr));
}
static int
zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
cred_t *cr)
{
if (*working_mode != ACE_WRITE_DATA)
return (SET_ERROR(EACCES));
return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
check_privs, B_FALSE, cr));
}
int
zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr)
{
boolean_t owner = B_FALSE;
boolean_t groupmbr = B_FALSE;
boolean_t is_attr;
uid_t uid = crgetuid(cr);
int error;
if (zdp->z_pflags & ZFS_AV_QUARANTINED)
return (SET_ERROR(EACCES));
is_attr = ((zdp->z_pflags & ZFS_XATTR) &&
(ZTOV(zdp)->v_type == VDIR));
if (is_attr)
goto slow;
mutex_enter(&zdp->z_acl_lock);
if (zdp->z_pflags & ZFS_NO_EXECS_DENIED) {
mutex_exit(&zdp->z_acl_lock);
return (0);
}
if (FUID_INDEX(zdp->z_uid) != 0 || FUID_INDEX(zdp->z_gid) != 0) {
mutex_exit(&zdp->z_acl_lock);
goto slow;
}
if (uid == zdp->z_uid) {
owner = B_TRUE;
if (zdp->z_mode & S_IXUSR) {
mutex_exit(&zdp->z_acl_lock);
return (0);
} else {
mutex_exit(&zdp->z_acl_lock);
goto slow;
}
}
if (groupmember(zdp->z_gid, cr)) {
groupmbr = B_TRUE;
if (zdp->z_mode & S_IXGRP) {
mutex_exit(&zdp->z_acl_lock);
return (0);
} else {
mutex_exit(&zdp->z_acl_lock);
goto slow;
}
}
if (!owner && !groupmbr) {
if (zdp->z_mode & S_IXOTH) {
mutex_exit(&zdp->z_acl_lock);
return (0);
}
}
mutex_exit(&zdp->z_acl_lock);
slow:
DTRACE_PROBE(zfs__fastpath__execute__access__miss);
ZFS_ENTER(zdp->z_zfsvfs);
error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr);
ZFS_EXIT(zdp->z_zfsvfs);
return (error);
}
/*
* Determine whether Access should be granted/denied.
*
* The least priv subsytem is always consulted as a basic privilege
* can define any form of access.
*/
int
zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr)
{
uint32_t working_mode;
int error;
int is_attr;
boolean_t check_privs;
znode_t *xzp;
znode_t *check_zp = zp;
mode_t needed_bits;
uid_t owner;
is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR));
/*
* If attribute then validate against base file
*/
if (is_attr) {
uint64_t parent;
if ((error = sa_lookup(zp->z_sa_hdl,
SA_ZPL_PARENT(zp->z_zfsvfs), &parent,
sizeof (parent))) != 0)
return (error);
if ((error = zfs_zget(zp->z_zfsvfs,
parent, &xzp)) != 0) {
return (error);
}
check_zp = xzp;
/*
* fixup mode to map to xattr perms
*/
if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) {
mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
mode |= ACE_WRITE_NAMED_ATTRS;
}
if (mode & (ACE_READ_DATA|ACE_EXECUTE)) {
mode &= ~(ACE_READ_DATA|ACE_EXECUTE);
mode |= ACE_READ_NAMED_ATTRS;
}
}
owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
/*
* Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC
* in needed_bits. Map the bits mapped by working_mode (currently
* missing) in missing_bits.
* Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
* needed_bits.
*/
needed_bits = 0;
working_mode = mode;
if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
owner == crgetuid(cr))
working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
needed_bits |= VREAD;
if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
needed_bits |= VWRITE;
if (working_mode & ACE_EXECUTE)
needed_bits |= VEXEC;
if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
&check_privs, skipaclchk, cr)) == 0) {
if (is_attr)
VN_RELE(ZTOV(xzp));
return (secpolicy_vnode_access2(cr, ZTOV(zp), owner,
needed_bits, needed_bits));
}
if (error && !check_privs) {
if (is_attr)
VN_RELE(ZTOV(xzp));
return (error);
}
if (error && (flags & V_APPEND)) {
error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
}
if (error && check_privs) {
mode_t checkmode = 0;
/*
* First check for implicit owner permission on
* read_acl/read_attributes
*/
error = 0;
ASSERT(working_mode != 0);
if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
owner == crgetuid(cr)))
working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
checkmode |= VREAD;
if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
checkmode |= VWRITE;
if (working_mode & ACE_EXECUTE)
checkmode |= VEXEC;
error = secpolicy_vnode_access2(cr, ZTOV(check_zp), owner,
needed_bits & ~checkmode, needed_bits);
if (error == 0 && (working_mode & ACE_WRITE_OWNER))
error = secpolicy_vnode_chown(cr, owner);
if (error == 0 && (working_mode & ACE_WRITE_ACL))
error = secpolicy_vnode_setdac(cr, owner);
if (error == 0 && (working_mode &
(ACE_DELETE|ACE_DELETE_CHILD)))
error = secpolicy_vnode_remove(cr);
if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
error = secpolicy_vnode_chown(cr, owner);
}
if (error == 0) {
/*
* See if any bits other than those already checked
* for are still present. If so then return EACCES
*/
if (working_mode & ~(ZFS_CHECKED_MASKS)) {
error = SET_ERROR(EACCES);
}
}
} else if (error == 0) {
error = secpolicy_vnode_access2(cr, ZTOV(zp), owner,
needed_bits, needed_bits);
}
if (is_attr)
VN_RELE(ZTOV(xzp));
return (error);
}
/*
* Translate traditional unix VREAD/VWRITE/VEXEC mode into
* native ACL format and call zfs_zaccess()
*/
int
zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr)
{
return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr));
}
/*
* Access function for secpolicy_vnode_setattr
*/
int
zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr)
{
int v4_mode = zfs_unix_to_v4(mode >> 6);
return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr));
}
/* See zfs_zaccess_delete() */
int zfs_write_implies_delete_child = 1;
/*
* Determine whether delete access should be granted.
*
* The following chart outlines how we handle delete permissions which is
* how recent versions of windows (Windows 2008) handles it. The efficiency
* comes from not having to check the parent ACL where the object itself grants
* delete:
*
* -------------------------------------------------------
* | Parent Dir | Target Object Permissions |
* | permissions | |
* -------------------------------------------------------
* | | ACL Allows | ACL Denies| Delete |
* | | Delete | Delete | unspecified|
* -------------------------------------------------------
* | ACL Allows | Permit | Deny * | Permit |
* | DELETE_CHILD | | | |
* -------------------------------------------------------
* | ACL Denies | Permit | Deny | Deny |
* | DELETE_CHILD | | | |
* -------------------------------------------------------
* | ACL specifies | | | |
* | only allow | Permit | Deny * | Permit |
* | write and | | | |
* | execute | | | |
* -------------------------------------------------------
* | ACL denies | | | |
* | write and | Permit | Deny | Deny |
* | execute | | | |
* -------------------------------------------------------
* ^
* |
* Re. execute permission on the directory: if that's missing,
* the vnode lookup of the target will fail before we get here.
*
* Re [*] in the table above: NFSv4 would normally Permit delete for
* these two cells of the matrix.
* See acl.h for notes on which ACE_... flags should be checked for which
* operations. Specifically, the NFSv4 committee recommendation is in
* conflict with the Windows interpretation of DENY ACEs, where DENY ACEs
* should take precedence ahead of ALLOW ACEs.
*
* This implementation always consults the target object's ACL first.
* If a DENY ACE is present on the target object that specifies ACE_DELETE,
* delete access is denied. If an ALLOW ACE with ACE_DELETE is present on
* the target object, access is allowed. If and only if no entries with
* ACE_DELETE are present in the object's ACL, check the container's ACL
* for entries with ACE_DELETE_CHILD.
*
* A summary of the logic implemented from the table above is as follows:
*
* First check for DENY ACEs that apply.
* If either target or container has a deny, EACCES.
*
* Delete access can then be summarized as follows:
* 1: The object to be deleted grants ACE_DELETE, or
* 2: The containing directory grants ACE_DELETE_CHILD.
* In a Windows system, that would be the end of the story.
* In this system, (2) has some complications...
* 2a: "sticky" bit on a directory adds restrictions, and
* 2b: existing ACEs from previous versions of ZFS may
* not carry ACE_DELETE_CHILD where they should, so we
* also allow delete when ACE_WRITE_DATA is granted.
*
* Note: 2b is technically a work-around for a prior bug,
* which hopefully can go away some day. For those who
* no longer need the work around, and for testing, this
* work-around is made conditional via the tunable:
* zfs_write_implies_delete_child
*/
int
zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr)
{
uint32_t wanted_dirperms;
uint32_t dzp_working_mode = 0;
uint32_t zp_working_mode = 0;
int dzp_error, zp_error;
boolean_t dzpcheck_privs;
boolean_t zpcheck_privs;
if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
return (SET_ERROR(EPERM));
/*
* Case 1:
* If target object grants ACE_DELETE then we are done. This is
* indicated by a return value of 0. For this case we don't worry
* about the sticky bit because sticky only applies to the parent
* directory and this is the child access result.
*
* If we encounter a DENY ACE here, we're also done (EACCES).
* Note that if we hit a DENY ACE here (on the target) it should
* take precedence over a DENY ACE on the container, so that when
* we have more complete auditing support we will be able to
* report an access failure against the specific target.
* (This is part of why we're checking the target first.)
*/
zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
&zpcheck_privs, B_FALSE, cr);
if (zp_error == EACCES) {
/* We hit a DENY ACE. */
if (!zpcheck_privs)
return (SET_ERROR(zp_error));
return (secpolicy_vnode_remove(cr));
}
if (zp_error == 0)
return (0);
/*
* Case 2:
* If the containing directory grants ACE_DELETE_CHILD,
* or we're in backward compatibility mode and the
* containing directory has ACE_WRITE_DATA, allow.
* Case 2b is handled with wanted_dirperms.
*/
wanted_dirperms = ACE_DELETE_CHILD;
if (zfs_write_implies_delete_child)
wanted_dirperms |= ACE_WRITE_DATA;
dzp_error = zfs_zaccess_common(dzp, wanted_dirperms,
&dzp_working_mode, &dzpcheck_privs, B_FALSE, cr);
if (dzp_error == EACCES) {
/* We hit a DENY ACE. */
if (!dzpcheck_privs)
return (SET_ERROR(dzp_error));
return (secpolicy_vnode_remove(cr));
}
/*
* Cases 2a, 2b (continued)
*
* Note: dzp_working_mode now contains any permissions
* that were NOT granted. Therefore, if any of the
* wanted_dirperms WERE granted, we will have:
* dzp_working_mode != wanted_dirperms
* We're really asking if ANY of those permissions
* were granted, and if so, grant delete access.
*/
if (dzp_working_mode != wanted_dirperms)
dzp_error = 0;
/*
* dzp_error is 0 if the container granted us permissions to "modify".
* If we do not have permission via one or more ACEs, our current
* privileges may still permit us to modify the container.
*
* dzpcheck_privs is false when i.e. the FS is read-only.
* Otherwise, do privilege checks for the container.
*/
if (dzp_error != 0 && dzpcheck_privs) {
uid_t owner;
/*
* The secpolicy call needs the requested access and
* the current access mode of the container, but it
* only knows about Unix-style modes (VEXEC, VWRITE),
* so this must condense the fine-grained ACE bits into
* Unix modes.
*
* The VEXEC flag is easy, because we know that has
* always been checked before we get here (during the
* lookup of the target vnode). The container has not
* granted us permissions to "modify", so we do not set
* the VWRITE flag in the current access mode.
*/
owner = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr,
ZFS_OWNER);
dzp_error = secpolicy_vnode_access2(cr, ZTOV(dzp),
owner, VEXEC, VWRITE|VEXEC);
}
if (dzp_error != 0) {
/*
* Note: We may have dzp_error = -1 here (from
* zfs_zacess_common). Don't return that.
*/
return (SET_ERROR(EACCES));
}
/*
* At this point, we know that the directory permissions allow
* us to modify, but we still need to check for the additional
* restrictions that apply when the "sticky bit" is set.
*
* Yes, zfs_sticky_remove_access() also checks this bit, but
* checking it here and skipping the call below is nice when
* you're watching all of this with dtrace.
*/
if ((dzp->z_mode & S_ISVTX) == 0)
return (0);
/*
* zfs_sticky_remove_access will succeed if:
* 1. The sticky bit is absent.
* 2. We pass the sticky bit restrictions.
* 3. We have privileges that always allow file removal.
*/
return (zfs_sticky_remove_access(dzp, zp, cr));
}
int
zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
znode_t *tzp, cred_t *cr)
{
int add_perm;
int error;
if (szp->z_pflags & ZFS_AV_QUARANTINED)
return (SET_ERROR(EACCES));
add_perm = (ZTOV(szp)->v_type == VDIR) ?
ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
/*
* Rename permissions are combination of delete permission +
* add file/subdir permission.
*/
/*
* first make sure we do the delete portion.
*
* If that succeeds then check for add_file/add_subdir permissions
*/
if (error = zfs_zaccess_delete(sdzp, szp, cr))
return (error);
/*
* If we have a tzp, see if we can delete it?
*/
if (tzp) {
if (error = zfs_zaccess_delete(tdzp, tzp, cr))
return (error);
}
/*
* Now check for add permissions
*/
error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr);
return (error);
}