/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
* All Rights Reserved
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/cred.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/vnode.h>
#include <sys/pathname.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/mkdev.h>
#include <sys/mount.h>
#include <sys/statvfs.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/utsname.h>
#include <sys/bootconf.h>
#include <sys/modctl.h>
#include <sys/acl.h>
#include <sys/flock.h>
#include <sys/time.h>
#include <sys/disp.h>
#include <sys/policy.h>
#include <sys/socket.h>
#include <sys/netconfig.h>
#include <sys/dnlc.h>
#include <sys/list.h>
#include <sys/mntent.h>
#include <sys/tsol/label.h>
#include <rpc/types.h>
#include <rpc/auth.h>
#include <rpc/rpcsec_gss.h>
#include <rpc/clnt.h>
#include <nfs/nfs.h>
#include <nfs/nfs_clnt.h>
#include <nfs/mount.h>
#include <nfs/nfs_acl.h>
#include <fs/fs_subr.h>
#include <nfs/nfs4.h>
#include <nfs/rnode4.h>
#include <nfs/nfs4_clnt.h>
#include <sys/fs/autofs.h>
#include <sys/sdt.h>
/*
* Arguments passed to thread to free data structures from forced unmount.
*/
typedef struct {
vfs_t *fm_vfsp;
int fm_flag;
cred_t *fm_cr;
} freemountargs_t;
static void async_free_mount(vfs_t *, int, cred_t *);
static void nfs4_free_mount(vfs_t *, int, cred_t *);
static void nfs4_free_mount_thread(freemountargs_t *);
static int nfs4_chkdup_servinfo4(servinfo4_t *, servinfo4_t *);
/*
* From rpcsec module (common/rpcsec).
*/
extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t);
extern void sec_clnt_freeinfo(struct sec_data *);
/*
* The order and contents of this structure must be kept in sync with that of
* rfsreqcnt_v4_tmpl in nfs_stats.c
*/
static char *rfsnames_v4[] = {
"null", "compound", "reserved", "access", "close", "commit", "create",
"delegpurge", "delegreturn", "getattr", "getfh", "link", "lock",
"lockt", "locku", "lookup", "lookupp", "nverify", "open", "openattr",
"open_confirm", "open_downgrade", "putfh", "putpubfh", "putrootfh",
"read", "readdir", "readlink", "remove", "rename", "renew",
"restorefh", "savefh", "secinfo", "setattr", "setclientid",
"setclientid_confirm", "verify", "write"
};
/*
* nfs4_max_mount_retry is the number of times the client will redrive
* a mount compound before giving up and returning failure. The intent
* is to redrive mount compounds which fail NFS4ERR_STALE so that
* if a component of the server path being mounted goes stale, it can
* "recover" by redriving the mount compund (LOOKUP ops). This recovery
* code is needed outside of the recovery framework because mount is a
* special case. The client doesn't create vnodes/rnodes for components
* of the server path being mounted. The recovery code recovers real
* client objects, not STALE FHs which map to components of the server
* path being mounted.
*
* We could just fail the mount on the first time, but that would
* instantly trigger failover (from nfs4_mount), and the client should
* try to re-lookup the STALE FH before doing failover. The easiest
* way to "re-lookup" is to simply redrive the mount compound.
*/
static int nfs4_max_mount_retry = 2;
/*
* nfs4 vfs operations.
*/
int nfs4_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *);
static int nfs4_unmount(vfs_t *, int, cred_t *);
static int nfs4_root(vfs_t *, vnode_t **);
static int nfs4_statvfs(vfs_t *, struct statvfs64 *);
static int nfs4_sync(vfs_t *, short, cred_t *);
static int nfs4_vget(vfs_t *, vnode_t **, fid_t *);
static int nfs4_mountroot(vfs_t *, whymountroot_t);
static void nfs4_freevfs(vfs_t *);
static int nfs4rootvp(vnode_t **, vfs_t *, struct servinfo4 *,
int, cred_t *, zone_t *);
vfsops_t *nfs4_vfsops;
int nfs4_vfsinit(void);
void nfs4_vfsfini(void);
static void nfs4setclientid_init(void);
static void nfs4setclientid_fini(void);
static void nfs4setclientid_otw(mntinfo4_t *, servinfo4_t *, cred_t *,
struct nfs4_server *, nfs4_error_t *, int *);
static void destroy_nfs4_server(nfs4_server_t *);
static void remove_mi(nfs4_server_t *, mntinfo4_t *);
extern void nfs4_ephemeral_init(void);
extern void nfs4_ephemeral_fini(void);
/* referral related routines */
static servinfo4_t *copy_svp(servinfo4_t *);
static void free_knconf_contents(struct knetconfig *k);
static char *extract_referral_point(const char *, int);
static void setup_newsvpath(servinfo4_t *, int);
static void update_servinfo4(servinfo4_t *, fs_location4 *,
struct nfs_fsl_info *, char *, int);
/*
* Initialize the vfs structure
*/
static int nfs4fstyp;
/*
* Debug variable to check for rdma based
* transport startup and cleanup. Controlled
* through /etc/system. Off by default.
*/
extern int rdma_debug;
int
nfs4init(int fstyp, char *name)
{
static const fs_operation_def_t nfs4_vfsops_template[] = {
VFSNAME_MOUNT, { .vfs_mount = nfs4_mount },
VFSNAME_UNMOUNT, { .vfs_unmount = nfs4_unmount },
VFSNAME_ROOT, { .vfs_root = nfs4_root },
VFSNAME_STATVFS, { .vfs_statvfs = nfs4_statvfs },
VFSNAME_SYNC, { .vfs_sync = nfs4_sync },
VFSNAME_VGET, { .vfs_vget = nfs4_vget },
VFSNAME_MOUNTROOT, { .vfs_mountroot = nfs4_mountroot },
VFSNAME_FREEVFS, { .vfs_freevfs = nfs4_freevfs },
NULL, NULL
};
int error;
nfs4_vfsops = NULL;
nfs4_vnodeops = NULL;
nfs4_trigger_vnodeops = NULL;
error = vfs_setfsops(fstyp, nfs4_vfsops_template, &nfs4_vfsops);
if (error != 0) {
zcmn_err(GLOBAL_ZONEID, CE_WARN,
"nfs4init: bad vfs ops template");
goto out;
}
error = vn_make_ops(name, nfs4_vnodeops_template, &nfs4_vnodeops);
if (error != 0) {
zcmn_err(GLOBAL_ZONEID, CE_WARN,
"nfs4init: bad vnode ops template");
goto out;
}
error = vn_make_ops("nfs4_trigger", nfs4_trigger_vnodeops_template,
&nfs4_trigger_vnodeops);
if (error != 0) {
zcmn_err(GLOBAL_ZONEID, CE_WARN,
"nfs4init: bad trigger vnode ops template");
goto out;
}
nfs4fstyp = fstyp;
(void) nfs4_vfsinit();
(void) nfs4_init_dot_entries();
out:
if (error) {
if (nfs4_trigger_vnodeops != NULL)
vn_freevnodeops(nfs4_trigger_vnodeops);
if (nfs4_vnodeops != NULL)
vn_freevnodeops(nfs4_vnodeops);
(void) vfs_freevfsops_by_type(fstyp);
}
return (error);
}
void
nfs4fini(void)
{
(void) nfs4_destroy_dot_entries();
nfs4_vfsfini();
}
/*
* Create a new sec_data structure to store AUTH_DH related data:
* netname, syncaddr, knetconfig. There is no AUTH_F_RPCTIMESYNC
* flag set for NFS V4 since we are avoiding to contact the rpcbind
* daemon and is using the IP time service (IPPORT_TIMESERVER).
*
* sec_data can be freed by sec_clnt_freeinfo().
*/
static struct sec_data *
create_authdh_data(char *netname, int nlen, struct netbuf *syncaddr,
struct knetconfig *knconf) {
struct sec_data *secdata;
dh_k4_clntdata_t *data;
char *pf, *p;
if (syncaddr == NULL || syncaddr->buf == NULL || nlen == 0)
return (NULL);
secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
secdata->flags = 0;
data = kmem_alloc(sizeof (*data), KM_SLEEP);
data->syncaddr.maxlen = syncaddr->maxlen;
data->syncaddr.len = syncaddr->len;
data->syncaddr.buf = (char *)kmem_alloc(syncaddr->len, KM_SLEEP);
bcopy(syncaddr->buf, data->syncaddr.buf, syncaddr->len);
/*
* duplicate the knconf information for the
* new opaque data.
*/
data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP);
*data->knconf = *knconf;
pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE);
bcopy(knconf->knc_proto, p, KNC_STRSIZE);
data->knconf->knc_protofmly = pf;
data->knconf->knc_proto = p;
/* move server netname to the sec_data structure */
data->netname = kmem_alloc(nlen, KM_SLEEP);
bcopy(netname, data->netname, nlen);
data->netnamelen = (int)nlen;
secdata->secmod = AUTH_DH;
secdata->rpcflavor = AUTH_DH;
secdata->data = (caddr_t)data;
return (secdata);
}
/*
* Returns (deep) copy of sec_data_t. Allocates all memory required; caller
* is responsible for freeing.
*/
sec_data_t *
copy_sec_data(sec_data_t *fsecdata) {
sec_data_t *tsecdata;
if (fsecdata == NULL)
return (NULL);
if (fsecdata->rpcflavor == AUTH_DH) {
dh_k4_clntdata_t *fdata = (dh_k4_clntdata_t *)fsecdata->data;
if (fdata == NULL)
return (NULL);
tsecdata = (sec_data_t *)create_authdh_data(fdata->netname,
fdata->netnamelen, &fdata->syncaddr, fdata->knconf);
return (tsecdata);
}
tsecdata = kmem_zalloc(sizeof (sec_data_t), KM_SLEEP);
tsecdata->secmod = fsecdata->secmod;
tsecdata->rpcflavor = fsecdata->rpcflavor;
tsecdata->flags = fsecdata->flags;
tsecdata->uid = fsecdata->uid;
if (fsecdata->rpcflavor == RPCSEC_GSS) {
gss_clntdata_t *gcd = (gss_clntdata_t *)fsecdata->data;
tsecdata->data = (caddr_t)copy_sec_data_gss(gcd);
} else {
tsecdata->data = NULL;
}
return (tsecdata);
}
gss_clntdata_t *
copy_sec_data_gss(gss_clntdata_t *fdata)
{
gss_clntdata_t *tdata;
if (fdata == NULL)
return (NULL);
tdata = kmem_zalloc(sizeof (gss_clntdata_t), KM_SLEEP);
tdata->mechanism.length = fdata->mechanism.length;
tdata->mechanism.elements = kmem_zalloc(fdata->mechanism.length,
KM_SLEEP);
bcopy(fdata->mechanism.elements, tdata->mechanism.elements,
fdata->mechanism.length);
tdata->service = fdata->service;
(void) strcpy(tdata->uname, fdata->uname);
(void) strcpy(tdata->inst, fdata->inst);
(void) strcpy(tdata->realm, fdata->realm);
tdata->qop = fdata->qop;
return (tdata);
}
static int
nfs4_chkdup_servinfo4(servinfo4_t *svp_head, servinfo4_t *svp)
{
servinfo4_t *si;
/*
* Iterate over the servinfo4 list to make sure
* we do not have a duplicate. Skip any servinfo4
* that has been marked "NOT IN USE"
*/
for (si = svp_head; si; si = si->sv_next) {
(void) nfs_rw_enter_sig(&si->sv_lock, RW_READER, 0);
if (si->sv_flags & SV4_NOTINUSE) {
nfs_rw_exit(&si->sv_lock);
continue;
}
nfs_rw_exit(&si->sv_lock);
if (si == svp)
continue;
if (si->sv_addr.len == svp->sv_addr.len &&
strcmp(si->sv_knconf->knc_protofmly,
svp->sv_knconf->knc_protofmly) == 0 &&
bcmp(si->sv_addr.buf, svp->sv_addr.buf,
si->sv_addr.len) == 0) {
/* it's a duplicate */
return (1);
}
}
/* it's not a duplicate */
return (0);
}
void
nfs4_free_args(struct nfs_args *nargs)
{
if (nargs->knconf) {
if (nargs->knconf->knc_protofmly)
kmem_free(nargs->knconf->knc_protofmly,
KNC_STRSIZE);
if (nargs->knconf->knc_proto)
kmem_free(nargs->knconf->knc_proto, KNC_STRSIZE);
kmem_free(nargs->knconf, sizeof (*nargs->knconf));
nargs->knconf = NULL;
}
if (nargs->fh) {
kmem_free(nargs->fh, strlen(nargs->fh) + 1);
nargs->fh = NULL;
}
if (nargs->hostname) {
kmem_free(nargs->hostname, strlen(nargs->hostname) + 1);
nargs->hostname = NULL;
}
if (nargs->addr) {
if (nargs->addr->buf) {
ASSERT(nargs->addr->len);
kmem_free(nargs->addr->buf, nargs->addr->len);
}
kmem_free(nargs->addr, sizeof (struct netbuf));
nargs->addr = NULL;
}
if (nargs->syncaddr) {
ASSERT(nargs->syncaddr->len);
if (nargs->syncaddr->buf) {
ASSERT(nargs->syncaddr->len);
kmem_free(nargs->syncaddr->buf, nargs->syncaddr->len);
}
kmem_free(nargs->syncaddr, sizeof (struct netbuf));
nargs->syncaddr = NULL;
}
if (nargs->netname) {
kmem_free(nargs->netname, strlen(nargs->netname) + 1);
nargs->netname = NULL;
}
if (nargs->nfs_ext_u.nfs_extA.secdata) {
sec_clnt_freeinfo(
nargs->nfs_ext_u.nfs_extA.secdata);
nargs->nfs_ext_u.nfs_extA.secdata = NULL;
}
}
int
nfs4_copyin(char *data, int datalen, struct nfs_args *nargs)
{
int error;
size_t hlen; /* length of hostname */
size_t nlen; /* length of netname */
char netname[MAXNETNAMELEN+1]; /* server's netname */
struct netbuf addr; /* server's address */
struct netbuf syncaddr; /* AUTH_DES time sync addr */
struct knetconfig *knconf; /* transport structure */
struct sec_data *secdata = NULL; /* security data */
STRUCT_DECL(nfs_args, args); /* nfs mount arguments */
STRUCT_DECL(knetconfig, knconf_tmp);
STRUCT_DECL(netbuf, addr_tmp);
int flags;
char *p, *pf;
struct pathname pn;
char *userbufptr;
bzero(nargs, sizeof (*nargs));
STRUCT_INIT(args, get_udatamodel());
bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE));
if (copyin(data, STRUCT_BUF(args), MIN(datalen,
STRUCT_SIZE(args))))
return (EFAULT);
nargs->wsize = STRUCT_FGET(args, wsize);
nargs->rsize = STRUCT_FGET(args, rsize);
nargs->timeo = STRUCT_FGET(args, timeo);
nargs->retrans = STRUCT_FGET(args, retrans);
nargs->acregmin = STRUCT_FGET(args, acregmin);
nargs->acregmax = STRUCT_FGET(args, acregmax);
nargs->acdirmin = STRUCT_FGET(args, acdirmin);
nargs->acdirmax = STRUCT_FGET(args, acdirmax);
flags = STRUCT_FGET(args, flags);
nargs->flags = flags;
addr.buf = NULL;
syncaddr.buf = NULL;
/*
* Allocate space for a knetconfig structure and
* its strings and copy in from user-land.
*/
knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP);
STRUCT_INIT(knconf_tmp, get_udatamodel());
if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp),
STRUCT_SIZE(knconf_tmp))) {
kmem_free(knconf, sizeof (*knconf));
return (EFAULT);
}
knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics);
knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly);
knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto);
if (get_udatamodel() != DATAMODEL_LP64) {
knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev));
} else {
knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev);
}
pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL);
if (error) {
kmem_free(pf, KNC_STRSIZE);
kmem_free(p, KNC_STRSIZE);
kmem_free(knconf, sizeof (*knconf));
return (error);
}
error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL);
if (error) {
kmem_free(pf, KNC_STRSIZE);
kmem_free(p, KNC_STRSIZE);
kmem_free(knconf, sizeof (*knconf));
return (error);
}
knconf->knc_protofmly = pf;
knconf->knc_proto = p;
nargs->knconf = knconf;
/*
* Get server address
*/
STRUCT_INIT(addr_tmp, get_udatamodel());
if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp),
STRUCT_SIZE(addr_tmp))) {
error = EFAULT;
goto errout;
}
nargs->addr = kmem_zalloc(sizeof (struct netbuf), KM_SLEEP);
userbufptr = STRUCT_FGETP(addr_tmp, buf);
addr.len = STRUCT_FGET(addr_tmp, len);
addr.buf = kmem_alloc(addr.len, KM_SLEEP);
addr.maxlen = addr.len;
if (copyin(userbufptr, addr.buf, addr.len)) {
kmem_free(addr.buf, addr.len);
error = EFAULT;
goto errout;
}
bcopy(&addr, nargs->addr, sizeof (struct netbuf));
/*
* Get the root fhandle
*/
error = pn_get(STRUCT_FGETP(args, fh), UIO_USERSPACE, &pn);
if (error)
goto errout;
/* Volatile fh: keep server paths, so use actual-size strings */
nargs->fh = kmem_alloc(pn.pn_pathlen + 1, KM_SLEEP);
bcopy(pn.pn_path, nargs->fh, pn.pn_pathlen);
nargs->fh[pn.pn_pathlen] = '\0';
pn_free(&pn);
/*
* Get server's hostname
*/
if (flags & NFSMNT_HOSTNAME) {
error = copyinstr(STRUCT_FGETP(args, hostname),
netname, sizeof (netname), &hlen);
if (error)
goto errout;
nargs->hostname = kmem_zalloc(hlen, KM_SLEEP);
(void) strcpy(nargs->hostname, netname);
} else {
nargs->hostname = NULL;
}
/*
* If there are syncaddr and netname data, load them in. This is
* to support data needed for NFSV4 when AUTH_DH is the negotiated
* flavor via SECINFO. (instead of using MOUNT protocol in V3).
*/
netname[0] = '\0';
if (flags & NFSMNT_SECURE) {
/* get syncaddr */
STRUCT_INIT(addr_tmp, get_udatamodel());
if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp),
STRUCT_SIZE(addr_tmp))) {
error = EINVAL;
goto errout;
}
userbufptr = STRUCT_FGETP(addr_tmp, buf);
syncaddr.len = STRUCT_FGET(addr_tmp, len);
syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP);
syncaddr.maxlen = syncaddr.len;
if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) {
kmem_free(syncaddr.buf, syncaddr.len);
error = EFAULT;
goto errout;
}
nargs->syncaddr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP);
bcopy(&syncaddr, nargs->syncaddr, sizeof (struct netbuf));
/* get server's netname */
if (copyinstr(STRUCT_FGETP(args, netname), netname,
sizeof (netname), &nlen)) {
error = EFAULT;
goto errout;
}
netname[nlen] = '\0';
nargs->netname = kmem_zalloc(nlen, KM_SLEEP);
(void) strcpy(nargs->netname, netname);
}
/*
* Get the extention data which has the security data structure.
* This includes data for AUTH_SYS as well.
*/
if (flags & NFSMNT_NEWARGS) {
nargs->nfs_args_ext = STRUCT_FGET(args, nfs_args_ext);
if (nargs->nfs_args_ext == NFS_ARGS_EXTA ||
nargs->nfs_args_ext == NFS_ARGS_EXTB) {
/*
* Indicating the application is using the new
* sec_data structure to pass in the security
* data.
*/
if (STRUCT_FGETP(args,
nfs_ext_u.nfs_extA.secdata) != NULL) {
error = sec_clnt_loadinfo(
(struct sec_data *)STRUCT_FGETP(args,
nfs_ext_u.nfs_extA.secdata),
&secdata, get_udatamodel());
}
nargs->nfs_ext_u.nfs_extA.secdata = secdata;
}
}
if (error)
goto errout;
/*
* Failover support:
*
* We may have a linked list of nfs_args structures,
* which means the user is looking for failover. If
* the mount is either not "read-only" or "soft",
* we want to bail out with EINVAL.
*/
if (nargs->nfs_args_ext == NFS_ARGS_EXTB)
nargs->nfs_ext_u.nfs_extB.next =
STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next);
errout:
if (error)
nfs4_free_args(nargs);
return (error);
}
/*
* nfs mount vfsop
* Set up mount info record and attach it to vfs struct.
*/
int
nfs4_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
{
char *data = uap->dataptr;
int error;
vnode_t *rtvp; /* the server's root */
mntinfo4_t *mi; /* mount info, pointed at by vfs */
struct knetconfig *rdma_knconf; /* rdma transport structure */
rnode4_t *rp;
struct servinfo4 *svp; /* nfs server info */
struct servinfo4 *svp_tail = NULL; /* previous nfs server info */
struct servinfo4 *svp_head; /* first nfs server info */
struct servinfo4 *svp_2ndlast; /* 2nd last in server info list */
struct sec_data *secdata; /* security data */
struct nfs_args *args = NULL;
int flags, addr_type, removed;
zone_t *zone = nfs_zone();
nfs4_error_t n4e;
zone_t *mntzone = NULL;
if (secpolicy_fs_mount(cr, mvp, vfsp) != 0)
return (EPERM);
if (mvp->v_type != VDIR)
return (ENOTDIR);
/*
* get arguments
*
* nfs_args is now versioned and is extensible, so
* uap->datalen might be different from sizeof (args)
* in a compatible situation.
*/
more:
if (!(uap->flags & MS_SYSSPACE)) {
if (args == NULL)
args = kmem_zalloc(sizeof (struct nfs_args), KM_SLEEP);
else
nfs4_free_args(args);
error = nfs4_copyin(data, uap->datalen, args);
if (error) {
if (args) {
kmem_free(args, sizeof (*args));
}
return (error);
}
} else {
args = (struct nfs_args *)data;
}
flags = args->flags;
/*
* If the request changes the locking type, disallow the remount,
* because it's questionable whether we can transfer the
* locking state correctly.
*/
if (uap->flags & MS_REMOUNT) {
if (!(uap->flags & MS_SYSSPACE)) {
nfs4_free_args(args);
kmem_free(args, sizeof (*args));
}
if ((mi = VFTOMI4(vfsp)) != NULL) {
uint_t new_mi_llock;
uint_t old_mi_llock;
new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0;
old_mi_llock = (mi->mi_flags & MI4_LLOCK) ? 1 : 0;
if (old_mi_llock != new_mi_llock)
return (EBUSY);
}
return (0);
}
/*
* For ephemeral mount trigger stub vnodes, we have two problems
* to solve: racing threads will likely fail the v_count check, and
* we want only one to proceed with the mount.
*
* For stubs, if the mount has already occurred (via a racing thread),
* just return success. If not, skip the v_count check and proceed.
* Note that we are already serialised at this point.
*/
mutex_enter(&mvp->v_lock);
if (vn_matchops(mvp, nfs4_trigger_vnodeops)) {
/* mntpt is a v4 stub vnode */
ASSERT(RP_ISSTUB(VTOR4(mvp)));
ASSERT(!(uap->flags & MS_OVERLAY));
ASSERT(!(mvp->v_flag & VROOT));
if (vn_mountedvfs(mvp) != NULL) {
/* ephemeral mount has already occurred */
ASSERT(uap->flags & MS_SYSSPACE);
mutex_exit(&mvp->v_lock);
return (0);
}
} else {
/* mntpt is a non-v4 or v4 non-stub vnode */
if (!(uap->flags & MS_OVERLAY) &&
(mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
mutex_exit(&mvp->v_lock);
if (!(uap->flags & MS_SYSSPACE)) {
nfs4_free_args(args);
kmem_free(args, sizeof (*args));
}
return (EBUSY);
}
}
mutex_exit(&mvp->v_lock);
/* make sure things are zeroed for errout: */
rtvp = NULL;
mi = NULL;
secdata = NULL;
/*
* A valid knetconfig structure is required.
*/
if (!(flags & NFSMNT_KNCONF) ||
args->knconf == NULL || args->knconf->knc_protofmly == NULL ||
args->knconf->knc_proto == NULL ||
(strcmp(args->knconf->knc_proto, NC_UDP) == 0)) {
if (!(uap->flags & MS_SYSSPACE)) {
nfs4_free_args(args);
kmem_free(args, sizeof (*args));
}
return (EINVAL);
}
if ((strlen(args->knconf->knc_protofmly) >= KNC_STRSIZE) ||
(strlen(args->knconf->knc_proto) >= KNC_STRSIZE)) {
if (!(uap->flags & MS_SYSSPACE)) {
nfs4_free_args(args);
kmem_free(args, sizeof (*args));
}
return (EINVAL);
}
/*
* Allocate a servinfo4 struct.
*/
svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
if (svp_tail) {
svp_2ndlast = svp_tail;
svp_tail->sv_next = svp;
} else {
svp_head = svp;
svp_2ndlast = svp;
}
svp_tail = svp;
svp->sv_knconf = args->knconf;
args->knconf = NULL;
/*
* Get server address
*/
if (args->addr == NULL || args->addr->buf == NULL) {
error = EINVAL;
goto errout;
}
svp->sv_addr.maxlen = args->addr->maxlen;
svp->sv_addr.len = args->addr->len;
svp->sv_addr.buf = args->addr->buf;
args->addr->buf = NULL;
/*
* Get the root fhandle
*/
if (args->fh == NULL || (strlen(args->fh) >= MAXPATHLEN)) {
error = EINVAL;
goto errout;
}
svp->sv_path = args->fh;
svp->sv_pathlen = strlen(args->fh) + 1;
args->fh = NULL;
/*
* Get server's hostname
*/
if (flags & NFSMNT_HOSTNAME) {
if (args->hostname == NULL || (strlen(args->hostname) >
MAXNETNAMELEN)) {
error = EINVAL;
goto errout;
}
svp->sv_hostnamelen = strlen(args->hostname) + 1;
svp->sv_hostname = args->hostname;
args->hostname = NULL;
} else {
char *p = "unknown-host";
svp->sv_hostnamelen = strlen(p) + 1;
svp->sv_hostname = kmem_zalloc(svp->sv_hostnamelen, KM_SLEEP);
(void) strcpy(svp->sv_hostname, p);
}
/*
* RDMA MOUNT SUPPORT FOR NFS v4.
* Establish, is it possible to use RDMA, if so overload the
* knconf with rdma specific knconf and free the orignal knconf.
*/
if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) {
/*
* Determine the addr type for RDMA, IPv4 or v6.
*/
if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0)
addr_type = AF_INET;
else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0)
addr_type = AF_INET6;
if (rdma_reachable(addr_type, &svp->sv_addr,
&rdma_knconf) == 0) {
/*
* If successful, hijack the orignal knconf and
* replace with the new one, depending on the flags.
*/
svp->sv_origknconf = svp->sv_knconf;
svp->sv_knconf = rdma_knconf;
} else {
if (flags & NFSMNT_TRYRDMA) {
#ifdef DEBUG
if (rdma_debug)
zcmn_err(getzoneid(), CE_WARN,
"no RDMA onboard, revert\n");
#endif
}
if (flags & NFSMNT_DORDMA) {
/*
* If proto=rdma is specified and no RDMA
* path to this server is avialable then
* ditch this server.
* This is not included in the mountable
* server list or the replica list.
* Check if more servers are specified;
* Failover case, otherwise bail out of mount.
*/
if (args->nfs_args_ext == NFS_ARGS_EXTB &&
args->nfs_ext_u.nfs_extB.next != NULL) {
data = (char *)
args->nfs_ext_u.nfs_extB.next;
if (uap->flags & MS_RDONLY &&
!(flags & NFSMNT_SOFT)) {
if (svp_head->sv_next == NULL) {
svp_tail = NULL;
svp_2ndlast = NULL;
sv4_free(svp_head);
goto more;
} else {
svp_tail = svp_2ndlast;
svp_2ndlast->sv_next =
NULL;
sv4_free(svp);
goto more;
}
}
} else {
/*
* This is the last server specified
* in the nfs_args list passed down
* and its not rdma capable.
*/
if (svp_head->sv_next == NULL) {
/*
* Is this the only one
*/
error = EINVAL;
#ifdef DEBUG
if (rdma_debug)
zcmn_err(getzoneid(),
CE_WARN,
"No RDMA srv");
#endif
goto errout;
} else {
/*
* There is list, since some
* servers specified before
* this passed all requirements
*/
svp_tail = svp_2ndlast;
svp_2ndlast->sv_next = NULL;
sv4_free(svp);
goto proceed;
}
}
}
}
}
/*
* If there are syncaddr and netname data, load them in. This is
* to support data needed for NFSV4 when AUTH_DH is the negotiated
* flavor via SECINFO. (instead of using MOUNT protocol in V3).
*/
if (args->flags & NFSMNT_SECURE) {
svp->sv_dhsec = create_authdh_data(args->netname,
strlen(args->netname),
args->syncaddr, svp->sv_knconf);
}
/*
* Get the extention data which has the security data structure.
* This includes data for AUTH_SYS as well.
*/
if (flags & NFSMNT_NEWARGS) {
switch (args->nfs_args_ext) {
case NFS_ARGS_EXTA:
case NFS_ARGS_EXTB:
/*
* Indicating the application is using the new
* sec_data structure to pass in the security
* data.
*/
secdata = args->nfs_ext_u.nfs_extA.secdata;
if (secdata == NULL) {
error = EINVAL;
} else if (uap->flags & MS_SYSSPACE) {
/*
* Need to validate the flavor here if
* sysspace, userspace was already
* validate from the nfs_copyin function.
*/
switch (secdata->rpcflavor) {
case AUTH_NONE:
case AUTH_UNIX:
case AUTH_LOOPBACK:
case AUTH_DES:
case RPCSEC_GSS:
break;
default:
error = EINVAL;
goto errout;
}
}
args->nfs_ext_u.nfs_extA.secdata = NULL;
break;
default:
error = EINVAL;
break;
}
} else if (flags & NFSMNT_SECURE) {
/*
* NFSMNT_SECURE is deprecated but we keep it
* to support the rogue user-generated application
* that may use this undocumented interface to do
* AUTH_DH security, e.g. our own rexd.
*
* Also note that NFSMNT_SECURE is used for passing
* AUTH_DH info to be used in negotiation.
*/
secdata = create_authdh_data(args->netname,
strlen(args->netname), args->syncaddr, svp->sv_knconf);
} else {
secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
secdata->secmod = secdata->rpcflavor = AUTH_SYS;
secdata->data = NULL;
}
svp->sv_secdata = secdata;
/*
* User does not explictly specify a flavor, and a user
* defined default flavor is passed down.
*/
if (flags & NFSMNT_SECDEFAULT) {
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
svp->sv_flags |= SV4_TRYSECDEFAULT;
nfs_rw_exit(&svp->sv_lock);
}
/*
* Failover support:
*
* We may have a linked list of nfs_args structures,
* which means the user is looking for failover. If
* the mount is either not "read-only" or "soft",
* we want to bail out with EINVAL.
*/
if (args->nfs_args_ext == NFS_ARGS_EXTB &&
args->nfs_ext_u.nfs_extB.next != NULL) {
if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) {
data = (char *)args->nfs_ext_u.nfs_extB.next;
goto more;
}
error = EINVAL;
goto errout;
}
/*
* Determine the zone we're being mounted into.
*/
zone_hold(mntzone = zone); /* start with this assumption */
if (getzoneid() == GLOBAL_ZONEID) {
zone_rele(mntzone);
mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
ASSERT(mntzone != NULL);
if (mntzone != zone) {
error = EBUSY;
goto errout;
}
}
if (is_system_labeled()) {
error = nfs_mount_label_policy(vfsp, &svp->sv_addr,
svp->sv_knconf, cr);
if (error > 0)
goto errout;
if (error == -1) {
/* change mount to read-only to prevent write-down */
vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
}
}
/*
* Stop the mount from going any further if the zone is going away.
*/
if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) {
error = EBUSY;
goto errout;
}
/*
* Get root vnode.
*/
proceed:
error = nfs4rootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone);
if (error) {
/* if nfs4rootvp failed, it will free svp_head */
svp_head = NULL;
goto errout;
}
mi = VTOMI4(rtvp);
/*
* Send client id to the server, if necessary
*/
nfs4_error_zinit(&n4e);
nfs4setclientid(mi, cr, FALSE, &n4e);
error = n4e.error;
if (error)
goto errout;
/*
* Set option fields in the mount info record
*/
if (svp_head->sv_next) {
mutex_enter(&mi->mi_lock);
mi->mi_flags |= MI4_LLOCK;
mutex_exit(&mi->mi_lock);
}
error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, args);
if (error)
goto errout;
/*
* Time to tie in the mirror mount info at last!
*/
if (flags & NFSMNT_EPHEMERAL)
error = nfs4_record_ephemeral_mount(mi, mvp);
errout:
if (error) {
if (rtvp != NULL) {
rp = VTOR4(rtvp);
if (rp->r_flags & R4HASHED)
rp4_rmhash(rp);
}
if (mi != NULL) {
nfs4_async_stop(vfsp);
nfs4_async_manager_stop(vfsp);
nfs4_remove_mi_from_server(mi, NULL);
if (rtvp != NULL)
VN_RELE(rtvp);
if (mntzone != NULL)
zone_rele(mntzone);
/* need to remove it from the zone */
removed = nfs4_mi_zonelist_remove(mi);
if (removed)
zone_rele_ref(&mi->mi_zone_ref,
ZONE_REF_NFSV4);
MI4_RELE(mi);
if (!(uap->flags & MS_SYSSPACE) && args) {
nfs4_free_args(args);
kmem_free(args, sizeof (*args));
}
return (error);
}
if (svp_head)
sv4_free(svp_head);
}
if (!(uap->flags & MS_SYSSPACE) && args) {
nfs4_free_args(args);
kmem_free(args, sizeof (*args));
}
if (rtvp != NULL)
VN_RELE(rtvp);
if (mntzone != NULL)
zone_rele(mntzone);
return (error);
}
#ifdef DEBUG
#define VERS_MSG "NFS4 server "
#else
#define VERS_MSG "NFS server "
#endif
#define READ_MSG \
VERS_MSG "%s returned 0 for read transfer size"
#define WRITE_MSG \
VERS_MSG "%s returned 0 for write transfer size"
#define SIZE_MSG \
VERS_MSG "%s returned 0 for maximum file size"
/*
* Get the symbolic link text from the server for a given filehandle
* of that symlink.
*
* (get symlink text) PUTFH READLINK
*/
static int
getlinktext_otw(mntinfo4_t *mi, nfs_fh4 *fh, char **linktextp, cred_t *cr,
int flags)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
int doqueue;
nfs_argop4 argop[2];
nfs_resop4 *resop;
READLINK4res *lr_res;
uint_t len;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
nfs4_sharedfh_t *sfh;
nfs4_error_t e;
int num_retry = nfs4_max_mount_retry;
int recovery = !(flags & NFS4_GETFH_NEEDSOP);
sfh = sfh4_get(fh, mi);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
nfs4_error_zinit(&e);
args.array_len = 2;
args.array = argop;
args.ctag = TAG_GET_SYMLINK;
if (! recovery) {
e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
if (e.error) {
sfh4_rele(&sfh);
return (e.error);
}
}
/* 0. putfh symlink fh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = sfh;
/* 1. readlink */
argop[1].argop = OP_READLINK;
doqueue = 1;
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (needrecov && !recovery && num_retry-- > 0) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"getlinktext_otw: initiating recovery\n"));
if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
OP_READLINK, NULL, NULL, NULL) == FALSE) {
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
goto recov_retry;
}
}
/*
* If non-NFS4 pcol error and/or we weren't able to recover.
*/
if (e.error != 0) {
if (! recovery)
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
sfh4_rele(&sfh);
return (e.error);
}
if (res.status) {
e.error = geterrno4(res.status);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
if (! recovery)
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
sfh4_rele(&sfh);
return (e.error);
}
/* res.status == NFS4_OK */
ASSERT(res.status == NFS4_OK);
resop = &res.array[1]; /* readlink res */
lr_res = &resop->nfs_resop4_u.opreadlink;
/* treat symlink name as data */
*linktextp = utf8_to_str((utf8string *)&lr_res->link, &len, NULL);
if (! recovery)
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
sfh4_rele(&sfh);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return (0);
}
/*
* Skip over consecutive slashes and "/./" in a pathname.
*/
void
pathname_skipslashdot(struct pathname *pnp)
{
char *c1, *c2;
while (pnp->pn_pathlen > 0 && *pnp->pn_path == '/') {
c1 = pnp->pn_path + 1;
c2 = pnp->pn_path + 2;
if (*c1 == '.' && (*c2 == '/' || *c2 == '\0')) {
pnp->pn_path = pnp->pn_path + 2; /* skip "/." */
pnp->pn_pathlen = pnp->pn_pathlen - 2;
} else {
pnp->pn_path++;
pnp->pn_pathlen--;
}
}
}
/*
* Resolve a symbolic link path. The symlink is in the nth component of
* svp->sv_path and has an nfs4 file handle "fh".
* Upon return, the sv_path will point to the new path that has the nth
* component resolved to its symlink text.
*/
int
resolve_sympath(mntinfo4_t *mi, servinfo4_t *svp, int nth, nfs_fh4 *fh,
cred_t *cr, int flags)
{
char *oldpath;
char *symlink, *newpath;
struct pathname oldpn, newpn;
char component[MAXNAMELEN];
int i, addlen, error = 0;
int oldpathlen;
/* Get the symbolic link text over the wire. */
error = getlinktext_otw(mi, fh, &symlink, cr, flags);
if (error || symlink == NULL || strlen(symlink) == 0)
return (error);
/*
* Compose the new pathname.
* Note:
* - only the nth component is resolved for the pathname.
* - pathname.pn_pathlen does not count the ending null byte.
*/
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
oldpath = svp->sv_path;
oldpathlen = svp->sv_pathlen;
if (error = pn_get(oldpath, UIO_SYSSPACE, &oldpn)) {
nfs_rw_exit(&svp->sv_lock);
kmem_free(symlink, strlen(symlink) + 1);
return (error);
}
nfs_rw_exit(&svp->sv_lock);
pn_alloc(&newpn);
/*
* Skip over previous components from the oldpath so that the
* oldpn.pn_path will point to the symlink component. Skip
* leading slashes and "/./" (no OP_LOOKUP on ".") so that
* pn_getcompnent can get the component.
*/
for (i = 1; i < nth; i++) {
pathname_skipslashdot(&oldpn);
error = pn_getcomponent(&oldpn, component);
if (error)
goto out;
}
/*
* Copy the old path upto the component right before the symlink
* if the symlink is not an absolute path.
*/
if (symlink[0] != '/') {
addlen = oldpn.pn_path - oldpn.pn_buf;
bcopy(oldpn.pn_buf, newpn.pn_path, addlen);
newpn.pn_pathlen += addlen;
newpn.pn_path += addlen;
newpn.pn_buf[newpn.pn_pathlen] = '/';
newpn.pn_pathlen++;
newpn.pn_path++;
}
/* copy the resolved symbolic link text */
addlen = strlen(symlink);
if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) {
error = ENAMETOOLONG;
goto out;
}
bcopy(symlink, newpn.pn_path, addlen);
newpn.pn_pathlen += addlen;
newpn.pn_path += addlen;
/*
* Check if there is any remaining path after the symlink component.
* First, skip the symlink component.
*/
pathname_skipslashdot(&oldpn);
if (error = pn_getcomponent(&oldpn, component))
goto out;
addlen = pn_pathleft(&oldpn); /* includes counting the slash */
/*
* Copy the remaining path to the new pathname if there is any.
*/
if (addlen > 0) {
if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) {
error = ENAMETOOLONG;
goto out;
}
bcopy(oldpn.pn_path, newpn.pn_path, addlen);
newpn.pn_pathlen += addlen;
}
newpn.pn_buf[newpn.pn_pathlen] = '\0';
/* get the newpath and store it in the servinfo4_t */
newpath = kmem_alloc(newpn.pn_pathlen + 1, KM_SLEEP);
bcopy(newpn.pn_buf, newpath, newpn.pn_pathlen);
newpath[newpn.pn_pathlen] = '\0';
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
svp->sv_path = newpath;
svp->sv_pathlen = strlen(newpath) + 1;
nfs_rw_exit(&svp->sv_lock);
kmem_free(oldpath, oldpathlen);
out:
kmem_free(symlink, strlen(symlink) + 1);
pn_free(&newpn);
pn_free(&oldpn);
return (error);
}
/*
* This routine updates servinfo4 structure with the new referred server
* info.
* nfsfsloc has the location related information
* fsp has the hostname and pathname info.
* new path = pathname from referral + part of orig pathname(based on nth).
*/
static void
update_servinfo4(servinfo4_t *svp, fs_location4 *fsp,
struct nfs_fsl_info *nfsfsloc, char *orig_path, int nth)
{
struct knetconfig *knconf, *svknconf;
struct netbuf *saddr;
sec_data_t *secdata;
utf8string *host;
int i = 0, num_slashes = 0;
char *p, *spath, *op, *new_path;
/* Update knconf */
knconf = svp->sv_knconf;
free_knconf_contents(knconf);
bzero(knconf, sizeof (struct knetconfig));
svknconf = nfsfsloc->knconf;
knconf->knc_semantics = svknconf->knc_semantics;
knconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
knconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
knconf->knc_rdev = svknconf->knc_rdev;
bcopy(svknconf->knc_protofmly, knconf->knc_protofmly, KNC_STRSIZE);
bcopy(svknconf->knc_proto, knconf->knc_proto, KNC_STRSIZE);
/* Update server address */
saddr = &svp->sv_addr;
if (saddr->buf != NULL)
kmem_free(saddr->buf, saddr->maxlen);
saddr->buf = kmem_alloc(nfsfsloc->addr->maxlen, KM_SLEEP);
saddr->len = nfsfsloc->addr->len;
saddr->maxlen = nfsfsloc->addr->maxlen;
bcopy(nfsfsloc->addr->buf, saddr->buf, nfsfsloc->addr->len);
/* Update server name */
host = fsp->server_val;
kmem_free(svp->sv_hostname, svp->sv_hostnamelen);
svp->sv_hostname = kmem_zalloc(host->utf8string_len + 1, KM_SLEEP);
bcopy(host->utf8string_val, svp->sv_hostname, host->utf8string_len);
svp->sv_hostname[host->utf8string_len] = '\0';
svp->sv_hostnamelen = host->utf8string_len + 1;
/*
* Update server path.
* We need to setup proper path here.
* For ex., If we got a path name serv1:/rp/aaa/bbb
* where aaa is a referral and points to serv2:/rpool/aa
* we need to set the path to serv2:/rpool/aa/bbb
* The first part of this below code generates /rpool/aa
* and the second part appends /bbb to the server path.
*/
spath = p = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
*p++ = '/';
for (i = 0; i < fsp->rootpath.pathname4_len; i++) {
component4 *comp;
comp = &fsp->rootpath.pathname4_val[i];
/* If no space, null the string and bail */
if ((p - spath) + comp->utf8string_len + 1 > MAXPATHLEN) {
p = spath + MAXPATHLEN - 1;
spath[0] = '\0';
break;
}
bcopy(comp->utf8string_val, p, comp->utf8string_len);
p += comp->utf8string_len;
*p++ = '/';
}
if (fsp->rootpath.pathname4_len != 0)
*(p - 1) = '\0';
else
*p = '\0';
p = spath;
new_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
(void) strlcpy(new_path, p, MAXPATHLEN);
kmem_free(p, MAXPATHLEN);
i = strlen(new_path);
for (op = orig_path; *op; op++) {
if (*op == '/')
num_slashes++;
if (num_slashes == nth + 2) {
while (*op != '\0') {
new_path[i] = *op;
i++;
op++;
}
break;
}
}
new_path[i] = '\0';
kmem_free(svp->sv_path, svp->sv_pathlen);
svp->sv_pathlen = strlen(new_path) + 1;
svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP);
bcopy(new_path, svp->sv_path, svp->sv_pathlen);
kmem_free(new_path, MAXPATHLEN);
/*
* All the security data is specific to old server.
* Clean it up except secdata which deals with mount options.
* We need to inherit that data. Copy secdata into our new servinfo4.
*/
if (svp->sv_dhsec) {
sec_clnt_freeinfo(svp->sv_dhsec);
svp->sv_dhsec = NULL;
}
if (svp->sv_save_secinfo &&
svp->sv_save_secinfo != svp->sv_secinfo) {
secinfo_free(svp->sv_save_secinfo);
svp->sv_save_secinfo = NULL;
}
if (svp->sv_secinfo) {
secinfo_free(svp->sv_secinfo);
svp->sv_secinfo = NULL;
}
svp->sv_currsec = NULL;
secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
*secdata = *svp->sv_secdata;
secdata->data = NULL;
if (svp->sv_secdata) {
sec_clnt_freeinfo(svp->sv_secdata);
svp->sv_secdata = NULL;
}
svp->sv_secdata = secdata;
}
/*
* Resolve a referral. The referral is in the n+1th component of
* svp->sv_path and has a parent nfs4 file handle "fh".
* Upon return, the sv_path will point to the new path that has referral
* component resolved to its referred path and part of original path.
* Hostname and other address information is also updated.
*/
int
resolve_referral(mntinfo4_t *mi, servinfo4_t *svp, cred_t *cr, int nth,
nfs_fh4 *fh)
{
nfs4_sharedfh_t *sfh;
struct nfs_fsl_info nfsfsloc;
nfs4_ga_res_t garp;
COMPOUND4res_clnt callres;
fs_location4 *fsp;
char *nm, *orig_path;
int orig_pathlen = 0, ret = -1, index;
if (svp->sv_pathlen <= 0)
return (ret);
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
orig_pathlen = svp->sv_pathlen;
orig_path = kmem_alloc(orig_pathlen, KM_SLEEP);
bcopy(svp->sv_path, orig_path, orig_pathlen);
nm = extract_referral_point(svp->sv_path, nth);
setup_newsvpath(svp, nth);
nfs_rw_exit(&svp->sv_lock);
sfh = sfh4_get(fh, mi);
index = nfs4_process_referral(mi, sfh, nm, cr,
&garp, &callres, &nfsfsloc);
sfh4_rele(&sfh);
kmem_free(nm, MAXPATHLEN);
if (index < 0) {
kmem_free(orig_path, orig_pathlen);
return (index);
}
fsp = &garp.n4g_ext_res->n4g_fslocations.locations_val[index];
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
update_servinfo4(svp, fsp, &nfsfsloc, orig_path, nth);
nfs_rw_exit(&svp->sv_lock);
mutex_enter(&mi->mi_lock);
mi->mi_vfs_referral_loop_cnt++;
mutex_exit(&mi->mi_lock);
ret = 0;
bad:
/* Free up XDR memory allocated in nfs4_process_referral() */
xdr_free(xdr_nfs_fsl_info, (char *)&nfsfsloc);
xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&callres);
kmem_free(orig_path, orig_pathlen);
return (ret);
}
/*
* Get the root filehandle for the given filesystem and server, and update
* svp.
*
* If NFS4_GETFH_NEEDSOP is set, then use nfs4_start_fop and nfs4_end_fop
* to coordinate with recovery. Otherwise, the caller is assumed to be
* the recovery thread or have already done a start_fop.
*
* Errors are returned by the nfs4_error_t parameter.
*/
static void
nfs4getfh_otw(struct mntinfo4 *mi, servinfo4_t *svp, vtype_t *vtp,
int flags, cred_t *cr, nfs4_error_t *ep)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
int doqueue = 1;
nfs_argop4 *argop;
nfs_resop4 *resop;
nfs4_ga_res_t *garp;
int num_argops;
lookup4_param_t lookuparg;
nfs_fh4 *tmpfhp;
nfs_fh4 *resfhp;
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
int llndx;
int nthcomp;
int recovery = !(flags & NFS4_GETFH_NEEDSOP);
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
ASSERT(svp->sv_path != NULL);
if (svp->sv_path[0] == '\0') {
nfs_rw_exit(&svp->sv_lock);
nfs4_error_init(ep, EINVAL);
return;
}
nfs_rw_exit(&svp->sv_lock);
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
if (mi->mi_vfs_referral_loop_cnt >= NFS4_REFERRAL_LOOP_MAX) {
DTRACE_PROBE3(nfs4clnt__debug__referral__loop, mntinfo4 *,
mi, servinfo4_t *, svp, char *, "nfs4getfh_otw");
nfs4_error_init(ep, EINVAL);
return;
}
nfs4_error_zinit(ep);
if (!recovery) {
ep->error = nfs4_start_fop(mi, NULL, NULL, OH_MOUNT,
&recov_state, NULL);
/*
* If recovery has been started and this request as
* initiated by a mount, then we must wait for recovery
* to finish before proceeding, otherwise, the error
* cleanup would remove data structures needed by the
* recovery thread.
*/
if (ep->error) {
mutex_enter(&mi->mi_lock);
if (mi->mi_flags & MI4_MOUNTING) {
mi->mi_flags |= MI4_RECOV_FAIL;
mi->mi_error = EIO;
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4getfh_otw: waiting 4 recovery\n"));
while (mi->mi_flags & MI4_RECOV_ACTIV)
cv_wait(&mi->mi_failover_cv,
&mi->mi_lock);
}
mutex_exit(&mi->mi_lock);
return;
}
/*
* If the client does not specify a specific flavor to use
* and has not gotten a secinfo list from the server yet,
* retrieve the secinfo list from the server and use a
* flavor from the list to mount.
*
* If fail to get the secinfo list from the server, then
* try the default flavor.
*/
if ((svp->sv_flags & SV4_TRYSECDEFAULT) &&
svp->sv_secinfo == NULL) {
(void) nfs4_secinfo_path(mi, cr, FALSE);
}
}
if (recovery)
args.ctag = TAG_REMAP_MOUNT;
else
args.ctag = TAG_MOUNT;
lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES;
lookuparg.argsp = &args;
lookuparg.resp = &res;
lookuparg.header_len = 2; /* Putrootfh, getfh */
lookuparg.trailer_len = 0;
lookuparg.ga_bits = FATTR4_FSINFO_MASK;
lookuparg.mi = mi;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
ASSERT(svp->sv_path != NULL);
llndx = nfs4lookup_setup(svp->sv_path, &lookuparg, 0);
nfs_rw_exit(&svp->sv_lock);
argop = args.array;
num_argops = args.array_len;
/* choose public or root filehandle */
if (flags & NFS4_GETFH_PUBLIC)
argop[0].argop = OP_PUTPUBFH;
else
argop[0].argop = OP_PUTROOTFH;
/* get fh */
argop[1].argop = OP_GETFH;
NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
"nfs4getfh_otw: %s call, mi 0x%p",
needrecov ? "recov" : "first", (void *)mi));
rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep);
needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
if (needrecov) {
bool_t abort;
if (recovery) {
nfs4args_lookup_free(argop, num_argops);
kmem_free(argop,
lookuparg.arglen * sizeof (nfs_argop4));
if (!ep->error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
return;
}
NFS4_DEBUG(nfs4_client_recov_debug,
(CE_NOTE, "nfs4getfh_otw: initiating recovery\n"));
abort = nfs4_start_recovery(ep, mi, NULL,
NULL, NULL, NULL, OP_GETFH, NULL, NULL, NULL);
if (!ep->error) {
ep->error = geterrno4(res.status);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
}
nfs4args_lookup_free(argop, num_argops);
kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov);
/* have another go? */
if (abort == FALSE)
goto recov_retry;
return;
}
/*
* No recovery, but check if error is set.
*/
if (ep->error) {
nfs4args_lookup_free(argop, num_argops);
kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
if (!recovery)
nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
needrecov);
return;
}
is_link_err:
/* for non-recovery errors */
if (res.status && res.status != NFS4ERR_SYMLINK &&
res.status != NFS4ERR_MOVED) {
if (!recovery) {
nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
needrecov);
}
nfs4args_lookup_free(argop, num_argops);
kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
/*
* If any intermediate component in the path is a symbolic link,
* resolve the symlink, then try mount again using the new path.
*/
if (res.status == NFS4ERR_SYMLINK || res.status == NFS4ERR_MOVED) {
int where;
/*
* Need to call nfs4_end_op before resolve_sympath to avoid
* potential nfs4_start_op deadlock.
*/
if (!recovery)
nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
needrecov);
/*
* This must be from OP_LOOKUP failure. The (cfh) for this
* OP_LOOKUP is a symlink node. Found out where the
* OP_GETFH is for the (cfh) that is a symlink node.
*
* Example:
* (mount) PUTROOTFH, GETFH, LOOKUP comp1, GETFH, GETATTR,
* LOOKUP comp2, GETFH, GETATTR, LOOKUP comp3, GETFH, GETATTR
*
* LOOKUP comp3 fails with SYMLINK because comp2 is a symlink.
* In this case, where = 7, nthcomp = 2.
*/
where = res.array_len - 2;
ASSERT(where > 0);
if (res.status == NFS4ERR_SYMLINK) {
resop = &res.array[where - 1];
ASSERT(resop->resop == OP_GETFH);
tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
nthcomp = res.array_len/3 - 1;
ep->error = resolve_sympath(mi, svp, nthcomp,
tmpfhp, cr, flags);
} else if (res.status == NFS4ERR_MOVED) {
resop = &res.array[where - 2];
ASSERT(resop->resop == OP_GETFH);
tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
nthcomp = res.array_len/3 - 1;
ep->error = resolve_referral(mi, svp, cr, nthcomp,
tmpfhp);
}
nfs4args_lookup_free(argop, num_argops);
kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
if (ep->error)
return;
goto recov_retry;
}
/* getfh */
resop = &res.array[res.array_len - 2];
ASSERT(resop->resop == OP_GETFH);
resfhp = &resop->nfs_resop4_u.opgetfh.object;
/* getattr fsinfo res */
resop++;
garp = &resop->nfs_resop4_u.opgetattr.ga_res;
*vtp = garp->n4g_va.va_type;
mi->mi_fh_expire_type = garp->n4g_ext_res->n4g_fet;
mutex_enter(&mi->mi_lock);
if (garp->n4g_ext_res->n4g_pc4.pc4_link_support)
mi->mi_flags |= MI4_LINK;
if (garp->n4g_ext_res->n4g_pc4.pc4_symlink_support)
mi->mi_flags |= MI4_SYMLINK;
if (garp->n4g_ext_res->n4g_suppattrs & FATTR4_ACL_MASK)
mi->mi_flags |= MI4_ACL;
mutex_exit(&mi->mi_lock);
if (garp->n4g_ext_res->n4g_maxread == 0)
mi->mi_tsize =
MIN(MAXBSIZE, mi->mi_tsize);
else
mi->mi_tsize =
MIN(garp->n4g_ext_res->n4g_maxread,
mi->mi_tsize);
if (garp->n4g_ext_res->n4g_maxwrite == 0)
mi->mi_stsize =
MIN(MAXBSIZE, mi->mi_stsize);
else
mi->mi_stsize =
MIN(garp->n4g_ext_res->n4g_maxwrite,
mi->mi_stsize);
if (garp->n4g_ext_res->n4g_maxfilesize != 0)
mi->mi_maxfilesize =
MIN(garp->n4g_ext_res->n4g_maxfilesize,
mi->mi_maxfilesize);
/*
* If the final component is a a symbolic link, resolve the symlink,
* then try mount again using the new path.
*
* Assume no symbolic link for root filesysm "/".
*/
if (*vtp == VLNK) {
/*
* nthcomp is the total result length minus
* the 1st 2 OPs (PUTROOTFH, GETFH),
* then divided by 3 (LOOKUP,GETFH,GETATTR)
*
* e.g. PUTROOTFH GETFH LOOKUP 1st-comp GETFH GETATTR
* LOOKUP 2nd-comp GETFH GETATTR
*
* (8 - 2)/3 = 2
*/
nthcomp = (res.array_len - 2)/3;
/*
* Need to call nfs4_end_op before resolve_sympath to avoid
* potential nfs4_start_op deadlock. See RFE 4777612.
*/
if (!recovery)
nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
needrecov);
ep->error = resolve_sympath(mi, svp, nthcomp, resfhp, cr,
flags);
nfs4args_lookup_free(argop, num_argops);
kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
if (ep->error)
return;
goto recov_retry;
}
/*
* We need to figure out where in the compound the getfh
* for the parent directory is. If the object to be mounted is
* the root, then there is no lookup at all:
* PUTROOTFH, GETFH.
* If the object to be mounted is in the root, then the compound is:
* PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR.
* In either of these cases, the index of the GETFH is 1.
* If it is not at the root, then it's something like:
* PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR,
* LOOKUP, GETFH, GETATTR
* In this case, the index is llndx (last lookup index) - 2.
*/
if (llndx == -1 || llndx == 2)
resop = &res.array[1];
else {
ASSERT(llndx > 2);
resop = &res.array[llndx-2];
}
ASSERT(resop->resop == OP_GETFH);
tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
/* save the filehandles for the replica */
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
ASSERT(tmpfhp->nfs_fh4_len <= NFS4_FHSIZE);
svp->sv_pfhandle.fh_len = tmpfhp->nfs_fh4_len;
bcopy(tmpfhp->nfs_fh4_val, svp->sv_pfhandle.fh_buf,
tmpfhp->nfs_fh4_len);
ASSERT(resfhp->nfs_fh4_len <= NFS4_FHSIZE);
svp->sv_fhandle.fh_len = resfhp->nfs_fh4_len;
bcopy(resfhp->nfs_fh4_val, svp->sv_fhandle.fh_buf, resfhp->nfs_fh4_len);
/* initialize fsid and supp_attrs for server fs */
svp->sv_fsid = garp->n4g_fsid;
svp->sv_supp_attrs =
garp->n4g_ext_res->n4g_suppattrs | FATTR4_MANDATTR_MASK;
nfs_rw_exit(&svp->sv_lock);
nfs4args_lookup_free(argop, num_argops);
kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
if (!recovery)
nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov);
}
/*
* Save a copy of Servinfo4_t structure.
* We might need when there is a failure in getting file handle
* in case of a referral to replace servinfo4 struct and try again.
*/
static struct servinfo4 *
copy_svp(servinfo4_t *nsvp)
{
servinfo4_t *svp = NULL;
struct knetconfig *sknconf, *tknconf;
struct netbuf *saddr, *taddr;
svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
svp->sv_flags = nsvp->sv_flags;
svp->sv_fsid = nsvp->sv_fsid;
svp->sv_hostnamelen = nsvp->sv_hostnamelen;
svp->sv_pathlen = nsvp->sv_pathlen;
svp->sv_supp_attrs = nsvp->sv_supp_attrs;
svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP);
svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
bcopy(nsvp->sv_hostname, svp->sv_hostname, svp->sv_hostnamelen);
bcopy(nsvp->sv_path, svp->sv_path, svp->sv_pathlen);
saddr = &nsvp->sv_addr;
taddr = &svp->sv_addr;
taddr->maxlen = saddr->maxlen;
taddr->len = saddr->len;
if (saddr->len > 0) {
taddr->buf = kmem_zalloc(saddr->maxlen, KM_SLEEP);
bcopy(saddr->buf, taddr->buf, saddr->len);
}
svp->sv_knconf = kmem_zalloc(sizeof (struct knetconfig), KM_SLEEP);
sknconf = nsvp->sv_knconf;
tknconf = svp->sv_knconf;
tknconf->knc_semantics = sknconf->knc_semantics;
tknconf->knc_rdev = sknconf->knc_rdev;
if (sknconf->knc_proto != NULL) {
tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto,
KNC_STRSIZE);
}
if (sknconf->knc_protofmly != NULL) {
tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
bcopy(sknconf->knc_protofmly, (char *)tknconf->knc_protofmly,
KNC_STRSIZE);
}
if (nsvp->sv_origknconf != NULL) {
svp->sv_origknconf = kmem_zalloc(sizeof (struct knetconfig),
KM_SLEEP);
sknconf = nsvp->sv_origknconf;
tknconf = svp->sv_origknconf;
tknconf->knc_semantics = sknconf->knc_semantics;
tknconf->knc_rdev = sknconf->knc_rdev;
if (sknconf->knc_proto != NULL) {
tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto,
KNC_STRSIZE);
}
if (sknconf->knc_protofmly != NULL) {
tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE,
KM_SLEEP);
bcopy(sknconf->knc_protofmly,
(char *)tknconf->knc_protofmly, KNC_STRSIZE);
}
}
svp->sv_secdata = copy_sec_data(nsvp->sv_secdata);
svp->sv_dhsec = copy_sec_data(svp->sv_dhsec);
/*
* Rest of the security information is not copied as they are built
* with the information available from secdata and dhsec.
*/
svp->sv_next = NULL;
return (svp);
}
servinfo4_t *
restore_svp(mntinfo4_t *mi, servinfo4_t *svp, servinfo4_t *origsvp)
{
servinfo4_t *srvnext, *tmpsrv;
if (strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) {
/*
* Since the hostname changed, we must be dealing
* with a referral, and the lookup failed. We will
* restore the whole servinfo4_t to what it was before.
*/
srvnext = svp->sv_next;
svp->sv_next = NULL;
tmpsrv = copy_svp(origsvp);
sv4_free(svp);
svp = tmpsrv;
svp->sv_next = srvnext;
mutex_enter(&mi->mi_lock);
mi->mi_servers = svp;
mi->mi_curr_serv = svp;
mutex_exit(&mi->mi_lock);
} else if (origsvp->sv_pathlen != svp->sv_pathlen) {
/*
* For symlink case: restore original path because
* it might have contained symlinks that were
* expanded by nfsgetfh_otw before the failure occurred.
*/
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
kmem_free(svp->sv_path, svp->sv_pathlen);
svp->sv_path =
kmem_alloc(origsvp->sv_pathlen, KM_SLEEP);
svp->sv_pathlen = origsvp->sv_pathlen;
bcopy(origsvp->sv_path, svp->sv_path,
origsvp->sv_pathlen);
nfs_rw_exit(&svp->sv_lock);
}
return (svp);
}
static ushort_t nfs4_max_threads = 8; /* max number of active async threads */
uint_t nfs4_bsize = 32 * 1024; /* client `block' size */
static uint_t nfs4_async_clusters = 1; /* # of reqs from each async queue */
static uint_t nfs4_cots_timeo = NFS_COTS_TIMEO;
/*
* Remap the root filehandle for the given filesystem.
*
* results returned via the nfs4_error_t parameter.
*/
void
nfs4_remap_root(mntinfo4_t *mi, nfs4_error_t *ep, int flags)
{
struct servinfo4 *svp, *origsvp;
vtype_t vtype;
nfs_fh4 rootfh;
int getfh_flags;
int num_retry;
mutex_enter(&mi->mi_lock);
remap_retry:
svp = mi->mi_curr_serv;
getfh_flags =
(flags & NFS4_REMAP_NEEDSOP) ? NFS4_GETFH_NEEDSOP : 0;
getfh_flags |=
(mi->mi_flags & MI4_PUBLIC) ? NFS4_GETFH_PUBLIC : 0;
mutex_exit(&mi->mi_lock);
/*
* Just in case server path being mounted contains
* symlinks and fails w/STALE, save the initial sv_path
* so we can redrive the initial mount compound with the
* initial sv_path -- not a symlink-expanded version.
*
* This could only happen if a symlink was expanded
* and the expanded mount compound failed stale. Because
* it could be the case that the symlink was removed at
* the server (and replaced with another symlink/dir,
* we need to use the initial sv_path when attempting
* to re-lookup everything and recover.
*/
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
origsvp = copy_svp(svp);
nfs_rw_exit(&svp->sv_lock);
num_retry = nfs4_max_mount_retry;
do {
/*
* Get the root fh from the server. Retry nfs4_max_mount_retry
* (2) times if it fails with STALE since the recovery
* infrastructure doesn't do STALE recovery for components
* of the server path to the object being mounted.
*/
nfs4getfh_otw(mi, svp, &vtype, getfh_flags, CRED(), ep);
if (ep->error == 0 && ep->stat == NFS4_OK)
break;
/*
* For some reason, the mount compound failed. Before
* retrying, we need to restore original conditions.
*/
svp = restore_svp(mi, svp, origsvp);
} while (num_retry-- > 0);
sv4_free(origsvp);
if (ep->error != 0 || ep->stat != 0) {
return;
}
if (vtype != VNON && vtype != mi->mi_type) {
/* shouldn't happen */
zcmn_err(mi->mi_zone->zone_id, CE_WARN,
"nfs4_remap_root: server root vnode type (%d) doesn't "
"match mount info (%d)", vtype, mi->mi_type);
}
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
rootfh.nfs_fh4_val = svp->sv_fhandle.fh_buf;
rootfh.nfs_fh4_len = svp->sv_fhandle.fh_len;
nfs_rw_exit(&svp->sv_lock);
sfh4_update(mi->mi_rootfh, &rootfh);
/*
* It's possible that recovery took place on the filesystem
* and the server has been updated between the time we did
* the nfs4getfh_otw and now. Re-drive the otw operation
* to make sure we have a good fh.
*/
mutex_enter(&mi->mi_lock);
if (mi->mi_curr_serv != svp)
goto remap_retry;
mutex_exit(&mi->mi_lock);
}
static int
nfs4rootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo4 *svp_head,
int flags, cred_t *cr, zone_t *zone)
{
vnode_t *rtvp = NULL;
mntinfo4_t *mi;
dev_t nfs_dev;
int error = 0;
rnode4_t *rp;
int i, len;
struct vattr va;
vtype_t vtype = VNON;
vtype_t tmp_vtype = VNON;
struct servinfo4 *firstsvp = NULL, *svp = svp_head;
nfs4_oo_hash_bucket_t *bucketp;
nfs_fh4 fh;
char *droptext = "";
struct nfs_stats *nfsstatsp;
nfs4_fname_t *mfname;
nfs4_error_t e;
int num_retry, removed;
cred_t *lcr = NULL, *tcr = cr;
struct servinfo4 *origsvp;
char *resource;
nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone());
ASSERT(nfsstatsp != NULL);
ASSERT(nfs_zone() == zone);
ASSERT(crgetref(cr));
/*
* Create a mount record and link it to the vfs struct.
*/
mi = kmem_zalloc(sizeof (*mi), KM_SLEEP);
mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL);
nfs_rw_init(&mi->mi_recovlock, NULL, RW_DEFAULT, NULL);
nfs_rw_init(&mi->mi_rename_lock, NULL, RW_DEFAULT, NULL);
nfs_rw_init(&mi->mi_fh_lock, NULL, RW_DEFAULT, NULL);
if (!(flags & NFSMNT_SOFT))
mi->mi_flags |= MI4_HARD;
if ((flags & NFSMNT_NOPRINT))
mi->mi_flags |= MI4_NOPRINT;
if (flags & NFSMNT_INT)
mi->mi_flags |= MI4_INT;
if (flags & NFSMNT_PUBLIC)
mi->mi_flags |= MI4_PUBLIC;
if (flags & NFSMNT_MIRRORMOUNT)
mi->mi_flags |= MI4_MIRRORMOUNT;
if (flags & NFSMNT_REFERRAL)
mi->mi_flags |= MI4_REFERRAL;
mi->mi_retrans = NFS_RETRIES;
if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD ||
svp->sv_knconf->knc_semantics == NC_TPI_COTS)
mi->mi_timeo = nfs4_cots_timeo;
else
mi->mi_timeo = NFS_TIMEO;
mi->mi_prog = NFS_PROGRAM;
mi->mi_vers = NFS_V4;
mi->mi_rfsnames = rfsnames_v4;
mi->mi_reqs = nfsstatsp->nfs_stats_v4.rfsreqcnt_ptr;
cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL);
mi->mi_servers = svp;
mi->mi_curr_serv = svp;
mi->mi_acregmin = SEC2HR(ACREGMIN);
mi->mi_acregmax = SEC2HR(ACREGMAX);
mi->mi_acdirmin = SEC2HR(ACDIRMIN);
mi->mi_acdirmax = SEC2HR(ACDIRMAX);
mi->mi_fh_expire_type = FH4_PERSISTENT;
mi->mi_clientid_next = NULL;
mi->mi_clientid_prev = NULL;
mi->mi_srv = NULL;
mi->mi_grace_wait = 0;
mi->mi_error = 0;
mi->mi_srvsettime = 0;
mi->mi_srvset_cnt = 0;
mi->mi_count = 1;
mi->mi_tsize = nfs4_tsize(svp->sv_knconf);
mi->mi_stsize = mi->mi_tsize;
if (flags & NFSMNT_DIRECTIO)
mi->mi_flags |= MI4_DIRECTIO;
mi->mi_flags |= MI4_MOUNTING;
/*
* Make a vfs struct for nfs. We do this here instead of below
* because rtvp needs a vfs before we can do a getattr on it.
*
* Assign a unique device id to the mount
*/
mutex_enter(&nfs_minor_lock);
do {
nfs_minor = (nfs_minor + 1) & MAXMIN32;
nfs_dev = makedevice(nfs_major, nfs_minor);
} while (vfs_devismounted(nfs_dev));
mutex_exit(&nfs_minor_lock);
vfsp->vfs_dev = nfs_dev;
vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfs4fstyp);
vfsp->vfs_data = (caddr_t)mi;
vfsp->vfs_fstype = nfsfstyp;
vfsp->vfs_bsize = nfs4_bsize;
/*
* Initialize fields used to support async putpage operations.
*/
for (i = 0; i < NFS4_ASYNC_TYPES; i++)
mi->mi_async_clusters[i] = nfs4_async_clusters;
mi->mi_async_init_clusters = nfs4_async_clusters;
mi->mi_async_curr[NFS4_ASYNC_QUEUE] =
mi->mi_async_curr[NFS4_ASYNC_PGOPS_QUEUE] = &mi->mi_async_reqs[0];
mi->mi_max_threads = nfs4_max_threads;
mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL);
cv_init(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE], NULL, CV_DEFAULT,
NULL);
cv_init(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE], NULL,
CV_DEFAULT, NULL);
cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL);
cv_init(&mi->mi_inact_req_cv, NULL, CV_DEFAULT, NULL);
mi->mi_vfsp = vfsp;
mi->mi_zone = zone;
zone_init_ref(&mi->mi_zone_ref);
zone_hold_ref(zone, &mi->mi_zone_ref, ZONE_REF_NFSV4);
nfs4_mi_zonelist_add(mi);
/*
* Initialize the <open owner/cred> hash table.
*/
for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
bucketp = &(mi->mi_oo_list[i]);
mutex_init(&bucketp->b_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&bucketp->b_oo_hash_list,
sizeof (nfs4_open_owner_t),
offsetof(nfs4_open_owner_t, oo_hash_node));
}
/*
* Initialize the freed open owner list.
*/
mi->mi_foo_num = 0;
mi->mi_foo_max = NFS4_NUM_FREED_OPEN_OWNERS;
list_create(&mi->mi_foo_list, sizeof (nfs4_open_owner_t),
offsetof(nfs4_open_owner_t, oo_foo_node));
list_create(&mi->mi_lost_state, sizeof (nfs4_lost_rqst_t),
offsetof(nfs4_lost_rqst_t, lr_node));
list_create(&mi->mi_bseqid_list, sizeof (nfs4_bseqid_entry_t),
offsetof(nfs4_bseqid_entry_t, bs_node));
/*
* Initialize the msg buffer.
*/
list_create(&mi->mi_msg_list, sizeof (nfs4_debug_msg_t),
offsetof(nfs4_debug_msg_t, msg_node));
mi->mi_msg_count = 0;
mutex_init(&mi->mi_msg_list_lock, NULL, MUTEX_DEFAULT, NULL);
/*
* Initialize kstats
*/
nfs4_mnt_kstat_init(vfsp);
/*
* Initialize the shared filehandle pool.
*/
sfh4_createtab(&mi->mi_filehandles);
/*
* Save server path we're attempting to mount.
*/
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
origsvp = copy_svp(svp);
nfs_rw_exit(&svp->sv_lock);
/*
* Make the GETFH call to get root fh for each replica.
*/
if (svp_head->sv_next)
droptext = ", dropping replica";
/*
* If the uid is set then set the creds for secure mounts
* by proxy processes such as automountd.
*/
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
if (svp->sv_secdata->uid != 0 &&
svp->sv_secdata->rpcflavor == RPCSEC_GSS) {
lcr = crdup(cr);
(void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr));
tcr = lcr;
}
nfs_rw_exit(&svp->sv_lock);
for (svp = svp_head; svp; svp = svp->sv_next) {
if (nfs4_chkdup_servinfo4(svp_head, svp)) {
nfs_cmn_err(error, CE_WARN,
VERS_MSG "Host %s is a duplicate%s",
svp->sv_hostname, droptext);
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
svp->sv_flags |= SV4_NOTINUSE;
nfs_rw_exit(&svp->sv_lock);
continue;
}
mi->mi_curr_serv = svp;
/*
* Just in case server path being mounted contains
* symlinks and fails w/STALE, save the initial sv_path
* so we can redrive the initial mount compound with the
* initial sv_path -- not a symlink-expanded version.
*
* This could only happen if a symlink was expanded
* and the expanded mount compound failed stale. Because
* it could be the case that the symlink was removed at
* the server (and replaced with another symlink/dir,
* we need to use the initial sv_path when attempting
* to re-lookup everything and recover.
*
* Other mount errors should evenutally be handled here also
* (NFS4ERR_DELAY, NFS4ERR_RESOURCE). For now, all mount
* failures will result in mount being redriven a few times.
*/
num_retry = nfs4_max_mount_retry;
do {
nfs4getfh_otw(mi, svp, &tmp_vtype,
((flags & NFSMNT_PUBLIC) ? NFS4_GETFH_PUBLIC : 0) |
NFS4_GETFH_NEEDSOP, tcr, &e);
if (e.error == 0 && e.stat == NFS4_OK)
break;
/*
* For some reason, the mount compound failed. Before
* retrying, we need to restore original conditions.
*/
svp = restore_svp(mi, svp, origsvp);
svp_head = svp;
} while (num_retry-- > 0);
error = e.error ? e.error : geterrno4(e.stat);
if (error) {
nfs_cmn_err(error, CE_WARN,
VERS_MSG "initial call to %s failed%s: %m",
svp->sv_hostname, droptext);
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
svp->sv_flags |= SV4_NOTINUSE;
nfs_rw_exit(&svp->sv_lock);
mi->mi_flags &= ~MI4_RECOV_FAIL;
mi->mi_error = 0;
continue;
}
if (tmp_vtype == VBAD) {
zcmn_err(mi->mi_zone->zone_id, CE_WARN,
VERS_MSG "%s returned a bad file type for "
"root%s", svp->sv_hostname, droptext);
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
svp->sv_flags |= SV4_NOTINUSE;
nfs_rw_exit(&svp->sv_lock);
continue;
}
if (vtype == VNON) {
vtype = tmp_vtype;
} else if (vtype != tmp_vtype) {
zcmn_err(mi->mi_zone->zone_id, CE_WARN,
VERS_MSG "%s returned a different file type "
"for root%s", svp->sv_hostname, droptext);
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
svp->sv_flags |= SV4_NOTINUSE;
nfs_rw_exit(&svp->sv_lock);
continue;
}
if (firstsvp == NULL)
firstsvp = svp;
}
if (firstsvp == NULL) {
if (error == 0)
error = ENOENT;
goto bad;
}
mi->mi_curr_serv = svp = firstsvp;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
ASSERT((mi->mi_curr_serv->sv_flags & SV4_NOTINUSE) == 0);
fh.nfs_fh4_len = svp->sv_fhandle.fh_len;
fh.nfs_fh4_val = svp->sv_fhandle.fh_buf;
mi->mi_rootfh = sfh4_get(&fh, mi);
fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
mi->mi_srvparentfh = sfh4_get(&fh, mi);
nfs_rw_exit(&svp->sv_lock);
/*
* Get the fname for filesystem root.
*/
mi->mi_fname = fn_get(NULL, ".", mi->mi_rootfh);
mfname = mi->mi_fname;
fn_hold(mfname);
/*
* Make the root vnode without attributes.
*/
rtvp = makenfs4node_by_fh(mi->mi_rootfh, NULL,
&mfname, NULL, mi, cr, gethrtime());
rtvp->v_type = vtype;
mi->mi_curread = mi->mi_tsize;
mi->mi_curwrite = mi->mi_stsize;
/*
* Start the manager thread responsible for handling async worker
* threads.
*/
MI4_HOLD(mi);
VFS_HOLD(vfsp); /* add reference for thread */
mi->mi_manager_thread = zthread_create(NULL, 0, nfs4_async_manager,
vfsp, 0, minclsyspri);
ASSERT(mi->mi_manager_thread != NULL);
/*
* Create the thread that handles over-the-wire calls for
* VOP_INACTIVE.
* This needs to happen after the manager thread is created.
*/
MI4_HOLD(mi);
mi->mi_inactive_thread = zthread_create(NULL, 0, nfs4_inactive_thread,
mi, 0, minclsyspri);
ASSERT(mi->mi_inactive_thread != NULL);
/* If we didn't get a type, get one now */
if (rtvp->v_type == VNON) {
va.va_mask = AT_TYPE;
error = nfs4getattr(rtvp, &va, tcr);
if (error)
goto bad;
rtvp->v_type = va.va_type;
}
mi->mi_type = rtvp->v_type;
mutex_enter(&mi->mi_lock);
mi->mi_flags &= ~MI4_MOUNTING;
mutex_exit(&mi->mi_lock);
/* Update VFS with new server and path info */
if ((strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) ||
(strcmp(svp->sv_path, origsvp->sv_path) != 0)) {
len = svp->sv_hostnamelen + svp->sv_pathlen;
resource = kmem_zalloc(len, KM_SLEEP);
(void) strcat(resource, svp->sv_hostname);
(void) strcat(resource, ":");
(void) strcat(resource, svp->sv_path);
vfs_setresource(vfsp, resource, 0);
kmem_free(resource, len);
}
sv4_free(origsvp);
*rtvpp = rtvp;
if (lcr != NULL)
crfree(lcr);
return (0);
bad:
/*
* An error occurred somewhere, need to clean up...
*/
if (lcr != NULL)
crfree(lcr);
if (rtvp != NULL) {
/*
* We need to release our reference to the root vnode and
* destroy the mntinfo4 struct that we just created.
*/
rp = VTOR4(rtvp);
if (rp->r_flags & R4HASHED)
rp4_rmhash(rp);
VN_RELE(rtvp);
}
nfs4_async_stop(vfsp);
nfs4_async_manager_stop(vfsp);
removed = nfs4_mi_zonelist_remove(mi);
if (removed)
zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
/*
* This releases the initial "hold" of the mi since it will never
* be referenced by the vfsp. Also, when mount returns to vfs.c
* with an error, the vfsp will be destroyed, not rele'd.
*/
MI4_RELE(mi);
if (origsvp != NULL)
sv4_free(origsvp);
*rtvpp = NULL;
return (error);
}
/*
* vfs operations
*/
static int
nfs4_unmount(vfs_t *vfsp, int flag, cred_t *cr)
{
mntinfo4_t *mi;
ushort_t omax;
int removed;
bool_t must_unlock;
nfs4_ephemeral_tree_t *eph_tree;
if (secpolicy_fs_unmount(cr, vfsp) != 0)
return (EPERM);
mi = VFTOMI4(vfsp);
if (flag & MS_FORCE) {
vfsp->vfs_flag |= VFS_UNMOUNTED;
if (nfs_zone() != mi->mi_zone) {
/*
* If the request is coming from the wrong zone,
* we don't want to create any new threads, and
* performance is not a concern. Do everything
* inline.
*/
NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
"nfs4_unmount x-zone forced unmount of vfs %p\n",
(void *)vfsp));
nfs4_free_mount(vfsp, flag, cr);
} else {
/*
* Free data structures asynchronously, to avoid
* blocking the current thread (for performance
* reasons only).
*/
async_free_mount(vfsp, flag, cr);
}
return (0);
}
/*
* Wait until all asynchronous putpage operations on
* this file system are complete before flushing rnodes
* from the cache.
*/
omax = mi->mi_max_threads;
if (nfs4_async_stop_sig(vfsp))
return (EINTR);
r4flush(vfsp, cr);
/*
* About the only reason that this would fail would be
* that the harvester is already busy tearing down this
* node. So we fail back to the caller and let them try
* again when needed.
*/
if (nfs4_ephemeral_umount(mi, flag, cr,
&must_unlock, &eph_tree)) {
ASSERT(must_unlock == FALSE);
mutex_enter(&mi->mi_async_lock);
mi->mi_max_threads = omax;
mutex_exit(&mi->mi_async_lock);
return (EBUSY);
}
/*
* If there are any active vnodes on this file system,
* then the file system is busy and can't be unmounted.
*/
if (check_rtable4(vfsp)) {
nfs4_ephemeral_umount_unlock(&must_unlock, &eph_tree);
mutex_enter(&mi->mi_async_lock);
mi->mi_max_threads = omax;
mutex_exit(&mi->mi_async_lock);
return (EBUSY);
}
/*
* The unmount can't fail from now on, so record any
* ephemeral changes.
*/
nfs4_ephemeral_umount_activate(mi, &must_unlock, &eph_tree);
/*
* There are no active files that could require over-the-wire
* calls to the server, so stop the async manager and the
* inactive thread.
*/
nfs4_async_manager_stop(vfsp);
/*
* Destroy all rnodes belonging to this file system from the
* rnode hash queues and purge any resources allocated to
* them.
*/
destroy_rtable4(vfsp, cr);
vfsp->vfs_flag |= VFS_UNMOUNTED;
nfs4_remove_mi_from_server(mi, NULL);
removed = nfs4_mi_zonelist_remove(mi);
if (removed)
zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
return (0);
}
/*
* find root of nfs
*/
static int
nfs4_root(vfs_t *vfsp, vnode_t **vpp)
{
mntinfo4_t *mi;
vnode_t *vp;
nfs4_fname_t *mfname;
servinfo4_t *svp;
mi = VFTOMI4(vfsp);
if (nfs_zone() != mi->mi_zone)
return (EPERM);
svp = mi->mi_curr_serv;
if (svp) {
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
if (svp->sv_flags & SV4_ROOT_STALE) {
nfs_rw_exit(&svp->sv_lock);
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
if (svp->sv_flags & SV4_ROOT_STALE) {
svp->sv_flags &= ~SV4_ROOT_STALE;
nfs_rw_exit(&svp->sv_lock);
return (ENOENT);
}
nfs_rw_exit(&svp->sv_lock);
} else
nfs_rw_exit(&svp->sv_lock);
}
mfname = mi->mi_fname;
fn_hold(mfname);
vp = makenfs4node_by_fh(mi->mi_rootfh, NULL, &mfname, NULL,
VFTOMI4(vfsp), CRED(), gethrtime());
if (VTOR4(vp)->r_flags & R4STALE) {
VN_RELE(vp);
return (ENOENT);
}
ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type);
vp->v_type = mi->mi_type;
*vpp = vp;
return (0);
}
static int
nfs4_statfs_otw(vnode_t *vp, struct statvfs64 *sbp, cred_t *cr)
{
int error;
nfs4_ga_res_t gar;
nfs4_ga_ext_res_t ger;
gar.n4g_ext_res = &ger;
if (error = nfs4_attr_otw(vp, TAG_FSINFO, &gar,
NFS4_STATFS_ATTR_MASK, cr))
return (error);
*sbp = gar.n4g_ext_res->n4g_sb;
return (0);
}
/*
* Get file system statistics.
*/
static int
nfs4_statvfs(vfs_t *vfsp, struct statvfs64 *sbp)
{
int error;
vnode_t *vp;
cred_t *cr;
error = nfs4_root(vfsp, &vp);
if (error)
return (error);
cr = CRED();
error = nfs4_statfs_otw(vp, sbp, cr);
if (!error) {
(void) strncpy(sbp->f_basetype,
vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ);
sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
} else {
nfs4_purge_stale_fh(error, vp, cr);
}
VN_RELE(vp);
return (error);
}
static kmutex_t nfs4_syncbusy;
/*
* Flush dirty nfs files for file system vfsp.
* If vfsp == NULL, all nfs files are flushed.
*
* SYNC_CLOSE in flag is passed to us to
* indicate that we are shutting down and or
* rebooting.
*/
static int
nfs4_sync(vfs_t *vfsp, short flag, cred_t *cr)
{
/*
* Cross-zone calls are OK here, since this translates to a
* VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone.
*/
if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs4_syncbusy) != 0) {
r4flush(vfsp, cr);
mutex_exit(&nfs4_syncbusy);
}
/*
* if SYNC_CLOSE is set then we know that
* the system is rebooting, mark the mntinfo
* for later examination.
*/
if (vfsp && (flag & SYNC_CLOSE)) {
mntinfo4_t *mi;
mi = VFTOMI4(vfsp);
if (!(mi->mi_flags & MI4_SHUTDOWN)) {
mutex_enter(&mi->mi_lock);
mi->mi_flags |= MI4_SHUTDOWN;
mutex_exit(&mi->mi_lock);
}
}
return (0);
}
/*
* vget is difficult, if not impossible, to support in v4 because we don't
* know the parent directory or name, which makes it impossible to create a
* useful shadow vnode. And we need the shadow vnode for things like
* OPEN.
*/
/* ARGSUSED */
/*
* XXX Check nfs4_vget_pseudo() for dependency.
*/
static int
nfs4_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
{
return (EREMOTE);
}
/*
* nfs4_mountroot get called in the case where we are diskless booting. All
* we need from here is the ability to get the server info and from there we
* can simply call nfs4_rootvp.
*/
/* ARGSUSED */
static int
nfs4_mountroot(vfs_t *vfsp, whymountroot_t why)
{
vnode_t *rtvp;
char root_hostname[SYS_NMLN+1];
struct servinfo4 *svp;
int error;
int vfsflags;
size_t size;
char *root_path;
struct pathname pn;
char *name;
cred_t *cr;
mntinfo4_t *mi;
struct nfs_args args; /* nfs mount arguments */
static char token[10];
nfs4_error_t n4e;
bzero(&args, sizeof (args));
/* do this BEFORE getfile which causes xid stamps to be initialized */
clkset(-1L); /* hack for now - until we get time svc? */
if (why == ROOT_REMOUNT) {
/*
* Shouldn't happen.
*/
panic("nfs4_mountroot: why == ROOT_REMOUNT");
}
if (why == ROOT_UNMOUNT) {
/*
* Nothing to do for NFS.
*/
return (0);
}
/*
* why == ROOT_INIT
*/
name = token;
*name = 0;
(void) getfsname("root", name, sizeof (token));
pn_alloc(&pn);
root_path = pn.pn_path;
svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP);
svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
/*
* Get server address
* Get the root path
* Get server's transport
* Get server's hostname
* Get options
*/
args.addr = &svp->sv_addr;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
args.fh = (char *)&svp->sv_fhandle;
args.knconf = svp->sv_knconf;
args.hostname = root_hostname;
vfsflags = 0;
if (error = mount_root(*name ? name : "root", root_path, NFS_V4,
&args, &vfsflags)) {
if (error == EPROTONOSUPPORT)
nfs_cmn_err(error, CE_WARN, "nfs4_mountroot: "
"mount_root failed: server doesn't support NFS V4");
else
nfs_cmn_err(error, CE_WARN,
"nfs4_mountroot: mount_root failed: %m");
nfs_rw_exit(&svp->sv_lock);
sv4_free(svp);
pn_free(&pn);
return (error);
}
nfs_rw_exit(&svp->sv_lock);
svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1);
svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
(void) strcpy(svp->sv_hostname, root_hostname);
svp->sv_pathlen = (int)(strlen(root_path) + 1);
svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP);
(void) strcpy(svp->sv_path, root_path);
/*
* Force root partition to always be mounted with AUTH_UNIX for now
*/
svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP);
svp->sv_secdata->secmod = AUTH_UNIX;
svp->sv_secdata->rpcflavor = AUTH_UNIX;
svp->sv_secdata->data = NULL;
cr = crgetcred();
rtvp = NULL;
error = nfs4rootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone);
if (error) {
crfree(cr);
pn_free(&pn);
sv4_free(svp);
return (error);
}
mi = VTOMI4(rtvp);
/*
* Send client id to the server, if necessary
*/
nfs4_error_zinit(&n4e);
nfs4setclientid(mi, cr, FALSE, &n4e);
error = n4e.error;
crfree(cr);
if (error) {
pn_free(&pn);
goto errout;
}
error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, &args);
if (error) {
nfs_cmn_err(error, CE_WARN,
"nfs4_mountroot: invalid root mount options");
pn_free(&pn);
goto errout;
}
(void) vfs_lock_wait(vfsp);
vfs_add(NULL, vfsp, vfsflags);
vfs_unlock(vfsp);
size = strlen(svp->sv_hostname);
(void) strcpy(rootfs.bo_name, svp->sv_hostname);
rootfs.bo_name[size] = ':';
(void) strcpy(&rootfs.bo_name[size + 1], root_path);
pn_free(&pn);
errout:
if (error) {
sv4_free(svp);
nfs4_async_stop(vfsp);
nfs4_async_manager_stop(vfsp);
}
if (rtvp != NULL)
VN_RELE(rtvp);
return (error);
}
/*
* Initialization routine for VFS routines. Should only be called once
*/
int
nfs4_vfsinit(void)
{
mutex_init(&nfs4_syncbusy, NULL, MUTEX_DEFAULT, NULL);
nfs4setclientid_init();
nfs4_ephemeral_init();
return (0);
}
void
nfs4_vfsfini(void)
{
nfs4_ephemeral_fini();
nfs4setclientid_fini();
mutex_destroy(&nfs4_syncbusy);
}
void
nfs4_freevfs(vfs_t *vfsp)
{
mntinfo4_t *mi;
/* need to release the initial hold */
mi = VFTOMI4(vfsp);
/*
* At this point, we can no longer reference the vfs
* and need to inform other holders of the reference
* to the mntinfo4_t.
*/
mi->mi_vfsp = NULL;
MI4_RELE(mi);
}
/*
* Client side SETCLIENTID and SETCLIENTID_CONFIRM
*/
struct nfs4_server nfs4_server_lst =
{ &nfs4_server_lst, &nfs4_server_lst };
kmutex_t nfs4_server_lst_lock;
static void
nfs4setclientid_init(void)
{
mutex_init(&nfs4_server_lst_lock, NULL, MUTEX_DEFAULT, NULL);
}
static void
nfs4setclientid_fini(void)
{
mutex_destroy(&nfs4_server_lst_lock);
}
int nfs4_retry_sclid_delay = NFS4_RETRY_SCLID_DELAY;
int nfs4_num_sclid_retries = NFS4_NUM_SCLID_RETRIES;
/*
* Set the clientid for the server for "mi". No-op if the clientid is
* already set.
*
* The recovery boolean should be set to TRUE if this function was called
* by the recovery code, and FALSE otherwise. This is used to determine
* if we need to call nfs4_start/end_op as well as grab the mi_recovlock
* for adding a mntinfo4_t to a nfs4_server_t.
*
* Error is returned via 'n4ep'. If there was a 'n4ep->stat' error, then
* 'n4ep->error' is set to geterrno4(n4ep->stat).
*/
void
nfs4setclientid(mntinfo4_t *mi, cred_t *cr, bool_t recovery, nfs4_error_t *n4ep)
{
struct nfs4_server *np;
struct servinfo4 *svp = mi->mi_curr_serv;
nfs4_recov_state_t recov_state;
int num_retries = 0;
bool_t retry;
cred_t *lcr = NULL;
int retry_inuse = 1; /* only retry once on NFS4ERR_CLID_INUSE */
time_t lease_time = 0;
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
ASSERT(n4ep != NULL);
recov_retry:
retry = FALSE;
nfs4_error_zinit(n4ep);
if (!recovery)
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
mutex_enter(&nfs4_server_lst_lock);
np = servinfo4_to_nfs4_server(svp); /* This locks np if it is found */
mutex_exit(&nfs4_server_lst_lock);
if (!np) {
struct nfs4_server *tnp;
np = new_nfs4_server(svp, cr);
mutex_enter(&np->s_lock);
mutex_enter(&nfs4_server_lst_lock);
tnp = servinfo4_to_nfs4_server(svp);
if (tnp) {
/*
* another thread snuck in and put server on list.
* since we aren't adding it to the nfs4_server_list
* we need to set the ref count to 0 and destroy it.
*/
np->s_refcnt = 0;
destroy_nfs4_server(np);
np = tnp;
} else {
/*
* do not give list a reference until everything
* succeeds
*/
insque(np, &nfs4_server_lst);
}
mutex_exit(&nfs4_server_lst_lock);
}
ASSERT(MUTEX_HELD(&np->s_lock));
/*
* If we find the server already has N4S_CLIENTID_SET, then
* just return, we've already done SETCLIENTID to that server
*/
if (np->s_flags & N4S_CLIENTID_SET) {
/* add mi to np's mntinfo4_list */
nfs4_add_mi_to_server(np, mi);
if (!recovery)
nfs_rw_exit(&mi->mi_recovlock);
mutex_exit(&np->s_lock);
nfs4_server_rele(np);
return;
}
mutex_exit(&np->s_lock);
/*
* Drop the mi_recovlock since nfs4_start_op will
* acquire it again for us.
*/
if (!recovery) {
nfs_rw_exit(&mi->mi_recovlock);
n4ep->error = nfs4_start_op(mi, NULL, NULL, &recov_state);
if (n4ep->error) {
nfs4_server_rele(np);
return;
}
}
mutex_enter(&np->s_lock);
while (np->s_flags & N4S_CLIENTID_PEND) {
if (!cv_wait_sig(&np->s_clientid_pend, &np->s_lock)) {
mutex_exit(&np->s_lock);
nfs4_server_rele(np);
if (!recovery)
nfs4_end_op(mi, NULL, NULL, &recov_state,
recovery);
n4ep->error = EINTR;
return;
}
}
if (np->s_flags & N4S_CLIENTID_SET) {
/* XXX copied/pasted from above */
/* add mi to np's mntinfo4_list */
nfs4_add_mi_to_server(np, mi);
mutex_exit(&np->s_lock);
nfs4_server_rele(np);
if (!recovery)
nfs4_end_op(mi, NULL, NULL, &recov_state, recovery);
return;
}
/*
* Reset the N4S_CB_PINGED flag. This is used to
* indicate if we have received a CB_NULL from the
* server. Also we reset the waiter flag.
*/
np->s_flags &= ~(N4S_CB_PINGED | N4S_CB_WAITER);
/* any failure must now clear this flag */
np->s_flags |= N4S_CLIENTID_PEND;
mutex_exit(&np->s_lock);
nfs4setclientid_otw(mi, svp, cr, np, n4ep, &retry_inuse);
if (n4ep->error == EACCES) {
/*
* If the uid is set then set the creds for secure mounts
* by proxy processes such as automountd.
*/
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
if (svp->sv_secdata->uid != 0) {
lcr = crdup(cr);
(void) crsetugid(lcr, svp->sv_secdata->uid,
crgetgid(cr));
}
nfs_rw_exit(&svp->sv_lock);
if (lcr != NULL) {
mutex_enter(&np->s_lock);
crfree(np->s_cred);
np->s_cred = lcr;
mutex_exit(&np->s_lock);
nfs4setclientid_otw(mi, svp, lcr, np, n4ep,
&retry_inuse);
}
}
mutex_enter(&np->s_lock);
lease_time = np->s_lease_time;
np->s_flags &= ~N4S_CLIENTID_PEND;
mutex_exit(&np->s_lock);
if (n4ep->error != 0 || n4ep->stat != NFS4_OK) {
/*
* Start recovery if failover is a possibility. If
* invoked by the recovery thread itself, then just
* return and let it handle the failover first. NB:
* recovery is not allowed if the mount is in progress
* since the infrastructure is not sufficiently setup
* to allow it. Just return the error (after suitable
* retries).
*/
if (FAILOVER_MOUNT4(mi) && nfs4_try_failover(n4ep)) {
(void) nfs4_start_recovery(n4ep, mi, NULL,
NULL, NULL, NULL, OP_SETCLIENTID, NULL, NULL, NULL);
/*
* Don't retry here, just return and let
* recovery take over.
*/
if (recovery)
retry = FALSE;
} else if (nfs4_rpc_retry_error(n4ep->error) ||
n4ep->stat == NFS4ERR_RESOURCE ||
n4ep->stat == NFS4ERR_STALE_CLIENTID) {
retry = TRUE;
/*
* Always retry if in recovery or once had
* contact with the server (but now it's
* overloaded).
*/
if (recovery == TRUE ||
n4ep->error == ETIMEDOUT ||
n4ep->error == ECONNRESET)
num_retries = 0;
} else if (retry_inuse && n4ep->error == 0 &&
n4ep->stat == NFS4ERR_CLID_INUSE) {
retry = TRUE;
num_retries = 0;
}
} else {
/*
* Since everything succeeded give the list a reference count if
* it hasn't been given one by add_new_nfs4_server() or if this
* is not a recovery situation in which case it is already on
* the list.
*/
mutex_enter(&np->s_lock);
if ((np->s_flags & N4S_INSERTED) == 0) {
np->s_refcnt++;
np->s_flags |= N4S_INSERTED;
}
mutex_exit(&np->s_lock);
}
if (!recovery)
nfs4_end_op(mi, NULL, NULL, &recov_state, recovery);
if (retry && num_retries++ < nfs4_num_sclid_retries) {
if (retry_inuse) {
delay(SEC_TO_TICK(lease_time + nfs4_retry_sclid_delay));
retry_inuse = 0;
} else
delay(SEC_TO_TICK(nfs4_retry_sclid_delay));
nfs4_server_rele(np);
goto recov_retry;
}
if (n4ep->error == 0)
n4ep->error = geterrno4(n4ep->stat);
/* broadcast before release in case no other threads are waiting */
cv_broadcast(&np->s_clientid_pend);
nfs4_server_rele(np);
}
int nfs4setclientid_otw_debug = 0;
/*
* This function handles the recovery of STALE_CLIENTID for SETCLIENTID_CONFRIM,
* but nothing else; the calling function must be designed to handle those
* other errors.
*/
static void
nfs4setclientid_otw(mntinfo4_t *mi, struct servinfo4 *svp, cred_t *cr,
struct nfs4_server *np, nfs4_error_t *ep, int *retry_inusep)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
nfs_argop4 argop[3];
SETCLIENTID4args *s_args;
SETCLIENTID4resok *s_resok;
int doqueue = 1;
nfs4_ga_res_t *garp = NULL;
timespec_t prop_time, after_time;
verifier4 verf;
clientid4 tmp_clientid;
ASSERT(!MUTEX_HELD(&np->s_lock));
args.ctag = TAG_SETCLIENTID;
args.array = argop;
args.array_len = 3;
/* PUTROOTFH */
argop[0].argop = OP_PUTROOTFH;
/* GETATTR */
argop[1].argop = OP_GETATTR;
argop[1].nfs_argop4_u.opgetattr.attr_request = FATTR4_LEASE_TIME_MASK;
argop[1].nfs_argop4_u.opgetattr.mi = mi;
/* SETCLIENTID */
argop[2].argop = OP_SETCLIENTID;
s_args = &argop[2].nfs_argop4_u.opsetclientid;
mutex_enter(&np->s_lock);
s_args->client.verifier = np->clidtosend.verifier;
s_args->client.id_len = np->clidtosend.id_len;
ASSERT(s_args->client.id_len <= NFS4_OPAQUE_LIMIT);
s_args->client.id_val = np->clidtosend.id_val;
/*
* Callback needs to happen on non-RDMA transport
* Check if we have saved the original knetconfig
* if so, use that instead.
*/
if (svp->sv_origknconf != NULL)
nfs4_cb_args(np, svp->sv_origknconf, s_args);
else
nfs4_cb_args(np, svp->sv_knconf, s_args);
mutex_exit(&np->s_lock);
rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
if (ep->error)
return;
/* getattr lease_time res */
if ((res.array_len >= 2) &&
(res.array[1].nfs_resop4_u.opgetattr.status == NFS4_OK)) {
garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
#ifndef _LP64
/*
* The 32 bit client cannot handle a lease time greater than
* (INT32_MAX/1000000). This is due to the use of the
* lease_time in calls to drv_usectohz() in
* nfs4_renew_lease_thread(). The problem is that
* drv_usectohz() takes a time_t (which is just a long = 4
* bytes) as its parameter. The lease_time is multiplied by
* 1000000 to convert seconds to usecs for the parameter. If
* a number bigger than (INT32_MAX/1000000) is used then we
* overflow on the 32bit client.
*/
if (garp->n4g_ext_res->n4g_leasetime > (INT32_MAX/1000000)) {
garp->n4g_ext_res->n4g_leasetime = INT32_MAX/1000000;
}
#endif
mutex_enter(&np->s_lock);
np->s_lease_time = garp->n4g_ext_res->n4g_leasetime;
/*
* Keep track of the lease period for the mi's
* mi_msg_list. We need an appropiate time
* bound to associate past facts with a current
* event. The lease period is perfect for this.
*/
mutex_enter(&mi->mi_msg_list_lock);
mi->mi_lease_period = np->s_lease_time;
mutex_exit(&mi->mi_msg_list_lock);
mutex_exit(&np->s_lock);
}
if (res.status == NFS4ERR_CLID_INUSE) {
clientaddr4 *clid_inuse;
if (!(*retry_inusep)) {
clid_inuse = &res.array->nfs_resop4_u.
opsetclientid.SETCLIENTID4res_u.client_using;
zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
"NFS4 mount (SETCLIENTID failed)."
" nfs4_client_id.id is in"
"use already by: r_netid<%s> r_addr<%s>",
clid_inuse->r_netid, clid_inuse->r_addr);
}
/*
* XXX - The client should be more robust in its
* handling of clientid in use errors (regen another
* clientid and try again?)
*/
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
if (res.status) {
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
s_resok = &res.array[2].nfs_resop4_u.
opsetclientid.SETCLIENTID4res_u.resok4;
tmp_clientid = s_resok->clientid;
verf = s_resok->setclientid_confirm;
#ifdef DEBUG
if (nfs4setclientid_otw_debug) {
union {
clientid4 clientid;
int foo[2];
} cid;
cid.clientid = s_resok->clientid;
zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
"nfs4setclientid_otw: OK, clientid = %x,%x, "
"verifier = %" PRIx64 "\n", cid.foo[0], cid.foo[1], verf);
}
#endif
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
/* Confirm the client id and get the lease_time attribute */
args.ctag = TAG_SETCLIENTID_CF;
args.array = argop;
args.array_len = 1;
argop[0].argop = OP_SETCLIENTID_CONFIRM;
argop[0].nfs_argop4_u.opsetclientid_confirm.clientid = tmp_clientid;
argop[0].nfs_argop4_u.opsetclientid_confirm.setclientid_confirm = verf;
/* used to figure out RTT for np */
gethrestime(&prop_time);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlientid_otw: "
"start time: %ld sec %ld nsec", prop_time.tv_sec,
prop_time.tv_nsec));
rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
gethrestime(&after_time);
mutex_enter(&np->s_lock);
np->propagation_delay.tv_sec =
MAX(1, after_time.tv_sec - prop_time.tv_sec);
mutex_exit(&np->s_lock);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlcientid_otw: "
"finish time: %ld sec ", after_time.tv_sec));
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setclientid_otw: "
"propagation delay set to %ld sec",
np->propagation_delay.tv_sec));
if (ep->error)
return;
if (res.status == NFS4ERR_CLID_INUSE) {
clientaddr4 *clid_inuse;
if (!(*retry_inusep)) {
clid_inuse = &res.array->nfs_resop4_u.
opsetclientid.SETCLIENTID4res_u.client_using;
zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
"SETCLIENTID_CONFIRM failed. "
"nfs4_client_id.id is in use already by: "
"r_netid<%s> r_addr<%s>",
clid_inuse->r_netid, clid_inuse->r_addr);
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
if (res.status) {
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
mutex_enter(&np->s_lock);
np->clientid = tmp_clientid;
np->s_flags |= N4S_CLIENTID_SET;
/* Add mi to np's mntinfo4 list */
nfs4_add_mi_to_server(np, mi);
if (np->lease_valid == NFS4_LEASE_NOT_STARTED) {
/*
* Start lease management thread.
* Keep trying until we succeed.
*/
np->s_refcnt++; /* pass reference to thread */
(void) zthread_create(NULL, 0, nfs4_renew_lease_thread, np, 0,
minclsyspri);
}
mutex_exit(&np->s_lock);
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
}
/*
* Add mi to sp's mntinfo4_list if it isn't already in the list. Makes
* mi's clientid the same as sp's.
* Assumes sp is locked down.
*/
void
nfs4_add_mi_to_server(nfs4_server_t *sp, mntinfo4_t *mi)
{
mntinfo4_t *tmi;
int in_list = 0;
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
ASSERT(sp != &nfs4_server_lst);
ASSERT(MUTEX_HELD(&sp->s_lock));
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_add_mi_to_server: add mi %p to sp %p",
(void*)mi, (void*)sp));
for (tmi = sp->mntinfo4_list;
tmi != NULL;
tmi = tmi->mi_clientid_next) {
if (tmi == mi) {
NFS4_DEBUG(nfs4_client_lease_debug,
(CE_NOTE,
"nfs4_add_mi_to_server: mi in list"));
in_list = 1;
}
}
/*
* First put a hold on the mntinfo4's vfsp so that references via
* mntinfo4_list will be valid.
*/
if (!in_list)
VFS_HOLD(mi->mi_vfsp);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_add_mi_to_server: "
"hold vfs %p for mi: %p", (void*)mi->mi_vfsp, (void*)mi));
if (!in_list) {
if (sp->mntinfo4_list)
sp->mntinfo4_list->mi_clientid_prev = mi;
mi->mi_clientid_next = sp->mntinfo4_list;
mi->mi_srv = sp;
sp->mntinfo4_list = mi;
mi->mi_srvsettime = gethrestime_sec();
mi->mi_srvset_cnt++;
}
/* set mi's clientid to that of sp's for later matching */
mi->mi_clientid = sp->clientid;
/*
* Update the clientid for any other mi's belonging to sp. This
* must be done here while we hold sp->s_lock, so that
* find_nfs4_server() continues to work.
*/
for (tmi = sp->mntinfo4_list;
tmi != NULL;
tmi = tmi->mi_clientid_next) {
if (tmi != mi) {
tmi->mi_clientid = sp->clientid;
}
}
}
/*
* Remove the mi from sp's mntinfo4_list and release its reference.
* Exception: if mi still has open files, flag it for later removal (when
* all the files are closed).
*
* If this is the last mntinfo4 in sp's list then tell the lease renewal
* thread to exit.
*/
static void
nfs4_remove_mi_from_server_nolock(mntinfo4_t *mi, nfs4_server_t *sp)
{
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_remove_mi_from_server_nolock: remove mi %p from sp %p",
(void*)mi, (void*)sp));
ASSERT(sp != NULL);
ASSERT(MUTEX_HELD(&sp->s_lock));
ASSERT(mi->mi_open_files >= 0);
/*
* First make sure this mntinfo4 can be taken off of the list,
* ie: it doesn't have any open files remaining.
*/
if (mi->mi_open_files > 0) {
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_remove_mi_from_server_nolock: don't "
"remove mi since it still has files open"));
mutex_enter(&mi->mi_lock);
mi->mi_flags |= MI4_REMOVE_ON_LAST_CLOSE;
mutex_exit(&mi->mi_lock);
return;
}
VFS_HOLD(mi->mi_vfsp);
remove_mi(sp, mi);
VFS_RELE(mi->mi_vfsp);
if (sp->mntinfo4_list == NULL) {
/* last fs unmounted, kill the thread */
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"remove_mi_from_nfs4_server_nolock: kill the thread"));
nfs4_mark_srv_dead(sp);
}
}
/*
* Remove mi from sp's mntinfo4_list and release the vfs reference.
*/
static void
remove_mi(nfs4_server_t *sp, mntinfo4_t *mi)
{
ASSERT(MUTEX_HELD(&sp->s_lock));
/*
* We release a reference, and the caller must still have a
* reference.
*/
ASSERT(mi->mi_vfsp->vfs_count >= 2);
if (mi->mi_clientid_prev) {
mi->mi_clientid_prev->mi_clientid_next = mi->mi_clientid_next;
} else {
/* This is the first mi in sp's mntinfo4_list */
/*
* Make sure the first mntinfo4 in the list is the actual
* mntinfo4 passed in.
*/
ASSERT(sp->mntinfo4_list == mi);
sp->mntinfo4_list = mi->mi_clientid_next;
}
if (mi->mi_clientid_next)
mi->mi_clientid_next->mi_clientid_prev = mi->mi_clientid_prev;
/* Now mark the mntinfo4's links as being removed */
mi->mi_clientid_prev = mi->mi_clientid_next = NULL;
mi->mi_srv = NULL;
mi->mi_srvset_cnt++;
VFS_RELE(mi->mi_vfsp);
}
/*
* Free all the entries in sp's mntinfo4_list.
*/
static void
remove_all_mi(nfs4_server_t *sp)
{
mntinfo4_t *mi;
ASSERT(MUTEX_HELD(&sp->s_lock));
while (sp->mntinfo4_list != NULL) {
mi = sp->mntinfo4_list;
/*
* Grab a reference in case there is only one left (which
* remove_mi() frees).
*/
VFS_HOLD(mi->mi_vfsp);
remove_mi(sp, mi);
VFS_RELE(mi->mi_vfsp);
}
}
/*
* Remove the mi from sp's mntinfo4_list as above, and rele the vfs.
*
* This version can be called with a null nfs4_server_t arg,
* and will either find the right one and handle locking, or
* do nothing because the mi wasn't added to an sp's mntinfo4_list.
*/
void
nfs4_remove_mi_from_server(mntinfo4_t *mi, nfs4_server_t *esp)
{
nfs4_server_t *sp;
if (esp) {
nfs4_remove_mi_from_server_nolock(mi, esp);
return;
}
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
if (sp = find_nfs4_server_all(mi, 1)) {
nfs4_remove_mi_from_server_nolock(mi, sp);
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
}
nfs_rw_exit(&mi->mi_recovlock);
}
/*
* Return TRUE if the given server has any non-unmounted filesystems.
*/
bool_t
nfs4_fs_active(nfs4_server_t *sp)
{
mntinfo4_t *mi;
ASSERT(MUTEX_HELD(&sp->s_lock));
for (mi = sp->mntinfo4_list; mi != NULL; mi = mi->mi_clientid_next) {
if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
return (TRUE);
}
return (FALSE);
}
/*
* Mark sp as finished and notify any waiters.
*/
void
nfs4_mark_srv_dead(nfs4_server_t *sp)
{
ASSERT(MUTEX_HELD(&sp->s_lock));
sp->s_thread_exit = NFS4_THREAD_EXIT;
cv_broadcast(&sp->cv_thread_exit);
}
/*
* Create a new nfs4_server_t structure.
* Returns new node unlocked and not in list, but with a reference count of
* 1.
*/
struct nfs4_server *
new_nfs4_server(struct servinfo4 *svp, cred_t *cr)
{
struct nfs4_server *np;
timespec_t tt;
union {
struct {
uint32_t sec;
uint32_t subsec;
} un_curtime;
verifier4 un_verifier;
} nfs4clientid_verifier;
/*
* We change this ID string carefully and with the Solaris
* NFS server behaviour in mind. "+referrals" indicates
* a client that can handle an NFSv4 referral.
*/
char id_val[] = "Solaris: %s, NFSv4 kernel client +referrals";
int len;
np = kmem_zalloc(sizeof (struct nfs4_server), KM_SLEEP);
np->saddr.len = svp->sv_addr.len;
np->saddr.maxlen = svp->sv_addr.maxlen;
np->saddr.buf = kmem_alloc(svp->sv_addr.maxlen, KM_SLEEP);
bcopy(svp->sv_addr.buf, np->saddr.buf, svp->sv_addr.len);
np->s_refcnt = 1;
/*
* Build the nfs_client_id4 for this server mount. Ensure
* the verifier is useful and that the identification is
* somehow based on the server's address for the case of
* multi-homed servers.
*/
nfs4clientid_verifier.un_verifier = 0;
gethrestime(&tt);
nfs4clientid_verifier.un_curtime.sec = (uint32_t)tt.tv_sec;
nfs4clientid_verifier.un_curtime.subsec = (uint32_t)tt.tv_nsec;
np->clidtosend.verifier = nfs4clientid_verifier.un_verifier;
/*
* calculate the length of the opaque identifier. Subtract 2
* for the "%s" and add the traditional +1 for null
* termination.
*/
len = strlen(id_val) - 2 + strlen(uts_nodename()) + 1;
np->clidtosend.id_len = len + np->saddr.maxlen;
np->clidtosend.id_val = kmem_alloc(np->clidtosend.id_len, KM_SLEEP);
(void) sprintf(np->clidtosend.id_val, id_val, uts_nodename());
bcopy(np->saddr.buf, &np->clidtosend.id_val[len], np->saddr.len);
np->s_flags = 0;
np->mntinfo4_list = NULL;
/* save cred for issuing rfs4calls inside the renew thread */
crhold(cr);
np->s_cred = cr;
cv_init(&np->cv_thread_exit, NULL, CV_DEFAULT, NULL);
mutex_init(&np->s_lock, NULL, MUTEX_DEFAULT, NULL);
nfs_rw_init(&np->s_recovlock, NULL, RW_DEFAULT, NULL);
list_create(&np->s_deleg_list, sizeof (rnode4_t),
offsetof(rnode4_t, r_deleg_link));
np->s_thread_exit = 0;
np->state_ref_count = 0;
np->lease_valid = NFS4_LEASE_NOT_STARTED;
cv_init(&np->s_cv_otw_count, NULL, CV_DEFAULT, NULL);
cv_init(&np->s_clientid_pend, NULL, CV_DEFAULT, NULL);
np->s_otw_call_count = 0;
cv_init(&np->wait_cb_null, NULL, CV_DEFAULT, NULL);
np->zoneid = getzoneid();
np->zone_globals = nfs4_get_callback_globals();
ASSERT(np->zone_globals != NULL);
return (np);
}
/*
* Create a new nfs4_server_t structure and add it to the list.
* Returns new node locked; reference must eventually be freed.
*/
static struct nfs4_server *
add_new_nfs4_server(struct servinfo4 *svp, cred_t *cr)
{
nfs4_server_t *sp;
ASSERT(MUTEX_HELD(&nfs4_server_lst_lock));
sp = new_nfs4_server(svp, cr);
mutex_enter(&sp->s_lock);
insque(sp, &nfs4_server_lst);
sp->s_refcnt++; /* list gets a reference */
sp->s_flags |= N4S_INSERTED;
sp->clientid = 0;
return (sp);
}
int nfs4_server_t_debug = 0;
#ifdef lint
extern void
dumpnfs4slist(char *, mntinfo4_t *, clientid4, servinfo4_t *);
#endif
#ifndef lint
#ifdef DEBUG
void
dumpnfs4slist(char *txt, mntinfo4_t *mi, clientid4 clientid, servinfo4_t *srv_p)
{
int hash16(void *p, int len);
nfs4_server_t *np;
NFS4_DEBUG(nfs4_server_t_debug, (CE_NOTE,
"dumping nfs4_server_t list in %s", txt));
NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
"mi 0x%p, want clientid %llx, addr %d/%04X",
mi, (longlong_t)clientid, srv_p->sv_addr.len,
hash16((void *)srv_p->sv_addr.buf, srv_p->sv_addr.len)));
for (np = nfs4_server_lst.forw; np != &nfs4_server_lst;
np = np->forw) {
NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
"node 0x%p, clientid %llx, addr %d/%04X, cnt %d",
np, (longlong_t)np->clientid, np->saddr.len,
hash16((void *)np->saddr.buf, np->saddr.len),
np->state_ref_count));
if (np->saddr.len == srv_p->sv_addr.len &&
bcmp(np->saddr.buf, srv_p->sv_addr.buf,
np->saddr.len) == 0)
NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
" - address matches"));
if (np->clientid == clientid || np->clientid == 0)
NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
" - clientid matches"));
if (np->s_thread_exit != NFS4_THREAD_EXIT)
NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
" - thread not exiting"));
}
delay(hz);
}
#endif
#endif
/*
* Move a mntinfo4_t from one server list to another.
* Locking of the two nfs4_server_t nodes will be done in list order.
*
* Returns NULL if the current nfs4_server_t for the filesystem could not
* be found (e.g., due to forced unmount). Otherwise returns a reference
* to the new nfs4_server_t, which must eventually be freed.
*/
nfs4_server_t *
nfs4_move_mi(mntinfo4_t *mi, servinfo4_t *old, servinfo4_t *new)
{
nfs4_server_t *p, *op = NULL, *np = NULL;
int num_open;
zoneid_t zoneid = nfs_zoneid();
ASSERT(nfs_zone() == mi->mi_zone);
mutex_enter(&nfs4_server_lst_lock);
#ifdef DEBUG
if (nfs4_server_t_debug)
dumpnfs4slist("nfs4_move_mi", mi, (clientid4)0, new);
#endif
for (p = nfs4_server_lst.forw; p != &nfs4_server_lst; p = p->forw) {
if (p->zoneid != zoneid)
continue;
if (p->saddr.len == old->sv_addr.len &&
bcmp(p->saddr.buf, old->sv_addr.buf, p->saddr.len) == 0 &&
p->s_thread_exit != NFS4_THREAD_EXIT) {
op = p;
mutex_enter(&op->s_lock);
op->s_refcnt++;
}
if (p->saddr.len == new->sv_addr.len &&
bcmp(p->saddr.buf, new->sv_addr.buf, p->saddr.len) == 0 &&
p->s_thread_exit != NFS4_THREAD_EXIT) {
np = p;
mutex_enter(&np->s_lock);
}
if (op != NULL && np != NULL)
break;
}
if (op == NULL) {
/*
* Filesystem has been forcibly unmounted. Bail out.
*/
if (np != NULL)
mutex_exit(&np->s_lock);
mutex_exit(&nfs4_server_lst_lock);
return (NULL);
}
if (np != NULL) {
np->s_refcnt++;
} else {
#ifdef DEBUG
NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
"nfs4_move_mi: no target nfs4_server, will create."));
#endif
np = add_new_nfs4_server(new, kcred);
}
mutex_exit(&nfs4_server_lst_lock);
NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
"nfs4_move_mi: for mi 0x%p, "
"old servinfo4 0x%p, new servinfo4 0x%p, "
"old nfs4_server 0x%p, new nfs4_server 0x%p, ",
(void*)mi, (void*)old, (void*)new,
(void*)op, (void*)np));
ASSERT(op != NULL && np != NULL);
/* discard any delegations */
nfs4_deleg_discard(mi, op);
num_open = mi->mi_open_files;
mi->mi_open_files = 0;
op->state_ref_count -= num_open;
ASSERT(op->state_ref_count >= 0);
np->state_ref_count += num_open;
nfs4_remove_mi_from_server_nolock(mi, op);
mi->mi_open_files = num_open;
NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
"nfs4_move_mi: mi_open_files %d, op->cnt %d, np->cnt %d",
mi->mi_open_files, op->state_ref_count, np->state_ref_count));
nfs4_add_mi_to_server(np, mi);
mutex_exit(&op->s_lock);
mutex_exit(&np->s_lock);
nfs4_server_rele(op);
return (np);
}
/*
* Need to have the nfs4_server_lst_lock.
* Search the nfs4_server list to find a match on this servinfo4
* based on its address.
*
* Returns NULL if no match is found. Otherwise returns a reference (which
* must eventually be freed) to a locked nfs4_server.
*/
nfs4_server_t *
servinfo4_to_nfs4_server(servinfo4_t *srv_p)
{
nfs4_server_t *np;
zoneid_t zoneid = nfs_zoneid();
ASSERT(MUTEX_HELD(&nfs4_server_lst_lock));
for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
if (np->zoneid == zoneid &&
np->saddr.len == srv_p->sv_addr.len &&
bcmp(np->saddr.buf, srv_p->sv_addr.buf,
np->saddr.len) == 0 &&
np->s_thread_exit != NFS4_THREAD_EXIT) {
mutex_enter(&np->s_lock);
np->s_refcnt++;
return (np);
}
}
return (NULL);
}
/*
* Locks the nfs4_server down if it is found and returns a reference that
* must eventually be freed.
*/
static nfs4_server_t *
lookup_nfs4_server(nfs4_server_t *sp, int any_state)
{
nfs4_server_t *np;
mutex_enter(&nfs4_server_lst_lock);
for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
mutex_enter(&np->s_lock);
if (np == sp && np->s_refcnt > 0 &&
(np->s_thread_exit != NFS4_THREAD_EXIT || any_state)) {
mutex_exit(&nfs4_server_lst_lock);
np->s_refcnt++;
return (np);
}
mutex_exit(&np->s_lock);
}
mutex_exit(&nfs4_server_lst_lock);
return (NULL);
}
/*
* The caller should be holding mi->mi_recovlock, and it should continue to
* hold the lock until done with the returned nfs4_server_t. Once
* mi->mi_recovlock is released, there is no guarantee that the returned
* mi->nfs4_server_t will continue to correspond to mi.
*/
nfs4_server_t *
find_nfs4_server(mntinfo4_t *mi)
{
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
return (lookup_nfs4_server(mi->mi_srv, 0));
}
/*
* Same as above, but takes an "any_state" parameter which can be
* set to 1 if the caller wishes to find nfs4_server_t's which
* have been marked for termination by the exit of the renew
* thread. This should only be used by operations which are
* cleaning up and will not cause an OTW op.
*/
nfs4_server_t *
find_nfs4_server_all(mntinfo4_t *mi, int any_state)
{
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
return (lookup_nfs4_server(mi->mi_srv, any_state));
}
/*
* Lock sp, but only if it's still active (in the list and hasn't been
* flagged as exiting) or 'any_state' is non-zero.
* Returns TRUE if sp got locked and adds a reference to sp.
*/
bool_t
nfs4_server_vlock(nfs4_server_t *sp, int any_state)
{
return (lookup_nfs4_server(sp, any_state) != NULL);
}
/*
* Release the reference to sp and destroy it if that's the last one.
*/
void
nfs4_server_rele(nfs4_server_t *sp)
{
mutex_enter(&sp->s_lock);
ASSERT(sp->s_refcnt > 0);
sp->s_refcnt--;
if (sp->s_refcnt > 0) {
mutex_exit(&sp->s_lock);
return;
}
mutex_exit(&sp->s_lock);
mutex_enter(&nfs4_server_lst_lock);
mutex_enter(&sp->s_lock);
if (sp->s_refcnt > 0) {
mutex_exit(&sp->s_lock);
mutex_exit(&nfs4_server_lst_lock);
return;
}
remque(sp);
sp->forw = sp->back = NULL;
mutex_exit(&nfs4_server_lst_lock);
destroy_nfs4_server(sp);
}
static void
destroy_nfs4_server(nfs4_server_t *sp)
{
ASSERT(MUTEX_HELD(&sp->s_lock));
ASSERT(sp->s_refcnt == 0);
ASSERT(sp->s_otw_call_count == 0);
remove_all_mi(sp);
crfree(sp->s_cred);
kmem_free(sp->saddr.buf, sp->saddr.maxlen);
kmem_free(sp->clidtosend.id_val, sp->clidtosend.id_len);
mutex_exit(&sp->s_lock);
/* destroy the nfs4_server */
nfs4callback_destroy(sp);
list_destroy(&sp->s_deleg_list);
mutex_destroy(&sp->s_lock);
cv_destroy(&sp->cv_thread_exit);
cv_destroy(&sp->s_cv_otw_count);
cv_destroy(&sp->s_clientid_pend);
cv_destroy(&sp->wait_cb_null);
nfs_rw_destroy(&sp->s_recovlock);
kmem_free(sp, sizeof (*sp));
}
/*
* Fork off a thread to free the data structures for a mount.
*/
static void
async_free_mount(vfs_t *vfsp, int flag, cred_t *cr)
{
freemountargs_t *args;
args = kmem_alloc(sizeof (freemountargs_t), KM_SLEEP);
args->fm_vfsp = vfsp;
VFS_HOLD(vfsp);
MI4_HOLD(VFTOMI4(vfsp));
args->fm_flag = flag;
args->fm_cr = cr;
crhold(cr);
(void) zthread_create(NULL, 0, nfs4_free_mount_thread, args, 0,
minclsyspri);
}
static void
nfs4_free_mount_thread(freemountargs_t *args)
{
mntinfo4_t *mi;
nfs4_free_mount(args->fm_vfsp, args->fm_flag, args->fm_cr);
mi = VFTOMI4(args->fm_vfsp);
crfree(args->fm_cr);
VFS_RELE(args->fm_vfsp);
MI4_RELE(mi);
kmem_free(args, sizeof (freemountargs_t));
zthread_exit();
/* NOTREACHED */
}
/*
* Thread to free the data structures for a given filesystem.
*/
static void
nfs4_free_mount(vfs_t *vfsp, int flag, cred_t *cr)
{
mntinfo4_t *mi = VFTOMI4(vfsp);
nfs4_server_t *sp;
callb_cpr_t cpr_info;
kmutex_t cpr_lock;
boolean_t async_thread;
int removed;
bool_t must_unlock;
nfs4_ephemeral_tree_t *eph_tree;
/*
* We need to participate in the CPR framework if this is a kernel
* thread.
*/
async_thread = (curproc == nfs_zone()->zone_zsched);
if (async_thread) {
mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr,
"nfsv4AsyncUnmount");
}
/*
* We need to wait for all outstanding OTW calls
* and recovery to finish before we remove the mi
* from the nfs4_server_t, as current pending
* calls might still need this linkage (in order
* to find a nfs4_server_t from a mntinfo4_t).
*/
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, FALSE);
sp = find_nfs4_server(mi);
nfs_rw_exit(&mi->mi_recovlock);
if (sp) {
while (sp->s_otw_call_count != 0) {
if (async_thread) {
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_BEGIN(&cpr_info);
mutex_exit(&cpr_lock);
}
cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
if (async_thread) {
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
mutex_exit(&cpr_lock);
}
}
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
sp = NULL;
}
mutex_enter(&mi->mi_lock);
while (mi->mi_in_recovery != 0) {
if (async_thread) {
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_BEGIN(&cpr_info);
mutex_exit(&cpr_lock);
}
cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
if (async_thread) {
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
mutex_exit(&cpr_lock);
}
}
mutex_exit(&mi->mi_lock);
/*
* If we got an error, then do not nuke the
* tree. Either the harvester is busy reclaiming
* this node or we ran into some busy condition.
*
* The harvester will eventually come along and cleanup.
* The only problem would be the root mount point.
*
* Since the busy node can occur for a variety
* of reasons and can result in an entry staying
* in df output but no longer accessible from the
* directory tree, we are okay.
*/
if (!nfs4_ephemeral_umount(mi, flag, cr,
&must_unlock, &eph_tree))
nfs4_ephemeral_umount_activate(mi, &must_unlock,
&eph_tree);
/*
* The original purge of the dnlc via 'dounmount'
* doesn't guarantee that another dnlc entry was not
* added while we waitied for all outstanding OTW
* and recovery calls to finish. So re-purge the
* dnlc now.
*/
(void) dnlc_purge_vfsp(vfsp, 0);
/*
* We need to explicitly stop the manager thread; the asyc worker
* threads can timeout and exit on their own.
*/
mutex_enter(&mi->mi_async_lock);
mi->mi_max_threads = 0;
NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
mutex_exit(&mi->mi_async_lock);
if (mi->mi_manager_thread)
nfs4_async_manager_stop(vfsp);
destroy_rtable4(vfsp, cr);
nfs4_remove_mi_from_server(mi, NULL);
if (async_thread) {
mutex_enter(&cpr_lock);
CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */
mutex_destroy(&cpr_lock);
}
removed = nfs4_mi_zonelist_remove(mi);
if (removed)
zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
}
/* Referral related sub-routines */
/* Freeup knetconfig */
static void
free_knconf_contents(struct knetconfig *k)
{
if (k == NULL)
return;
if (k->knc_protofmly)
kmem_free(k->knc_protofmly, KNC_STRSIZE);
if (k->knc_proto)
kmem_free(k->knc_proto, KNC_STRSIZE);
}
/*
* This updates newpath variable with exact name component from the
* path which gave us a NFS4ERR_MOVED error.
* If the path is /rp/aaa/bbb and nth value is 1, aaa is returned.
*/
static char *
extract_referral_point(const char *svp, int nth)
{
int num_slashes = 0;
const char *p;
char *newpath = NULL;
int i = 0;
newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
for (p = svp; *p; p++) {
if (*p == '/')
num_slashes++;
if (num_slashes == nth + 1) {
p++;
while (*p != '/') {
if (*p == '\0')
break;
newpath[i] = *p;
i++;
p++;
}
newpath[i++] = '\0';
break;
}
}
return (newpath);
}
/*
* This sets up a new path in sv_path to do a lookup of the referral point.
* If the path is /rp/aaa/bbb and the referral point is aaa,
* this updates /rp/aaa. This path will be used to get referral
* location.
*/
static void
setup_newsvpath(servinfo4_t *svp, int nth)
{
int num_slashes = 0, pathlen, i = 0;
char *newpath, *p;
newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
for (p = svp->sv_path; *p; p++) {
newpath[i] = *p;
if (*p == '/')
num_slashes++;
if (num_slashes == nth + 1) {
newpath[i] = '\0';
pathlen = strlen(newpath) + 1;
kmem_free(svp->sv_path, svp->sv_pathlen);
svp->sv_path = kmem_alloc(pathlen, KM_SLEEP);
svp->sv_pathlen = pathlen;
bcopy(newpath, svp->sv_path, pathlen);
break;
}
i++;
}
kmem_free(newpath, MAXPATHLEN);
}