/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* University Copyright- Copyright (c) 1982, 1986, 1988
* The Regents of the University of California
* All Rights Reserved
*
* University Acknowledgment- Portions of this document are derived from
* software developed by the University of California, Berkeley, and its
* contributors.
*/
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bitmap.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/disp.h>
#include <sys/buf.h>
#include <sys/pathname.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/atomic.h>
#include <sys/uio.h>
#include <sys/dkio.h>
#include <sys/cred.h>
#include <sys/conf.h>
#include <sys/dnlc.h>
#include <sys/kstat.h>
#include <sys/acl.h>
#include <sys/fs/ufs_fsdir.h>
#include <sys/fs/ufs_fs.h>
#include <sys/fs/ufs_inode.h>
#include <sys/fs/ufs_mount.h>
#include <sys/fs/ufs_acl.h>
#include <sys/fs/ufs_panic.h>
#include <sys/fs/ufs_bio.h>
#include <sys/fs/ufs_quota.h>
#include <sys/fs/ufs_log.h>
#undef NFS
#include <sys/statvfs.h>
#include <sys/mount.h>
#include <sys/mntent.h>
#include <sys/swap.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include "fs/fs_subr.h"
#include <sys/cmn_err.h>
#include <sys/dnlc.h>
#include <sys/fssnap_if.h>
#include <sys/sunddi.h>
#include <sys/bootconf.h>
#include <sys/policy.h>
#include <sys/zone.h>
/*
* This is the loadable module wrapper.
*/
#include <sys/modctl.h>
int ufsfstype;
vfsops_t *ufs_vfsops;
static int ufsinit(int, char *);
static int mountfs();
extern int highbit();
extern struct instats ins;
extern struct vnode *common_specvp(struct vnode *vp);
extern vfs_t EIO_vfs;
struct dquot *dquot, *dquotNDQUOT;
/*
* Cylinder group summary information handling tunable.
* This defines when these deltas get logged.
* If the number of cylinders in the file system is over the
* tunable then we log csum updates. Otherwise the updates are only
* done for performance on unmount. After a panic they can be
* quickly constructed during mounting. See ufs_construct_si()
* called from ufs_getsummaryinfo().
*
* This performance feature can of course be disabled by setting
* ufs_ncg_log to 0, and fully enabled by setting it to 0xffffffff.
*/
#define UFS_LOG_NCG_DEFAULT 10000
uint32_t ufs_ncg_log = UFS_LOG_NCG_DEFAULT;
/*
* ufs_clean_root indicates whether the root fs went down cleanly
*/
static int ufs_clean_root = 0;
/*
* UFS Mount options table
*/
static char *intr_cancel[] = { MNTOPT_NOINTR, NULL };
static char *nointr_cancel[] = { MNTOPT_INTR, NULL };
static char *forcedirectio_cancel[] = { MNTOPT_NOFORCEDIRECTIO, NULL };
static char *noforcedirectio_cancel[] = { MNTOPT_FORCEDIRECTIO, NULL };
static char *largefiles_cancel[] = { MNTOPT_NOLARGEFILES, NULL };
static char *nolargefiles_cancel[] = { MNTOPT_LARGEFILES, NULL };
static char *logging_cancel[] = { MNTOPT_NOLOGGING, NULL };
static char *nologging_cancel[] = { MNTOPT_LOGGING, NULL };
static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
static char *quota_cancel[] = { MNTOPT_NOQUOTA, NULL };
static char *noquota_cancel[] = { MNTOPT_QUOTA, NULL };
static char *dfratime_cancel[] = { MNTOPT_NODFRATIME, NULL };
static char *nodfratime_cancel[] = { MNTOPT_DFRATIME, NULL };
static mntopt_t mntopts[] = {
/*
* option name cancel option default arg flags
* ufs arg flag
*/
{ MNTOPT_INTR, intr_cancel, NULL, MO_DEFAULT,
(void *)0 },
{ MNTOPT_NOINTR, nointr_cancel, NULL, 0,
(void *)UFSMNT_NOINTR },
{ MNTOPT_SYNCDIR, NULL, NULL, 0,
(void *)UFSMNT_SYNCDIR },
{ MNTOPT_FORCEDIRECTIO, forcedirectio_cancel, NULL, 0,
(void *)UFSMNT_FORCEDIRECTIO },
{ MNTOPT_NOFORCEDIRECTIO, noforcedirectio_cancel, NULL, 0,
(void *)UFSMNT_NOFORCEDIRECTIO },
{ MNTOPT_NOSETSEC, NULL, NULL, 0,
(void *)UFSMNT_NOSETSEC },
{ MNTOPT_LARGEFILES, largefiles_cancel, NULL, MO_DEFAULT,
(void *)UFSMNT_LARGEFILES },
{ MNTOPT_NOLARGEFILES, nolargefiles_cancel, NULL, 0,
(void *)0 },
{ MNTOPT_LOGGING, logging_cancel, NULL, MO_TAG,
(void *)UFSMNT_LOGGING },
{ MNTOPT_NOLOGGING, nologging_cancel, NULL,
MO_NODISPLAY|MO_DEFAULT|MO_TAG, (void *)0 },
{ MNTOPT_QUOTA, quota_cancel, NULL, MO_IGNORE,
(void *)0 },
{ MNTOPT_NOQUOTA, noquota_cancel, NULL,
MO_NODISPLAY|MO_DEFAULT, (void *)0 },
{ MNTOPT_GLOBAL, NULL, NULL, 0,
(void *)0 },
{ MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT,
(void *)0 },
{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0,
(void *)0 },
{ MNTOPT_NOATIME, NULL, NULL, 0,
(void *)UFSMNT_NOATIME },
{ MNTOPT_DFRATIME, dfratime_cancel, NULL, 0,
(void *)0 },
{ MNTOPT_NODFRATIME, nodfratime_cancel, NULL,
MO_NODISPLAY|MO_DEFAULT, (void *)UFSMNT_NODFRATIME },
{ MNTOPT_ONERROR, NULL, UFSMNT_ONERROR_PANIC_STR,
MO_DEFAULT|MO_HASVALUE, (void *)0 },
};
static mntopts_t ufs_mntopts = {
sizeof (mntopts) / sizeof (mntopt_t),
mntopts
};
static vfsdef_t vfw = {
VFSDEF_VERSION,
"ufs",
ufsinit,
VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_CANLOFI,
&ufs_mntopts
};
/*
* Module linkage information for the kernel.
*/
extern struct mod_ops mod_fsops;
static struct modlfs modlfs = {
&mod_fsops, "filesystem for ufs", &vfw
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modlfs, NULL
};
/*
* An attempt has been made to make this module unloadable. In order to
* test it, we need a system in which the root fs is NOT ufs. THIS HAS NOT
* BEEN DONE
*/
extern kstat_t *ufs_inode_kstat;
extern uint_t ufs_lockfs_key;
extern void ufs_lockfs_tsd_destructor(void *);
extern uint_t bypass_snapshot_throttle_key;
int
_init(void)
{
/*
* Create an index into the per thread array so that any thread doing
* VOP will have a lockfs mark on it.
*/
tsd_create(&ufs_lockfs_key, ufs_lockfs_tsd_destructor);
tsd_create(&bypass_snapshot_throttle_key, NULL);
return (mod_install(&modlinkage));
}
int
_fini(void)
{
return (EBUSY);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
extern struct vnode *makespecvp(dev_t dev, vtype_t type);
extern kmutex_t ufs_scan_lock;
static int mountfs(struct vfs *, enum whymountroot, struct vnode *, char *,
struct cred *, int, void *, int);
static int
ufs_mount(struct vfs *vfsp, struct vnode *mvp, struct mounta *uap,
struct cred *cr)
{
char *data = uap->dataptr;
int datalen = uap->datalen;
dev_t dev;
struct vnode *lvp = NULL;
struct vnode *svp = NULL;
struct pathname dpn;
int error;
enum whymountroot why = ROOT_INIT;
struct ufs_args args;
int oflag, aflag;
int fromspace = (uap->flags & MS_SYSSPACE) ?
UIO_SYSSPACE : UIO_USERSPACE;
if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
return (error);
if (mvp->v_type != VDIR)
return (ENOTDIR);
mutex_enter(&mvp->v_lock);
if ((uap->flags & MS_REMOUNT) == 0 &&
(uap->flags & MS_OVERLAY) == 0 &&
(mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
mutex_exit(&mvp->v_lock);
return (EBUSY);
}
mutex_exit(&mvp->v_lock);
/*
* Get arguments
*/
bzero(&args, sizeof (args));
if ((uap->flags & MS_DATA) && data != NULL && datalen != 0) {
int copy_result = 0;
if (datalen > sizeof (args))
return (EINVAL);
if (uap->flags & MS_SYSSPACE)
bcopy(data, &args, datalen);
else
copy_result = copyin(data, &args, datalen);
if (copy_result)
return (EFAULT);
datalen = sizeof (struct ufs_args);
} else {
datalen = 0;
}
if ((vfsp->vfs_flag & VFS_RDONLY) != 0 ||
(uap->flags & MS_RDONLY) != 0) {
oflag = FREAD;
aflag = VREAD;
} else {
oflag = FREAD | FWRITE;
aflag = VREAD | VWRITE;
}
/*
* Read in the mount point pathname
* (so we can record the directory the file system was last mounted on).
*/
if (error = pn_get(uap->dir, fromspace, &dpn))
return (error);
/*
* Resolve path name of special file being mounted.
*/
if (error = lookupname(uap->spec, fromspace, FOLLOW, NULL, &svp)) {
pn_free(&dpn);
return (error);
}
error = vfs_get_lofi(vfsp, &lvp);
if (error > 0) {
VN_RELE(svp);
pn_free(&dpn);
return (error);
} else if (error == 0) {
dev = lvp->v_rdev;
if (getmajor(dev) >= devcnt) {
error = ENXIO;
goto out;
}
} else {
dev = svp->v_rdev;
if (svp->v_type != VBLK) {
VN_RELE(svp);
pn_free(&dpn);
return (ENOTBLK);
}
if (getmajor(dev) >= devcnt) {
error = ENXIO;
goto out;
}
/*
* In SunCluster, requests to a global device are
* satisfied by a local device. We substitute the global
* pxfs node with a local spec node here.
*/
if (IS_PXFSVP(svp)) {
ASSERT(lvp == NULL);
VN_RELE(svp);
svp = makespecvp(dev, VBLK);
}
if ((error = secpolicy_spec_open(cr, svp, oflag)) != 0) {
VN_RELE(svp);
pn_free(&dpn);
return (error);
}
}
if (uap->flags & MS_REMOUNT)
why = ROOT_REMOUNT;
/*
* Open device/file mounted on. We need this to check whether
* the caller has sufficient rights to access the resource in
* question. When bio is fixed for vnodes this can all be vnode
* operations.
*/
if ((error = VOP_ACCESS(svp, aflag, 0, cr, NULL)) != 0)
goto out;
/*
* Ensure that this device isn't already mounted or in progress on a
* mount unless this is a REMOUNT request or we are told to suppress
* mount checks. Global mounts require special handling.
*/
if ((uap->flags & MS_NOCHECK) == 0) {
if ((uap->flags & MS_GLOBAL) == 0 &&
vfs_devmounting(dev, vfsp)) {
error = EBUSY;
goto out;
}
if (vfs_devismounted(dev)) {
if ((uap->flags & MS_REMOUNT) == 0) {
error = EBUSY;
goto out;
}
}
}
/*
* If the device is a tape, mount it read only
*/
if (devopsp[getmajor(dev)]->devo_cb_ops->cb_flag & D_TAPE) {
vfsp->vfs_flag |= VFS_RDONLY;
vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
}
if (uap->flags & MS_RDONLY)
vfsp->vfs_flag |= VFS_RDONLY;
/*
* Mount the filesystem, free the device vnode on error.
*/
error = mountfs(vfsp, why, lvp != NULL ? lvp : svp,
dpn.pn_path, cr, 0, &args, datalen);
if (error == 0) {
vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
/*
* If lofi, drop our reference to the original file.
*/
if (lvp != NULL)
VN_RELE(svp);
}
out:
pn_free(&dpn);
if (error) {
if (lvp != NULL)
VN_RELE(lvp);
if (svp != NULL)
VN_RELE(svp);
}
return (error);
}
/*
* Mount root file system.
* "why" is ROOT_INIT on initial call ROOT_REMOUNT if called to
* remount the root file system, and ROOT_UNMOUNT if called to
* unmount the root (e.g., as part of a system shutdown).
*
* XXX - this may be partially machine-dependent; it, along with the VFS_SWAPVP
* operation, goes along with auto-configuration. A mechanism should be
* provided by which machine-INdependent code in the kernel can say "get me the
* right root file system" and "get me the right initial swap area", and have
* that done in what may well be a machine-dependent fashion.
* Unfortunately, it is also file-system-type dependent (NFS gets it via
* bootparams calls, UFS gets it from various and sundry machine-dependent
* mechanisms, as SPECFS does for swap).
*/
static int
ufs_mountroot(struct vfs *vfsp, enum whymountroot why)
{
struct fs *fsp;
int error;
static int ufsrootdone = 0;
dev_t rootdev;
struct vnode *vp;
struct vnode *devvp = 0;
int ovflags;
int doclkset;
ufsvfs_t *ufsvfsp;
if (why == ROOT_INIT) {
if (ufsrootdone++)
return (EBUSY);
rootdev = getrootdev();
if (rootdev == (dev_t)NODEV)
return (ENODEV);
vfsp->vfs_dev = rootdev;
vfsp->vfs_flag |= VFS_RDONLY;
} else if (why == ROOT_REMOUNT) {
vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
(void) dnlc_purge_vfsp(vfsp, 0);
vp = common_specvp(vp);
(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL,
CRED(), NULL);
(void) bfinval(vfsp->vfs_dev, 0);
fsp = getfs(vfsp);
ovflags = vfsp->vfs_flag;
vfsp->vfs_flag &= ~VFS_RDONLY;
vfsp->vfs_flag |= VFS_REMOUNT;
rootdev = vfsp->vfs_dev;
} else if (why == ROOT_UNMOUNT) {
if (vfs_lock(vfsp) == 0) {
(void) ufs_flush(vfsp);
/*
* Mark the log as fully rolled
*/
ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
fsp = ufsvfsp->vfs_fs;
if (TRANS_ISTRANS(ufsvfsp) &&
!TRANS_ISERROR(ufsvfsp) &&
(fsp->fs_rolled == FS_NEED_ROLL)) {
ml_unit_t *ul = ufsvfsp->vfs_log;
error = ufs_putsummaryinfo(ul->un_dev,
ufsvfsp, fsp);
if (error == 0) {
fsp->fs_rolled = FS_ALL_ROLLED;
UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
}
}
vfs_unlock(vfsp);
} else {
ufs_update(0);
}
vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
(void) VOP_CLOSE(vp, FREAD|FWRITE, 1,
(offset_t)0, CRED(), NULL);
return (0);
}
error = vfs_lock(vfsp);
if (error)
return (error);
devvp = makespecvp(rootdev, VBLK);
/* If RO media, don't call clkset() (see below) */
doclkset = 1;
if (why == ROOT_INIT) {
error = VOP_OPEN(&devvp, FREAD|FWRITE, CRED(), NULL);
if (error == 0) {
(void) VOP_CLOSE(devvp, FREAD|FWRITE, 1,
(offset_t)0, CRED(), NULL);
} else {
doclkset = 0;
}
}
error = mountfs(vfsp, why, devvp, "/", CRED(), 1, NULL, 0);
/*
* XXX - assumes root device is not indirect, because we don't set
* rootvp. Is rootvp used for anything? If so, make another arg
* to mountfs.
*/
if (error) {
vfs_unlock(vfsp);
if (why == ROOT_REMOUNT)
vfsp->vfs_flag = ovflags;
if (rootvp) {
VN_RELE(rootvp);
rootvp = (struct vnode *)0;
}
VN_RELE(devvp);
return (error);
}
if (why == ROOT_INIT)
vfs_add((struct vnode *)0, vfsp,
(vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
vfs_unlock(vfsp);
fsp = getfs(vfsp);
clkset(doclkset ? fsp->fs_time : -1);
ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
if (ufsvfsp->vfs_log) {
vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
}
return (0);
}
static int
remountfs(struct vfs *vfsp, dev_t dev, void *raw_argsp, int args_len)
{
struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs;
struct buf *bp = ufsvfsp->vfs_bufp;
struct fs *fsp = (struct fs *)bp->b_un.b_addr;
struct fs *fspt;
struct buf *tpt = 0;
int error = 0;
int flags = 0;
if (args_len == sizeof (struct ufs_args) && raw_argsp)
flags = ((struct ufs_args *)raw_argsp)->flags;
/* cannot remount to RDONLY */
if (vfsp->vfs_flag & VFS_RDONLY)
return (ENOTSUP);
/* whoops, wrong dev */
if (vfsp->vfs_dev != dev)
return (EINVAL);
/*
* synchronize w/ufs ioctls
*/
mutex_enter(&ulp->ul_lock);
atomic_inc_ulong(&ufs_quiesce_pend);
/*
* reset options
*/
ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR;
ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
else /* dfratime, default behavior */
ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
if (flags & UFSMNT_FORCEDIRECTIO)
ufsvfsp->vfs_forcedirectio = 1;
else /* default is no direct I/O */
ufsvfsp->vfs_forcedirectio = 0;
ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
/*
* set largefiles flag in ufsvfs equal to the
* value passed in by the mount command. If
* it is "nolargefiles", and the flag is set
* in the superblock, the mount fails.
*/
if (!(flags & UFSMNT_LARGEFILES)) { /* "nolargefiles" */
if (fsp->fs_flags & FSLARGEFILES) {
error = EFBIG;
goto remounterr;
}
ufsvfsp->vfs_lfflags &= ~UFS_LARGEFILES;
} else /* "largefiles" */
ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
/*
* read/write to read/write; all done
*/
if (fsp->fs_ronly == 0)
goto remounterr;
/*
* fix-on-panic assumes RO->RW remount implies system-critical fs
* if it is shortly after boot; so, don't attempt to lock and fix
* (unless the user explicitly asked for another action on error)
* XXX UFSMNT_ONERROR_RDONLY rather than UFSMNT_ONERROR_PANIC
*/
#define BOOT_TIME_LIMIT (180*hz)
if (!(flags & UFSMNT_ONERROR_FLGMASK) &&
ddi_get_lbolt() < BOOT_TIME_LIMIT) {
cmn_err(CE_WARN, "%s is required to be mounted onerror=%s",
ufsvfsp->vfs_fs->fs_fsmnt, UFSMNT_ONERROR_PANIC_STR);
flags |= UFSMNT_ONERROR_PANIC;
}
if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
goto remounterr;
/*
* quiesce the file system
*/
error = ufs_quiesce(ulp);
if (error)
goto remounterr;
tpt = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, SBLOCK, SBSIZE);
if (tpt->b_flags & B_ERROR) {
error = EIO;
goto remounterr;
}
fspt = (struct fs *)tpt->b_un.b_addr;
if (((fspt->fs_magic != FS_MAGIC) &&
(fspt->fs_magic != MTB_UFS_MAGIC)) ||
(fspt->fs_magic == FS_MAGIC &&
(fspt->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
fspt->fs_version != UFS_VERSION_MIN)) ||
(fspt->fs_magic == MTB_UFS_MAGIC &&
(fspt->fs_version > MTB_UFS_VERSION_1 ||
fspt->fs_version < MTB_UFS_VERSION_MIN)) ||
fspt->fs_bsize > MAXBSIZE || fspt->fs_frag > MAXFRAG ||
fspt->fs_bsize < sizeof (struct fs) || fspt->fs_bsize < PAGESIZE) {
tpt->b_flags |= B_STALE | B_AGE;
error = EINVAL;
goto remounterr;
}
if (ufsvfsp->vfs_log && (ufsvfsp->vfs_log->un_flags & LDL_NOROLL)) {
ufsvfsp->vfs_log->un_flags &= ~LDL_NOROLL;
logmap_start_roll(ufsvfsp->vfs_log);
}
if (TRANS_ISERROR(ufsvfsp))
goto remounterr;
TRANS_DOMATAMAP(ufsvfsp);
if ((fspt->fs_state + fspt->fs_time == FSOKAY) &&
fspt->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp)) {
ufsvfsp->vfs_log = NULL;
ufsvfsp->vfs_domatamap = 0;
error = ENOSPC;
goto remounterr;
}
if (fspt->fs_state + fspt->fs_time == FSOKAY &&
(fspt->fs_clean == FSCLEAN ||
fspt->fs_clean == FSSTABLE ||
fspt->fs_clean == FSLOG)) {
/*
* Ensure that ufs_getsummaryinfo doesn't reconstruct
* the summary info.
*/
error = ufs_getsummaryinfo(vfsp->vfs_dev, ufsvfsp, fspt);
if (error)
goto remounterr;
/* preserve mount name */
(void) strncpy(fspt->fs_fsmnt, fsp->fs_fsmnt, MAXMNTLEN);
/* free the old cg space */
kmem_free(fsp->fs_u.fs_csp, fsp->fs_cssize);
/* switch in the new superblock */
fspt->fs_rolled = FS_NEED_ROLL;
bcopy(tpt->b_un.b_addr, bp->b_un.b_addr, fspt->fs_sbsize);
fsp->fs_clean = FSSTABLE;
} /* superblock updated in memory */
tpt->b_flags |= B_STALE | B_AGE;
brelse(tpt);
tpt = 0;
if (fsp->fs_clean != FSSTABLE) {
error = ENOSPC;
goto remounterr;
}
if (TRANS_ISTRANS(ufsvfsp)) {
fsp->fs_clean = FSLOG;
ufsvfsp->vfs_dio = 0;
} else
if (ufsvfsp->vfs_dio)
fsp->fs_clean = FSSUSPEND;
TRANS_MATA_MOUNT(ufsvfsp);
fsp->fs_fmod = 0;
fsp->fs_ronly = 0;
atomic_dec_ulong(&ufs_quiesce_pend);
cv_broadcast(&ulp->ul_cv);
mutex_exit(&ulp->ul_lock);
if (TRANS_ISTRANS(ufsvfsp)) {
/*
* start the delete thread
*/
ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
/*
* start the reclaim thread
*/
if (fsp->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) {
fsp->fs_reclaim &= ~FS_RECLAIM;
fsp->fs_reclaim |= FS_RECLAIMING;
ufs_thread_start(&ufsvfsp->vfs_reclaim,
ufs_thread_reclaim, vfsp);
}
}
TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
return (0);
remounterr:
if (tpt)
brelse(tpt);
atomic_dec_ulong(&ufs_quiesce_pend);
cv_broadcast(&ulp->ul_cv);
mutex_exit(&ulp->ul_lock);
return (error);
}
/*
* If the device maxtransfer size is not available, we use ufs_maxmaxphys
* along with the system value for maxphys to determine the value for
* maxtransfer.
*/
int ufs_maxmaxphys = (1024 * 1024);
#include <sys/ddi.h> /* for delay(9f) */
int ufs_mount_error_delay = 20; /* default to 20ms */
int ufs_mount_timeout = 60000; /* default to 1 minute */
static int
mountfs(struct vfs *vfsp, enum whymountroot why, struct vnode *devvp,
char *path, cred_t *cr, int isroot, void *raw_argsp, int args_len)
{
dev_t dev = devvp->v_rdev;
struct fs *fsp;
struct ufsvfs *ufsvfsp = 0;
struct buf *bp = 0;
struct buf *tp = 0;
struct dk_cinfo ci;
int error = 0;
size_t len;
int needclose = 0;
int needtrans = 0;
struct inode *rip;
struct vnode *rvp = NULL;
int flags = 0;
kmutex_t *ihm;
int elapsed;
int status;
extern int maxphys;
if (args_len == sizeof (struct ufs_args) && raw_argsp)
flags = ((struct ufs_args *)raw_argsp)->flags;
ASSERT(vfs_lock_held(vfsp));
if (why == ROOT_INIT) {
/*
* Open block device mounted on.
* When bio is fixed for vnodes this can all be vnode
* operations.
*/
error = VOP_OPEN(&devvp,
(vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE,
cr, NULL);
if (error)
goto out;
needclose = 1;
/*
* Refuse to go any further if this
* device is being used for swapping.
*/
if (IS_SWAPVP(devvp)) {
error = EBUSY;
goto out;
}
}
/*
* check for dev already mounted on
*/
if (vfsp->vfs_flag & VFS_REMOUNT) {
error = remountfs(vfsp, dev, raw_argsp, args_len);
if (error == 0)
VN_RELE(devvp);
return (error);
}
ASSERT(devvp != 0);
/*
* Flush back any dirty pages on the block device to
* try and keep the buffer cache in sync with the page
* cache if someone is trying to use block devices when
* they really should be using the raw device.
*/
(void) VOP_PUTPAGE(common_specvp(devvp), (offset_t)0,
(size_t)0, B_INVAL, cr, NULL);
/*
* read in superblock
*/
ufsvfsp = kmem_zalloc(sizeof (struct ufsvfs), KM_SLEEP);
tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
if (tp->b_flags & B_ERROR)
goto out;
fsp = (struct fs *)tp->b_un.b_addr;
if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) {
cmn_err(CE_NOTE,
"mount: not a UFS magic number (0x%x)", fsp->fs_magic);
error = EINVAL;
goto out;
}
if ((fsp->fs_magic == FS_MAGIC) &&
(fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
fsp->fs_version != UFS_VERSION_MIN)) {
cmn_err(CE_NOTE,
"mount: unrecognized version of UFS on-disk format: %d",
fsp->fs_version);
error = EINVAL;
goto out;
}
if ((fsp->fs_magic == MTB_UFS_MAGIC) &&
(fsp->fs_version > MTB_UFS_VERSION_1 ||
fsp->fs_version < MTB_UFS_VERSION_MIN)) {
cmn_err(CE_NOTE,
"mount: unrecognized version of UFS on-disk format: %d",
fsp->fs_version);
error = EINVAL;
goto out;
}
#ifndef _LP64
if (fsp->fs_magic == MTB_UFS_MAGIC) {
/*
* Find the size of the device in sectors. If the
* the size in sectors is greater than INT_MAX, it's
* a multi-terabyte file system, which can't be
* mounted by a 32-bit kernel. We can't use the
* fsbtodb() macro in the next line because the macro
* casts the intermediate values to daddr_t, which is
* a 32-bit quantity in a 32-bit kernel. Here we
* really do need the intermediate values to be held
* in 64-bit quantities because we're checking for
* overflow of a 32-bit field.
*/
if ((((diskaddr_t)(fsp->fs_size)) << fsp->fs_fsbtodb)
> INT_MAX) {
cmn_err(CE_NOTE,
"mount: multi-terabyte UFS cannot be"
" mounted by a 32-bit kernel");
error = EINVAL;
goto out;
}
}
#endif
if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG ||
fsp->fs_bsize < sizeof (struct fs) || fsp->fs_bsize < PAGESIZE) {
error = EINVAL; /* also needs translation */
goto out;
}
/*
* Allocate VFS private data.
*/
vfsp->vfs_bcount = 0;
vfsp->vfs_data = (caddr_t)ufsvfsp;
vfsp->vfs_fstype = ufsfstype;
vfsp->vfs_dev = dev;
vfsp->vfs_flag |= VFS_NOTRUNC;
vfs_make_fsid(&vfsp->vfs_fsid, dev, ufsfstype);
ufsvfsp->vfs_devvp = devvp;
/*
* Cross-link with vfs and add to instance list.
*/
ufsvfsp->vfs_vfs = vfsp;
ufs_vfs_add(ufsvfsp);
ufsvfsp->vfs_dev = dev;
ufsvfsp->vfs_bufp = tp;
ufsvfsp->vfs_dirsize = INODESIZE + (4 * ALLOCSIZE) + fsp->fs_fsize;
ufsvfsp->vfs_minfrags =
(int)((int64_t)fsp->fs_dsize * fsp->fs_minfree / 100);
/*
* if mount allows largefiles, indicate so in ufsvfs
*/
if (flags & UFSMNT_LARGEFILES)
ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
/*
* Initialize threads
*/
ufs_delete_init(ufsvfsp, 1);
ufs_thread_init(&ufsvfsp->vfs_reclaim, 0);
/*
* Chicken and egg problem. The superblock may have deltas
* in the log. So after the log is scanned we reread the
* superblock. We guarantee that the fields needed to
* scan the log will not be in the log.
*/
if (fsp->fs_logbno && fsp->fs_clean == FSLOG &&
(fsp->fs_state + fsp->fs_time == FSOKAY)) {
error = lufs_snarf(ufsvfsp, fsp, (vfsp->vfs_flag & VFS_RDONLY));
if (error) {
/*
* Allow a ro mount to continue even if the
* log cannot be processed - yet.
*/
if (!(vfsp->vfs_flag & VFS_RDONLY)) {
cmn_err(CE_WARN, "Error accessing ufs "
"log for %s; Please run fsck(1M)", path);
goto out;
}
}
tp->b_flags |= (B_AGE | B_STALE);
brelse(tp);
tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
fsp = (struct fs *)tp->b_un.b_addr;
ufsvfsp->vfs_bufp = tp;
if (tp->b_flags & B_ERROR)
goto out;
}
/*
* Set logging mounted flag used by lockfs
*/
ufsvfsp->vfs_validfs = UT_MOUNTED;
/*
* Copy the super block into a buffer in its native size.
* Use ngeteblk to allocate the buffer
*/
bp = ngeteblk(fsp->fs_bsize);
ufsvfsp->vfs_bufp = bp;
bp->b_edev = dev;
bp->b_dev = cmpdev(dev);
bp->b_blkno = SBLOCK;
bp->b_bcount = fsp->fs_sbsize;
bcopy(tp->b_un.b_addr, bp->b_un.b_addr, fsp->fs_sbsize);
tp->b_flags |= B_STALE | B_AGE;
brelse(tp);
tp = 0;
fsp = (struct fs *)bp->b_un.b_addr;
/*
* Mount fails if superblock flag indicates presence of large
* files and filesystem is attempted to be mounted 'nolargefiles'.
* The exception is for a read only mount of root, which we
* always want to succeed, so fsck can fix potential problems.
* The assumption is that we will remount root at some point,
* and the remount will enforce the mount option.
*/
if (!(isroot & (vfsp->vfs_flag & VFS_RDONLY)) &&
(fsp->fs_flags & FSLARGEFILES) &&
!(flags & UFSMNT_LARGEFILES)) {
error = EFBIG;
goto out;
}
if (vfsp->vfs_flag & VFS_RDONLY) {
fsp->fs_ronly = 1;
fsp->fs_fmod = 0;
if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
((fsp->fs_clean == FSCLEAN) ||
(fsp->fs_clean == FSSTABLE) ||
(fsp->fs_clean == FSLOG))) {
if (isroot) {
if (fsp->fs_clean == FSLOG) {
if (fsp->fs_rolled == FS_ALL_ROLLED) {
ufs_clean_root = 1;
}
} else {
ufs_clean_root = 1;
}
}
fsp->fs_clean = FSSTABLE;
} else {
fsp->fs_clean = FSBAD;
}
} else {
fsp->fs_fmod = 0;
fsp->fs_ronly = 0;
TRANS_DOMATAMAP(ufsvfsp);
if ((TRANS_ISERROR(ufsvfsp)) ||
(((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
fsp->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp))) {
ufsvfsp->vfs_log = NULL;
ufsvfsp->vfs_domatamap = 0;
error = ENOSPC;
goto out;
}
if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
(fsp->fs_clean == FSCLEAN ||
fsp->fs_clean == FSSTABLE ||
fsp->fs_clean == FSLOG))
fsp->fs_clean = FSSTABLE;
else {
if (isroot) {
/*
* allow root partition to be mounted even
* when fs_state is not ok
* will be fixed later by a remount root
*/
fsp->fs_clean = FSBAD;
ufsvfsp->vfs_log = NULL;
ufsvfsp->vfs_domatamap = 0;
} else {
error = ENOSPC;
goto out;
}
}
if (fsp->fs_clean == FSSTABLE && TRANS_ISTRANS(ufsvfsp))
fsp->fs_clean = FSLOG;
}
TRANS_MATA_MOUNT(ufsvfsp);
needtrans = 1;
vfsp->vfs_bsize = fsp->fs_bsize;
/*
* Read in summary info
*/
if (error = ufs_getsummaryinfo(dev, ufsvfsp, fsp))
goto out;
/*
* lastwhinetime is set to zero rather than lbolt, so that after
* mounting if the filesystem is found to be full, then immediately the
* "file system message" will be logged.
*/
ufsvfsp->vfs_lastwhinetime = 0L;
mutex_init(&ufsvfsp->vfs_lock, NULL, MUTEX_DEFAULT, NULL);
(void) copystr(path, fsp->fs_fsmnt, sizeof (fsp->fs_fsmnt) - 1, &len);
bzero(fsp->fs_fsmnt + len, sizeof (fsp->fs_fsmnt) - len);
/*
* Sanity checks for old file systems
*/
if (fsp->fs_postblformat == FS_42POSTBLFMT)
ufsvfsp->vfs_nrpos = 8;
else
ufsvfsp->vfs_nrpos = fsp->fs_nrpos;
/*
* Initialize lockfs structure to support file system locking
*/
bzero(&ufsvfsp->vfs_ulockfs.ul_lockfs,
sizeof (struct lockfs));
ufsvfsp->vfs_ulockfs.ul_fs_lock = ULOCKFS_ULOCK;
mutex_init(&ufsvfsp->vfs_ulockfs.ul_lock, NULL,
MUTEX_DEFAULT, NULL);
cv_init(&ufsvfsp->vfs_ulockfs.ul_cv, NULL, CV_DEFAULT, NULL);
/*
* We don't need to grab vfs_dqrwlock for this ufs_iget() call.
* We are in the process of mounting the file system so there
* is no need to grab the quota lock. If a quota applies to the
* root inode, then it will be updated when quotas are enabled.
*
* However, we have an ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock))
* in getinoquota() that we want to keep so grab it anyway.
*/
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
error = ufs_iget_alloced(vfsp, UFSROOTINO, &rip, cr);
rw_exit(&ufsvfsp->vfs_dqrwlock);
if (error)
goto out;
/*
* make sure root inode is a directory. Returning ENOTDIR might
* be confused with the mount point not being a directory, so
* we use EIO instead.
*/
if ((rip->i_mode & IFMT) != IFDIR) {
/*
* Mark this inode as subject for cleanup
* to avoid stray inodes in the cache.
*/
rvp = ITOV(rip);
error = EIO;
goto out;
}
rvp = ITOV(rip);
mutex_enter(&rvp->v_lock);
rvp->v_flag |= VROOT;
mutex_exit(&rvp->v_lock);
ufsvfsp->vfs_root = rvp;
/* The buffer for the root inode does not contain a valid b_vp */
(void) bfinval(dev, 0);
/* options */
ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR;
ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
else /* dfratime, default behavior */
ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
if (flags & UFSMNT_FORCEDIRECTIO)
ufsvfsp->vfs_forcedirectio = 1;
else if (flags & UFSMNT_NOFORCEDIRECTIO)
ufsvfsp->vfs_forcedirectio = 0;
ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
ufsvfsp->vfs_nindiroffset = fsp->fs_nindir - 1;
ufsvfsp->vfs_nindirshift = highbit(ufsvfsp->vfs_nindiroffset);
ufsvfsp->vfs_ioclustsz = fsp->fs_bsize * fsp->fs_maxcontig;
if (cdev_ioctl(dev, DKIOCINFO, (intptr_t)&ci,
FKIOCTL|FNATIVE|FREAD, CRED(), &status) == 0) {
ufsvfsp->vfs_iotransz = ci.dki_maxtransfer * DEV_BSIZE;
} else {
ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
}
if (ufsvfsp->vfs_iotransz <= 0) {
ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
}
/*
* When logging, used to reserve log space for writes and truncs
*/
ufsvfsp->vfs_avgbfree = fsp->fs_cstotal.cs_nbfree / fsp->fs_ncg;
/*
* Determine whether to log cylinder group summary info.
*/
ufsvfsp->vfs_nolog_si = (fsp->fs_ncg < ufs_ncg_log);
if (TRANS_ISTRANS(ufsvfsp)) {
/*
* start the delete thread
*/
ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
/*
* start reclaim thread if the filesystem was not mounted
* read only.
*/
if (!fsp->fs_ronly && (fsp->fs_reclaim &
(FS_RECLAIM|FS_RECLAIMING))) {
fsp->fs_reclaim &= ~FS_RECLAIM;
fsp->fs_reclaim |= FS_RECLAIMING;
ufs_thread_start(&ufsvfsp->vfs_reclaim,
ufs_thread_reclaim, vfsp);
}
/* Mark the fs as unrolled */
fsp->fs_rolled = FS_NEED_ROLL;
} else if (!fsp->fs_ronly && (fsp->fs_reclaim &
(FS_RECLAIM|FS_RECLAIMING))) {
/*
* If a file system that is mounted nologging, after
* having previously been mounted logging, becomes
* unmounted whilst the reclaim thread is in the throes
* of reclaiming open/deleted inodes, a subsequent mount
* of such a file system with logging disabled could lead
* to inodes becoming lost. So, start reclaim now, even
* though logging was disabled for the previous mount, to
* tidy things up.
*/
fsp->fs_reclaim &= ~FS_RECLAIM;
fsp->fs_reclaim |= FS_RECLAIMING;
ufs_thread_start(&ufsvfsp->vfs_reclaim,
ufs_thread_reclaim, vfsp);
}
if (!fsp->fs_ronly) {
TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
if (error = geterror(ufsvfsp->vfs_bufp))
goto out;
}
/* fix-on-panic initialization */
if (isroot && !(flags & UFSMNT_ONERROR_FLGMASK))
flags |= UFSMNT_ONERROR_PANIC; /* XXX ..._RDONLY */
if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
goto out;
if (why == ROOT_INIT && isroot)
rootvp = devvp;
return (0);
out:
if (error == 0)
error = EIO;
if (rvp) {
/* the following sequence is similar to ufs_unmount() */
/*
* There's a problem that ufs_iget() puts inodes into
* the inode cache before it returns them. If someone
* traverses that cache and gets a reference to our
* inode, there's a chance they'll still be using it
* after we've destroyed it. This is a hard race to
* hit, but it's happened (putting in a medium delay
* here, and a large delay in ufs_scan_inodes() for
* inodes on the device we're bailing out on, makes
* the race easy to demonstrate). The symptom is some
* other part of UFS faulting on bad inode contents,
* or when grabbing one of the locks inside the inode,
* etc. The usual victim is ufs_scan_inodes() or
* someone called by it.
*/
/*
* First, isolate it so that no new references can be
* gotten via the inode cache.
*/
ihm = &ih_lock[INOHASH(UFSROOTINO)];
mutex_enter(ihm);
remque(rip);
mutex_exit(ihm);
/*
* Now wait for all outstanding references except our
* own to drain. This could, in theory, take forever,
* so don't wait *too* long. If we time out, mark
* it stale and leak it, so we don't hit the problem
* described above.
*
* Note that v_count is an int, which means we can read
* it in one operation. Thus, there's no need to lock
* around our tests.
*/
elapsed = 0;
while ((rvp->v_count > 1) && (elapsed < ufs_mount_timeout)) {
delay(ufs_mount_error_delay * drv_usectohz(1000));
elapsed += ufs_mount_error_delay;
}
if (rvp->v_count > 1) {
mutex_enter(&rip->i_tlock);
rip->i_flag |= ISTALE;
mutex_exit(&rip->i_tlock);
cmn_err(CE_WARN,
"Timed out while cleaning up after "
"failed mount of %s", path);
} else {
/*
* Now we're the only one with a handle left, so tear
* it down the rest of the way.
*/
if (ufs_rmidle(rip))
VN_RELE(rvp);
ufs_si_del(rip);
rip->i_ufsvfs = NULL;
rvp->v_vfsp = NULL;
rvp->v_type = VBAD;
VN_RELE(rvp);
}
}
if (needtrans) {
TRANS_MATA_UMOUNT(ufsvfsp);
}
if (ufsvfsp) {
ufs_vfs_remove(ufsvfsp);
ufs_thread_exit(&ufsvfsp->vfs_delete);
ufs_thread_exit(&ufsvfsp->vfs_reclaim);
mutex_destroy(&ufsvfsp->vfs_lock);
if (ufsvfsp->vfs_log) {
lufs_unsnarf(ufsvfsp);
}
kmem_free(ufsvfsp, sizeof (struct ufsvfs));
}
if (bp) {
bp->b_flags |= (B_STALE|B_AGE);
brelse(bp);
}
if (tp) {
tp->b_flags |= (B_STALE|B_AGE);
brelse(tp);
}
if (needclose) {
(void) VOP_CLOSE(devvp, (vfsp->vfs_flag & VFS_RDONLY) ?
FREAD : FREAD|FWRITE, 1, (offset_t)0, cr, NULL);
bflush(dev);
(void) bfinval(dev, 1);
}
return (error);
}
/*
* vfs operations
*/
static int
ufs_unmount(struct vfs *vfsp, int fflag, struct cred *cr)
{
dev_t dev = vfsp->vfs_dev;
struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
struct fs *fs = ufsvfsp->vfs_fs;
struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs;
struct vnode *bvp, *vp;
struct buf *bp;
struct inode *ip, *inext, *rip;
union ihead *ih;
int error, flag, i;
struct lockfs lockfs;
int poll_events = POLLPRI;
extern struct pollhead ufs_pollhd;
refstr_t *mountpoint;
ASSERT(vfs_lock_held(vfsp));
if (secpolicy_fs_unmount(cr, vfsp) != 0)
return (EPERM);
/*
* Forced unmount is now supported through the
* lockfs protocol.
*/
if (fflag & MS_FORCE) {
/*
* Mark the filesystem as being unmounted now in
* case of a forcible umount before we take any
* locks inside UFS to prevent racing with a VFS_VGET()
* request. Throw these VFS_VGET() requests away for
* the duration of the forcible umount so they won't
* use stale or even freed data later on when we're done.
* It may happen that the VFS has had a additional hold
* placed on it by someone other than UFS and thus will
* not get freed immediately once we're done with the
* umount by dounmount() - use VFS_UNMOUNTED to inform
* users of this still-alive VFS that its corresponding
* filesystem being gone so they can detect that and error
* out.
*/
vfsp->vfs_flag |= VFS_UNMOUNTED;
ufs_thread_suspend(&ufsvfsp->vfs_delete);
mutex_enter(&ulp->ul_lock);
/*
* If file system is already hard locked,
* unmount the file system, otherwise
* hard lock it before unmounting.
*/
if (!ULOCKFS_IS_HLOCK(ulp)) {
atomic_inc_ulong(&ufs_quiesce_pend);
lockfs.lf_lock = LOCKFS_HLOCK;
lockfs.lf_flags = 0;
lockfs.lf_key = ulp->ul_lockfs.lf_key + 1;
lockfs.lf_comlen = 0;
lockfs.lf_comment = NULL;
ufs_freeze(ulp, &lockfs);
ULOCKFS_SET_BUSY(ulp);
LOCKFS_SET_BUSY(&ulp->ul_lockfs);
(void) ufs_quiesce(ulp);
(void) ufs_flush(vfsp);
(void) ufs_thaw(vfsp, ufsvfsp, ulp);
atomic_dec_ulong(&ufs_quiesce_pend);
ULOCKFS_CLR_BUSY(ulp);
LOCKFS_CLR_BUSY(&ulp->ul_lockfs);
poll_events |= POLLERR;
pollwakeup(&ufs_pollhd, poll_events);
}
ufs_thread_continue(&ufsvfsp->vfs_delete);
mutex_exit(&ulp->ul_lock);
}
/* let all types of writes go through */
ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
/* coordinate with global hlock thread */
if (TRANS_ISTRANS(ufsvfsp) && (ufsvfsp->vfs_validfs == UT_HLOCKING)) {
/*
* last possibility for a forced umount to fail hence clear
* VFS_UNMOUNTED if appropriate.
*/
if (fflag & MS_FORCE)
vfsp->vfs_flag &= ~VFS_UNMOUNTED;
return (EAGAIN);
}
ufsvfsp->vfs_validfs = UT_UNMOUNTED;
/* kill the reclaim thread */
ufs_thread_exit(&ufsvfsp->vfs_reclaim);
/* suspend the delete thread */
ufs_thread_suspend(&ufsvfsp->vfs_delete);
/*
* drain the delete and idle queues
*/
ufs_delete_drain(vfsp, -1, 1);
ufs_idle_drain(vfsp);
/*
* use the lockfs protocol to prevent new ops from starting
* a forcible umount can not fail beyond this point as
* we hard-locked the filesystem and drained all current consumers
* before.
*/
mutex_enter(&ulp->ul_lock);
/*
* if the file system is busy; return EBUSY
*/
if (ulp->ul_vnops_cnt || ulp->ul_falloc_cnt || ULOCKFS_IS_SLOCK(ulp)) {
error = EBUSY;
goto out;
}
/*
* if this is not a forced unmount (!hard/error locked), then
* get rid of every inode except the root and quota inodes
* also, commit any outstanding transactions
*/
if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp))
if (error = ufs_flush(vfsp))
goto out;
/*
* ignore inodes in the cache if fs is hard locked or error locked
*/
rip = VTOI(ufsvfsp->vfs_root);
if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) {
/*
* Otherwise, only the quota and root inodes are in the cache.
*
* Avoid racing with ufs_update() and ufs_sync().
*/
mutex_enter(&ufs_scan_lock);
for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
mutex_enter(&ih_lock[i]);
for (ip = ih->ih_chain[0];
ip != (struct inode *)ih;
ip = ip->i_forw) {
if (ip->i_ufsvfs != ufsvfsp)
continue;
if (ip == ufsvfsp->vfs_qinod)
continue;
if (ip == rip && ITOV(ip)->v_count == 1)
continue;
mutex_exit(&ih_lock[i]);
mutex_exit(&ufs_scan_lock);
error = EBUSY;
goto out;
}
mutex_exit(&ih_lock[i]);
}
mutex_exit(&ufs_scan_lock);
}
/*
* if a snapshot exists and this is a forced unmount, then delete
* the snapshot. Otherwise return EBUSY. This will insure the
* snapshot always belongs to a valid file system.
*/
if (ufsvfsp->vfs_snapshot) {
if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
(void) fssnap_delete(&ufsvfsp->vfs_snapshot);
} else {
error = EBUSY;
goto out;
}
}
/*
* Close the quota file and invalidate anything left in the quota
* cache for this file system. Pass kcred to allow all quota
* manipulations.
*/
(void) closedq(ufsvfsp, kcred);
invalidatedq(ufsvfsp);
/*
* drain the delete and idle queues
*/
ufs_delete_drain(vfsp, -1, 0);
ufs_idle_drain(vfsp);
/*
* discard the inodes for this fs (including root, shadow, and quota)
*/
for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
mutex_enter(&ih_lock[i]);
for (inext = 0, ip = ih->ih_chain[0];
ip != (struct inode *)ih;
ip = inext) {
inext = ip->i_forw;
if (ip->i_ufsvfs != ufsvfsp)
continue;
/*
* We've found the inode in the cache and as we
* hold the hash mutex the inode can not
* disappear from underneath us.
* We also know it must have at least a vnode
* reference count of 1.
* We perform an additional VN_HOLD so the VN_RELE
* in case we take the inode off the idle queue
* can not be the last one.
* It is safe to grab the writer contents lock here
* to prevent a race with ufs_iinactive() putting
* inodes into the idle queue while we operate on
* this inode.
*/
rw_enter(&ip->i_contents, RW_WRITER);
vp = ITOV(ip);
VN_HOLD(vp)
remque(ip);
if (ufs_rmidle(ip))
VN_RELE(vp);
ufs_si_del(ip);
/*
* rip->i_ufsvfsp is needed by bflush()
*/
if (ip != rip)
ip->i_ufsvfs = NULL;
/*
* Set vnode's vfsops to dummy ops, which return
* EIO. This is needed to forced unmounts to work
* with lofs/nfs properly.
*/
if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp))
vp->v_vfsp = &EIO_vfs;
else
vp->v_vfsp = NULL;
vp->v_type = VBAD;
rw_exit(&ip->i_contents);
VN_RELE(vp);
}
mutex_exit(&ih_lock[i]);
}
ufs_si_cache_flush(dev);
/*
* kill the delete thread and drain the idle queue
*/
ufs_thread_exit(&ufsvfsp->vfs_delete);
ufs_idle_drain(vfsp);
bp = ufsvfsp->vfs_bufp;
bvp = ufsvfsp->vfs_devvp;
flag = !fs->fs_ronly;
if (flag) {
bflush(dev);
if (fs->fs_clean != FSBAD) {
if (fs->fs_clean == FSSTABLE)
fs->fs_clean = FSCLEAN;
fs->fs_reclaim &= ~FS_RECLAIM;
}
if (TRANS_ISTRANS(ufsvfsp) &&
!TRANS_ISERROR(ufsvfsp) &&
!ULOCKFS_IS_HLOCK(ulp) &&
(fs->fs_rolled == FS_NEED_ROLL)) {
/*
* ufs_flush() above has flushed the last Moby.
* This is needed to ensure the following superblock
* update really is the last metadata update
*/
error = ufs_putsummaryinfo(dev, ufsvfsp, fs);
if (error == 0) {
fs->fs_rolled = FS_ALL_ROLLED;
}
}
TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UNMOUNT);
/*
* push this last transaction
*/
curthread->t_flag |= T_DONTBLOCK;
TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UNMOUNT, TOP_COMMIT_SIZE,
error);
if (!error)
TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UNMOUNT,
TOP_COMMIT_SIZE);
curthread->t_flag &= ~T_DONTBLOCK;
}
TRANS_MATA_UMOUNT(ufsvfsp);
lufs_unsnarf(ufsvfsp); /* Release the in-memory structs */
ufsfx_unmount(ufsvfsp); /* fix-on-panic bookkeeping */
kmem_free(fs->fs_u.fs_csp, fs->fs_cssize);
bp->b_flags |= B_STALE|B_AGE;
ufsvfsp->vfs_bufp = NULL; /* don't point at freed buf */
brelse(bp); /* free the superblock buf */
(void) VOP_PUTPAGE(common_specvp(bvp), (offset_t)0, (size_t)0,
B_INVAL, cr, NULL);
(void) VOP_CLOSE(bvp, flag, 1, (offset_t)0, cr, NULL);
bflush(dev);
(void) bfinval(dev, 1);
VN_RELE(bvp);
/*
* It is now safe to NULL out the ufsvfs pointer and discard
* the root inode.
*/
rip->i_ufsvfs = NULL;
VN_RELE(ITOV(rip));
/* free up lockfs comment structure, if any */
if (ulp->ul_lockfs.lf_comlen && ulp->ul_lockfs.lf_comment)
kmem_free(ulp->ul_lockfs.lf_comment, ulp->ul_lockfs.lf_comlen);
/*
* Remove from instance list.
*/
ufs_vfs_remove(ufsvfsp);
/*
* For a forcible unmount, threads may be asleep in
* ufs_lockfs_begin/ufs_check_lockfs. These threads will need
* the ufsvfs structure so we don't free it, yet. ufs_update
* will free it up after awhile.
*/
if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
extern kmutex_t ufsvfs_mutex;
extern struct ufsvfs *ufsvfslist;
mutex_enter(&ufsvfs_mutex);
ufsvfsp->vfs_dontblock = 1;
ufsvfsp->vfs_next = ufsvfslist;
ufsvfslist = ufsvfsp;
mutex_exit(&ufsvfs_mutex);
/* wakeup any suspended threads */
cv_broadcast(&ulp->ul_cv);
mutex_exit(&ulp->ul_lock);
} else {
mutex_destroy(&ufsvfsp->vfs_lock);
kmem_free(ufsvfsp, sizeof (struct ufsvfs));
}
/*
* Now mark the filesystem as unmounted since we're done with it.
*/
vfsp->vfs_flag |= VFS_UNMOUNTED;
return (0);
out:
/* open the fs to new ops */
cv_broadcast(&ulp->ul_cv);
mutex_exit(&ulp->ul_lock);
if (TRANS_ISTRANS(ufsvfsp)) {
/* allow the delete thread to continue */
ufs_thread_continue(&ufsvfsp->vfs_delete);
/* restart the reclaim thread */
ufs_thread_start(&ufsvfsp->vfs_reclaim, ufs_thread_reclaim,
vfsp);
/* coordinate with global hlock thread */
ufsvfsp->vfs_validfs = UT_MOUNTED;
/* check for trans errors during umount */
ufs_trans_onerror();
/*
* if we have a separate /usr it will never unmount
* when halting. In order to not re-read all the
* cylinder group summary info on mounting after
* reboot the logging of summary info is re-enabled
* and the super block written out.
*/
mountpoint = vfs_getmntpoint(vfsp);
if ((fs->fs_si == FS_SI_OK) &&
(strcmp("/usr", refstr_value(mountpoint)) == 0)) {
ufsvfsp->vfs_nolog_si = 0;
UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
}
refstr_rele(mountpoint);
}
return (error);
}
static int
ufs_root(struct vfs *vfsp, struct vnode **vpp)
{
struct ufsvfs *ufsvfsp;
struct vnode *vp;
if (!vfsp)
return (EIO);
ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
if (!ufsvfsp || !ufsvfsp->vfs_root)
return (EIO); /* forced unmount */
vp = ufsvfsp->vfs_root;
VN_HOLD(vp);
*vpp = vp;
return (0);
}
/*
* Get file system statistics.
*/
static int
ufs_statvfs(struct vfs *vfsp, struct statvfs64 *sp)
{
struct fs *fsp;
struct ufsvfs *ufsvfsp;
int blk, i;
long max_avail, used;
dev32_t d32;
if (vfsp->vfs_flag & VFS_UNMOUNTED)
return (EIO);
ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
fsp = ufsvfsp->vfs_fs;
if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC))
return (EINVAL);
if (fsp->fs_magic == FS_MAGIC &&
(fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
fsp->fs_version != UFS_VERSION_MIN))
return (EINVAL);
if (fsp->fs_magic == MTB_UFS_MAGIC &&
(fsp->fs_version > MTB_UFS_VERSION_1 ||
fsp->fs_version < MTB_UFS_VERSION_MIN))
return (EINVAL);
/*
* get the basic numbers
*/
(void) bzero(sp, sizeof (*sp));
sp->f_bsize = fsp->fs_bsize;
sp->f_frsize = fsp->fs_fsize;
sp->f_blocks = (fsblkcnt64_t)fsp->fs_dsize;
sp->f_bfree = (fsblkcnt64_t)fsp->fs_cstotal.cs_nbfree * fsp->fs_frag +
fsp->fs_cstotal.cs_nffree;
sp->f_files = (fsfilcnt64_t)fsp->fs_ncg * fsp->fs_ipg;
sp->f_ffree = (fsfilcnt64_t)fsp->fs_cstotal.cs_nifree;
/*
* Adjust the numbers based on things waiting to be deleted.
* modifies f_bfree and f_ffree. Afterwards, everything we
* come up with will be self-consistent. By definition, this
* is a point-in-time snapshot, so the fact that the delete
* thread's probably already invalidated the results is not a
* problem. Note that if the delete thread is ever extended to
* non-logging ufs, this adjustment must always be made.
*/
if (TRANS_ISTRANS(ufsvfsp))
ufs_delete_adjust_stats(ufsvfsp, sp);
/*
* avail = MAX(max_avail - used, 0)
*/
max_avail = fsp->fs_dsize - ufsvfsp->vfs_minfrags;
used = (fsp->fs_dsize - sp->f_bfree);
if (max_avail > used)
sp->f_bavail = (fsblkcnt64_t)max_avail - used;
else
sp->f_bavail = (fsblkcnt64_t)0;
sp->f_favail = sp->f_ffree;
(void) cmpldev(&d32, vfsp->vfs_dev);
sp->f_fsid = d32;
(void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
sp->f_flag = vf_to_stf(vfsp->vfs_flag);
/* keep coordinated with ufs_l_pathconf() */
sp->f_namemax = MAXNAMLEN;
if (fsp->fs_cpc == 0) {
bzero(sp->f_fstr, 14);
return (0);
}
blk = fsp->fs_spc * fsp->fs_cpc / NSPF(fsp);
for (i = 0; i < blk; i += fsp->fs_frag) /* CSTYLED */
/* void */;
i -= fsp->fs_frag;
blk = i / fsp->fs_frag;
bcopy(&(fs_rotbl(fsp)[blk]), sp->f_fstr, 14);
return (0);
}
/*
* Flush any pending I/O to file system vfsp.
* The ufs_update() routine will only flush *all* ufs files.
* If vfsp is non-NULL, only sync this ufs (in preparation
* for a umount).
*/
/*ARGSUSED*/
static int
ufs_sync(struct vfs *vfsp, short flag, struct cred *cr)
{
struct ufsvfs *ufsvfsp;
struct fs *fs;
int cheap = flag & SYNC_ATTR;
int error;
/*
* SYNC_CLOSE means we're rebooting. Toss everything
* on the idle queue so we don't have to slog through
* a bunch of uninteresting inodes over and over again.
*/
if (flag & SYNC_CLOSE)
ufs_idle_drain(NULL);
if (vfsp == NULL) {
ufs_update(flag);
return (0);
}
/* Flush a single ufs */
if (!vfs_matchops(vfsp, ufs_vfsops) || vfs_lock(vfsp) != 0)
return (0);
ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
if (!ufsvfsp)
return (EIO);
fs = ufsvfsp->vfs_fs;
mutex_enter(&ufsvfsp->vfs_lock);
if (ufsvfsp->vfs_dio &&
fs->fs_ronly == 0 &&
fs->fs_clean != FSBAD &&
fs->fs_clean != FSLOG) {
/* turn off fast-io on unmount, so no fsck needed (4029401) */
ufsvfsp->vfs_dio = 0;
fs->fs_clean = FSACTIVE;
fs->fs_fmod = 1;
}
/* Write back modified superblock */
if (fs->fs_fmod == 0) {
mutex_exit(&ufsvfsp->vfs_lock);
} else {
if (fs->fs_ronly != 0) {
mutex_exit(&ufsvfsp->vfs_lock);
vfs_unlock(vfsp);
return (ufs_fault(ufsvfsp->vfs_root,
"fs = %s update: ro fs mod\n", fs->fs_fsmnt));
}
fs->fs_fmod = 0;
mutex_exit(&ufsvfsp->vfs_lock);
TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UPDATE);
}
vfs_unlock(vfsp);
/*
* Avoid racing with ufs_update() and ufs_unmount().
*
*/
mutex_enter(&ufs_scan_lock);
(void) ufs_scan_inodes(1, ufs_sync_inode,
(void *)(uintptr_t)cheap, ufsvfsp);
mutex_exit(&ufs_scan_lock);
bflush((dev_t)vfsp->vfs_dev);
/*
* commit any outstanding async transactions
*/
curthread->t_flag |= T_DONTBLOCK;
TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error);
if (!error) {
TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE,
TOP_COMMIT_SIZE);
}
curthread->t_flag &= ~T_DONTBLOCK;
return (0);
}
void
sbupdate(struct vfs *vfsp)
{
struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
struct fs *fs = ufsvfsp->vfs_fs;
struct buf *bp;
int blks;
caddr_t space;
int i;
size_t size;
/*
* for ulockfs processing, limit the superblock writes
*/
if ((ufsvfsp->vfs_ulockfs.ul_sbowner) &&
(curthread != ufsvfsp->vfs_ulockfs.ul_sbowner)) {
/* process later */
fs->fs_fmod = 1;
return;
}
ULOCKFS_SET_MOD((&ufsvfsp->vfs_ulockfs));
if (TRANS_ISTRANS(ufsvfsp)) {
mutex_enter(&ufsvfsp->vfs_lock);
ufs_sbwrite(ufsvfsp);
mutex_exit(&ufsvfsp->vfs_lock);
return;
}
blks = howmany(fs->fs_cssize, fs->fs_fsize);
space = (caddr_t)fs->fs_u.fs_csp;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev,
(daddr_t)(fsbtodb(fs, fs->fs_csaddr + i)),
fs->fs_bsize);
bcopy(space, bp->b_un.b_addr, size);
space += size;
bp->b_bcount = size;
UFS_BRWRITE(ufsvfsp, bp);
}
mutex_enter(&ufsvfsp->vfs_lock);
ufs_sbwrite(ufsvfsp);
mutex_exit(&ufsvfsp->vfs_lock);
}
int ufs_vget_idle_count = 2; /* Number of inodes to idle each time */
static int
ufs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
{
int error = 0;
struct ufid *ufid;
struct inode *ip;
struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
struct ulockfs *ulp;
/*
* Check for unmounted filesystem.
*/
if (vfsp->vfs_flag & VFS_UNMOUNTED) {
error = EIO;
goto errout;
}
/*
* Keep the idle queue from getting too long by
* idling an inode before attempting to allocate another.
* This operation must be performed before entering
* lockfs or a transaction.
*/
if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
if ((curthread->t_flag & T_DONTBLOCK) == 0) {
ins.in_vidles.value.ul += ufs_vget_idle_count;
ufs_idle_some(ufs_vget_idle_count);
}
ufid = (struct ufid *)fidp;
if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_VGET_MASK))
goto errout;
rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
error = ufs_iget(vfsp, ufid->ufid_ino, &ip, CRED());
rw_exit(&ufsvfsp->vfs_dqrwlock);
ufs_lockfs_end(ulp);
if (error)
goto errout;
/*
* Check if the inode has been deleted or freed or is in transient state
* since the last VFS_VGET() request for it, release it and don't return
* it to the caller, presumably NFS, as it's no longer valid.
*/
if (ip->i_gen != ufid->ufid_gen || ip->i_mode == 0 ||
(ip->i_nlink <= 0)) {
VN_RELE(ITOV(ip));
error = EINVAL;
goto errout;
}
*vpp = ITOV(ip);
return (0);
errout:
*vpp = NULL;
return (error);
}
static int
ufsinit(int fstype, char *name)
{
static const fs_operation_def_t ufs_vfsops_template[] = {
VFSNAME_MOUNT, { .vfs_mount = ufs_mount },
VFSNAME_UNMOUNT, { .vfs_unmount = ufs_unmount },
VFSNAME_ROOT, { .vfs_root = ufs_root },
VFSNAME_STATVFS, { .vfs_statvfs = ufs_statvfs },
VFSNAME_SYNC, { .vfs_sync = ufs_sync },
VFSNAME_VGET, { .vfs_vget = ufs_vget },
VFSNAME_MOUNTROOT, { .vfs_mountroot = ufs_mountroot },
NULL, NULL
};
int error;
ufsfstype = fstype;
error = vfs_setfsops(fstype, ufs_vfsops_template, &ufs_vfsops);
if (error != 0) {
cmn_err(CE_WARN, "ufsinit: bad vfs ops template");
return (error);
}
error = vn_make_ops(name, ufs_vnodeops_template, &ufs_vnodeops);
if (error != 0) {
(void) vfs_freevfsops_by_type(fstype);
cmn_err(CE_WARN, "ufsinit: bad vnode ops template");
return (error);
}
ufs_iinit();
return (0);
}
#ifdef __sparc
/*
* Mounting a mirrored SVM volume is only supported on ufs,
* this is special-case boot code to support that configuration.
* At this point, we have booted and mounted root on a
* single component of the mirror. Complete the boot
* by configuring SVM and converting the root to the
* dev_t of the mirrored root device. This dev_t conversion
* only works because the underlying device doesn't change.
*/
int
ufs_remountroot(struct vfs *vfsp)
{
struct ufsvfs *ufsvfsp;
struct ulockfs *ulp;
dev_t new_rootdev;
dev_t old_rootdev;
struct vnode *old_rootvp;
struct vnode *new_rootvp;
int error, sberror = 0;
struct inode *ip;
union ihead *ih;
struct buf *bp;
int i;
old_rootdev = rootdev;
old_rootvp = rootvp;
new_rootdev = getrootdev();
if (new_rootdev == (dev_t)NODEV) {
return (ENODEV);
}
new_rootvp = makespecvp(new_rootdev, VBLK);
error = VOP_OPEN(&new_rootvp,
(vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, CRED(), NULL);
if (error) {
cmn_err(CE_CONT,
"Cannot open mirrored root device, error %d\n", error);
return (error);
}
if (vfs_lock(vfsp) != 0) {
return (EBUSY);
}
ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
ulp = &ufsvfsp->vfs_ulockfs;
mutex_enter(&ulp->ul_lock);
atomic_inc_ulong(&ufs_quiesce_pend);
(void) ufs_quiesce(ulp);
(void) ufs_flush(vfsp);
/*
* Convert root vfs to new dev_t, including vfs hash
* table and fs id.
*/
vfs_root_redev(vfsp, new_rootdev, ufsfstype);
ufsvfsp->vfs_devvp = new_rootvp;
ufsvfsp->vfs_dev = new_rootdev;
bp = ufsvfsp->vfs_bufp;
bp->b_edev = new_rootdev;
bp->b_dev = cmpdev(new_rootdev);
/*
* The buffer for the root inode does not contain a valid b_vp
*/
(void) bfinval(new_rootdev, 0);
/*
* Here we hand-craft inodes with old root device
* references to refer to the new device instead.
*/
mutex_enter(&ufs_scan_lock);
for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
mutex_enter(&ih_lock[i]);
for (ip = ih->ih_chain[0];
ip != (struct inode *)ih;
ip = ip->i_forw) {
if (ip->i_ufsvfs != ufsvfsp)
continue;
if (ip == ufsvfsp->vfs_qinod)
continue;
if (ip->i_dev == old_rootdev) {
ip->i_dev = new_rootdev;
}
if (ip->i_devvp == old_rootvp) {
ip->i_devvp = new_rootvp;
}
}
mutex_exit(&ih_lock[i]);
}
mutex_exit(&ufs_scan_lock);
/*
* Make Sure logging structures are using the new device
* if logging is enabled. Also start any logging thread that
* needs to write to the device and couldn't earlier.
*/
if (ufsvfsp->vfs_log) {
buf_t *bp, *tbp;
ml_unit_t *ul = ufsvfsp->vfs_log;
struct fs *fsp = ufsvfsp->vfs_fs;
/*
* Update the main logging structure.
*/
ul->un_dev = new_rootdev;
/*
* Get a new bp for the on disk structures.
*/
bp = ul->un_bp;
tbp = ngeteblk(dbtob(LS_SECTORS));
tbp->b_edev = new_rootdev;
tbp->b_dev = cmpdev(new_rootdev);
tbp->b_blkno = bp->b_blkno;
bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE);
bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE);
bp->b_flags |= (B_STALE | B_AGE);
brelse(bp);
ul->un_bp = tbp;
/*
* Allocate new circular buffers.
*/
alloc_rdbuf(&ul->un_rdbuf, MAPBLOCKSIZE, MAPBLOCKSIZE);
alloc_wrbuf(&ul->un_wrbuf, ldl_bufsize(ul));
/*
* Clear the noroll bit which indicates that logging
* can't roll the log yet and start the logmap roll thread
* unless the filesystem is still read-only in which case
* remountfs() will do it when going to read-write.
*/
ASSERT(ul->un_flags & LDL_NOROLL);
if (!fsp->fs_ronly) {
ul->un_flags &= ~LDL_NOROLL;
logmap_start_roll(ul);
}
/*
* Start the reclaim thread if needed.
*/
if (!fsp->fs_ronly && (fsp->fs_reclaim &
(FS_RECLAIM|FS_RECLAIMING))) {
fsp->fs_reclaim &= ~FS_RECLAIM;
fsp->fs_reclaim |= FS_RECLAIMING;
ufs_thread_start(&ufsvfsp->vfs_reclaim,
ufs_thread_reclaim, vfsp);
TRANS_SBWRITE(ufsvfsp, TOP_SBUPDATE_UPDATE);
if (sberror = geterror(ufsvfsp->vfs_bufp)) {
refstr_t *mntpt;
mntpt = vfs_getmntpoint(vfsp);
cmn_err(CE_WARN,
"Remountroot failed to update Reclaim"
"state for filesystem %s "
"Error writing SuperBlock %d",
refstr_value(mntpt), error);
refstr_rele(mntpt);
}
}
}
rootdev = new_rootdev;
rootvp = new_rootvp;
atomic_dec_ulong(&ufs_quiesce_pend);
cv_broadcast(&ulp->ul_cv);
mutex_exit(&ulp->ul_lock);
vfs_unlock(vfsp);
error = VOP_CLOSE(old_rootvp, FREAD, 1, (offset_t)0, CRED(), NULL);
if (error) {
cmn_err(CE_CONT,
"close of root device component failed, error %d\n",
error);
}
VN_RELE(old_rootvp);
return (sberror ? sberror : error);
}
#endif /* __sparc */