/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2016 STRATO AG. All rights reserved.
*/
/*
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T.
* All Rights Reserved
*/
/*
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/cred.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/file.h>
#include <sys/filio.h>
#include <sys/uio.h>
#include <sys/buf.h>
#include <sys/mman.h>
#include <sys/pathname.h>
#include <sys/dirent.h>
#include <sys/debug.h>
#include <sys/vmsystm.h>
#include <sys/fcntl.h>
#include <sys/flock.h>
#include <sys/swap.h>
#include <sys/errno.h>
#include <sys/strsubr.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/pathconf.h>
#include <sys/utsname.h>
#include <sys/dnlc.h>
#include <sys/acl.h>
#include <sys/systeminfo.h>
#include <sys/policy.h>
#include <sys/sdt.h>
#include <sys/list.h>
#include <sys/stat.h>
#include <sys/zone.h>
#include <rpc/types.h>
#include <rpc/auth.h>
#include <rpc/clnt.h>
#include <nfs/nfs.h>
#include <nfs/nfs_clnt.h>
#include <nfs/nfs_acl.h>
#include <nfs/lm.h>
#include <nfs/nfs4.h>
#include <nfs/nfs4_kprot.h>
#include <nfs/rnode4.h>
#include <nfs/nfs4_clnt.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <vm/page.h>
#include <vm/pvn.h>
#include <vm/seg.h>
#include <vm/seg_map.h>
#include <vm/seg_kpm.h>
#include <vm/seg_vn.h>
#include <fs/fs_subr.h>
#include <sys/ddi.h>
#include <sys/int_fmtio.h>
#include <sys/fs/autofs.h>
typedef struct {
nfs4_ga_res_t *di_garp;
cred_t *di_cred;
hrtime_t di_time_call;
} dirattr_info_t;
typedef enum nfs4_acl_op {
NFS4_ACL_GET,
NFS4_ACL_SET
} nfs4_acl_op_t;
static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi);
static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *,
char *, dirattr_info_t *);
static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *,
nfs4_open_stream_t *, int *, int *, nfs4_close_type_t,
nfs4_error_t *, int *);
static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
cred_t *);
static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
stable_how4 *);
static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *,
cred_t *, bool_t, struct uio *);
static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *,
vsecattr_t *);
static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *);
static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int);
static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *);
static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *);
static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *);
static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
int, vnode_t **, cred_t *);
static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **,
cred_t *, int, int, enum createmode4, int);
static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
caller_context_t *);
static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *,
vnode_t *, char *, cred_t *, nfsstat4 *);
static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *,
vnode_t *, char *, cred_t *, nfsstat4 *);
static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t);
static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
page_t *[], size_t, struct seg *, caddr_t,
enum seg_rw, cred_t *);
static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
cred_t *);
static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
int, cred_t *);
static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
int, cred_t *);
static int nfs4_commit(vnode_t *, offset4, count4, cred_t *);
static void nfs4_set_mod(vnode_t *);
static void nfs4_get_commit(vnode_t *);
static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t);
static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int);
static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3,
cred_t *);
static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3,
cred_t *);
static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *,
hrtime_t, vnode_t *, cred_t *);
static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *);
static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *);
static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int,
u_offset_t);
static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *);
static int nfs4_block_and_wait(clock_t *, rnode4_t *);
static cred_t *state_to_cred(nfs4_open_stream_t *);
static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *);
static pid_t lo_to_pid(lock_owner4 *);
static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *,
cred_t *, nfs4_lock_owner_t *);
static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *,
nfs4_lock_owner_t *);
static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **);
static void nfs4_delmap_callback(struct as *, void *, uint_t);
static void nfs4_free_delmapcall(nfs4_delmapcall_t *);
static nfs4_delmapcall_t *nfs4_init_delmapcall();
static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *);
static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t);
static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *,
uid_t, gid_t, int);
/*
* Routines that implement the setting of v4 args for the misc. ops
*/
static void nfs4args_lock_free(nfs_argop4 *);
static void nfs4args_lockt_free(nfs_argop4 *);
static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *,
int, rnode4_t *, cred_t *, bitmap4, int *,
nfs4_stateid_types_t *);
static void nfs4args_setattr_free(nfs_argop4 *);
static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4,
bitmap4);
static void nfs4args_verify_free(nfs_argop4 *);
static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *,
WRITE4args **, nfs4_stateid_types_t *);
/*
* These are the vnode ops functions that implement the vnode interface to
* the networked file system. See more comments below at nfs4_vnodeops.
*/
static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *);
static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *,
caller_context_t *);
static int nfs4_read(vnode_t *, struct uio *, int, cred_t *,
caller_context_t *);
static int nfs4_write(vnode_t *, struct uio *, int, cred_t *,
caller_context_t *);
static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
caller_context_t *);
static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *,
caller_context_t *);
static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *);
static int nfs4_readlink(vnode_t *, struct uio *, cred_t *,
caller_context_t *);
static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *);
static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl,
int, vnode_t **, cred_t *, int, caller_context_t *,
vsecattr_t *);
static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *,
int);
static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *,
caller_context_t *, int);
static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
caller_context_t *, int);
static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
cred_t *, caller_context_t *, int, vsecattr_t *);
static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
caller_context_t *, int);
static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *,
cred_t *, caller_context_t *, int);
static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *,
caller_context_t *, int);
static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *,
page_t *[], size_t, struct seg *, caddr_t,
enum seg_rw, cred_t *, caller_context_t *);
static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
caller_context_t *);
static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *);
static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
struct flk_callback *, cred_t *, caller_context_t *);
static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t,
cred_t *, caller_context_t *);
static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
cred_t *, caller_context_t *);
static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *,
caller_context_t *);
static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
caller_context_t *);
/*
* These vnode ops are required to be called from outside this source file,
* e.g. by ephemeral mount stub vnode ops, and so may not be declared
* as static.
*/
int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *,
caller_context_t *);
void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *);
int nfs4_lookup(vnode_t *, char *, vnode_t **,
struct pathname *, int, vnode_t *, cred_t *,
caller_context_t *, int *, pathname_t *);
int nfs4_fid(vnode_t *, fid_t *, caller_context_t *);
int nfs4_rwlock(vnode_t *, int, caller_context_t *);
void nfs4_rwunlock(vnode_t *, int, caller_context_t *);
int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *);
int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *,
caller_context_t *);
int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
caller_context_t *);
int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
caller_context_t *);
/*
* Used for nfs4_commit_vp() to indicate if we should
* wait on pending writes.
*/
#define NFS4_WRITE_NOWAIT 0
#define NFS4_WRITE_WAIT 1
#define NFS4_BASE_WAIT_TIME 1 /* 1 second */
/*
* Error flags used to pass information about certain special errors
* which need to be handled specially.
*/
#define NFS_EOF -98
#define NFS_VERF_MISMATCH -97
/*
* Flags used to differentiate between which operation drove the
* potential CLOSE OTW. (see nfs4_close_otw_if_necessary)
*/
#define NFS4_CLOSE_OP 0x1
#define NFS4_DELMAP_OP 0x2
#define NFS4_INACTIVE_OP 0x3
#define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO))
/* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
#define ALIGN64(x, ptr, sz) \
x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
if (x) { \
x = sizeof (uint64_t) - (x); \
sz -= (x); \
ptr += (x); \
}
#ifdef DEBUG
int nfs4_client_attr_debug = 0;
int nfs4_client_state_debug = 0;
int nfs4_client_shadow_debug = 0;
int nfs4_client_lock_debug = 0;
int nfs4_seqid_sync = 0;
int nfs4_client_map_debug = 0;
static int nfs4_pageio_debug = 0;
int nfs4_client_inactive_debug = 0;
int nfs4_client_recov_debug = 0;
int nfs4_client_failover_debug = 0;
int nfs4_client_call_debug = 0;
int nfs4_client_lookup_debug = 0;
int nfs4_client_zone_debug = 0;
int nfs4_lost_rqst_debug = 0;
int nfs4_rdattrerr_debug = 0;
int nfs4_open_stream_debug = 0;
int nfs4read_error_inject;
static int nfs4_create_misses = 0;
static int nfs4_readdir_cache_shorts = 0;
static int nfs4_readdir_readahead = 0;
static int nfs4_bio_do_stop = 0;
static int nfs4_lostpage = 0; /* number of times we lost original page */
int nfs4_mmap_debug = 0;
static int nfs4_pathconf_cache_hits = 0;
static int nfs4_pathconf_cache_misses = 0;
int nfs4close_all_cnt;
int nfs4close_one_debug = 0;
int nfs4close_notw_debug = 0;
int denied_to_flk_debug = 0;
void *lockt_denied_debug;
#endif
/*
* How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT
* or NFS4ERR_RESOURCE.
*/
static int confirm_retry_sec = 30;
static int nfs4_lookup_neg_cache = 1;
/*
* number of pages to read ahead
* optimized for 100 base-T.
*/
static int nfs4_nra = 4;
static int nfs4_do_symlink_cache = 1;
static int nfs4_pathconf_disable_cache = 0;
/*
* These are the vnode ops routines which implement the vnode interface to
* the networked file system. These routines just take their parameters,
* make them look networkish by putting the right info into interface structs,
* and then calling the appropriate remote routine(s) to do the work.
*
* Note on directory name lookup cacheing: If we detect a stale fhandle,
* we purge the directory cache relative to that vnode. This way, the
* user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for
* more details on rnode locking.
*/
struct vnodeops *nfs4_vnodeops;
const fs_operation_def_t nfs4_vnodeops_template[] = {
VOPNAME_OPEN, { .vop_open = nfs4_open },
VOPNAME_CLOSE, { .vop_close = nfs4_close },
VOPNAME_READ, { .vop_read = nfs4_read },
VOPNAME_WRITE, { .vop_write = nfs4_write },
VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl },
VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr },
VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr },
VOPNAME_ACCESS, { .vop_access = nfs4_access },
VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup },
VOPNAME_CREATE, { .vop_create = nfs4_create },
VOPNAME_REMOVE, { .vop_remove = nfs4_remove },
VOPNAME_LINK, { .vop_link = nfs4_link },
VOPNAME_RENAME, { .vop_rename = nfs4_rename },
VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir },
VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir },
VOPNAME_READDIR, { .vop_readdir = nfs4_readdir },
VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink },
VOPNAME_READLINK, { .vop_readlink = nfs4_readlink },
VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync },
VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive },
VOPNAME_FID, { .vop_fid = nfs4_fid },
VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock },
VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock },
VOPNAME_SEEK, { .vop_seek = nfs4_seek },
VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock },
VOPNAME_SPACE, { .vop_space = nfs4_space },
VOPNAME_REALVP, { .vop_realvp = nfs4_realvp },
VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage },
VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage },
VOPNAME_MAP, { .vop_map = nfs4_map },
VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap },
VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap },
/* no separate nfs4_dump */
VOPNAME_DUMP, { .vop_dump = nfs_dump },
VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf },
VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio },
VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose },
VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr },
VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr },
VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock },
VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
NULL, NULL
};
/*
* The following are subroutines and definitions to set args or get res
* for the different nfsv4 ops
*/
void
nfs4args_lookup_free(nfs_argop4 *argop, int arglen)
{
int i;
for (i = 0; i < arglen; i++) {
if (argop[i].argop == OP_LOOKUP) {
kmem_free(
argop[i].nfs_argop4_u.oplookup.
objname.utf8string_val,
argop[i].nfs_argop4_u.oplookup.
objname.utf8string_len);
}
}
}
static void
nfs4args_lock_free(nfs_argop4 *argop)
{
locker4 *locker = &argop->nfs_argop4_u.oplock.locker;
if (locker->new_lock_owner == TRUE) {
open_to_lock_owner4 *open_owner;
open_owner = &locker->locker4_u.open_owner;
if (open_owner->lock_owner.owner_val != NULL) {
kmem_free(open_owner->lock_owner.owner_val,
open_owner->lock_owner.owner_len);
}
}
}
static void
nfs4args_lockt_free(nfs_argop4 *argop)
{
lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner;
if (lowner->owner_val != NULL) {
kmem_free(lowner->owner_val, lowner->owner_len);
}
}
static void
nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags,
rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error,
nfs4_stateid_types_t *sid_types)
{
fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes;
mntinfo4_t *mi;
argop->argop = OP_SETATTR;
/*
* The stateid is set to 0 if client is not modifying the size
* and otherwise to whatever nfs4_get_stateid() returns.
*
* XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no
* state struct could be found for the process/file pair. We may
* want to change this in the future (by OPENing the file). See
* bug # 4474852.
*/
if (vap->va_mask & AT_SIZE) {
ASSERT(rp != NULL);
mi = VTOMI4(RTOV4(rp));
argop->nfs_argop4_u.opsetattr.stateid =
nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
OP_SETATTR, sid_types, FALSE);
} else {
bzero(&argop->nfs_argop4_u.opsetattr.stateid,
sizeof (stateid4));
}
*error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp);
if (*error)
bzero(attr, sizeof (*attr));
}
static void
nfs4args_setattr_free(nfs_argop4 *argop)
{
nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes);
}
static int
nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op,
bitmap4 supp)
{
fattr4 *attr;
int error = 0;
argop->argop = op;
switch (op) {
case OP_VERIFY:
attr = &argop->nfs_argop4_u.opverify.obj_attributes;
break;
case OP_NVERIFY:
attr = &argop->nfs_argop4_u.opnverify.obj_attributes;
break;
default:
return (EINVAL);
}
if (!error)
error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp);
if (error)
bzero(attr, sizeof (*attr));
return (error);
}
static void
nfs4args_verify_free(nfs_argop4 *argop)
{
switch (argop->argop) {
case OP_VERIFY:
nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes);
break;
case OP_NVERIFY:
nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes);
break;
default:
break;
}
}
static void
nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr,
WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp)
{
WRITE4args *wargs = &argop->nfs_argop4_u.opwrite;
mntinfo4_t *mi = VTOMI4(RTOV4(rp));
argop->argop = OP_WRITE;
wargs->stable = stable;
wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id,
mi, OP_WRITE, sid_tp);
wargs->mblk = NULL;
*wargs_pp = wargs;
}
void
nfs4args_copen_free(OPEN4cargs *open_args)
{
if (open_args->owner.owner_val) {
kmem_free(open_args->owner.owner_val,
open_args->owner.owner_len);
}
if ((open_args->opentype == OPEN4_CREATE) &&
(open_args->mode != EXCLUSIVE4)) {
nfs4_fattr4_free(&open_args->createhow4_u.createattrs);
}
}
/*
* XXX: This is referenced in modstubs.s
*/
struct vnodeops *
nfs4_getvnodeops(void)
{
return (nfs4_vnodeops);
}
/*
* The OPEN operation opens a regular file.
*/
/*ARGSUSED3*/
static int
nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
{
vnode_t *dvp = NULL;
rnode4_t *rp, *drp;
int error;
int just_been_created;
char fn[MAXNAMELEN];
NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: "));
if (nfs_zone() != VTOMI4(*vpp)->mi_zone)
return (EIO);
rp = VTOR4(*vpp);
/*
* Check to see if opening something besides a regular file;
* if so skip the OTW call
*/
if ((*vpp)->v_type != VREG) {
error = nfs4_open_non_reg_file(vpp, flag, cr);
return (error);
}
/*
* XXX - would like a check right here to know if the file is
* executable or not, so as to skip OTW
*/
if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0)
return (error);
drp = VTOR4(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
return (EINTR);
if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) {
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
/*
* See if this file has just been CREATEd.
* If so, clear the flag and update the dnlc, which was previously
* skipped in nfs4_create.
* XXX need better serilization on this.
* XXX move this into the nf4open_otw call, after we have
* XXX acquired the open owner seqid sync.
*/
mutex_enter(&rp->r_statev4_lock);
if (rp->created_v4) {
rp->created_v4 = 0;
mutex_exit(&rp->r_statev4_lock);
dnlc_update(dvp, fn, *vpp);
/* This is needed so we don't bump the open ref count */
just_been_created = 1;
} else {
mutex_exit(&rp->r_statev4_lock);
just_been_created = 0;
}
/*
* If caller specified O_TRUNC/FTRUNC, then be sure to set
* FWRITE (to drive successful setattr(size=0) after open)
*/
if (flag & FTRUNC)
flag |= FWRITE;
error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0,
just_been_created);
if (!error && !((*vpp)->v_flag & VROOT))
dnlc_update(dvp, fn, *vpp);
nfs_rw_exit(&drp->r_rwlock);
/* release the hold from vtodv */
VN_RELE(dvp);
/* exchange the shadow for the master vnode, if needed */
if (error == 0 && IS_SHADOW(*vpp, rp))
sv_exchange(vpp);
return (error);
}
/*
* See if there's a "lost open" request to be saved and recovered.
*/
static void
nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp,
vnode_t *dvp, OPEN4cargs *open_args)
{
vfs_t *vfsp;
char *srccfp;
vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp);
if (error != ETIMEDOUT && error != EINTR &&
!NFS4_FRC_UNMT_ERR(error, vfsp)) {
lost_rqstp->lr_op = 0;
return;
}
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
"nfs4open_save_lost_rqst: error %d", error));
lost_rqstp->lr_op = OP_OPEN;
/*
* The vp (if it is not NULL) and dvp are held and rele'd via
* the recovery code. See nfs4_save_lost_rqst.
*/
lost_rqstp->lr_vp = vp;
lost_rqstp->lr_dvp = dvp;
lost_rqstp->lr_oop = oop;
lost_rqstp->lr_osp = NULL;
lost_rqstp->lr_lop = NULL;
lost_rqstp->lr_cr = cr;
lost_rqstp->lr_flk = NULL;
lost_rqstp->lr_oacc = open_args->share_access;
lost_rqstp->lr_odeny = open_args->share_deny;
lost_rqstp->lr_oclaim = open_args->claim;
if (open_args->claim == CLAIM_DELEGATE_CUR) {
lost_rqstp->lr_ostateid =
open_args->open_claim4_u.delegate_cur_info.delegate_stateid;
srccfp = open_args->open_claim4_u.delegate_cur_info.cfile;
} else {
srccfp = open_args->open_claim4_u.cfile;
}
lost_rqstp->lr_ofile.utf8string_len = 0;
lost_rqstp->lr_ofile.utf8string_val = NULL;
(void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile);
lost_rqstp->lr_putfirst = FALSE;
}
struct nfs4_excl_time {
uint32 seconds;
uint32 nseconds;
};
/*
* The OPEN operation creates and/or opens a regular file
*
* ARGSUSED
*/
static int
nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va,
vnode_t **vpp, cred_t *cr, int create_flag, int open_flag,
enum createmode4 createmode, int file_just_been_created)
{
rnode4_t *rp;
rnode4_t *drp = VTOR4(dvp);
vnode_t *vp = NULL;
vnode_t *vpi = *vpp;
bool_t needrecov = FALSE;
int doqueue = 1;
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
nfs_argop4 *argop;
nfs_resop4 *resop;
int argoplist_size;
int idx_open, idx_fattr;
GETFH4res *gf_res = NULL;
OPEN4res *op_res = NULL;
nfs4_ga_res_t *garp;
fattr4 *attr = NULL;
struct nfs4_excl_time verf;
bool_t did_excl_setup = FALSE;
int created_osp;
OPEN4cargs *open_args;
nfs4_open_owner_t *oop = NULL;
nfs4_open_stream_t *osp = NULL;
seqid4 seqid = 0;
bool_t retry_open = FALSE;
nfs4_recov_state_t recov_state;
nfs4_lost_rqst_t lost_rqst;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
hrtime_t t;
int acc = 0;
cred_t *cred_otw = NULL; /* cred used to do the RPC call */
cred_t *ncr = NULL;
nfs4_sharedfh_t *otw_sfh;
nfs4_sharedfh_t *orig_sfh;
int fh_differs = 0;
int numops, setgid_flag;
int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1;
/*
* Make sure we properly deal with setting the right gid on
* a newly created file to reflect the parent's setgid bit
*/
setgid_flag = 0;
if (create_flag && in_va) {
/*
* If there is grpid mount flag used or
* the parent's directory has the setgid bit set
* _and_ the client was able to get a valid mapping
* for the parent dir's owner_group, we want to
* append NVERIFY(owner_group == dva.va_gid) and
* SETATTR to the CREATE compound.
*/
mutex_enter(&drp->r_statelock);
if ((VTOMI4(dvp)->mi_flags & MI4_GRPID ||
drp->r_attr.va_mode & VSGID) &&
drp->r_attr.va_gid != GID_NOBODY) {
in_va->va_mask |= AT_GID;
in_va->va_gid = drp->r_attr.va_gid;
setgid_flag = 1;
}
mutex_exit(&drp->r_statelock);
}
/*
* Normal/non-create compound:
* PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new)
*
* Open(create) compound no setgid:
* PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) +
* RESTOREFH + GETATTR
*
* Open(create) setgid:
* PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) +
* SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH +
* NVERIFY(grp) + SETATTR
*/
if (setgid_flag) {
numops = 10;
idx_open = 1;
idx_fattr = 3;
} else if (create_flag) {
numops = 7;
idx_open = 2;
idx_fattr = 4;
} else {
numops = 4;
idx_open = 1;
idx_fattr = 3;
}
args.array_len = numops;
argoplist_size = numops * sizeof (nfs_argop4);
argop = kmem_alloc(argoplist_size, KM_SLEEP);
NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: "
"open %s open flag 0x%x cred %p", file_name, open_flag,
(void *)cr));
ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
if (create_flag) {
/*
* We are to create a file. Initialize the passed in vnode
* pointer.
*/
vpi = NULL;
} else {
/*
* Check to see if the client owns a read delegation and is
* trying to open for write. If so, then return the delegation
* to avoid the server doing a cb_recall and returning DELAY.
* NB - we don't use the statev4_lock here because we'd have
* to drop the lock anyway and the result would be stale.
*/
if ((open_flag & FWRITE) &&
VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ)
(void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN);
/*
* If the file has a delegation, then do an access check up
* front. This avoids having to an access check later after
* we've already done start_op, which could deadlock.
*/
if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) {
if (open_flag & FREAD &&
nfs4_access(vpi, VREAD, 0, cr, NULL) == 0)
acc |= VREAD;
if (open_flag & FWRITE &&
nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0)
acc |= VWRITE;
}
}
drp = VTOR4(dvp);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
cred_otw = cr;
recov_retry:
fh_differs = 0;
nfs4_error_zinit(&e);
e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state);
if (e.error) {
if (ncr != NULL)
crfree(ncr);
kmem_free(argop, argoplist_size);
return (e.error);
}
args.ctag = TAG_OPEN;
args.array_len = numops;
args.array = argop;
/* putfh directory fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
/* OPEN: either op 1 or op 2 depending upon create/setgid flags */
argop[idx_open].argop = OP_COPEN;
open_args = &argop[idx_open].nfs_argop4_u.opcopen;
open_args->claim = CLAIM_NULL;
/* name of file */
open_args->open_claim4_u.cfile = file_name;
open_args->owner.owner_len = 0;
open_args->owner.owner_val = NULL;
if (create_flag) {
/* CREATE a file */
open_args->opentype = OPEN4_CREATE;
open_args->mode = createmode;
if (createmode == EXCLUSIVE4) {
if (did_excl_setup == FALSE) {
verf.seconds = zone_get_hostid(NULL);
if (verf.seconds != 0)
verf.nseconds = newnum();
else {
timestruc_t now;
gethrestime(&now);
verf.seconds = now.tv_sec;
verf.nseconds = now.tv_nsec;
}
/*
* Since the server will use this value for the
* mtime, make sure that it can't overflow. Zero
* out the MSB. The actual value does not matter
* here, only its uniqeness.
*/
verf.seconds &= INT32_MAX;
did_excl_setup = TRUE;
}
/* Now copy over verifier to OPEN4args. */
open_args->createhow4_u.createverf = *(uint64_t *)&verf;
} else {
int v_error;
bitmap4 supp_attrs;
servinfo4_t *svp;
attr = &open_args->createhow4_u.createattrs;
svp = drp->r_server;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
supp_attrs = svp->sv_supp_attrs;
nfs_rw_exit(&svp->sv_lock);
/* GUARDED4 or UNCHECKED4 */
v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN,
supp_attrs);
if (v_error) {
bzero(attr, sizeof (*attr));
nfs4args_copen_free(open_args);
nfs4_end_op(VTOMI4(dvp), dvp, vpi,
&recov_state, FALSE);
if (ncr != NULL)
crfree(ncr);
kmem_free(argop, argoplist_size);
return (v_error);
}
}
} else {
/* NO CREATE */
open_args->opentype = OPEN4_NOCREATE;
}
if (recov_state.rs_sp != NULL) {
mutex_enter(&recov_state.rs_sp->s_lock);
open_args->owner.clientid = recov_state.rs_sp->clientid;
mutex_exit(&recov_state.rs_sp->s_lock);
} else {
/* XXX should we just fail here? */
open_args->owner.clientid = 0;
}
/*
* This increments oop's ref count or creates a temporary 'just_created'
* open owner that will become valid when this OPEN/OPEN_CONFIRM call
* completes.
*/
mutex_enter(&VTOMI4(dvp)->mi_lock);
/* See if a permanent or just created open owner exists */
oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp));
if (!oop) {
/*
* This open owner does not exist so create a temporary
* just created one.
*/
oop = create_open_owner(cr, VTOMI4(dvp));
ASSERT(oop != NULL);
}
mutex_exit(&VTOMI4(dvp)->mi_lock);
/* this length never changes, do alloc before seqid sync */
open_args->owner.owner_len = sizeof (oop->oo_name);
open_args->owner.owner_val =
kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp));
if (e.error == EAGAIN) {
open_owner_rele(oop);
nfs4args_copen_free(open_args);
nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
if (ncr != NULL) {
crfree(ncr);
ncr = NULL;
}
goto recov_retry;
}
/* Check to see if we need to do the OTW call */
if (!create_flag) {
if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi,
file_just_been_created, &e.error, acc, &recov_state)) {
/*
* The OTW open is not necessary. Either
* the open can succeed without it (eg.
* delegation, error == 0) or the open
* must fail due to an access failure
* (error != 0). In either case, tidy
* up and return.
*/
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
nfs4args_copen_free(open_args);
nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE);
if (ncr != NULL)
crfree(ncr);
kmem_free(argop, argoplist_size);
return (e.error);
}
}
bcopy(&oop->oo_name, open_args->owner.owner_val,
open_args->owner.owner_len);
seqid = nfs4_get_open_seqid(oop) + 1;
open_args->seqid = seqid;
open_args->share_access = 0;
if (open_flag & FREAD)
open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
if (open_flag & FWRITE)
open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
open_args->share_deny = OPEN4_SHARE_DENY_NONE;
/*
* getfh w/sanity check for idx_open/idx_fattr
*/
ASSERT((idx_open + 1) == (idx_fattr - 1));
argop[idx_open + 1].argop = OP_GETFH;
/* getattr */
argop[idx_fattr].argop = OP_GETATTR;
argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
if (setgid_flag) {
vattr_t _v;
servinfo4_t *svp;
bitmap4 supp_attrs;
svp = drp->r_server;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
supp_attrs = svp->sv_supp_attrs;
nfs_rw_exit(&svp->sv_lock);
/*
* For setgid case, we need to:
* 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
*/
argop[4].argop = OP_SAVEFH;
argop[5].argop = OP_CPUTFH;
argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
argop[6].argop = OP_GETATTR;
argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
argop[7].argop = OP_RESTOREFH;
/*
* nverify
*/
_v.va_mask = AT_GID;
_v.va_gid = in_va->va_gid;
if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
supp_attrs))) {
/*
* setattr
*
* We _know_ we're not messing with AT_SIZE or
* AT_XTIME, so no need for stateid or flags.
* Also we specify NULL rp since we're only
* interested in setting owner_group attributes.
*/
nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr,
supp_attrs, &e.error, 0);
if (e.error)
nfs4args_verify_free(&argop[8]);
}
if (e.error) {
/*
* XXX - Revisit the last argument to nfs4_end_op()
* once 5020486 is fixed.
*/
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
nfs4args_copen_free(open_args);
nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
if (ncr != NULL)
crfree(ncr);
kmem_free(argop, argoplist_size);
return (e.error);
}
} else if (create_flag) {
argop[1].argop = OP_SAVEFH;
argop[5].argop = OP_RESTOREFH;
argop[6].argop = OP_GETATTR;
argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
}
NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
"nfs4open_otw: %s call, nm %s, rp %s",
needrecov ? "recov" : "first", file_name,
rnode4info(VTOR4(dvp))));
t = gethrtime();
rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e);
if (!e.error && nfs4_need_to_bump_seqid(&res))
nfs4_set_open_seqid(seqid, oop, args.ctag);
needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp);
if (e.error || needrecov) {
bool_t abort = FALSE;
if (needrecov) {
nfs4_bseqid_entry_t *bsep = NULL;
nfs4open_save_lost_rqst(e.error, &lost_rqst, oop,
cred_otw, vpi, dvp, open_args);
if (!e.error && res.status == NFS4ERR_BAD_SEQID) {
bsep = nfs4_create_bseqid_entry(oop, NULL,
vpi, 0, args.ctag, open_args->seqid);
num_bseqid_retry--;
}
abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi,
NULL, lost_rqst.lr_op == OP_OPEN ?
&lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL);
if (bsep)
kmem_free(bsep, sizeof (*bsep));
/* give up if we keep getting BAD_SEQID */
if (num_bseqid_retry == 0)
abort = TRUE;
if (abort == TRUE && e.error == 0)
e.error = geterrno4(res.status);
}
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
nfs4args_copen_free(open_args);
if (setgid_flag) {
nfs4args_verify_free(&argop[8]);
nfs4args_setattr_free(&argop[9]);
}
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
if (ncr != NULL) {
crfree(ncr);
ncr = NULL;
}
if (!needrecov || abort == TRUE || e.error == EINTR ||
NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) {
kmem_free(argop, argoplist_size);
return (e.error);
}
goto recov_retry;
}
/*
* Will check and update lease after checking the rflag for
* OPEN_CONFIRM in the successful OPEN call.
*/
if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
/*
* XXX what if we're crossing mount points from server1:/drp
* to server2:/drp/rp.
*/
/* Signal our end of use of the open seqid */
nfs4_end_open_seqid_sync(oop);
/*
* This will destroy the open owner if it was just created,
* and no one else has put a reference on it.
*/
open_owner_rele(oop);
if (create_flag && (createmode != EXCLUSIVE4) &&
res.status == NFS4ERR_BADOWNER)
nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
e.error = geterrno4(res.status);
nfs4args_copen_free(open_args);
if (setgid_flag) {
nfs4args_verify_free(&argop[8]);
nfs4args_setattr_free(&argop[9]);
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
/*
* If the reply is NFS4ERR_ACCESS, it may be because
* we are root (no root net access). If the real uid
* is not root, then retry with the real uid instead.
*/
if (ncr != NULL) {
crfree(ncr);
ncr = NULL;
}
if (res.status == NFS4ERR_ACCESS &&
(ncr = crnetadjust(cred_otw)) != NULL) {
cred_otw = ncr;
goto recov_retry;
}
kmem_free(argop, argoplist_size);
return (e.error);
}
resop = &res.array[idx_open]; /* open res */
op_res = &resop->nfs_resop4_u.opopen;
#ifdef DEBUG
/*
* verify attrset bitmap
*/
if (create_flag &&
(createmode == UNCHECKED4 || createmode == GUARDED4)) {
/* make sure attrset returned is what we asked for */
/* XXX Ignore this 'error' for now */
if (attr->attrmask != op_res->attrset)
/* EMPTY */;
}
#endif
if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) {
mutex_enter(&VTOMI4(dvp)->mi_lock);
VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK;
mutex_exit(&VTOMI4(dvp)->mi_lock);
}
resop = &res.array[idx_open + 1]; /* getfh res */
gf_res = &resop->nfs_resop4_u.opgetfh;
otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp));
/*
* The open stateid has been updated on the server but not
* on the client yet. There is a path: makenfs4node->nfs4_attr_cache->
* flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW
* WRITE call. That, however, will use the old stateid, so go ahead
* and upate the open stateid now, before any call to makenfs4node.
*/
if (vpi) {
nfs4_open_stream_t *tmp_osp;
rnode4_t *tmp_rp = VTOR4(vpi);
tmp_osp = find_open_stream(oop, tmp_rp);
if (tmp_osp) {
tmp_osp->open_stateid = op_res->stateid;
mutex_exit(&tmp_osp->os_sync_lock);
open_stream_rele(tmp_osp, tmp_rp);
}
/*
* We must determine if the file handle given by the otw open
* is the same as the file handle which was passed in with
* *vpp. This case can be reached if the file we are trying
* to open has been removed and another file has been created
* having the same file name. The passed in vnode is released
* later.
*/
orig_sfh = VTOR4(vpi)->r_fh;
fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh);
}
garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res;
if (create_flag || fh_differs) {
int rnode_err = 0;
vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr,
dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh));
if (e.error)
PURGE_ATTRCACHE4(vp);
/*
* For the newly created vp case, make sure the rnode
* isn't bad before using it.
*/
mutex_enter(&(VTOR4(vp))->r_statelock);
if (VTOR4(vp)->r_flags & R4RECOVERR)
rnode_err = EIO;
mutex_exit(&(VTOR4(vp))->r_statelock);
if (rnode_err) {
nfs4_end_open_seqid_sync(oop);
nfs4args_copen_free(open_args);
if (setgid_flag) {
nfs4args_verify_free(&argop[8]);
nfs4args_setattr_free(&argop[9]);
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
needrecov);
open_owner_rele(oop);
VN_RELE(vp);
if (ncr != NULL)
crfree(ncr);
sfh4_rele(&otw_sfh);
kmem_free(argop, argoplist_size);
return (EIO);
}
} else {
vp = vpi;
}
sfh4_rele(&otw_sfh);
/*
* It seems odd to get a full set of attrs and then not update
* the object's attrcache in the non-create case. Create case uses
* the attrs since makenfs4node checks to see if the attrs need to
* be updated (and then updates them). The non-create case should
* update attrs also.
*/
if (! create_flag && ! fh_differs && !e.error) {
nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
}
nfs4_error_zinit(&e);
if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
/* This does not do recovery for vp explicitly. */
nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE,
&retry_open, oop, FALSE, &e, &num_bseqid_retry);
if (e.error || e.stat) {
nfs4_end_open_seqid_sync(oop);
nfs4args_copen_free(open_args);
if (setgid_flag) {
nfs4args_verify_free(&argop[8]);
nfs4args_setattr_free(&argop[9]);
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
needrecov);
open_owner_rele(oop);
if (create_flag || fh_differs) {
/* rele the makenfs4node */
VN_RELE(vp);
}
if (ncr != NULL) {
crfree(ncr);
ncr = NULL;
}
if (retry_open == TRUE) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4open_otw: retry the open since OPEN "
"CONFIRM failed with error %d stat %d",
e.error, e.stat));
if (create_flag && createmode == GUARDED4) {
NFS4_DEBUG(nfs4_client_recov_debug,
(CE_NOTE, "nfs4open_otw: switch "
"createmode from GUARDED4 to "
"UNCHECKED4"));
createmode = UNCHECKED4;
}
goto recov_retry;
}
if (!e.error) {
if (create_flag && (createmode != EXCLUSIVE4) &&
e.stat == NFS4ERR_BADOWNER)
nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
e.error = geterrno4(e.stat);
}
kmem_free(argop, argoplist_size);
return (e.error);
}
}
rp = VTOR4(vp);
mutex_enter(&rp->r_statev4_lock);
if (create_flag)
rp->created_v4 = 1;
mutex_exit(&rp->r_statev4_lock);
mutex_enter(&oop->oo_lock);
/* Doesn't matter if 'oo_just_created' already was set as this */
oop->oo_just_created = NFS4_PERM_CREATED;
if (oop->oo_cred_otw)
crfree(oop->oo_cred_otw);
oop->oo_cred_otw = cred_otw;
crhold(oop->oo_cred_otw);
mutex_exit(&oop->oo_lock);
/* returns with 'os_sync_lock' held */
osp = find_or_create_open_stream(oop, rp, &created_osp);
if (!osp) {
NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
"nfs4open_otw: failed to create an open stream"));
NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: "
"signal our end of use of the open seqid"));
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
nfs4args_copen_free(open_args);
if (setgid_flag) {
nfs4args_verify_free(&argop[8]);
nfs4args_setattr_free(&argop[9]);
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
if (create_flag || fh_differs)
VN_RELE(vp);
if (ncr != NULL)
crfree(ncr);
kmem_free(argop, argoplist_size);
return (EINVAL);
}
osp->open_stateid = op_res->stateid;
if (open_flag & FREAD)
osp->os_share_acc_read++;
if (open_flag & FWRITE)
osp->os_share_acc_write++;
osp->os_share_deny_none++;
/*
* Need to reset this bitfield for the possible case where we were
* going to OTW CLOSE the file, got a non-recoverable error, and before
* we could retry the CLOSE, OPENed the file again.
*/
ASSERT(osp->os_open_owner->oo_seqid_inuse);
osp->os_final_close = 0;
osp->os_force_close = 0;
#ifdef DEBUG
if (osp->os_failed_reopen)
NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:"
" clearing os_failed_reopen for osp %p, cr %p, rp %s",
(void *)osp, (void *)cr, rnode4info(rp)));
#endif
osp->os_failed_reopen = 0;
mutex_exit(&osp->os_sync_lock);
nfs4_end_open_seqid_sync(oop);
if (created_osp && recov_state.rs_sp != NULL) {
mutex_enter(&recov_state.rs_sp->s_lock);
nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp));
mutex_exit(&recov_state.rs_sp->s_lock);
}
/* get rid of our reference to find oop */
open_owner_rele(oop);
open_stream_rele(osp, rp);
/* accept delegation, if any */
nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw);
nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
if (createmode == EXCLUSIVE4 &&
(in_va->va_mask & ~(AT_GID | AT_SIZE))) {
NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:"
" EXCLUSIVE4: sending a SETATTR"));
/*
* If doing an exclusive create, then generate
* a SETATTR to set the initial attributes.
* Try to set the mtime and the atime to the
* server's current time. It is somewhat
* expected that these fields will be used to
* store the exclusive create cookie. If not,
* server implementors will need to know that
* a SETATTR will follow an exclusive create
* and the cookie should be destroyed if
* appropriate.
*
* The AT_GID and AT_SIZE bits are turned off
* so that the SETATTR request will not attempt
* to process these. The gid will be set
* separately if appropriate. The size is turned
* off because it is assumed that a new file will
* be created empty and if the file wasn't empty,
* then the exclusive create will have failed
* because the file must have existed already.
* Therefore, no truncate operation is needed.
*/
in_va->va_mask &= ~(AT_GID | AT_SIZE);
in_va->va_mask |= (AT_MTIME | AT_ATIME);
e.error = nfs4setattr(vp, in_va, 0, cr, NULL);
if (e.error) {
/*
* Couldn't correct the attributes of
* the newly created file and the
* attributes are wrong. Remove the
* file and return an error to the
* application.
*/
/* XXX will this take care of client state ? */
NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
"nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:"
" remove file", e.error));
VN_RELE(vp);
(void) nfs4_remove(dvp, file_name, cr, NULL, 0);
/*
* Since we've reled the vnode and removed
* the file we now need to return the error.
* At this point we don't want to update the
* dircaches, call nfs4_waitfor_purge_complete
* or set vpp to vp so we need to skip these
* as well.
*/
goto skip_update_dircaches;
}
}
/*
* If we created or found the correct vnode, due to create_flag or
* fh_differs being set, then update directory cache attribute, readdir
* and dnlc caches.
*/
if (create_flag || fh_differs) {
dirattr_info_t dinfo, *dinfop;
/*
* Make sure getattr succeeded before using results.
* note: op 7 is getattr(dir) for both flavors of
* open(create).
*/
if (create_flag && res.status == NFS4_OK) {
dinfo.di_time_call = t;
dinfo.di_cred = cr;
dinfo.di_garp =
&res.array[6].nfs_resop4_u.opgetattr.ga_res;
dinfop = &dinfo;
} else {
dinfop = NULL;
}
nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name,
dinfop);
}
/*
* If the page cache for this file was flushed from actions
* above, it was done asynchronously and if that is true,
* there is a need to wait here for it to complete. This must
* be done outside of start_fop/end_fop.
*/
(void) nfs4_waitfor_purge_complete(vp);
/*
* It is implicit that we are in the open case (create_flag == 0) since
* fh_differs can only be set to a non-zero value in the open case.
*/
if (fh_differs != 0 && vpi != NULL)
VN_RELE(vpi);
/*
* Be sure to set *vpp to the correct value before returning.
*/
*vpp = vp;
skip_update_dircaches:
nfs4args_copen_free(open_args);
if (setgid_flag) {
nfs4args_verify_free(&argop[8]);
nfs4args_setattr_free(&argop[9]);
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
if (ncr)
crfree(ncr);
kmem_free(argop, argoplist_size);
return (e.error);
}
/*
* Reopen an open instance. cf. nfs4open_otw().
*
* Errors are returned by the nfs4_error_t parameter.
* - ep->error contains an errno value or zero.
* - if it is zero, ep->stat is set to an NFS status code, if any.
* If the file could not be reopened, but the caller should continue, the
* file is marked dead and no error values are returned. If the caller
* should stop recovering open files and start over, either the ep->error
* value or ep->stat will indicate an error (either something that requires
* recovery or EAGAIN). Note that some recovery (e.g., expired volatile
* filehandles) may be handled silently by this routine.
* - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state
* will be started, so the caller should not do it.
*
* Gotos:
* - kill_file : reopen failed in such a fashion to constitute marking the
* file dead and setting the open stream's 'os_failed_reopen' as 1. This
* is for cases where recovery is not possible.
* - failed_reopen : same as above, except that the file has already been
* marked dead, so no need to do it again.
* - bailout : reopen failed but we are able to recover and retry the reopen -
* either within this function immediately or via the calling function.
*/
void
nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep,
open_claim_type4 claim, bool_t frc_use_claim_previous,
bool_t is_recov)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
nfs_argop4 argop[4];
nfs_resop4 *resop;
OPEN4res *op_res = NULL;
OPEN4cargs *open_args;
GETFH4res *gf_res;
rnode4_t *rp = VTOR4(vp);
int doqueue = 1;
cred_t *cr = NULL, *cred_otw = NULL;
nfs4_open_owner_t *oop = NULL;
seqid4 seqid;
nfs4_ga_res_t *garp;
char fn[MAXNAMELEN];
nfs4_recov_state_t recov = {NULL, 0};
nfs4_lost_rqst_t lost_rqst;
mntinfo4_t *mi = VTOMI4(vp);
bool_t abort;
char *failed_msg = "";
int fh_different;
hrtime_t t;
nfs4_bseqid_entry_t *bsep = NULL;
ASSERT(nfs4_consistent_type(vp));
ASSERT(nfs_zone() == mi->mi_zone);
nfs4_error_zinit(ep);
/* this is the cred used to find the open owner */
cr = state_to_cred(osp);
if (cr == NULL) {
failed_msg = "Couldn't reopen: no cred";
goto kill_file;
}
/* use this cred for OTW operations */
cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner);
top:
nfs4_error_zinit(ep);
if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
/* File system has been unmounted, quit */
ep->error = EIO;
failed_msg = "Couldn't reopen: file system has been unmounted";
goto kill_file;
}
oop = osp->os_open_owner;
ASSERT(oop != NULL);
if (oop == NULL) { /* be defensive in non-DEBUG */
failed_msg = "can't reopen: no open owner";
goto kill_file;
}
open_owner_hold(oop);
ep->error = nfs4_start_open_seqid_sync(oop, mi);
if (ep->error) {
open_owner_rele(oop);
oop = NULL;
goto bailout;
}
/*
* If the rnode has a delegation and the delegation has been
* recovered and the server didn't request a recall and the caller
* didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during
* recovery) and the rnode hasn't been marked dead, then install
* the delegation stateid in the open stream. Otherwise, proceed
* with a CLAIM_PREVIOUS or CLAIM_NULL OPEN.
*/
mutex_enter(&rp->r_statev4_lock);
if (rp->r_deleg_type != OPEN_DELEGATE_NONE &&
!rp->r_deleg_return_pending &&
(rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) &&
!rp->r_deleg_needs_recall &&
claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous &&
!(rp->r_flags & R4RECOVERR)) {
mutex_enter(&osp->os_sync_lock);
osp->os_delegation = 1;
osp->open_stateid = rp->r_deleg_stateid;
mutex_exit(&osp->os_sync_lock);
mutex_exit(&rp->r_statev4_lock);
goto bailout;
}
mutex_exit(&rp->r_statev4_lock);
/*
* If the file failed recovery, just quit. This failure need not
* affect other reopens, so don't return an error.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERR) {
mutex_exit(&rp->r_statelock);
ep->error = 0;
goto failed_reopen;
}
mutex_exit(&rp->r_statelock);
/*
* argop is empty here
*
* PUTFH, OPEN, GETATTR
*/
args.ctag = TAG_REOPEN;
args.array_len = 4;
args.array = argop;
NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
"nfs4_reopen: file is type %d, id %s",
vp->v_type, rnode4info(VTOR4(vp))));
argop[0].argop = OP_CPUTFH;
if (claim != CLAIM_PREVIOUS) {
/*
* if this is a file mount then
* use the mntinfo parentfh
*/
argop[0].nfs_argop4_u.opcputfh.sfh =
(vp->v_flag & VROOT) ? mi->mi_srvparentfh :
VTOSV(vp)->sv_dfh;
} else {
/* putfh fh to reopen */
argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
}
argop[1].argop = OP_COPEN;
open_args = &argop[1].nfs_argop4_u.opcopen;
open_args->claim = claim;
if (claim == CLAIM_NULL) {
if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
"failed for vp 0x%p for CLAIM_NULL with %m",
(void *)vp);
failed_msg = "Couldn't reopen: vtoname failed for "
"CLAIM_NULL";
/* nothing allocated yet */
goto kill_file;
}
open_args->open_claim4_u.cfile = fn;
} else if (claim == CLAIM_PREVIOUS) {
/*
* We have two cases to deal with here:
* 1) We're being called to reopen files in order to satisfy
* a lock operation request which requires us to explicitly
* reopen files which were opened under a delegation. If
* we're in recovery, we *must* use CLAIM_PREVIOUS. In
* that case, frc_use_claim_previous is TRUE and we must
* use the rnode's current delegation type (r_deleg_type).
* 2) We're reopening files during some form of recovery.
* In this case, frc_use_claim_previous is FALSE and we
* use the delegation type appropriate for recovery
* (r_deleg_needs_recovery).
*/
mutex_enter(&rp->r_statev4_lock);
open_args->open_claim4_u.delegate_type =
frc_use_claim_previous ?
rp->r_deleg_type :
rp->r_deleg_needs_recovery;
mutex_exit(&rp->r_statev4_lock);
} else if (claim == CLAIM_DELEGATE_CUR) {
if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
"failed for vp 0x%p for CLAIM_DELEGATE_CUR "
"with %m", (void *)vp);
failed_msg = "Couldn't reopen: vtoname failed for "
"CLAIM_DELEGATE_CUR";
/* nothing allocated yet */
goto kill_file;
}
mutex_enter(&rp->r_statev4_lock);
open_args->open_claim4_u.delegate_cur_info.delegate_stateid =
rp->r_deleg_stateid;
mutex_exit(&rp->r_statev4_lock);
open_args->open_claim4_u.delegate_cur_info.cfile = fn;
}
open_args->opentype = OPEN4_NOCREATE;
open_args->owner.clientid = mi2clientid(mi);
open_args->owner.owner_len = sizeof (oop->oo_name);
open_args->owner.owner_val =
kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
bcopy(&oop->oo_name, open_args->owner.owner_val,
open_args->owner.owner_len);
open_args->share_access = 0;
open_args->share_deny = 0;
mutex_enter(&osp->os_sync_lock);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp "
"%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: "
"mmap read %"PRIu64" mmap write %"PRIu64" claim %d ",
(void *)osp, (void *)rp, osp->os_share_acc_read,
osp->os_share_acc_write, osp->os_open_ref_count,
osp->os_mmap_read, osp->os_mmap_write, claim));
if (osp->os_share_acc_read || osp->os_mmap_read)
open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
if (osp->os_share_acc_write || osp->os_mmap_write)
open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
if (osp->os_share_deny_read)
open_args->share_deny |= OPEN4_SHARE_DENY_READ;
if (osp->os_share_deny_write)
open_args->share_deny |= OPEN4_SHARE_DENY_WRITE;
mutex_exit(&osp->os_sync_lock);
seqid = nfs4_get_open_seqid(oop) + 1;
open_args->seqid = seqid;
/* Construct the getfh part of the compound */
argop[2].argop = OP_GETFH;
/* Construct the getattr part of the compound */
argop[3].argop = OP_GETATTR;
argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[3].nfs_argop4_u.opgetattr.mi = mi;
t = gethrtime();
rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
if (ep->error) {
if (!is_recov && !frc_use_claim_previous &&
(ep->error == EINTR || ep->error == ETIMEDOUT ||
NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) {
nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop,
cred_otw, vp, NULL, open_args);
abort = nfs4_start_recovery(ep,
VTOMI4(vp), vp, NULL, NULL,
lost_rqst.lr_op == OP_OPEN ?
&lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL);
nfs4args_copen_free(open_args);
goto bailout;
}
nfs4args_copen_free(open_args);
if (ep->error == EACCES && cred_otw != cr) {
crfree(cred_otw);
cred_otw = cr;
crhold(cred_otw);
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
oop = NULL;
goto top;
}
if (ep->error == ETIMEDOUT)
goto bailout;
failed_msg = "Couldn't reopen: rpc error";
goto kill_file;
}
if (nfs4_need_to_bump_seqid(&res))
nfs4_set_open_seqid(seqid, oop, args.ctag);
switch (res.status) {
case NFS4_OK:
if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
mutex_enter(&rp->r_statelock);
rp->r_delay_interval = 0;
mutex_exit(&rp->r_statelock);
}
break;
case NFS4ERR_BAD_SEQID:
bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0,
args.ctag, open_args->seqid);
abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst :
NULL, OP_OPEN, bsep, NULL, NULL);
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
oop = NULL;
kmem_free(bsep, sizeof (*bsep));
goto kill_file;
case NFS4ERR_NO_GRACE:
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
oop = NULL;
if (claim == CLAIM_PREVIOUS) {
/*
* Retry as a plain open. We don't need to worry about
* checking the changeinfo: it is acceptable for a
* client to re-open a file and continue processing
* (in the absence of locks).
*/
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; "
"will retry as CLAIM_NULL"));
claim = CLAIM_NULL;
nfs4_mi_kstat_inc_no_grace(mi);
goto top;
}
failed_msg =
"Couldn't reopen: tried reclaim outside grace period. ";
goto kill_file;
case NFS4ERR_GRACE:
nfs4_set_grace_wait(mi);
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
oop = NULL;
ep->error = nfs4_wait_for_grace(mi, &recov);
if (ep->error != 0)
goto bailout;
goto top;
case NFS4ERR_DELAY:
nfs4_set_delay_wait(vp);
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
oop = NULL;
ep->error = nfs4_wait_for_delay(vp, &recov);
nfs4_mi_kstat_inc_delay(mi);
if (ep->error != 0)
goto bailout;
goto top;
case NFS4ERR_FHEXPIRED:
/* recover filehandle and retry */
abort = nfs4_start_recovery(ep,
mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL);
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
oop = NULL;
if (abort == FALSE)
goto top;
failed_msg = "Couldn't reopen: recovery aborted";
goto kill_file;
case NFS4ERR_RESOURCE:
case NFS4ERR_STALE_CLIENTID:
case NFS4ERR_WRONGSEC:
case NFS4ERR_EXPIRED:
/*
* Do not mark the file dead and let the calling
* function initiate recovery.
*/
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
oop = NULL;
goto bailout;
case NFS4ERR_ACCESS:
if (cred_otw != cr) {
crfree(cred_otw);
cred_otw = cr;
crhold(cred_otw);
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
oop = NULL;
goto top;
}
/* fall through */
default:
NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
"nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s",
(void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv,
rnode4info(VTOR4(vp))));
failed_msg = "Couldn't reopen: NFSv4 error";
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto kill_file;
}
resop = &res.array[1]; /* open res */
op_res = &resop->nfs_resop4_u.opopen;
garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res;
/*
* Check if the path we reopened really is the same
* file. We could end up in a situation where the file
* was removed and a new file created with the same name.
*/
resop = &res.array[2];
gf_res = &resop->nfs_resop4_u.opgetfh;
(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0);
if (fh_different) {
if (mi->mi_fh_expire_type == FH4_PERSISTENT ||
mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) {
/* Oops, we don't have the same file */
if (mi->mi_fh_expire_type == FH4_PERSISTENT)
failed_msg = "Couldn't reopen: Persistent "
"file handle changed";
else
failed_msg = "Couldn't reopen: Volatile "
"(no expire on open) file handle changed";
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs_rw_exit(&mi->mi_fh_lock);
goto kill_file;
} else {
/*
* We have volatile file handles that don't compare.
* If the fids are the same then we assume that the
* file handle expired but the rnode still refers to
* the same file object.
*
* First check that we have fids or not.
* If we don't we have a dumb server so we will
* just assume every thing is ok for now.
*/
if (!ep->error && garp->n4g_va.va_mask & AT_NODEID &&
rp->r_attr.va_mask & AT_NODEID &&
rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) {
/*
* We have fids, but they don't
* compare. So kill the file.
*/
failed_msg =
"Couldn't reopen: file handle changed"
" due to mismatched fids";
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
nfs_rw_exit(&mi->mi_fh_lock);
goto kill_file;
} else {
/*
* We have volatile file handles that refers
* to the same file (at least they have the
* same fid) or we don't have fids so we
* can't tell. :(. We'll be a kind and accepting
* client so we'll update the rnode's file
* handle with the otw handle.
*
* We need to drop mi->mi_fh_lock since
* sh4_update acquires it. Since there is
* only one recovery thread there is no
* race.
*/
nfs_rw_exit(&mi->mi_fh_lock);
sfh4_update(rp->r_fh, &gf_res->object);
}
}
} else {
nfs_rw_exit(&mi->mi_fh_lock);
}
ASSERT(nfs4_consistent_type(vp));
/*
* If the server wanted an OPEN_CONFIRM but that fails, just start
* over. Presumably if there is a persistent error it will show up
* when we resend the OPEN.
*/
if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
bool_t retry_open = FALSE;
nfs4open_confirm(vp, &seqid, &op_res->stateid,
cred_otw, is_recov, &retry_open,
oop, FALSE, ep, NULL);
if (ep->error || ep->stat) {
nfs4args_copen_free(open_args);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
oop = NULL;
goto top;
}
}
mutex_enter(&osp->os_sync_lock);
osp->open_stateid = op_res->stateid;
osp->os_delegation = 0;
/*
* Need to reset this bitfield for the possible case where we were
* going to OTW CLOSE the file, got a non-recoverable error, and before
* we could retry the CLOSE, OPENed the file again.
*/
ASSERT(osp->os_open_owner->oo_seqid_inuse);
osp->os_final_close = 0;
osp->os_force_close = 0;
if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS)
osp->os_dc_openacc = open_args->share_access;
mutex_exit(&osp->os_sync_lock);
nfs4_end_open_seqid_sync(oop);
/* accept delegation, if any */
nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw);
nfs4args_copen_free(open_args);
nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
ASSERT(nfs4_consistent_type(vp));
open_owner_rele(oop);
crfree(cr);
crfree(cred_otw);
return;
kill_file:
nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat);
failed_reopen:
NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
"nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s",
(void *)osp, (void *)cr, rnode4info(rp)));
mutex_enter(&osp->os_sync_lock);
osp->os_failed_reopen = 1;
mutex_exit(&osp->os_sync_lock);
bailout:
if (oop != NULL) {
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
}
if (cr != NULL)
crfree(cr);
if (cred_otw != NULL)
crfree(cred_otw);
}
/* for . and .. OPENs */
/* ARGSUSED */
static int
nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr)
{
rnode4_t *rp;
nfs4_ga_res_t gar;
ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone);
/*
* If close-to-open consistency checking is turned off or
* if there is no cached data, we can avoid
* the over the wire getattr. Otherwise, force a
* call to the server to get fresh attributes and to
* check caches. This is required for close-to-open
* consistency.
*/
rp = VTOR4(*vpp);
if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO ||
(rp->r_dir == NULL && !nfs4_has_pages(*vpp)))
return (0);
return (nfs4_getattr_otw(*vpp, &gar, cr, 0));
}
/*
* CLOSE a file
*/
/* ARGSUSED */
static int
nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
caller_context_t *ct)
{
rnode4_t *rp;
int error = 0;
int r_error = 0;
int n4error = 0;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
/*
* Remove client state for this (lockowner, file) pair.
* Issue otw v4 call to have the server do the same.
*/
rp = VTOR4(vp);
/*
* zone_enter(2) prevents processes from changing zones with NFS files
* open; if we happen to get here from the wrong zone we can't do
* anything over the wire.
*/
if (VTOMI4(vp)->mi_zone != nfs_zone()) {
/*
* We could attempt to clean up locks, except we're sure
* that the current process didn't acquire any locks on
* the file: any attempt to lock a file belong to another zone
* will fail, and one can't lock an NFS file and then change
* zones, as that fails too.
*
* Returning an error here is the sane thing to do. A
* subsequent call to VN_RELE() which translates to a
* nfs4_inactive() will clean up state: if the zone of the
* vnode's origin is still alive and kicking, the inactive
* thread will handle the request (from the correct zone), and
* everything (minus the OTW close call) should be OK. If the
* zone is going away nfs4_async_inactive() will throw away
* delegations, open streams and cached pages inline.
*/
return (EIO);
}
/*
* If we are using local locking for this filesystem, then
* release all of the SYSV style record locks. Otherwise,
* we are doing network locking and we need to release all
* of the network locks. All of the locks held by this
* process on this file are released no matter what the
* incoming reference count is.
*/
if (VTOMI4(vp)->mi_flags & MI4_LLOCK) {
cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
cleanshares(vp, ttoproc(curthread)->p_pid);
} else
e.error = nfs4_lockrelease(vp, flag, offset, cr);
if (e.error) {
struct lm_sysid *lmsid;
lmsid = nfs4_find_sysid(VTOMI4(vp));
if (lmsid == NULL) {
DTRACE_PROBE2(unknown__sysid, int, e.error,
vnode_t *, vp);
} else {
cleanlocks(vp, ttoproc(curthread)->p_pid,
(lm_sysidt(lmsid) | LM_SYSID_CLIENT));
lm_rel_sysid(lmsid);
}
return (e.error);
}
if (count > 1)
return (0);
/*
* If the file has been `unlinked', then purge the
* DNLC so that this vnode will get reycled quicker
* and the .nfs* file on the server will get removed.
*/
if (rp->r_unldvp != NULL)
dnlc_purge_vp(vp);
/*
* If the file was open for write and there are pages,
* do a synchronous flush and commit of all of the
* dirty and uncommitted pages.
*/
ASSERT(!e.error);
if ((flag & FWRITE) && nfs4_has_pages(vp))
error = nfs4_putpage_commit(vp, 0, 0, cr);
mutex_enter(&rp->r_statelock);
r_error = rp->r_error;
rp->r_error = 0;
mutex_exit(&rp->r_statelock);
/*
* If this file type is one for which no explicit 'open' was
* done, then bail now (ie. no need for protocol 'close'). If
* there was an error w/the vm subsystem, return _that_ error,
* otherwise, return any errors that may've been reported via
* the rnode.
*/
if (vp->v_type != VREG)
return (error ? error : r_error);
/*
* The sync putpage commit may have failed above, but since
* we're working w/a regular file, we need to do the protocol
* 'close' (nfs4close_one will figure out if an otw close is
* needed or not). Report any errors _after_ doing the protocol
* 'close'.
*/
nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0);
n4error = e.error ? e.error : geterrno4(e.stat);
/*
* Error reporting prio (Hi -> Lo)
*
* i) nfs4_putpage_commit (error)
* ii) rnode's (r_error)
* iii) nfs4close_one (n4error)
*/
return (error ? error : (r_error ? r_error : n4error));
}
/*
* Initialize *lost_rqstp.
*/
static void
nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr,
vnode_t *vp)
{
if (error != ETIMEDOUT && error != EINTR &&
!NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
lost_rqstp->lr_op = 0;
return;
}
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
"nfs4close_save_lost_rqst: error %d", error));
lost_rqstp->lr_op = OP_CLOSE;
/*
* The vp is held and rele'd via the recovery code.
* See nfs4_save_lost_rqst.
*/
lost_rqstp->lr_vp = vp;
lost_rqstp->lr_dvp = NULL;
lost_rqstp->lr_oop = oop;
lost_rqstp->lr_osp = osp;
ASSERT(osp != NULL);
ASSERT(mutex_owned(&osp->os_sync_lock));
osp->os_pending_close = 1;
lost_rqstp->lr_lop = NULL;
lost_rqstp->lr_cr = cr;
lost_rqstp->lr_flk = NULL;
lost_rqstp->lr_putfirst = FALSE;
}
/*
* Assumes you already have the open seqid sync grabbed as well as the
* 'os_sync_lock'. Note: this will release the open seqid sync and
* 'os_sync_lock' if client recovery starts. Calling functions have to
* be prepared to handle this.
*
* 'recov' is returned as 1 if the CLOSE operation detected client recovery
* was needed and was started, and that the calling function should retry
* this function; otherwise it is returned as 0.
*
* Errors are returned via the nfs4_error_t parameter.
*/
static void
nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop,
nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp,
nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
CLOSE4args *close_args;
nfs_resop4 *resop;
nfs_argop4 argop[3];
int doqueue = 1;
mntinfo4_t *mi;
seqid4 seqid;
vnode_t *vp;
bool_t needrecov = FALSE;
nfs4_lost_rqst_t lost_rqst;
hrtime_t t;
ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
ASSERT(MUTEX_HELD(&osp->os_sync_lock));
NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw"));
/* Only set this to 1 if recovery is started */
*recov = 0;
/* do the OTW call to close the file */
if (close_type == CLOSE_RESEND)
args.ctag = TAG_CLOSE_LOST;
else if (close_type == CLOSE_AFTER_RESEND)
args.ctag = TAG_CLOSE_UNDO;
else
args.ctag = TAG_CLOSE;
args.array_len = 3;
args.array = argop;
vp = RTOV4(rp);
mi = VTOMI4(vp);
/* putfh target fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
argop[1].argop = OP_GETATTR;
argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[1].nfs_argop4_u.opgetattr.mi = mi;
argop[2].argop = OP_CLOSE;
close_args = &argop[2].nfs_argop4_u.opclose;
seqid = nfs4_get_open_seqid(oop) + 1;
close_args->seqid = seqid;
close_args->open_stateid = osp->open_stateid;
NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
"nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first",
rnode4info(rp)));
t = gethrtime();
rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
nfs4_set_open_seqid(seqid, oop, args.ctag);
}
needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
if (ep->error && !needrecov) {
/*
* if there was an error and no recovery is to be done
* then then set up the file to flush its cache if
* needed for the next caller.
*/
mutex_enter(&rp->r_statelock);
PURGE_ATTRCACHE4_LOCKED(rp);
rp->r_flags &= ~R4WRITEMODIFIED;
mutex_exit(&rp->r_statelock);
return;
}
if (needrecov) {
bool_t abort;
nfs4_bseqid_entry_t *bsep = NULL;
if (close_type != CLOSE_RESEND)
nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
osp, cred_otw, vp);
if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
bsep = nfs4_create_bseqid_entry(oop, NULL, vp,
0, args.ctag, close_args->seqid);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4close_otw: initiating recovery. error %d "
"res.status %d", ep->error, res.status));
/*
* Drop the 'os_sync_lock' here so we don't hit
* a potential recursive mutex_enter via an
* 'open_stream_hold()'.
*/
mutex_exit(&osp->os_sync_lock);
*have_sync_lockp = 0;
abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
(close_type != CLOSE_RESEND &&
lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL,
OP_CLOSE, bsep, NULL, NULL);
/* drop open seq sync, and let the calling function regrab it */
nfs4_end_open_seqid_sync(oop);
*did_start_seqid_syncp = 0;
if (bsep)
kmem_free(bsep, sizeof (*bsep));
/*
* For signals, the caller wants to quit, so don't say to
* retry. For forced unmount, if it's a user thread, it
* wants to quit. If it's a recovery thread, the retry
* will happen higher-up on the call stack. Either way,
* don't say to retry.
*/
if (abort == FALSE && ep->error != EINTR &&
!NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) &&
close_type != CLOSE_RESEND &&
close_type != CLOSE_AFTER_RESEND)
*recov = 1;
else
*recov = 0;
if (!ep->error)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
if (res.status) {
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
mutex_enter(&rp->r_statev4_lock);
rp->created_v4 = 0;
mutex_exit(&rp->r_statev4_lock);
resop = &res.array[2];
osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid;
osp->os_valid = 0;
/*
* This removes the reference obtained at OPEN; ie, when the
* open stream structure was created.
*
* We don't have to worry about calling 'open_stream_rele'
* since we our currently holding a reference to the open
* stream which means the count cannot go to 0 with this
* decrement.
*/
ASSERT(osp->os_ref_count >= 2);
osp->os_ref_count--;
if (ep->error == 0) {
/*
* Avoid a deadlock with the r_serial thread waiting for
* os_sync_lock in nfs4_get_otw_cred_by_osp() which might be
* held by us. We will wait in nfs4_attr_cache() for the
* completion of the r_serial thread.
*/
mutex_exit(&osp->os_sync_lock);
*have_sync_lockp = 0;
nfs4_attr_cache(vp,
&res.array[1].nfs_resop4_u.opgetattr.ga_res,
t, cred_otw, TRUE, NULL);
}
NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:"
" returning %d", ep->error));
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
}
/* ARGSUSED */
static int
nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
caller_context_t *ct)
{
rnode4_t *rp;
u_offset_t off;
offset_t diff;
uint_t on;
uint_t n;
caddr_t base;
uint_t flags;
int error;
mntinfo4_t *mi;
rp = VTOR4(vp);
ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
if (IS_SHADOW(vp, rp))
vp = RTOV4(rp);
if (vp->v_type != VREG)
return (EISDIR);
mi = VTOMI4(vp);
if (nfs_zone() != mi->mi_zone)
return (EIO);
if (uiop->uio_resid == 0)
return (0);
if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
return (EINVAL);
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERRP)
error = (rp->r_error ? rp->r_error : EIO);
else
error = 0;
mutex_exit(&rp->r_statelock);
if (error)
return (error);
/*
* Bypass VM if caching has been disabled (e.g., locking) or if
* using client-side direct I/O and the file is not mmap'd and
* there are no cached pages.
*/
if ((vp->v_flag & VNOCACHE) ||
(((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
size_t resid = 0;
return (nfs4read(vp, NULL, uiop->uio_loffset,
uiop->uio_resid, &resid, cr, FALSE, uiop));
}
error = 0;
do {
off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
n = MIN(MAXBSIZE - on, uiop->uio_resid);
if (error = nfs4_validate_caches(vp, cr))
break;
mutex_enter(&rp->r_statelock);
while (rp->r_flags & R4INCACHEPURGE) {
if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
mutex_exit(&rp->r_statelock);
return (EINTR);
}
}
diff = rp->r_size - uiop->uio_loffset;
mutex_exit(&rp->r_statelock);
if (diff <= 0)
break;
if (diff < n)
n = (uint_t)diff;
if (vpm_enable) {
/*
* Copy data.
*/
error = vpm_data_copy(vp, off + on, n, uiop,
1, NULL, 0, S_READ);
} else {
base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
S_READ);
error = uiomove(base + on, n, UIO_READ, uiop);
}
if (!error) {
/*
* If read a whole block or read to eof,
* won't need this buffer again soon.
*/
mutex_enter(&rp->r_statelock);
if (n + on == MAXBSIZE ||
uiop->uio_loffset == rp->r_size)
flags = SM_DONTNEED;
else
flags = 0;
mutex_exit(&rp->r_statelock);
if (vpm_enable) {
error = vpm_sync_pages(vp, off, n, flags);
} else {
error = segmap_release(segkmap, base, flags);
}
} else {
if (vpm_enable) {
(void) vpm_sync_pages(vp, off, n, 0);
} else {
(void) segmap_release(segkmap, base, 0);
}
}
} while (!error && uiop->uio_resid > 0);
return (error);
}
/* ARGSUSED */
static int
nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
caller_context_t *ct)
{
rlim64_t limit = uiop->uio_llimit;
rnode4_t *rp;
u_offset_t off;
caddr_t base;
uint_t flags;
int remainder;
size_t n;
int on;
int error;
int resid;
u_offset_t offset;
mntinfo4_t *mi;
uint_t bsize;
rp = VTOR4(vp);
if (IS_SHADOW(vp, rp))
vp = RTOV4(rp);
if (vp->v_type != VREG)
return (EISDIR);
mi = VTOMI4(vp);
if (nfs_zone() != mi->mi_zone)
return (EIO);
if (uiop->uio_resid == 0)
return (0);
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERRP)
error = (rp->r_error ? rp->r_error : EIO);
else
error = 0;
mutex_exit(&rp->r_statelock);
if (error)
return (error);
if (ioflag & FAPPEND) {
struct vattr va;
/*
* Must serialize if appending.
*/
if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
nfs_rw_exit(&rp->r_rwlock);
if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
INTR4(vp)))
return (EINTR);
}
va.va_mask = AT_SIZE;
error = nfs4getattr(vp, &va, cr);
if (error)
return (error);
uiop->uio_loffset = va.va_size;
}
offset = uiop->uio_loffset + uiop->uio_resid;
if (uiop->uio_loffset < (offset_t)0 || offset < 0)
return (EINVAL);
if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
limit = MAXOFFSET_T;
/*
* Check to make sure that the process will not exceed
* its limit on file size. It is okay to write up to
* the limit, but not beyond. Thus, the write which
* reaches the limit will be short and the next write
* will return an error.
*/
remainder = 0;
if (offset > uiop->uio_llimit) {
remainder = offset - uiop->uio_llimit;
uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset;
if (uiop->uio_resid <= 0) {
proc_t *p = ttoproc(curthread);
uiop->uio_resid += remainder;
mutex_enter(&p->p_lock);
(void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
p->p_rctls, p, RCA_UNSAFE_SIGINFO);
mutex_exit(&p->p_lock);
return (EFBIG);
}
}
/* update the change attribute, if we have a write delegation */
mutex_enter(&rp->r_statev4_lock);
if (rp->r_deleg_type == OPEN_DELEGATE_WRITE)
rp->r_deleg_change++;
mutex_exit(&rp->r_statev4_lock);
if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp)))
return (EINTR);
/*
* Bypass VM if caching has been disabled (e.g., locking) or if
* using client-side direct I/O and the file is not mmap'd and
* there are no cached pages.
*/
if ((vp->v_flag & VNOCACHE) ||
(((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
size_t bufsize;
int count;
u_offset_t org_offset;
stable_how4 stab_comm;
nfs4_fwrite:
if (rp->r_flags & R4STALE) {
resid = uiop->uio_resid;
offset = uiop->uio_loffset;
error = rp->r_error;
/*
* A close may have cleared r_error, if so,
* propagate ESTALE error return properly
*/
if (error == 0)
error = ESTALE;
goto bottom;
}
bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
base = kmem_alloc(bufsize, KM_SLEEP);
do {
if (ioflag & FDSYNC)
stab_comm = DATA_SYNC4;
else
stab_comm = FILE_SYNC4;
resid = uiop->uio_resid;
offset = uiop->uio_loffset;
count = MIN(uiop->uio_resid, bufsize);
org_offset = uiop->uio_loffset;
error = uiomove(base, count, UIO_WRITE, uiop);
if (!error) {
error = nfs4write(vp, base, org_offset,
count, cr, &stab_comm);
if (!error) {
mutex_enter(&rp->r_statelock);
if (rp->r_size < uiop->uio_loffset)
rp->r_size = uiop->uio_loffset;
mutex_exit(&rp->r_statelock);
}
}
} while (!error && uiop->uio_resid > 0);
kmem_free(base, bufsize);
goto bottom;
}
bsize = vp->v_vfsp->vfs_bsize;
do {
off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
n = MIN(MAXBSIZE - on, uiop->uio_resid);
resid = uiop->uio_resid;
offset = uiop->uio_loffset;
if (rp->r_flags & R4STALE) {
error = rp->r_error;
/*
* A close may have cleared r_error, if so,
* propagate ESTALE error return properly
*/
if (error == 0)
error = ESTALE;
break;
}
/*
* Don't create dirty pages faster than they
* can be cleaned so that the system doesn't
* get imbalanced. If the async queue is
* maxed out, then wait for it to drain before
* creating more dirty pages. Also, wait for
* any threads doing pagewalks in the vop_getattr
* entry points so that they don't block for
* long periods.
*/
mutex_enter(&rp->r_statelock);
while ((mi->mi_max_threads != 0 &&
rp->r_awcount > 2 * mi->mi_max_threads) ||
rp->r_gcount > 0) {
if (INTR4(vp)) {
klwp_t *lwp = ttolwp(curthread);
if (lwp != NULL)
lwp->lwp_nostop++;
if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
mutex_exit(&rp->r_statelock);
if (lwp != NULL)
lwp->lwp_nostop--;
error = EINTR;
goto bottom;
}
if (lwp != NULL)
lwp->lwp_nostop--;
} else
cv_wait(&rp->r_cv, &rp->r_statelock);
}
mutex_exit(&rp->r_statelock);
/*
* Touch the page and fault it in if it is not in core
* before segmap_getmapflt or vpm_data_copy can lock it.
* This is to avoid the deadlock if the buffer is mapped
* to the same file through mmap which we want to write.
*/
uio_prefaultpages((long)n, uiop);
if (vpm_enable) {
/*
* It will use kpm mappings, so no need to
* pass an address.
*/
error = writerp4(rp, NULL, n, uiop, 0);
} else {
if (segmap_kpm) {
int pon = uiop->uio_loffset & PAGEOFFSET;
size_t pn = MIN(PAGESIZE - pon,
uiop->uio_resid);
int pagecreate;
mutex_enter(&rp->r_statelock);
pagecreate = (pon == 0) && (pn == PAGESIZE ||
uiop->uio_loffset + pn >= rp->r_size);
mutex_exit(&rp->r_statelock);
base = segmap_getmapflt(segkmap, vp, off + on,
pn, !pagecreate, S_WRITE);
error = writerp4(rp, base + pon, n, uiop,
pagecreate);
} else {
base = segmap_getmapflt(segkmap, vp, off + on,
n, 0, S_READ);
error = writerp4(rp, base + on, n, uiop, 0);
}
}
if (!error) {
if (mi->mi_flags & MI4_NOAC)
flags = SM_WRITE;
else if ((uiop->uio_loffset % bsize) == 0 ||
IS_SWAPVP(vp)) {
/*
* Have written a whole block.
* Start an asynchronous write
* and mark the buffer to
* indicate that it won't be
* needed again soon.
*/
flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
} else
flags = 0;
if ((ioflag & (FSYNC|FDSYNC)) ||
(rp->r_flags & R4OUTOFSPACE)) {
flags &= ~SM_ASYNC;
flags |= SM_WRITE;
}
if (vpm_enable) {
error = vpm_sync_pages(vp, off, n, flags);
} else {
error = segmap_release(segkmap, base, flags);
}
} else {
if (vpm_enable) {
(void) vpm_sync_pages(vp, off, n, 0);
} else {
(void) segmap_release(segkmap, base, 0);
}
/*
* In the event that we got an access error while
* faulting in a page for a write-only file just
* force a write.
*/
if (error == EACCES)
goto nfs4_fwrite;
}
} while (!error && uiop->uio_resid > 0);
bottom:
if (error) {
uiop->uio_resid = resid + remainder;
uiop->uio_loffset = offset;
} else {
uiop->uio_resid += remainder;
mutex_enter(&rp->r_statev4_lock);
if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
gethrestime(&rp->r_attr.va_mtime);
rp->r_attr.va_ctime = rp->r_attr.va_mtime;
}
mutex_exit(&rp->r_statev4_lock);
}
nfs_rw_exit(&rp->r_lkserlock);
return (error);
}
/*
* Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
*/
static int
nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
int flags, cred_t *cr)
{
struct buf *bp;
int error;
page_t *savepp;
uchar_t fsdata;
stable_how4 stab_comm;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
bp = pageio_setup(pp, len, vp, flags);
ASSERT(bp != NULL);
/*
* pageio_setup should have set b_addr to 0. This
* is correct since we want to do I/O on a page
* boundary. bp_mapin will use this addr to calculate
* an offset, and then set b_addr to the kernel virtual
* address it allocated for us.
*/
ASSERT(bp->b_un.b_addr == 0);
bp->b_edev = 0;
bp->b_dev = 0;
bp->b_lblkno = lbtodb(off);
bp->b_file = vp;
bp->b_offset = (offset_t)off;
bp_mapin(bp);
if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
freemem > desfree)
stab_comm = UNSTABLE4;
else
stab_comm = FILE_SYNC4;
error = nfs4_bio(bp, &stab_comm, cr, FALSE);
bp_mapout(bp);
pageio_done(bp);
if (stab_comm == UNSTABLE4)
fsdata = C_DELAYCOMMIT;
else
fsdata = C_NOCOMMIT;
savepp = pp;
do {
pp->p_fsdata = fsdata;
} while ((pp = pp->p_next) != savepp);
return (error);
}
/*
*/
static int
nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr)
{
nfs4_open_owner_t *oop;
nfs4_open_stream_t *osp;
rnode4_t *rp = VTOR4(vp);
mntinfo4_t *mi = VTOMI4(vp);
int reopen_needed;
ASSERT(nfs_zone() == mi->mi_zone);
oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
if (!oop)
return (EIO);
/* returns with 'os_sync_lock' held */
osp = find_open_stream(oop, rp);
if (!osp) {
open_owner_rele(oop);
return (EIO);
}
if (osp->os_failed_reopen) {
mutex_exit(&osp->os_sync_lock);
open_stream_rele(osp, rp);
open_owner_rele(oop);
return (EIO);
}
/*
* Determine whether a reopen is needed. If this
* is a delegation open stream, then the os_delegation bit
* should be set.
*/
reopen_needed = osp->os_delegation;
mutex_exit(&osp->os_sync_lock);
open_owner_rele(oop);
if (reopen_needed) {
nfs4_error_zinit(ep);
nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE);
mutex_enter(&osp->os_sync_lock);
if (ep->error || ep->stat || osp->os_failed_reopen) {
mutex_exit(&osp->os_sync_lock);
open_stream_rele(osp, rp);
return (EIO);
}
mutex_exit(&osp->os_sync_lock);
}
open_stream_rele(osp, rp);
return (0);
}
/*
* Write to file. Writes to remote server in largest size
* chunks that the server can handle. Write is synchronous.
*/
static int
nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
stable_how4 *stab_comm)
{
mntinfo4_t *mi;
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
WRITE4args *wargs;
WRITE4res *wres;
nfs_argop4 argop[2];
nfs_resop4 *resop;
int tsize;
stable_how4 stable;
rnode4_t *rp;
int doqueue = 1;
bool_t needrecov;
nfs4_recov_state_t recov_state;
nfs4_stateid_types_t sid_types;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
int recov;
rp = VTOR4(vp);
mi = VTOMI4(vp);
ASSERT(nfs_zone() == mi->mi_zone);
stable = *stab_comm;
*stab_comm = FILE_SYNC4;
needrecov = FALSE;
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
nfs4_init_stateid_types(&sid_types);
/* Is curthread the recovery thread? */
mutex_enter(&mi->mi_lock);
recov = (mi->mi_recovthread == curthread);
mutex_exit(&mi->mi_lock);
recov_retry:
args.ctag = TAG_WRITE;
args.array_len = 2;
args.array = argop;
if (!recov) {
e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
&recov_state, NULL);
if (e.error)
return (e.error);
}
/* 0. putfh target fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
/* 1. write */
nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types);
do {
wargs->offset = (offset4)offset;
wargs->data_val = base;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
if ((vp->v_flag & VNOCACHE) ||
(rp->r_flags & R4DIRECTIO) ||
(mi->mi_flags & MI4_DIRECTIO))
tsize = MIN(mi->mi_stsize, count);
else
tsize = MIN(mi->mi_curwrite, count);
wargs->data_len = (uint_t)tsize;
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
if (!recov) {
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (e.error && !needrecov) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
&recov_state, needrecov);
return (e.error);
}
} else {
if (e.error)
return (e.error);
}
/*
* Do handling of OLD_STATEID outside
* of the normal recovery framework.
*
* If write receives a BAD stateid error while using a
* delegation stateid, retry using the open stateid (if it
* exists). If it doesn't have an open stateid, reopen the
* file first, then retry.
*/
if (!e.error && res.status == NFS4ERR_OLD_STATEID &&
sid_types.cur_sid_type != SPEC_SID) {
nfs4_save_stateid(&wargs->stateid, &sid_types);
if (!recov)
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
&recov_state, needrecov);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto recov_retry;
} else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
sid_types.cur_sid_type == DEL_SID) {
nfs4_save_stateid(&wargs->stateid, &sid_types);
mutex_enter(&rp->r_statev4_lock);
rp->r_deleg_return_pending = TRUE;
mutex_exit(&rp->r_statev4_lock);
if (nfs4rdwr_check_osid(vp, &e, cr)) {
if (!recov)
nfs4_end_fop(mi, vp, NULL, OH_WRITE,
&recov_state, needrecov);
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
return (EIO);
}
if (!recov)
nfs4_end_fop(mi, vp, NULL, OH_WRITE,
&recov_state, needrecov);
/* hold needed for nfs4delegreturn_thread */
VN_HOLD(vp);
nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
NFS4_DR_DISCARD), FALSE);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto recov_retry;
}
if (needrecov) {
bool_t abort;
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4write: client got error %d, res.status %d"
", so start recovery", e.error, res.status));
abort = nfs4_start_recovery(&e,
VTOMI4(vp), vp, NULL, &wargs->stateid,
NULL, OP_WRITE, NULL, NULL, NULL);
if (!e.error) {
e.error = geterrno4(res.status);
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
}
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
&recov_state, needrecov);
if (abort == FALSE)
goto recov_retry;
return (e.error);
}
if (res.status) {
e.error = geterrno4(res.status);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
if (!recov)
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
&recov_state, needrecov);
return (e.error);
}
resop = &res.array[1]; /* write res */
wres = &resop->nfs_resop4_u.opwrite;
if ((int)wres->count > tsize) {
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
zcmn_err(getzoneid(), CE_WARN,
"nfs4write: server wrote %u, requested was %u",
(int)wres->count, tsize);
if (!recov)
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
&recov_state, needrecov);
return (EIO);
}
if (wres->committed == UNSTABLE4) {
*stab_comm = UNSTABLE4;
if (wargs->stable == DATA_SYNC4 ||
wargs->stable == FILE_SYNC4) {
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
zcmn_err(getzoneid(), CE_WARN,
"nfs4write: server %s did not commit "
"to stable storage",
rp->r_server->sv_hostname);
if (!recov)
nfs4_end_fop(VTOMI4(vp), vp, NULL,
OH_WRITE, &recov_state, needrecov);
return (EIO);
}
}
tsize = (int)wres->count;
count -= tsize;
base += tsize;
offset += tsize;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
tsize;
mutex_exit(&mi->mi_lock);
}
lwp_stat_update(LWP_STAT_OUBLK, 1);
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4HAVEVERF) {
if (rp->r_writeverf != wres->writeverf) {
nfs4_set_mod(vp);
rp->r_writeverf = wres->writeverf;
}
} else {
rp->r_writeverf = wres->writeverf;
rp->r_flags |= R4HAVEVERF;
}
PURGE_ATTRCACHE4_LOCKED(rp);
rp->r_flags |= R4WRITEMODIFIED;
gethrestime(&rp->r_attr.va_mtime);
rp->r_attr.va_ctime = rp->r_attr.va_mtime;
mutex_exit(&rp->r_statelock);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
} while (count);
if (!recov)
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state,
needrecov);
return (e.error);
}
/*
* Read from a file. Reads data in largest chunks our interface can handle.
*/
static int
nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count,
size_t *residp, cred_t *cr, bool_t async, struct uio *uiop)
{
mntinfo4_t *mi;
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
READ4args *rargs;
nfs_argop4 argop[2];
int tsize;
int doqueue;
rnode4_t *rp;
int data_len;
bool_t is_eof;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
nfs4_stateid_types_t sid_types;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
rp = VTOR4(vp);
mi = VTOMI4(vp);
doqueue = 1;
ASSERT(nfs_zone() == mi->mi_zone);
args.ctag = async ? TAG_READAHEAD : TAG_READ;
args.array_len = 2;
args.array = argop;
nfs4_init_stateid_types(&sid_types);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
e.error = nfs4_start_fop(mi, vp, NULL, OH_READ,
&recov_state, NULL);
if (e.error)
return (e.error);
/* putfh target fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
/* read */
argop[1].argop = OP_READ;
rargs = &argop[1].nfs_argop4_u.opread;
rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
OP_READ, &sid_types, async);
do {
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
"nfs4read: %s call, rp %s",
needrecov ? "recov" : "first",
rnode4info(rp)));
if ((vp->v_flag & VNOCACHE) ||
(rp->r_flags & R4DIRECTIO) ||
(mi->mi_flags & MI4_DIRECTIO))
tsize = MIN(mi->mi_tsize, count);
else
tsize = MIN(mi->mi_curread, count);
rargs->offset = (offset4)offset;
rargs->count = (count4)tsize;
rargs->res_data_val_alt = NULL;
rargs->res_mblk = NULL;
rargs->res_uiop = NULL;
rargs->res_maxsize = 0;
rargs->wlist = NULL;
if (uiop)
rargs->res_uiop = uiop;
else
rargs->res_data_val_alt = base;
rargs->res_maxsize = tsize;
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
#ifdef DEBUG
if (nfs4read_error_inject) {
res.status = nfs4read_error_inject;
nfs4read_error_inject = 0;
}
#endif
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (e.error != 0 && !needrecov) {
nfs4_end_fop(mi, vp, NULL, OH_READ,
&recov_state, needrecov);
return (e.error);
}
/*
* Do proper retry for OLD and BAD stateid errors outside
* of the normal recovery framework. There are two differences
* between async and sync reads. The first is that we allow
* retry on BAD_STATEID for async reads, but not sync reads.
* The second is that we mark the file dead for a failed
* attempt with a special stateid for sync reads, but just
* return EIO for async reads.
*
* If a sync read receives a BAD stateid error while using a
* delegation stateid, retry using the open stateid (if it
* exists). If it doesn't have an open stateid, reopen the
* file first, then retry.
*/
if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID ||
res.status == NFS4ERR_BAD_STATEID) && async) {
nfs4_end_fop(mi, vp, NULL, OH_READ,
&recov_state, needrecov);
if (sid_types.cur_sid_type == SPEC_SID) {
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
return (EIO);
}
nfs4_save_stateid(&rargs->stateid, &sid_types);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto recov_retry;
} else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
!async && sid_types.cur_sid_type != SPEC_SID) {
nfs4_save_stateid(&rargs->stateid, &sid_types);
nfs4_end_fop(mi, vp, NULL, OH_READ,
&recov_state, needrecov);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto recov_retry;
} else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
sid_types.cur_sid_type == DEL_SID) {
nfs4_save_stateid(&rargs->stateid, &sid_types);
mutex_enter(&rp->r_statev4_lock);
rp->r_deleg_return_pending = TRUE;
mutex_exit(&rp->r_statev4_lock);
if (nfs4rdwr_check_osid(vp, &e, cr)) {
nfs4_end_fop(mi, vp, NULL, OH_READ,
&recov_state, needrecov);
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
return (EIO);
}
nfs4_end_fop(mi, vp, NULL, OH_READ,
&recov_state, needrecov);
/* hold needed for nfs4delegreturn_thread */
VN_HOLD(vp);
nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
NFS4_DR_DISCARD), FALSE);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto recov_retry;
}
if (needrecov) {
bool_t abort;
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4read: initiating recovery\n"));
abort = nfs4_start_recovery(&e,
mi, vp, NULL, &rargs->stateid,
NULL, OP_READ, NULL, NULL, NULL);
nfs4_end_fop(mi, vp, NULL, OH_READ,
&recov_state, needrecov);
/*
* Do not retry if we got OLD_STATEID using a special
* stateid. This avoids looping with a broken server.
*/
if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
sid_types.cur_sid_type == SPEC_SID)
abort = TRUE;
if (abort == FALSE) {
/*
* Need to retry all possible stateids in
* case the recovery error wasn't stateid
* related or the stateids have become
* stale (server reboot).
*/
nfs4_init_stateid_types(&sid_types);
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
goto recov_retry;
}
if (!e.error) {
e.error = geterrno4(res.status);
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
}
return (e.error);
}
if (res.status) {
e.error = geterrno4(res.status);
nfs4_end_fop(mi, vp, NULL, OH_READ,
&recov_state, needrecov);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return (e.error);
}
data_len = res.array[1].nfs_resop4_u.opread.data_len;
count -= data_len;
if (base)
base += data_len;
offset += data_len;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len;
mutex_exit(&mi->mi_lock);
}
lwp_stat_update(LWP_STAT_INBLK, 1);
is_eof = res.array[1].nfs_resop4_u.opread.eof;
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
} while (count && !is_eof);
*residp = count;
nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov);
return (e.error);
}
/* ARGSUSED */
static int
nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
caller_context_t *ct)
{
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
switch (cmd) {
case _FIODIRECTIO:
return (nfs4_directio(vp, (int)arg, cr));
default:
return (ENOTTY);
}
}
/* ARGSUSED */
int
nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
caller_context_t *ct)
{
int error;
rnode4_t *rp = VTOR4(vp);
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
/*
* If it has been specified that the return value will
* just be used as a hint, and we are only being asked
* for size, fsid or rdevid, then return the client's
* notion of these values without checking to make sure
* that the attribute cache is up to date.
* The whole point is to avoid an over the wire GETATTR
* call.
*/
if (flags & ATTR_HINT) {
if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) {
mutex_enter(&rp->r_statelock);
if (vap->va_mask & AT_SIZE)
vap->va_size = rp->r_size;
if (vap->va_mask & AT_FSID)
vap->va_fsid = rp->r_attr.va_fsid;
if (vap->va_mask & AT_RDEV)
vap->va_rdev = rp->r_attr.va_rdev;
mutex_exit(&rp->r_statelock);
return (0);
}
}
/*
* Only need to flush pages if asking for the mtime
* and if there any dirty pages or any outstanding
* asynchronous (write) requests for this file.
*/
if (vap->va_mask & AT_MTIME) {
rp = VTOR4(vp);
if (nfs4_has_pages(vp)) {
mutex_enter(&rp->r_statev4_lock);
if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) {
mutex_exit(&rp->r_statev4_lock);
if (rp->r_flags & R4DIRTY ||
rp->r_awcount > 0) {
mutex_enter(&rp->r_statelock);
rp->r_gcount++;
mutex_exit(&rp->r_statelock);
error =
nfs4_putpage(vp, (u_offset_t)0,
0, 0, cr, NULL);
mutex_enter(&rp->r_statelock);
if (error && (error == ENOSPC ||
error == EDQUOT)) {
if (!rp->r_error)
rp->r_error = error;
}
if (--rp->r_gcount == 0)
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
}
} else {
mutex_exit(&rp->r_statev4_lock);
}
}
}
return (nfs4getattr(vp, vap, cr));
}
int
nfs4_compare_modes(mode_t from_server, mode_t on_client)
{
/*
* If these are the only two bits cleared
* on the server then return 0 (OK) else
* return 1 (BAD).
*/
on_client &= ~(S_ISUID|S_ISGID);
if (on_client == from_server)
return (0);
else
return (1);
}
/*ARGSUSED4*/
static int
nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
caller_context_t *ct)
{
int error;
if (vap->va_mask & AT_NOSET)
return (EINVAL);
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
/*
* Don't call secpolicy_vnode_setattr, the client cannot
* use its cached attributes to make security decisions
* as the server may be faking mode bits or mapping uid/gid.
* Always just let the server to the checking.
* If we provide the ability to remove basic priviledges
* to setattr (e.g. basic without chmod) then we will
* need to add a check here before calling the server.
*/
error = nfs4setattr(vp, vap, flags, cr, NULL);
if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
vnevent_truncate(vp, ct);
return (error);
}
/*
* To replace the "guarded" version 3 setattr, we use two types of compound
* setattr requests:
* 1. The "normal" setattr, used when the size of the file isn't being
* changed - { Putfh <fh>; Setattr; Getattr }/
* 2. If the size is changed, precede Setattr with: Getattr; Verify
* with only ctime as the argument. If the server ctime differs from
* what is cached on the client, the verify will fail, but we would
* already have the ctime from the preceding getattr, so just set it
* and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify;
* Setattr; Getattr }.
*
* The vsecattr_t * input parameter will be non-NULL if ACLs are being set in
* this setattr and NULL if they are not.
*/
static int
nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
vsecattr_t *vsap)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res, *resp = NULL;
nfs4_ga_res_t *garp = NULL;
int numops = 3; /* { Putfh; Setattr; Getattr } */
nfs_argop4 argop[5];
int verify_argop = -1;
int setattr_argop = 1;
nfs_resop4 *resop;
vattr_t va;
rnode4_t *rp;
int doqueue = 1;
uint_t mask = vap->va_mask;
mode_t omode;
vsecattr_t *vsp;
timestruc_t ctime;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
nfs4_stateid_types_t sid_types;
stateid4 stateid;
hrtime_t t;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
servinfo4_t *svp;
bitmap4 supp_attrs;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
rp = VTOR4(vp);
nfs4_init_stateid_types(&sid_types);
/*
* Only need to flush pages if there are any pages and
* if the file is marked as dirty in some fashion. The
* file must be flushed so that we can accurately
* determine the size of the file and the cached data
* after the SETATTR returns. A file is considered to
* be dirty if it is either marked with R4DIRTY, has
* outstanding i/o's active, or is mmap'd. In this
* last case, we can't tell whether there are dirty
* pages, so we flush just to be sure.
*/
if (nfs4_has_pages(vp) &&
((rp->r_flags & R4DIRTY) ||
rp->r_count > 0 ||
rp->r_mapcnt > 0)) {
ASSERT(vp->v_type != VCHR);
e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = e.error;
mutex_exit(&rp->r_statelock);
}
}
if (mask & AT_SIZE) {
/*
* Verification setattr compound for non-deleg AT_SIZE:
* { Putfh; Getattr; Verify; Setattr; Getattr }
* Set ctime local here (outside the do_again label)
* so that subsequent retries (after failed VERIFY)
* will use ctime from GETATTR results (from failed
* verify compound) as VERIFY arg.
* If file has delegation, then VERIFY(time_metadata)
* is of little added value, so don't bother.
*/
mutex_enter(&rp->r_statev4_lock);
if (rp->r_deleg_type == OPEN_DELEGATE_NONE ||
rp->r_deleg_return_pending) {
numops = 5;
ctime = rp->r_attr.va_ctime;
}
mutex_exit(&rp->r_statev4_lock);
}
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
args.ctag = TAG_SETATTR;
do_again:
recov_retry:
setattr_argop = numops - 2;
args.array = argop;
args.array_len = numops;
e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
if (e.error)
return (e.error);
/* putfh target fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
if (numops == 5) {
/*
* We only care about the ctime, but need to get mtime
* and size for proper cache update.
*/
/* getattr */
argop[1].argop = OP_GETATTR;
argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
/* verify - set later in loop */
verify_argop = 2;
}
/* setattr */
svp = rp->r_server;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
supp_attrs = svp->sv_supp_attrs;
nfs_rw_exit(&svp->sv_lock);
nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr,
supp_attrs, &e.error, &sid_types);
stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid;
if (e.error) {
/* req time field(s) overflow - return immediately */
nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
opsetattr.obj_attributes);
return (e.error);
}
omode = rp->r_attr.va_mode;
/* getattr */
argop[numops-1].argop = OP_GETATTR;
argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
/*
* If we are setting the ACL (indicated only by vsap != NULL), request
* the ACL in this getattr. The ACL returned from this getattr will be
* used in updating the ACL cache.
*/
if (vsap != NULL)
argop[numops-1].nfs_argop4_u.opgetattr.attr_request |=
FATTR4_ACL_MASK;
argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
/*
* setattr iterates if the object size is set and the cached ctime
* does not match the file ctime. In that case, verify the ctime first.
*/
do {
if (verify_argop != -1) {
/*
* Verify that the ctime match before doing setattr.
*/
va.va_mask = AT_CTIME;
va.va_ctime = ctime;
svp = rp->r_server;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
supp_attrs = svp->sv_supp_attrs;
nfs_rw_exit(&svp->sv_lock);
e.error = nfs4args_verify(&argop[verify_argop], &va,
OP_VERIFY, supp_attrs);
if (e.error) {
/* req time field(s) overflow - return */
nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
needrecov);
break;
}
}
doqueue = 1;
t = gethrtime();
rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
/*
* Purge the access cache and ACL cache if changing either the
* owner of the file, the group owner, or the mode. These may
* change the access permissions of the file, so purge old
* information and start over again.
*/
if (mask & (AT_UID | AT_GID | AT_MODE)) {
(void) nfs4_access_purge_rp(rp);
if (rp->r_secattr != NULL) {
mutex_enter(&rp->r_statelock);
vsp = rp->r_secattr;
rp->r_secattr = NULL;
mutex_exit(&rp->r_statelock);
if (vsp != NULL)
nfs4_acl_free_cache(vsp);
}
}
/*
* If res.array_len == numops, then everything succeeded,
* except for possibly the final getattr. If only the
* last getattr failed, give up, and don't try recovery.
*/
if (res.array_len == numops) {
nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
needrecov);
if (! e.error)
resp = &res;
break;
}
/*
* if either rpc call failed or completely succeeded - done
*/
needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
if (e.error) {
PURGE_ATTRCACHE4(vp);
if (!needrecov) {
nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
needrecov);
break;
}
}
/*
* Do proper retry for OLD_STATEID outside of the normal
* recovery framework.
*/
if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
sid_types.cur_sid_type != SPEC_SID &&
sid_types.cur_sid_type != NO_SID) {
nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
needrecov);
nfs4_save_stateid(&stateid, &sid_types);
nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
opsetattr.obj_attributes);
if (verify_argop != -1) {
nfs4args_verify_free(&argop[verify_argop]);
verify_argop = -1;
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto recov_retry;
}
if (needrecov) {
bool_t abort;
abort = nfs4_start_recovery(&e,
VTOMI4(vp), vp, NULL, NULL, NULL,
OP_SETATTR, NULL, NULL, NULL);
nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
needrecov);
/*
* Do not retry if we failed with OLD_STATEID using
* a special stateid. This is done to avoid looping
* with a broken server.
*/
if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
(sid_types.cur_sid_type == SPEC_SID ||
sid_types.cur_sid_type == NO_SID))
abort = TRUE;
if (!e.error) {
if (res.status == NFS4ERR_BADOWNER)
nfs4_log_badowner(VTOMI4(vp),
OP_SETATTR);
e.error = geterrno4(res.status);
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
}
nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
opsetattr.obj_attributes);
if (verify_argop != -1) {
nfs4args_verify_free(&argop[verify_argop]);
verify_argop = -1;
}
if (abort == FALSE) {
/*
* Need to retry all possible stateids in
* case the recovery error wasn't stateid
* related or the stateids have become
* stale (server reboot).
*/
nfs4_init_stateid_types(&sid_types);
goto recov_retry;
}
return (e.error);
}
/*
* Need to call nfs4_end_op before nfs4getattr to
* avoid potential nfs4_start_op deadlock. See RFE
* 4777612. Calls to nfs4_invalidate_pages() and
* nfs4_purge_stale_fh() might also generate over the
* wire calls which my cause nfs4_start_op() deadlock.
*/
nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
/*
* Check to update lease.
*/
resp = &res;
if (res.status == NFS4_OK) {
break;
}
/*
* Check if verify failed to see if try again
*/
if ((verify_argop == -1) || (res.array_len != 3)) {
/*
* can't continue...
*/
if (res.status == NFS4ERR_BADOWNER)
nfs4_log_badowner(VTOMI4(vp), OP_SETATTR);
e.error = geterrno4(res.status);
} else {
/*
* When the verify request fails, the client ctime is
* not in sync with the server. This is the same as
* the version 3 "not synchronized" error, and we
* handle it in a similar manner (XXX do we need to???).
* Use the ctime returned in the first getattr for
* the input to the next verify.
* If we couldn't get the attributes, then we give up
* because we can't complete the operation as required.
*/
garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
}
if (e.error) {
PURGE_ATTRCACHE4(vp);
nfs4_purge_stale_fh(e.error, vp, cr);
} else {
/*
* retry with a new verify value
*/
ctime = garp->n4g_va.va_ctime;
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
resp = NULL;
}
if (!e.error) {
nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
opsetattr.obj_attributes);
if (verify_argop != -1) {
nfs4args_verify_free(&argop[verify_argop]);
verify_argop = -1;
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto do_again;
}
} while (!e.error);
if (e.error) {
/*
* If we are here, rfs4call has an irrecoverable error - return
*/
nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
opsetattr.obj_attributes);
if (verify_argop != -1) {
nfs4args_verify_free(&argop[verify_argop]);
verify_argop = -1;
}
if (resp)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
return (e.error);
}
/*
* If changing the size of the file, invalidate
* any local cached data which is no longer part
* of the file. We also possibly invalidate the
* last page in the file. We could use
* pvn_vpzero(), but this would mark the page as
* modified and require it to be written back to
* the server for no particularly good reason.
* This way, if we access it, then we bring it
* back in. A read should be cheaper than a
* write.
*/
if (mask & AT_SIZE) {
nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr);
}
/* either no error or one of the postop getattr failed */
/*
* XXX Perform a simplified version of wcc checking. Instead of
* have another getattr to get pre-op, just purge cache if
* any of the ops prior to and including the getattr failed.
* If the getattr succeeded then update the attrcache accordingly.
*/
garp = NULL;
if (res.status == NFS4_OK) {
/*
* Last getattr
*/
resop = &res.array[numops - 1];
garp = &resop->nfs_resop4_u.opgetattr.ga_res;
}
/*
* In certain cases, nfs4_update_attrcache() will purge the attrcache,
* rather than filling it. See the function itself for details.
*/
e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
if (garp != NULL) {
if (garp->n4g_resbmap & FATTR4_ACL_MASK) {
nfs4_acl_fill_cache(rp, &garp->n4g_vsa);
vs_ace4_destroy(&garp->n4g_vsa);
} else {
if (vsap != NULL) {
/*
* The ACL was supposed to be set and to be
* returned in the last getattr of this
* compound, but for some reason the getattr
* result doesn't contain the ACL. In this
* case, purge the ACL cache.
*/
if (rp->r_secattr != NULL) {
mutex_enter(&rp->r_statelock);
vsp = rp->r_secattr;
rp->r_secattr = NULL;
mutex_exit(&rp->r_statelock);
if (vsp != NULL)
nfs4_acl_free_cache(vsp);
}
}
}
}
if (res.status == NFS4_OK && (mask & AT_SIZE)) {
/*
* Set the size, rather than relying on getting it updated
* via a GETATTR. With delegations the client tries to
* suppress GETATTR calls.
*/
mutex_enter(&rp->r_statelock);
rp->r_size = vap->va_size;
mutex_exit(&rp->r_statelock);
}
/*
* Can free up request args and res
*/
nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
opsetattr.obj_attributes);
if (verify_argop != -1) {
nfs4args_verify_free(&argop[verify_argop]);
verify_argop = -1;
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
/*
* Some servers will change the mode to clear the setuid
* and setgid bits when changing the uid or gid. The
* client needs to compensate appropriately.
*/
if (mask & (AT_UID | AT_GID)) {
int terror, do_setattr;
do_setattr = 0;
va.va_mask = AT_MODE;
terror = nfs4getattr(vp, &va, cr);
if (!terror &&
(((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
(!(mask & AT_MODE) && va.va_mode != omode))) {
va.va_mask = AT_MODE;
if (mask & AT_MODE) {
/*
* We asked the mode to be changed and what
* we just got from the server in getattr is
* not what we wanted it to be, so set it now.
*/
va.va_mode = vap->va_mode;
do_setattr = 1;
} else {
/*
* We did not ask the mode to be changed,
* Check to see that the server just cleared
* I_SUID and I_GUID from it. If not then
* set mode to omode with UID/GID cleared.
*/
if (nfs4_compare_modes(va.va_mode, omode)) {
omode &= ~(S_ISUID|S_ISGID);
va.va_mode = omode;
do_setattr = 1;
}
}
if (do_setattr)
(void) nfs4setattr(vp, &va, 0, cr, NULL);
}
}
return (e.error);
}
/* ARGSUSED */
static int
nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
int doqueue;
uint32_t acc, resacc, argacc;
rnode4_t *rp;
cred_t *cred, *ncr, *ncrfree = NULL;
nfs4_access_type_t cacc;
int num_ops;
nfs_argop4 argop[3];
nfs_resop4 *resop;
bool_t needrecov = FALSE, do_getattr;
nfs4_recov_state_t recov_state;
int rpc_error;
hrtime_t t;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
mntinfo4_t *mi = VTOMI4(vp);
if (nfs_zone() != mi->mi_zone)
return (EIO);
acc = 0;
if (mode & VREAD)
acc |= ACCESS4_READ;
if (mode & VWRITE) {
if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type))
return (EROFS);
if (vp->v_type == VDIR)
acc |= ACCESS4_DELETE;
acc |= ACCESS4_MODIFY | ACCESS4_EXTEND;
}
if (mode & VEXEC) {
if (vp->v_type == VDIR)
acc |= ACCESS4_LOOKUP;
else
acc |= ACCESS4_EXECUTE;
}
if (VTOR4(vp)->r_acache != NULL) {
e.error = nfs4_validate_caches(vp, cr);
if (e.error)
return (e.error);
}
rp = VTOR4(vp);
if (vp->v_type == VDIR)
argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY |
ACCESS4_EXTEND | ACCESS4_LOOKUP;
else
argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND |
ACCESS4_EXECUTE;
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
cred = cr;
/*
* ncr and ncrfree both initially
* point to the memory area returned
* by crnetadjust();
* ncrfree not NULL when exiting means
* that we need to release it
*/
ncr = crnetadjust(cred);
ncrfree = ncr;
tryagain:
cacc = nfs4_access_check(rp, acc, cred);
if (cacc == NFS4_ACCESS_ALLOWED) {
if (ncrfree != NULL)
crfree(ncrfree);
return (0);
}
if (cacc == NFS4_ACCESS_DENIED) {
/*
* If the cred can be adjusted, try again
* with the new cred.
*/
if (ncr != NULL) {
cred = ncr;
ncr = NULL;
goto tryagain;
}
if (ncrfree != NULL)
crfree(ncrfree);
return (EACCES);
}
recov_retry:
/*
* Don't take with r_statev4_lock here. r_deleg_type could
* change as soon as lock is released. Since it is an int,
* there is no atomicity issue.
*/
do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE);
num_ops = do_getattr ? 3 : 2;
args.ctag = TAG_ACCESS;
args.array_len = num_ops;
args.array = argop;
if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS,
&recov_state, NULL)) {
if (ncrfree != NULL)
crfree(ncrfree);
return (e.error);
}
/* putfh target fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
/* access */
argop[1].argop = OP_ACCESS;
argop[1].nfs_argop4_u.opaccess.access = argacc;
/* getattr */
if (do_getattr) {
argop[2].argop = OP_GETATTR;
argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[2].nfs_argop4_u.opgetattr.mi = mi;
}
NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
"nfs4_access: %s call, rp %s", needrecov ? "recov" : "first",
rnode4info(VTOR4(vp))));
doqueue = 1;
t = gethrtime();
rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e);
rpc_error = e.error;
needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
if (needrecov) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4_access: initiating recovery\n"));
if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS,
&recov_state, needrecov);
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
goto recov_retry;
}
}
nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov);
if (e.error)
goto out;
if (res.status) {
e.error = geterrno4(res.status);
/*
* This might generate over the wire calls throught
* nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
* here to avoid a deadlock.
*/
nfs4_purge_stale_fh(e.error, vp, cr);
goto out;
}
resop = &res.array[1]; /* access res */
resacc = resop->nfs_resop4_u.opaccess.access;
if (do_getattr) {
resop++; /* getattr res */
nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res,
t, cr, FALSE, NULL);
}
if (!e.error) {
nfs4_access_cache(rp, argacc, resacc, cred);
/*
* we just cached results with cred; if cred is the
* adjusted credentials from crnetadjust, we do not want
* to release them before exiting: hence setting ncrfree
* to NULL
*/
if (cred != cr)
ncrfree = NULL;
/* XXX check the supported bits too? */
if ((acc & resacc) != acc) {
/*
* The following code implements the semantic
* that a setuid root program has *at least* the
* permissions of the user that is running the
* program. See rfs3call() for more portions
* of the implementation of this functionality.
*/
/* XXX-LP */
if (ncr != NULL) {
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
cred = ncr;
ncr = NULL;
goto tryagain;
}
e.error = EACCES;
}
}
out:
if (!rpc_error)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
if (ncrfree != NULL)
crfree(ncrfree);
return (e.error);
}
/* ARGSUSED */
static int
nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
int doqueue;
rnode4_t *rp;
nfs_argop4 argop[3];
nfs_resop4 *resop;
READLINK4res *lr_res;
nfs4_ga_res_t *garp;
uint_t len;
char *linkdata;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
hrtime_t t;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
/*
* Can't readlink anything other than a symbolic link.
*/
if (vp->v_type != VLNK)
return (EINVAL);
rp = VTOR4(vp);
if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) {
e.error = nfs4_validate_caches(vp, cr);
if (e.error)
return (e.error);
mutex_enter(&rp->r_statelock);
if (rp->r_symlink.contents != NULL) {
e.error = uiomove(rp->r_symlink.contents,
rp->r_symlink.len, UIO_READ, uiop);
mutex_exit(&rp->r_statelock);
return (e.error);
}
mutex_exit(&rp->r_statelock);
}
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
args.array_len = 3;
args.array = argop;
args.ctag = TAG_READLINK;
e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
if (e.error) {
return (e.error);
}
/* 0. putfh symlink fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
/* 1. readlink */
argop[1].argop = OP_READLINK;
/* 2. getattr */
argop[2].argop = OP_GETATTR;
argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
doqueue = 1;
NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
"nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first",
rnode4info(VTOR4(vp))));
t = gethrtime();
rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
if (needrecov) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4_readlink: initiating recovery\n"));
if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) {
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
needrecov);
goto recov_retry;
}
}
nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
if (e.error)
return (e.error);
/*
* There is an path in the code below which calls
* nfs4_purge_stale_fh(), which may generate otw calls through
* nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
* here to avoid nfs4_start_op() deadlock.
*/
if (res.status && (res.array_len < args.array_len)) {
/*
* either Putfh or Link failed
*/
e.error = geterrno4(res.status);
nfs4_purge_stale_fh(e.error, vp, cr);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return (e.error);
}
resop = &res.array[1]; /* readlink res */
lr_res = &resop->nfs_resop4_u.opreadlink;
/*
* treat symlink names as data
*/
linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL);
if (linkdata != NULL) {
int uio_len = len - 1;
/* len includes null byte, which we won't uiomove */
e.error = uiomove(linkdata, uio_len, UIO_READ, uiop);
if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
mutex_enter(&rp->r_statelock);
if (rp->r_symlink.contents == NULL) {
rp->r_symlink.contents = linkdata;
rp->r_symlink.len = uio_len;
rp->r_symlink.size = len;
mutex_exit(&rp->r_statelock);
} else {
mutex_exit(&rp->r_statelock);
kmem_free(linkdata, len);
}
} else {
kmem_free(linkdata, len);
}
}
if (res.status == NFS4_OK) {
resop++; /* getattr res */
garp = &resop->nfs_resop4_u.opgetattr.ga_res;
}
e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
/*
* The over the wire error for attempting to readlink something
* other than a symbolic link is ENXIO. However, we need to
* return EINVAL instead of ENXIO, so we map it here.
*/
return (e.error == ENXIO ? EINVAL : e.error);
}
/*
* Flush local dirty pages to stable storage on the server.
*
* If FNODSYNC is specified, then there is nothing to do because
* metadata changes are not cached on the client before being
* sent to the server.
*/
/* ARGSUSED */
static int
nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
{
int error;
if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
return (0);
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr);
if (!error)
error = VTOR4(vp)->r_error;
return (error);
}
/*
* Weirdness: if the file was removed or the target of a rename
* operation while it was open, it got renamed instead. Here we
* remove the renamed file.
*/
/* ARGSUSED */
void
nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
{
rnode4_t *rp;
ASSERT(vp != DNLC_NO_VNODE);
rp = VTOR4(vp);
if (IS_SHADOW(vp, rp)) {
sv_inactive(vp);
return;
}
/*
* If this is coming from the wrong zone, we let someone in the right
* zone take care of it asynchronously. We can get here due to
* VN_RELE() being called from pageout() or fsflush(). This call may
* potentially turn into an expensive no-op if, for instance, v_count
* gets incremented in the meantime, but it's still correct.
*/
if (nfs_zone() != VTOMI4(vp)->mi_zone) {
nfs4_async_inactive(vp, cr);
return;
}
/*
* Some of the cleanup steps might require over-the-wire
* operations. Since VOP_INACTIVE can get called as a result of
* other over-the-wire operations (e.g., an attribute cache update
* can lead to a DNLC purge), doing those steps now would lead to a
* nested call to the recovery framework, which can deadlock. So
* do any over-the-wire cleanups asynchronously, in a separate
* thread.
*/
mutex_enter(&rp->r_os_lock);
mutex_enter(&rp->r_statelock);
mutex_enter(&rp->r_statev4_lock);
if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) {
mutex_exit(&rp->r_statev4_lock);
mutex_exit(&rp->r_statelock);
mutex_exit(&rp->r_os_lock);
nfs4_async_inactive(vp, cr);
return;
}
if (rp->r_deleg_type == OPEN_DELEGATE_READ ||
rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
mutex_exit(&rp->r_statev4_lock);
mutex_exit(&rp->r_statelock);
mutex_exit(&rp->r_os_lock);
nfs4_async_inactive(vp, cr);
return;
}
if (rp->r_unldvp != NULL) {
mutex_exit(&rp->r_statev4_lock);
mutex_exit(&rp->r_statelock);
mutex_exit(&rp->r_os_lock);
nfs4_async_inactive(vp, cr);
return;
}
mutex_exit(&rp->r_statev4_lock);
mutex_exit(&rp->r_statelock);
mutex_exit(&rp->r_os_lock);
rp4_addfree(rp, cr);
}
/*
* nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up
* various bits of state. The caller must not refer to vp after this call.
*/
void
nfs4_inactive_otw(vnode_t *vp, cred_t *cr)
{
rnode4_t *rp = VTOR4(vp);
nfs4_recov_state_t recov_state;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
vnode_t *unldvp;
char *unlname;
cred_t *unlcred;
COMPOUND4args_clnt args;
COMPOUND4res_clnt res, *resp;
nfs_argop4 argop[2];
int doqueue;
#ifdef DEBUG
char *name;
#endif
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
ASSERT(!IS_SHADOW(vp, rp));
#ifdef DEBUG
name = fn_name(VTOSV(vp)->sv_name);
NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: "
"release vnode %s", name));
kmem_free(name, MAXNAMELEN);
#endif
if (vp->v_type == VREG) {
bool_t recov_failed = FALSE;
e.error = nfs4close_all(vp, cr);
if (e.error) {
/* Check to see if recovery failed */
mutex_enter(&(VTOMI4(vp)->mi_lock));
if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL)
recov_failed = TRUE;
mutex_exit(&(VTOMI4(vp)->mi_lock));
if (!recov_failed) {
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERR)
recov_failed = TRUE;
mutex_exit(&rp->r_statelock);
}
if (recov_failed) {
NFS4_DEBUG(nfs4_client_recov_debug,
(CE_NOTE, "nfs4_inactive_otw: "
"close failed (recovery failure)"));
}
}
}
redo:
if (rp->r_unldvp == NULL) {
rp4_addfree(rp, cr);
return;
}
/*
* Save the vnode pointer for the directory where the
* unlinked-open file got renamed, then set it to NULL
* to prevent another thread from getting here before
* we're done with the remove. While we have the
* statelock, make local copies of the pertinent rnode
* fields. If we weren't to do this in an atomic way, the
* the unl* fields could become inconsistent with respect
* to each other due to a race condition between this
* code and nfs_remove(). See bug report 1034328.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp == NULL) {
mutex_exit(&rp->r_statelock);
rp4_addfree(rp, cr);
return;
}
unldvp = rp->r_unldvp;
rp->r_unldvp = NULL;
unlname = rp->r_unlname;
rp->r_unlname = NULL;
unlcred = rp->r_unlcred;
rp->r_unlcred = NULL;
mutex_exit(&rp->r_statelock);
/*
* If there are any dirty pages left, then flush
* them. This is unfortunate because they just
* may get thrown away during the remove operation,
* but we have to do this for correctness.
*/
if (nfs4_has_pages(vp) &&
((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
ASSERT(vp->v_type != VCHR);
e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL);
if (e.error) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = e.error;
mutex_exit(&rp->r_statelock);
}
}
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry_remove:
/*
* Do the remove operation on the renamed file
*/
args.ctag = TAG_INACTIVE;
/*
* Remove ops: putfh dir; remove
*/
args.array_len = 2;
args.array = argop;
e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state);
if (e.error) {
kmem_free(unlname, MAXNAMELEN);
crfree(unlcred);
VN_RELE(unldvp);
/*
* Try again; this time around r_unldvp will be NULL, so we'll
* just call rp4_addfree() and return.
*/
goto redo;
}
/* putfh directory */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh;
/* remove */
argop[1].argop = OP_CREMOVE;
argop[1].nfs_argop4_u.opcremove.ctarget = unlname;
doqueue = 1;
resp = &res;
#if 0 /* notyet */
/*
* Can't do this yet. We may be being called from
* dnlc_purge_XXX while that routine is holding a
* mutex lock to the nc_rele list. The calls to
* nfs3_cache_wcc_data may result in calls to
* dnlc_purge_XXX. This will result in a deadlock.
*/
rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
if (e.error) {
PURGE_ATTRCACHE4(unldvp);
resp = NULL;
} else if (res.status) {
e.error = geterrno4(res.status);
PURGE_ATTRCACHE4(unldvp);
/*
* This code is inactive right now
* but if made active there should
* be a nfs4_end_op() call before
* nfs4_purge_stale_fh to avoid start_op()
* deadlock. See BugId: 4948726
*/
nfs4_purge_stale_fh(error, unldvp, cr);
} else {
nfs_resop4 *resop;
REMOVE4res *rm_res;
resop = &res.array[1];
rm_res = &resop->nfs_resop4_u.opremove;
/*
* Update directory cache attribute,
* readdir and dnlc caches.
*/
nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL);
}
#else
rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
PURGE_ATTRCACHE4(unldvp);
#endif
if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) {
if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL,
NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
nfs4_end_op(VTOMI4(unldvp), unldvp, NULL,
&recov_state, TRUE);
goto recov_retry_remove;
}
}
nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE);
/*
* Release stuff held for the remove
*/
VN_RELE(unldvp);
if (!e.error && resp)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
kmem_free(unlname, MAXNAMELEN);
crfree(unlcred);
goto redo;
}
/*
* Remote file system operations having to do with directory manipulation.
*/
/* ARGSUSED3 */
int
nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
int *direntflags, pathname_t *realpnp)
{
int error;
vnode_t *vp, *avp = NULL;
rnode4_t *drp;
*vpp = NULL;
if (nfs_zone() != VTOMI4(dvp)->mi_zone)
return (EPERM);
/*
* if LOOKUP_XATTR, must replace dvp (object) with
* object's attrdir before continuing with lookup
*/
if (flags & LOOKUP_XATTR) {
error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr);
if (error)
return (error);
dvp = avp;
/*
* If lookup is for "", just return dvp now. The attrdir
* has already been activated (from nfs4lookup_xattr), and
* the caller will RELE the original dvp -- not
* the attrdir. So, set vpp and return.
* Currently, when the LOOKUP_XATTR flag is
* passed to VOP_LOOKUP, the name is always empty, and
* shortcircuiting here avoids 3 unneeded lock/unlock
* pairs.
*
* If a non-empty name was provided, then it is the
* attribute name, and it will be looked up below.
*/
if (*nm == '\0') {
*vpp = dvp;
return (0);
}
/*
* The vfs layer never sends a name when asking for the
* attrdir, so we should never get here (unless of course
* name is passed at some time in future -- at which time
* we'll blow up here).
*/
ASSERT(0);
}
drp = VTOR4(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
return (EINTR);
error = nfs4lookup(dvp, nm, vpp, cr, 0);
nfs_rw_exit(&drp->r_rwlock);
/*
* If vnode is a device, create special vnode.
*/
if (!error && ISVDEV((*vpp)->v_type)) {
vp = *vpp;
*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
VN_RELE(vp);
}
return (error);
}
/* ARGSUSED */
static int
nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr)
{
int error;
rnode4_t *drp;
int cflag = ((flags & CREATE_XATTR_DIR) != 0);
mntinfo4_t *mi;
mi = VTOMI4(dvp);
if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) &&
!vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS))
return (EINVAL);
drp = VTOR4(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
return (EINTR);
mutex_enter(&drp->r_statelock);
/*
* If the server doesn't support xattrs just return EINVAL
*/
if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) {
mutex_exit(&drp->r_statelock);
nfs_rw_exit(&drp->r_rwlock);
return (EINVAL);
}
/*
* If there is a cached xattr directory entry,
* use it as long as the attributes are valid. If the
* attributes are not valid, take the simple approach and
* free the cached value and re-fetch a new value.
*
* We don't negative entry cache for now, if we did we
* would need to check if the file has changed on every
* lookup. But xattrs don't exist very often and failing
* an openattr is not much more expensive than and NVERIFY or GETATTR
* so do an openattr over the wire for now.
*/
if (drp->r_xattr_dir != NULL) {
if (ATTRCACHE4_VALID(dvp)) {
VN_HOLD(drp->r_xattr_dir);
*vpp = drp->r_xattr_dir;
mutex_exit(&drp->r_statelock);
nfs_rw_exit(&drp->r_rwlock);
return (0);
}
VN_RELE(drp->r_xattr_dir);
drp->r_xattr_dir = NULL;
}
mutex_exit(&drp->r_statelock);
error = nfs4openattr(dvp, vpp, cflag, cr);
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
static int
nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc)
{
int error;
rnode4_t *drp;
ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
/*
* If lookup is for "", just return dvp. Don't need
* to send it over the wire, look it up in the dnlc,
* or perform any access checks.
*/
if (*nm == '\0') {
VN_HOLD(dvp);
*vpp = dvp;
return (0);
}
/*
* Can't do lookups in non-directories.
*/
if (dvp->v_type != VDIR)
return (ENOTDIR);
/*
* If lookup is for ".", just return dvp. Don't need
* to send it over the wire or look it up in the dnlc,
* just need to check access.
*/
if (nm[0] == '.' && nm[1] == '\0') {
error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
if (error)
return (error);
VN_HOLD(dvp);
*vpp = dvp;
return (0);
}
drp = VTOR4(dvp);
if (!(drp->r_flags & R4LOOKUP)) {
mutex_enter(&drp->r_statelock);
drp->r_flags |= R4LOOKUP;
mutex_exit(&drp->r_statelock);
}
*vpp = NULL;
/*
* Lookup this name in the DNLC. If there is no entry
* lookup over the wire.
*/
if (!skipdnlc)
*vpp = dnlc_lookup(dvp, nm);
if (*vpp == NULL) {
/*
* We need to go over the wire to lookup the name.
*/
return (nfs4lookupnew_otw(dvp, nm, vpp, cr));
}
/*
* We hit on the dnlc
*/
if (*vpp != DNLC_NO_VNODE ||
(dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
/*
* But our attrs may not be valid.
*/
if (ATTRCACHE4_VALID(dvp)) {
error = nfs4_waitfor_purge_complete(dvp);
if (error) {
VN_RELE(*vpp);
*vpp = NULL;
return (error);
}
/*
* If after the purge completes, check to make sure
* our attrs are still valid.
*/
if (ATTRCACHE4_VALID(dvp)) {
/*
* If we waited for a purge we may have
* lost our vnode so look it up again.
*/
VN_RELE(*vpp);
*vpp = dnlc_lookup(dvp, nm);
if (*vpp == NULL)
return (nfs4lookupnew_otw(dvp,
nm, vpp, cr));
/*
* The access cache should almost always hit
*/
error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
if (error) {
VN_RELE(*vpp);
*vpp = NULL;
return (error);
}
if (*vpp == DNLC_NO_VNODE) {
VN_RELE(*vpp);
*vpp = NULL;
return (ENOENT);
}
return (0);
}
}
}
ASSERT(*vpp != NULL);
/*
* We may have gotten here we have one of the following cases:
* 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we
* need to validate them.
* 2) vpp == DNLC_NO_VNODE, a negative entry that we always
* must validate.
*
* Go to the server and check if the directory has changed, if
* it hasn't we are done and can use the dnlc entry.
*/
return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr));
}
/*
* Go to the server and check if the directory has changed, if
* it hasn't we are done and can use the dnlc entry. If it
* has changed we get a new copy of its attributes and check
* the access for VEXEC, then relookup the filename and
* get its filehandle and attributes.
*
* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR
* if the NVERIFY failed we must
* purge the caches
* cache new attributes (will set r_time_attr_inval)
* cache new access
* recheck VEXEC access
* add name to dnlc, possibly negative
* if LOOKUP succeeded
* cache new attributes
* else
* set a new r_time_attr_inval for dvp
* check to make sure we have access
*
* The vpp returned is the vnode passed in if the directory is valid,
* a new vnode if successful lookup, or NULL on error.
*/
static int
nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
fattr4 *ver_fattr;
fattr4_change dchange;
int32_t *ptr;
int argoplist_size = 7 * sizeof (nfs_argop4);
nfs_argop4 *argop;
int doqueue;
mntinfo4_t *mi;
nfs4_recov_state_t recov_state;
hrtime_t t;
int isdotdot;
vnode_t *nvp;
nfs_fh4 *fhp;
nfs4_sharedfh_t *sfhp;
nfs4_access_type_t cacc;
rnode4_t *nrp;
rnode4_t *drp = VTOR4(dvp);
nfs4_ga_res_t *garp = NULL;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
ASSERT(nm != NULL);
ASSERT(nm[0] != '\0');
ASSERT(dvp->v_type == VDIR);
ASSERT(nm[0] != '.' || nm[1] != '\0');
ASSERT(*vpp != NULL);
if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
isdotdot = 1;
args.ctag = TAG_LOOKUP_VPARENT;
} else {
/*
* If dvp were a stub, it should have triggered and caused
* a mount for us to get this far.
*/
ASSERT(!RP_ISSTUB(VTOR4(dvp)));
isdotdot = 0;
args.ctag = TAG_LOOKUP_VALID;
}
mi = VTOMI4(dvp);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
nvp = NULL;
/* Save the original mount point security information */
(void) save_mnt_secinfo(mi->mi_curr_serv);
recov_retry:
e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, NULL);
if (e.error) {
(void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
VN_RELE(*vpp);
*vpp = NULL;
return (e.error);
}
argop = kmem_alloc(argoplist_size, KM_SLEEP);
/* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */
args.array_len = 7;
args.array = argop;
/* 0. putfh file */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
/* 1. nverify the change info */
argop[1].argop = OP_NVERIFY;
ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes;
ver_fattr->attrmask = FATTR4_CHANGE_MASK;
ver_fattr->attrlist4 = (char *)&dchange;
ptr = (int32_t *)&dchange;
IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
ver_fattr->attrlist4_len = sizeof (fattr4_change);
/* 2. getattr directory */
argop[2].argop = OP_GETATTR;
argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
/* 3. access directory */
argop[3].argop = OP_ACCESS;
argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
/* 4. lookup name */
if (isdotdot) {
argop[4].argop = OP_LOOKUPP;
} else {
argop[4].argop = OP_CLOOKUP;
argop[4].nfs_argop4_u.opclookup.cname = nm;
}
/* 5. resulting file handle */
argop[5].argop = OP_GETFH;
/* 6. resulting file attributes */
argop[6].argop = OP_GETATTR;
argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
doqueue = 1;
t = gethrtime();
rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
if (!isdotdot && res.status == NFS4ERR_MOVED) {
e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
if (e.error != 0 && *vpp != NULL)
VN_RELE(*vpp);
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, FALSE);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
kmem_free(argop, argoplist_size);
return (e.error);
}
if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
/*
* For WRONGSEC of a non-dotdot case, send secinfo directly
* from this thread, do not go thru the recovery thread since
* we need the nm information.
*
* Not doing dotdot case because there is no specification
* for (PUTFH, SECINFO "..") yet.
*/
if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, FALSE);
else
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, TRUE);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
kmem_free(argop, argoplist_size);
if (!e.error)
goto recov_retry;
(void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
VN_RELE(*vpp);
*vpp = NULL;
return (e.error);
}
if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, TRUE);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
kmem_free(argop, argoplist_size);
goto recov_retry;
}
}
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
if (e.error || res.array_len == 0) {
/*
* If e.error isn't set, then reply has no ops (or we couldn't
* be here). The only legal way to reply without an op array
* is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
* be in the reply for all other status values.
*
* For valid replies without an ops array, return ENOTSUP
* (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
* return EIO -- don't trust status.
*/
if (e.error == 0)
e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
ENOTSUP : EIO;
VN_RELE(*vpp);
*vpp = NULL;
kmem_free(argop, argoplist_size);
(void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
return (e.error);
}
if (res.status != NFS4ERR_SAME) {
e.error = geterrno4(res.status);
/*
* The NVERIFY "failed" so the directory has changed
* First make sure PUTFH succeeded and NVERIFY "failed"
* cleanly.
*/
if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
(res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) {
nfs4_purge_stale_fh(e.error, dvp, cr);
VN_RELE(*vpp);
*vpp = NULL;
goto exit;
}
/*
* We know the NVERIFY "failed" so we must:
* purge the caches (access and indirectly dnlc if needed)
*/
nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) {
nfs4_purge_stale_fh(e.error, dvp, cr);
VN_RELE(*vpp);
*vpp = NULL;
goto exit;
}
/*
* Install new cached attributes for the directory
*/
nfs4_attr_cache(dvp,
&res.array[2].nfs_resop4_u.opgetattr.ga_res,
t, cr, FALSE, NULL);
if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) {
nfs4_purge_stale_fh(e.error, dvp, cr);
VN_RELE(*vpp);
*vpp = NULL;
e.error = geterrno4(res.status);
goto exit;
}
/*
* Now we know the directory is valid,
* cache new directory access
*/
nfs4_access_cache(drp,
args.array[3].nfs_argop4_u.opaccess.access,
res.array[3].nfs_resop4_u.opaccess.access, cr);
/*
* recheck VEXEC access
*/
cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
if (cacc != NFS4_ACCESS_ALLOWED) {
/*
* Directory permissions might have been revoked
*/
if (cacc == NFS4_ACCESS_DENIED) {
e.error = EACCES;
VN_RELE(*vpp);
*vpp = NULL;
goto exit;
}
/*
* Somehow we must not have asked for enough
* so try a singleton ACCESS, should never happen.
*/
e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
if (e.error) {
VN_RELE(*vpp);
*vpp = NULL;
goto exit;
}
}
e.error = geterrno4(res.status);
if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) {
/*
* The lookup failed, probably no entry
*/
if (e.error == ENOENT && nfs4_lookup_neg_cache) {
dnlc_update(dvp, nm, DNLC_NO_VNODE);
} else {
/*
* Might be some other error, so remove
* the dnlc entry to make sure we start all
* over again, next time.
*/
dnlc_remove(dvp, nm);
}
VN_RELE(*vpp);
*vpp = NULL;
goto exit;
}
if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) {
/*
* The file exists but we can't get its fh for
* some unknown reason. Remove it from the dnlc
* and error out to be safe.
*/
dnlc_remove(dvp, nm);
VN_RELE(*vpp);
*vpp = NULL;
goto exit;
}
fhp = &res.array[5].nfs_resop4_u.opgetfh.object;
if (fhp->nfs_fh4_len == 0) {
/*
* The file exists but a bogus fh
* some unknown reason. Remove it from the dnlc
* and error out to be safe.
*/
e.error = ENOENT;
dnlc_remove(dvp, nm);
VN_RELE(*vpp);
*vpp = NULL;
goto exit;
}
sfhp = sfh4_get(fhp, mi);
if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK)
garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
/*
* Make the new rnode
*/
if (isdotdot) {
e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
if (e.error) {
sfh4_rele(&sfhp);
VN_RELE(*vpp);
*vpp = NULL;
goto exit;
}
/*
* XXX if nfs4_make_dotdot uses an existing rnode
* XXX it doesn't update the attributes.
* XXX for now just save them again to save an OTW
*/
nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
} else {
nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
/*
* If v_type == VNON, then garp was NULL because
* the last op in the compound failed and makenfs4node
* could not find the vnode for sfhp. It created
* a new vnode, so we have nothing to purge here.
*/
if (nvp->v_type == VNON) {
vattr_t vattr;
vattr.va_mask = AT_TYPE;
/*
* N.B. We've already called nfs4_end_fop above.
*/
e.error = nfs4getattr(nvp, &vattr, cr);
if (e.error) {
sfh4_rele(&sfhp);
VN_RELE(*vpp);
*vpp = NULL;
VN_RELE(nvp);
goto exit;
}
nvp->v_type = vattr.va_type;
}
}
sfh4_rele(&sfhp);
nrp = VTOR4(nvp);
mutex_enter(&nrp->r_statev4_lock);
if (!nrp->created_v4) {
mutex_exit(&nrp->r_statev4_lock);
dnlc_update(dvp, nm, nvp);
} else
mutex_exit(&nrp->r_statev4_lock);
VN_RELE(*vpp);
*vpp = nvp;
} else {
hrtime_t now;
hrtime_t delta = 0;
e.error = 0;
/*
* Because the NVERIFY "succeeded" we know that the
* directory attributes are still valid
* so update r_time_attr_inval
*/
now = gethrtime();
mutex_enter(&drp->r_statelock);
if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
delta = now - drp->r_time_attr_saved;
if (delta < mi->mi_acdirmin)
delta = mi->mi_acdirmin;
else if (delta > mi->mi_acdirmax)
delta = mi->mi_acdirmax;
}
drp->r_time_attr_inval = now + delta;
mutex_exit(&drp->r_statelock);
dnlc_update(dvp, nm, *vpp);
/*
* Even though we have a valid directory attr cache
* and dnlc entry, we may not have access.
* This should almost always hit the cache.
*/
e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
if (e.error) {
VN_RELE(*vpp);
*vpp = NULL;
}
if (*vpp == DNLC_NO_VNODE) {
VN_RELE(*vpp);
*vpp = NULL;
e.error = ENOENT;
}
}
exit:
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
kmem_free(argop, argoplist_size);
(void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
return (e.error);
}
/*
* We need to go over the wire to lookup the name, but
* while we are there verify the directory has not
* changed but if it has, get new attributes and check access
*
* PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH
* NVERIFY GETATTR ACCESS
*
* With the results:
* if the NVERIFY failed we must purge the caches, add new attributes,
* and cache new access.
* set a new r_time_attr_inval
* add name to dnlc, possibly negative
* if LOOKUP succeeded
* cache new attributes
*/
static int
nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
fattr4 *ver_fattr;
fattr4_change dchange;
int32_t *ptr;
nfs4_ga_res_t *garp = NULL;
int argoplist_size = 9 * sizeof (nfs_argop4);
nfs_argop4 *argop;
int doqueue;
mntinfo4_t *mi;
nfs4_recov_state_t recov_state;
hrtime_t t;
int isdotdot;
vnode_t *nvp;
nfs_fh4 *fhp;
nfs4_sharedfh_t *sfhp;
nfs4_access_type_t cacc;
rnode4_t *nrp;
rnode4_t *drp = VTOR4(dvp);
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
ASSERT(nm != NULL);
ASSERT(nm[0] != '\0');
ASSERT(dvp->v_type == VDIR);
ASSERT(nm[0] != '.' || nm[1] != '\0');
ASSERT(*vpp == NULL);
if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
isdotdot = 1;
args.ctag = TAG_LOOKUP_PARENT;
} else {
/*
* If dvp were a stub, it should have triggered and caused
* a mount for us to get this far.
*/
ASSERT(!RP_ISSTUB(VTOR4(dvp)));
isdotdot = 0;
args.ctag = TAG_LOOKUP;
}
mi = VTOMI4(dvp);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
nvp = NULL;
/* Save the original mount point security information */
(void) save_mnt_secinfo(mi->mi_curr_serv);
recov_retry:
e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, NULL);
if (e.error) {
(void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
return (e.error);
}
argop = kmem_alloc(argoplist_size, KM_SLEEP);
/* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */
args.array_len = 9;
args.array = argop;
/* 0. putfh file */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
/* 1. savefh for the nverify */
argop[1].argop = OP_SAVEFH;
/* 2. lookup name */
if (isdotdot) {
argop[2].argop = OP_LOOKUPP;
} else {
argop[2].argop = OP_CLOOKUP;
argop[2].nfs_argop4_u.opclookup.cname = nm;
}
/* 3. resulting file handle */
argop[3].argop = OP_GETFH;
/* 4. resulting file attributes */
argop[4].argop = OP_GETATTR;
argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
/* 5. restorefh back the directory for the nverify */
argop[5].argop = OP_RESTOREFH;
/* 6. nverify the change info */
argop[6].argop = OP_NVERIFY;
ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes;
ver_fattr->attrmask = FATTR4_CHANGE_MASK;
ver_fattr->attrlist4 = (char *)&dchange;
ptr = (int32_t *)&dchange;
IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
ver_fattr->attrlist4_len = sizeof (fattr4_change);
/* 7. getattr directory */
argop[7].argop = OP_GETATTR;
argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
/* 8. access directory */
argop[8].argop = OP_ACCESS;
argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
doqueue = 1;
t = gethrtime();
rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
if (!isdotdot && res.status == NFS4ERR_MOVED) {
e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
if (e.error != 0 && *vpp != NULL)
VN_RELE(*vpp);
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, FALSE);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
kmem_free(argop, argoplist_size);
return (e.error);
}
if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
/*
* For WRONGSEC of a non-dotdot case, send secinfo directly
* from this thread, do not go thru the recovery thread since
* we need the nm information.
*
* Not doing dotdot case because there is no specification
* for (PUTFH, SECINFO "..") yet.
*/
if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, FALSE);
else
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, TRUE);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
kmem_free(argop, argoplist_size);
if (!e.error)
goto recov_retry;
(void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
return (e.error);
}
if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
&recov_state, TRUE);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
kmem_free(argop, argoplist_size);
goto recov_retry;
}
}
nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
if (e.error || res.array_len == 0) {
/*
* If e.error isn't set, then reply has no ops (or we couldn't
* be here). The only legal way to reply without an op array
* is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
* be in the reply for all other status values.
*
* For valid replies without an ops array, return ENOTSUP
* (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
* return EIO -- don't trust status.
*/
if (e.error == 0)
e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
ENOTSUP : EIO;
kmem_free(argop, argoplist_size);
(void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
return (e.error);
}
e.error = geterrno4(res.status);
/*
* The PUTFH and SAVEFH may have failed.
*/
if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
(res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) {
nfs4_purge_stale_fh(e.error, dvp, cr);
goto exit;
}
/*
* Check if the file exists, if it does delay entering
* into the dnlc until after we update the directory
* attributes so we don't cause it to get purged immediately.
*/
if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) {
/*
* The lookup failed, probably no entry
*/
if (e.error == ENOENT && nfs4_lookup_neg_cache)
dnlc_update(dvp, nm, DNLC_NO_VNODE);
goto exit;
}
if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) {
/*
* The file exists but we can't get its fh for
* some unknown reason. Error out to be safe.
*/
goto exit;
}
fhp = &res.array[3].nfs_resop4_u.opgetfh.object;
if (fhp->nfs_fh4_len == 0) {
/*
* The file exists but a bogus fh
* some unknown reason. Error out to be safe.
*/
e.error = EIO;
goto exit;
}
sfhp = sfh4_get(fhp, mi);
if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) {
sfh4_rele(&sfhp);
goto exit;
}
garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
/*
* The RESTOREFH may have failed
*/
if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) {
sfh4_rele(&sfhp);
e.error = EIO;
goto exit;
}
if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) {
/*
* First make sure the NVERIFY failed as we expected,
* if it didn't then be conservative and error out
* as we can't trust the directory.
*/
if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) {
sfh4_rele(&sfhp);
e.error = EIO;
goto exit;
}
/*
* We know the NVERIFY "failed" so the directory has changed,
* so we must:
* purge the caches (access and indirectly dnlc if needed)
*/
nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) {
sfh4_rele(&sfhp);
goto exit;
}
nfs4_attr_cache(dvp,
&res.array[7].nfs_resop4_u.opgetattr.ga_res,
t, cr, FALSE, NULL);
if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) {
nfs4_purge_stale_fh(e.error, dvp, cr);
sfh4_rele(&sfhp);
e.error = geterrno4(res.status);
goto exit;
}
/*
* Now we know the directory is valid,
* cache new directory access
*/
nfs4_access_cache(drp,
args.array[8].nfs_argop4_u.opaccess.access,
res.array[8].nfs_resop4_u.opaccess.access, cr);
/*
* recheck VEXEC access
*/
cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
if (cacc != NFS4_ACCESS_ALLOWED) {
/*
* Directory permissions might have been revoked
*/
if (cacc == NFS4_ACCESS_DENIED) {
sfh4_rele(&sfhp);
e.error = EACCES;
goto exit;
}
/*
* Somehow we must not have asked for enough
* so try a singleton ACCESS should never happen
*/
e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
if (e.error) {
sfh4_rele(&sfhp);
goto exit;
}
}
e.error = geterrno4(res.status);
} else {
hrtime_t now;
hrtime_t delta = 0;
e.error = 0;
/*
* Because the NVERIFY "succeeded" we know that the
* directory attributes are still valid
* so update r_time_attr_inval
*/
now = gethrtime();
mutex_enter(&drp->r_statelock);
if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
delta = now - drp->r_time_attr_saved;
if (delta < mi->mi_acdirmin)
delta = mi->mi_acdirmin;
else if (delta > mi->mi_acdirmax)
delta = mi->mi_acdirmax;
}
drp->r_time_attr_inval = now + delta;
mutex_exit(&drp->r_statelock);
/*
* Even though we have a valid directory attr cache,
* we may not have access.
* This should almost always hit the cache.
*/
e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
if (e.error) {
sfh4_rele(&sfhp);
goto exit;
}
}
/*
* Now we have successfully completed the lookup, if the
* directory has changed we now have the valid attributes.
* We also know we have directory access.
* Create the new rnode and insert it in the dnlc.
*/
if (isdotdot) {
e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
if (e.error) {
sfh4_rele(&sfhp);
goto exit;
}
/*
* XXX if nfs4_make_dotdot uses an existing rnode
* XXX it doesn't update the attributes.
* XXX for now just save them again to save an OTW
*/
nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
} else {
nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
}
sfh4_rele(&sfhp);
nrp = VTOR4(nvp);
mutex_enter(&nrp->r_statev4_lock);
if (!nrp->created_v4) {
mutex_exit(&nrp->r_statev4_lock);
dnlc_update(dvp, nm, nvp);
} else
mutex_exit(&nrp->r_statev4_lock);
*vpp = nvp;
exit:
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
kmem_free(argop, argoplist_size);
(void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
return (e.error);
}
#ifdef DEBUG
void
nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt)
{
uint_t i, len;
zoneid_t zoneid = getzoneid();
char *s;
zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where);
for (i = 0; i < argcnt; i++) {
nfs_argop4 *op = &argbase[i];
switch (op->argop) {
case OP_CPUTFH:
case OP_PUTFH:
zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i);
break;
case OP_PUTROOTFH:
zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i);
break;
case OP_CLOOKUP:
s = op->nfs_argop4_u.opclookup.cname;
zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
break;
case OP_LOOKUP:
s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname,
&len, NULL);
zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
kmem_free(s, len);
break;
case OP_LOOKUPP:
zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i);
break;
case OP_GETFH:
zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i);
break;
case OP_GETATTR:
zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i);
break;
case OP_OPENATTR:
zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i);
break;
default:
zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i,
op->argop);
break;
}
}
}
#endif
/*
* nfs4lookup_setup - constructs a multi-lookup compound request.
*
* Given the path "nm1/nm2/.../nmn", the following compound requests
* may be created:
*
* Note: Getfh is not be needed because filehandle attr is mandatory, but it
* is faster, for now.
*
* l4_getattrs indicates the type of compound requested.
*
* LKP4_NO_ATTRIBUTE - no attributes (used by secinfo):
*
* compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} }
*
* total number of ops is n + 1.
*
* LKP4_LAST_NAMED_ATTR - multi-component path for a named
* attribute: create lookups plus one OPENATTR/GETFH/GETATTR
* before the last component, and only get attributes
* for the last component. Note that the second-to-last
* pathname component is XATTR_RPATH, which does NOT go
* over-the-wire as a lookup.
*
* compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2};
* Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr }
*
* and total number of ops is n + 5.
*
* LKP4_LAST_ATTRDIR - multi-component path for the hidden named
* attribute directory: create lookups plus an OPENATTR
* replacing the last lookup. Note that the last pathname
* component is XATTR_RPATH, which does NOT go over-the-wire
* as a lookup.
*
* compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr;
* Openattr; Getfh; Getattr }
*
* and total number of ops is n + 5.
*
* LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate
* nodes too.
*
* compound { Put*fh; Lookup {nm1}; Getfh; Getattr;
* Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr }
*
* and total number of ops is 3*n + 1.
*
* All cases: returns the index in the arg array of the final LOOKUP op, or
* -1 if no LOOKUPs were used.
*/
int
nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh)
{
enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs;
nfs_argop4 *argbase, *argop;
int arglen, argcnt;
int n = 1; /* number of components */
int nga = 1; /* number of Getattr's in request */
char c = '\0', *s, *p;
int lookup_idx = -1;
int argoplist_size;
/* set lookuparg response result to 0 */
lookupargp->resp->status = NFS4_OK;
/* skip leading "/" or "." e.g. ".//./" if there is */
for (; ; nm++) {
if (*nm != '/' && *nm != '.')
break;
/* ".." is counted as 1 component */
if (*nm == '.' && *(nm + 1) != '/')
break;
}
/*
* Find n = number of components - nm must be null terminated
* Skip "." components.
*/
if (*nm != '\0')
for (n = 1, s = nm; *s != '\0'; s++) {
if ((*s == '/') && (*(s + 1) != '/') &&
(*(s + 1) != '\0') &&
!(*(s + 1) == '.' && (*(s + 2) == '/' ||
*(s + 2) == '\0')))
n++;
}
else
n = 0;
/*
* nga is number of components that need Getfh+Getattr
*/
switch (l4_getattrs) {
case LKP4_NO_ATTRIBUTES:
nga = 0;
break;
case LKP4_ALL_ATTRIBUTES:
nga = n;
/*
* Always have at least 1 getfh, getattr pair
*/
if (nga == 0)
nga++;
break;
case LKP4_LAST_ATTRDIR:
case LKP4_LAST_NAMED_ATTR:
nga = n+1;
break;
}
/*
* If change to use the filehandle attr instead of getfh
* the following line can be deleted.
*/
nga *= 2;
/*
* calculate number of ops in request as
* header + trailer + lookups + getattrs
*/
arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga;
argoplist_size = arglen * sizeof (nfs_argop4);
argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP);
lookupargp->argsp->array = argop;
argcnt = lookupargp->header_len;
argop += argcnt;
/*
* loop and create a lookup op and possibly getattr/getfh for
* each component. Skip "." components.
*/
for (s = nm; *s != '\0'; s = p) {
/*
* Set up a pathname struct for each component if needed
*/
while (*s == '/')
s++;
if (*s == '\0')
break;
for (p = s; (*p != '/') && (*p != '\0'); p++)
;
c = *p;
*p = '\0';
if (s[0] == '.' && s[1] == '\0') {
*p = c;
continue;
}
if (l4_getattrs == LKP4_LAST_ATTRDIR &&
strcmp(s, XATTR_RPATH) == 0) {
/* getfh XXX may not be needed in future */
argop->argop = OP_GETFH;
argop++;
argcnt++;
/* getattr */
argop->argop = OP_GETATTR;
argop->nfs_argop4_u.opgetattr.attr_request =
lookupargp->ga_bits;
argop->nfs_argop4_u.opgetattr.mi =
lookupargp->mi;
argop++;
argcnt++;
/* openattr */
argop->argop = OP_OPENATTR;
} else if (l4_getattrs == LKP4_LAST_NAMED_ATTR &&
strcmp(s, XATTR_RPATH) == 0) {
/* openattr */
argop->argop = OP_OPENATTR;
argop++;
argcnt++;
/* getfh XXX may not be needed in future */
argop->argop = OP_GETFH;
argop++;
argcnt++;
/* getattr */
argop->argop = OP_GETATTR;
argop->nfs_argop4_u.opgetattr.attr_request =
lookupargp->ga_bits;
argop->nfs_argop4_u.opgetattr.mi =
lookupargp->mi;
argop++;
argcnt++;
*p = c;
continue;
} else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') {
/* lookupp */
argop->argop = OP_LOOKUPP;
} else {
/* lookup */
argop->argop = OP_LOOKUP;
(void) str_to_utf8(s,
&argop->nfs_argop4_u.oplookup.objname);
}
lookup_idx = argcnt;
argop++;
argcnt++;
*p = c;
if (l4_getattrs == LKP4_ALL_ATTRIBUTES) {
/* getfh XXX may not be needed in future */
argop->argop = OP_GETFH;
argop++;
argcnt++;
/* getattr */
argop->argop = OP_GETATTR;
argop->nfs_argop4_u.opgetattr.attr_request =
lookupargp->ga_bits;
argop->nfs_argop4_u.opgetattr.mi =
lookupargp->mi;
argop++;
argcnt++;
}
}
if ((l4_getattrs != LKP4_NO_ATTRIBUTES) &&
((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) {
if (needgetfh) {
/* stick in a post-lookup getfh */
argop->argop = OP_GETFH;
argcnt++;
argop++;
}
/* post-lookup getattr */
argop->argop = OP_GETATTR;
argop->nfs_argop4_u.opgetattr.attr_request =
lookupargp->ga_bits;
argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi;
argcnt++;
}
argcnt += lookupargp->trailer_len; /* actual op count */
lookupargp->argsp->array_len = argcnt;
lookupargp->arglen = arglen;
#ifdef DEBUG
if (nfs4_client_lookup_debug)
nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt);
#endif
return (lookup_idx);
}
static int
nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
GETFH4res *gf_res = NULL;
nfs_argop4 argop[4];
nfs_resop4 *resop = NULL;
nfs4_sharedfh_t *sfhp;
hrtime_t t;
nfs4_error_t e;
rnode4_t *drp;
int doqueue = 1;
vnode_t *vp;
int needrecov = 0;
nfs4_recov_state_t recov_state;
ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
*avp = NULL;
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
/* COMPOUND: putfh, openattr, getfh, getattr */
args.array_len = 4;
args.array = argop;
args.ctag = TAG_OPENATTR;
e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
if (e.error)
return (e.error);
drp = VTOR4(dvp);
/* putfh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
/* openattr */
argop[1].argop = OP_OPENATTR;
argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE);
/* getfh */
argop[2].argop = OP_GETFH;
/* getattr */
argop[3].argop = OP_GETATTR;
argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
"nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first",
rnode4info(drp)));
t = gethrtime();
rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp);
if (needrecov) {
bool_t abort;
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4openattr: initiating recovery\n"));
abort = nfs4_start_recovery(&e,
VTOMI4(dvp), dvp, NULL, NULL, NULL,
OP_OPENATTR, NULL, NULL, NULL);
nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
if (!e.error) {
e.error = geterrno4(res.status);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
}
if (abort == FALSE)
goto recov_retry;
return (e.error);
}
if (e.error) {
nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
return (e.error);
}
if (res.status) {
/*
* If OTW errro is NOTSUPP, then it should be
* translated to EINVAL. All Solaris file system
* implementations return EINVAL to the syscall layer
* when the attrdir cannot be created due to an
* implementation restriction or noxattr mount option.
*/
if (res.status == NFS4ERR_NOTSUPP) {
mutex_enter(&drp->r_statelock);
if (drp->r_xattr_dir)
VN_RELE(drp->r_xattr_dir);
VN_HOLD(NFS4_XATTR_DIR_NOTSUPP);
drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP;
mutex_exit(&drp->r_statelock);
e.error = EINVAL;
} else {
e.error = geterrno4(res.status);
}
if (e.error) {
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
needrecov);
return (e.error);
}
}
resop = &res.array[0]; /* putfh res */
ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK);
resop = &res.array[1]; /* openattr res */
ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK);
resop = &res.array[2]; /* getfh res */
gf_res = &resop->nfs_resop4_u.opgetfh;
if (gf_res->object.nfs_fh4_len == 0) {
*avp = NULL;
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
return (ENOENT);
}
sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp));
vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res,
dvp->v_vfsp, t, cr, dvp,
fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp));
sfh4_rele(&sfhp);
if (e.error)
PURGE_ATTRCACHE4(vp);
mutex_enter(&vp->v_lock);
vp->v_flag |= V_XATTRDIR;
mutex_exit(&vp->v_lock);
*avp = vp;
mutex_enter(&drp->r_statelock);
if (drp->r_xattr_dir)
VN_RELE(drp->r_xattr_dir);
VN_HOLD(vp);
drp->r_xattr_dir = vp;
/*
* Invalidate pathconf4 cache because r_xattr_dir is no longer
* NULL. xattrs could be created at any time, and we have no
* way to update pc4_xattr_exists in the base object if/when
* it happens.
*/
drp->r_pathconf.pc4_xattr_valid = 0;
mutex_exit(&drp->r_statelock);
nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return (0);
}
/* ARGSUSED */
static int
nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct,
vsecattr_t *vsecp)
{
int error;
vnode_t *vp = NULL;
rnode4_t *rp;
struct vattr vattr;
rnode4_t *drp;
vnode_t *tempvp;
enum createmode4 createmode;
bool_t must_trunc = FALSE;
int truncating = 0;
if (nfs_zone() != VTOMI4(dvp)->mi_zone)
return (EPERM);
if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) {
return (EINVAL);
}
/* . and .. have special meaning in the protocol, reject them. */
if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0')))
return (EISDIR);
drp = VTOR4(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
return (EINTR);
top:
/*
* We make a copy of the attributes because the caller does not
* expect us to change what va points to.
*/
vattr = *va;
/*
* If the pathname is "", then dvp is the root vnode of
* a remote file mounted over a local directory.
* All that needs to be done is access
* checking and truncation. Note that we avoid doing
* open w/ create because the parent directory might
* be in pseudo-fs and the open would fail.
*/
if (*nm == '\0') {
error = 0;
VN_HOLD(dvp);
vp = dvp;
must_trunc = TRUE;
} else {
/*
* We need to go over the wire, just to be sure whether the
* file exists or not. Using the DNLC can be dangerous in
* this case when making a decision regarding existence.
*/
error = nfs4lookup(dvp, nm, &vp, cr, 1);
}
if (exclusive)
createmode = EXCLUSIVE4;
else
createmode = GUARDED4;
/*
* error would be set if the file does not exist on the
* server, so lets go create it.
*/
if (error) {
goto create_otw;
}
/*
* File does exist on the server
*/
if (exclusive == EXCL)
error = EEXIST;
else if (vp->v_type == VDIR && (mode & VWRITE))
error = EISDIR;
else {
/*
* If vnode is a device, create special vnode.
*/
if (ISVDEV(vp->v_type)) {
tempvp = vp;
vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
VN_RELE(tempvp);
}
if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
if ((vattr.va_mask & AT_SIZE) &&
vp->v_type == VREG) {
rp = VTOR4(vp);
/*
* Check here for large file handled
* by LF-unaware process (as
* ufs_create() does)
*/
if (!(flags & FOFFMAX)) {
mutex_enter(&rp->r_statelock);
if (rp->r_size > MAXOFF32_T)
error = EOVERFLOW;
mutex_exit(&rp->r_statelock);
}
/* if error is set then we need to return */
if (error) {
nfs_rw_exit(&drp->r_rwlock);
VN_RELE(vp);
return (error);
}
if (must_trunc) {
vattr.va_mask = AT_SIZE;
error = nfs4setattr(vp, &vattr, 0, cr,
NULL);
} else {
/*
* we know we have a regular file that already
* exists and we may end up truncating the file
* as a result of the open_otw, so flush out
* any dirty pages for this file first.
*/
if (nfs4_has_pages(vp) &&
((rp->r_flags & R4DIRTY) ||
rp->r_count > 0 ||
rp->r_mapcnt > 0)) {
error = nfs4_putpage(vp,
(offset_t)0, 0, 0, cr, ct);
if (error && (error == ENOSPC ||
error == EDQUOT)) {
mutex_enter(
&rp->r_statelock);
if (!rp->r_error)
rp->r_error =
error;
mutex_exit(
&rp->r_statelock);
}
}
vattr.va_mask = (AT_SIZE |
AT_TYPE | AT_MODE);
vattr.va_type = VREG;
createmode = UNCHECKED4;
truncating = 1;
goto create_otw;
}
}
}
}
nfs_rw_exit(&drp->r_rwlock);
if (error) {
VN_RELE(vp);
} else {
vnode_t *tvp;
rnode4_t *trp;
tvp = vp;
if (vp->v_type == VREG) {
trp = VTOR4(vp);
if (IS_SHADOW(vp, trp))
tvp = RTOV4(trp);
}
if (must_trunc) {
/*
* existing file got truncated, notify.
*/
vnevent_create(tvp, ct);
}
*vpp = vp;
}
return (error);
create_otw:
dnlc_remove(dvp, nm);
ASSERT(vattr.va_mask & AT_TYPE);
/*
* If not a regular file let nfs4mknod() handle it.
*/
if (vattr.va_type != VREG) {
error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
nfs_rw_exit(&drp->r_rwlock);
return (error);
}
/*
* It _is_ a regular file.
*/
ASSERT(vattr.va_mask & AT_MODE);
if (MANDMODE(vattr.va_mode)) {
nfs_rw_exit(&drp->r_rwlock);
return (EACCES);
}
/*
* If this happens to be a mknod of a regular file, then flags will
* have neither FREAD or FWRITE. However, we must set at least one
* for the call to nfs4open_otw. If it's open(O_CREAT) driving
* nfs4_create, then either FREAD, FWRITE, or FRDWR has already been
* set (based on openmode specified by app).
*/
if ((flags & (FREAD|FWRITE)) == 0)
flags |= (FREAD|FWRITE);
error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0);
if (vp != NULL) {
/* if create was successful, throw away the file's pages */
if (!error && (vattr.va_mask & AT_SIZE))
nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK),
cr);
/* release the lookup hold */
VN_RELE(vp);
vp = NULL;
}
/*
* validate that we opened a regular file. This handles a misbehaving
* server that returns an incorrect FH.
*/
if ((error == 0) && *vpp && (*vpp)->v_type != VREG) {
error = EISDIR;
VN_RELE(*vpp);
}
/*
* If this is not an exclusive create, then the CREATE
* request will be made with the GUARDED mode set. This
* means that the server will return EEXIST if the file
* exists. The file could exist because of a retransmitted
* request. In this case, we recover by starting over and
* checking to see whether the file exists. This second
* time through it should and a CREATE request will not be
* sent.
*
* This handles the problem of a dangling CREATE request
* which contains attributes which indicate that the file
* should be truncated. This retransmitted request could
* possibly truncate valid data in the file if not caught
* by the duplicate request mechanism on the server or if
* not caught by other means. The scenario is:
*
* Client transmits CREATE request with size = 0
* Client times out, retransmits request.
* Response to the first request arrives from the server
* and the client proceeds on.
* Client writes data to the file.
* The server now processes retransmitted CREATE request
* and truncates file.
*
* The use of the GUARDED CREATE request prevents this from
* happening because the retransmitted CREATE would fail
* with EEXIST and would not truncate the file.
*/
if (error == EEXIST && exclusive == NONEXCL) {
#ifdef DEBUG
nfs4_create_misses++;
#endif
goto top;
}
nfs_rw_exit(&drp->r_rwlock);
if (truncating && !error && *vpp) {
vnode_t *tvp;
rnode4_t *trp;
/*
* existing file got truncated, notify.
*/
tvp = *vpp;
trp = VTOR4(tvp);
if (IS_SHADOW(tvp, trp))
tvp = RTOV4(trp);
vnevent_create(tvp, ct);
}
return (error);
}
/*
* Create compound (for mkdir, mknod, symlink):
* { Putfh <dfh>; Create; Getfh; Getattr }
* It's okay if setattr failed to set gid - this is not considered
* an error, but purge attrs in that case.
*/
static int
call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va,
vnode_t **vpp, cred_t *cr, nfs_ftype4 type)
{
int need_end_op = FALSE;
COMPOUND4args_clnt args;
COMPOUND4res_clnt res, *resp = NULL;
nfs_argop4 *argop;
nfs_resop4 *resop;
int doqueue;
mntinfo4_t *mi;
rnode4_t *drp = VTOR4(dvp);
change_info4 *cinfo;
GETFH4res *gf_res;
struct vattr vattr;
vnode_t *vp;
fattr4 *crattr;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
nfs4_sharedfh_t *sfhp = NULL;
hrtime_t t;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
int numops, argoplist_size, setgid_flag, idx_create, idx_fattr;
dirattr_info_t dinfo, *dinfop;
servinfo4_t *svp;
bitmap4 supp_attrs;
ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK ||
type == NF4CHR || type == NF4SOCK || type == NF4FIFO);
mi = VTOMI4(dvp);
/*
* Make sure we properly deal with setting the right gid
* on a new directory to reflect the parent's setgid bit
*/
setgid_flag = 0;
if (type == NF4DIR) {
struct vattr dva;
va->va_mode &= ~VSGID;
dva.va_mask = AT_MODE | AT_GID;
if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) {
/*
* If the parent's directory has the setgid bit set
* _and_ the client was able to get a valid mapping
* for the parent dir's owner_group, we want to
* append NVERIFY(owner_group == dva.va_gid) and
* SETTATTR to the CREATE compound.
*/
if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) {
setgid_flag = 1;
va->va_mode |= VSGID;
if (dva.va_gid != GID_NOBODY) {
va->va_mask |= AT_GID;
va->va_gid = dva.va_gid;
}
}
}
}
/*
* Create ops:
* 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new)
* 5:restorefh(dir) 6:getattr(dir)
*
* if (setgid)
* 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new)
* 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
* 8:nverify 9:setattr
*/
if (setgid_flag) {
numops = 10;
idx_create = 1;
idx_fattr = 3;
} else {
numops = 7;
idx_create = 2;
idx_fattr = 4;
}
ASSERT(nfs_zone() == mi->mi_zone);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) {
return (EINTR);
}
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
argoplist_size = numops * sizeof (nfs_argop4);
argop = kmem_alloc(argoplist_size, KM_SLEEP);
recov_retry:
if (type == NF4LNK)
args.ctag = TAG_SYMLINK;
else if (type == NF4DIR)
args.ctag = TAG_MKDIR;
else
args.ctag = TAG_MKNOD;
args.array_len = numops;
args.array = argop;
if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) {
nfs_rw_exit(&drp->r_rwlock);
kmem_free(argop, argoplist_size);
return (e.error);
}
need_end_op = TRUE;
/* 0: putfh directory */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
/* 1/2: Create object */
argop[idx_create].argop = OP_CCREATE;
argop[idx_create].nfs_argop4_u.opccreate.cname = nm;
argop[idx_create].nfs_argop4_u.opccreate.type = type;
if (type == NF4LNK) {
/*
* symlink, treat name as data
*/
ASSERT(data != NULL);
argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata =
(char *)data;
}
if (type == NF4BLK || type == NF4CHR) {
ASSERT(data != NULL);
argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata =
*((specdata4 *)data);
}
crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs;
svp = drp->r_server;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
supp_attrs = svp->sv_supp_attrs;
nfs_rw_exit(&svp->sv_lock);
if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) {
nfs_rw_exit(&drp->r_rwlock);
nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
e.error = EINVAL;
kmem_free(argop, argoplist_size);
return (e.error);
}
/* 2/3: getfh fh of created object */
ASSERT(idx_create + 1 == idx_fattr - 1);
argop[idx_create + 1].argop = OP_GETFH;
/* 3/4: getattr of new object */
argop[idx_fattr].argop = OP_GETATTR;
argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi;
if (setgid_flag) {
vattr_t _v;
argop[4].argop = OP_SAVEFH;
argop[5].argop = OP_CPUTFH;
argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
argop[6].argop = OP_GETATTR;
argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6].nfs_argop4_u.opgetattr.mi = mi;
argop[7].argop = OP_RESTOREFH;
/*
* nverify
*
* XXX - Revisit the last argument to nfs4_end_op()
* once 5020486 is fixed.
*/
_v.va_mask = AT_GID;
_v.va_gid = va->va_gid;
if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
supp_attrs)) {
nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
nfs_rw_exit(&drp->r_rwlock);
nfs4_fattr4_free(crattr);
kmem_free(argop, argoplist_size);
return (e.error);
}
/*
* setattr
*
* We _know_ we're not messing with AT_SIZE or AT_XTIME,
* so no need for stateid or flags. Also we specify NULL
* rp since we're only interested in setting owner_group
* attributes.
*/
nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs,
&e.error, 0);
if (e.error) {
nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
nfs_rw_exit(&drp->r_rwlock);
nfs4_fattr4_free(crattr);
nfs4args_verify_free(&argop[8]);
kmem_free(argop, argoplist_size);
return (e.error);
}
} else {
argop[1].argop = OP_SAVEFH;
argop[5].argop = OP_RESTOREFH;
argop[6].argop = OP_GETATTR;
argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6].nfs_argop4_u.opgetattr.mi = mi;
}
dnlc_remove(dvp, nm);
doqueue = 1;
t = gethrtime();
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (e.error) {
PURGE_ATTRCACHE4(dvp);
if (!needrecov)
goto out;
}
if (needrecov) {
if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
OP_CREATE, NULL, NULL, NULL) == FALSE) {
nfs4_end_op(mi, dvp, NULL, &recov_state,
needrecov);
need_end_op = FALSE;
nfs4_fattr4_free(crattr);
if (setgid_flag) {
nfs4args_verify_free(&argop[8]);
nfs4args_setattr_free(&argop[9]);
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto recov_retry;
}
}
resp = &res;
if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
if (res.status == NFS4ERR_BADOWNER)
nfs4_log_badowner(mi, OP_CREATE);
e.error = geterrno4(res.status);
/*
* This check is left over from when create was implemented
* using a setattr op (instead of createattrs). If the
* putfh/create/getfh failed, the error was returned. If
* setattr/getattr failed, we keep going.
*
* It might be better to get rid of the GETFH also, and just
* do PUTFH/CREATE/GETATTR since the FH attr is mandatory.
* Then if any of the operations failed, we could return the
* error now, and remove much of the error code below.
*/
if (res.array_len <= idx_fattr) {
/*
* Either Putfh, Create or Getfh failed.
*/
PURGE_ATTRCACHE4(dvp);
/*
* nfs4_purge_stale_fh() may generate otw calls through
* nfs4_invalidate_pages. Hence the need to call
* nfs4_end_op() here to avoid nfs4_start_op() deadlock.
*/
nfs4_end_op(mi, dvp, NULL, &recov_state,
needrecov);
need_end_op = FALSE;
nfs4_purge_stale_fh(e.error, dvp, cr);
goto out;
}
}
resop = &res.array[idx_create]; /* create res */
cinfo = &resop->nfs_resop4_u.opcreate.cinfo;
resop = &res.array[idx_create + 1]; /* getfh res */
gf_res = &resop->nfs_resop4_u.opgetfh;
sfhp = sfh4_get(&gf_res->object, mi);
if (e.error) {
*vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp,
fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
if (vp->v_type == VNON) {
vattr.va_mask = AT_TYPE;
/*
* Need to call nfs4_end_op before nfs4getattr to avoid
* potential nfs4_start_op deadlock. See RFE 4777612.
*/
nfs4_end_op(mi, dvp, NULL, &recov_state,
needrecov);
need_end_op = FALSE;
e.error = nfs4getattr(vp, &vattr, cr);
if (e.error) {
VN_RELE(vp);
*vpp = NULL;
goto out;
}
vp->v_type = vattr.va_type;
}
e.error = 0;
} else {
*vpp = vp = makenfs4node(sfhp,
&res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res,
dvp->v_vfsp, t, cr,
dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
}
/*
* If compound succeeded, then update dir attrs
*/
if (res.status == NFS4_OK) {
dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
dinfo.di_cred = cr;
dinfo.di_time_call = t;
dinfop = &dinfo;
} else
dinfop = NULL;
/* Update directory cache attribute, readdir and dnlc caches */
nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop);
out:
if (sfhp != NULL)
sfh4_rele(&sfhp);
nfs_rw_exit(&drp->r_rwlock);
nfs4_fattr4_free(crattr);
if (setgid_flag) {
nfs4args_verify_free(&argop[8]);
nfs4args_setattr_free(&argop[9]);
}
if (resp)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
if (need_end_op)
nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
kmem_free(argop, argoplist_size);
return (e.error);
}
/* ARGSUSED */
static int
nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
int mode, vnode_t **vpp, cred_t *cr)
{
int error;
vnode_t *vp;
nfs_ftype4 type;
specdata4 spec, *specp = NULL;
ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
switch (va->va_type) {
case VCHR:
case VBLK:
type = (va->va_type == VCHR) ? NF4CHR : NF4BLK;
spec.specdata1 = getmajor(va->va_rdev);
spec.specdata2 = getminor(va->va_rdev);
specp = &spec;
break;
case VFIFO:
type = NF4FIFO;
break;
case VSOCK:
type = NF4SOCK;
break;
default:
return (EINVAL);
}
error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type);
if (error) {
return (error);
}
/*
* This might not be needed any more; special case to deal
* with problematic v2/v3 servers. Since create was unable
* to set group correctly, not sure what hope setattr has.
*/
if (va->va_gid != VTOR4(vp)->r_attr.va_gid) {
va->va_mask = AT_GID;
(void) nfs4setattr(vp, va, 0, cr, NULL);
}
/*
* If vnode is a device create special vnode
*/
if (ISVDEV(vp->v_type)) {
*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
VN_RELE(vp);
} else {
*vpp = vp;
}
return (error);
}
/*
* Remove requires that the current fh be the target directory.
* After the operation, the current fh is unchanged.
* The compound op structure is:
* PUTFH(targetdir), REMOVE
*
* Weirdness: if the vnode to be removed is open
* we rename it instead of removing it and nfs_inactive
* will remove the new name.
*/
/* ARGSUSED */
static int
nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res, *resp = NULL;
REMOVE4res *rm_res;
nfs_argop4 argop[3];
nfs_resop4 *resop;
vnode_t *vp;
char *tmpname;
int doqueue;
mntinfo4_t *mi;
rnode4_t *rp;
rnode4_t *drp;
int needrecov = 0;
nfs4_recov_state_t recov_state;
int isopen;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
dirattr_info_t dinfo;
if (nfs_zone() != VTOMI4(dvp)->mi_zone)
return (EPERM);
drp = VTOR4(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
return (EINTR);
e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
if (e.error) {
nfs_rw_exit(&drp->r_rwlock);
return (e.error);
}
if (vp->v_type == VDIR) {
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (EISDIR);
}
/*
* First just remove the entry from the name cache, as it
* is most likely the only entry for this vp.
*/
dnlc_remove(dvp, nm);
rp = VTOR4(vp);
/*
* For regular file types, check to see if the file is open by looking
* at the open streams.
* For all other types, check the reference count on the vnode. Since
* they are not opened OTW they never have an open stream.
*
* If the file is open, rename it to .nfsXXXX.
*/
if (vp->v_type != VREG) {
/*
* If the file has a v_count > 1 then there may be more than one
* entry in the name cache due multiple links or an open file,
* but we don't have the real reference count so flush all
* possible entries.
*/
if (vp->v_count > 1)
dnlc_purge_vp(vp);
/*
* Now we have the real reference count.
*/
isopen = vp->v_count > 1;
} else {
mutex_enter(&rp->r_os_lock);
isopen = list_head(&rp->r_open_streams) != NULL;
mutex_exit(&rp->r_os_lock);
}
mutex_enter(&rp->r_statelock);
if (isopen &&
(rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
mutex_exit(&rp->r_statelock);
tmpname = newname();
e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct);
if (e.error)
kmem_free(tmpname, MAXNAMELEN);
else {
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp == NULL) {
VN_HOLD(dvp);
rp->r_unldvp = dvp;
if (rp->r_unlcred != NULL)
crfree(rp->r_unlcred);
crhold(cr);
rp->r_unlcred = cr;
rp->r_unlname = tmpname;
} else {
kmem_free(rp->r_unlname, MAXNAMELEN);
rp->r_unlname = tmpname;
}
mutex_exit(&rp->r_statelock);
}
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (e.error);
}
/*
* Actually remove the file/dir
*/
mutex_exit(&rp->r_statelock);
/*
* We need to flush any dirty pages which happen to
* be hanging around before removing the file.
* This shouldn't happen very often since in NFSv4
* we should be close to open consistent.
*/
if (nfs4_has_pages(vp) &&
((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct);
if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = e.error;
mutex_exit(&rp->r_statelock);
}
}
mi = VTOMI4(dvp);
(void) nfs4delegreturn(rp, NFS4_DR_REOPEN);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
/*
* Remove ops: putfh dir; remove
*/
args.ctag = TAG_REMOVE;
args.array_len = 3;
args.array = argop;
e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
if (e.error) {
nfs_rw_exit(&drp->r_rwlock);
VN_RELE(vp);
return (e.error);
}
/* putfh directory */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
/* remove */
argop[1].argop = OP_CREMOVE;
argop[1].nfs_argop4_u.opcremove.ctarget = nm;
/* getattr dir */
argop[2].argop = OP_GETATTR;
argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[2].nfs_argop4_u.opgetattr.mi = mi;
doqueue = 1;
dinfo.di_time_call = gethrtime();
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
PURGE_ATTRCACHE4(vp);
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (e.error)
PURGE_ATTRCACHE4(dvp);
if (needrecov) {
if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp,
NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
needrecov);
goto recov_retry;
}
}
/*
* Matching nfs4_end_op() for start_op() above.
* There is a path in the code below which calls
* nfs4_purge_stale_fh(), which may generate otw calls through
* nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
* here to avoid nfs4_start_op() deadlock.
*/
nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
if (!e.error) {
resp = &res;
if (res.status) {
e.error = geterrno4(res.status);
PURGE_ATTRCACHE4(dvp);
nfs4_purge_stale_fh(e.error, dvp, cr);
} else {
resop = &res.array[1]; /* remove res */
rm_res = &resop->nfs_resop4_u.opremove;
dinfo.di_garp =
&res.array[2].nfs_resop4_u.opgetattr.ga_res;
dinfo.di_cred = cr;
/* Update directory attr, readdir and dnlc caches */
nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
&dinfo);
}
}
nfs_rw_exit(&drp->r_rwlock);
if (resp)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
if (e.error == 0) {
vnode_t *tvp;
rnode4_t *trp;
trp = VTOR4(vp);
tvp = vp;
if (IS_SHADOW(vp, trp))
tvp = RTOV4(trp);
vnevent_remove(tvp, dvp, nm, ct);
}
VN_RELE(vp);
return (e.error);
}
/*
* Link requires that the current fh be the target directory and the
* saved fh be the source fh. After the operation, the current fh is unchanged.
* Thus the compound op structure is:
* PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH,
* GETATTR(file)
*/
/* ARGSUSED */
static int
nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
caller_context_t *ct, int flags)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res, *resp = NULL;
LINK4res *ln_res;
int argoplist_size = 7 * sizeof (nfs_argop4);
nfs_argop4 *argop;
nfs_resop4 *resop;
vnode_t *realvp, *nvp;
int doqueue;
mntinfo4_t *mi;
rnode4_t *tdrp;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
hrtime_t t;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
dirattr_info_t dinfo;
ASSERT(*tnm != '\0');
ASSERT(tdvp->v_type == VDIR);
ASSERT(nfs4_consistent_type(tdvp));
ASSERT(nfs4_consistent_type(svp));
if (nfs_zone() != VTOMI4(tdvp)->mi_zone)
return (EPERM);
if (VOP_REALVP(svp, &realvp, ct) == 0) {
svp = realvp;
ASSERT(nfs4_consistent_type(svp));
}
tdrp = VTOR4(tdvp);
mi = VTOMI4(svp);
if (!(mi->mi_flags & MI4_LINK)) {
return (EOPNOTSUPP);
}
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp)))
return (EINTR);
recov_retry:
argop = kmem_alloc(argoplist_size, KM_SLEEP);
args.ctag = TAG_LINK;
/*
* Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir);
* restorefh; getattr(fl)
*/
args.array_len = 7;
args.array = argop;
e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state);
if (e.error) {
kmem_free(argop, argoplist_size);
nfs_rw_exit(&tdrp->r_rwlock);
return (e.error);
}
/* 0. putfh file */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh;
/* 1. save current fh to free up the space for the dir */
argop[1].argop = OP_SAVEFH;
/* 2. putfh targetdir */
argop[2].argop = OP_CPUTFH;
argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh;
/* 3. link: current_fh is targetdir, saved_fh is source */
argop[3].argop = OP_CLINK;
argop[3].nfs_argop4_u.opclink.cnewname = tnm;
/* 4. Get attributes of dir */
argop[4].argop = OP_GETATTR;
argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[4].nfs_argop4_u.opgetattr.mi = mi;
/* 5. If link was successful, restore current vp to file */
argop[5].argop = OP_RESTOREFH;
/* 6. Get attributes of linked object */
argop[6].argop = OP_GETATTR;
argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6].nfs_argop4_u.opgetattr.mi = mi;
dnlc_remove(tdvp, tnm);
doqueue = 1;
t = gethrtime();
rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp);
if (e.error != 0 && !needrecov) {
PURGE_ATTRCACHE4(tdvp);
PURGE_ATTRCACHE4(svp);
nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
goto out;
}
if (needrecov) {
bool_t abort;
abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp,
NULL, NULL, OP_LINK, NULL, NULL, NULL);
if (abort == FALSE) {
nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state,
needrecov);
kmem_free(argop, argoplist_size);
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
goto recov_retry;
} else {
if (e.error != 0) {
PURGE_ATTRCACHE4(tdvp);
PURGE_ATTRCACHE4(svp);
nfs4_end_op(VTOMI4(svp), svp, tdvp,
&recov_state, needrecov);
goto out;
}
/* fall through for res.status case */
}
}
nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
resp = &res;
if (res.status) {
/* If link succeeded, then don't return error */
e.error = geterrno4(res.status);
if (res.array_len <= 4) {
/*
* Either Putfh, Savefh, Putfh dir, or Link failed
*/
PURGE_ATTRCACHE4(svp);
PURGE_ATTRCACHE4(tdvp);
if (e.error == EOPNOTSUPP) {
mutex_enter(&mi->mi_lock);
mi->mi_flags &= ~MI4_LINK;
mutex_exit(&mi->mi_lock);
}
/* Remap EISDIR to EPERM for non-root user for SVVS */
/* XXX-LP */
if (e.error == EISDIR && crgetuid(cr) != 0)
e.error = EPERM;
goto out;
}
}
/* either no error or one of the postop getattr failed */
/*
* XXX - if LINK succeeded, but no attrs were returned for link
* file, purge its cache.
*
* XXX Perform a simplified version of wcc checking. Instead of
* have another getattr to get pre-op, just purge cache if
* any of the ops prior to and including the getattr failed.
* If the getattr succeeded then update the attrcache accordingly.
*/
/*
* update cache with link file postattrs.
* Note: at this point resop points to link res.
*/
resop = &res.array[3]; /* link res */
ln_res = &resop->nfs_resop4_u.oplink;
if (res.status == NFS4_OK)
e.error = nfs4_update_attrcache(res.status,
&res.array[6].nfs_resop4_u.opgetattr.ga_res,
t, svp, cr);
/*
* Call makenfs4node to create the new shadow vp for tnm.
* We pass NULL attrs because we just cached attrs for
* the src object. All we're trying to accomplish is to
* to create the new shadow vnode.
*/
nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr,
tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh));
/* Update target cache attribute, readdir and dnlc caches */
dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
dinfo.di_time_call = t;
dinfo.di_cred = cr;
nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo);
ASSERT(nfs4_consistent_type(tdvp));
ASSERT(nfs4_consistent_type(svp));
ASSERT(nfs4_consistent_type(nvp));
VN_RELE(nvp);
if (!e.error) {
vnode_t *tvp;
rnode4_t *trp;
/*
* Notify the source file of this link operation.
*/
trp = VTOR4(svp);
tvp = svp;
if (IS_SHADOW(svp, trp))
tvp = RTOV4(trp);
vnevent_link(tvp, ct);
}
out:
kmem_free(argop, argoplist_size);
if (resp)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
nfs_rw_exit(&tdrp->r_rwlock);
return (e.error);
}
/* ARGSUSED */
static int
nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
caller_context_t *ct, int flags)
{
vnode_t *realvp;
if (nfs_zone() != VTOMI4(odvp)->mi_zone)
return (EPERM);
if (VOP_REALVP(ndvp, &realvp, ct) == 0)
ndvp = realvp;
return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct));
}
/*
* nfs4rename does the real work of renaming in NFS Version 4.
*
* A file handle is considered volatile for renaming purposes if either
* of the volatile bits are turned on. However, the compound may differ
* based on the likelihood of the filehandle to change during rename.
*/
static int
nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
caller_context_t *ct)
{
int error;
mntinfo4_t *mi;
vnode_t *nvp = NULL;
vnode_t *ovp = NULL;
char *tmpname = NULL;
rnode4_t *rp;
rnode4_t *odrp;
rnode4_t *ndrp;
int did_link = 0;
int do_link = 1;
nfsstat4 stat = NFS4_OK;
ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
ASSERT(nfs4_consistent_type(odvp));
ASSERT(nfs4_consistent_type(ndvp));
if (onm[0] == '.' && (onm[1] == '\0' ||
(onm[1] == '.' && onm[2] == '\0')))
return (EINVAL);
if (nnm[0] == '.' && (nnm[1] == '\0' ||
(nnm[1] == '.' && nnm[2] == '\0')))
return (EINVAL);
odrp = VTOR4(odvp);
ndrp = VTOR4(ndvp);
if ((intptr_t)odrp < (intptr_t)ndrp) {
if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp)))
return (EINTR);
if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) {
nfs_rw_exit(&odrp->r_rwlock);
return (EINTR);
}
} else {
if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp)))
return (EINTR);
if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) {
nfs_rw_exit(&ndrp->r_rwlock);
return (EINTR);
}
}
/*
* Lookup the target file. If it exists, it needs to be
* checked to see whether it is a mount point and whether
* it is active (open).
*/
error = nfs4lookup(ndvp, nnm, &nvp, cr, 0);
if (!error) {
int isactive;
ASSERT(nfs4_consistent_type(nvp));
/*
* If this file has been mounted on, then just
* return busy because renaming to it would remove
* the mounted file system from the name space.
*/
if (vn_ismntpt(nvp)) {
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (EBUSY);
}
/*
* First just remove the entry from the name cache, as it
* is most likely the only entry for this vp.
*/
dnlc_remove(ndvp, nnm);
rp = VTOR4(nvp);
if (nvp->v_type != VREG) {
/*
* Purge the name cache of all references to this vnode
* so that we can check the reference count to infer
* whether it is active or not.
*/
if (nvp->v_count > 1)
dnlc_purge_vp(nvp);
isactive = nvp->v_count > 1;
} else {
mutex_enter(&rp->r_os_lock);
isactive = list_head(&rp->r_open_streams) != NULL;
mutex_exit(&rp->r_os_lock);
}
/*
* If the vnode is active and is not a directory,
* arrange to rename it to a
* temporary file so that it will continue to be
* accessible. This implements the "unlink-open-file"
* semantics for the target of a rename operation.
* Before doing this though, make sure that the
* source and target files are not already the same.
*/
if (isactive && nvp->v_type != VDIR) {
/*
* Lookup the source name.
*/
error = nfs4lookup(odvp, onm, &ovp, cr, 0);
/*
* The source name *should* already exist.
*/
if (error) {
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (error);
}
ASSERT(nfs4_consistent_type(ovp));
/*
* Compare the two vnodes. If they are the same,
* just release all held vnodes and return success.
*/
if (VN_CMP(ovp, nvp)) {
VN_RELE(ovp);
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (0);
}
/*
* Can't mix and match directories and non-
* directories in rename operations. We already
* know that the target is not a directory. If
* the source is a directory, return an error.
*/
if (ovp->v_type == VDIR) {
VN_RELE(ovp);
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (ENOTDIR);
}
link_call:
/*
* The target file exists, is not the same as
* the source file, and is active. We first
* try to Link it to a temporary filename to
* avoid having the server removing the file
* completely (which could cause data loss to
* the user's POV in the event the Rename fails
* -- see bug 1165874).
*/
/*
* The do_link and did_link booleans are
* introduced in the event we get NFS4ERR_FILE_OPEN
* returned for the Rename. Some servers can
* not Rename over an Open file, so they return
* this error. The client needs to Remove the
* newly created Link and do two Renames, just
* as if the server didn't support LINK.
*/
tmpname = newname();
error = 0;
if (do_link) {
error = nfs4_link(ndvp, nvp, tmpname, cr,
NULL, 0);
}
if (error == EOPNOTSUPP || !do_link) {
error = nfs4_rename(ndvp, nnm, ndvp, tmpname,
cr, NULL, 0);
did_link = 0;
} else {
did_link = 1;
}
if (error) {
kmem_free(tmpname, MAXNAMELEN);
VN_RELE(ovp);
VN_RELE(nvp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (error);
}
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp == NULL) {
VN_HOLD(ndvp);
rp->r_unldvp = ndvp;
if (rp->r_unlcred != NULL)
crfree(rp->r_unlcred);
crhold(cr);
rp->r_unlcred = cr;
rp->r_unlname = tmpname;
} else {
if (rp->r_unlname)
kmem_free(rp->r_unlname, MAXNAMELEN);
rp->r_unlname = tmpname;
}
mutex_exit(&rp->r_statelock);
}
(void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
ASSERT(nfs4_consistent_type(nvp));
}
if (ovp == NULL) {
/*
* When renaming directories to be a subdirectory of a
* different parent, the dnlc entry for ".." will no
* longer be valid, so it must be removed.
*
* We do a lookup here to determine whether we are renaming
* a directory and we need to check if we are renaming
* an unlinked file. This might have already been done
* in previous code, so we check ovp == NULL to avoid
* doing it twice.
*/
error = nfs4lookup(odvp, onm, &ovp, cr, 0);
/*
* The source name *should* already exist.
*/
if (error) {
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
if (nvp) {
VN_RELE(nvp);
}
return (error);
}
ASSERT(ovp != NULL);
ASSERT(nfs4_consistent_type(ovp));
}
/*
* Is the object being renamed a dir, and if so, is
* it being renamed to a child of itself? The underlying
* fs should ultimately return EINVAL for this case;
* however, buggy beta non-Solaris NFSv4 servers at
* interop testing events have allowed this behavior,
* and it caused our client to panic due to a recursive
* mutex_enter in fn_move.
*
* The tedious locking in fn_move could be changed to
* deal with this case, and the client could avoid the
* panic; however, the client would just confuse itself
* later and misbehave. A better way to handle the broken
* server is to detect this condition and return EINVAL
* without ever sending the the bogus rename to the server.
* We know the rename is invalid -- just fail it now.
*/
if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) {
VN_RELE(ovp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
if (nvp) {
VN_RELE(nvp);
}
return (EINVAL);
}
(void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
/*
* If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is
* possible for the filehandle to change due to the rename.
* If neither of these bits is set, but FH4_VOL_MIGRATION is set,
* the fh will not change because of the rename, but we still need
* to update its rnode entry with the new name for
* an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN
* has no effect on these for now, but for future improvements,
* we might want to use it too to simplify handling of files
* that are open with that flag on. (XXX)
*/
mi = VTOMI4(odvp);
if (NFS4_VOLATILE_FH(mi))
error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr,
&stat);
else
error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr,
&stat);
ASSERT(nfs4_consistent_type(odvp));
ASSERT(nfs4_consistent_type(ndvp));
ASSERT(nfs4_consistent_type(ovp));
if (stat == NFS4ERR_FILE_OPEN && did_link) {
do_link = 0;
/*
* Before the 'link_call' code, we did a nfs4_lookup
* that puts a VN_HOLD on nvp. After the nfs4_link
* call we call VN_RELE to match that hold. We need
* to place an additional VN_HOLD here since we will
* be hitting that VN_RELE again.
*/
VN_HOLD(nvp);
(void) nfs4_remove(ndvp, tmpname, cr, NULL, 0);
/* Undo the unlinked file naming stuff we just did */
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp) {
VN_RELE(ndvp);
rp->r_unldvp = NULL;
if (rp->r_unlcred != NULL)
crfree(rp->r_unlcred);
rp->r_unlcred = NULL;
/* rp->r_unlanme points to tmpname */
if (rp->r_unlname)
kmem_free(rp->r_unlname, MAXNAMELEN);
rp->r_unlname = NULL;
}
mutex_exit(&rp->r_statelock);
if (nvp) {
VN_RELE(nvp);
}
goto link_call;
}
if (error) {
VN_RELE(ovp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
if (nvp) {
VN_RELE(nvp);
}
return (error);
}
/*
* when renaming directories to be a subdirectory of a
* different parent, the dnlc entry for ".." will no
* longer be valid, so it must be removed
*/
rp = VTOR4(ovp);
if (ndvp != odvp) {
if (ovp->v_type == VDIR) {
dnlc_remove(ovp, "..");
if (rp->r_dir != NULL)
nfs4_purge_rddir_cache(ovp);
}
}
/*
* If we are renaming the unlinked file, update the
* r_unldvp and r_unlname as needed.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp != NULL) {
if (strcmp(rp->r_unlname, onm) == 0) {
(void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
rp->r_unlname[MAXNAMELEN - 1] = '\0';
if (ndvp != rp->r_unldvp) {
VN_RELE(rp->r_unldvp);
rp->r_unldvp = ndvp;
VN_HOLD(ndvp);
}
}
}
mutex_exit(&rp->r_statelock);
/*
* Notify the rename vnevents to source vnode, and to the target
* vnode if it already existed.
*/
if (error == 0) {
vnode_t *tvp;
rnode4_t *trp;
/*
* Notify the vnode. Each links is represented by
* a different vnode, in nfsv4.
*/
if (nvp) {
trp = VTOR4(nvp);
tvp = nvp;
if (IS_SHADOW(nvp, trp))
tvp = RTOV4(trp);
vnevent_rename_dest(tvp, ndvp, nnm, ct);
}
/*
* if the source and destination directory are not the
* same notify the destination directory.
*/
if (VTOR4(odvp) != VTOR4(ndvp)) {
trp = VTOR4(ndvp);
tvp = ndvp;
if (IS_SHADOW(ndvp, trp))
tvp = RTOV4(trp);
vnevent_rename_dest_dir(tvp, ct);
}
trp = VTOR4(ovp);
tvp = ovp;
if (IS_SHADOW(ovp, trp))
tvp = RTOV4(trp);
vnevent_rename_src(tvp, odvp, onm, ct);
}
if (nvp) {
VN_RELE(nvp);
}
VN_RELE(ovp);
nfs_rw_exit(&odrp->r_rwlock);
nfs_rw_exit(&ndrp->r_rwlock);
return (error);
}
/*
* When the parent directory has changed, sv_dfh must be updated
*/
static void
update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp)
{
svnode_t *sv = VTOSV(vp);
nfs4_sharedfh_t *old_dfh = sv->sv_dfh;
nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh;
sfh4_hold(new_dfh);
sv->sv_dfh = new_dfh;
sfh4_rele(&old_dfh);
}
/*
* nfs4rename_persistent does the otw portion of renaming in NFS Version 4,
* when it is known that the filehandle is persistent through rename.
*
* Rename requires that the current fh be the target directory and the
* saved fh be the source directory. After the operation, the current fh
* is unchanged.
* The compound op structure for persistent fh rename is:
* PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME
* Rather than bother with the directory postop args, we'll simply
* update that a change occurred in the cache, so no post-op getattrs.
*/
static int
nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp,
vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res, *resp = NULL;
nfs_argop4 *argop;
nfs_resop4 *resop;
int doqueue, argoplist_size;
mntinfo4_t *mi;
rnode4_t *odrp = VTOR4(odvp);
rnode4_t *ndrp = VTOR4(ndvp);
RENAME4res *rn_res;
bool_t needrecov;
nfs4_recov_state_t recov_state;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
dirattr_info_t dinfo, *dinfop;
ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
/*
* Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir
*
* If source/target are different dirs, then append putfh(src); getattr
*/
args.array_len = (odvp == ndvp) ? 5 : 7;
argoplist_size = args.array_len * sizeof (nfs_argop4);
args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP);
recov_retry:
*statp = NFS4_OK;
/* No need to Lookup the file, persistent fh */
args.ctag = TAG_RENAME;
mi = VTOMI4(odvp);
e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state);
if (e.error) {
kmem_free(argop, argoplist_size);
return (e.error);
}
/* 0: putfh source directory */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
/* 1: Save source fh to free up current for target */
argop[1].argop = OP_SAVEFH;
/* 2: putfh targetdir */
argop[2].argop = OP_CPUTFH;
argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
/* 3: current_fh is targetdir, saved_fh is sourcedir */
argop[3].argop = OP_CRENAME;
argop[3].nfs_argop4_u.opcrename.coldname = onm;
argop[3].nfs_argop4_u.opcrename.cnewname = nnm;
/* 4: getattr (targetdir) */
argop[4].argop = OP_GETATTR;
argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[4].nfs_argop4_u.opgetattr.mi = mi;
if (ndvp != odvp) {
/* 5: putfh (sourcedir) */
argop[5].argop = OP_CPUTFH;
argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
/* 6: getattr (sourcedir) */
argop[6].argop = OP_GETATTR;
argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6].nfs_argop4_u.opgetattr.mi = mi;
}
dnlc_remove(odvp, onm);
dnlc_remove(ndvp, nnm);
doqueue = 1;
dinfo.di_time_call = gethrtime();
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (e.error) {
PURGE_ATTRCACHE4(odvp);
PURGE_ATTRCACHE4(ndvp);
} else {
*statp = res.status;
}
if (needrecov) {
if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
OP_RENAME, NULL, NULL, NULL) == FALSE) {
nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
goto recov_retry;
}
}
if (!e.error) {
resp = &res;
/*
* as long as OP_RENAME
*/
if (res.status != NFS4_OK && res.array_len <= 4) {
e.error = geterrno4(res.status);
PURGE_ATTRCACHE4(odvp);
PURGE_ATTRCACHE4(ndvp);
/*
* System V defines rename to return EEXIST, not
* ENOTEMPTY if the target directory is not empty.
* Over the wire, the error is NFSERR_ENOTEMPTY
* which geterrno4 maps to ENOTEMPTY.
*/
if (e.error == ENOTEMPTY)
e.error = EEXIST;
} else {
resop = &res.array[3]; /* rename res */
rn_res = &resop->nfs_resop4_u.oprename;
if (res.status == NFS4_OK) {
/*
* Update target attribute, readdir and dnlc
* caches.
*/
dinfo.di_garp =
&res.array[4].nfs_resop4_u.opgetattr.ga_res;
dinfo.di_cred = cr;
dinfop = &dinfo;
} else
dinfop = NULL;
nfs4_update_dircaches(&rn_res->target_cinfo,
ndvp, NULL, NULL, dinfop);
/*
* Update source attribute, readdir and dnlc caches
*
*/
if (ndvp != odvp) {
update_parentdir_sfh(renvp, ndvp);
if (dinfop)
dinfo.di_garp =
&(res.array[6].nfs_resop4_u.
opgetattr.ga_res);
nfs4_update_dircaches(&rn_res->source_cinfo,
odvp, NULL, NULL, dinfop);
}
fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name,
nnm);
}
}
if (resp)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
kmem_free(argop, argoplist_size);
return (e.error);
}
/*
* nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when
* it is possible for the filehandle to change due to the rename.
*
* The compound req in this case includes a post-rename lookup and getattr
* to ensure that we have the correct fh and attributes for the object.
*
* Rename requires that the current fh be the target directory and the
* saved fh be the source directory. After the operation, the current fh
* is unchanged.
*
* We need the new filehandle (hence a LOOKUP and GETFH) so that we can
* update the filehandle for the renamed object. We also get the old
* filehandle for historical reasons; this should be taken out sometime.
* This results in a rather cumbersome compound...
*
* PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
* PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR
*
*/
static int
nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp,
vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res, *resp = NULL;
int argoplist_size;
nfs_argop4 *argop;
nfs_resop4 *resop;
int doqueue;
mntinfo4_t *mi;
rnode4_t *odrp = VTOR4(odvp); /* old directory */
rnode4_t *ndrp = VTOR4(ndvp); /* new directory */
rnode4_t *orp = VTOR4(ovp); /* object being renamed */
RENAME4res *rn_res;
GETFH4res *ngf_res;
bool_t needrecov;
nfs4_recov_state_t recov_state;
hrtime_t t;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
dirattr_info_t dinfo, *dinfop = &dinfo;
ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
*statp = NFS4_OK;
/*
* There is a window between the RPC and updating the path and
* filehandle stored in the rnode. Lock out the FHEXPIRED recovery
* code, so that it doesn't try to use the old path during that
* window.
*/
mutex_enter(&orp->r_statelock);
while (orp->r_flags & R4RECEXPFH) {
klwp_t *lwp = ttolwp(curthread);
if (lwp != NULL)
lwp->lwp_nostop++;
if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) {
mutex_exit(&orp->r_statelock);
if (lwp != NULL)
lwp->lwp_nostop--;
return (EINTR);
}
if (lwp != NULL)
lwp->lwp_nostop--;
}
orp->r_flags |= R4RECEXPFH;
mutex_exit(&orp->r_statelock);
mi = VTOMI4(odvp);
args.ctag = TAG_RENAME_VFH;
args.array_len = (odvp == ndvp) ? 10 : 12;
argoplist_size = args.array_len * sizeof (nfs_argop4);
argop = kmem_alloc(argoplist_size, KM_SLEEP);
/*
* Rename ops:
* PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
* PUTFH(targetdir), RENAME, GETATTR(targetdir)
* LOOKUP(trgt), GETFH(new), GETATTR,
*
* if (odvp != ndvp)
* add putfh(sourcedir), getattr(sourcedir) }
*/
args.array = argop;
e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME,
&recov_state, NULL);
if (e.error) {
kmem_free(argop, argoplist_size);
mutex_enter(&orp->r_statelock);
orp->r_flags &= ~R4RECEXPFH;
cv_broadcast(&orp->r_cv);
mutex_exit(&orp->r_statelock);
return (e.error);
}
/* 0: putfh source directory */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
/* 1: Save source fh to free up current for target */
argop[1].argop = OP_SAVEFH;
/* 2: Lookup pre-rename fh of renamed object */
argop[2].argop = OP_CLOOKUP;
argop[2].nfs_argop4_u.opclookup.cname = onm;
/* 3: getfh fh of renamed object (before rename) */
argop[3].argop = OP_GETFH;
/* 4: putfh targetdir */
argop[4].argop = OP_CPUTFH;
argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
/* 5: current_fh is targetdir, saved_fh is sourcedir */
argop[5].argop = OP_CRENAME;
argop[5].nfs_argop4_u.opcrename.coldname = onm;
argop[5].nfs_argop4_u.opcrename.cnewname = nnm;
/* 6: getattr of target dir (post op attrs) */
argop[6].argop = OP_GETATTR;
argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6].nfs_argop4_u.opgetattr.mi = mi;
/* 7: Lookup post-rename fh of renamed object */
argop[7].argop = OP_CLOOKUP;
argop[7].nfs_argop4_u.opclookup.cname = nnm;
/* 8: getfh fh of renamed object (after rename) */
argop[8].argop = OP_GETFH;
/* 9: getattr of renamed object */
argop[9].argop = OP_GETATTR;
argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[9].nfs_argop4_u.opgetattr.mi = mi;
/*
* If source/target dirs are different, then get new post-op
* attrs for source dir also.
*/
if (ndvp != odvp) {
/* 10: putfh (sourcedir) */
argop[10].argop = OP_CPUTFH;
argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
/* 11: getattr (sourcedir) */
argop[11].argop = OP_GETATTR;
argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[11].nfs_argop4_u.opgetattr.mi = mi;
}
dnlc_remove(odvp, onm);
dnlc_remove(ndvp, nnm);
doqueue = 1;
t = gethrtime();
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (e.error) {
PURGE_ATTRCACHE4(odvp);
PURGE_ATTRCACHE4(ndvp);
if (!needrecov) {
nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
&recov_state, needrecov);
goto out;
}
} else {
*statp = res.status;
}
if (needrecov) {
bool_t abort;
abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
OP_RENAME, NULL, NULL, NULL);
if (abort == FALSE) {
nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
&recov_state, needrecov);
kmem_free(argop, argoplist_size);
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
mutex_enter(&orp->r_statelock);
orp->r_flags &= ~R4RECEXPFH;
cv_broadcast(&orp->r_cv);
mutex_exit(&orp->r_statelock);
goto recov_retry;
} else {
if (e.error != 0) {
nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
&recov_state, needrecov);
goto out;
}
/* fall through for res.status case */
}
}
resp = &res;
/*
* If OP_RENAME (or any prev op) failed, then return an error.
* OP_RENAME is index 5, so if array len <= 6 we return an error.
*/
if ((res.status != NFS4_OK) && (res.array_len <= 6)) {
/*
* Error in an op other than last Getattr
*/
e.error = geterrno4(res.status);
PURGE_ATTRCACHE4(odvp);
PURGE_ATTRCACHE4(ndvp);
/*
* System V defines rename to return EEXIST, not
* ENOTEMPTY if the target directory is not empty.
* Over the wire, the error is NFSERR_ENOTEMPTY
* which geterrno4 maps to ENOTEMPTY.
*/
if (e.error == ENOTEMPTY)
e.error = EEXIST;
nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state,
needrecov);
goto out;
}
/* rename results */
rn_res = &res.array[5].nfs_resop4_u.oprename;
if (res.status == NFS4_OK) {
/* Update target attribute, readdir and dnlc caches */
dinfo.di_garp =
&res.array[6].nfs_resop4_u.opgetattr.ga_res;
dinfo.di_cred = cr;
dinfo.di_time_call = t;
} else
dinfop = NULL;
/* Update source cache attribute, readdir and dnlc caches */
nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop);
/* Update source cache attribute, readdir and dnlc caches */
if (ndvp != odvp) {
update_parentdir_sfh(ovp, ndvp);
/*
* If dinfop is non-NULL, then compound succeded, so
* set di_garp to attrs for source dir. dinfop is only
* set to NULL when compound fails.
*/
if (dinfop)
dinfo.di_garp =
&res.array[11].nfs_resop4_u.opgetattr.ga_res;
nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL,
dinfop);
}
/*
* Update the rnode with the new component name and args,
* and if the file handle changed, also update it with the new fh.
* This is only necessary if the target object has an rnode
* entry and there is no need to create one for it.
*/
resop = &res.array[8]; /* getfh new res */
ngf_res = &resop->nfs_resop4_u.opgetfh;
/*
* Update the path and filehandle for the renamed object.
*/
nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm);
nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov);
if (res.status == NFS4_OK) {
resop++; /* getattr res */
e.error = nfs4_update_attrcache(res.status,
&resop->nfs_resop4_u.opgetattr.ga_res,
t, ovp, cr);
}
out:
kmem_free(argop, argoplist_size);
if (resp)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
mutex_enter(&orp->r_statelock);
orp->r_flags &= ~R4RECEXPFH;
cv_broadcast(&orp->r_cv);
mutex_exit(&orp->r_statelock);
return (e.error);
}
/* ARGSUSED */
static int
nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
caller_context_t *ct, int flags, vsecattr_t *vsecp)
{
int error;
vnode_t *vp;
if (nfs_zone() != VTOMI4(dvp)->mi_zone)
return (EPERM);
/*
* As ".." has special meaning and rather than send a mkdir
* over the wire to just let the server freak out, we just
* short circuit it here and return EEXIST
*/
if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
return (EEXIST);
/*
* Decision to get the right gid and setgid bit of the
* new directory is now made in call_nfs4_create_req.
*/
va->va_mask |= AT_MODE;
error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR);
if (error)
return (error);
*vpp = vp;
return (0);
}
/*
* rmdir is using the same remove v4 op as does remove.
* Remove requires that the current fh be the target directory.
* After the operation, the current fh is unchanged.
* The compound op structure is:
* PUTFH(targetdir), REMOVE
*/
/*ARGSUSED4*/
static int
nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
caller_context_t *ct, int flags)
{
int need_end_op = FALSE;
COMPOUND4args_clnt args;
COMPOUND4res_clnt res, *resp = NULL;
REMOVE4res *rm_res;
nfs_argop4 argop[3];
nfs_resop4 *resop;
vnode_t *vp;
int doqueue;
mntinfo4_t *mi;
rnode4_t *drp;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
dirattr_info_t dinfo, *dinfop;
if (nfs_zone() != VTOMI4(dvp)->mi_zone)
return (EPERM);
/*
* As ".." has special meaning and rather than send a rmdir
* over the wire to just let the server freak out, we just
* short circuit it here and return EEXIST
*/
if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
return (EEXIST);
drp = VTOR4(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
return (EINTR);
/*
* Attempt to prevent a rmdir(".") from succeeding.
*/
e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
if (e.error) {
nfs_rw_exit(&drp->r_rwlock);
return (e.error);
}
if (vp == cdir) {
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (EINVAL);
}
/*
* Since nfsv4 remove op works on both files and directories,
* check that the removed object is indeed a directory.
*/
if (vp->v_type != VDIR) {
VN_RELE(vp);
nfs_rw_exit(&drp->r_rwlock);
return (ENOTDIR);
}
/*
* First just remove the entry from the name cache, as it
* is most likely an entry for this vp.
*/
dnlc_remove(dvp, nm);
/*
* If there vnode reference count is greater than one, then
* there may be additional references in the DNLC which will
* need to be purged. First, trying removing the entry for
* the parent directory and see if that removes the additional
* reference(s). If that doesn't do it, then use dnlc_purge_vp
* to completely remove any references to the directory which
* might still exist in the DNLC.
*/
if (vp->v_count > 1) {
dnlc_remove(vp, "..");
if (vp->v_count > 1)
dnlc_purge_vp(vp);
}
mi = VTOMI4(dvp);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
args.ctag = TAG_RMDIR;
/*
* Rmdir ops: putfh dir; remove
*/
args.array_len = 3;
args.array = argop;
e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
if (e.error) {
nfs_rw_exit(&drp->r_rwlock);
return (e.error);
}
need_end_op = TRUE;
/* putfh directory */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
/* remove */
argop[1].argop = OP_CREMOVE;
argop[1].nfs_argop4_u.opcremove.ctarget = nm;
/* getattr (postop attrs for dir that contained removed dir) */
argop[2].argop = OP_GETATTR;
argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[2].nfs_argop4_u.opgetattr.mi = mi;
dinfo.di_time_call = gethrtime();
doqueue = 1;
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
PURGE_ATTRCACHE4(vp);
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (e.error) {
PURGE_ATTRCACHE4(dvp);
}
if (needrecov) {
if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL,
NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
needrecov);
need_end_op = FALSE;
goto recov_retry;
}
}
if (!e.error) {
resp = &res;
/*
* Only return error if first 2 ops (OP_REMOVE or earlier)
* failed.
*/
if (res.status != NFS4_OK && res.array_len <= 2) {
e.error = geterrno4(res.status);
PURGE_ATTRCACHE4(dvp);
nfs4_end_op(VTOMI4(dvp), dvp, NULL,
&recov_state, needrecov);
need_end_op = FALSE;
nfs4_purge_stale_fh(e.error, dvp, cr);
/*
* System V defines rmdir to return EEXIST, not
* ENOTEMPTY if the directory is not empty. Over
* the wire, the error is NFSERR_ENOTEMPTY which
* geterrno4 maps to ENOTEMPTY.
*/
if (e.error == ENOTEMPTY)
e.error = EEXIST;
} else {
resop = &res.array[1]; /* remove res */
rm_res = &resop->nfs_resop4_u.opremove;
if (res.status == NFS4_OK) {
resop = &res.array[2]; /* dir attrs */
dinfo.di_garp =
&resop->nfs_resop4_u.opgetattr.ga_res;
dinfo.di_cred = cr;
dinfop = &dinfo;
} else
dinfop = NULL;
/* Update dir attribute, readdir and dnlc caches */
nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
dinfop);
/* destroy rddir cache for dir that was removed */
if (VTOR4(vp)->r_dir != NULL)
nfs4_purge_rddir_cache(vp);
}
}
if (need_end_op)
nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
nfs_rw_exit(&drp->r_rwlock);
if (resp)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
if (e.error == 0) {
vnode_t *tvp;
rnode4_t *trp;
trp = VTOR4(vp);
tvp = vp;
if (IS_SHADOW(vp, trp))
tvp = RTOV4(trp);
vnevent_rmdir(tvp, dvp, nm, ct);
}
VN_RELE(vp);
return (e.error);
}
/* ARGSUSED */
static int
nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
caller_context_t *ct, int flags)
{
int error;
vnode_t *vp;
rnode4_t *rp;
char *contents;
mntinfo4_t *mi = VTOMI4(dvp);
if (nfs_zone() != mi->mi_zone)
return (EPERM);
if (!(mi->mi_flags & MI4_SYMLINK))
return (EOPNOTSUPP);
error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK);
if (error)
return (error);
ASSERT(nfs4_consistent_type(vp));
rp = VTOR4(vp);
if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
contents = kmem_alloc(MAXPATHLEN, KM_SLEEP);
if (contents != NULL) {
mutex_enter(&rp->r_statelock);
if (rp->r_symlink.contents == NULL) {
rp->r_symlink.len = strlen(tnm);
bcopy(tnm, contents, rp->r_symlink.len);
rp->r_symlink.contents = contents;
rp->r_symlink.size = MAXPATHLEN;
mutex_exit(&rp->r_statelock);
} else {
mutex_exit(&rp->r_statelock);
kmem_free((void *)contents, MAXPATHLEN);
}
}
}
VN_RELE(vp);
return (error);
}
/*
* Read directory entries.
* There are some weird things to look out for here. The uio_loffset
* field is either 0 or it is the offset returned from a previous
* readdir. It is an opaque value used by the server to find the
* correct directory block to read. The count field is the number
* of blocks to read on the server. This is advisory only, the server
* may return only one block's worth of entries. Entries may be compressed
* on the server.
*/
/* ARGSUSED */
static int
nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
caller_context_t *ct, int flags)
{
int error;
uint_t count;
rnode4_t *rp;
rddir4_cache *rdc;
rddir4_cache *rrdc;
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
rp = VTOR4(vp);
ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
/*
* Make sure that the directory cache is valid.
*/
if (rp->r_dir != NULL) {
if (nfs_disable_rddir_cache != 0) {
/*
* Setting nfs_disable_rddir_cache in /etc/system
* allows interoperability with servers that do not
* properly update the attributes of directories.
* Any cached information gets purged before an
* access is made to it.
*/
nfs4_purge_rddir_cache(vp);
}
error = nfs4_validate_caches(vp, cr);
if (error)
return (error);
}
count = MIN(uiop->uio_iov->iov_len, MAXBSIZE);
/*
* Short circuit last readdir which always returns 0 bytes.
* This can be done after the directory has been read through
* completely at least once. This will set r_direof which
* can be used to find the value of the last cookie.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_direof != NULL &&
uiop->uio_loffset == rp->r_direof->nfs4_ncookie) {
mutex_exit(&rp->r_statelock);
#ifdef DEBUG
nfs4_readdir_cache_shorts++;
#endif
if (eofp)
*eofp = 1;
return (0);
}
/*
* Look for a cache entry. Cache entries are identified
* by the NFS cookie value and the byte count requested.
*/
rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count);
/*
* If rdc is NULL then the lookup resulted in an unrecoverable error.
*/
if (rdc == NULL) {
mutex_exit(&rp->r_statelock);
return (EINTR);
}
/*
* Check to see if we need to fill this entry in.
*/
if (rdc->flags & RDDIRREQ) {
rdc->flags &= ~RDDIRREQ;
rdc->flags |= RDDIR;
mutex_exit(&rp->r_statelock);
/*
* Do the readdir.
*/
nfs4readdir(vp, rdc, cr);
/*
* Reacquire the lock, so that we can continue
*/
mutex_enter(&rp->r_statelock);
/*
* The entry is now complete
*/
rdc->flags &= ~RDDIR;
}
ASSERT(!(rdc->flags & RDDIR));
/*
* If an error occurred while attempting
* to fill the cache entry, mark the entry invalid and
* just return the error.
*/
if (rdc->error) {
error = rdc->error;
rdc->flags |= RDDIRREQ;
rddir4_cache_rele(rp, rdc);
mutex_exit(&rp->r_statelock);
return (error);
}
/*
* The cache entry is complete and good,
* copyout the dirent structs to the calling
* thread.
*/
error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop);
/*
* If no error occurred during the copyout,
* update the offset in the uio struct to
* contain the value of the next NFS 4 cookie
* and set the eof value appropriately.
*/
if (!error) {
uiop->uio_loffset = rdc->nfs4_ncookie;
if (eofp)
*eofp = rdc->eof;
}
/*
* Decide whether to do readahead. Don't if we
* have already read to the end of directory.
*/
if (rdc->eof) {
/*
* Make the entry the direof only if it is cached
*/
if (rdc->flags & RDDIRCACHED)
rp->r_direof = rdc;
rddir4_cache_rele(rp, rdc);
mutex_exit(&rp->r_statelock);
return (error);
}
/* Determine if a readdir readahead should be done */
if (!(rp->r_flags & R4LOOKUP)) {
rddir4_cache_rele(rp, rdc);
mutex_exit(&rp->r_statelock);
return (error);
}
/*
* Now look for a readahead entry.
*
* Check to see whether we found an entry for the readahead.
* If so, we don't need to do anything further, so free the new
* entry if one was allocated. Otherwise, allocate a new entry, add
* it to the cache, and then initiate an asynchronous readdir
* operation to fill it.
*/
rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count);
/*
* A readdir cache entry could not be obtained for the readahead. In
* this case we skip the readahead and return.
*/
if (rrdc == NULL) {
rddir4_cache_rele(rp, rdc);
mutex_exit(&rp->r_statelock);
return (error);
}
/*
* Check to see if we need to fill this entry in.
*/
if (rrdc->flags & RDDIRREQ) {
rrdc->flags &= ~RDDIRREQ;
rrdc->flags |= RDDIR;
rddir4_cache_rele(rp, rdc);
mutex_exit(&rp->r_statelock);
#ifdef DEBUG
nfs4_readdir_readahead++;
#endif
/*
* Do the readdir.
*/
nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir);
return (error);
}
rddir4_cache_rele(rp, rrdc);
rddir4_cache_rele(rp, rdc);
mutex_exit(&rp->r_statelock);
return (error);
}
static int
do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
{
int error;
rnode4_t *rp;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
rp = VTOR4(vp);
/*
* Obtain the readdir results for the caller.
*/
nfs4readdir(vp, rdc, cr);
mutex_enter(&rp->r_statelock);
/*
* The entry is now complete
*/
rdc->flags &= ~RDDIR;
error = rdc->error;
if (error)
rdc->flags |= RDDIRREQ;
rddir4_cache_rele(rp, rdc);
mutex_exit(&rp->r_statelock);
return (error);
}
/*
* Read directory entries.
* There are some weird things to look out for here. The uio_loffset
* field is either 0 or it is the offset returned from a previous
* readdir. It is an opaque value used by the server to find the
* correct directory block to read. The count field is the number
* of blocks to read on the server. This is advisory only, the server
* may return only one block's worth of entries. Entries may be compressed
* on the server.
*
* Generates the following compound request:
* 1. If readdir offset is zero and no dnlc entry for parent exists,
* must include a Lookupp as well. In this case, send:
* { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr }
* 2. Otherwise just do: { Putfh <fh>; Readdir }
*
* Get complete attributes and filehandles for entries if this is the
* first read of the directory. Otherwise, just get fileid's.
*/
static void
nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
READDIR4args *rargs;
READDIR4res_clnt *rd_res;
bitmap4 rd_bitsval;
nfs_argop4 argop[5];
nfs_resop4 *resop;
rnode4_t *rp = VTOR4(vp);
mntinfo4_t *mi = VTOMI4(vp);
int doqueue;
u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */
vnode_t *dvp;
nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie;
int num_ops, res_opcnt;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
hrtime_t t;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
ASSERT(nfs_zone() == mi->mi_zone);
ASSERT(rdc->flags & RDDIR);
ASSERT(rdc->entries == NULL);
/*
* If rp were a stub, it should have triggered and caused
* a mount for us to get this far.
*/
ASSERT(!RP_ISSTUB(rp));
num_ops = 2;
if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) {
/*
* Since nfsv4 readdir may not return entries for "." and "..",
* the client must recreate them:
* To find the correct nodeid, do the following:
* For current node, get nodeid from dnlc.
* - if current node is rootvp, set pnodeid to nodeid.
* - else if parent is in the dnlc, get its nodeid from there.
* - else add LOOKUPP+GETATTR to compound.
*/
nodeid = rp->r_attr.va_nodeid;
if (vp->v_flag & VROOT) {
pnodeid = nodeid; /* root of mount point */
} else {
dvp = dnlc_lookup(vp, "..");
if (dvp != NULL && dvp != DNLC_NO_VNODE) {
/* parent in dnlc cache - no need for otw */
pnodeid = VTOR4(dvp)->r_attr.va_nodeid;
} else {
/*
* parent not in dnlc cache,
* do lookupp to get its id
*/
num_ops = 5;
pnodeid = 0; /* set later by getattr parent */
}
if (dvp)
VN_RELE(dvp);
}
}
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
/* Save the original mount point security flavor */
(void) save_mnt_secinfo(mi->mi_curr_serv);
recov_retry:
args.ctag = TAG_READDIR;
args.array = argop;
args.array_len = num_ops;
if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
&recov_state, NULL)) {
/*
* If readdir a node that is a stub for a crossed mount point,
* keep the original secinfo flavor for the current file
* system, not the crossed one.
*/
(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
rdc->error = e.error;
return;
}
/*
* Determine which attrs to request for dirents. This code
* must be protected by nfs4_start/end_fop because of r_server
* (which will change during failover recovery).
*
*/
if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) {
/*
* Get all vattr attrs plus filehandle and rdattr_error
*/
rd_bitsval = NFS4_VATTR_MASK |
FATTR4_RDATTR_ERROR_MASK |
FATTR4_FILEHANDLE_MASK;
if (rp->r_flags & R4READDIRWATTR) {
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~R4READDIRWATTR;
mutex_exit(&rp->r_statelock);
}
} else {
servinfo4_t *svp = rp->r_server;
/*
* Already read directory. Use readdir with
* no attrs (except for mounted_on_fileid) for updates.
*/
rd_bitsval = FATTR4_RDATTR_ERROR_MASK;
/*
* request mounted on fileid if supported, else request
* fileid. maybe we should verify that fileid is supported
* and request something else if not.
*/
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK)
rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK;
nfs_rw_exit(&svp->sv_lock);
}
/* putfh directory fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
argop[1].argop = OP_READDIR;
rargs = &argop[1].nfs_argop4_u.opreaddir;
/*
* 1 and 2 are reserved for client "." and ".." entry offset.
* cookie 0 should be used over-the-wire to start reading at
* the beginning of the directory excluding "." and "..".
*/
if (rdc->nfs4_cookie == 0 ||
rdc->nfs4_cookie == 1 ||
rdc->nfs4_cookie == 2) {
rargs->cookie = (nfs_cookie4)0;
rargs->cookieverf = 0;
} else {
rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie;
mutex_enter(&rp->r_statelock);
rargs->cookieverf = rp->r_cookieverf4;
mutex_exit(&rp->r_statelock);
}
rargs->dircount = MIN(rdc->buflen, mi->mi_tsize);
rargs->maxcount = mi->mi_tsize;
rargs->attr_request = rd_bitsval;
rargs->rdc = rdc;
rargs->dvp = vp;
rargs->mi = mi;
rargs->cr = cr;
/*
* If count < than the minimum required, we return no entries
* and fail with EINVAL
*/
if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) {
rdc->error = EINVAL;
goto out;
}
if (args.array_len == 5) {
/*
* Add lookupp and getattr for parent nodeid.
*/
argop[2].argop = OP_LOOKUPP;
argop[3].argop = OP_GETFH;
/* getattr parent */
argop[4].argop = OP_GETATTR;
argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[4].nfs_argop4_u.opgetattr.mi = mi;
}
doqueue = 1;
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
/* capture the time of this call */
rargs->t = t = gethrtime();
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
/*
* If RPC error occurred and it isn't an error that
* triggers recovery, then go ahead and fail now.
*/
if (e.error != 0 && !needrecov) {
rdc->error = e.error;
goto out;
}
if (needrecov) {
bool_t abort;
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4readdir: initiating recovery.\n"));
abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
NULL, OP_READDIR, NULL, NULL, NULL);
if (abort == FALSE) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
&recov_state, needrecov);
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
if (rdc->entries != NULL) {
kmem_free(rdc->entries, rdc->entlen);
rdc->entries = NULL;
}
goto recov_retry;
}
if (e.error != 0) {
rdc->error = e.error;
goto out;
}
/* fall through for res.status case */
}
res_opcnt = res.array_len;
/*
* If compound failed first 2 ops (PUTFH+READDIR), then return
* failure here. Subsequent ops are for filling out dot-dot
* dirent, and if they fail, we still want to give the caller
* the dirents returned by (the successful) READDIR op, so we need
* to silently ignore failure for subsequent ops (LOOKUPP+GETATTR).
*
* One example where PUTFH+READDIR ops would succeed but
* LOOKUPP+GETATTR would fail would be a dir that has r perm
* but lacks x. In this case, a POSIX server's VOP_READDIR
* would succeed; however, VOP_LOOKUP(..) would fail since no
* x perm. We need to come up with a non-vendor-specific way
* for a POSIX server to return d_ino from dotdot's dirent if
* client only requests mounted_on_fileid, and just say the
* LOOKUPP succeeded and fill out the GETATTR. However, if
* client requested any mandatory attrs, server would be required
* to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR
* for dotdot.
*/
if (res.status) {
if (res_opcnt <= 2) {
e.error = geterrno4(res.status);
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
&recov_state, needrecov);
nfs4_purge_stale_fh(e.error, vp, cr);
rdc->error = e.error;
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
if (rdc->entries != NULL) {
kmem_free(rdc->entries, rdc->entlen);
rdc->entries = NULL;
}
/*
* If readdir a node that is a stub for a
* crossed mount point, keep the original
* secinfo flavor for the current file system,
* not the crossed one.
*/
(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
return;
}
}
resop = &res.array[1]; /* readdir res */
rd_res = &resop->nfs_resop4_u.opreaddirclnt;
mutex_enter(&rp->r_statelock);
rp->r_cookieverf4 = rd_res->cookieverf;
mutex_exit(&rp->r_statelock);
/*
* For "." and ".." entries
* e.g.
* seek(cookie=0) -> "." entry with d_off = 1
* seek(cookie=1) -> ".." entry with d_off = 2
*/
if (cookie == (nfs_cookie4) 0) {
if (rd_res->dotp)
rd_res->dotp->d_ino = nodeid;
if (rd_res->dotdotp)
rd_res->dotdotp->d_ino = pnodeid;
}
if (cookie == (nfs_cookie4) 1) {
if (rd_res->dotdotp)
rd_res->dotdotp->d_ino = pnodeid;
}
/* LOOKUPP+GETATTR attemped */
if (args.array_len == 5 && rd_res->dotdotp) {
if (res.status == NFS4_OK && res_opcnt == 5) {
nfs_fh4 *fhp;
nfs4_sharedfh_t *sfhp;
vnode_t *pvp;
nfs4_ga_res_t *garp;
resop++; /* lookupp */
resop++; /* getfh */
fhp = &resop->nfs_resop4_u.opgetfh.object;
resop++; /* getattr of parent */
/*
* First, take care of finishing the
* readdir results.
*/
garp = &resop->nfs_resop4_u.opgetattr.ga_res;
/*
* The d_ino of .. must be the inode number
* of the mounted filesystem.
*/
if (garp->n4g_va.va_mask & AT_NODEID)
rd_res->dotdotp->d_ino =
garp->n4g_va.va_nodeid;
/*
* Next, create the ".." dnlc entry
*/
sfhp = sfh4_get(fhp, mi);
if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) {
dnlc_update(vp, "..", pvp);
VN_RELE(pvp);
}
sfh4_rele(&sfhp);
}
}
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen;
mutex_exit(&mi->mi_lock);
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
out:
/*
* If readdir a node that is a stub for a crossed mount point,
* keep the original secinfo flavor for the current file system,
* not the crossed one.
*/
(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov);
}
static int
nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead)
{
rnode4_t *rp = VTOR4(bp->b_vp);
int count;
int error;
cred_t *cred_otw = NULL;
offset_t offset;
nfs4_open_stream_t *osp = NULL;
bool_t first_time = TRUE; /* first time getting otw cred */
bool_t last_time = FALSE; /* last time getting otw cred */
ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone);
DTRACE_IO1(start, struct buf *, bp);
offset = ldbtob(bp->b_lblkno);
if (bp->b_flags & B_READ) {
read_again:
/*
* Releases the osp, if it is provided.
* Puts a hold on the cred_otw and the new osp (if found).
*/
cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
&first_time, &last_time);
error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr,
offset, bp->b_bcount, &bp->b_resid, cred_otw,
readahead, NULL);
crfree(cred_otw);
if (!error) {
if (bp->b_resid) {
/*
* Didn't get it all because we hit EOF,
* zero all the memory beyond the EOF.
*/
/* bzero(rdaddr + */
bzero(bp->b_un.b_addr +
bp->b_bcount - bp->b_resid, bp->b_resid);
}
mutex_enter(&rp->r_statelock);
if (bp->b_resid == bp->b_bcount &&
offset >= rp->r_size) {
/*
* We didn't read anything at all as we are
* past EOF. Return an error indicator back
* but don't destroy the pages (yet).
*/
error = NFS_EOF;
}
mutex_exit(&rp->r_statelock);
} else if (error == EACCES && last_time == FALSE) {
goto read_again;
}
} else {
if (!(rp->r_flags & R4STALE)) {
write_again:
/*
* Releases the osp, if it is provided.
* Puts a hold on the cred_otw and the new
* osp (if found).
*/
cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
&first_time, &last_time);
mutex_enter(&rp->r_statelock);
count = MIN(bp->b_bcount, rp->r_size - offset);
mutex_exit(&rp->r_statelock);
if (count < 0)
cmn_err(CE_PANIC, "nfs4_bio: write count < 0");
#ifdef DEBUG
if (count == 0) {
zoneid_t zoneid = getzoneid();
zcmn_err(zoneid, CE_WARN,
"nfs4_bio: zero length write at %lld",
offset);
zcmn_err(zoneid, CE_CONT, "flags=0x%x, "
"b_bcount=%ld, file size=%lld",
rp->r_flags, (long)bp->b_bcount,
rp->r_size);
sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh);
if (nfs4_bio_do_stop)
debug_enter("nfs4_bio");
}
#endif
error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset,
count, cred_otw, stab_comm);
if (error == EACCES && last_time == FALSE) {
crfree(cred_otw);
goto write_again;
}
bp->b_error = error;
if (error && error != EINTR &&
!(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
/*
* Don't print EDQUOT errors on the console.
* Don't print asynchronous EACCES errors.
* Don't print EFBIG errors.
* Print all other write errors.
*/
if (error != EDQUOT && error != EFBIG &&
(error != EACCES ||
!(bp->b_flags & B_ASYNC)))
nfs4_write_error(bp->b_vp,
error, cred_otw);
/*
* Update r_error and r_flags as appropriate.
* If the error was ESTALE, then mark the
* rnode as not being writeable and save
* the error status. Otherwise, save any
* errors which occur from asynchronous
* page invalidations. Any errors occurring
* from other operations should be saved
* by the caller.
*/
mutex_enter(&rp->r_statelock);
if (error == ESTALE) {
rp->r_flags |= R4STALE;
if (!rp->r_error)
rp->r_error = error;
} else if (!rp->r_error &&
(bp->b_flags &
(B_INVAL|B_FORCE|B_ASYNC)) ==
(B_INVAL|B_FORCE|B_ASYNC)) {
rp->r_error = error;
}
mutex_exit(&rp->r_statelock);
}
crfree(cred_otw);
} else {
error = rp->r_error;
/*
* A close may have cleared r_error, if so,
* propagate ESTALE error return properly
*/
if (error == 0)
error = ESTALE;
}
}
if (error != 0 && error != NFS_EOF)
bp->b_flags |= B_ERROR;
if (osp)
open_stream_rele(osp, rp);
DTRACE_IO1(done, struct buf *, bp);
return (error);
}
/* ARGSUSED */
int
nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
{
return (EREMOTE);
}
/* ARGSUSED2 */
int
nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
{
rnode4_t *rp = VTOR4(vp);
if (!write_lock) {
(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
return (V_WRITELOCK_FALSE);
}
if ((rp->r_flags & R4DIRECTIO) ||
(VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) {
(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp))
return (V_WRITELOCK_FALSE);
nfs_rw_exit(&rp->r_rwlock);
}
(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
return (V_WRITELOCK_TRUE);
}
/* ARGSUSED */
void
nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
{
rnode4_t *rp = VTOR4(vp);
nfs_rw_exit(&rp->r_rwlock);
}
/* ARGSUSED */
static int
nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
{
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
/*
* Because we stuff the readdir cookie into the offset field
* someone may attempt to do an lseek with the cookie which
* we want to succeed.
*/
if (vp->v_type == VDIR)
return (0);
if (*noffp < 0)
return (EINVAL);
return (0);
}
/*
* Return all the pages from [off..off+len) in file
*/
/* ARGSUSED */
static int
nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
enum seg_rw rw, cred_t *cr, caller_context_t *ct)
{
rnode4_t *rp;
int error;
mntinfo4_t *mi;
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
rp = VTOR4(vp);
if (IS_SHADOW(vp, rp))
vp = RTOV4(rp);
if (vp->v_flag & VNOMAP)
return (ENOSYS);
if (protp != NULL)
*protp = PROT_ALL;
/*
* Now validate that the caches are up to date.
*/
if (error = nfs4_validate_caches(vp, cr))
return (error);
mi = VTOMI4(vp);
retry:
mutex_enter(&rp->r_statelock);
/*
* Don't create dirty pages faster than they
* can be cleaned so that the system doesn't
* get imbalanced. If the async queue is
* maxed out, then wait for it to drain before
* creating more dirty pages. Also, wait for
* any threads doing pagewalks in the vop_getattr
* entry points so that they don't block for
* long periods.
*/
if (rw == S_CREATE) {
while ((mi->mi_max_threads != 0 &&
rp->r_awcount > 2 * mi->mi_max_threads) ||
rp->r_gcount > 0)
cv_wait(&rp->r_cv, &rp->r_statelock);
}
/*
* If we are getting called as a side effect of an nfs_write()
* operation the local file size might not be extended yet.
* In this case we want to be able to return pages of zeroes.
*/
if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
NFS4_DEBUG(nfs4_pageio_debug,
(CE_NOTE, "getpage beyond EOF: off=%lld, "
"len=%llu, size=%llu, attrsize =%llu", off,
(u_longlong_t)len, rp->r_size, rp->r_attr.va_size));
mutex_exit(&rp->r_statelock);
return (EFAULT); /* beyond EOF */
}
mutex_exit(&rp->r_statelock);
error = pvn_getpages(nfs4_getapage, vp, off, len, protp,
pl, plsz, seg, addr, rw, cr);
NFS4_DEBUG(nfs4_pageio_debug && error,
(CE_NOTE, "getpages error %d; off=%lld, len=%lld",
error, off, (u_longlong_t)len));
switch (error) {
case NFS_EOF:
nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE);
goto retry;
case ESTALE:
nfs4_purge_stale_fh(error, vp, cr);
}
return (error);
}
/*
* Called from pvn_getpages to get a particular page.
*/
/* ARGSUSED */
static int
nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
enum seg_rw rw, cred_t *cr)
{
rnode4_t *rp;
uint_t bsize;
struct buf *bp;
page_t *pp;
u_offset_t lbn;
u_offset_t io_off;
u_offset_t blkoff;
u_offset_t rablkoff;
size_t io_len;
uint_t blksize;
int error;
int readahead;
int readahead_issued = 0;
int ra_window; /* readahead window */
page_t *pagefound;
page_t *savepp;
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
rp = VTOR4(vp);
ASSERT(!IS_SHADOW(vp, rp));
bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
reread:
bp = NULL;
pp = NULL;
pagefound = NULL;
if (pl != NULL)
pl[0] = NULL;
error = 0;
lbn = off / bsize;
blkoff = lbn * bsize;
/*
* Queueing up the readahead before doing the synchronous read
* results in a significant increase in read throughput because
* of the increased parallelism between the async threads and
* the process context.
*/
if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
rw != S_CREATE &&
!(vp->v_flag & VNOCACHE)) {
mutex_enter(&rp->r_statelock);
/*
* Calculate the number of readaheads to do.
* a) No readaheads at offset = 0.
* b) Do maximum(nfs4_nra) readaheads when the readahead
* window is closed.
* c) Do readaheads between 1 to (nfs4_nra - 1) depending
* upon how far the readahead window is open or close.
* d) No readaheads if rp->r_nextr is not within the scope
* of the readahead window (random i/o).
*/
if (off == 0)
readahead = 0;
else if (blkoff == rp->r_nextr)
readahead = nfs4_nra;
else if (rp->r_nextr > blkoff &&
((ra_window = (rp->r_nextr - blkoff) / bsize)
<= (nfs4_nra - 1)))
readahead = nfs4_nra - ra_window;
else
readahead = 0;
rablkoff = rp->r_nextr;
while (readahead > 0 && rablkoff + bsize < rp->r_size) {
mutex_exit(&rp->r_statelock);
if (nfs4_async_readahead(vp, rablkoff + bsize,
addr + (rablkoff + bsize - off),
seg, cr, nfs4_readahead) < 0) {
mutex_enter(&rp->r_statelock);
break;
}
readahead--;
rablkoff += bsize;
/*
* Indicate that we did a readahead so
* readahead offset is not updated
* by the synchronous read below.
*/
readahead_issued = 1;
mutex_enter(&rp->r_statelock);
/*
* set readahead offset to
* offset of last async readahead
* request.
*/
rp->r_nextr = rablkoff;
}
mutex_exit(&rp->r_statelock);
}
again:
if ((pagefound = page_exists(vp, off)) == NULL) {
if (pl == NULL) {
(void) nfs4_async_readahead(vp, blkoff, addr, seg, cr,
nfs4_readahead);
} else if (rw == S_CREATE) {
/*
* Block for this page is not allocated, or the offset
* is beyond the current allocation size, or we're
* allocating a swap slot and the page was not found,
* so allocate it and return a zero page.
*/
if ((pp = page_create_va(vp, off,
PAGESIZE, PG_WAIT, seg, addr)) == NULL)
cmn_err(CE_PANIC, "nfs4_getapage: page_create");
io_len = PAGESIZE;
mutex_enter(&rp->r_statelock);
rp->r_nextr = off + PAGESIZE;
mutex_exit(&rp->r_statelock);
} else {
/*
* Need to go to server to get a block
*/
mutex_enter(&rp->r_statelock);
if (blkoff < rp->r_size &&
blkoff + bsize > rp->r_size) {
/*
* If less than a block left in
* file read less than a block.
*/
if (rp->r_size <= off) {
/*
* Trying to access beyond EOF,
* set up to get at least one page.
*/
blksize = off + PAGESIZE - blkoff;
} else
blksize = rp->r_size - blkoff;
} else if ((off == 0) ||
(off != rp->r_nextr && !readahead_issued)) {
blksize = PAGESIZE;
blkoff = off; /* block = page here */
} else
blksize = bsize;
mutex_exit(&rp->r_statelock);
pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
&io_len, blkoff, blksize, 0);
/*
* Some other thread has entered the page,
* so just use it.
*/
if (pp == NULL)
goto again;
/*
* Now round the request size up to page boundaries.
* This ensures that the entire page will be
* initialized to zeroes if EOF is encountered.
*/
io_len = ptob(btopr(io_len));
bp = pageio_setup(pp, io_len, vp, B_READ);
ASSERT(bp != NULL);
/*
* pageio_setup should have set b_addr to 0. This
* is correct since we want to do I/O on a page
* boundary. bp_mapin will use this addr to calculate
* an offset, and then set b_addr to the kernel virtual
* address it allocated for us.
*/
ASSERT(bp->b_un.b_addr == 0);
bp->b_edev = 0;
bp->b_dev = 0;
bp->b_lblkno = lbtodb(io_off);
bp->b_file = vp;
bp->b_offset = (offset_t)off;
bp_mapin(bp);
/*
* If doing a write beyond what we believe is EOF,
* don't bother trying to read the pages from the
* server, we'll just zero the pages here. We
* don't check that the rw flag is S_WRITE here
* because some implementations may attempt a
* read access to the buffer before copying data.
*/
mutex_enter(&rp->r_statelock);
if (io_off >= rp->r_size && seg == segkmap) {
mutex_exit(&rp->r_statelock);
bzero(bp->b_un.b_addr, io_len);
} else {
mutex_exit(&rp->r_statelock);
error = nfs4_bio(bp, NULL, cr, FALSE);
}
/*
* Unmap the buffer before freeing it.
*/
bp_mapout(bp);
pageio_done(bp);
savepp = pp;
do {
pp->p_fsdata = C_NOCOMMIT;
} while ((pp = pp->p_next) != savepp);
if (error == NFS_EOF) {
/*
* If doing a write system call just return
* zeroed pages, else user tried to get pages
* beyond EOF, return error. We don't check
* that the rw flag is S_WRITE here because
* some implementations may attempt a read
* access to the buffer before copying data.
*/
if (seg == segkmap)
error = 0;
else
error = EFAULT;
}
if (!readahead_issued && !error) {
mutex_enter(&rp->r_statelock);
rp->r_nextr = io_off + io_len;
mutex_exit(&rp->r_statelock);
}
}
}
out:
if (pl == NULL)
return (error);
if (error) {
if (pp != NULL)
pvn_read_done(pp, B_ERROR);
return (error);
}
if (pagefound) {
se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
/*
* Page exists in the cache, acquire the appropriate lock.
* If this fails, start all over again.
*/
if ((pp = page_lookup(vp, off, se)) == NULL) {
#ifdef DEBUG
nfs4_lostpage++;
#endif
goto reread;
}
pl[0] = pp;
pl[1] = NULL;
return (0);
}
if (pp != NULL)
pvn_plist_init(pp, pl, plsz, off, io_len, rw);
return (error);
}
static void
nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
cred_t *cr)
{
int error;
page_t *pp;
u_offset_t io_off;
size_t io_len;
struct buf *bp;
uint_t bsize, blksize;
rnode4_t *rp = VTOR4(vp);
page_t *savepp;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
mutex_enter(&rp->r_statelock);
if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
/*
* If less than a block left in file read less
* than a block.
*/
blksize = rp->r_size - blkoff;
} else
blksize = bsize;
mutex_exit(&rp->r_statelock);
pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
&io_off, &io_len, blkoff, blksize, 1);
/*
* The isra flag passed to the kluster function is 1, we may have
* gotten a return value of NULL for a variety of reasons (# of free
* pages < minfree, someone entered the page on the vnode etc). In all
* cases, we want to punt on the readahead.
*/
if (pp == NULL)
return;
/*
* Now round the request size up to page boundaries.
* This ensures that the entire page will be
* initialized to zeroes if EOF is encountered.
*/
io_len = ptob(btopr(io_len));
bp = pageio_setup(pp, io_len, vp, B_READ);
ASSERT(bp != NULL);
/*
* pageio_setup should have set b_addr to 0. This is correct since
* we want to do I/O on a page boundary. bp_mapin() will use this addr
* to calculate an offset, and then set b_addr to the kernel virtual
* address it allocated for us.
*/
ASSERT(bp->b_un.b_addr == 0);
bp->b_edev = 0;
bp->b_dev = 0;
bp->b_lblkno = lbtodb(io_off);
bp->b_file = vp;
bp->b_offset = (offset_t)blkoff;
bp_mapin(bp);
/*
* If doing a write beyond what we believe is EOF, don't bother trying
* to read the pages from the server, we'll just zero the pages here.
* We don't check that the rw flag is S_WRITE here because some
* implementations may attempt a read access to the buffer before
* copying data.
*/
mutex_enter(&rp->r_statelock);
if (io_off >= rp->r_size && seg == segkmap) {
mutex_exit(&rp->r_statelock);
bzero(bp->b_un.b_addr, io_len);
error = 0;
} else {
mutex_exit(&rp->r_statelock);
error = nfs4_bio(bp, NULL, cr, TRUE);
if (error == NFS_EOF)
error = 0;
}
/*
* Unmap the buffer before freeing it.
*/
bp_mapout(bp);
pageio_done(bp);
savepp = pp;
do {
pp->p_fsdata = C_NOCOMMIT;
} while ((pp = pp->p_next) != savepp);
pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
/*
* In case of error set readahead offset
* to the lowest offset.
* pvn_read_done() calls VN_DISPOSE to destroy the pages
*/
if (error && rp->r_nextr > io_off) {
mutex_enter(&rp->r_statelock);
if (rp->r_nextr > io_off)
rp->r_nextr = io_off;
mutex_exit(&rp->r_statelock);
}
}
/*
* Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
* If len == 0, do from off to EOF.
*
* The normal cases should be len == 0 && off == 0 (entire vp list) or
* len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
* (from pageout).
*/
/* ARGSUSED */
static int
nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
caller_context_t *ct)
{
int error;
rnode4_t *rp;
ASSERT(cr != NULL);
if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
rp = VTOR4(vp);
if (IS_SHADOW(vp, rp))
vp = RTOV4(rp);
/*
* XXX - Why should this check be made here?
*/
if (vp->v_flag & VNOMAP)
return (ENOSYS);
if (len == 0 && !(flags & B_INVAL) &&
(vp->v_vfsp->vfs_flag & VFS_RDONLY))
return (0);
mutex_enter(&rp->r_statelock);
rp->r_count++;
mutex_exit(&rp->r_statelock);
error = nfs4_putpages(vp, off, len, flags, cr);
mutex_enter(&rp->r_statelock);
rp->r_count--;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
return (error);
}
/*
* Write out a single page, possibly klustering adjacent dirty pages.
*/
int
nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
int flags, cred_t *cr)
{
u_offset_t io_off;
u_offset_t lbn_off;
u_offset_t lbn;
size_t io_len;
uint_t bsize;
int error;
rnode4_t *rp;
ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY));
ASSERT(pp != NULL);
ASSERT(cr != NULL);
ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone);
rp = VTOR4(vp);
ASSERT(rp->r_count > 0);
ASSERT(!IS_SHADOW(vp, rp));
bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
lbn = pp->p_offset / bsize;
lbn_off = lbn * bsize;
/*
* Find a kluster that fits in one block, or in
* one page if pages are bigger than blocks. If
* there is less file space allocated than a whole
* page, we'll shorten the i/o request below.
*/
pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
roundup(bsize, PAGESIZE), flags);
/*
* pvn_write_kluster shouldn't have returned a page with offset
* behind the original page we were given. Verify that.
*/
ASSERT((pp->p_offset / bsize) >= lbn);
/*
* Now pp will have the list of kept dirty pages marked for
* write back. It will also handle invalidation and freeing
* of pages that are not dirty. Check for page length rounding
* problems.
*/
if (io_off + io_len > lbn_off + bsize) {
ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
io_len = lbn_off + bsize - io_off;
}
/*
* The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
* consistent value of r_size. R4MODINPROGRESS is set in writerp4().
* When R4MODINPROGRESS is set it indicates that a uiomove() is in
* progress and the r_size has not been made consistent with the
* new size of the file. When the uiomove() completes the r_size is
* updated and the R4MODINPROGRESS flag is cleared.
*
* The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
* consistent value of r_size. Without this handshaking, it is
* possible that nfs4_bio() picks up the old value of r_size
* before the uiomove() in writerp4() completes. This will result
* in the write through nfs4_bio() being dropped.
*
* More precisely, there is a window between the time the uiomove()
* completes and the time the r_size is updated. If a VOP_PUTPAGE()
* operation intervenes in this window, the page will be picked up,
* because it is dirty (it will be unlocked, unless it was
* pagecreate'd). When the page is picked up as dirty, the dirty
* bit is reset (pvn_getdirty()). In nfs4write(), r_size is
* checked. This will still be the old size. Therefore the page will
* not be written out. When segmap_release() calls VOP_PUTPAGE(),
* the page will be found to be clean and the write will be dropped.
*/
if (rp->r_flags & R4MODINPROGRESS) {
mutex_enter(&rp->r_statelock);
if ((rp->r_flags & R4MODINPROGRESS) &&
rp->r_modaddr + MAXBSIZE > io_off &&
rp->r_modaddr < io_off + io_len) {
page_t *plist;
/*
* A write is in progress for this region of the file.
* If we did not detect R4MODINPROGRESS here then this
* path through nfs_putapage() would eventually go to
* nfs4_bio() and may not write out all of the data
* in the pages. We end up losing data. So we decide
* to set the modified bit on each page in the page
* list and mark the rnode with R4DIRTY. This write
* will be restarted at some later time.
*/
plist = pp;
while (plist != NULL) {
pp = plist;
page_sub(&plist, pp);
hat_setmod(pp);
page_io_unlock(pp);
page_unlock(pp);
}
rp->r_flags |= R4DIRTY;
mutex_exit(&rp->r_statelock);
if (offp)
*offp = io_off;
if (lenp)
*lenp = io_len;
return (0);
}
mutex_exit(&rp->r_statelock);
}
if (flags & B_ASYNC) {
error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr,
nfs4_sync_putapage);
} else
error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr);
if (offp)
*offp = io_off;
if (lenp)
*lenp = io_len;
return (error);
}
static int
nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
int flags, cred_t *cr)
{
int error;
rnode4_t *rp;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
flags |= B_WRITE;
error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
rp = VTOR4(vp);
if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
error == EACCES) &&
(flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
if (!(rp->r_flags & R4OUTOFSPACE)) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4OUTOFSPACE;
mutex_exit(&rp->r_statelock);
}
flags |= B_ERROR;
pvn_write_done(pp, flags);
/*
* If this was not an async thread, then try again to
* write out the pages, but this time, also destroy
* them whether or not the write is successful. This
* will prevent memory from filling up with these
* pages and destroying them is the only alternative
* if they can't be written out.
*
* Don't do this if this is an async thread because
* when the pages are unlocked in pvn_write_done,
* some other thread could have come along, locked
* them, and queued for an async thread. It would be
* possible for all of the async threads to be tied
* up waiting to lock the pages again and they would
* all already be locked and waiting for an async
* thread to handle them. Deadlock.
*/
if (!(flags & B_ASYNC)) {
error = nfs4_putpage(vp, io_off, io_len,
B_INVAL | B_FORCE, cr, NULL);
}
} else {
if (error)
flags |= B_ERROR;
else if (rp->r_flags & R4OUTOFSPACE) {
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~R4OUTOFSPACE;
mutex_exit(&rp->r_statelock);
}
pvn_write_done(pp, flags);
if (freemem < desfree)
(void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr,
NFS4_WRITE_NOWAIT);
}
return (error);
}
#ifdef DEBUG
int nfs4_force_open_before_mmap = 0;
#endif
/* ARGSUSED */
static int
nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
caller_context_t *ct)
{
struct segvn_crargs vn_a;
int error = 0;
rnode4_t *rp = VTOR4(vp);
mntinfo4_t *mi = VTOMI4(vp);
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
if (vp->v_flag & VNOMAP)
return (ENOSYS);
if (off < 0 || (off + len) < 0)
return (ENXIO);
if (vp->v_type != VREG)
return (ENODEV);
/*
* If the file is delegated to the client don't do anything.
* If the file is not delegated, then validate the data cache.
*/
mutex_enter(&rp->r_statev4_lock);
if (rp->r_deleg_type == OPEN_DELEGATE_NONE) {
mutex_exit(&rp->r_statev4_lock);
error = nfs4_validate_caches(vp, cr);
if (error)
return (error);
} else {
mutex_exit(&rp->r_statev4_lock);
}
/*
* Check to see if the vnode is currently marked as not cachable.
* This means portions of the file are locked (through VOP_FRLOCK).
* In this case the map request must be refused. We use
* rp->r_lkserlock to avoid a race with concurrent lock requests.
*
* Atomically increment r_inmap after acquiring r_rwlock. The
* idea here is to acquire r_rwlock to block read/write and
* not to protect r_inmap. r_inmap will inform nfs4_read/write()
* that we are in nfs4_map(). Now, r_rwlock is acquired in order
* and we can prevent the deadlock that would have occurred
* when nfs4_addmap() would have acquired it out of order.
*
* Since we are not protecting r_inmap by any lock, we do not
* hold any lock when we decrement it. We atomically decrement
* r_inmap after we release r_lkserlock.
*/
if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp)))
return (EINTR);
atomic_inc_uint(&rp->r_inmap);
nfs_rw_exit(&rp->r_rwlock);
if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) {
atomic_dec_uint(&rp->r_inmap);
return (EINTR);
}
if (vp->v_flag & VNOCACHE) {
error = EAGAIN;
goto done;
}
/*
* Don't allow concurrent locks and mapping if mandatory locking is
* enabled.
*/
if (flk_has_remote_locks(vp)) {
struct vattr va;
va.va_mask = AT_MODE;
error = nfs4getattr(vp, &va, cr);
if (error != 0)
goto done;
if (MANDLOCK(vp, va.va_mode)) {
error = EAGAIN;
goto done;
}
}
/*
* It is possible that the rnode has a lost lock request that we
* are still trying to recover, and that the request conflicts with
* this map request.
*
* An alternative approach would be for nfs4_safemap() to consider
* queued lock requests when deciding whether to set or clear
* VNOCACHE. This would require the frlock code path to call
* nfs4_safemap() after enqueing a lost request.
*/
if (nfs4_map_lost_lock_conflict(vp)) {
error = EAGAIN;
goto done;
}
as_rangelock(as);
error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
if (error != 0) {
as_rangeunlock(as);
goto done;
}
if (vp->v_type == VREG) {
/*
* We need to retrieve the open stream
*/
nfs4_open_stream_t *osp = NULL;
nfs4_open_owner_t *oop = NULL;
oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
if (oop != NULL) {
/* returns with 'os_sync_lock' held */
osp = find_open_stream(oop, rp);
open_owner_rele(oop);
}
if (osp == NULL) {
#ifdef DEBUG
if (nfs4_force_open_before_mmap) {
error = EIO;
goto done;
}
#endif
/* returns with 'os_sync_lock' held */
error = open_and_get_osp(vp, cr, &osp);
if (osp == NULL) {
NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
"nfs4_map: we tried to OPEN the file "
"but again no osp, so fail with EIO"));
goto done;
}
}
if (osp->os_failed_reopen) {
mutex_exit(&osp->os_sync_lock);
open_stream_rele(osp, rp);
NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
"nfs4_map: os_failed_reopen set on "
"osp %p, cr %p, rp %s", (void *)osp,
(void *)cr, rnode4info(rp)));
error = EIO;
goto done;
}
mutex_exit(&osp->os_sync_lock);
open_stream_rele(osp, rp);
}
vn_a.vp = vp;
vn_a.offset = off;
vn_a.type = (flags & MAP_TYPE);
vn_a.prot = (uchar_t)prot;
vn_a.maxprot = (uchar_t)maxprot;
vn_a.flags = (flags & ~MAP_TYPE);
vn_a.cred = cr;
vn_a.amp = NULL;
vn_a.szc = 0;
vn_a.lgrp_mem_policy_flags = 0;
error = as_map(as, *addrp, len, segvn_create, &vn_a);
as_rangeunlock(as);
done:
nfs_rw_exit(&rp->r_lkserlock);
atomic_dec_uint(&rp->r_inmap);
return (error);
}
/*
* We're most likely dealing with a kernel module that likes to READ
* and mmap without OPENing the file (ie: lookup/read/mmap), so lets
* officially OPEN the file to create the necessary client state
* for bookkeeping of os_mmap_read/write counts.
*
* Since VOP_MAP only passes in a pointer to the vnode rather than
* a double pointer, we can't handle the case where nfs4open_otw()
* returns a different vnode than the one passed into VOP_MAP (since
* VOP_DELMAP will not see the vnode nfs4open_otw used). In this case,
* we return NULL and let nfs4_map() fail. Note: the only case where
* this should happen is if the file got removed and replaced with the
* same name on the server (in addition to the fact that we're trying
* to VOP_MAP withouth VOP_OPENing the file in the first place).
*/
static int
open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp)
{
rnode4_t *rp, *drp;
vnode_t *dvp, *open_vp;
char file_name[MAXNAMELEN];
int just_created;
nfs4_open_stream_t *osp;
nfs4_open_owner_t *oop;
int error;
*ospp = NULL;
open_vp = map_vp;
rp = VTOR4(open_vp);
if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0)
return (error);
drp = VTOR4(dvp);
if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) {
VN_RELE(dvp);
return (EINTR);
}
if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) {
nfs_rw_exit(&drp->r_rwlock);
VN_RELE(dvp);
return (error);
}
mutex_enter(&rp->r_statev4_lock);
if (rp->created_v4) {
rp->created_v4 = 0;
mutex_exit(&rp->r_statev4_lock);
dnlc_update(dvp, file_name, open_vp);
/* This is needed so we don't bump the open ref count */
just_created = 1;
} else {
mutex_exit(&rp->r_statev4_lock);
just_created = 0;
}
VN_HOLD(map_vp);
error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0,
just_created);
if (error) {
nfs_rw_exit(&drp->r_rwlock);
VN_RELE(dvp);
VN_RELE(map_vp);
return (error);
}
nfs_rw_exit(&drp->r_rwlock);
VN_RELE(dvp);
/*
* If nfs4open_otw() returned a different vnode then "undo"
* the open and return failure to the caller.
*/
if (!VN_CMP(open_vp, map_vp)) {
nfs4_error_t e;
NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
"open returned a different vnode"));
/*
* If there's an error, ignore it,
* and let VOP_INACTIVE handle it.
*/
(void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
CLOSE_NORM, 0, 0, 0);
VN_RELE(map_vp);
return (EIO);
}
VN_RELE(map_vp);
oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp));
if (!oop) {
nfs4_error_t e;
NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
"no open owner"));
/*
* If there's an error, ignore it,
* and let VOP_INACTIVE handle it.
*/
(void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
CLOSE_NORM, 0, 0, 0);
return (EIO);
}
osp = find_open_stream(oop, rp);
open_owner_rele(oop);
*ospp = osp;
return (0);
}
/*
* Please be aware that when this function is called, the address space write
* a_lock is held. Do not put over the wire calls in this function.
*/
/* ARGSUSED */
static int
nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
caller_context_t *ct)
{
rnode4_t *rp;
int error = 0;
mntinfo4_t *mi;
mi = VTOMI4(vp);
rp = VTOR4(vp);
if (nfs_zone() != mi->mi_zone)
return (EIO);
if (vp->v_flag & VNOMAP)
return (ENOSYS);
/*
* Don't need to update the open stream first, since this
* mmap can't add any additional share access that isn't
* already contained in the open stream (for the case where we
* open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't
* take into account os_mmap_read[write] counts).
*/
atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
if (vp->v_type == VREG) {
/*
* We need to retrieve the open stream and update the counts.
* If there is no open stream here, something is wrong.
*/
nfs4_open_stream_t *osp = NULL;
nfs4_open_owner_t *oop = NULL;
oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
if (oop != NULL) {
/* returns with 'os_sync_lock' held */
osp = find_open_stream(oop, rp);
open_owner_rele(oop);
}
if (osp == NULL) {
NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
"nfs4_addmap: we should have an osp"
"but we don't, so fail with EIO"));
error = EIO;
goto out;
}
NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p,"
" pages %ld, prot 0x%x", (void *)osp, btopr(len), prot));
/*
* Update the map count in the open stream.
* This is necessary in the case where we
* open/mmap/close/, then the server reboots, and we
* attempt to reopen. If the mmap doesn't add share
* access then we send an invalid reopen with
* access = NONE.
*
* We need to specifically check each PROT_* so a mmap
* call of (PROT_WRITE | PROT_EXEC) will ensure us both
* read and write access. A simple comparison of prot
* to ~PROT_WRITE to determine read access is insufficient
* since prot can be |= with PROT_USER, etc.
*/
/*
* Unless we're MAP_SHARED, no sense in adding os_mmap_write
*/
if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE))
osp->os_mmap_write += btopr(len);
if (maxprot & PROT_READ)
osp->os_mmap_read += btopr(len);
if (maxprot & PROT_EXEC)
osp->os_mmap_read += btopr(len);
/*
* Ensure that os_mmap_read gets incremented, even if
* maxprot were to look like PROT_NONE.
*/
if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
!(maxprot & PROT_EXEC))
osp->os_mmap_read += btopr(len);
osp->os_mapcnt += btopr(len);
mutex_exit(&osp->os_sync_lock);
open_stream_rele(osp, rp);
}
out:
/*
* If we got an error, then undo our
* incrementing of 'r_mapcnt'.
*/
if (error) {
atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len));
ASSERT(rp->r_mapcnt >= 0);
}
return (error);
}
/* ARGSUSED */
static int
nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct)
{
return (VTOR4(vp1) == VTOR4(vp2));
}
/* ARGSUSED */
static int
nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
caller_context_t *ct)
{
int rc;
u_offset_t start, end;
rnode4_t *rp;
int error = 0, intr = INTR4(vp);
nfs4_error_t e;
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
/* check for valid cmd parameter */
if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
return (EINVAL);
/* Verify l_type. */
switch (bfp->l_type) {
case F_RDLCK:
if (cmd != F_GETLK && !(flag & FREAD))
return (EBADF);
break;
case F_WRLCK:
if (cmd != F_GETLK && !(flag & FWRITE))
return (EBADF);
break;
case F_UNLCK:
intr = 0;
break;
default:
return (EINVAL);
}
/* check the validity of the lock range */
if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
return (rc);
if (rc = flk_check_lock_data(start, end, MAXEND))
return (rc);
/*
* If the filesystem is mounted using local locking, pass the
* request off to the local locking code.
*/
if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) {
if (cmd == F_SETLK || cmd == F_SETLKW) {
/*
* For complete safety, we should be holding
* r_lkserlock. However, we can't call
* nfs4_safelock and then fs_frlock while
* holding r_lkserlock, so just invoke
* nfs4_safelock and expect that this will
* catch enough of the cases.
*/
if (!nfs4_safelock(vp, bfp, cr))
return (EAGAIN);
}
return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
}
rp = VTOR4(vp);
/*
* Check whether the given lock request can proceed, given the
* current file mappings.
*/
if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
return (EINTR);
if (cmd == F_SETLK || cmd == F_SETLKW) {
if (!nfs4_safelock(vp, bfp, cr)) {
rc = EAGAIN;
goto done;
}
}
/*
* Flush the cache after waiting for async I/O to finish. For new
* locks, this is so that the process gets the latest bits from the
* server. For unlocks, this is so that other clients see the
* latest bits once the file has been unlocked. If currently dirty
* pages can't be flushed, then don't allow a lock to be set. But
* allow unlocks to succeed, to avoid having orphan locks on the
* server.
*/
if (cmd != F_GETLK) {
mutex_enter(&rp->r_statelock);
while (rp->r_count > 0) {
if (intr) {
klwp_t *lwp = ttolwp(curthread);
if (lwp != NULL)
lwp->lwp_nostop++;
if (cv_wait_sig(&rp->r_cv,
&rp->r_statelock) == 0) {
if (lwp != NULL)
lwp->lwp_nostop--;
rc = EINTR;
break;
}
if (lwp != NULL)
lwp->lwp_nostop--;
} else
cv_wait(&rp->r_cv, &rp->r_statelock);
}
mutex_exit(&rp->r_statelock);
if (rc != 0)
goto done;
error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
if (error) {
if (error == ENOSPC || error == EDQUOT) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = error;
mutex_exit(&rp->r_statelock);
}
if (bfp->l_type != F_UNLCK) {
rc = ENOLCK;
goto done;
}
}
}
/*
* Call the lock manager to do the real work of contacting
* the server and obtaining the lock.
*/
nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset,
cr, &e, NULL, NULL);
rc = e.error;
if (rc == 0)
nfs4_lockcompletion(vp, cmd);
done:
nfs_rw_exit(&rp->r_lkserlock);
return (rc);
}
/*
* Free storage space associated with the specified vnode. The portion
* to be freed is specified by bfp->l_start and bfp->l_len (already
* normalized to a "whence" of 0).
*
* This is an experimental facility whose continued existence is not
* guaranteed. Currently, we only support the special case
* of l_len == 0, meaning free to end of file.
*/
/* ARGSUSED */
static int
nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
offset_t offset, cred_t *cr, caller_context_t *ct)
{
int error;
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
ASSERT(vp->v_type == VREG);
if (cmd != F_FREESP)
return (EINVAL);
error = convoff(vp, bfp, 0, offset);
if (!error) {
ASSERT(bfp->l_start >= 0);
if (bfp->l_len == 0) {
struct vattr va;
va.va_mask = AT_SIZE;
va.va_size = bfp->l_start;
error = nfs4setattr(vp, &va, 0, cr, NULL);
if (error == 0 && bfp->l_start == 0)
vnevent_truncate(vp, ct);
} else
error = EINVAL;
}
return (error);
}
/* ARGSUSED */
int
nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
{
rnode4_t *rp;
rp = VTOR4(vp);
if (vp->v_type == VREG && IS_SHADOW(vp, rp)) {
vp = RTOV4(rp);
}
*vpp = vp;
return (0);
}
/*
* Setup and add an address space callback to do the work of the delmap call.
* The callback will (and must be) deleted in the actual callback function.
*
* This is done in order to take care of the problem that we have with holding
* the address space's a_lock for a long period of time (e.g. if the NFS server
* is down). Callbacks will be executed in the address space code while the
* a_lock is not held. Holding the address space's a_lock causes things such
* as ps and fork to hang because they are trying to acquire this lock as well.
*/
/* ARGSUSED */
static int
nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
caller_context_t *ct)
{
int caller_found;
int error;
rnode4_t *rp;
nfs4_delmap_args_t *dmapp;
nfs4_delmapcall_t *delmap_call;
if (vp->v_flag & VNOMAP)
return (ENOSYS);
/*
* A process may not change zones if it has NFS pages mmap'ed
* in, so we can't legitimately get here from the wrong zone.
*/
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
rp = VTOR4(vp);
/*
* The way that the address space of this process deletes its mapping
* of this file is via the following call chains:
* - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
* - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
*
* With the use of address space callbacks we are allowed to drop the
* address space lock, a_lock, while executing the NFS operations that
* need to go over the wire. Returning EAGAIN to the caller of this
* function is what drives the execution of the callback that we add
* below. The callback will be executed by the address space code
* after dropping the a_lock. When the callback is finished, since
* we dropped the a_lock, it must be re-acquired and segvn_unmap()
* is called again on the same segment to finish the rest of the work
* that needs to happen during unmapping.
*
* This action of calling back into the segment driver causes
* nfs4_delmap() to get called again, but since the callback was
* already executed at this point, it already did the work and there
* is nothing left for us to do.
*
* To Summarize:
* - The first time nfs4_delmap is called by the current thread is when
* we add the caller associated with this delmap to the delmap caller
* list, add the callback, and return EAGAIN.
* - The second time in this call chain when nfs4_delmap is called we
* will find this caller in the delmap caller list and realize there
* is no more work to do thus removing this caller from the list and
* returning the error that was set in the callback execution.
*/
caller_found = nfs4_find_and_delete_delmapcall(rp, &error);
if (caller_found) {
/*
* 'error' is from the actual delmap operations. To avoid
* hangs, we need to handle the return of EAGAIN differently
* since this is what drives the callback execution.
* In this case, we don't want to return EAGAIN and do the
* callback execution because there are none to execute.
*/
if (error == EAGAIN)
return (0);
else
return (error);
}
/* current caller was not in the list */
delmap_call = nfs4_init_delmapcall();
mutex_enter(&rp->r_statelock);
list_insert_tail(&rp->r_indelmap, delmap_call);
mutex_exit(&rp->r_statelock);
dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP);
dmapp->vp = vp;
dmapp->off = off;
dmapp->addr = addr;
dmapp->len = len;
dmapp->prot = prot;
dmapp->maxprot = maxprot;
dmapp->flags = flags;
dmapp->cr = cr;
dmapp->caller = delmap_call;
error = as_add_callback(as, nfs4_delmap_callback, dmapp,
AS_UNMAP_EVENT, addr, len, KM_SLEEP);
return (error ? error : EAGAIN);
}
static nfs4_delmapcall_t *
nfs4_init_delmapcall()
{
nfs4_delmapcall_t *delmap_call;
delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP);
delmap_call->call_id = curthread;
delmap_call->error = 0;
return (delmap_call);
}
static void
nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call)
{
kmem_free(delmap_call, sizeof (nfs4_delmapcall_t));
}
/*
* Searches for the current delmap caller (based on curthread) in the list of
* callers. If it is found, we remove it and free the delmap caller.
* Returns:
* 0 if the caller wasn't found
* 1 if the caller was found, removed and freed. *errp will be set
* to what the result of the delmap was.
*/
static int
nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp)
{
nfs4_delmapcall_t *delmap_call;
/*
* If the list doesn't exist yet, we create it and return
* that the caller wasn't found. No list = no callers.
*/
mutex_enter(&rp->r_statelock);
if (!(rp->r_flags & R4DELMAPLIST)) {
/* The list does not exist */
list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t),
offsetof(nfs4_delmapcall_t, call_node));
rp->r_flags |= R4DELMAPLIST;
mutex_exit(&rp->r_statelock);
return (0);
} else {
/* The list exists so search it */
for (delmap_call = list_head(&rp->r_indelmap);
delmap_call != NULL;
delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
if (delmap_call->call_id == curthread) {
/* current caller is in the list */
*errp = delmap_call->error;
list_remove(&rp->r_indelmap, delmap_call);
mutex_exit(&rp->r_statelock);
nfs4_free_delmapcall(delmap_call);
return (1);
}
}
}
mutex_exit(&rp->r_statelock);
return (0);
}
/*
* Remove some pages from an mmap'd vnode. Just update the
* count of pages. If doing close-to-open, then flush and
* commit all of the pages associated with this file.
* Otherwise, start an asynchronous page flush to write out
* any dirty pages. This will also associate a credential
* with the rnode which can be used to write the pages.
*/
/* ARGSUSED */
static void
nfs4_delmap_callback(struct as *as, void *arg, uint_t event)
{
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
rnode4_t *rp;
mntinfo4_t *mi;
nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg;
rp = VTOR4(dmapp->vp);
mi = VTOMI4(dmapp->vp);
atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
ASSERT(rp->r_mapcnt >= 0);
/*
* Initiate a page flush and potential commit if there are
* pages, the file system was not mounted readonly, the segment
* was mapped shared, and the pages themselves were writeable.
*/
if (nfs4_has_pages(dmapp->vp) &&
!(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) &&
dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4DIRTY;
mutex_exit(&rp->r_statelock);
e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off,
dmapp->len, dmapp->cr);
if (!e.error) {
mutex_enter(&rp->r_statelock);
e.error = rp->r_error;
rp->r_error = 0;
mutex_exit(&rp->r_statelock);
}
} else
e.error = 0;
if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO))
(void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len,
B_INVAL, dmapp->cr, NULL);
if (e.error) {
e.stat = puterrno4(e.error);
nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
OP_COMMIT, FALSE, NULL, 0, dmapp->vp);
dmapp->caller->error = e.error;
}
/* Check to see if we need to close the file */
if (dmapp->vp->v_type == VREG) {
nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e,
CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags);
if (e.error != 0 || e.stat != NFS4_OK) {
/*
* Since it is possible that e.error == 0 and
* e.stat != NFS4_OK (and vice versa),
* we do the proper checking in order to get both
* e.error and e.stat reporting the correct info.
*/
if (e.stat == NFS4_OK)
e.stat = puterrno4(e.error);
if (e.error == 0)
e.error = geterrno4(e.stat);
nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
OP_CLOSE, FALSE, NULL, 0, dmapp->vp);
dmapp->caller->error = e.error;
}
}
(void) as_delete_callback(as, arg);
kmem_free(dmapp, sizeof (nfs4_delmap_args_t));
}
static uint_t
fattr4_maxfilesize_to_bits(uint64_t ll)
{
uint_t l = 1;
if (ll == 0) {
return (0);
}
if (ll & 0xffffffff00000000) {
l += 32; ll >>= 32;
}
if (ll & 0xffff0000) {
l += 16; ll >>= 16;
}
if (ll & 0xff00) {
l += 8; ll >>= 8;
}
if (ll & 0xf0) {
l += 4; ll >>= 4;
}
if (ll & 0xc) {
l += 2; ll >>= 2;
}
if (ll & 0x2) {
l += 1;
}
return (l);
}
static int
nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr)
{
vnode_t *avp = NULL;
int error;
if ((error = nfs4lookup_xattr(vp, "", &avp,
LOOKUP_XATTR, cr)) == 0)
error = do_xattr_exists_check(avp, valp, cr);
if (avp)
VN_RELE(avp);
return (error);
}
/* ARGSUSED */
int
nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
caller_context_t *ct)
{
int error;
hrtime_t t;
rnode4_t *rp;
nfs4_ga_res_t gar;
nfs4_ga_ext_res_t ger;
gar.n4g_ext_res = &ger;
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) {
*valp = MAXPATHLEN;
return (0);
}
if (cmd == _PC_ACL_ENABLED) {
*valp = _ACL_ACE_ENABLED;
return (0);
}
rp = VTOR4(vp);
if (cmd == _PC_XATTR_EXISTS) {
/*
* The existence of the xattr directory is not sufficient
* for determining whether generic user attributes exists.
* The attribute directory could only be a transient directory
* used for Solaris sysattr support. Do a small readdir
* to verify if the only entries are sysattrs or not.
*
* pc4_xattr_valid can be only be trusted when r_xattr_dir
* is NULL. Once the xadir vp exists, we can create xattrs,
* and we don't have any way to update the "base" object's
* pc4_xattr_exists from the xattr or xadir. Maybe FEM
* could help out.
*/
if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid &&
rp->r_xattr_dir == NULL) {
return (nfs4_have_xattrs(vp, valp, cr));
}
} else { /* OLD CODE */
if (ATTRCACHE4_VALID(vp)) {
mutex_enter(&rp->r_statelock);
if (rp->r_pathconf.pc4_cache_valid) {
error = 0;
switch (cmd) {
case _PC_FILESIZEBITS:
*valp =
rp->r_pathconf.pc4_filesizebits;
break;
case _PC_LINK_MAX:
*valp =
rp->r_pathconf.pc4_link_max;
break;
case _PC_NAME_MAX:
*valp =
rp->r_pathconf.pc4_name_max;
break;
case _PC_CHOWN_RESTRICTED:
*valp =
rp->r_pathconf.pc4_chown_restricted;
break;
case _PC_NO_TRUNC:
*valp =
rp->r_pathconf.pc4_no_trunc;
break;
default:
error = EINVAL;
break;
}
mutex_exit(&rp->r_statelock);
#ifdef DEBUG
nfs4_pathconf_cache_hits++;
#endif
return (error);
}
mutex_exit(&rp->r_statelock);
}
}
#ifdef DEBUG
nfs4_pathconf_cache_misses++;
#endif
t = gethrtime();
error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr);
if (error) {
mutex_enter(&rp->r_statelock);
rp->r_pathconf.pc4_cache_valid = FALSE;
rp->r_pathconf.pc4_xattr_valid = FALSE;
mutex_exit(&rp->r_statelock);
return (error);
}
/* interpret the max filesize */
gar.n4g_ext_res->n4g_pc4.pc4_filesizebits =
fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize);
/* Store the attributes we just received */
nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL);
switch (cmd) {
case _PC_FILESIZEBITS:
*valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits;
break;
case _PC_LINK_MAX:
*valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max;
break;
case _PC_NAME_MAX:
*valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max;
break;
case _PC_CHOWN_RESTRICTED:
*valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted;
break;
case _PC_NO_TRUNC:
*valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc;
break;
case _PC_XATTR_EXISTS:
if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) {
if (error = nfs4_have_xattrs(vp, valp, cr))
return (error);
}
break;
default:
return (EINVAL);
}
return (0);
}
/*
* Called by async thread to do synchronous pageio. Do the i/o, wait
* for it to complete, and cleanup the page list when done.
*/
static int
nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
int flags, cred_t *cr)
{
int error;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
if (flags & B_READ)
pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
else
pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
return (error);
}
/* ARGSUSED */
static int
nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
int flags, cred_t *cr, caller_context_t *ct)
{
int error;
rnode4_t *rp;
if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
if (pp == NULL)
return (EINVAL);
rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
rp->r_count++;
mutex_exit(&rp->r_statelock);
if (flags & B_ASYNC) {
error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr,
nfs4_sync_pageio);
} else
error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
mutex_enter(&rp->r_statelock);
rp->r_count--;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
return (error);
}
/* ARGSUSED */
static void
nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
caller_context_t *ct)
{
int error;
rnode4_t *rp;
page_t *plist;
page_t *pptr;
offset3 offset;
count3 len;
k_sigset_t smask;
/*
* We should get called with fl equal to either B_FREE or
* B_INVAL. Any other value is illegal.
*
* The page that we are either supposed to free or destroy
* should be exclusive locked and its io lock should not
* be held.
*/
ASSERT(fl == B_FREE || fl == B_INVAL);
ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
rp = VTOR4(vp);
/*
* If the page doesn't need to be committed or we shouldn't
* even bother attempting to commit it, then just make sure
* that the p_fsdata byte is clear and then either free or
* destroy the page as appropriate.
*/
if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) {
pp->p_fsdata = C_NOCOMMIT;
if (fl == B_FREE)
page_free(pp, dn);
else
page_destroy(pp, dn);
return;
}
/*
* If there is a page invalidation operation going on, then
* if this is one of the pages being destroyed, then just
* clear the p_fsdata byte and then either free or destroy
* the page as appropriate.
*/
mutex_enter(&rp->r_statelock);
if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
mutex_exit(&rp->r_statelock);
pp->p_fsdata = C_NOCOMMIT;
if (fl == B_FREE)
page_free(pp, dn);
else
page_destroy(pp, dn);
return;
}
/*
* If we are freeing this page and someone else is already
* waiting to do a commit, then just unlock the page and
* return. That other thread will take care of commiting
* this page. The page can be freed sometime after the
* commit has finished. Otherwise, if the page is marked
* as delay commit, then we may be getting called from
* pvn_write_done, one page at a time. This could result
* in one commit per page, so we end up doing lots of small
* commits instead of fewer larger commits. This is bad,
* we want do as few commits as possible.
*/
if (fl == B_FREE) {
if (rp->r_flags & R4COMMITWAIT) {
page_unlock(pp);
mutex_exit(&rp->r_statelock);
return;
}
if (pp->p_fsdata == C_DELAYCOMMIT) {
pp->p_fsdata = C_COMMIT;
page_unlock(pp);
mutex_exit(&rp->r_statelock);
return;
}
}
/*
* Check to see if there is a signal which would prevent an
* attempt to commit the pages from being successful. If so,
* then don't bother with all of the work to gather pages and
* generate the unsuccessful RPC. Just return from here and
* let the page be committed at some later time.
*/
sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
sigunintr(&smask);
page_unlock(pp);
mutex_exit(&rp->r_statelock);
return;
}
sigunintr(&smask);
/*
* We are starting to need to commit pages, so let's try
* to commit as many as possible at once to reduce the
* overhead.
*
* Set the `commit inprogress' state bit. We must
* first wait until any current one finishes. Then
* we initialize the c_pages list with this page.
*/
while (rp->r_flags & R4COMMIT) {
rp->r_flags |= R4COMMITWAIT;
cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
rp->r_flags &= ~R4COMMITWAIT;
}
rp->r_flags |= R4COMMIT;
mutex_exit(&rp->r_statelock);
ASSERT(rp->r_commit.c_pages == NULL);
rp->r_commit.c_pages = pp;
rp->r_commit.c_commbase = (offset3)pp->p_offset;
rp->r_commit.c_commlen = PAGESIZE;
/*
* Gather together all other pages which can be committed.
* They will all be chained off r_commit.c_pages.
*/
nfs4_get_commit(vp);
/*
* Clear the `commit inprogress' status and disconnect
* the list of pages to be committed from the rnode.
* At this same time, we also save the starting offset
* and length of data to be committed on the server.
*/
plist = rp->r_commit.c_pages;
rp->r_commit.c_pages = NULL;
offset = rp->r_commit.c_commbase;
len = rp->r_commit.c_commlen;
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~R4COMMIT;
cv_broadcast(&rp->r_commit.c_cv);
mutex_exit(&rp->r_statelock);
if (curproc == proc_pageout || curproc == proc_fsflush ||
nfs_zone() != VTOMI4(vp)->mi_zone) {
nfs4_async_commit(vp, plist, offset, len,
cr, do_nfs4_async_commit);
return;
}
/*
* Actually generate the COMMIT op over the wire operation.
*/
error = nfs4_commit(vp, (offset4)offset, (count4)len, cr);
/*
* If we got an error during the commit, just unlock all
* of the pages. The pages will get retransmitted to the
* server during a putpage operation.
*/
if (error) {
while (plist != NULL) {
pptr = plist;
page_sub(&plist, pptr);
page_unlock(pptr);
}
return;
}
/*
* We've tried as hard as we can to commit the data to stable
* storage on the server. We just unlock the rest of the pages
* and clear the commit required state. They will be put
* onto the tail of the cachelist if they are nolonger
* mapped.
*/
while (plist != pp) {
pptr = plist;
page_sub(&plist, pptr);
pptr->p_fsdata = C_NOCOMMIT;
page_unlock(pptr);
}
/*
* It is possible that nfs4_commit didn't return error but
* some other thread has modified the page we are going
* to free/destroy.
* In this case we need to rewrite the page. Do an explicit check
* before attempting to free/destroy the page. If modified, needs to
* be rewritten so unlock the page and return.
*/
if (hat_ismod(pp)) {
pp->p_fsdata = C_NOCOMMIT;
page_unlock(pp);
return;
}
/*
* Now, as appropriate, either free or destroy the page
* that we were called with.
*/
pp->p_fsdata = C_NOCOMMIT;
if (fl == B_FREE)
page_free(pp, dn);
else
page_destroy(pp, dn);
}
/*
* Commit requires that the current fh be the file written to.
* The compound op structure is:
* PUTFH(file), COMMIT
*/
static int
nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
COMMIT4res *cm_res;
nfs_argop4 argop[2];
nfs_resop4 *resop;
int doqueue;
mntinfo4_t *mi;
rnode4_t *rp;
cred_t *cred_otw = NULL;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
nfs4_open_stream_t *osp = NULL;
bool_t first_time = TRUE; /* first time getting OTW cred */
bool_t last_time = FALSE; /* last time getting OTW cred */
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
rp = VTOR4(vp);
mi = VTOMI4(vp);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
get_commit_cred:
/*
* Releases the osp, if a valid open stream is provided.
* Puts a hold on the cred_otw and the new osp (if found).
*/
cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
&first_time, &last_time);
args.ctag = TAG_COMMIT;
recov_retry:
/*
* Commit ops: putfh file; commit
*/
args.array_len = 2;
args.array = argop;
e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
&recov_state, NULL);
if (e.error) {
crfree(cred_otw);
if (osp != NULL)
open_stream_rele(osp, rp);
return (e.error);
}
/* putfh directory */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
/* commit */
argop[1].argop = OP_COMMIT;
argop[1].nfs_argop4_u.opcommit.offset = offset;
argop[1].nfs_argop4_u.opcommit.count = count;
doqueue = 1;
rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (!needrecov && e.error) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state,
needrecov);
crfree(cred_otw);
if (e.error == EACCES && last_time == FALSE)
goto get_commit_cred;
if (osp != NULL)
open_stream_rele(osp, rp);
return (e.error);
}
if (needrecov) {
if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
&recov_state, needrecov);
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
goto recov_retry;
}
if (e.error) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
&recov_state, needrecov);
crfree(cred_otw);
if (osp != NULL)
open_stream_rele(osp, rp);
return (e.error);
}
/* fall through for res.status case */
}
if (res.status) {
e.error = geterrno4(res.status);
if (e.error == EACCES && last_time == FALSE) {
crfree(cred_otw);
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
&recov_state, needrecov);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
goto get_commit_cred;
}
/*
* Can't do a nfs4_purge_stale_fh here because this
* can cause a deadlock. nfs4_commit can
* be called from nfs4_dispose which can be called
* indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh
* can call back to pvn_vplist_dirty.
*/
if (e.error == ESTALE) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4STALE;
if (!rp->r_error)
rp->r_error = e.error;
mutex_exit(&rp->r_statelock);
PURGE_ATTRCACHE4(vp);
} else {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = e.error;
mutex_exit(&rp->r_statelock);
}
} else {
ASSERT(rp->r_flags & R4HAVEVERF);
resop = &res.array[1]; /* commit res */
cm_res = &resop->nfs_resop4_u.opcommit;
mutex_enter(&rp->r_statelock);
if (cm_res->writeverf == rp->r_writeverf) {
mutex_exit(&rp->r_statelock);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
&recov_state, needrecov);
crfree(cred_otw);
if (osp != NULL)
open_stream_rele(osp, rp);
return (0);
}
nfs4_set_mod(vp);
rp->r_writeverf = cm_res->writeverf;
mutex_exit(&rp->r_statelock);
e.error = NFS_VERF_MISMATCH;
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov);
crfree(cred_otw);
if (osp != NULL)
open_stream_rele(osp, rp);
return (e.error);
}
static void
nfs4_set_mod(vnode_t *vp)
{
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
/* make sure we're looking at the master vnode, not a shadow */
pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check);
}
/*
* This function is used to gather a page list of the pages which
* can be committed on the server.
*
* The calling thread must have set R4COMMIT. This bit is used to
* serialize access to the commit structure in the rnode. As long
* as the thread has set R4COMMIT, then it can manipulate the commit
* structure without requiring any other locks.
*
* When this function is called from nfs4_dispose() the page passed
* into nfs4_dispose() will be SE_EXCL locked, and so this function
* will skip it. This is not a problem since we initially add the
* page to the r_commit page list.
*
*/
static void
nfs4_get_commit(vnode_t *vp)
{
rnode4_t *rp;
page_t *pp;
kmutex_t *vphm;
rp = VTOR4(vp);
ASSERT(rp->r_flags & R4COMMIT);
/* make sure we're looking at the master vnode, not a shadow */
if (IS_SHADOW(vp, rp))
vp = RTOV4(rp);
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
/*
* If there are no pages associated with this vnode, then
* just return.
*/
if ((pp = vp->v_pages) == NULL) {
mutex_exit(vphm);
return;
}
/*
* Step through all of the pages associated with this vnode
* looking for pages which need to be committed.
*/
do {
/* Skip marker pages. */
if (pp->p_hash == PVN_VPLIST_HASH_TAG)
continue;
/*
* First short-cut everything (without the page_lock)
* and see if this page does not need to be committed
* or is modified if so then we'll just skip it.
*/
if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
continue;
/*
* Attempt to lock the page. If we can't, then
* someone else is messing with it or we have been
* called from nfs4_dispose and this is the page that
* nfs4_dispose was called with.. anyway just skip it.
*/
if (!page_trylock(pp, SE_EXCL))
continue;
/*
* Lets check again now that we have the page lock.
*/
if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
page_unlock(pp);
continue;
}
/* this had better not be a free page */
ASSERT(PP_ISFREE(pp) == 0);
/*
* The page needs to be committed and we locked it.
* Update the base and length parameters and add it
* to r_pages.
*/
if (rp->r_commit.c_pages == NULL) {
rp->r_commit.c_commbase = (offset3)pp->p_offset;
rp->r_commit.c_commlen = PAGESIZE;
} else if (pp->p_offset < rp->r_commit.c_commbase) {
rp->r_commit.c_commlen = rp->r_commit.c_commbase -
(offset3)pp->p_offset + rp->r_commit.c_commlen;
rp->r_commit.c_commbase = (offset3)pp->p_offset;
} else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
<= pp->p_offset) {
rp->r_commit.c_commlen = (offset3)pp->p_offset -
rp->r_commit.c_commbase + PAGESIZE;
}
page_add(&rp->r_commit.c_pages, pp);
} while ((pp = pp->p_vpnext) != vp->v_pages);
mutex_exit(vphm);
}
/*
* This routine is used to gather together a page list of the pages
* which are to be committed on the server. This routine must not
* be called if the calling thread holds any locked pages.
*
* The calling thread must have set R4COMMIT. This bit is used to
* serialize access to the commit structure in the rnode. As long
* as the thread has set R4COMMIT, then it can manipulate the commit
* structure without requiring any other locks.
*/
static void
nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
{
rnode4_t *rp;
page_t *pp;
u_offset_t end;
u_offset_t off;
ASSERT(len != 0);
rp = VTOR4(vp);
ASSERT(rp->r_flags & R4COMMIT);
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
/* make sure we're looking at the master vnode, not a shadow */
if (IS_SHADOW(vp, rp))
vp = RTOV4(rp);
/*
* If there are no pages associated with this vnode, then
* just return.
*/
if ((pp = vp->v_pages) == NULL)
return;
/*
* Calculate the ending offset.
*/
end = soff + len;
for (off = soff; off < end; off += PAGESIZE) {
/*
* Lookup each page by vp, offset.
*/
if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
continue;
/*
* If this page does not need to be committed or is
* modified, then just skip it.
*/
if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
page_unlock(pp);
continue;
}
ASSERT(PP_ISFREE(pp) == 0);
/*
* The page needs to be committed and we locked it.
* Update the base and length parameters and add it
* to r_pages.
*/
if (rp->r_commit.c_pages == NULL) {
rp->r_commit.c_commbase = (offset3)pp->p_offset;
rp->r_commit.c_commlen = PAGESIZE;
} else {
rp->r_commit.c_commlen = (offset3)pp->p_offset -
rp->r_commit.c_commbase + PAGESIZE;
}
page_add(&rp->r_commit.c_pages, pp);
}
}
/*
* Called from nfs4_close(), nfs4_fsync() and nfs4_delmap().
* Flushes and commits data to the server.
*/
static int
nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
{
int error;
verifier4 write_verf;
rnode4_t *rp = VTOR4(vp);
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
/*
* Flush the data portion of the file and then commit any
* portions which need to be committed. This may need to
* be done twice if the server has changed state since
* data was last written. The data will need to be
* rewritten to the server and then a new commit done.
*
* In fact, this may need to be done several times if the
* server is having problems and crashing while we are
* attempting to do this.
*/
top:
/*
* Do a flush based on the poff and plen arguments. This
* will synchronously write out any modified pages in the
* range specified by (poff, plen). This starts all of the
* i/o operations which will be waited for in the next
* call to nfs4_putpage
*/
mutex_enter(&rp->r_statelock);
write_verf = rp->r_writeverf;
mutex_exit(&rp->r_statelock);
error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
if (error == EAGAIN)
error = 0;
/*
* Do a flush based on the poff and plen arguments. This
* will synchronously write out any modified pages in the
* range specified by (poff, plen) and wait until all of
* the asynchronous i/o's in that range are done as well.
*/
if (!error)
error = nfs4_putpage(vp, poff, plen, 0, cr, NULL);
if (error)
return (error);
mutex_enter(&rp->r_statelock);
if (rp->r_writeverf != write_verf) {
mutex_exit(&rp->r_statelock);
goto top;
}
mutex_exit(&rp->r_statelock);
/*
* Now commit any pages which might need to be committed.
* If the error, NFS_VERF_MISMATCH, is returned, then
* start over with the flush operation.
*/
error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT);
if (error == NFS_VERF_MISMATCH)
goto top;
return (error);
}
/*
* nfs4_commit_vp() will wait for other pending commits and
* will either commit the whole file or a range, plen dictates
* if we commit whole file. a value of zero indicates the whole
* file. Called from nfs4_putpage_commit() or nfs4_sync_putapage()
*/
static int
nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen,
cred_t *cr, int wait_on_writes)
{
rnode4_t *rp;
page_t *plist;
offset3 offset;
count3 len;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
rp = VTOR4(vp);
/*
* before we gather commitable pages make
* sure there are no outstanding async writes
*/
if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) {
mutex_enter(&rp->r_statelock);
while (rp->r_count > 0) {
cv_wait(&rp->r_cv, &rp->r_statelock);
}
mutex_exit(&rp->r_statelock);
}
/*
* Set the `commit inprogress' state bit. We must
* first wait until any current one finishes.
*/
mutex_enter(&rp->r_statelock);
while (rp->r_flags & R4COMMIT) {
rp->r_flags |= R4COMMITWAIT;
cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
rp->r_flags &= ~R4COMMITWAIT;
}
rp->r_flags |= R4COMMIT;
mutex_exit(&rp->r_statelock);
/*
* Gather all of the pages which need to be
* committed.
*/
if (plen == 0)
nfs4_get_commit(vp);
else
nfs4_get_commit_range(vp, poff, plen);
/*
* Clear the `commit inprogress' bit and disconnect the
* page list which was gathered by nfs4_get_commit.
*/
plist = rp->r_commit.c_pages;
rp->r_commit.c_pages = NULL;
offset = rp->r_commit.c_commbase;
len = rp->r_commit.c_commlen;
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~R4COMMIT;
cv_broadcast(&rp->r_commit.c_cv);
mutex_exit(&rp->r_statelock);
/*
* If any pages need to be committed, commit them and
* then unlock them so that they can be freed some
* time later.
*/
if (plist == NULL)
return (0);
/*
* No error occurred during the flush portion
* of this operation, so now attempt to commit
* the data to stable storage on the server.
*
* This will unlock all of the pages on the list.
*/
return (nfs4_sync_commit(vp, plist, offset, len, cr));
}
static int
nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
cred_t *cr)
{
int error;
page_t *pp;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
error = nfs4_commit(vp, (offset4)offset, (count3)count, cr);
/*
* If we got an error, then just unlock all of the pages
* on the list.
*/
if (error) {
while (plist != NULL) {
pp = plist;
page_sub(&plist, pp);
page_unlock(pp);
}
return (error);
}
/*
* We've tried as hard as we can to commit the data to stable
* storage on the server. We just unlock the pages and clear
* the commit required state. They will get freed later.
*/
while (plist != NULL) {
pp = plist;
page_sub(&plist, pp);
pp->p_fsdata = C_NOCOMMIT;
page_unlock(pp);
}
return (error);
}
static void
do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
cred_t *cr)
{
(void) nfs4_sync_commit(vp, plist, offset, count, cr);
}
/*ARGSUSED*/
static int
nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
caller_context_t *ct)
{
int error = 0;
mntinfo4_t *mi;
vattr_t va;
vsecattr_t nfsace4_vsap;
mi = VTOMI4(vp);
if (nfs_zone() != mi->mi_zone)
return (EIO);
if (mi->mi_flags & MI4_ACL) {
/* if we have a delegation, return it */
if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE)
(void) nfs4delegreturn(VTOR4(vp),
NFS4_DR_REOPEN|NFS4_DR_PUSH);
error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask,
NFS4_ACL_SET);
if (error) /* EINVAL */
return (error);
if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) {
/*
* These are aclent_t type entries.
*/
error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap,
vp->v_type == VDIR, FALSE);
if (error)
return (error);
} else {
/*
* These are ace_t type entries.
*/
error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap,
FALSE);
if (error)
return (error);
}
bzero(&va, sizeof (va));
error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap);
vs_ace4_destroy(&nfsace4_vsap);
return (error);
}
return (ENOSYS);
}
/* ARGSUSED */
int
nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
caller_context_t *ct)
{
int error;
mntinfo4_t *mi;
nfs4_ga_res_t gar;
rnode4_t *rp = VTOR4(vp);
mi = VTOMI4(vp);
if (nfs_zone() != mi->mi_zone)
return (EIO);
bzero(&gar, sizeof (gar));
gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask;
/*
* vsecattr->vsa_mask holds the original acl request mask.
* This is needed when determining what to return.
* (See: nfs4_create_getsecattr_return())
*/
error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET);
if (error) /* EINVAL */
return (error);
/*
* If this is a referral stub, don't try to go OTW for an ACL
*/
if (RP_ISSTUB_REFERRAL(VTOR4(vp)))
return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
if (mi->mi_flags & MI4_ACL) {
/*
* Check if the data is cached and the cache is valid. If it
* is we don't go over the wire.
*/
if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) {
mutex_enter(&rp->r_statelock);
if (rp->r_secattr != NULL) {
error = nfs4_create_getsecattr_return(
rp->r_secattr, vsecattr, rp->r_attr.va_uid,
rp->r_attr.va_gid,
vp->v_type == VDIR);
if (!error) { /* error == 0 - Success! */
mutex_exit(&rp->r_statelock);
return (error);
}
}
mutex_exit(&rp->r_statelock);
}
/*
* The getattr otw call will always get both the acl, in
* the form of a list of nfsace4's, and the number of acl
* entries; independent of the value of gar.n4g_va.va_mask.
*/
error = nfs4_getattr_otw(vp, &gar, cr, 1);
if (error) {
vs_ace4_destroy(&gar.n4g_vsa);
if (error == ENOTSUP || error == EOPNOTSUPP)
error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
return (error);
}
if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) {
/*
* No error was returned, but according to the response
* bitmap, neither was an acl.
*/
vs_ace4_destroy(&gar.n4g_vsa);
error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
return (error);
}
/*
* Update the cache with the ACL.
*/
nfs4_acl_fill_cache(rp, &gar.n4g_vsa);
error = nfs4_create_getsecattr_return(&gar.n4g_vsa,
vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid,
vp->v_type == VDIR);
vs_ace4_destroy(&gar.n4g_vsa);
if ((error) && (vsecattr->vsa_mask &
(VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) &&
(error != EACCES)) {
error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
}
return (error);
}
error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
return (error);
}
/*
* The function returns:
* - 0 (zero) if the passed in "acl_mask" is a valid request.
* - EINVAL if the passed in "acl_mask" is an invalid request.
*
* In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if:
* - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
*
* In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if:
* - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
* - We have a count field set without the corresponding acl field set. (e.g. -
* VSA_ACECNT is set, but VSA_ACE is not)
*/
static int
nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op)
{
/* Shortcut the masks that are always valid. */
if (acl_mask == (VSA_ACE | VSA_ACECNT))
return (0);
if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT))
return (0);
if (acl_mask & (VSA_ACE | VSA_ACECNT)) {
/*
* We can't have any VSA_ACL type stuff in the mask now.
*/
if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
VSA_DFACLCNT))
return (EINVAL);
if (op == NFS4_ACL_SET) {
if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE))
return (EINVAL);
}
}
if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) {
/*
* We can't have any VSA_ACE type stuff in the mask now.
*/
if (acl_mask & (VSA_ACE | VSA_ACECNT))
return (EINVAL);
if (op == NFS4_ACL_SET) {
if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL))
return (EINVAL);
if ((acl_mask & VSA_DFACLCNT) &&
!(acl_mask & VSA_DFACL))
return (EINVAL);
}
}
return (0);
}
/*
* The theory behind creating the correct getsecattr return is simply this:
* "Don't return anything that the caller is not expecting to have to free."
*/
static int
nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap,
uid_t uid, gid_t gid, int isdir)
{
int error = 0;
/* Save the mask since the translators modify it. */
uint_t orig_mask = vsap->vsa_mask;
if (orig_mask & (VSA_ACE | VSA_ACECNT)) {
error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE);
if (error)
return (error);
/*
* If the caller only asked for the ace count (VSA_ACECNT)
* don't give them the full acl (VSA_ACE), free it.
*/
if (!orig_mask & VSA_ACE) {
if (vsap->vsa_aclentp != NULL) {
kmem_free(vsap->vsa_aclentp,
vsap->vsa_aclcnt * sizeof (ace_t));
vsap->vsa_aclentp = NULL;
}
}
vsap->vsa_mask = orig_mask;
} else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
VSA_DFACLCNT)) {
error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid,
isdir, FALSE);
if (error)
return (error);
/*
* If the caller only asked for the acl count (VSA_ACLCNT)
* and/or the default acl count (VSA_DFACLCNT) don't give them
* the acl (VSA_ACL) or default acl (VSA_DFACL), free it.
*/
if (!orig_mask & VSA_ACL) {
if (vsap->vsa_aclentp != NULL) {
kmem_free(vsap->vsa_aclentp,
vsap->vsa_aclcnt * sizeof (aclent_t));
vsap->vsa_aclentp = NULL;
}
}
if (!orig_mask & VSA_DFACL) {
if (vsap->vsa_dfaclentp != NULL) {
kmem_free(vsap->vsa_dfaclentp,
vsap->vsa_dfaclcnt * sizeof (aclent_t));
vsap->vsa_dfaclentp = NULL;
}
}
vsap->vsa_mask = orig_mask;
}
return (0);
}
/* ARGSUSED */
int
nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
caller_context_t *ct)
{
int error;
if (nfs_zone() != VTOMI4(vp)->mi_zone)
return (EIO);
/*
* check for valid cmd parameter
*/
if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
return (EINVAL);
/*
* Check access permissions
*/
if ((cmd & F_SHARE) &&
(((shr->s_access & F_RDACC) && (flag & FREAD) == 0) ||
(shr->s_access == F_WRACC && (flag & FWRITE) == 0)))
return (EBADF);
/*
* If the filesystem is mounted using local locking, pass the
* request off to the local share code.
*/
if (VTOMI4(vp)->mi_flags & MI4_LLOCK)
return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
switch (cmd) {
case F_SHARE:
case F_UNSHARE:
/*
* This will be properly implemented later,
* see RFE: 4823948 .
*/
error = EAGAIN;
break;
case F_HASREMOTELOCKS:
/*
* NFS client can't store remote locks itself
*/
shr->s_access = 0;
error = 0;
break;
default:
error = EINVAL;
break;
}
return (error);
}
/*
* Common code called by directory ops to update the attrcache
*/
static int
nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp,
hrtime_t t, vnode_t *vp, cred_t *cr)
{
int error = 0;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
if (status != NFS4_OK) {
/* getattr not done or failed */
PURGE_ATTRCACHE4(vp);
return (error);
}
if (garp) {
nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
} else {
PURGE_ATTRCACHE4(vp);
}
return (error);
}
/*
* Update directory caches for directory modification ops (link, rename, etc.)
* When dinfo is NULL, manage dircaches in the old way.
*/
static void
nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm,
dirattr_info_t *dinfo)
{
rnode4_t *drp = VTOR4(dvp);
ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
/* Purge rddir cache for dir since it changed */
if (drp->r_dir != NULL)
nfs4_purge_rddir_cache(dvp);
/*
* If caller provided dinfo, then use it to manage dir caches.
*/
if (dinfo != NULL) {
if (vp != NULL) {
mutex_enter(&VTOR4(vp)->r_statev4_lock);
if (!VTOR4(vp)->created_v4) {
mutex_exit(&VTOR4(vp)->r_statev4_lock);
dnlc_update(dvp, nm, vp);
} else {
/*
* XXX don't update if the created_v4 flag is
* set
*/
mutex_exit(&VTOR4(vp)->r_statev4_lock);
NFS4_DEBUG(nfs4_client_state_debug,
(CE_NOTE, "nfs4_update_dircaches: "
"don't update dnlc: created_v4 flag"));
}
}
nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call,
dinfo->di_cred, FALSE, cinfo);
return;
}
/*
* Caller didn't provide dinfo, then check change_info4 to update DNLC.
* Since caller modified dir but didn't receive post-dirmod-op dir
* attrs, the dir's attrs must be purged.
*
* XXX this check and dnlc update/purge should really be atomic,
* XXX but can't use rnode statelock because it'll deadlock in
* XXX dnlc_purge_vp, however, the risk is minimal even if a race
* XXX does occur.
*
* XXX We also may want to check that atomic is true in the
* XXX change_info struct. If it is not, the change_info may
* XXX reflect changes by more than one clients which means that
* XXX our cache may not be valid.
*/
PURGE_ATTRCACHE4(dvp);
if (drp->r_change == cinfo->before) {
/* no changes took place in the directory prior to our link */
if (vp != NULL) {
mutex_enter(&VTOR4(vp)->r_statev4_lock);
if (!VTOR4(vp)->created_v4) {
mutex_exit(&VTOR4(vp)->r_statev4_lock);
dnlc_update(dvp, nm, vp);
} else {
/*
* XXX dont' update if the created_v4 flag
* is set
*/
mutex_exit(&VTOR4(vp)->r_statev4_lock);
NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
"nfs4_update_dircaches: don't"
" update dnlc: created_v4 flag"));
}
}
} else {
/* Another client modified directory - purge its dnlc cache */
dnlc_purge_vp(dvp);
}
}
/*
* The OPEN_CONFIRM operation confirms the sequence number used in OPENing a
* file.
*
* The 'reopening_file' boolean should be set to TRUE if we are reopening this
* file (ie: client recovery) and otherwise set to FALSE.
*
* 'nfs4_start/end_op' should have been called by the proper (ie: not recovery
* initiated) calling functions.
*
* 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result
* of resending a 'lost' open request.
*
* 'num_bseqid_retryp' makes sure we don't loop forever on a broken
* server that hands out BAD_SEQID on open confirm.
*
* Errors are returned via the nfs4_error_t parameter.
*/
void
nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr,
bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop,
bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
nfs_argop4 argop[2];
nfs_resop4 *resop;
int doqueue = 1;
mntinfo4_t *mi;
OPEN_CONFIRM4args *open_confirm_args;
int needrecov;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
#if DEBUG
mutex_enter(&oop->oo_lock);
ASSERT(oop->oo_seqid_inuse);
mutex_exit(&oop->oo_lock);
#endif
recov_retry_confirm:
nfs4_error_zinit(ep);
*retry_open = FALSE;
if (resend)
args.ctag = TAG_OPEN_CONFIRM_LOST;
else
args.ctag = TAG_OPEN_CONFIRM;
args.array_len = 2;
args.array = argop;
/* putfh target fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
argop[1].argop = OP_OPEN_CONFIRM;
open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm;
(*seqid) += 1;
open_confirm_args->seqid = *seqid;
open_confirm_args->open_stateid = *stateid;
mi = VTOMI4(vp);
rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
nfs4_set_open_seqid((*seqid), oop, args.ctag);
}
needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
if (!needrecov && ep->error)
return;
if (needrecov) {
bool_t abort = FALSE;
if (reopening_file == FALSE) {
nfs4_bseqid_entry_t *bsep = NULL;
if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
bsep = nfs4_create_bseqid_entry(oop, NULL,
vp, 0, args.ctag,
open_confirm_args->seqid);
abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL);
if (bsep) {
kmem_free(bsep, sizeof (*bsep));
if (num_bseqid_retryp &&
--(*num_bseqid_retryp) == 0)
abort = TRUE;
}
}
if ((ep->error == ETIMEDOUT ||
res.status == NFS4ERR_RESOURCE) &&
abort == FALSE && resend == FALSE) {
if (!ep->error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
delay(SEC_TO_TICK(confirm_retry_sec));
goto recov_retry_confirm;
}
/* State may have changed so retry the entire OPEN op */
if (abort == FALSE)
*retry_open = TRUE;
else
*retry_open = FALSE;
if (!ep->error)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
if (res.status) {
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
resop = &res.array[1]; /* open confirm res */
bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid,
stateid, sizeof (*stateid));
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
}
/*
* Return the credentials associated with a client state object. The
* caller is responsible for freeing the credentials.
*/
static cred_t *
state_to_cred(nfs4_open_stream_t *osp)
{
cred_t *cr;
/*
* It's ok to not lock the open stream and open owner to get
* the oo_cred since this is only written once (upon creation)
* and will not change.
*/
cr = osp->os_open_owner->oo_cred;
crhold(cr);
return (cr);
}
/*
* nfs4_find_sysid
*
* Find the sysid for the knetconfig associated with the given mi.
*/
static struct lm_sysid *
nfs4_find_sysid(mntinfo4_t *mi)
{
ASSERT(nfs_zone() == mi->mi_zone);
/*
* Switch from RDMA knconf to original mount knconf
*/
return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr,
mi->mi_curr_serv->sv_hostname, NULL));
}
#ifdef DEBUG
/*
* Return a string version of the call type for easy reading.
*/
static char *
nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)
{
switch (ctype) {
case NFS4_LCK_CTYPE_NORM:
return ("NORMAL");
case NFS4_LCK_CTYPE_RECLAIM:
return ("RECLAIM");
case NFS4_LCK_CTYPE_RESEND:
return ("RESEND");
case NFS4_LCK_CTYPE_REINSTATE:
return ("REINSTATE");
default:
cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal "
"type %d", ctype);
return ("");
}
}
#endif
/*
* Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type
* Unlock requests don't have an over-the-wire locktype, so we just return
* something non-threatening.
*/
static nfs_lock_type4
flk_to_locktype(int cmd, int l_type)
{
ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK);
switch (l_type) {
case F_UNLCK:
return (READ_LT);
case F_RDLCK:
if (cmd == F_SETLK)
return (READ_LT);
else
return (READW_LT);
case F_WRLCK:
if (cmd == F_SETLK)
return (WRITE_LT);
else
return (WRITEW_LT);
}
panic("flk_to_locktype");
/*NOTREACHED*/
}
/*
* Do some preliminary checks for nfs4frlock.
*/
static int
nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp,
u_offset_t offset)
{
int error = 0;
/*
* If we are setting a lock, check that the file is opened
* with the correct mode.
*/
if (cmd == F_SETLK || cmd == F_SETLKW) {
if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) ||
(flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock_validate_args: file was opened with "
"incorrect mode"));
return (EBADF);
}
}
/* Convert the offset. It may need to be restored before returning. */
if (error = convoff(vp, flk, 0, offset)) {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock_validate_args: convoff => error= %d\n",
error));
return (error);
}
return (error);
}
/*
* Set the flock64's lm_sysid for nfs4frlock.
*/
static int
nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk)
{
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
/* Find the lm_sysid */
*lspp = nfs4_find_sysid(VTOMI4(vp));
if (*lspp == NULL) {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock_get_sysid: no sysid, return ENOLCK"));
return (ENOLCK);
}
flk->l_sysid = lm_sysidt(*lspp);
return (0);
}
/*
* Do the remaining preliminary setup for nfs4frlock.
*/
static void
nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep,
flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr,
cred_t **cred_otw)
{
/*
* set tick_delay to the base delay time.
* (NFS4_BASE_WAIT_TIME is in secs)
*/
*tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000);
/*
* If lock is relative to EOF, we need the newest length of the
* file. Therefore invalidate the ATTR_CACHE.
*/
*whencep = flk->l_whence;
if (*whencep == 2) /* SEEK_END */
PURGE_ATTRCACHE4(vp);
recov_statep->rs_flags = 0;
recov_statep->rs_num_retry_despite_err = 0;
*cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL);
}
/*
* Initialize and allocate the data structures necessary for
* the nfs4frlock call.
* Allocates argsp's op array, frees up the saved_rqstpp if there is one.
*/
static void
nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp,
nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd,
bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp,
bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp)
{
int argoplist_size;
int num_ops = 2;
*retry = FALSE;
*did_start_fop = FALSE;
*skip_get_err = FALSE;
lost_rqstp->lr_op = 0;
argoplist_size = num_ops * sizeof (nfs_argop4);
/* fill array with zero */
*argopp = kmem_zalloc(argoplist_size, KM_SLEEP);
*argspp = argsp;
*respp = NULL;
argsp->array_len = num_ops;
argsp->array = *argopp;
/* initialize in case of error; will get real value down below */
argsp->ctag = TAG_NONE;
if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK)
*op_hintp = OH_LOCKU;
else
*op_hintp = OH_OTHER;
}
/*
* Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign
* the proper nfs4_server_t for this instance of nfs4frlock.
* Returns 0 (success) or an errno value.
*/
static int
nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp,
nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep,
bool_t *did_start_fop, bool_t *startrecovp)
{
int error = 0;
rnode4_t *rp;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
if (ctype == NFS4_LCK_CTYPE_NORM) {
error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint,
recov_statep, startrecovp);
if (error)
return (error);
*did_start_fop = TRUE;
} else {
*did_start_fop = FALSE;
*startrecovp = FALSE;
}
if (!error) {
rp = VTOR4(vp);
/* If the file failed recovery, just quit. */
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERR) {
error = EIO;
}
mutex_exit(&rp->r_statelock);
}
return (error);
}
/*
* Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A
* resend nfs4frlock call is initiated by the recovery framework.
* Acquires the lop and oop seqid synchronization.
*/
static void
nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp,
COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp,
nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
LOCK4args **lock_argsp, LOCKU4args **locku_argsp)
{
mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp);
int error;
NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug),
(CE_NOTE,
"nfs4frlock_setup_resend_lock_args: have lost lock to resend"));
ASSERT(resend_rqstp != NULL);
ASSERT(resend_rqstp->lr_op == OP_LOCK ||
resend_rqstp->lr_op == OP_LOCKU);
*oopp = resend_rqstp->lr_oop;
if (resend_rqstp->lr_oop) {
open_owner_hold(resend_rqstp->lr_oop);
error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi);
ASSERT(error == 0); /* recov thread always succeeds */
}
/* Must resend this lost lock/locku request. */
ASSERT(resend_rqstp->lr_lop != NULL);
*lopp = resend_rqstp->lr_lop;
lock_owner_hold(resend_rqstp->lr_lop);
error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi);
ASSERT(error == 0); /* recov thread always succeeds */
*ospp = resend_rqstp->lr_osp;
if (*ospp)
open_stream_hold(resend_rqstp->lr_osp);
if (resend_rqstp->lr_op == OP_LOCK) {
LOCK4args *lock_args;
argop->argop = OP_LOCK;
*lock_argsp = lock_args = &argop->nfs_argop4_u.oplock;
lock_args->locktype = resend_rqstp->lr_locktype;
lock_args->reclaim =
(resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM);
lock_args->offset = resend_rqstp->lr_flk->l_start;
lock_args->length = resend_rqstp->lr_flk->l_len;
if (lock_args->length == 0)
lock_args->length = ~lock_args->length;
nfs4_setup_lock_args(*lopp, *oopp, *ospp,
mi2clientid(mi), &lock_args->locker);
switch (resend_rqstp->lr_ctype) {
case NFS4_LCK_CTYPE_RESEND:
argsp->ctag = TAG_LOCK_RESEND;
break;
case NFS4_LCK_CTYPE_REINSTATE:
argsp->ctag = TAG_LOCK_REINSTATE;
break;
case NFS4_LCK_CTYPE_RECLAIM:
argsp->ctag = TAG_LOCK_RECLAIM;
break;
default:
argsp->ctag = TAG_LOCK_UNKNOWN;
break;
}
} else {
LOCKU4args *locku_args;
nfs4_lock_owner_t *lop = resend_rqstp->lr_lop;
argop->argop = OP_LOCKU;
*locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku;
locku_args->locktype = READ_LT;
locku_args->seqid = lop->lock_seqid + 1;
mutex_enter(&lop->lo_lock);
locku_args->lock_stateid = lop->lock_stateid;
mutex_exit(&lop->lo_lock);
locku_args->offset = resend_rqstp->lr_flk->l_start;
locku_args->length = resend_rqstp->lr_flk->l_len;
if (locku_args->length == 0)
locku_args->length = ~locku_args->length;
switch (resend_rqstp->lr_ctype) {
case NFS4_LCK_CTYPE_RESEND:
argsp->ctag = TAG_LOCKU_RESEND;
break;
case NFS4_LCK_CTYPE_REINSTATE:
argsp->ctag = TAG_LOCKU_REINSTATE;
break;
default:
argsp->ctag = TAG_LOCK_UNKNOWN;
break;
}
}
}
/*
* Setup the LOCKT4 arguments.
*/
static void
nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk,
rnode4_t *rp)
{
LOCKT4args *lockt_args;
ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
argop->argop = OP_LOCKT;
argsp->ctag = TAG_LOCKT;
lockt_args = &argop->nfs_argop4_u.oplockt;
/*
* The locktype will be READ_LT unless it's
* a write lock. We do this because the Solaris
* system call allows the combination of
* F_UNLCK and F_GETLK* and so in that case the
* unlock is mapped to a read.
*/
if (flk->l_type == F_WRLCK)
lockt_args->locktype = WRITE_LT;
else
lockt_args->locktype = READ_LT;
lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp)));
/* set the lock owner4 args */
nfs4_setlockowner_args(&lockt_args->owner, rp,
ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id :
flk->l_pid);
lockt_args->offset = flk->l_start;
lockt_args->length = flk->l_len;
if (flk->l_len == 0)
lockt_args->length = ~lockt_args->length;
*lockt_argsp = lockt_args;
}
/*
* If the client is holding a delegation, and the open stream to be used
* with this lock request is a delegation open stream, then re-open the stream.
* Sets the nfs4_error_t to all zeros unless the open stream has already
* failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY
* means the caller should retry (like a recovery retry).
*/
static void
nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt)
{
open_delegation_type4 dt;
bool_t reopen_needed, force;
nfs4_open_stream_t *osp;
open_claim_type4 oclaim;
rnode4_t *rp = VTOR4(vp);
mntinfo4_t *mi = VTOMI4(vp);
ASSERT(nfs_zone() == mi->mi_zone);
nfs4_error_zinit(ep);
mutex_enter(&rp->r_statev4_lock);
dt = rp->r_deleg_type;
mutex_exit(&rp->r_statev4_lock);
if (dt != OPEN_DELEGATE_NONE) {
nfs4_open_owner_t *oop;
oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
if (!oop) {
ep->stat = NFS4ERR_IO;
return;
}
/* returns with 'os_sync_lock' held */
osp = find_open_stream(oop, rp);
if (!osp) {
open_owner_rele(oop);
ep->stat = NFS4ERR_IO;
return;
}
if (osp->os_failed_reopen) {
NFS4_DEBUG((nfs4_open_stream_debug ||
nfs4_client_lock_debug), (CE_NOTE,
"nfs4frlock_check_deleg: os_failed_reopen set "
"for osp %p, cr %p, rp %s", (void *)osp,
(void *)cr, rnode4info(rp)));
mutex_exit(&osp->os_sync_lock);
open_stream_rele(osp, rp);
open_owner_rele(oop);
ep->stat = NFS4ERR_IO;
return;
}
/*
* Determine whether a reopen is needed. If this
* is a delegation open stream, then send the open
* to the server to give visibility to the open owner.
* Even if it isn't a delegation open stream, we need
* to check if the previous open CLAIM_DELEGATE_CUR
* was sufficient.
*/
reopen_needed = osp->os_delegation ||
((lt == F_RDLCK &&
!(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) ||
(lt == F_WRLCK &&
!(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE)));
mutex_exit(&osp->os_sync_lock);
open_owner_rele(oop);
if (reopen_needed) {
/*
* Always use CLAIM_PREVIOUS after server reboot.
* The server will reject CLAIM_DELEGATE_CUR if
* it is used during the grace period.
*/
mutex_enter(&mi->mi_lock);
if (mi->mi_recovflags & MI4R_SRV_REBOOT) {
oclaim = CLAIM_PREVIOUS;
force = TRUE;
} else {
oclaim = CLAIM_DELEGATE_CUR;
force = FALSE;
}
mutex_exit(&mi->mi_lock);
nfs4_reopen(vp, osp, ep, oclaim, force, FALSE);
if (ep->error == EAGAIN) {
nfs4_error_zinit(ep);
ep->stat = NFS4ERR_DELAY;
}
}
open_stream_rele(osp, rp);
osp = NULL;
}
}
/*
* Setup the LOCKU4 arguments.
* Returns errors via the nfs4_error_t.
* NFS4_OK no problems. *go_otwp is TRUE if call should go
* over-the-wire. The caller must release the
* reference on *lopp.
* NFS4ERR_DELAY caller should retry (like recovery retry)
* (other) unrecoverable error.
*/
static void
nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
LOCKU4args **locku_argsp, flock64_t *flk,
nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp,
vnode_t *vp, int flag, u_offset_t offset, cred_t *cr,
bool_t *skip_get_err, bool_t *go_otwp)
{
nfs4_lock_owner_t *lop = NULL;
LOCKU4args *locku_args;
pid_t pid;
bool_t is_spec = FALSE;
rnode4_t *rp = VTOR4(vp);
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK);
if (ep->error || ep->stat)
return;
argop->argop = OP_LOCKU;
if (ctype == NFS4_LCK_CTYPE_REINSTATE)
argsp->ctag = TAG_LOCKU_REINSTATE;
else
argsp->ctag = TAG_LOCKU;
locku_args = &argop->nfs_argop4_u.oplocku;
*locku_argsp = locku_args;
/*
* XXX what should locku_args->locktype be?
* setting to ALWAYS be READ_LT so at least
* it is a valid locktype.
*/
locku_args->locktype = READ_LT;
pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id :
flk->l_pid;
/*
* Get the lock owner stateid. If no lock owner
* exists, return success.
*/
lop = find_lock_owner(rp, pid, LOWN_ANY);
*lopp = lop;
if (lop && CLNT_ISSPECIAL(&lop->lock_stateid))
is_spec = TRUE;
if (!lop || is_spec) {
/*
* No lock owner so no locks to unlock.
* Return success. If there was a failed
* reclaim earlier, the lock might still be
* registered with the local locking code,
* so notify it of the unlock.
*
* If the lockowner is using a special stateid,
* then the original lock request (that created
* this lockowner) was never successful, so we
* have no lock to undo OTW.
*/
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock_setup_locku_args: LOCKU: no lock owner "
"(%ld) so return success", (long)pid));
if (ctype == NFS4_LCK_CTYPE_NORM)
flk->l_pid = curproc->p_pid;
nfs4_register_lock_locally(vp, flk, flag, offset);
/*
* Release our hold and NULL out so final_cleanup
* doesn't try to end a lock seqid sync we
* never started.
*/
if (is_spec) {
lock_owner_rele(lop);
*lopp = NULL;
}
*skip_get_err = TRUE;
*go_otwp = FALSE;
return;
}
ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp));
if (ep->error == EAGAIN) {
lock_owner_rele(lop);
*lopp = NULL;
return;
}
mutex_enter(&lop->lo_lock);
locku_args->lock_stateid = lop->lock_stateid;
mutex_exit(&lop->lo_lock);
locku_args->seqid = lop->lock_seqid + 1;
/* leave the ref count on lop, rele after RPC call */
locku_args->offset = flk->l_start;
locku_args->length = flk->l_len;
if (flk->l_len == 0)
locku_args->length = ~locku_args->length;
*go_otwp = TRUE;
}
/*
* Setup the LOCK4 arguments.
*
* Returns errors via the nfs4_error_t.
* NFS4_OK no problems
* NFS4ERR_DELAY caller should retry (like recovery retry)
* (other) unrecoverable error
*/
static void
nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp,
nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp,
flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep)
{
LOCK4args *lock_args;
nfs4_open_owner_t *oop = NULL;
nfs4_open_stream_t *osp = NULL;
nfs4_lock_owner_t *lop = NULL;
pid_t pid;
rnode4_t *rp = VTOR4(vp);
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
nfs4frlock_check_deleg(vp, ep, cr, flk->l_type);
if (ep->error || ep->stat != NFS4_OK)
return;
argop->argop = OP_LOCK;
if (ctype == NFS4_LCK_CTYPE_NORM)
argsp->ctag = TAG_LOCK;
else if (ctype == NFS4_LCK_CTYPE_RECLAIM)
argsp->ctag = TAG_RELOCK;
else
argsp->ctag = TAG_LOCK_REINSTATE;
lock_args = &argop->nfs_argop4_u.oplock;
lock_args->locktype = flk_to_locktype(cmd, flk->l_type);
lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0;
/*
* Get the lock owner. If no lock owner exists,
* create a 'temporary' one and grab the open seqid
* synchronization (which puts a hold on the open
* owner and open stream).
* This also grabs the lock seqid synchronization.
*/
pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid;
ep->stat =
nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop);
if (ep->stat != NFS4_OK)
goto out;
nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)),
&lock_args->locker);
lock_args->offset = flk->l_start;
lock_args->length = flk->l_len;
if (flk->l_len == 0)
lock_args->length = ~lock_args->length;
*lock_argsp = lock_args;
out:
*oopp = oop;
*ospp = osp;
*lopp = lop;
}
/*
* After we get the reply from the server, record the proper information
* for possible resend lock requests.
*
* Allocates memory for the saved_rqstp if we have a lost lock to save.
*/
static void
nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error,
nfs_lock_type4 locktype, nfs4_open_owner_t *oop,
nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp)
{
bool_t unlock = (flk->l_type == F_UNLCK);
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
ASSERT(ctype == NFS4_LCK_CTYPE_NORM ||
ctype == NFS4_LCK_CTYPE_REINSTATE);
if (error != 0 && !unlock) {
NFS4_DEBUG((nfs4_lost_rqst_debug ||
nfs4_client_lock_debug), (CE_NOTE,
"nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 "
" for lop %p", (void *)lop));
ASSERT(lop != NULL);
mutex_enter(&lop->lo_lock);
lop->lo_pending_rqsts = 1;
mutex_exit(&lop->lo_lock);
}
lost_rqstp->lr_putfirst = FALSE;
lost_rqstp->lr_op = 0;
/*
* For lock/locku requests, we treat EINTR as ETIMEDOUT for
* recovery purposes so that the lock request that was sent
* can be saved and re-issued later. Ditto for EIO from a forced
* unmount. This is done to have the client's local locking state
* match the v4 server's state; that is, the request was
* potentially received and accepted by the server but the client
* thinks it was not.
*/
if (error == ETIMEDOUT || error == EINTR ||
NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
NFS4_DEBUG((nfs4_lost_rqst_debug ||
nfs4_client_lock_debug), (CE_NOTE,
"nfs4frlock_save_lost_rqst: got a lost %s lock for "
"lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK",
(void *)lop, (void *)oop, (void *)osp));
if (unlock)
lost_rqstp->lr_op = OP_LOCKU;
else {
lost_rqstp->lr_op = OP_LOCK;
lost_rqstp->lr_locktype = locktype;
}
/*
* Objects are held and rele'd via the recovery code.
* See nfs4_save_lost_rqst.
*/
lost_rqstp->lr_vp = vp;
lost_rqstp->lr_dvp = NULL;
lost_rqstp->lr_oop = oop;
lost_rqstp->lr_osp = osp;
lost_rqstp->lr_lop = lop;
lost_rqstp->lr_cr = cr;
switch (ctype) {
case NFS4_LCK_CTYPE_NORM:
flk->l_pid = ttoproc(curthread)->p_pid;
lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND;
break;
case NFS4_LCK_CTYPE_REINSTATE:
lost_rqstp->lr_putfirst = TRUE;
lost_rqstp->lr_ctype = ctype;
break;
default:
break;
}
lost_rqstp->lr_flk = flk;
}
}
/*
* Update lop's seqid. Also update the seqid stored in a resend request,
* if any. (Some recovery errors increment the seqid, and we may have to
* send the resend request again.)
*/
static void
nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args,
nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type)
{
if (lock_args) {
if (lock_args->locker.new_lock_owner == TRUE)
nfs4_get_and_set_next_open_seqid(oop, tag_type);
else {
ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
nfs4_set_lock_seqid(lop->lock_seqid + 1, lop);
}
} else if (locku_args) {
ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
nfs4_set_lock_seqid(lop->lock_seqid +1, lop);
}
}
/*
* Calls nfs4_end_fop, drops the seqid syncs, and frees up the
* COMPOUND4 args/res for calls that need to retry.
* Switches the *cred_otwp to base_cr.
*/
static void
nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint,
nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop,
COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error,
nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp,
nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp)
{
nfs4_open_owner_t *oop = *oopp;
nfs4_open_stream_t *osp = *ospp;
nfs4_lock_owner_t *lop = *lopp;
nfs_argop4 *argop = (*argspp)->array;
if (*did_start_fop) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
needrecov);
*did_start_fop = FALSE;
}
ASSERT((*argspp)->array_len == 2);
if (argop[1].argop == OP_LOCK)
nfs4args_lock_free(&argop[1]);
else if (argop[1].argop == OP_LOCKT)
nfs4args_lockt_free(&argop[1]);
kmem_free(argop, 2 * sizeof (nfs_argop4));
if (!error)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
*argspp = NULL;
*respp = NULL;
if (lop) {
nfs4_end_lock_seqid_sync(lop);
lock_owner_rele(lop);
*lopp = NULL;
}
/* need to free up the reference on osp for lock args */
if (osp != NULL) {
open_stream_rele(osp, VTOR4(vp));
*ospp = NULL;
}
/* need to free up the reference on oop for lock args */
if (oop != NULL) {
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
*oopp = NULL;
}
crfree(*cred_otwp);
*cred_otwp = base_cr;
crhold(*cred_otwp);
}
/*
* Function to process the client's recovery for nfs4frlock.
* Returns TRUE if we should retry the lock request; FALSE otherwise.
*
* Calls nfs4_end_fop, drops the seqid syncs, and frees up the
* COMPOUND4 args/res for calls that need to retry.
*
* Note: the rp's r_lkserlock is *not* dropped during this path.
*/
static bool_t
nfs4frlock_recovery(int needrecov, nfs4_error_t *ep,
COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
LOCK4args *lock_args, LOCKU4args *locku_args,
nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp,
nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint,
bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk)
{
nfs4_open_owner_t *oop = *oopp;
nfs4_open_stream_t *osp = *ospp;
nfs4_lock_owner_t *lop = *lopp;
bool_t abort, retry;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
ASSERT((*argspp) != NULL);
ASSERT((*respp) != NULL);
if (lock_args || locku_args)
ASSERT(lop != NULL);
NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug),
(CE_NOTE, "nfs4frlock_recovery: initiating recovery\n"));
retry = TRUE;
abort = FALSE;
if (needrecov) {
nfs4_bseqid_entry_t *bsep = NULL;
nfs_opnum4 op;
op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT;
if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) {
seqid4 seqid;
if (lock_args) {
if (lock_args->locker.new_lock_owner == TRUE)
seqid = lock_args->locker.locker4_u.
open_owner.open_seqid;
else
seqid = lock_args->locker.locker4_u.
lock_owner.lock_seqid;
} else if (locku_args) {
seqid = locku_args->seqid;
} else {
seqid = 0;
}
bsep = nfs4_create_bseqid_entry(oop, lop, vp,
flk->l_pid, (*argspp)->ctag, seqid);
}
abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
(lost_rqstp && (lost_rqstp->lr_op == OP_LOCK ||
lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp :
NULL, op, bsep, NULL, NULL);
if (bsep)
kmem_free(bsep, sizeof (*bsep));
}
/*
* Return that we do not want to retry the request for 3 cases:
* 1. If we received EINTR or are bailing out because of a forced
* unmount, we came into this code path just for the sake of
* initiating recovery, we now need to return the error.
* 2. If we have aborted recovery.
* 3. We received NFS4ERR_BAD_SEQID.
*/
if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) ||
abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID))
retry = FALSE;
if (*did_start_fop == TRUE) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
needrecov);
*did_start_fop = FALSE;
}
if (retry == TRUE) {
nfs_argop4 *argop;
argop = (*argspp)->array;
ASSERT((*argspp)->array_len == 2);
if (argop[1].argop == OP_LOCK)
nfs4args_lock_free(&argop[1]);
else if (argop[1].argop == OP_LOCKT)
nfs4args_lockt_free(&argop[1]);
kmem_free(argop, 2 * sizeof (nfs_argop4));
if (!ep->error)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
*respp = NULL;
*argspp = NULL;
}
if (lop != NULL) {
nfs4_end_lock_seqid_sync(lop);
lock_owner_rele(lop);
}
*lopp = NULL;
/* need to free up the reference on osp for lock args */
if (osp != NULL) {
open_stream_rele(osp, rp);
*ospp = NULL;
}
/* need to free up the reference on oop for lock args */
if (oop != NULL) {
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
*oopp = NULL;
}
return (retry);
}
/*
* Handles the successful reply from the server for nfs4frlock.
*/
static void
nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk,
vnode_t *vp, int flag, u_offset_t offset,
nfs4_lost_rqst_t *resend_rqstp)
{
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
if ((cmd == F_SETLK || cmd == F_SETLKW) &&
(flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) {
if (ctype == NFS4_LCK_CTYPE_NORM) {
flk->l_pid = ttoproc(curthread)->p_pid;
/*
* We do not register lost locks locally in
* the 'resend' case since the user/application
* doesn't think we have the lock.
*/
ASSERT(!resend_rqstp);
nfs4_register_lock_locally(vp, flk, flag, offset);
}
}
}
/*
* Handle the DENIED reply from the server for nfs4frlock.
* Returns TRUE if we should retry the request; FALSE otherwise.
*
* Calls nfs4_end_fop, drops the seqid syncs, and frees up the
* COMPOUND4 args/res for calls that need to retry. Can also
* drop and regrab the r_lkserlock.
*/
static bool_t
nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args,
LOCKT4args *lockt_args, nfs4_open_owner_t **oopp,
nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd,
vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint,
nfs4_recov_state_t *recov_statep, int needrecov,
COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
clock_t *tick_delayp, short *whencep, int *errorp,
nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop,
bool_t *skip_get_err)
{
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
if (lock_args) {
nfs4_open_owner_t *oop = *oopp;
nfs4_open_stream_t *osp = *ospp;
nfs4_lock_owner_t *lop = *lopp;
int intr;
/*
* Blocking lock needs to sleep and retry from the request.
*
* Do not block and wait for 'resend' or 'reinstate'
* lock requests, just return the error.
*
* Note: reclaim requests have cmd == F_SETLK, not F_SETLKW.
*/
if (cmd == F_SETLKW) {
rnode4_t *rp = VTOR4(vp);
nfs_argop4 *argop = (*argspp)->array;
ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
recov_statep, needrecov);
*did_start_fop = FALSE;
ASSERT((*argspp)->array_len == 2);
if (argop[1].argop == OP_LOCK)
nfs4args_lock_free(&argop[1]);
else if (argop[1].argop == OP_LOCKT)
nfs4args_lockt_free(&argop[1]);
kmem_free(argop, 2 * sizeof (nfs_argop4));
if (*respp)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)*respp);
*argspp = NULL;
*respp = NULL;
nfs4_end_lock_seqid_sync(lop);
lock_owner_rele(lop);
*lopp = NULL;
if (osp != NULL) {
open_stream_rele(osp, rp);
*ospp = NULL;
}
if (oop != NULL) {
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
*oopp = NULL;
}
nfs_rw_exit(&rp->r_lkserlock);
intr = nfs4_block_and_wait(tick_delayp, rp);
if (intr) {
(void) nfs_rw_enter_sig(&rp->r_lkserlock,
RW_WRITER, FALSE);
*errorp = EINTR;
return (FALSE);
}
(void) nfs_rw_enter_sig(&rp->r_lkserlock,
RW_WRITER, FALSE);
/*
* Make sure we are still safe to lock with
* regards to mmapping.
*/
if (!nfs4_safelock(vp, flk, cr)) {
*errorp = EAGAIN;
return (FALSE);
}
return (TRUE);
}
if (ctype == NFS4_LCK_CTYPE_NORM)
*errorp = EAGAIN;
*skip_get_err = TRUE;
flk->l_whence = 0;
*whencep = 0;
return (FALSE);
} else if (lockt_args) {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock_results_denied: OP_LOCKT DENIED"));
denied_to_flk(&resop->nfs_resop4_u.oplockt.denied,
flk, lockt_args);
/* according to NLM code */
*errorp = 0;
*whencep = 0;
*skip_get_err = TRUE;
return (FALSE);
}
return (FALSE);
}
/*
* Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock.
*/
static void
nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp)
{
switch (resp->status) {
case NFS4ERR_ACCESS:
case NFS4ERR_ADMIN_REVOKED:
case NFS4ERR_BADHANDLE:
case NFS4ERR_BAD_RANGE:
case NFS4ERR_BAD_SEQID:
case NFS4ERR_BAD_STATEID:
case NFS4ERR_BADXDR:
case NFS4ERR_DEADLOCK:
case NFS4ERR_DELAY:
case NFS4ERR_EXPIRED:
case NFS4ERR_FHEXPIRED:
case NFS4ERR_GRACE:
case NFS4ERR_INVAL:
case NFS4ERR_ISDIR:
case NFS4ERR_LEASE_MOVED:
case NFS4ERR_LOCK_NOTSUPP:
case NFS4ERR_LOCK_RANGE:
case NFS4ERR_MOVED:
case NFS4ERR_NOFILEHANDLE:
case NFS4ERR_NO_GRACE:
case NFS4ERR_OLD_STATEID:
case NFS4ERR_OPENMODE:
case NFS4ERR_RECLAIM_BAD:
case NFS4ERR_RECLAIM_CONFLICT:
case NFS4ERR_RESOURCE:
case NFS4ERR_SERVERFAULT:
case NFS4ERR_STALE:
case NFS4ERR_STALE_CLIENTID:
case NFS4ERR_STALE_STATEID:
return;
default:
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock_results_default: got unrecognizable "
"res.status %d", resp->status));
*errorp = NFS4ERR_INVAL;
}
}
/*
* The lock request was successful, so update the client's state.
*/
static void
nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args,
LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop,
vnode_t *vp, flock64_t *flk, cred_t *cr,
nfs4_lost_rqst_t *resend_rqstp)
{
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
if (lock_args) {
LOCK4res *lock_res;
lock_res = &resop->nfs_resop4_u.oplock;
/* update the stateid with server's response */
if (lock_args->locker.new_lock_owner == TRUE) {
mutex_enter(&lop->lo_lock);
lop->lo_just_created = NFS4_PERM_CREATED;
mutex_exit(&lop->lo_lock);
}
nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid);
/*
* If the lock was the result of a resending a lost
* request, we've synched up the stateid and seqid
* with the server, but now the server might be out of sync
* with what the application thinks it has for locks.
* Clean that up here. It's unclear whether we should do
* this even if the filesystem has been forcibly unmounted.
* For most servers, it's probably wasted effort, but
* RFC3530 lets servers require that unlocks exactly match
* the locks that are held.
*/
if (resend_rqstp != NULL &&
resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) {
nfs4_reinstitute_local_lock_state(vp, flk, cr, lop);
} else {
flk->l_whence = 0;
}
} else if (locku_args) {
LOCKU4res *locku_res;
locku_res = &resop->nfs_resop4_u.oplocku;
/* Update the stateid with the server's response */
nfs4_set_lock_stateid(lop, locku_res->lock_stateid);
} else if (lockt_args) {
/* Switch the lock type to express success, see fcntl */
flk->l_type = F_UNLCK;
flk->l_whence = 0;
}
}
/*
* Do final cleanup before exiting nfs4frlock.
* Calls nfs4_end_fop, drops the seqid syncs, and frees up the
* COMPOUND4 args/res for calls that haven't already.
*/
static void
nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp,
COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint,
nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop,
nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
short whence, u_offset_t offset, struct lm_sysid *ls,
int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args,
bool_t did_start_fop, bool_t skip_get_err,
cred_t *cred_otw, cred_t *cred)
{
mntinfo4_t *mi = VTOMI4(vp);
rnode4_t *rp = VTOR4(vp);
int error = *errorp;
nfs_argop4 *argop;
int do_flush_pages = 0;
ASSERT(nfs_zone() == mi->mi_zone);
/*
* The client recovery code wants the raw status information,
* so don't map the NFS status code to an errno value for
* non-normal call types.
*/
if (ctype == NFS4_LCK_CTYPE_NORM) {
if (*errorp == 0 && resp != NULL && skip_get_err == FALSE)
*errorp = geterrno4(resp->status);
if (did_start_fop == TRUE)
nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep,
needrecov);
/*
* We've established a new lock on the server, so invalidate
* the pages associated with the vnode to get the most up to
* date pages from the server after acquiring the lock. We
* want to be sure that the read operation gets the newest data.
* N.B.
* We used to do this in nfs4frlock_results_ok but that doesn't
* work since VOP_PUTPAGE can call nfs4_commit which calls
* nfs4_start_fop. We flush the pages below after calling
* nfs4_end_fop above
* The flush of the page cache must be done after
* nfs4_end_open_seqid_sync() to avoid a 4-way hang.
*/
if (!error && resp && resp->status == NFS4_OK)
do_flush_pages = 1;
}
if (argsp) {
ASSERT(argsp->array_len == 2);
argop = argsp->array;
if (argop[1].argop == OP_LOCK)
nfs4args_lock_free(&argop[1]);
else if (argop[1].argop == OP_LOCKT)
nfs4args_lockt_free(&argop[1]);
kmem_free(argop, 2 * sizeof (nfs_argop4));
if (resp)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
}
/* free the reference on the lock owner */
if (lop != NULL) {
nfs4_end_lock_seqid_sync(lop);
lock_owner_rele(lop);
}
/* need to free up the reference on osp for lock args */
if (osp != NULL)
open_stream_rele(osp, rp);
/* need to free up the reference on oop for lock args */
if (oop != NULL) {
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
}
if (do_flush_pages)
nfs4_flush_pages(vp, cred);
(void) convoff(vp, flk, whence, offset);
lm_rel_sysid(ls);
/*
* Record debug information in the event we get EINVAL.
*/
mutex_enter(&mi->mi_lock);
if (*errorp == EINVAL && (lock_args || locku_args) &&
(!(mi->mi_flags & MI4_POSIX_LOCK))) {
if (!(mi->mi_flags & MI4_LOCK_DEBUG)) {
zcmn_err(getzoneid(), CE_NOTE,
"%s operation failed with "
"EINVAL probably since the server, %s,"
" doesn't support POSIX style locking",
lock_args ? "LOCK" : "LOCKU",
mi->mi_curr_serv->sv_hostname);
mi->mi_flags |= MI4_LOCK_DEBUG;
}
}
mutex_exit(&mi->mi_lock);
if (cred_otw)
crfree(cred_otw);
}
/*
* This calls the server and the local locking code.
*
* Client locks are registerred locally by oring the sysid with
* LM_SYSID_CLIENT. The server registers locks locally using just the sysid.
* We need to distinguish between the two to avoid collision in case one
* machine is used as both client and server.
*
* Blocking lock requests will continually retry to acquire the lock
* forever.
*
* The ctype is defined as follows:
* NFS4_LCK_CTYPE_NORM: normal lock request.
*
* NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client
* recovery, get the pid from flk instead of curproc, and don't reregister
* the lock locally.
*
* NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition
* that we will use the information passed in via resend_rqstp to setup the
* lock/locku request. This resend is the exact same request as the 'lost
* lock', and is initiated by the recovery framework. A successful resend
* request can initiate one or more reinstate requests.
*
* NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it
* does not trigger additional reinstate requests. This lock call type is
* set for setting the v4 server's locking state back to match what the
* client's local locking state is in the event of a received 'lost lock'.
*
* Errors are returned via the nfs4_error_t parameter.
*/
void
nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk,
int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep,
nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp)
{
COMPOUND4args_clnt args, *argsp = NULL;
COMPOUND4res_clnt res, *resp = NULL;
nfs_argop4 *argop;
nfs_resop4 *resop;
rnode4_t *rp;
int doqueue = 1;
clock_t tick_delay; /* delay in clock ticks */
struct lm_sysid *ls;
LOCK4args *lock_args = NULL;
LOCKU4args *locku_args = NULL;
LOCKT4args *lockt_args = NULL;
nfs4_open_owner_t *oop = NULL;
nfs4_open_stream_t *osp = NULL;
nfs4_lock_owner_t *lop = NULL;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
short whence;
nfs4_op_hint_t op_hint;
nfs4_lost_rqst_t lost_rqst;
bool_t retry = FALSE;
bool_t did_start_fop = FALSE;
bool_t skip_get_err = FALSE;
cred_t *cred_otw = NULL;
bool_t recovonly; /* just queue request */
int frc_no_reclaim = 0;
#ifdef DEBUG
char *name;
#endif
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
#ifdef DEBUG
name = fn_name(VTOSV(vp)->sv_name);
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: "
"%s: cmd %d, type %d, offset %llu, start %"PRIx64", "
"length %"PRIu64", pid %d, sysid %d, call type %s, "
"resend request %s", name, cmd, flk->l_type, offset, flk->l_start,
flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid :
flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype),
resend_rqstp ? "TRUE" : "FALSE"));
kmem_free(name, MAXNAMELEN);
#endif
nfs4_error_zinit(ep);
ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset);
if (ep->error)
return;
ep->error = nfs4frlock_get_sysid(&ls, vp, flk);
if (ep->error)
return;
nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence,
vp, cr, &cred_otw);
recov_retry:
nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd,
&retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst);
rp = VTOR4(vp);
ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state,
&did_start_fop, &recovonly);
if (ep->error)
goto out;
if (recovonly) {
/*
* Leave the request for the recovery system to deal with.
*/
ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
ASSERT(cmd != F_GETLK);
ASSERT(flk->l_type == F_UNLCK);
nfs4_error_init(ep, EINTR);
needrecov = TRUE;
lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
if (lop != NULL) {
nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT,
NULL, NULL, lop, flk, &lost_rqst, cr, vp);
(void) nfs4_start_recovery(ep,
VTOMI4(vp), vp, NULL, NULL,
(lost_rqst.lr_op == OP_LOCK ||
lost_rqst.lr_op == OP_LOCKU) ?
&lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL);
lock_owner_rele(lop);
lop = NULL;
}
flk->l_pid = curproc->p_pid;
nfs4_register_lock_locally(vp, flk, flag, offset);
goto out;
}
/* putfh directory fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
/*
* Set up the over-the-wire arguments and get references to the
* open owner, etc.
*/
if (ctype == NFS4_LCK_CTYPE_RESEND ||
ctype == NFS4_LCK_CTYPE_REINSTATE) {
nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp,
&argop[1], &lop, &oop, &osp, &lock_args, &locku_args);
} else {
bool_t go_otw = TRUE;
ASSERT(resend_rqstp == NULL);
switch (cmd) {
case F_GETLK:
case F_O_GETLK:
nfs4frlock_setup_lockt_args(ctype, &argop[1],
&lockt_args, argsp, flk, rp);
break;
case F_SETLKW:
case F_SETLK:
if (flk->l_type == F_UNLCK)
nfs4frlock_setup_locku_args(ctype,
&argop[1], &locku_args, flk,
&lop, ep, argsp,
vp, flag, offset, cr,
&skip_get_err, &go_otw);
else
nfs4frlock_setup_lock_args(ctype,
&lock_args, &oop, &osp, &lop, &argop[1],
argsp, flk, cmd, vp, cr, ep);
if (ep->error)
goto out;
switch (ep->stat) {
case NFS4_OK:
break;
case NFS4ERR_DELAY:
/* recov thread never gets this error */
ASSERT(resend_rqstp == NULL);
ASSERT(did_start_fop);
nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
&recov_state, TRUE);
did_start_fop = FALSE;
if (argop[1].argop == OP_LOCK)
nfs4args_lock_free(&argop[1]);
else if (argop[1].argop == OP_LOCKT)
nfs4args_lockt_free(&argop[1]);
kmem_free(argop, 2 * sizeof (nfs_argop4));
argsp = NULL;
goto recov_retry;
default:
ep->error = EIO;
goto out;
}
break;
default:
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4_frlock: invalid cmd %d", cmd));
ep->error = EINVAL;
goto out;
}
if (!go_otw)
goto out;
}
/* XXX should we use the local reclock as a cache ? */
/*
* Unregister the lock with the local locking code before
* contacting the server. This avoids a potential race where
* another process gets notified that it has been granted a lock
* before we can unregister ourselves locally.
*/
if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) {
if (ctype == NFS4_LCK_CTYPE_NORM)
flk->l_pid = ttoproc(curthread)->p_pid;
nfs4_register_lock_locally(vp, flk, flag, offset);
}
/*
* Send the server the lock request. Continually loop with a delay
* if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE.
*/
resp = &res;
NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug),
(CE_NOTE,
"nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first",
rnode4info(rp)));
if (lock_args && frc_no_reclaim) {
ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock: frc_no_reclaim: clearing reclaim"));
lock_args->reclaim = FALSE;
if (did_reclaimp)
*did_reclaimp = 0;
}
/*
* Do the OTW call.
*/
rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep);
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock: error %d, status %d", ep->error, resp->status));
needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp);
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock: needrecov %d", needrecov));
if (ep->error == 0 && nfs4_need_to_bump_seqid(resp))
nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop,
args.ctag);
/*
* Check if one of these mutually exclusive error cases has
* happened:
* need to swap credentials due to access error
* recovery is needed
* different error (only known case is missing Kerberos ticket)
*/
if ((ep->error == EACCES ||
(ep->error == 0 && resp->status == NFS4ERR_ACCESS)) &&
cred_otw != cr) {
nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov,
&did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp,
cr, &cred_otw);
goto recov_retry;
}
if (needrecov) {
/*
* LOCKT requests don't need to recover from lost
* requests since they don't create/modify state.
*/
if ((ep->error == EINTR ||
NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) &&
lockt_args)
goto out;
/*
* Do not attempt recovery for requests initiated by
* the recovery framework. Let the framework redrive them.
*/
if (ctype != NFS4_LCK_CTYPE_NORM)
goto out;
else {
ASSERT(resend_rqstp == NULL);
}
nfs4frlock_save_lost_rqst(ctype, ep->error,
flk_to_locktype(cmd, flk->l_type),
oop, osp, lop, flk, &lost_rqst, cred_otw, vp);
retry = nfs4frlock_recovery(needrecov, ep, &argsp,
&resp, lock_args, locku_args, &oop, &osp, &lop,
rp, vp, &recov_state, op_hint, &did_start_fop,
cmd != F_GETLK ? &lost_rqst : NULL, flk);
if (retry) {
ASSERT(oop == NULL);
ASSERT(osp == NULL);
ASSERT(lop == NULL);
goto recov_retry;
}
goto out;
}
/*
* Bail out if have reached this point with ep->error set. Can
* happen if (ep->error == EACCES && !needrecov && cred_otw == cr).
* This happens if Kerberos ticket has expired or has been
* destroyed.
*/
if (ep->error != 0)
goto out;
/*
* Process the reply.
*/
switch (resp->status) {
case NFS4_OK:
resop = &resp->array[1];
nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset,
resend_rqstp);
/*
* Have a successful lock operation, now update state.
*/
nfs4frlock_update_state(lock_args, locku_args, lockt_args,
resop, lop, vp, flk, cr, resend_rqstp);
break;
case NFS4ERR_DENIED:
resop = &resp->array[1];
retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args,
&oop, &osp, &lop, cmd, vp, flk, op_hint,
&recov_state, needrecov, &argsp, &resp,
&tick_delay, &whence, &ep->error, resop, cr,
&did_start_fop, &skip_get_err);
if (retry) {
ASSERT(oop == NULL);
ASSERT(osp == NULL);
ASSERT(lop == NULL);
goto recov_retry;
}
break;
/*
* If the server won't let us reclaim, fall-back to trying to lock
* the file from scratch. Code elsewhere will check the changeinfo
* to ensure the file hasn't been changed.
*/
case NFS4ERR_NO_GRACE:
if (lock_args && lock_args->reclaim == TRUE) {
ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4frlock: reclaim: NFS4ERR_NO_GRACE"));
frc_no_reclaim = 1;
/* clean up before retrying */
needrecov = 0;
(void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp,
lock_args, locku_args, &oop, &osp, &lop, rp, vp,
&recov_state, op_hint, &did_start_fop, NULL, flk);
goto recov_retry;
}
/* FALLTHROUGH */
default:
nfs4frlock_results_default(resp, &ep->error);
break;
}
out:
/*
* Process and cleanup from error. Make interrupted unlock
* requests look successful, since they will be handled by the
* client recovery code.
*/
nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state,
needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error,
lock_args, locku_args, did_start_fop,
skip_get_err, cred_otw, cr);
if (ep->error == EINTR && flk->l_type == F_UNLCK &&
(cmd == F_SETLK || cmd == F_SETLKW))
ep->error = 0;
}
/*
* nfs4_safelock:
*
* Return non-zero if the given lock request can be handled without
* violating the constraints on concurrent mapping and locking.
*/
static int
nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr)
{
rnode4_t *rp = VTOR4(vp);
struct vattr va;
int error;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
ASSERT(rp->r_mapcnt >= 0);
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: "
"(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ?
"write" : bfp->l_type == F_RDLCK ? "read" : "unlock",
bfp->l_start, bfp->l_len, rp->r_mapcnt));
if (rp->r_mapcnt == 0)
return (1); /* always safe if not mapped */
/*
* If the file is already mapped and there are locks, then they
* should be all safe locks. So adding or removing a lock is safe
* as long as the new request is safe (i.e., whole-file, meaning
* length and starting offset are both zero).
*/
if (bfp->l_start != 0 || bfp->l_len != 0) {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
"cannot lock a memory mapped file unless locking the "
"entire file: start %"PRIx64", len %"PRIx64,
bfp->l_start, bfp->l_len));
return (0);
}
/* mandatory locking and mapping don't mix */
va.va_mask = AT_MODE;
error = VOP_GETATTR(vp, &va, 0, cr, NULL);
if (error != 0) {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
"getattr error %d", error));
return (0); /* treat errors conservatively */
}
if (MANDLOCK(vp, va.va_mode)) {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
"cannot mandatory lock and mmap a file"));
return (0);
}
return (1);
}
/*
* Register the lock locally within Solaris.
* As the client, we "or" the sysid with LM_SYSID_CLIENT when
* recording locks locally.
*
* This should handle conflicts/cooperation with NFS v2/v3 since all locks
* are registered locally.
*/
void
nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag,
u_offset_t offset)
{
int oldsysid;
int error;
#ifdef DEBUG
char *name;
#endif
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
#ifdef DEBUG
name = fn_name(VTOSV(vp)->sv_name);
NFS4_DEBUG(nfs4_client_lock_debug,
(CE_NOTE, "nfs4_register_lock_locally: %s: type %d, "
"start %"PRIx64", length %"PRIx64", pid %ld, sysid %d",
name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid,
flk->l_sysid));
kmem_free(name, MAXNAMELEN);
#endif
/* register the lock with local locking */
oldsysid = flk->l_sysid;
flk->l_sysid |= LM_SYSID_CLIENT;
error = reclock(vp, flk, SETFLCK, flag, offset, NULL);
#ifdef DEBUG
if (error != 0) {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4_register_lock_locally: could not register with"
" local locking"));
NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
"error %d, vp 0x%p, pid %d, sysid 0x%x",
error, (void *)vp, flk->l_pid, flk->l_sysid));
NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
"type %d off 0x%" PRIx64 " len 0x%" PRIx64,
flk->l_type, flk->l_start, flk->l_len));
(void) reclock(vp, flk, 0, flag, offset, NULL);
NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
"blocked by pid %d sysid 0x%x type %d "
"off 0x%" PRIx64 " len 0x%" PRIx64,
flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start,
flk->l_len));
}
#endif
flk->l_sysid = oldsysid;
}
/*
* nfs4_lockrelease:
*
* Release any locks on the given vnode that are held by the current
* process. Also removes the lock owner (if one exists) from the rnode's
* list.
*/
static int
nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
{
flock64_t ld;
int ret, error;
rnode4_t *rp;
nfs4_lock_owner_t *lop;
nfs4_recov_state_t recov_state;
mntinfo4_t *mi;
bool_t possible_orphan = FALSE;
bool_t recovonly;
ASSERT((uintptr_t)vp > KERNELBASE);
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
rp = VTOR4(vp);
mi = VTOMI4(vp);
/*
* If we have not locked anything then we can
* just return since we have no work to do.
*/
if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) {
return (0);
}
/*
* We need to comprehend that another thread may
* kick off recovery and the lock_owner we have stashed
* in lop might be invalid so we should NOT cache it
* locally!
*/
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
&recovonly);
if (error) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4LODANGLERS;
mutex_exit(&rp->r_statelock);
return (error);
}
lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
/*
* Check if the lock owner might have a lock (request was sent but
* no response was received). Also check if there are any remote
* locks on the file. (In theory we shouldn't have to make this
* second check if there's no lock owner, but for now we'll be
* conservative and do it anyway.) If either condition is true,
* send an unlock for the entire file to the server.
*
* Note that no explicit synchronization is needed here. At worst,
* flk_has_remote_locks() will return a false positive, in which case
* the unlock call wastes time but doesn't harm correctness.
*/
if (lop) {
mutex_enter(&lop->lo_lock);
possible_orphan = lop->lo_pending_rqsts;
mutex_exit(&lop->lo_lock);
lock_owner_rele(lop);
}
nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4_lockrelease: possible orphan %d, remote locks %d, for "
"lop %p.", possible_orphan, flk_has_remote_locks(vp),
(void *)lop));
if (possible_orphan || flk_has_remote_locks(vp)) {
ld.l_type = F_UNLCK; /* set to unlock entire file */
ld.l_whence = 0; /* unlock from start of file */
ld.l_start = 0;
ld.l_len = 0; /* do entire file */
ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL,
cr, NULL);
if (ret != 0) {
/*
* If VOP_FRLOCK fails, make sure we unregister
* local locks before we continue.
*/
ld.l_pid = ttoproc(curthread)->p_pid;
nfs4_register_lock_locally(vp, &ld, flag, offset);
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"nfs4_lockrelease: lock release error on vp"
" %p: error %d.\n", (void *)vp, ret));
}
}
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
&recovonly);
if (error) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4LODANGLERS;
mutex_exit(&rp->r_statelock);
return (error);
}
/*
* So, here we're going to need to retrieve the lock-owner
* again (in case recovery has done a switch-a-roo) and
* remove it because we can.
*/
lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
if (lop) {
nfs4_rnode_remove_lock_owner(rp, lop);
lock_owner_rele(lop);
}
nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
return (0);
}
/*
* Wait for 'tick_delay' clock ticks.
* Implement exponential backoff until hit the lease_time of this nfs4_server.
* NOTE: lock_lease_time is in seconds.
*
* XXX For future improvements, should implement a waiting queue scheme.
*/
static int
nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp)
{
long milliseconds_delay;
time_t lock_lease_time;
/* wait tick_delay clock ticks or siginteruptus */
if (delay_sig(*tick_delay)) {
return (EINTR);
}
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: "
"reissue the lock request: blocked for %ld clock ticks: %ld "
"milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000));
/* get the lease time */
lock_lease_time = r2lease_time(rp);
/* drv_hztousec converts ticks to microseconds */
milliseconds_delay = drv_hztousec(*tick_delay) / 1000;
if (milliseconds_delay < lock_lease_time * 1000) {
*tick_delay = 2 * *tick_delay;
if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000)
*tick_delay = drv_usectohz(lock_lease_time*1000*1000);
}
return (0);
}
void
nfs4_vnops_init(void)
{
}
void
nfs4_vnops_fini(void)
{
}
/*
* Return a reference to the directory (parent) vnode for a given vnode,
* using the saved pathname information and the directory file handle. The
* caller is responsible for disposing of the reference.
* Returns zero or an errno value.
*
* Caller should set need_start_op to FALSE if it is the recovery
* thread, or if a start_fop has already been done. Otherwise, TRUE.
*/
int
vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op)
{
svnode_t *svnp;
vnode_t *dvp = NULL;
servinfo4_t *svp;
nfs4_fname_t *mfname;
int error;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
if (vp->v_flag & VROOT) {
nfs4_sharedfh_t *sfh;
nfs_fh4 fh;
mntinfo4_t *mi;
ASSERT(vp->v_type == VREG);
mi = VTOMI4(vp);
svp = mi->mi_curr_serv;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
sfh = sfh4_get(&fh, VTOMI4(vp));
nfs_rw_exit(&svp->sv_lock);
mfname = mi->mi_fname;
fn_hold(mfname);
dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0);
sfh4_rele(&sfh);
if (dvp->v_type == VNON)
dvp->v_type = VDIR;
*dvpp = dvp;
return (0);
}
svnp = VTOSV(vp);
if (svnp == NULL) {
NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
"shadow node is NULL"));
return (EINVAL);
}
if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) {
NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
"shadow node name or dfh val == NULL"));
return (EINVAL);
}
error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp,
(int)need_start_op);
if (error != 0) {
NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
"nfs4_make_dotdot returned %d", error));
return (error);
}
if (!dvp) {
NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
"nfs4_make_dotdot returned a NULL dvp"));
return (EIO);
}
if (dvp->v_type == VNON)
dvp->v_type = VDIR;
ASSERT(dvp->v_type == VDIR);
if (VTOR4(vp)->r_flags & R4ISXATTR) {
mutex_enter(&dvp->v_lock);
dvp->v_flag |= V_XATTRDIR;
mutex_exit(&dvp->v_lock);
}
*dvpp = dvp;
return (0);
}
/*
* Copy the (final) component name of vp to fnamep. maxlen is the maximum
* length that fnamep can accept, including the trailing null.
* Returns 0 if okay, returns an errno value if there was a problem.
*/
int
vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen)
{
char *fn;
int err = 0;
servinfo4_t *svp;
svnode_t *shvp;
/*
* If the file being opened has VROOT set, then this is
* a "file" mount. sv_name will not be interesting, so
* go back to the servinfo4 to get the original mount
* path and strip off all but the final edge. Otherwise
* just return the name from the shadow vnode.
*/
if (vp->v_flag & VROOT) {
svp = VTOMI4(vp)->mi_curr_serv;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
fn = strrchr(svp->sv_path, '/');
if (fn == NULL)
err = EINVAL;
else
fn++;
} else {
shvp = VTOSV(vp);
fn = fn_name(shvp->sv_name);
}
if (err == 0)
if (strlen(fn) < maxlen)
(void) strcpy(fnamep, fn);
else
err = ENAMETOOLONG;
if (vp->v_flag & VROOT)
nfs_rw_exit(&svp->sv_lock);
else
kmem_free(fn, MAXNAMELEN);
return (err);
}
/*
* Bookkeeping for a close that doesn't need to go over the wire.
* *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise
* it is left at 1.
*/
void
nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp)
{
rnode4_t *rp;
mntinfo4_t *mi;
mi = VTOMI4(vp);
rp = VTOR4(vp);
NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: "
"rp=%p osp=%p", (void *)rp, (void *)osp));
ASSERT(nfs_zone() == mi->mi_zone);
ASSERT(mutex_owned(&osp->os_sync_lock));
ASSERT(*have_lockp);
if (!osp->os_valid ||
osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
return;
}
/*
* This removes the reference obtained at OPEN; ie,
* when the open stream structure was created.
*
* We don't have to worry about calling 'open_stream_rele'
* since we our currently holding a reference to this
* open stream which means the count can not go to 0 with
* this decrement.
*/
ASSERT(osp->os_ref_count >= 2);
osp->os_ref_count--;
osp->os_valid = 0;
mutex_exit(&osp->os_sync_lock);
*have_lockp = 0;
nfs4_dec_state_ref_count(mi);
}
/*
* Close all remaining open streams on the rnode. These open streams
* could be here because:
* - The close attempted at either close or delmap failed
* - Some kernel entity did VOP_OPEN but never did VOP_CLOSE
* - Someone did mknod on a regular file but never opened it
*/
int
nfs4close_all(vnode_t *vp, cred_t *cr)
{
nfs4_open_stream_t *osp;
int error;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
rnode4_t *rp;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
error = 0;
rp = VTOR4(vp);
/*
* At this point, all we know is that the last time
* someone called vn_rele, the count was 1. Since then,
* the vnode could have been re-activated. We want to
* loop through the open streams and close each one, but
* we have to be careful since once we release the rnode
* hash bucket lock, someone else is free to come in and
* re-activate the rnode and add new open streams. The
* strategy is take the rnode hash bucket lock, verify that
* the count is still 1, grab the open stream off the
* head of the list and mark it invalid, then release the
* rnode hash bucket lock and proceed with that open stream.
* This is ok because nfs4close_one() will acquire the proper
* open/create to close/destroy synchronization for open
* streams, and will ensure that if someone has reopened
* the open stream after we've dropped the hash bucket lock
* then we'll just simply return without destroying the
* open stream.
* Repeat until the list is empty.
*/
for (;;) {
/* make sure vnode hasn't been reactivated */
rw_enter(&rp->r_hashq->r_lock, RW_READER);
mutex_enter(&vp->v_lock);
if (vp->v_count > 1) {
mutex_exit(&vp->v_lock);
rw_exit(&rp->r_hashq->r_lock);
break;
}
/*
* Grabbing r_os_lock before releasing v_lock prevents
* a window where the rnode/open stream could get
* reactivated (and os_force_close set to 0) before we
* had a chance to set os_force_close to 1.
*/
mutex_enter(&rp->r_os_lock);
mutex_exit(&vp->v_lock);
osp = list_head(&rp->r_open_streams);
if (!osp) {
/* nothing left to CLOSE OTW, so return */
mutex_exit(&rp->r_os_lock);
rw_exit(&rp->r_hashq->r_lock);
break;
}
mutex_enter(&rp->r_statev4_lock);
/* the file can't still be mem mapped */
ASSERT(rp->r_mapcnt == 0);
if (rp->created_v4)
rp->created_v4 = 0;
mutex_exit(&rp->r_statev4_lock);
/*
* Grab a ref on this open stream; nfs4close_one
* will mark it as invalid
*/
mutex_enter(&osp->os_sync_lock);
osp->os_ref_count++;
osp->os_force_close = 1;
mutex_exit(&osp->os_sync_lock);
mutex_exit(&rp->r_os_lock);
rw_exit(&rp->r_hashq->r_lock);
nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0);
/* Update error if it isn't already non-zero */
if (error == 0) {
if (e.error)
error = e.error;
else if (e.stat)
error = geterrno4(e.stat);
}
#ifdef DEBUG
nfs4close_all_cnt++;
#endif
/* Release the ref on osp acquired above. */
open_stream_rele(osp, rp);
/* Proceed to the next open stream, if any */
}
return (error);
}
/*
* nfs4close_one - close one open stream for a file if needed.
*
* "close_type" indicates which close path this is:
* CLOSE_NORM: close initiated via VOP_CLOSE.
* CLOSE_DELMAP: close initiated via VOP_DELMAP.
* CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces
* the close and release of client state for this open stream
* (unless someone else has the open stream open).
* CLOSE_RESEND: indicates the request is a replay of an earlier request
* (e.g., due to abort because of a signal).
* CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN.
*
* CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client
* recovery. Instead, the caller is expected to deal with retries.
*
* The caller can either pass in the osp ('provided_osp') or not.
*
* 'access_bits' represents the access we are closing/downgrading.
*
* 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the
* number of bytes we are unmapping, 'maxprot' is the mmap protection, and
* 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED).
*
* Errors are returned via the nfs4_error_t.
*/
void
nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr,
int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep,
nfs4_close_type_t close_type, size_t len, uint_t maxprot,
uint_t mmap_flags)
{
nfs4_open_owner_t *oop;
nfs4_open_stream_t *osp = NULL;
int retry = 0;
int num_retries = NFS4_NUM_RECOV_RETRIES;
rnode4_t *rp;
mntinfo4_t *mi;
nfs4_recov_state_t recov_state;
cred_t *cred_otw = NULL;
bool_t recovonly = FALSE;
int isrecov;
int force_close;
int close_failed = 0;
int did_dec_count = 0;
int did_start_op = 0;
int did_force_recovlock = 0;
int did_start_seqid_sync = 0;
int have_sync_lock = 0;
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, "
"lrp %p, close type %d len %ld prot %x mmap flags %x bits %x",
(void *)vp, (void *)provided_osp, (void *)lrp, close_type,
len, maxprot, mmap_flags, access_bits));
nfs4_error_zinit(ep);
rp = VTOR4(vp);
mi = VTOMI4(vp);
isrecov = (close_type == CLOSE_RESEND ||
close_type == CLOSE_AFTER_RESEND);
/*
* First get the open owner.
*/
if (!provided_osp) {
oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
} else {
oop = provided_osp->os_open_owner;
ASSERT(oop != NULL);
open_owner_hold(oop);
}
if (!oop) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, "
"close type %d", (void *)rp, (void *)mi, (void *)cr,
(void *)provided_osp, close_type));
ep->error = EIO;
goto out;
}
cred_otw = nfs4_get_otw_cred(cr, mi, oop);
recov_retry:
osp = NULL;
close_failed = 0;
force_close = (close_type == CLOSE_FORCE);
retry = 0;
did_start_op = 0;
did_force_recovlock = 0;
did_start_seqid_sync = 0;
have_sync_lock = 0;
recovonly = FALSE;
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
/*
* Second synchronize with recovery.
*/
if (!isrecov) {
ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE,
&recov_state, &recovonly);
if (!ep->error) {
did_start_op = 1;
} else {
close_failed = 1;
/*
* If we couldn't get start_fop, but have to
* cleanup state, then at least acquire the
* mi_recovlock so we can synchronize with
* recovery.
*/
if (close_type == CLOSE_FORCE) {
(void) nfs_rw_enter_sig(&mi->mi_recovlock,
RW_READER, FALSE);
did_force_recovlock = 1;
} else
goto out;
}
}
/*
* We cannot attempt to get the open seqid sync if nfs4_start_fop
* set 'recovonly' to TRUE since most likely this is due to
* reovery being active (MI4_RECOV_ACTIV). If recovery is active,
* nfs4_start_open_seqid_sync() will fail with EAGAIN asking us
* to retry, causing us to loop until recovery finishes. Plus we
* don't need protection over the open seqid since we're not going
* OTW, hence don't need to use the seqid.
*/
if (recovonly == FALSE) {
/* need to grab the open owner sync before 'os_sync_lock' */
ep->error = nfs4_start_open_seqid_sync(oop, mi);
if (ep->error == EAGAIN) {
ASSERT(!isrecov);
if (did_start_op)
nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
&recov_state, TRUE);
if (did_force_recovlock)
nfs_rw_exit(&mi->mi_recovlock);
goto recov_retry;
}
did_start_seqid_sync = 1;
}
/*
* Third get an open stream and acquire 'os_sync_lock' to
* sychronize the opening/creating of an open stream with the
* closing/destroying of an open stream.
*/
if (!provided_osp) {
/* returns with 'os_sync_lock' held */
osp = find_open_stream(oop, rp);
if (!osp) {
ep->error = EIO;
goto out;
}
} else {
osp = provided_osp;
open_stream_hold(osp);
mutex_enter(&osp->os_sync_lock);
}
have_sync_lock = 1;
ASSERT(oop == osp->os_open_owner);
/*
* Fourth, do any special pre-OTW CLOSE processing
* based on the specific close type.
*/
if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) &&
!did_dec_count) {
ASSERT(osp->os_open_ref_count > 0);
osp->os_open_ref_count--;
did_dec_count = 1;
if (osp->os_open_ref_count == 0)
osp->os_final_close = 1;
}
if (close_type == CLOSE_FORCE) {
/* see if somebody reopened the open stream. */
if (!osp->os_force_close) {
NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
"nfs4close_one: skip CLOSE_FORCE as osp %p "
"was reopened, vp %p", (void *)osp, (void *)vp));
ep->error = 0;
ep->stat = NFS4_OK;
goto out;
}
if (!osp->os_final_close && !did_dec_count) {
osp->os_open_ref_count--;
did_dec_count = 1;
}
/*
* We can't depend on os_open_ref_count being 0 due to the
* way executables are opened (VN_RELE to match a VOP_OPEN).
*/
#ifdef NOTYET
ASSERT(osp->os_open_ref_count == 0);
#endif
if (osp->os_open_ref_count != 0) {
NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
"nfs4close_one: should panic here on an "
"ASSERT(osp->os_open_ref_count == 0). Ignoring "
"since this is probably the exec problem."));
osp->os_open_ref_count = 0;
}
/*
* There is the possibility that nfs4close_one()
* for close_type == CLOSE_DELMAP couldn't find the
* open stream, thus couldn't decrement its os_mapcnt;
* therefore we can't use this ASSERT yet.
*/
#ifdef NOTYET
ASSERT(osp->os_mapcnt == 0);
#endif
osp->os_mapcnt = 0;
}
if (close_type == CLOSE_DELMAP && !did_dec_count) {
ASSERT(osp->os_mapcnt >= btopr(len));
if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE))
osp->os_mmap_write -= btopr(len);
if (maxprot & PROT_READ)
osp->os_mmap_read -= btopr(len);
if (maxprot & PROT_EXEC)
osp->os_mmap_read -= btopr(len);
/* mirror the PROT_NONE check in nfs4_addmap() */
if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
!(maxprot & PROT_EXEC))
osp->os_mmap_read -= btopr(len);
osp->os_mapcnt -= btopr(len);
did_dec_count = 1;
}
if (recovonly) {
nfs4_lost_rqst_t lost_rqst;
/* request should not already be in recovery queue */
ASSERT(lrp == NULL);
nfs4_error_init(ep, EINTR);
nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
osp, cred_otw, vp);
mutex_exit(&osp->os_sync_lock);
have_sync_lock = 0;
(void) nfs4_start_recovery(ep, mi, vp, NULL, NULL,
lost_rqst.lr_op == OP_CLOSE ?
&lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL);
close_failed = 1;
force_close = 0;
goto close_cleanup;
}
/*
* If a previous OTW call got NFS4ERR_BAD_SEQID, then
* we stopped operating on the open owner's <old oo_name, old seqid>
* space, which means we stopped operating on the open stream
* too. So don't go OTW (as the seqid is likely bad, and the
* stateid could be stale, potentially triggering a false
* setclientid), and just clean up the client's internal state.
*/
if (osp->os_orig_oo_name != oop->oo_name) {
NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug,
(CE_NOTE, "nfs4close_one: skip OTW close for osp %p "
"oop %p due to bad seqid (orig oo_name %" PRIx64 " current "
"oo_name %" PRIx64")",
(void *)osp, (void *)oop, osp->os_orig_oo_name,
oop->oo_name));
close_failed = 1;
}
/* If the file failed recovery, just quit. */
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERR) {
close_failed = 1;
}
mutex_exit(&rp->r_statelock);
/*
* If the force close path failed to obtain start_fop
* then skip the OTW close and just remove the state.
*/
if (close_failed)
goto close_cleanup;
/*
* Fifth, check to see if there are still mapped pages or other
* opens using this open stream. If there are then we can't
* close yet but we can see if an OPEN_DOWNGRADE is necessary.
*/
if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
nfs4_lost_rqst_t new_lost_rqst;
bool_t needrecov = FALSE;
cred_t *odg_cred_otw = NULL;
seqid4 open_dg_seqid = 0;
if (osp->os_delegation) {
/*
* If this open stream was never OPENed OTW then we
* surely can't DOWNGRADE it (especially since the
* osp->open_stateid is really a delegation stateid
* when os_delegation is 1).
*/
if (access_bits & FREAD)
osp->os_share_acc_read--;
if (access_bits & FWRITE)
osp->os_share_acc_write--;
osp->os_share_deny_none--;
nfs4_error_zinit(ep);
goto out;
}
nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr,
lrp, ep, &odg_cred_otw, &open_dg_seqid);
needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
if (needrecov && !isrecov) {
bool_t abort;
nfs4_bseqid_entry_t *bsep = NULL;
if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID)
bsep = nfs4_create_bseqid_entry(oop, NULL,
vp, 0,
lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG,
open_dg_seqid);
nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst,
oop, osp, odg_cred_otw, vp, access_bits, 0);
mutex_exit(&osp->os_sync_lock);
have_sync_lock = 0;
abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL,
new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ?
&new_lost_rqst : NULL, OP_OPEN_DOWNGRADE,
bsep, NULL, NULL);
if (odg_cred_otw)
crfree(odg_cred_otw);
if (bsep)
kmem_free(bsep, sizeof (*bsep));
if (abort == TRUE)
goto out;
if (did_start_seqid_sync) {
nfs4_end_open_seqid_sync(oop);
did_start_seqid_sync = 0;
}
open_stream_rele(osp, rp);
if (did_start_op)
nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
&recov_state, FALSE);
if (did_force_recovlock)
nfs_rw_exit(&mi->mi_recovlock);
goto recov_retry;
} else {
if (odg_cred_otw)
crfree(odg_cred_otw);
}
goto out;
}
/*
* If this open stream was created as the results of an open
* while holding a delegation, then just release it; no need
* to do an OTW close. Otherwise do a "normal" OTW close.
*/
if (osp->os_delegation) {
nfs4close_notw(vp, osp, &have_sync_lock);
nfs4_error_zinit(ep);
goto out;
}
/*
* If this stream is not valid, we're done.
*/
if (!osp->os_valid) {
nfs4_error_zinit(ep);
goto out;
}
/*
* Last open or mmap ref has vanished, need to do an OTW close.
* First check to see if a close is still necessary.
*/
if (osp->os_failed_reopen) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"don't close OTW osp %p since reopen failed.",
(void *)osp));
/*
* Reopen of the open stream failed, hence the
* stateid of the open stream is invalid/stale, and
* sending this OTW would incorrectly cause another
* round of recovery. In this case, we need to set
* the 'os_valid' bit to 0 so another thread doesn't
* come in and re-open this open stream before
* this "closing" thread cleans up state (decrementing
* the nfs4_server_t's state_ref_count and decrementing
* the os_ref_count).
*/
osp->os_valid = 0;
/*
* This removes the reference obtained at OPEN; ie,
* when the open stream structure was created.
*
* We don't have to worry about calling 'open_stream_rele'
* since we our currently holding a reference to this
* open stream which means the count can not go to 0 with
* this decrement.
*/
ASSERT(osp->os_ref_count >= 2);
osp->os_ref_count--;
nfs4_error_zinit(ep);
close_failed = 0;
goto close_cleanup;
}
ASSERT(osp->os_ref_count > 1);
/*
* Sixth, try the CLOSE OTW.
*/
nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync,
close_type, ep, &have_sync_lock);
if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) {
/*
* Let the recovery thread be responsible for
* removing the state for CLOSE.
*/
close_failed = 1;
force_close = 0;
retry = 0;
}
/* See if we need to retry with a different cred */
if ((ep->error == EACCES ||
(ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) &&
cred_otw != cr) {
crfree(cred_otw);
cred_otw = cr;
crhold(cred_otw);
retry = 1;
}
if (ep->error || ep->stat)
close_failed = 1;
if (retry && !isrecov && num_retries-- > 0) {
if (have_sync_lock) {
mutex_exit(&osp->os_sync_lock);
have_sync_lock = 0;
}
if (did_start_seqid_sync) {
nfs4_end_open_seqid_sync(oop);
did_start_seqid_sync = 0;
}
open_stream_rele(osp, rp);
if (did_start_op)
nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
&recov_state, FALSE);
if (did_force_recovlock)
nfs_rw_exit(&mi->mi_recovlock);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4close_one: need to retry the close "
"operation"));
goto recov_retry;
}
close_cleanup:
/*
* Seventh and lastly, process our results.
*/
if (close_failed && force_close) {
/*
* It's ok to drop and regrab the 'os_sync_lock' since
* nfs4close_notw() will recheck to make sure the
* "close"/removal of state should happen.
*/
if (!have_sync_lock) {
mutex_enter(&osp->os_sync_lock);
have_sync_lock = 1;
}
/*
* This is last call, remove the ref on the open
* stream created by open and clean everything up.
*/
osp->os_pending_close = 0;
nfs4close_notw(vp, osp, &have_sync_lock);
nfs4_error_zinit(ep);
}
if (!close_failed) {
if (have_sync_lock) {
osp->os_pending_close = 0;
mutex_exit(&osp->os_sync_lock);
have_sync_lock = 0;
} else {
mutex_enter(&osp->os_sync_lock);
osp->os_pending_close = 0;
mutex_exit(&osp->os_sync_lock);
}
if (did_start_op && recov_state.rs_sp != NULL) {
mutex_enter(&recov_state.rs_sp->s_lock);
nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi);
mutex_exit(&recov_state.rs_sp->s_lock);
} else {
nfs4_dec_state_ref_count(mi);
}
nfs4_error_zinit(ep);
}
out:
if (have_sync_lock)
mutex_exit(&osp->os_sync_lock);
if (did_start_op)
nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state,
recovonly ? TRUE : FALSE);
if (did_force_recovlock)
nfs_rw_exit(&mi->mi_recovlock);
if (cred_otw)
crfree(cred_otw);
if (osp)
open_stream_rele(osp, rp);
if (oop) {
if (did_start_seqid_sync)
nfs4_end_open_seqid_sync(oop);
open_owner_rele(oop);
}
}
/*
* Convert information returned by the server in the LOCK4denied
* structure to the form required by fcntl.
*/
static void
denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args)
{
nfs4_lo_name_t *lo;
#ifdef DEBUG
if (denied_to_flk_debug) {
lockt_denied_debug = lockt_denied;
debug_enter("lockt_denied");
}
#endif
flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK;
flk->l_whence = 0; /* aka SEEK_SET */
flk->l_start = lockt_denied->offset;
flk->l_len = lockt_denied->length;
/*
* If the blocking clientid matches our client id, then we can
* interpret the lockowner (since we built it). If not, then
* fabricate a sysid and pid. Note that the l_sysid field
* in *flk already has the local sysid.
*/
if (lockt_denied->owner.clientid == lockt_args->owner.clientid) {
if (lockt_denied->owner.owner_len == sizeof (*lo)) {
lo = (nfs4_lo_name_t *)
lockt_denied->owner.owner_val;
flk->l_pid = lo->ln_pid;
} else {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"denied_to_flk: bad lock owner length\n"));
flk->l_pid = lo_to_pid(&lockt_denied->owner);
}
} else {
NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
"denied_to_flk: foreign clientid\n"));
/*
* Construct a new sysid which should be different from
* sysids of other systems.
*/
flk->l_sysid++;
flk->l_pid = lo_to_pid(&lockt_denied->owner);
}
}
static pid_t
lo_to_pid(lock_owner4 *lop)
{
pid_t pid = 0;
uchar_t *cp;
int i;
cp = (uchar_t *)&lop->clientid;
for (i = 0; i < sizeof (lop->clientid); i++)
pid += (pid_t)*cp++;
cp = (uchar_t *)lop->owner_val;
for (i = 0; i < lop->owner_len; i++)
pid += (pid_t)*cp++;
return (pid);
}
/*
* Given a lock pointer, returns the length of that lock.
* "end" is the last locked offset the "l_len" covers from
* the start of the lock.
*/
static off64_t
lock_to_end(flock64_t *lock)
{
off64_t lock_end;
if (lock->l_len == 0)
lock_end = (off64_t)MAXEND;
else
lock_end = lock->l_start + lock->l_len - 1;
return (lock_end);
}
/*
* Given the end of a lock, it will return you the length "l_len" for that lock.
*/
static off64_t
end_to_len(off64_t start, off64_t end)
{
off64_t lock_len;
ASSERT(end >= start);
if (end == MAXEND)
lock_len = 0;
else
lock_len = end - start + 1;
return (lock_len);
}
/*
* On given end for a lock it determines if it is the last locked offset
* or not, if so keeps it as is, else adds one to return the length for
* valid start.
*/
static off64_t
start_check(off64_t x)
{
if (x == MAXEND)
return (x);
else
return (x + 1);
}
/*
* See if these two locks overlap, and if so return 1;
* otherwise, return 0.
*/
static int
locks_intersect(flock64_t *llfp, flock64_t *curfp)
{
off64_t llfp_end, curfp_end;
llfp_end = lock_to_end(llfp);
curfp_end = lock_to_end(curfp);
if (((llfp_end >= curfp->l_start) &&
(llfp->l_start <= curfp->l_start)) ||
((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start)))
return (1);
return (0);
}
/*
* Determine what the intersecting lock region is, and add that to the
* 'nl_llpp' locklist in increasing order (by l_start).
*/
static void
nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp,
locklist_t **nl_llpp, vnode_t *vp)
{
locklist_t *intersect_llp, *tmp_fllp, *cur_fllp;
off64_t lost_flp_end, local_flp_end, len, start;
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:"));
if (!locks_intersect(lost_flp, local_flp))
return;
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
"locks intersect"));
lost_flp_end = lock_to_end(lost_flp);
local_flp_end = lock_to_end(local_flp);
/* Find the starting point of the intersecting region */
if (local_flp->l_start > lost_flp->l_start)
start = local_flp->l_start;
else
start = lost_flp->l_start;
/* Find the lenght of the intersecting region */
if (lost_flp_end < local_flp_end)
len = end_to_len(start, lost_flp_end);
else
len = end_to_len(start, local_flp_end);
/*
* Prepare the flock structure for the intersection found and insert
* it into the new list in increasing l_start order. This list contains
* intersections of locks registered by the client with the local host
* and the lost lock.
* The lock type of this lock is the same as that of the local_flp.
*/
intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP);
intersect_llp->ll_flock.l_start = start;
intersect_llp->ll_flock.l_len = len;
intersect_llp->ll_flock.l_type = local_flp->l_type;
intersect_llp->ll_flock.l_pid = local_flp->l_pid;
intersect_llp->ll_flock.l_sysid = local_flp->l_sysid;
intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */
intersect_llp->ll_vp = vp;
tmp_fllp = *nl_llpp;
cur_fllp = NULL;
while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start <
intersect_llp->ll_flock.l_start) {
cur_fllp = tmp_fllp;
tmp_fllp = tmp_fllp->ll_next;
}
if (cur_fllp == NULL) {
/* first on the list */
intersect_llp->ll_next = *nl_llpp;
*nl_llpp = intersect_llp;
} else {
intersect_llp->ll_next = cur_fllp->ll_next;
cur_fllp->ll_next = intersect_llp;
}
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
"created lock region: start %"PRIx64" end %"PRIx64" : %s\n",
intersect_llp->ll_flock.l_start,
intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len,
intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE"));
}
/*
* Our local locking current state is potentially different than
* what the NFSv4 server thinks we have due to a lost lock that was
* resent and then received. We need to reset our "NFSv4" locking
* state to match the current local locking state for this pid since
* that is what the user/application sees as what the world is.
*
* We cannot afford to drop the open/lock seqid sync since then we can
* get confused about what the current local locking state "is" versus
* "was".
*
* If we are unable to fix up the locks, we send SIGLOST to the affected
* process. This is not done if the filesystem has been forcibly
* unmounted, in case the process has already exited and a new process
* exists with the same pid.
*/
static void
nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr,
nfs4_lock_owner_t *lop)
{
locklist_t *locks, *llp, *ri_llp, *tmp_llp;
mntinfo4_t *mi = VTOMI4(vp);
const int cmd = F_SETLK;
off64_t cur_start, llp_ll_flock_end, lost_flp_end;
flock64_t ul_fl;
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
"nfs4_reinstitute_local_lock_state"));
/*
* Find active locks for this vp from the local locking code.
* Scan through this list and find out the locks that intersect with
* the lost lock. Once we find the lock that intersects, add the
* intersection area as a new lock to a new list "ri_llp". The lock
* type of the intersection region lock added to ri_llp is the same
* as that found in the active lock list, "list". The intersecting
* region locks are added to ri_llp in increasing l_start order.
*/
ASSERT(nfs_zone() == mi->mi_zone);
locks = flk_active_locks_for_vp(vp);
ri_llp = NULL;
for (llp = locks; llp != NULL; llp = llp->ll_next) {
ASSERT(llp->ll_vp == vp);
/*
* Pick locks that belong to this pid/lockowner
*/
if (llp->ll_flock.l_pid != lost_flp->l_pid)
continue;
nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp);
}
/*
* Now we have the list of intersections with the lost lock. These are
* the locks that were/are active before the server replied to the
* last/lost lock. Issue these locks to the server here. Playing these
* locks to the server will re-establish aur current local locking state
* with the v4 server.
* If we get an error, send SIGLOST to the application for that lock.
*/
for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
"nfs4_reinstitute_local_lock_state: need to issue "
"flock: [%"PRIx64" - %"PRIx64"] : %s",
llp->ll_flock.l_start,
llp->ll_flock.l_start + llp->ll_flock.l_len,
llp->ll_flock.l_type == F_RDLCK ? "READ" :
llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID"));
/*
* No need to relock what we already have
*/
if (llp->ll_flock.l_type == lost_flp->l_type)
continue;
push_reinstate(vp, cmd, &llp->ll_flock, cr, lop);
}
/*
* Now keeping the start of the lost lock as our reference parse the
* newly created ri_llp locklist to find the ranges that we have locked
* with the v4 server but not in the current local locking. We need
* to unlock these ranges.
* These ranges can also be reffered to as those ranges, where the lost
* lock does not overlap with the locks in the ri_llp but are locked
* since the server replied to the lost lock.
*/
cur_start = lost_flp->l_start;
lost_flp_end = lock_to_end(lost_flp);
ul_fl.l_type = F_UNLCK;
ul_fl.l_whence = 0; /* aka SEEK_SET */
ul_fl.l_sysid = lost_flp->l_sysid;
ul_fl.l_pid = lost_flp->l_pid;
for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
llp_ll_flock_end = lock_to_end(&llp->ll_flock);
if (llp->ll_flock.l_start <= cur_start) {
cur_start = start_check(llp_ll_flock_end);
continue;
}
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
"nfs4_reinstitute_local_lock_state: "
"UNLOCK [%"PRIx64" - %"PRIx64"]",
cur_start, llp->ll_flock.l_start));
ul_fl.l_start = cur_start;
ul_fl.l_len = end_to_len(cur_start,
(llp->ll_flock.l_start - 1));
push_reinstate(vp, cmd, &ul_fl, cr, lop);
cur_start = start_check(llp_ll_flock_end);
}
/*
* In the case where the lost lock ends after all intersecting locks,
* unlock the last part of the lost lock range.
*/
if (cur_start != start_check(lost_flp_end)) {
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
"nfs4_reinstitute_local_lock_state: UNLOCK end of the "
"lost lock region [%"PRIx64" - %"PRIx64"]",
cur_start, lost_flp->l_start + lost_flp->l_len));
ul_fl.l_start = cur_start;
/*
* Is it an to-EOF lock? if so unlock till the end
*/
if (lost_flp->l_len == 0)
ul_fl.l_len = 0;
else
ul_fl.l_len = start_check(lost_flp_end) - cur_start;
push_reinstate(vp, cmd, &ul_fl, cr, lop);
}
if (locks != NULL)
flk_free_locklist(locks);
/* Free up our newly created locklist */
for (llp = ri_llp; llp != NULL; ) {
tmp_llp = llp->ll_next;
kmem_free(llp, sizeof (locklist_t));
llp = tmp_llp;
}
/*
* Now return back to the original calling nfs4frlock()
* and let us naturally drop our seqid syncs.
*/
}
/*
* Create a lost state record for the given lock reinstantiation request
* and push it onto the lost state queue.
*/
static void
push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr,
nfs4_lock_owner_t *lop)
{
nfs4_lost_rqst_t req;
nfs_lock_type4 locktype;
nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS };
ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
locktype = flk_to_locktype(cmd, flk->l_type);
nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype,
NULL, NULL, lop, flk, &req, cr, vp);
(void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
(req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ?
&req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK,
NULL, NULL, NULL);
}