/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/systm.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/atomic.h>
#include <sys/clconf.h>
#include <sys/cladm.h>
#include <sys/flock.h>
#include <nfs/export.h>
#include <nfs/nfs.h>
#include <nfs/nfs4.h>
#include <nfs/nfssys.h>
#include <nfs/lm.h>
#include <sys/pathname.h>
#include <sys/sdt.h>
#include <sys/nvpair.h>
extern u_longlong_t nfs4_srv_caller_id;
extern time_t rfs4_start_time;
extern uint_t nfs4_srv_vkey;
stateid4 special0 = {
0,
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
stateid4 special1 = {
0xffffffff,
{
(char)0xff, (char)0xff, (char)0xff, (char)0xff,
(char)0xff, (char)0xff, (char)0xff, (char)0xff,
(char)0xff, (char)0xff, (char)0xff, (char)0xff
}
};
#define ISSPECIAL(id) (stateid4_cmp(id, &special0) || \
stateid4_cmp(id, &special1))
/* For embedding the cluster nodeid into our clientid */
#define CLUSTER_NODEID_SHIFT 24
#define CLUSTER_MAX_NODEID 255
#ifdef DEBUG
int rfs4_debug;
#endif
static uint32_t rfs4_database_debug = 0x00;
static void rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf);
static void rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dir, char *leaf);
static void rfs4_dss_clear_oldstate(rfs4_servinst_t *sip);
static void rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip);
/*
* Couple of simple init/destroy functions for a general waiter
*/
void
rfs4_sw_init(rfs4_state_wait_t *swp)
{
mutex_init(swp->sw_cv_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(swp->sw_cv, NULL, CV_DEFAULT, NULL);
swp->sw_active = FALSE;
swp->sw_wait_count = 0;
}
void
rfs4_sw_destroy(rfs4_state_wait_t *swp)
{
mutex_destroy(swp->sw_cv_lock);
cv_destroy(swp->sw_cv);
}
void
rfs4_sw_enter(rfs4_state_wait_t *swp)
{
mutex_enter(swp->sw_cv_lock);
while (swp->sw_active) {
swp->sw_wait_count++;
cv_wait(swp->sw_cv, swp->sw_cv_lock);
swp->sw_wait_count--;
}
ASSERT(swp->sw_active == FALSE);
swp->sw_active = TRUE;
mutex_exit(swp->sw_cv_lock);
}
void
rfs4_sw_exit(rfs4_state_wait_t *swp)
{
mutex_enter(swp->sw_cv_lock);
ASSERT(swp->sw_active == TRUE);
swp->sw_active = FALSE;
if (swp->sw_wait_count != 0)
cv_broadcast(swp->sw_cv);
mutex_exit(swp->sw_cv_lock);
}
/*
* CPR callback id -- not related to v4 callbacks
*/
static callb_id_t cpr_id = 0;
static void
deep_lock_copy(LOCK4res *dres, LOCK4res *sres)
{
lock_owner4 *slo = &sres->LOCK4res_u.denied.owner;
lock_owner4 *dlo = &dres->LOCK4res_u.denied.owner;
if (sres->status == NFS4ERR_DENIED) {
dlo->owner_val = kmem_alloc(slo->owner_len, KM_SLEEP);
bcopy(slo->owner_val, dlo->owner_val, slo->owner_len);
}
}
static void
deep_lock_free(LOCK4res *res)
{
lock_owner4 *lo = &res->LOCK4res_u.denied.owner;
if (res->status == NFS4ERR_DENIED)
kmem_free(lo->owner_val, lo->owner_len);
}
static void
deep_open_copy(OPEN4res *dres, OPEN4res *sres)
{
nfsace4 *sacep, *dacep;
if (sres->status != NFS4_OK) {
return;
}
dres->attrset = sres->attrset;
switch (sres->delegation.delegation_type) {
case OPEN_DELEGATE_NONE:
return;
case OPEN_DELEGATE_READ:
sacep = &sres->delegation.open_delegation4_u.read.permissions;
dacep = &dres->delegation.open_delegation4_u.read.permissions;
break;
case OPEN_DELEGATE_WRITE:
sacep = &sres->delegation.open_delegation4_u.write.permissions;
dacep = &dres->delegation.open_delegation4_u.write.permissions;
break;
}
dacep->who.utf8string_val =
kmem_alloc(sacep->who.utf8string_len, KM_SLEEP);
bcopy(sacep->who.utf8string_val, dacep->who.utf8string_val,
sacep->who.utf8string_len);
}
static void
deep_open_free(OPEN4res *res)
{
nfsace4 *acep;
if (res->status != NFS4_OK)
return;
switch (res->delegation.delegation_type) {
case OPEN_DELEGATE_NONE:
return;
case OPEN_DELEGATE_READ:
acep = &res->delegation.open_delegation4_u.read.permissions;
break;
case OPEN_DELEGATE_WRITE:
acep = &res->delegation.open_delegation4_u.write.permissions;
break;
}
if (acep->who.utf8string_val) {
kmem_free(acep->who.utf8string_val, acep->who.utf8string_len);
acep->who.utf8string_val = NULL;
}
}
void
rfs4_free_reply(nfs_resop4 *rp)
{
switch (rp->resop) {
case OP_LOCK:
deep_lock_free(&rp->nfs_resop4_u.oplock);
break;
case OP_OPEN:
deep_open_free(&rp->nfs_resop4_u.opopen);
default:
break;
}
}
void
rfs4_copy_reply(nfs_resop4 *dst, nfs_resop4 *src)
{
*dst = *src;
/* Handle responses that need deep copy */
switch (src->resop) {
case OP_LOCK:
deep_lock_copy(&dst->nfs_resop4_u.oplock,
&src->nfs_resop4_u.oplock);
break;
case OP_OPEN:
deep_open_copy(&dst->nfs_resop4_u.opopen,
&src->nfs_resop4_u.opopen);
break;
default:
break;
};
}
/*
* This is the implementation of the underlying state engine. The
* public interface to this engine is described by
* nfs4_state.h. Callers to the engine should hold no state engine
* locks when they call in to it. If the protocol needs to lock data
* structures it should do so after acquiring all references to them
* first and then follow the following lock order:
*
* client > openowner > state > lo_state > lockowner > file.
*
* Internally we only allow a thread to hold one hash bucket lock at a
* time and the lock is higher in the lock order (must be acquired
* first) than the data structure that is on that hash list.
*
* If a new reference was acquired by the caller, that reference needs
* to be released after releasing all acquired locks with the
* corresponding rfs4_*_rele routine.
*/
/*
* This code is some what prototypical for now. Its purpose currently is to
* implement the interfaces sufficiently to finish the higher protocol
* elements. This will be replaced by a dynamically resizeable tables
* backed by kmem_cache allocator. However synchronization is handled
* correctly (I hope) and will not change by much. The mutexes for
* the hash buckets that can be used to create new instances of data
* structures might be good candidates to evolve into reader writer
* locks. If it has to do a creation, it would be holding the
* mutex across a kmem_alloc with KM_SLEEP specified.
*/
#ifdef DEBUG
#define TABSIZE 17
#else
#define TABSIZE 2047
#endif
#define ADDRHASH(key) ((unsigned long)(key) >> 3)
/* Used to serialize create/destroy of rfs4_server_state database */
kmutex_t rfs4_state_lock;
static rfs4_database_t *rfs4_server_state = NULL;
/* Used to serialize lookups of clientids */
static krwlock_t rfs4_findclient_lock;
/*
* For now this "table" is exposed so that the CPR callback
* function can tromp through it..
*/
rfs4_table_t *rfs4_client_tab;
static rfs4_index_t *rfs4_clientid_idx;
static rfs4_index_t *rfs4_nfsclnt_idx;
static rfs4_table_t *rfs4_clntip_tab;
static rfs4_index_t *rfs4_clntip_idx;
static rfs4_table_t *rfs4_openowner_tab;
static rfs4_index_t *rfs4_openowner_idx;
static rfs4_table_t *rfs4_state_tab;
static rfs4_index_t *rfs4_state_idx;
static rfs4_index_t *rfs4_state_owner_file_idx;
static rfs4_index_t *rfs4_state_file_idx;
static rfs4_table_t *rfs4_lo_state_tab;
static rfs4_index_t *rfs4_lo_state_idx;
static rfs4_index_t *rfs4_lo_state_owner_idx;
static rfs4_table_t *rfs4_lockowner_tab;
static rfs4_index_t *rfs4_lockowner_idx;
static rfs4_index_t *rfs4_lockowner_pid_idx;
static rfs4_table_t *rfs4_file_tab;
static rfs4_index_t *rfs4_file_idx;
static rfs4_table_t *rfs4_deleg_state_tab;
static rfs4_index_t *rfs4_deleg_idx;
static rfs4_index_t *rfs4_deleg_state_idx;
#define MAXTABSZ 1024*1024
/* The values below are rfs4_lease_time units */
#ifdef DEBUG
#define CLIENT_CACHE_TIME 1
#define OPENOWNER_CACHE_TIME 1
#define STATE_CACHE_TIME 1
#define LO_STATE_CACHE_TIME 1
#define LOCKOWNER_CACHE_TIME 1
#define FILE_CACHE_TIME 3
#define DELEG_STATE_CACHE_TIME 1
#else
#define CLIENT_CACHE_TIME 10
#define OPENOWNER_CACHE_TIME 5
#define STATE_CACHE_TIME 1
#define LO_STATE_CACHE_TIME 1
#define LOCKOWNER_CACHE_TIME 3
#define FILE_CACHE_TIME 40
#define DELEG_STATE_CACHE_TIME 1
#endif
static time_t rfs4_client_cache_time = 0;
static time_t rfs4_clntip_cache_time = 0;
static time_t rfs4_openowner_cache_time = 0;
static time_t rfs4_state_cache_time = 0;
static time_t rfs4_lo_state_cache_time = 0;
static time_t rfs4_lockowner_cache_time = 0;
static time_t rfs4_file_cache_time = 0;
static time_t rfs4_deleg_state_cache_time = 0;
static bool_t rfs4_client_create(rfs4_entry_t, void *);
static void rfs4_dss_remove_cpleaf(rfs4_client_t *);
static void rfs4_dss_remove_leaf(rfs4_servinst_t *, char *, char *);
static void rfs4_client_destroy(rfs4_entry_t);
static bool_t rfs4_client_expiry(rfs4_entry_t);
static uint32_t clientid_hash(void *);
static bool_t clientid_compare(rfs4_entry_t, void *);
static void *clientid_mkkey(rfs4_entry_t);
static uint32_t nfsclnt_hash(void *);
static bool_t nfsclnt_compare(rfs4_entry_t, void *);
static void *nfsclnt_mkkey(rfs4_entry_t);
static bool_t rfs4_clntip_expiry(rfs4_entry_t);
static void rfs4_clntip_destroy(rfs4_entry_t);
static bool_t rfs4_clntip_create(rfs4_entry_t, void *);
static uint32_t clntip_hash(void *);
static bool_t clntip_compare(rfs4_entry_t, void *);
static void *clntip_mkkey(rfs4_entry_t);
static bool_t rfs4_openowner_create(rfs4_entry_t, void *);
static void rfs4_openowner_destroy(rfs4_entry_t);
static bool_t rfs4_openowner_expiry(rfs4_entry_t);
static uint32_t openowner_hash(void *);
static bool_t openowner_compare(rfs4_entry_t, void *);
static void *openowner_mkkey(rfs4_entry_t);
static bool_t rfs4_state_create(rfs4_entry_t, void *);
static void rfs4_state_destroy(rfs4_entry_t);
static bool_t rfs4_state_expiry(rfs4_entry_t);
static uint32_t state_hash(void *);
static bool_t state_compare(rfs4_entry_t, void *);
static void *state_mkkey(rfs4_entry_t);
static uint32_t state_owner_file_hash(void *);
static bool_t state_owner_file_compare(rfs4_entry_t, void *);
static void *state_owner_file_mkkey(rfs4_entry_t);
static uint32_t state_file_hash(void *);
static bool_t state_file_compare(rfs4_entry_t, void *);
static void *state_file_mkkey(rfs4_entry_t);
static bool_t rfs4_lo_state_create(rfs4_entry_t, void *);
static void rfs4_lo_state_destroy(rfs4_entry_t);
static bool_t rfs4_lo_state_expiry(rfs4_entry_t);
static uint32_t lo_state_hash(void *);
static bool_t lo_state_compare(rfs4_entry_t, void *);
static void *lo_state_mkkey(rfs4_entry_t);
static uint32_t lo_state_lo_hash(void *);
static bool_t lo_state_lo_compare(rfs4_entry_t, void *);
static void *lo_state_lo_mkkey(rfs4_entry_t);
static bool_t rfs4_lockowner_create(rfs4_entry_t, void *);
static void rfs4_lockowner_destroy(rfs4_entry_t);
static bool_t rfs4_lockowner_expiry(rfs4_entry_t);
static uint32_t lockowner_hash(void *);
static bool_t lockowner_compare(rfs4_entry_t, void *);
static void *lockowner_mkkey(rfs4_entry_t);
static uint32_t pid_hash(void *);
static bool_t pid_compare(rfs4_entry_t, void *);
static void *pid_mkkey(rfs4_entry_t);
static bool_t rfs4_file_create(rfs4_entry_t, void *);
static void rfs4_file_destroy(rfs4_entry_t);
static uint32_t file_hash(void *);
static bool_t file_compare(rfs4_entry_t, void *);
static void *file_mkkey(rfs4_entry_t);
static bool_t rfs4_deleg_state_create(rfs4_entry_t, void *);
static void rfs4_deleg_state_destroy(rfs4_entry_t);
static bool_t rfs4_deleg_state_expiry(rfs4_entry_t);
static uint32_t deleg_hash(void *);
static bool_t deleg_compare(rfs4_entry_t, void *);
static void *deleg_mkkey(rfs4_entry_t);
static uint32_t deleg_state_hash(void *);
static bool_t deleg_state_compare(rfs4_entry_t, void *);
static void *deleg_state_mkkey(rfs4_entry_t);
static void rfs4_state_rele_nounlock(rfs4_state_t *);
static int rfs4_ss_enabled = 0;
extern void (*rfs4_client_clrst)(struct nfs4clrst_args *);
void
rfs4_ss_pnfree(rfs4_ss_pn_t *ss_pn)
{
kmem_free(ss_pn, sizeof (rfs4_ss_pn_t));
}
static rfs4_ss_pn_t *
rfs4_ss_pnalloc(char *dir, char *leaf)
{
rfs4_ss_pn_t *ss_pn;
int dir_len, leaf_len;
/*
* validate we have a resonable path
* (account for the '/' and trailing null)
*/
if ((dir_len = strlen(dir)) > MAXPATHLEN ||
(leaf_len = strlen(leaf)) > MAXNAMELEN ||
(dir_len + leaf_len + 2) > MAXPATHLEN) {
return (NULL);
}
ss_pn = kmem_alloc(sizeof (rfs4_ss_pn_t), KM_SLEEP);
(void) snprintf(ss_pn->pn, MAXPATHLEN, "%s/%s", dir, leaf);
/* Handy pointer to just the leaf name */
ss_pn->leaf = ss_pn->pn + dir_len + 1;
return (ss_pn);
}
/*
* Move the "leaf" filename from "sdir" directory
* to the "ddir" directory. Return the pathname of
* the destination unless the rename fails in which
* case we need to return the source pathname.
*/
static rfs4_ss_pn_t *
rfs4_ss_movestate(char *sdir, char *ddir, char *leaf)
{
rfs4_ss_pn_t *src, *dst;
if ((src = rfs4_ss_pnalloc(sdir, leaf)) == NULL)
return (NULL);
if ((dst = rfs4_ss_pnalloc(ddir, leaf)) == NULL) {
rfs4_ss_pnfree(src);
return (NULL);
}
/*
* If the rename fails we shall return the src
* pathname and free the dst. Otherwise we need
* to free the src and return the dst pathanme.
*/
if (vn_rename(src->pn, dst->pn, UIO_SYSSPACE)) {
rfs4_ss_pnfree(dst);
return (src);
}
rfs4_ss_pnfree(src);
return (dst);
}
static rfs4_oldstate_t *
rfs4_ss_getstate(vnode_t *dvp, rfs4_ss_pn_t *ss_pn)
{
struct uio uio;
struct iovec iov[3];
rfs4_oldstate_t *cl_ss = NULL;
vnode_t *vp;
vattr_t va;
uint_t id_len;
int err, kill_file, file_vers;
if (ss_pn == NULL)
return (NULL);
/*
* open the state file.
*/
if (vn_open(ss_pn->pn, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0) != 0) {
return (NULL);
}
if (vp->v_type != VREG) {
(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
VN_RELE(vp);
return (NULL);
}
err = VOP_ACCESS(vp, VREAD, 0, CRED(), NULL);
if (err) {
/*
* We don't have read access? better get the heck out.
*/
(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
VN_RELE(vp);
return (NULL);
}
(void) VOP_RWLOCK(vp, V_WRITELOCK_FALSE, NULL);
/*
* get the file size to do some basic validation
*/
va.va_mask = AT_SIZE;
err = VOP_GETATTR(vp, &va, 0, CRED(), NULL);
kill_file = (va.va_size == 0 || va.va_size <
(NFS4_VERIFIER_SIZE + sizeof (uint_t)+1));
if (err || kill_file) {
VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL);
(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
VN_RELE(vp);
if (kill_file) {
(void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0);
}
return (NULL);
}
cl_ss = kmem_alloc(sizeof (rfs4_oldstate_t), KM_SLEEP);
/*
* build iovecs to read in the file_version, verifier and id_len
*/
iov[0].iov_base = (caddr_t)&file_vers;
iov[0].iov_len = sizeof (int);
iov[1].iov_base = (caddr_t)&cl_ss->cl_id4.verifier;
iov[1].iov_len = NFS4_VERIFIER_SIZE;
iov[2].iov_base = (caddr_t)&id_len;
iov[2].iov_len = sizeof (uint_t);
uio.uio_iov = iov;
uio.uio_iovcnt = 3;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_loffset = 0;
uio.uio_resid = sizeof (int) + NFS4_VERIFIER_SIZE + sizeof (uint_t);
if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) {
VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL);
(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
VN_RELE(vp);
kmem_free(cl_ss, sizeof (rfs4_oldstate_t));
return (NULL);
}
/*
* if the file_version doesn't match or if the
* id_len is zero or the combination of the verifier,
* id_len and id_val is bigger than the file we have
* a problem. If so ditch the file.
*/
kill_file = (file_vers != NFS4_SS_VERSION || id_len == 0 ||
(id_len + NFS4_VERIFIER_SIZE + sizeof (uint_t)) > va.va_size);
if (err || kill_file) {
VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL);
(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
VN_RELE(vp);
kmem_free(cl_ss, sizeof (rfs4_oldstate_t));
if (kill_file) {
(void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0);
}
return (NULL);
}
/*
* now get the client id value
*/
cl_ss->cl_id4.id_val = kmem_alloc(id_len, KM_SLEEP);
iov[0].iov_base = cl_ss->cl_id4.id_val;
iov[0].iov_len = id_len;
uio.uio_iov = iov;
uio.uio_iovcnt = 1;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_resid = cl_ss->cl_id4.id_len = id_len;
if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) {
VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL);
(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
VN_RELE(vp);
kmem_free(cl_ss->cl_id4.id_val, id_len);
kmem_free(cl_ss, sizeof (rfs4_oldstate_t));
return (NULL);
}
VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL);
(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
VN_RELE(vp);
return (cl_ss);
}
#ifdef nextdp
#undef nextdp
#endif
#define nextdp(dp) ((struct dirent64 *)((char *)(dp) + (dp)->d_reclen))
/*
* Add entries from statedir to supplied oldstate list.
* Optionally, move all entries from statedir -> destdir.
*/
void
rfs4_ss_oldstate(rfs4_oldstate_t *oldstate, char *statedir, char *destdir)
{
rfs4_ss_pn_t *ss_pn;
rfs4_oldstate_t *cl_ss = NULL;
char *dirt = NULL;
int err, dir_eof = 0, size = 0;
vnode_t *dvp;
struct iovec iov;
struct uio uio;
struct dirent64 *dep;
offset_t dirchunk_offset = 0;
/*
* open the state directory
*/
if (vn_open(statedir, UIO_SYSSPACE, FREAD, 0, &dvp, 0, 0))
return;
if (dvp->v_type != VDIR || VOP_ACCESS(dvp, VREAD, 0, CRED(), NULL))
goto out;
dirt = kmem_alloc(RFS4_SS_DIRSIZE, KM_SLEEP);
/*
* Get and process the directory entries
*/
while (!dir_eof) {
(void) VOP_RWLOCK(dvp, V_WRITELOCK_FALSE, NULL);
iov.iov_base = dirt;
iov.iov_len = RFS4_SS_DIRSIZE;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_loffset = dirchunk_offset;
uio.uio_resid = RFS4_SS_DIRSIZE;
err = VOP_READDIR(dvp, &uio, CRED(), &dir_eof, NULL, 0);
VOP_RWUNLOCK(dvp, V_WRITELOCK_FALSE, NULL);
if (err)
goto out;
size = RFS4_SS_DIRSIZE - uio.uio_resid;
/*
* Process all the directory entries in this
* readdir chunk
*/
for (dep = (struct dirent64 *)dirt; size > 0;
dep = nextdp(dep)) {
size -= dep->d_reclen;
dirchunk_offset = dep->d_off;
/*
* Skip '.' and '..'
*/
if (NFS_IS_DOTNAME(dep->d_name))
continue;
ss_pn = rfs4_ss_pnalloc(statedir, dep->d_name);
if (ss_pn == NULL)
continue;
if (cl_ss = rfs4_ss_getstate(dvp, ss_pn)) {
if (destdir != NULL) {
rfs4_ss_pnfree(ss_pn);
cl_ss->ss_pn = rfs4_ss_movestate(
statedir, destdir, dep->d_name);
} else {
cl_ss->ss_pn = ss_pn;
}
insque(cl_ss, oldstate);
} else {
rfs4_ss_pnfree(ss_pn);
}
}
}
out:
(void) VOP_CLOSE(dvp, FREAD, 1, (offset_t)0, CRED(), NULL);
VN_RELE(dvp);
if (dirt)
kmem_free((caddr_t)dirt, RFS4_SS_DIRSIZE);
}
static void
rfs4_ss_init(void)
{
int npaths = 1;
char *default_dss_path = NFS4_DSS_VAR_DIR;
/* read the default stable storage state */
rfs4_dss_readstate(npaths, &default_dss_path);
rfs4_ss_enabled = 1;
}
static void
rfs4_ss_fini(void)
{
rfs4_servinst_t *sip;
mutex_enter(&rfs4_servinst_lock);
sip = rfs4_cur_servinst;
while (sip != NULL) {
rfs4_dss_clear_oldstate(sip);
sip = sip->next;
}
mutex_exit(&rfs4_servinst_lock);
}
/*
* Remove all oldstate files referenced by this servinst.
*/
static void
rfs4_dss_clear_oldstate(rfs4_servinst_t *sip)
{
rfs4_oldstate_t *os_head, *osp;
rw_enter(&sip->oldstate_lock, RW_WRITER);
os_head = sip->oldstate;
if (os_head == NULL) {
rw_exit(&sip->oldstate_lock);
return;
}
/* skip dummy entry */
osp = os_head->next;
while (osp != os_head) {
char *leaf = osp->ss_pn->leaf;
rfs4_oldstate_t *os_next;
rfs4_dss_remove_leaf(sip, NFS4_DSS_OLDSTATE_LEAF, leaf);
if (osp->cl_id4.id_val)
kmem_free(osp->cl_id4.id_val, osp->cl_id4.id_len);
rfs4_ss_pnfree(osp->ss_pn);
os_next = osp->next;
remque(osp);
kmem_free(osp, sizeof (rfs4_oldstate_t));
osp = os_next;
}
rw_exit(&sip->oldstate_lock);
}
/*
* Form the state and oldstate paths, and read in the stable storage files.
*/
void
rfs4_dss_readstate(int npaths, char **paths)
{
int i;
char *state, *oldstate;
state = kmem_alloc(MAXPATHLEN, KM_SLEEP);
oldstate = kmem_alloc(MAXPATHLEN, KM_SLEEP);
for (i = 0; i < npaths; i++) {
char *path = paths[i];
(void) sprintf(state, "%s/%s", path, NFS4_DSS_STATE_LEAF);
(void) sprintf(oldstate, "%s/%s", path, NFS4_DSS_OLDSTATE_LEAF);
/*
* Populate the current server instance's oldstate list.
*
* 1. Read stable storage data from old state directory,
* leaving its contents alone.
*
* 2. Read stable storage data from state directory,
* and move the latter's contents to old state
* directory.
*/
rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, oldstate, NULL);
rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, state, oldstate);
}
kmem_free(state, MAXPATHLEN);
kmem_free(oldstate, MAXPATHLEN);
}
/*
* Check if we are still in grace and if the client can be
* granted permission to perform reclaims.
*/
void
rfs4_ss_chkclid(rfs4_client_t *cp)
{
rfs4_servinst_t *sip;
/*
* It should be sufficient to check the oldstate data for just
* this client's instance. However, since our per-instance
* client grouping is solely temporal, HA-NFSv4 RG failover
* might result in clients of the same RG being partitioned into
* separate instances.
*
* Until the client grouping is improved, we must check the
* oldstate data for all instances with an active grace period.
*
* This also serves as the mechanism to remove stale oldstate data.
* The first time we check an instance after its grace period has
* expired, the oldstate data should be cleared.
*
* Start at the current instance, and walk the list backwards
* to the first.
*/
mutex_enter(&rfs4_servinst_lock);
for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) {
rfs4_ss_chkclid_sip(cp, sip);
/* if the above check found this client, we're done */
if (cp->rc_can_reclaim)
break;
}
mutex_exit(&rfs4_servinst_lock);
}
static void
rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip)
{
rfs4_oldstate_t *osp, *os_head;
/* short circuit everything if this server instance has no oldstate */
rw_enter(&sip->oldstate_lock, RW_READER);
os_head = sip->oldstate;
rw_exit(&sip->oldstate_lock);
if (os_head == NULL)
return;
/*
* If this server instance is no longer in a grace period then
* the client won't be able to reclaim. No further need for this
* instance's oldstate data, so it can be cleared.
*/
if (!rfs4_servinst_in_grace(sip))
return;
/* this instance is still in grace; search for the clientid */
rw_enter(&sip->oldstate_lock, RW_READER);
os_head = sip->oldstate;
/* skip dummy entry */
osp = os_head->next;
while (osp != os_head) {
if (osp->cl_id4.id_len == cp->rc_nfs_client.id_len) {
if (bcmp(osp->cl_id4.id_val, cp->rc_nfs_client.id_val,
osp->cl_id4.id_len) == 0) {
cp->rc_can_reclaim = 1;
break;
}
}
osp = osp->next;
}
rw_exit(&sip->oldstate_lock);
}
/*
* Place client information into stable storage: 1/3.
* First, generate the leaf filename, from the client's IP address and
* the server-generated short-hand clientid.
*/
void
rfs4_ss_clid(rfs4_client_t *cp)
{
const char *kinet_ntop6(uchar_t *, char *, size_t);
char leaf[MAXNAMELEN], buf[INET6_ADDRSTRLEN];
struct sockaddr *ca;
uchar_t *b;
if (rfs4_ss_enabled == 0) {
return;
}
buf[0] = 0;
ca = (struct sockaddr *)&cp->rc_addr;
/*
* Convert the caller's IP address to a dotted string
*/
if (ca->sa_family == AF_INET) {
b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr;
(void) sprintf(buf, "%03d.%03d.%03d.%03d", b[0] & 0xFF,
b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF);
} else if (ca->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)ca;
(void) kinet_ntop6((uchar_t *)&sin6->sin6_addr,
buf, INET6_ADDRSTRLEN);
}
(void) snprintf(leaf, MAXNAMELEN, "%s-%llx", buf,
(longlong_t)cp->rc_clientid);
rfs4_ss_clid_write(cp, leaf);
}
/*
* Place client information into stable storage: 2/3.
* DSS: distributed stable storage: the file may need to be written to
* multiple directories.
*/
static void
rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf)
{
rfs4_servinst_t *sip;
/*
* It should be sufficient to write the leaf file to (all) DSS paths
* associated with just this client's instance. However, since our
* per-instance client grouping is solely temporal, HA-NFSv4 RG
* failover might result in us losing DSS data.
*
* Until the client grouping is improved, we must write the DSS data
* to all instances' paths. Start at the current instance, and
* walk the list backwards to the first.
*/
mutex_enter(&rfs4_servinst_lock);
for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) {
int i, npaths = sip->dss_npaths;
/* write the leaf file to all DSS paths */
for (i = 0; i < npaths; i++) {
rfs4_dss_path_t *dss_path = sip->dss_paths[i];
/* HA-NFSv4 path might have been failed-away from us */
if (dss_path == NULL)
continue;
rfs4_ss_clid_write_one(cp, dss_path->path, leaf);
}
}
mutex_exit(&rfs4_servinst_lock);
}
/*
* Place client information into stable storage: 3/3.
* Write the stable storage data to the requested file.
*/
static void
rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dss_path, char *leaf)
{
int ioflag;
int file_vers = NFS4_SS_VERSION;
size_t dirlen;
struct uio uio;
struct iovec iov[4];
char *dir;
rfs4_ss_pn_t *ss_pn;
vnode_t *vp;
nfs_client_id4 *cl_id4 = &(cp->rc_nfs_client);
/* allow 2 extra bytes for '/' & NUL */
dirlen = strlen(dss_path) + strlen(NFS4_DSS_STATE_LEAF) + 2;
dir = kmem_alloc(dirlen, KM_SLEEP);
(void) sprintf(dir, "%s/%s", dss_path, NFS4_DSS_STATE_LEAF);
ss_pn = rfs4_ss_pnalloc(dir, leaf);
/* rfs4_ss_pnalloc takes its own copy */
kmem_free(dir, dirlen);
if (ss_pn == NULL)
return;
if (vn_open(ss_pn->pn, UIO_SYSSPACE, FCREAT|FWRITE, 0600, &vp,
CRCREAT, 0)) {
rfs4_ss_pnfree(ss_pn);
return;
}
/*
* We need to record leaf - i.e. the filename - so that we know
* what to remove, in the future. However, the dir part of cp->ss_pn
* should never be referenced directly, since it's potentially only
* one of several paths with this leaf in it.
*/
if (cp->rc_ss_pn != NULL) {
if (strcmp(cp->rc_ss_pn->leaf, leaf) == 0) {
/* we've already recorded *this* leaf */
rfs4_ss_pnfree(ss_pn);
} else {
/* replace with this leaf */
rfs4_ss_pnfree(cp->rc_ss_pn);
cp->rc_ss_pn = ss_pn;
}
} else {
cp->rc_ss_pn = ss_pn;
}
/*
* Build a scatter list that points to the nfs_client_id4
*/
iov[0].iov_base = (caddr_t)&file_vers;
iov[0].iov_len = sizeof (int);
iov[1].iov_base = (caddr_t)&(cl_id4->verifier);
iov[1].iov_len = NFS4_VERIFIER_SIZE;
iov[2].iov_base = (caddr_t)&(cl_id4->id_len);
iov[2].iov_len = sizeof (uint_t);
iov[3].iov_base = (caddr_t)cl_id4->id_val;
iov[3].iov_len = cl_id4->id_len;
uio.uio_iov = iov;
uio.uio_iovcnt = 4;
uio.uio_loffset = 0;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_llimit = (rlim64_t)MAXOFFSET_T;
uio.uio_resid = cl_id4->id_len + sizeof (int) +
NFS4_VERIFIER_SIZE + sizeof (uint_t);
ioflag = uio.uio_fmode = (FWRITE|FSYNC);
uio.uio_extflg = UIO_COPY_DEFAULT;
(void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL);
/* write the full client id to the file. */
(void) VOP_WRITE(vp, &uio, ioflag, CRED(), NULL);
VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
(void) VOP_CLOSE(vp, FWRITE, 1, (offset_t)0, CRED(), NULL);
VN_RELE(vp);
}
/*
* DSS: distributed stable storage.
* Unpack the list of paths passed by nfsd.
* Use nvlist_alloc(9F) to manage the data.
* The caller is responsible for allocating and freeing the buffer.
*/
int
rfs4_dss_setpaths(char *buf, size_t buflen)
{
int error;
/*
* If this is a "warm start", i.e. we previously had DSS paths,
* preserve the old paths.
*/
if (rfs4_dss_paths != NULL) {
/*
* Before we lose the ptr, destroy the nvlist and pathnames
* array from the warm start before this one.
*/
nvlist_free(rfs4_dss_oldpaths);
rfs4_dss_oldpaths = rfs4_dss_paths;
}
/* unpack the buffer into a searchable nvlist */
error = nvlist_unpack(buf, buflen, &rfs4_dss_paths, KM_SLEEP);
if (error)
return (error);
/*
* Search the nvlist for the pathnames nvpair (which is the only nvpair
* in the list, and record its location.
*/
error = nvlist_lookup_string_array(rfs4_dss_paths, NFS4_DSS_NVPAIR_NAME,
&rfs4_dss_newpaths, &rfs4_dss_numnewpaths);
return (error);
}
/*
* Ultimately the nfssys() call NFS4_CLR_STATE endsup here
* to find and mark the client for forced expire.
*/
static void
rfs4_client_scrub(rfs4_entry_t ent, void *arg)
{
rfs4_client_t *cp = (rfs4_client_t *)ent;
struct nfs4clrst_args *clr = arg;
struct sockaddr_in6 *ent_sin6;
struct in6_addr clr_in6;
struct sockaddr_in *ent_sin;
struct in_addr clr_in;
if (clr->addr_type != cp->rc_addr.ss_family) {
return;
}
switch (clr->addr_type) {
case AF_INET6:
/* copyin the address from user space */
if (copyin(clr->ap, &clr_in6, sizeof (clr_in6))) {
break;
}
ent_sin6 = (struct sockaddr_in6 *)&cp->rc_addr;
/*
* now compare, and if equivalent mark entry
* for forced expiration
*/
if (IN6_ARE_ADDR_EQUAL(&ent_sin6->sin6_addr, &clr_in6)) {
cp->rc_forced_expire = 1;
}
break;
case AF_INET:
/* copyin the address from user space */
if (copyin(clr->ap, &clr_in, sizeof (clr_in))) {
break;
}
ent_sin = (struct sockaddr_in *)&cp->rc_addr;
/*
* now compare, and if equivalent mark entry
* for forced expiration
*/
if (ent_sin->sin_addr.s_addr == clr_in.s_addr) {
cp->rc_forced_expire = 1;
}
break;
default:
/* force this assert to fail */
ASSERT(clr->addr_type != clr->addr_type);
}
}
/*
* This is called from nfssys() in order to clear server state
* for the specified client IP Address.
*/
void
rfs4_clear_client_state(struct nfs4clrst_args *clr)
{
(void) rfs4_dbe_walk(rfs4_client_tab, rfs4_client_scrub, clr);
}
/*
* Used to initialize the NFSv4 server's state or database. All of
* the tables are created and timers are set. Only called when NFSv4
* service is provided.
*/
void
rfs4_state_init()
{
int start_grace;
extern boolean_t rfs4_cpr_callb(void *, int);
char *dss_path = NFS4_DSS_VAR_DIR;
time_t start_time;
mutex_enter(&rfs4_state_lock);
/*
* If the server state database has already been initialized,
* skip it
*/
if (rfs4_server_state != NULL) {
mutex_exit(&rfs4_state_lock);
return;
}
rw_init(&rfs4_findclient_lock, NULL, RW_DEFAULT, NULL);
/*
* Set the boot time. If the server
* has been restarted quickly and has had the opportunity to
* service clients, then the start_time needs to be bumped
* regardless. A small window but it exists...
*/
start_time = gethrestime_sec();
if (rfs4_start_time < start_time)
rfs4_start_time = start_time;
else
rfs4_start_time++;
/* DSS: distributed stable storage: initialise served paths list */
rfs4_dss_pathlist = NULL;
/*
* Create the first server instance, or a new one if the server has
* been restarted; see above comments on rfs4_start_time. Don't
* start its grace period; that will be done later, to maximise the
* clients' recovery window.
*/
start_grace = 0;
rfs4_servinst_create(start_grace, 1, &dss_path);
/* reset the "first NFSv4 request" status */
rfs4_seen_first_compound = 0;
/*
* Add a CPR callback so that we can update client
* access times to extend the lease after a suspend
* and resume (using the same class as rpcmod/connmgr)
*/
cpr_id = callb_add(rfs4_cpr_callb, 0, CB_CL_CPR_RPC, "rfs4");
/* set the various cache timers for table creation */
if (rfs4_client_cache_time == 0)
rfs4_client_cache_time = CLIENT_CACHE_TIME;
if (rfs4_openowner_cache_time == 0)
rfs4_openowner_cache_time = OPENOWNER_CACHE_TIME;
if (rfs4_state_cache_time == 0)
rfs4_state_cache_time = STATE_CACHE_TIME;
if (rfs4_lo_state_cache_time == 0)
rfs4_lo_state_cache_time = LO_STATE_CACHE_TIME;
if (rfs4_lockowner_cache_time == 0)
rfs4_lockowner_cache_time = LOCKOWNER_CACHE_TIME;
if (rfs4_file_cache_time == 0)
rfs4_file_cache_time = FILE_CACHE_TIME;
if (rfs4_deleg_state_cache_time == 0)
rfs4_deleg_state_cache_time = DELEG_STATE_CACHE_TIME;
/* Create the overall database to hold all server state */
rfs4_server_state = rfs4_database_create(rfs4_database_debug);
/* Now create the individual tables */
rfs4_client_cache_time *= rfs4_lease_time;
rfs4_client_tab = rfs4_table_create(rfs4_server_state,
"Client",
rfs4_client_cache_time,
2,
rfs4_client_create,
rfs4_client_destroy,
rfs4_client_expiry,
sizeof (rfs4_client_t),
TABSIZE,
MAXTABSZ/8, 100);
rfs4_nfsclnt_idx = rfs4_index_create(rfs4_client_tab,
"nfs_client_id4", nfsclnt_hash,
nfsclnt_compare, nfsclnt_mkkey,
TRUE);
rfs4_clientid_idx = rfs4_index_create(rfs4_client_tab,
"client_id", clientid_hash,
clientid_compare, clientid_mkkey,
FALSE);
rfs4_clntip_cache_time = 86400 * 365; /* about a year */
rfs4_clntip_tab = rfs4_table_create(rfs4_server_state,
"ClntIP",
rfs4_clntip_cache_time,
1,
rfs4_clntip_create,
rfs4_clntip_destroy,
rfs4_clntip_expiry,
sizeof (rfs4_clntip_t),
TABSIZE,
MAXTABSZ, 100);
rfs4_clntip_idx = rfs4_index_create(rfs4_clntip_tab,
"client_ip", clntip_hash,
clntip_compare, clntip_mkkey,
TRUE);
rfs4_openowner_cache_time *= rfs4_lease_time;
rfs4_openowner_tab = rfs4_table_create(rfs4_server_state,
"OpenOwner",
rfs4_openowner_cache_time,
1,
rfs4_openowner_create,
rfs4_openowner_destroy,
rfs4_openowner_expiry,
sizeof (rfs4_openowner_t),
TABSIZE,
MAXTABSZ, 100);
rfs4_openowner_idx = rfs4_index_create(rfs4_openowner_tab,
"open_owner4", openowner_hash,
openowner_compare,
openowner_mkkey, TRUE);
rfs4_state_cache_time *= rfs4_lease_time;
rfs4_state_tab = rfs4_table_create(rfs4_server_state,
"OpenStateID",
rfs4_state_cache_time,
3,
rfs4_state_create,
rfs4_state_destroy,
rfs4_state_expiry,
sizeof (rfs4_state_t),
TABSIZE,
MAXTABSZ, 100);
rfs4_state_owner_file_idx = rfs4_index_create(rfs4_state_tab,
"Openowner-File",
state_owner_file_hash,
state_owner_file_compare,
state_owner_file_mkkey, TRUE);
rfs4_state_idx = rfs4_index_create(rfs4_state_tab,
"State-id", state_hash,
state_compare, state_mkkey, FALSE);
rfs4_state_file_idx = rfs4_index_create(rfs4_state_tab,
"File", state_file_hash,
state_file_compare, state_file_mkkey,
FALSE);
rfs4_lo_state_cache_time *= rfs4_lease_time;
rfs4_lo_state_tab = rfs4_table_create(rfs4_server_state,
"LockStateID",
rfs4_lo_state_cache_time,
2,
rfs4_lo_state_create,
rfs4_lo_state_destroy,
rfs4_lo_state_expiry,
sizeof (rfs4_lo_state_t),
TABSIZE,
MAXTABSZ, 100);
rfs4_lo_state_owner_idx = rfs4_index_create(rfs4_lo_state_tab,
"lockownerxstate",
lo_state_lo_hash,
lo_state_lo_compare,
lo_state_lo_mkkey, TRUE);
rfs4_lo_state_idx = rfs4_index_create(rfs4_lo_state_tab,
"State-id",
lo_state_hash, lo_state_compare,
lo_state_mkkey, FALSE);
rfs4_lockowner_cache_time *= rfs4_lease_time;
rfs4_lockowner_tab = rfs4_table_create(rfs4_server_state,
"Lockowner",
rfs4_lockowner_cache_time,
2,
rfs4_lockowner_create,
rfs4_lockowner_destroy,
rfs4_lockowner_expiry,
sizeof (rfs4_lockowner_t),
TABSIZE,
MAXTABSZ, 100);
rfs4_lockowner_idx = rfs4_index_create(rfs4_lockowner_tab,
"lock_owner4", lockowner_hash,
lockowner_compare,
lockowner_mkkey, TRUE);
rfs4_lockowner_pid_idx = rfs4_index_create(rfs4_lockowner_tab,
"pid", pid_hash,
pid_compare, pid_mkkey,
FALSE);
rfs4_file_cache_time *= rfs4_lease_time;
rfs4_file_tab = rfs4_table_create(rfs4_server_state,
"File",
rfs4_file_cache_time,
1,
rfs4_file_create,
rfs4_file_destroy,
NULL,
sizeof (rfs4_file_t),
TABSIZE,
MAXTABSZ, -1);
rfs4_file_idx = rfs4_index_create(rfs4_file_tab,
"Filehandle", file_hash,
file_compare, file_mkkey, TRUE);
rfs4_deleg_state_cache_time *= rfs4_lease_time;
rfs4_deleg_state_tab = rfs4_table_create(rfs4_server_state,
"DelegStateID",
rfs4_deleg_state_cache_time,
2,
rfs4_deleg_state_create,
rfs4_deleg_state_destroy,
rfs4_deleg_state_expiry,
sizeof (rfs4_deleg_state_t),
TABSIZE,
MAXTABSZ, 100);
rfs4_deleg_idx = rfs4_index_create(rfs4_deleg_state_tab,
"DelegByFileClient",
deleg_hash,
deleg_compare,
deleg_mkkey, TRUE);
rfs4_deleg_state_idx = rfs4_index_create(rfs4_deleg_state_tab,
"DelegState",
deleg_state_hash,
deleg_state_compare,
deleg_state_mkkey, FALSE);
/*
* Init the stable storage.
*/
rfs4_ss_init();
rfs4_client_clrst = rfs4_clear_client_state;
mutex_exit(&rfs4_state_lock);
}
/*
* Used at server shutdown to cleanup all of the NFSv4 server's structures
* and other state.
*/
void
rfs4_state_fini()
{
rfs4_database_t *dbp;
mutex_enter(&rfs4_state_lock);
if (rfs4_server_state == NULL) {
mutex_exit(&rfs4_state_lock);
return;
}
rfs4_client_clrst = NULL;
rfs4_set_deleg_policy(SRV_NEVER_DELEGATE);
dbp = rfs4_server_state;
rfs4_server_state = NULL;
/*
* Cleanup the CPR callback.
*/
if (cpr_id)
(void) callb_delete(cpr_id);
rw_destroy(&rfs4_findclient_lock);
/* First stop all of the reaper threads in the database */
rfs4_database_shutdown(dbp);
/* clean up any dangling stable storage structures */
rfs4_ss_fini();
/* Now actually destroy/release the database and its tables */
rfs4_database_destroy(dbp);
/* Reset the cache timers for next time */
rfs4_client_cache_time = 0;
rfs4_openowner_cache_time = 0;
rfs4_state_cache_time = 0;
rfs4_lo_state_cache_time = 0;
rfs4_lockowner_cache_time = 0;
rfs4_file_cache_time = 0;
rfs4_deleg_state_cache_time = 0;
mutex_exit(&rfs4_state_lock);
/* destroy server instances and current instance ptr */
rfs4_servinst_destroy_all();
/* reset the "first NFSv4 request" status */
rfs4_seen_first_compound = 0;
/* DSS: distributed stable storage */
nvlist_free(rfs4_dss_oldpaths);
nvlist_free(rfs4_dss_paths);
rfs4_dss_paths = rfs4_dss_oldpaths = NULL;
}
typedef union {
struct {
uint32_t start_time;
uint32_t c_id;
} impl_id;
clientid4 id4;
} cid;
static int foreign_stateid(stateid_t *id);
static int foreign_clientid(cid *cidp);
static void embed_nodeid(cid *cidp);
typedef union {
struct {
uint32_t c_id;
uint32_t gen_num;
} cv_impl;
verifier4 confirm_verf;
} scid_confirm_verf;
static uint32_t
clientid_hash(void *key)
{
cid *idp = key;
return (idp->impl_id.c_id);
}
static bool_t
clientid_compare(rfs4_entry_t entry, void *key)
{
rfs4_client_t *cp = (rfs4_client_t *)entry;
clientid4 *idp = key;
return (*idp == cp->rc_clientid);
}
static void *
clientid_mkkey(rfs4_entry_t entry)
{
rfs4_client_t *cp = (rfs4_client_t *)entry;
return (&cp->rc_clientid);
}
static uint32_t
nfsclnt_hash(void *key)
{
nfs_client_id4 *client = key;
int i;
uint32_t hash = 0;
for (i = 0; i < client->id_len; i++) {
hash <<= 1;
hash += (uint_t)client->id_val[i];
}
return (hash);
}
static bool_t
nfsclnt_compare(rfs4_entry_t entry, void *key)
{
rfs4_client_t *cp = (rfs4_client_t *)entry;
nfs_client_id4 *nfs_client = key;
if (cp->rc_nfs_client.id_len != nfs_client->id_len)
return (FALSE);
return (bcmp(cp->rc_nfs_client.id_val, nfs_client->id_val,
nfs_client->id_len) == 0);
}
static void *
nfsclnt_mkkey(rfs4_entry_t entry)
{
rfs4_client_t *cp = (rfs4_client_t *)entry;
return (&cp->rc_nfs_client);
}
static bool_t
rfs4_client_expiry(rfs4_entry_t u_entry)
{
rfs4_client_t *cp = (rfs4_client_t *)u_entry;
bool_t cp_expired;
if (rfs4_dbe_is_invalid(cp->rc_dbe)) {
cp->rc_ss_remove = 1;
return (TRUE);
}
/*
* If the sysadmin has used clear_locks for this
* entry then forced_expire will be set and we
* want this entry to be reaped. Or the entry
* has exceeded its lease period.
*/
cp_expired = (cp->rc_forced_expire ||
(gethrestime_sec() - cp->rc_last_access
> rfs4_lease_time));
if (!cp->rc_ss_remove && cp_expired)
cp->rc_ss_remove = 1;
return (cp_expired);
}
/*
* Remove the leaf file from all distributed stable storage paths.
*/
static void
rfs4_dss_remove_cpleaf(rfs4_client_t *cp)
{
rfs4_servinst_t *sip;
char *leaf = cp->rc_ss_pn->leaf;
/*
* since the state files are written to all DSS
* paths we must remove this leaf file instance
* from all server instances.
*/
mutex_enter(&rfs4_servinst_lock);
for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) {
/* remove the leaf file associated with this server instance */
rfs4_dss_remove_leaf(sip, NFS4_DSS_STATE_LEAF, leaf);
}
mutex_exit(&rfs4_servinst_lock);
}
static void
rfs4_dss_remove_leaf(rfs4_servinst_t *sip, char *dir_leaf, char *leaf)
{
int i, npaths = sip->dss_npaths;
for (i = 0; i < npaths; i++) {
rfs4_dss_path_t *dss_path = sip->dss_paths[i];
char *path, *dir;
size_t pathlen;
/* the HA-NFSv4 path might have been failed-over away from us */
if (dss_path == NULL)
continue;
dir = dss_path->path;
/* allow 3 extra bytes for two '/' & a NUL */
pathlen = strlen(dir) + strlen(dir_leaf) + strlen(leaf) + 3;
path = kmem_alloc(pathlen, KM_SLEEP);
(void) sprintf(path, "%s/%s/%s", dir, dir_leaf, leaf);
(void) vn_remove(path, UIO_SYSSPACE, RMFILE);
kmem_free(path, pathlen);
}
}
static void
rfs4_client_destroy(rfs4_entry_t u_entry)
{
rfs4_client_t *cp = (rfs4_client_t *)u_entry;
mutex_destroy(cp->rc_cbinfo.cb_lock);
cv_destroy(cp->rc_cbinfo.cb_cv);
cv_destroy(cp->rc_cbinfo.cb_cv_nullcaller);
list_destroy(&cp->rc_openownerlist);
/* free callback info */
rfs4_cbinfo_free(&cp->rc_cbinfo);
if (cp->rc_cp_confirmed)
rfs4_client_rele(cp->rc_cp_confirmed);
if (cp->rc_ss_pn) {
/* check if the stable storage files need to be removed */
if (cp->rc_ss_remove)
rfs4_dss_remove_cpleaf(cp);
rfs4_ss_pnfree(cp->rc_ss_pn);
}
/* Free the client supplied client id */
kmem_free(cp->rc_nfs_client.id_val, cp->rc_nfs_client.id_len);
if (cp->rc_sysidt != LM_NOSYSID)
lm_free_sysidt(cp->rc_sysidt);
}
static bool_t
rfs4_client_create(rfs4_entry_t u_entry, void *arg)
{
rfs4_client_t *cp = (rfs4_client_t *)u_entry;
nfs_client_id4 *client = (nfs_client_id4 *)arg;
struct sockaddr *ca;
cid *cidp;
scid_confirm_verf *scvp;
/* Get a clientid to give to the client */
cidp = (cid *)&cp->rc_clientid;
cidp->impl_id.start_time = rfs4_start_time;
cidp->impl_id.c_id = (uint32_t)rfs4_dbe_getid(cp->rc_dbe);
/* If we are booted as a cluster node, embed our nodeid */
if (cluster_bootflags & CLUSTER_BOOTED)
embed_nodeid(cidp);
/* Allocate and copy client's client id value */
cp->rc_nfs_client.id_val = kmem_alloc(client->id_len, KM_SLEEP);
cp->rc_nfs_client.id_len = client->id_len;
bcopy(client->id_val, cp->rc_nfs_client.id_val, client->id_len);
cp->rc_nfs_client.verifier = client->verifier;
/* Copy client's IP address */
ca = client->cl_addr;
if (ca->sa_family == AF_INET)
bcopy(ca, &cp->rc_addr, sizeof (struct sockaddr_in));
else if (ca->sa_family == AF_INET6)
bcopy(ca, &cp->rc_addr, sizeof (struct sockaddr_in6));
cp->rc_nfs_client.cl_addr = (struct sockaddr *)&cp->rc_addr;
/* Init the value for the SETCLIENTID_CONFIRM verifier */
scvp = (scid_confirm_verf *)&cp->rc_confirm_verf;
scvp->cv_impl.c_id = cidp->impl_id.c_id;
scvp->cv_impl.gen_num = 0;
/* An F_UNLKSYS has been done for this client */
cp->rc_unlksys_completed = FALSE;
/* We need the client to ack us */
cp->rc_need_confirm = TRUE;
cp->rc_cp_confirmed = NULL;
/* TRUE all the time until the callback path actually fails */
cp->rc_cbinfo.cb_notified_of_cb_path_down = TRUE;
/* Initialize the access time to now */
cp->rc_last_access = gethrestime_sec();
cp->rc_cr_set = NULL;
cp->rc_sysidt = LM_NOSYSID;
list_create(&cp->rc_openownerlist, sizeof (rfs4_openowner_t),
offsetof(rfs4_openowner_t, ro_node));
/* set up the callback control structure */
cp->rc_cbinfo.cb_state = CB_UNINIT;
mutex_init(cp->rc_cbinfo.cb_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(cp->rc_cbinfo.cb_cv, NULL, CV_DEFAULT, NULL);
cv_init(cp->rc_cbinfo.cb_cv_nullcaller, NULL, CV_DEFAULT, NULL);
/*
* Associate the client_t with the current server instance.
* The hold is solely to satisfy the calling requirement of
* rfs4_servinst_assign(). In this case it's not strictly necessary.
*/
rfs4_dbe_hold(cp->rc_dbe);
rfs4_servinst_assign(cp, rfs4_cur_servinst);
rfs4_dbe_rele(cp->rc_dbe);
return (TRUE);
}
/*
* Caller wants to generate/update the setclientid_confirm verifier
* associated with a client. This is done during the SETCLIENTID
* processing.
*/
void
rfs4_client_scv_next(rfs4_client_t *cp)
{
scid_confirm_verf *scvp;
/* Init the value for the SETCLIENTID_CONFIRM verifier */
scvp = (scid_confirm_verf *)&cp->rc_confirm_verf;
scvp->cv_impl.gen_num++;
}
void
rfs4_client_rele(rfs4_client_t *cp)
{
rfs4_dbe_rele(cp->rc_dbe);
}
rfs4_client_t *
rfs4_findclient(nfs_client_id4 *client, bool_t *create, rfs4_client_t *oldcp)
{
rfs4_client_t *cp;
if (oldcp) {
rw_enter(&rfs4_findclient_lock, RW_WRITER);
rfs4_dbe_hide(oldcp->rc_dbe);
} else {
rw_enter(&rfs4_findclient_lock, RW_READER);
}
cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_nfsclnt_idx, client,
create, (void *)client, RFS4_DBS_VALID);
if (oldcp)
rfs4_dbe_unhide(oldcp->rc_dbe);
rw_exit(&rfs4_findclient_lock);
return (cp);
}
rfs4_client_t *
rfs4_findclient_by_id(clientid4 clientid, bool_t find_unconfirmed)
{
rfs4_client_t *cp;
bool_t create = FALSE;
cid *cidp = (cid *)&clientid;
/* If we're a cluster and the nodeid isn't right, short-circuit */
if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp))
return (NULL);
rw_enter(&rfs4_findclient_lock, RW_READER);
cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, &clientid,
&create, NULL, RFS4_DBS_VALID);
rw_exit(&rfs4_findclient_lock);
if (cp && cp->rc_need_confirm && find_unconfirmed == FALSE) {
rfs4_client_rele(cp);
return (NULL);
} else {
return (cp);
}
}
static uint32_t
clntip_hash(void *key)
{
struct sockaddr *addr = key;
int i, len = 0;
uint32_t hash = 0;
char *ptr;
if (addr->sa_family == AF_INET) {
struct sockaddr_in *a = (struct sockaddr_in *)addr;
len = sizeof (struct in_addr);
ptr = (char *)&a->sin_addr;
} else if (addr->sa_family == AF_INET6) {
struct sockaddr_in6 *a = (struct sockaddr_in6 *)addr;
len = sizeof (struct in6_addr);
ptr = (char *)&a->sin6_addr;
} else
return (0);
for (i = 0; i < len; i++) {
hash <<= 1;
hash += (uint_t)ptr[i];
}
return (hash);
}
static bool_t
clntip_compare(rfs4_entry_t entry, void *key)
{
rfs4_clntip_t *cp = (rfs4_clntip_t *)entry;
struct sockaddr *addr = key;
int len = 0;
char *p1, *p2;
if (addr->sa_family == AF_INET) {
struct sockaddr_in *a1 = (struct sockaddr_in *)&cp->ri_addr;
struct sockaddr_in *a2 = (struct sockaddr_in *)addr;
len = sizeof (struct in_addr);
p1 = (char *)&a1->sin_addr;
p2 = (char *)&a2->sin_addr;
} else if (addr->sa_family == AF_INET6) {
struct sockaddr_in6 *a1 = (struct sockaddr_in6 *)&cp->ri_addr;
struct sockaddr_in6 *a2 = (struct sockaddr_in6 *)addr;
len = sizeof (struct in6_addr);
p1 = (char *)&a1->sin6_addr;
p2 = (char *)&a2->sin6_addr;
} else
return (0);
return (bcmp(p1, p2, len) == 0);
}
static void *
clntip_mkkey(rfs4_entry_t entry)
{
rfs4_clntip_t *cp = (rfs4_clntip_t *)entry;
return (&cp->ri_addr);
}
static bool_t
rfs4_clntip_expiry(rfs4_entry_t u_entry)
{
rfs4_clntip_t *cp = (rfs4_clntip_t *)u_entry;
if (rfs4_dbe_is_invalid(cp->ri_dbe))
return (TRUE);
return (FALSE);
}
/* ARGSUSED */
static void
rfs4_clntip_destroy(rfs4_entry_t u_entry)
{
}
static bool_t
rfs4_clntip_create(rfs4_entry_t u_entry, void *arg)
{
rfs4_clntip_t *cp = (rfs4_clntip_t *)u_entry;
struct sockaddr *ca = (struct sockaddr *)arg;
/* Copy client's IP address */
if (ca->sa_family == AF_INET)
bcopy(ca, &cp->ri_addr, sizeof (struct sockaddr_in));
else if (ca->sa_family == AF_INET6)
bcopy(ca, &cp->ri_addr, sizeof (struct sockaddr_in6));
else
return (FALSE);
cp->ri_no_referrals = 1;
return (TRUE);
}
rfs4_clntip_t *
rfs4_find_clntip(struct sockaddr *addr, bool_t *create)
{
rfs4_clntip_t *cp;
rw_enter(&rfs4_findclient_lock, RW_READER);
cp = (rfs4_clntip_t *)rfs4_dbsearch(rfs4_clntip_idx, addr,
create, addr, RFS4_DBS_VALID);
rw_exit(&rfs4_findclient_lock);
return (cp);
}
void
rfs4_invalidate_clntip(struct sockaddr *addr)
{
rfs4_clntip_t *cp;
bool_t create = FALSE;
rw_enter(&rfs4_findclient_lock, RW_READER);
cp = (rfs4_clntip_t *)rfs4_dbsearch(rfs4_clntip_idx, addr,
&create, NULL, RFS4_DBS_VALID);
if (cp == NULL) {
rw_exit(&rfs4_findclient_lock);
return;
}
rfs4_dbe_invalidate(cp->ri_dbe);
rfs4_dbe_rele(cp->ri_dbe);
rw_exit(&rfs4_findclient_lock);
}
bool_t
rfs4_lease_expired(rfs4_client_t *cp)
{
bool_t rc;
rfs4_dbe_lock(cp->rc_dbe);
/*
* If the admin has executed clear_locks for this
* client id, force expire will be set, so no need
* to calculate anything because it's "outa here".
*/
if (cp->rc_forced_expire) {
rc = TRUE;
} else {
rc = (gethrestime_sec() - cp->rc_last_access > rfs4_lease_time);
}
/*
* If the lease has expired we will also want
* to remove any stable storage state data. So
* mark the client id accordingly.
*/
if (!cp->rc_ss_remove)
cp->rc_ss_remove = (rc == TRUE);
rfs4_dbe_unlock(cp->rc_dbe);
return (rc);
}
void
rfs4_update_lease(rfs4_client_t *cp)
{
rfs4_dbe_lock(cp->rc_dbe);
if (!cp->rc_forced_expire)
cp->rc_last_access = gethrestime_sec();
rfs4_dbe_unlock(cp->rc_dbe);
}
static bool_t
EQOPENOWNER(open_owner4 *a, open_owner4 *b)
{
bool_t rc;
if (a->clientid != b->clientid)
return (FALSE);
if (a->owner_len != b->owner_len)
return (FALSE);
rc = (bcmp(a->owner_val, b->owner_val, a->owner_len) == 0);
return (rc);
}
static uint_t
openowner_hash(void *key)
{
int i;
open_owner4 *openowner = key;
uint_t hash = 0;
for (i = 0; i < openowner->owner_len; i++) {
hash <<= 4;
hash += (uint_t)openowner->owner_val[i];
}
hash += (uint_t)openowner->clientid;
hash |= (openowner->clientid >> 32);
return (hash);
}
static bool_t
openowner_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry;
open_owner4 *arg = key;
return (EQOPENOWNER(&oo->ro_owner, arg));
}
void *
openowner_mkkey(rfs4_entry_t u_entry)
{
rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry;
return (&oo->ro_owner);
}
/* ARGSUSED */
static bool_t
rfs4_openowner_expiry(rfs4_entry_t u_entry)
{
/* openstateid held us and did all needed delay */
return (TRUE);
}
static void
rfs4_openowner_destroy(rfs4_entry_t u_entry)
{
rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry;
/* Remove open owner from client's lists of open owners */
rfs4_dbe_lock(oo->ro_client->rc_dbe);
list_remove(&oo->ro_client->rc_openownerlist, oo);
rfs4_dbe_unlock(oo->ro_client->rc_dbe);
/* One less reference to the client */
rfs4_client_rele(oo->ro_client);
oo->ro_client = NULL;
/* Free the last reply for this lock owner */
rfs4_free_reply(&oo->ro_reply);
if (oo->ro_reply_fh.nfs_fh4_val) {
kmem_free(oo->ro_reply_fh.nfs_fh4_val,
oo->ro_reply_fh.nfs_fh4_len);
oo->ro_reply_fh.nfs_fh4_val = NULL;
oo->ro_reply_fh.nfs_fh4_len = 0;
}
rfs4_sw_destroy(&oo->ro_sw);
list_destroy(&oo->ro_statelist);
/* Free the lock owner id */
kmem_free(oo->ro_owner.owner_val, oo->ro_owner.owner_len);
}
void
rfs4_openowner_rele(rfs4_openowner_t *oo)
{
rfs4_dbe_rele(oo->ro_dbe);
}
static bool_t
rfs4_openowner_create(rfs4_entry_t u_entry, void *arg)
{
rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry;
rfs4_openowner_t *argp = (rfs4_openowner_t *)arg;
open_owner4 *openowner = &argp->ro_owner;
seqid4 seqid = argp->ro_open_seqid;
rfs4_client_t *cp;
bool_t create = FALSE;
rw_enter(&rfs4_findclient_lock, RW_READER);
cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx,
&openowner->clientid,
&create, NULL, RFS4_DBS_VALID);
rw_exit(&rfs4_findclient_lock);
if (cp == NULL)
return (FALSE);
oo->ro_reply_fh.nfs_fh4_len = 0;
oo->ro_reply_fh.nfs_fh4_val = NULL;
oo->ro_owner.clientid = openowner->clientid;
oo->ro_owner.owner_val =
kmem_alloc(openowner->owner_len, KM_SLEEP);
bcopy(openowner->owner_val,
oo->ro_owner.owner_val, openowner->owner_len);
oo->ro_owner.owner_len = openowner->owner_len;
oo->ro_need_confirm = TRUE;
rfs4_sw_init(&oo->ro_sw);
oo->ro_open_seqid = seqid;
bzero(&oo->ro_reply, sizeof (nfs_resop4));
oo->ro_client = cp;
oo->ro_cr_set = NULL;
list_create(&oo->ro_statelist, sizeof (rfs4_state_t),
offsetof(rfs4_state_t, rs_node));
/* Insert openowner into client's open owner list */
rfs4_dbe_lock(cp->rc_dbe);
list_insert_tail(&cp->rc_openownerlist, oo);
rfs4_dbe_unlock(cp->rc_dbe);
return (TRUE);
}
rfs4_openowner_t *
rfs4_findopenowner(open_owner4 *openowner, bool_t *create, seqid4 seqid)
{
rfs4_openowner_t *oo;
rfs4_openowner_t arg;
arg.ro_owner = *openowner;
arg.ro_open_seqid = seqid;
oo = (rfs4_openowner_t *)rfs4_dbsearch(rfs4_openowner_idx, openowner,
create, &arg, RFS4_DBS_VALID);
return (oo);
}
void
rfs4_update_open_sequence(rfs4_openowner_t *oo)
{
rfs4_dbe_lock(oo->ro_dbe);
oo->ro_open_seqid++;
rfs4_dbe_unlock(oo->ro_dbe);
}
void
rfs4_update_open_resp(rfs4_openowner_t *oo, nfs_resop4 *resp, nfs_fh4 *fh)
{
rfs4_dbe_lock(oo->ro_dbe);
rfs4_free_reply(&oo->ro_reply);
rfs4_copy_reply(&oo->ro_reply, resp);
/* Save the filehandle if provided and free if not used */
if (resp->nfs_resop4_u.opopen.status == NFS4_OK &&
fh && fh->nfs_fh4_len) {
if (oo->ro_reply_fh.nfs_fh4_val == NULL)
oo->ro_reply_fh.nfs_fh4_val =
kmem_alloc(fh->nfs_fh4_len, KM_SLEEP);
nfs_fh4_copy(fh, &oo->ro_reply_fh);
} else {
if (oo->ro_reply_fh.nfs_fh4_val) {
kmem_free(oo->ro_reply_fh.nfs_fh4_val,
oo->ro_reply_fh.nfs_fh4_len);
oo->ro_reply_fh.nfs_fh4_val = NULL;
oo->ro_reply_fh.nfs_fh4_len = 0;
}
}
rfs4_dbe_unlock(oo->ro_dbe);
}
static bool_t
lockowner_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry;
lock_owner4 *b = (lock_owner4 *)key;
if (lo->rl_owner.clientid != b->clientid)
return (FALSE);
if (lo->rl_owner.owner_len != b->owner_len)
return (FALSE);
return (bcmp(lo->rl_owner.owner_val, b->owner_val,
lo->rl_owner.owner_len) == 0);
}
void *
lockowner_mkkey(rfs4_entry_t u_entry)
{
rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry;
return (&lo->rl_owner);
}
static uint32_t
lockowner_hash(void *key)
{
int i;
lock_owner4 *lockowner = key;
uint_t hash = 0;
for (i = 0; i < lockowner->owner_len; i++) {
hash <<= 4;
hash += (uint_t)lockowner->owner_val[i];
}
hash += (uint_t)lockowner->clientid;
hash |= (lockowner->clientid >> 32);
return (hash);
}
static uint32_t
pid_hash(void *key)
{
return ((uint32_t)(uintptr_t)key);
}
static void *
pid_mkkey(rfs4_entry_t u_entry)
{
rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry;
return ((void *)(uintptr_t)lo->rl_pid);
}
static bool_t
pid_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry;
return (lo->rl_pid == (pid_t)(uintptr_t)key);
}
static void
rfs4_lockowner_destroy(rfs4_entry_t u_entry)
{
rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry;
/* Free the lock owner id */
kmem_free(lo->rl_owner.owner_val, lo->rl_owner.owner_len);
rfs4_client_rele(lo->rl_client);
}
void
rfs4_lockowner_rele(rfs4_lockowner_t *lo)
{
rfs4_dbe_rele(lo->rl_dbe);
}
/* ARGSUSED */
static bool_t
rfs4_lockowner_expiry(rfs4_entry_t u_entry)
{
/*
* Since expiry is called with no other references on
* this struct, go ahead and have it removed.
*/
return (TRUE);
}
static bool_t
rfs4_lockowner_create(rfs4_entry_t u_entry, void *arg)
{
rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry;
lock_owner4 *lockowner = (lock_owner4 *)arg;
rfs4_client_t *cp;
bool_t create = FALSE;
rw_enter(&rfs4_findclient_lock, RW_READER);
cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx,
&lockowner->clientid,
&create, NULL, RFS4_DBS_VALID);
rw_exit(&rfs4_findclient_lock);
if (cp == NULL)
return (FALSE);
/* Reference client */
lo->rl_client = cp;
lo->rl_owner.clientid = lockowner->clientid;
lo->rl_owner.owner_val = kmem_alloc(lockowner->owner_len, KM_SLEEP);
bcopy(lockowner->owner_val, lo->rl_owner.owner_val,
lockowner->owner_len);
lo->rl_owner.owner_len = lockowner->owner_len;
lo->rl_pid = rfs4_dbe_getid(lo->rl_dbe);
return (TRUE);
}
rfs4_lockowner_t *
rfs4_findlockowner(lock_owner4 *lockowner, bool_t *create)
{
rfs4_lockowner_t *lo;
lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_idx, lockowner,
create, lockowner, RFS4_DBS_VALID);
return (lo);
}
rfs4_lockowner_t *
rfs4_findlockowner_by_pid(pid_t pid)
{
rfs4_lockowner_t *lo;
bool_t create = FALSE;
lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_pid_idx,
(void *)(uintptr_t)pid, &create, NULL, RFS4_DBS_VALID);
return (lo);
}
static uint32_t
file_hash(void *key)
{
return (ADDRHASH(key));
}
static void *
file_mkkey(rfs4_entry_t u_entry)
{
rfs4_file_t *fp = (rfs4_file_t *)u_entry;
return (fp->rf_vp);
}
static bool_t
file_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_file_t *fp = (rfs4_file_t *)u_entry;
return (fp->rf_vp == (vnode_t *)key);
}
static void
rfs4_file_destroy(rfs4_entry_t u_entry)
{
rfs4_file_t *fp = (rfs4_file_t *)u_entry;
list_destroy(&fp->rf_delegstatelist);
if (fp->rf_filehandle.nfs_fh4_val)
kmem_free(fp->rf_filehandle.nfs_fh4_val,
fp->rf_filehandle.nfs_fh4_len);
cv_destroy(fp->rf_dinfo.rd_recall_cv);
if (fp->rf_vp) {
vnode_t *vp = fp->rf_vp;
mutex_enter(&vp->v_vsd_lock);
(void) vsd_set(vp, nfs4_srv_vkey, NULL);
mutex_exit(&vp->v_vsd_lock);
VN_RELE(vp);
fp->rf_vp = NULL;
}
rw_destroy(&fp->rf_file_rwlock);
}
/*
* Used to unlock the underlying dbe struct only
*/
void
rfs4_file_rele(rfs4_file_t *fp)
{
rfs4_dbe_rele(fp->rf_dbe);
}
typedef struct {
vnode_t *vp;
nfs_fh4 *fh;
} rfs4_fcreate_arg;
static bool_t
rfs4_file_create(rfs4_entry_t u_entry, void *arg)
{
rfs4_file_t *fp = (rfs4_file_t *)u_entry;
rfs4_fcreate_arg *ap = (rfs4_fcreate_arg *)arg;
vnode_t *vp = ap->vp;
nfs_fh4 *fh = ap->fh;
VN_HOLD(vp);
fp->rf_filehandle.nfs_fh4_len = 0;
fp->rf_filehandle.nfs_fh4_val = NULL;
ASSERT(fh && fh->nfs_fh4_len);
if (fh && fh->nfs_fh4_len) {
fp->rf_filehandle.nfs_fh4_val =
kmem_alloc(fh->nfs_fh4_len, KM_SLEEP);
nfs_fh4_copy(fh, &fp->rf_filehandle);
}
fp->rf_vp = vp;
list_create(&fp->rf_delegstatelist, sizeof (rfs4_deleg_state_t),
offsetof(rfs4_deleg_state_t, rds_node));
fp->rf_share_deny = fp->rf_share_access = fp->rf_access_read = 0;
fp->rf_access_write = fp->rf_deny_read = fp->rf_deny_write = 0;
mutex_init(fp->rf_dinfo.rd_recall_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(fp->rf_dinfo.rd_recall_cv, NULL, CV_DEFAULT, NULL);
fp->rf_dinfo.rd_dtype = OPEN_DELEGATE_NONE;
rw_init(&fp->rf_file_rwlock, NULL, RW_DEFAULT, NULL);
mutex_enter(&vp->v_vsd_lock);
VERIFY(vsd_set(vp, nfs4_srv_vkey, (void *)fp) == 0);
mutex_exit(&vp->v_vsd_lock);
return (TRUE);
}
rfs4_file_t *
rfs4_findfile(vnode_t *vp, nfs_fh4 *fh, bool_t *create)
{
rfs4_file_t *fp;
rfs4_fcreate_arg arg;
arg.vp = vp;
arg.fh = fh;
if (*create == TRUE)
fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create,
&arg, RFS4_DBS_VALID);
else {
mutex_enter(&vp->v_vsd_lock);
fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey);
if (fp) {
rfs4_dbe_lock(fp->rf_dbe);
if (rfs4_dbe_is_invalid(fp->rf_dbe) ||
(rfs4_dbe_refcnt(fp->rf_dbe) == 0)) {
rfs4_dbe_unlock(fp->rf_dbe);
fp = NULL;
} else {
rfs4_dbe_hold(fp->rf_dbe);
rfs4_dbe_unlock(fp->rf_dbe);
}
}
mutex_exit(&vp->v_vsd_lock);
}
return (fp);
}
/*
* Find a file in the db and once it is located, take the rw lock.
* Need to check the vnode pointer and if it does not exist (it was
* removed between the db location and check) redo the find. This
* assumes that a file struct that has a NULL vnode pointer is marked
* at 'invalid' and will not be found in the db the second time
* around.
*/
rfs4_file_t *
rfs4_findfile_withlock(vnode_t *vp, nfs_fh4 *fh, bool_t *create)
{
rfs4_file_t *fp;
rfs4_fcreate_arg arg;
bool_t screate = *create;
if (screate == FALSE) {
mutex_enter(&vp->v_vsd_lock);
fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey);
if (fp) {
rfs4_dbe_lock(fp->rf_dbe);
if (rfs4_dbe_is_invalid(fp->rf_dbe) ||
(rfs4_dbe_refcnt(fp->rf_dbe) == 0)) {
rfs4_dbe_unlock(fp->rf_dbe);
mutex_exit(&vp->v_vsd_lock);
fp = NULL;
} else {
rfs4_dbe_hold(fp->rf_dbe);
rfs4_dbe_unlock(fp->rf_dbe);
mutex_exit(&vp->v_vsd_lock);
rw_enter(&fp->rf_file_rwlock, RW_WRITER);
if (fp->rf_vp == NULL) {
rw_exit(&fp->rf_file_rwlock);
rfs4_file_rele(fp);
fp = NULL;
}
}
} else {
mutex_exit(&vp->v_vsd_lock);
}
} else {
retry:
arg.vp = vp;
arg.fh = fh;
fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create,
&arg, RFS4_DBS_VALID);
if (fp != NULL) {
rw_enter(&fp->rf_file_rwlock, RW_WRITER);
if (fp->rf_vp == NULL) {
rw_exit(&fp->rf_file_rwlock);
rfs4_file_rele(fp);
*create = screate;
goto retry;
}
}
}
return (fp);
}
static uint32_t
lo_state_hash(void *key)
{
stateid_t *id = key;
return (id->bits.ident+id->bits.pid);
}
static bool_t
lo_state_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry;
stateid_t *id = key;
bool_t rc;
rc = (lsp->rls_lockid.bits.boottime == id->bits.boottime &&
lsp->rls_lockid.bits.type == id->bits.type &&
lsp->rls_lockid.bits.ident == id->bits.ident &&
lsp->rls_lockid.bits.pid == id->bits.pid);
return (rc);
}
static void *
lo_state_mkkey(rfs4_entry_t u_entry)
{
rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry;
return (&lsp->rls_lockid);
}
static bool_t
rfs4_lo_state_expiry(rfs4_entry_t u_entry)
{
rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry;
if (rfs4_dbe_is_invalid(lsp->rls_dbe))
return (TRUE);
if (lsp->rls_state->rs_closed)
return (TRUE);
return ((gethrestime_sec() -
lsp->rls_state->rs_owner->ro_client->rc_last_access
> rfs4_lease_time));
}
static void
rfs4_lo_state_destroy(rfs4_entry_t u_entry)
{
rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry;
rfs4_dbe_lock(lsp->rls_state->rs_dbe);
list_remove(&lsp->rls_state->rs_lostatelist, lsp);
rfs4_dbe_unlock(lsp->rls_state->rs_dbe);
rfs4_sw_destroy(&lsp->rls_sw);
/* Make sure to release the file locks */
if (lsp->rls_locks_cleaned == FALSE) {
lsp->rls_locks_cleaned = TRUE;
if (lsp->rls_locker->rl_client->rc_sysidt != LM_NOSYSID) {
/* Is the PxFS kernel module loaded? */
if (lm_remove_file_locks != NULL) {
int new_sysid;
/* Encode the cluster nodeid in new sysid */
new_sysid =
lsp->rls_locker->rl_client->rc_sysidt;
lm_set_nlmid_flk(&new_sysid);
/*
* This PxFS routine removes file locks for a
* client over all nodes of a cluster.
*/
DTRACE_PROBE1(nfss_i_clust_rm_lck,
int, new_sysid);
(*lm_remove_file_locks)(new_sysid);
} else {
(void) cleanlocks(
lsp->rls_state->rs_finfo->rf_vp,
lsp->rls_locker->rl_pid,
lsp->rls_locker->rl_client->rc_sysidt);
}
}
}
/* Free the last reply for this state */
rfs4_free_reply(&lsp->rls_reply);
rfs4_lockowner_rele(lsp->rls_locker);
lsp->rls_locker = NULL;
rfs4_state_rele_nounlock(lsp->rls_state);
lsp->rls_state = NULL;
}
static bool_t
rfs4_lo_state_create(rfs4_entry_t u_entry, void *arg)
{
rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry;
rfs4_lo_state_t *argp = (rfs4_lo_state_t *)arg;
rfs4_lockowner_t *lo = argp->rls_locker;
rfs4_state_t *sp = argp->rls_state;
lsp->rls_state = sp;
lsp->rls_lockid = sp->rs_stateid;
lsp->rls_lockid.bits.type = LOCKID;
lsp->rls_lockid.bits.chgseq = 0;
lsp->rls_lockid.bits.pid = lo->rl_pid;
lsp->rls_locks_cleaned = FALSE;
lsp->rls_lock_completed = FALSE;
rfs4_sw_init(&lsp->rls_sw);
/* Attached the supplied lock owner */
rfs4_dbe_hold(lo->rl_dbe);
lsp->rls_locker = lo;
rfs4_dbe_lock(sp->rs_dbe);
list_insert_tail(&sp->rs_lostatelist, lsp);
rfs4_dbe_hold(sp->rs_dbe);
rfs4_dbe_unlock(sp->rs_dbe);
return (TRUE);
}
void
rfs4_lo_state_rele(rfs4_lo_state_t *lsp, bool_t unlock_fp)
{
if (unlock_fp == TRUE)
rw_exit(&lsp->rls_state->rs_finfo->rf_file_rwlock);
rfs4_dbe_rele(lsp->rls_dbe);
}
static rfs4_lo_state_t *
rfs4_findlo_state(stateid_t *id, bool_t lock_fp)
{
rfs4_lo_state_t *lsp;
bool_t create = FALSE;
lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_idx, id,
&create, NULL, RFS4_DBS_VALID);
if (lock_fp == TRUE && lsp != NULL)
rw_enter(&lsp->rls_state->rs_finfo->rf_file_rwlock, RW_READER);
return (lsp);
}
static uint32_t
lo_state_lo_hash(void *key)
{
rfs4_lo_state_t *lsp = key;
return (ADDRHASH(lsp->rls_locker) ^ ADDRHASH(lsp->rls_state));
}
static bool_t
lo_state_lo_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry;
rfs4_lo_state_t *keyp = key;
return (keyp->rls_locker == lsp->rls_locker &&
keyp->rls_state == lsp->rls_state);
}
static void *
lo_state_lo_mkkey(rfs4_entry_t u_entry)
{
return (u_entry);
}
rfs4_lo_state_t *
rfs4_findlo_state_by_owner(rfs4_lockowner_t *lo, rfs4_state_t *sp,
bool_t *create)
{
rfs4_lo_state_t *lsp;
rfs4_lo_state_t arg;
arg.rls_locker = lo;
arg.rls_state = sp;
lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_owner_idx, &arg,
create, &arg, RFS4_DBS_VALID);
return (lsp);
}
static stateid_t
get_stateid(id_t eid)
{
stateid_t id;
id.bits.boottime = rfs4_start_time;
id.bits.ident = eid;
id.bits.chgseq = 0;
id.bits.type = 0;
id.bits.pid = 0;
/*
* If we are booted as a cluster node, embed our nodeid.
* We've already done sanity checks in rfs4_client_create() so no
* need to repeat them here.
*/
id.bits.clnodeid = (cluster_bootflags & CLUSTER_BOOTED) ?
clconf_get_nodeid() : 0;
return (id);
}
/*
* For use only when booted as a cluster node.
* Returns TRUE if the embedded nodeid indicates that this stateid was
* generated on another node.
*/
static int
foreign_stateid(stateid_t *id)
{
ASSERT(cluster_bootflags & CLUSTER_BOOTED);
return (id->bits.clnodeid != (uint32_t)clconf_get_nodeid());
}
/*
* For use only when booted as a cluster node.
* Returns TRUE if the embedded nodeid indicates that this clientid was
* generated on another node.
*/
static int
foreign_clientid(cid *cidp)
{
ASSERT(cluster_bootflags & CLUSTER_BOOTED);
return (cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT !=
(uint32_t)clconf_get_nodeid());
}
/*
* For use only when booted as a cluster node.
* Embed our cluster nodeid into the clientid.
*/
static void
embed_nodeid(cid *cidp)
{
int clnodeid;
/*
* Currently, our state tables are small enough that their
* ids will leave enough bits free for the nodeid. If the
* tables become larger, we mustn't overwrite the id.
* Equally, we only have room for so many bits of nodeid, so
* must check that too.
*/
ASSERT(cluster_bootflags & CLUSTER_BOOTED);
ASSERT(cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT == 0);
clnodeid = clconf_get_nodeid();
ASSERT(clnodeid <= CLUSTER_MAX_NODEID);
ASSERT(clnodeid != NODEID_UNKNOWN);
cidp->impl_id.c_id |= (clnodeid << CLUSTER_NODEID_SHIFT);
}
static uint32_t
state_hash(void *key)
{
stateid_t *ip = (stateid_t *)key;
return (ip->bits.ident);
}
static bool_t
state_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_state_t *sp = (rfs4_state_t *)u_entry;
stateid_t *id = (stateid_t *)key;
bool_t rc;
rc = (sp->rs_stateid.bits.boottime == id->bits.boottime &&
sp->rs_stateid.bits.ident == id->bits.ident);
return (rc);
}
static void *
state_mkkey(rfs4_entry_t u_entry)
{
rfs4_state_t *sp = (rfs4_state_t *)u_entry;
return (&sp->rs_stateid);
}
static void
rfs4_state_destroy(rfs4_entry_t u_entry)
{
rfs4_state_t *sp = (rfs4_state_t *)u_entry;
/* remove from openowner list */
rfs4_dbe_lock(sp->rs_owner->ro_dbe);
list_remove(&sp->rs_owner->ro_statelist, sp);
rfs4_dbe_unlock(sp->rs_owner->ro_dbe);
list_destroy(&sp->rs_lostatelist);
/* release any share locks for this stateid if it's still open */
if (!sp->rs_closed) {
rfs4_dbe_lock(sp->rs_dbe);
(void) rfs4_unshare(sp);
rfs4_dbe_unlock(sp->rs_dbe);
}
/* Were done with the file */
rfs4_file_rele(sp->rs_finfo);
sp->rs_finfo = NULL;
/* And now with the openowner */
rfs4_openowner_rele(sp->rs_owner);
sp->rs_owner = NULL;
}
static void
rfs4_state_rele_nounlock(rfs4_state_t *sp)
{
rfs4_dbe_rele(sp->rs_dbe);
}
void
rfs4_state_rele(rfs4_state_t *sp)
{
rw_exit(&sp->rs_finfo->rf_file_rwlock);
rfs4_dbe_rele(sp->rs_dbe);
}
static uint32_t
deleg_hash(void *key)
{
rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)key;
return (ADDRHASH(dsp->rds_client) ^ ADDRHASH(dsp->rds_finfo));
}
static bool_t
deleg_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry;
rfs4_deleg_state_t *kdsp = (rfs4_deleg_state_t *)key;
return (dsp->rds_client == kdsp->rds_client &&
dsp->rds_finfo == kdsp->rds_finfo);
}
static void *
deleg_mkkey(rfs4_entry_t u_entry)
{
return (u_entry);
}
static uint32_t
deleg_state_hash(void *key)
{
stateid_t *ip = (stateid_t *)key;
return (ip->bits.ident);
}
static bool_t
deleg_state_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry;
stateid_t *id = (stateid_t *)key;
bool_t rc;
if (id->bits.type != DELEGID)
return (FALSE);
rc = (dsp->rds_delegid.bits.boottime == id->bits.boottime &&
dsp->rds_delegid.bits.ident == id->bits.ident);
return (rc);
}
static void *
deleg_state_mkkey(rfs4_entry_t u_entry)
{
rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry;
return (&dsp->rds_delegid);
}
static bool_t
rfs4_deleg_state_expiry(rfs4_entry_t u_entry)
{
rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry;
if (rfs4_dbe_is_invalid(dsp->rds_dbe))
return (TRUE);
if (dsp->rds_dtype == OPEN_DELEGATE_NONE)
return (TRUE);
if ((gethrestime_sec() - dsp->rds_client->rc_last_access
> rfs4_lease_time)) {
rfs4_dbe_invalidate(dsp->rds_dbe);
return (TRUE);
}
return (FALSE);
}
static bool_t
rfs4_deleg_state_create(rfs4_entry_t u_entry, void *argp)
{
rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry;
rfs4_file_t *fp = ((rfs4_deleg_state_t *)argp)->rds_finfo;
rfs4_client_t *cp = ((rfs4_deleg_state_t *)argp)->rds_client;
rfs4_dbe_hold(fp->rf_dbe);
rfs4_dbe_hold(cp->rc_dbe);
dsp->rds_delegid = get_stateid(rfs4_dbe_getid(dsp->rds_dbe));
dsp->rds_delegid.bits.type = DELEGID;
dsp->rds_finfo = fp;
dsp->rds_client = cp;
dsp->rds_dtype = OPEN_DELEGATE_NONE;
dsp->rds_time_granted = gethrestime_sec(); /* observability */
dsp->rds_time_revoked = 0;
list_link_init(&dsp->rds_node);
return (TRUE);
}
static void
rfs4_deleg_state_destroy(rfs4_entry_t u_entry)
{
rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry;
/* return delegation if necessary */
rfs4_return_deleg(dsp, FALSE);
/* Were done with the file */
rfs4_file_rele(dsp->rds_finfo);
dsp->rds_finfo = NULL;
/* And now with the openowner */
rfs4_client_rele(dsp->rds_client);
dsp->rds_client = NULL;
}
rfs4_deleg_state_t *
rfs4_finddeleg(rfs4_state_t *sp, bool_t *create)
{
rfs4_deleg_state_t ds, *dsp;
ds.rds_client = sp->rs_owner->ro_client;
ds.rds_finfo = sp->rs_finfo;
dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_idx, &ds,
create, &ds, RFS4_DBS_VALID);
return (dsp);
}
rfs4_deleg_state_t *
rfs4_finddelegstate(stateid_t *id)
{
rfs4_deleg_state_t *dsp;
bool_t create = FALSE;
dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_state_idx, id,
&create, NULL, RFS4_DBS_VALID);
return (dsp);
}
void
rfs4_deleg_state_rele(rfs4_deleg_state_t *dsp)
{
rfs4_dbe_rele(dsp->rds_dbe);
}
void
rfs4_update_lock_sequence(rfs4_lo_state_t *lsp)
{
rfs4_dbe_lock(lsp->rls_dbe);
/*
* If we are skipping sequence id checking, this means that
* this is the first lock request and therefore the sequence
* id does not need to be updated. This only happens on the
* first lock request for a lockowner
*/
if (!lsp->rls_skip_seqid_check)
lsp->rls_seqid++;
rfs4_dbe_unlock(lsp->rls_dbe);
}
void
rfs4_update_lock_resp(rfs4_lo_state_t *lsp, nfs_resop4 *resp)
{
rfs4_dbe_lock(lsp->rls_dbe);
rfs4_free_reply(&lsp->rls_reply);
rfs4_copy_reply(&lsp->rls_reply, resp);
rfs4_dbe_unlock(lsp->rls_dbe);
}
void
rfs4_free_opens(rfs4_openowner_t *oo, bool_t invalidate,
bool_t close_of_client)
{
rfs4_state_t *sp;
rfs4_dbe_lock(oo->ro_dbe);
for (sp = list_head(&oo->ro_statelist); sp != NULL;
sp = list_next(&oo->ro_statelist, sp)) {
rfs4_state_close(sp, FALSE, close_of_client, CRED());
if (invalidate == TRUE)
rfs4_dbe_invalidate(sp->rs_dbe);
}
rfs4_dbe_invalidate(oo->ro_dbe);
rfs4_dbe_unlock(oo->ro_dbe);
}
static uint32_t
state_owner_file_hash(void *key)
{
rfs4_state_t *sp = key;
return (ADDRHASH(sp->rs_owner) ^ ADDRHASH(sp->rs_finfo));
}
static bool_t
state_owner_file_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_state_t *sp = (rfs4_state_t *)u_entry;
rfs4_state_t *arg = key;
if (sp->rs_closed == TRUE)
return (FALSE);
return (arg->rs_owner == sp->rs_owner && arg->rs_finfo == sp->rs_finfo);
}
static void *
state_owner_file_mkkey(rfs4_entry_t u_entry)
{
return (u_entry);
}
static uint32_t
state_file_hash(void *key)
{
return (ADDRHASH(key));
}
static bool_t
state_file_compare(rfs4_entry_t u_entry, void *key)
{
rfs4_state_t *sp = (rfs4_state_t *)u_entry;
rfs4_file_t *fp = key;
if (sp->rs_closed == TRUE)
return (FALSE);
return (fp == sp->rs_finfo);
}
static void *
state_file_mkkey(rfs4_entry_t u_entry)
{
rfs4_state_t *sp = (rfs4_state_t *)u_entry;
return (sp->rs_finfo);
}
rfs4_state_t *
rfs4_findstate_by_owner_file(rfs4_openowner_t *oo, rfs4_file_t *fp,
bool_t *create)
{
rfs4_state_t *sp;
rfs4_state_t key;
key.rs_owner = oo;
key.rs_finfo = fp;
sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_owner_file_idx, &key,
create, &key, RFS4_DBS_VALID);
return (sp);
}
/* This returns ANY state struct that refers to this file */
static rfs4_state_t *
rfs4_findstate_by_file(rfs4_file_t *fp)
{
bool_t create = FALSE;
return ((rfs4_state_t *)rfs4_dbsearch(rfs4_state_file_idx, fp,
&create, fp, RFS4_DBS_VALID));
}
static bool_t
rfs4_state_expiry(rfs4_entry_t u_entry)
{
rfs4_state_t *sp = (rfs4_state_t *)u_entry;
if (rfs4_dbe_is_invalid(sp->rs_dbe))
return (TRUE);
if (sp->rs_closed == TRUE &&
((gethrestime_sec() - rfs4_dbe_get_timerele(sp->rs_dbe))
> rfs4_lease_time))
return (TRUE);
return ((gethrestime_sec() - sp->rs_owner->ro_client->rc_last_access
> rfs4_lease_time));
}
static bool_t
rfs4_state_create(rfs4_entry_t u_entry, void *argp)
{
rfs4_state_t *sp = (rfs4_state_t *)u_entry;
rfs4_file_t *fp = ((rfs4_state_t *)argp)->rs_finfo;
rfs4_openowner_t *oo = ((rfs4_state_t *)argp)->rs_owner;
rfs4_dbe_hold(fp->rf_dbe);
rfs4_dbe_hold(oo->ro_dbe);
sp->rs_stateid = get_stateid(rfs4_dbe_getid(sp->rs_dbe));
sp->rs_stateid.bits.type = OPENID;
sp->rs_owner = oo;
sp->rs_finfo = fp;
list_create(&sp->rs_lostatelist, sizeof (rfs4_lo_state_t),
offsetof(rfs4_lo_state_t, rls_node));
/* Insert state on per open owner's list */
rfs4_dbe_lock(oo->ro_dbe);
list_insert_tail(&oo->ro_statelist, sp);
rfs4_dbe_unlock(oo->ro_dbe);
return (TRUE);
}
static rfs4_state_t *
rfs4_findstate(stateid_t *id, rfs4_dbsearch_type_t find_invalid, bool_t lock_fp)
{
rfs4_state_t *sp;
bool_t create = FALSE;
sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_idx, id,
&create, NULL, find_invalid);
if (lock_fp == TRUE && sp != NULL)
rw_enter(&sp->rs_finfo->rf_file_rwlock, RW_READER);
return (sp);
}
void
rfs4_state_close(rfs4_state_t *sp, bool_t lock_held, bool_t close_of_client,
cred_t *cr)
{
/* Remove the associated lo_state owners */
if (!lock_held)
rfs4_dbe_lock(sp->rs_dbe);
/*
* If refcnt == 0, the dbe is about to be destroyed.
* lock state will be released by the reaper thread.
*/
if (rfs4_dbe_refcnt(sp->rs_dbe) > 0) {
if (sp->rs_closed == FALSE) {
rfs4_release_share_lock_state(sp, cr, close_of_client);
sp->rs_closed = TRUE;
}
}
if (!lock_held)
rfs4_dbe_unlock(sp->rs_dbe);
}
/*
* Remove all state associated with the given client.
*/
void
rfs4_client_state_remove(rfs4_client_t *cp)
{
rfs4_openowner_t *oo;
rfs4_dbe_lock(cp->rc_dbe);
for (oo = list_head(&cp->rc_openownerlist); oo != NULL;
oo = list_next(&cp->rc_openownerlist, oo)) {
rfs4_free_opens(oo, TRUE, TRUE);
}
rfs4_dbe_unlock(cp->rc_dbe);
}
void
rfs4_client_close(rfs4_client_t *cp)
{
/* Mark client as going away. */
rfs4_dbe_lock(cp->rc_dbe);
rfs4_dbe_invalidate(cp->rc_dbe);
rfs4_dbe_unlock(cp->rc_dbe);
rfs4_client_state_remove(cp);
/* Release the client */
rfs4_client_rele(cp);
}
nfsstat4
rfs4_check_clientid(clientid4 *cp, int setclid_confirm)
{
cid *cidp = (cid *) cp;
/*
* If we are booted as a cluster node, check the embedded nodeid.
* If it indicates that this clientid was generated on another node,
* inform the client accordingly.
*/
if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp))
return (NFS4ERR_STALE_CLIENTID);
/*
* If the server start time matches the time provided
* by the client (via the clientid) and this is NOT a
* setclientid_confirm then return EXPIRED.
*/
if (!setclid_confirm && cidp->impl_id.start_time == rfs4_start_time)
return (NFS4ERR_EXPIRED);
return (NFS4ERR_STALE_CLIENTID);
}
/*
* This is used when a stateid has not been found amongst the
* current server's state. Check the stateid to see if it
* was from this server instantiation or not.
*/
static nfsstat4
what_stateid_error(stateid_t *id, stateid_type_t type)
{
/* If we are booted as a cluster node, was stateid locally generated? */
if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id))
return (NFS4ERR_STALE_STATEID);
/* If types don't match then no use checking further */
if (type != id->bits.type)
return (NFS4ERR_BAD_STATEID);
/* From a different server instantiation, return STALE */
if (id->bits.boottime != rfs4_start_time)
return (NFS4ERR_STALE_STATEID);
/*
* From this server but the state is most likely beyond lease
* timeout: return NFS4ERR_EXPIRED. However, there is the
* case of a delegation stateid. For delegations, there is a
* case where the state can be removed without the client's
* knowledge/consent: revocation. In the case of delegation
* revocation, the delegation state will be removed and will
* not be found. If the client does something like a
* DELEGRETURN or even a READ/WRITE with a delegatoin stateid
* that has been revoked, the server should return BAD_STATEID
* instead of the more common EXPIRED error.
*/
if (id->bits.boottime == rfs4_start_time) {
if (type == DELEGID)
return (NFS4ERR_BAD_STATEID);
else
return (NFS4ERR_EXPIRED);
}
return (NFS4ERR_BAD_STATEID);
}
/*
* Used later on to find the various state structs. When called from
* rfs4_check_stateid()->rfs4_get_all_state(), no file struct lock is
* taken (it is not needed) and helps on the read/write path with
* respect to performance.
*/
static nfsstat4
rfs4_get_state_lockit(stateid4 *stateid, rfs4_state_t **spp,
rfs4_dbsearch_type_t find_invalid, bool_t lock_fp)
{
stateid_t *id = (stateid_t *)stateid;
rfs4_state_t *sp;
*spp = NULL;
/* If we are booted as a cluster node, was stateid locally generated? */
if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id))
return (NFS4ERR_STALE_STATEID);
sp = rfs4_findstate(id, find_invalid, lock_fp);
if (sp == NULL) {
return (what_stateid_error(id, OPENID));
}
if (rfs4_lease_expired(sp->rs_owner->ro_client)) {
if (lock_fp == TRUE)
rfs4_state_rele(sp);
else
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_EXPIRED);
}
*spp = sp;
return (NFS4_OK);
}
nfsstat4
rfs4_get_state(stateid4 *stateid, rfs4_state_t **spp,
rfs4_dbsearch_type_t find_invalid)
{
return (rfs4_get_state_lockit(stateid, spp, find_invalid, TRUE));
}
int
rfs4_check_stateid_seqid(rfs4_state_t *sp, stateid4 *stateid)
{
stateid_t *id = (stateid_t *)stateid;
if (rfs4_lease_expired(sp->rs_owner->ro_client))
return (NFS4_CHECK_STATEID_EXPIRED);
/* Stateid is some time in the future - that's bad */
if (sp->rs_stateid.bits.chgseq < id->bits.chgseq)
return (NFS4_CHECK_STATEID_BAD);
if (sp->rs_stateid.bits.chgseq == id->bits.chgseq + 1)
return (NFS4_CHECK_STATEID_REPLAY);
/* Stateid is some time in the past - that's old */
if (sp->rs_stateid.bits.chgseq > id->bits.chgseq)
return (NFS4_CHECK_STATEID_OLD);
/* Caller needs to know about confirmation before closure */
if (sp->rs_owner->ro_need_confirm)
return (NFS4_CHECK_STATEID_UNCONFIRMED);
if (sp->rs_closed == TRUE)
return (NFS4_CHECK_STATEID_CLOSED);
return (NFS4_CHECK_STATEID_OKAY);
}
int
rfs4_check_lo_stateid_seqid(rfs4_lo_state_t *lsp, stateid4 *stateid)
{
stateid_t *id = (stateid_t *)stateid;
if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client))
return (NFS4_CHECK_STATEID_EXPIRED);
/* Stateid is some time in the future - that's bad */
if (lsp->rls_lockid.bits.chgseq < id->bits.chgseq)
return (NFS4_CHECK_STATEID_BAD);
if (lsp->rls_lockid.bits.chgseq == id->bits.chgseq + 1)
return (NFS4_CHECK_STATEID_REPLAY);
/* Stateid is some time in the past - that's old */
if (lsp->rls_lockid.bits.chgseq > id->bits.chgseq)
return (NFS4_CHECK_STATEID_OLD);
if (lsp->rls_state->rs_closed == TRUE)
return (NFS4_CHECK_STATEID_CLOSED);
return (NFS4_CHECK_STATEID_OKAY);
}
nfsstat4
rfs4_get_deleg_state(stateid4 *stateid, rfs4_deleg_state_t **dspp)
{
stateid_t *id = (stateid_t *)stateid;
rfs4_deleg_state_t *dsp;
*dspp = NULL;
/* If we are booted as a cluster node, was stateid locally generated? */
if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id))
return (NFS4ERR_STALE_STATEID);
dsp = rfs4_finddelegstate(id);
if (dsp == NULL) {
return (what_stateid_error(id, DELEGID));
}
if (rfs4_lease_expired(dsp->rds_client)) {
rfs4_deleg_state_rele(dsp);
return (NFS4ERR_EXPIRED);
}
*dspp = dsp;
return (NFS4_OK);
}
nfsstat4
rfs4_get_lo_state(stateid4 *stateid, rfs4_lo_state_t **lspp, bool_t lock_fp)
{
stateid_t *id = (stateid_t *)stateid;
rfs4_lo_state_t *lsp;
*lspp = NULL;
/* If we are booted as a cluster node, was stateid locally generated? */
if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id))
return (NFS4ERR_STALE_STATEID);
lsp = rfs4_findlo_state(id, lock_fp);
if (lsp == NULL) {
return (what_stateid_error(id, LOCKID));
}
if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client)) {
rfs4_lo_state_rele(lsp, lock_fp);
return (NFS4ERR_EXPIRED);
}
*lspp = lsp;
return (NFS4_OK);
}
static nfsstat4
rfs4_get_all_state(stateid4 *sid, rfs4_state_t **spp,
rfs4_deleg_state_t **dspp, rfs4_lo_state_t **lspp)
{
rfs4_state_t *sp = NULL;
rfs4_deleg_state_t *dsp = NULL;
rfs4_lo_state_t *lsp = NULL;
stateid_t *id;
nfsstat4 status;
*spp = NULL; *dspp = NULL; *lspp = NULL;
id = (stateid_t *)sid;
switch (id->bits.type) {
case OPENID:
status = rfs4_get_state_lockit(sid, &sp, FALSE, FALSE);
break;
case DELEGID:
status = rfs4_get_deleg_state(sid, &dsp);
break;
case LOCKID:
status = rfs4_get_lo_state(sid, &lsp, FALSE);
if (status == NFS4_OK) {
sp = lsp->rls_state;
rfs4_dbe_hold(sp->rs_dbe);
}
break;
default:
status = NFS4ERR_BAD_STATEID;
}
if (status == NFS4_OK) {
*spp = sp;
*dspp = dsp;
*lspp = lsp;
}
return (status);
}
/*
* Given the I/O mode (FREAD or FWRITE), this checks whether the
* rfs4_state_t struct has access to do this operation and if so
* return NFS4_OK; otherwise the proper NFSv4 error is returned.
*/
nfsstat4
rfs4_state_has_access(rfs4_state_t *sp, int mode, vnode_t *vp)
{
nfsstat4 stat = NFS4_OK;
rfs4_file_t *fp;
bool_t create = FALSE;
rfs4_dbe_lock(sp->rs_dbe);
if (mode == FWRITE) {
if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_WRITE)) {
stat = NFS4ERR_OPENMODE;
}
} else if (mode == FREAD) {
if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_READ)) {
/*
* If we have OPENed the file with DENYing access
* to both READ and WRITE then no one else could
* have OPENed the file, hence no conflicting READ
* deny. This check is merely an optimization.
*/
if (sp->rs_share_deny == OPEN4_SHARE_DENY_BOTH)
goto out;
/* Check against file struct's DENY mode */
fp = rfs4_findfile(vp, NULL, &create);
if (fp != NULL) {
int deny_read = 0;
rfs4_dbe_lock(fp->rf_dbe);
/*
* Check if any other open owner has the file
* OPENed with deny READ.
*/
if (sp->rs_share_deny & OPEN4_SHARE_DENY_READ)
deny_read = 1;
ASSERT(fp->rf_deny_read >= deny_read);
if (fp->rf_deny_read > deny_read)
stat = NFS4ERR_OPENMODE;
rfs4_dbe_unlock(fp->rf_dbe);
rfs4_file_rele(fp);
}
}
} else {
/* Illegal I/O mode */
stat = NFS4ERR_INVAL;
}
out:
rfs4_dbe_unlock(sp->rs_dbe);
return (stat);
}
/*
* Given the I/O mode (FREAD or FWRITE), the vnode, the stateid and whether
* the file is being truncated, return NFS4_OK if allowed or appropriate
* V4 error if not. Note NFS4ERR_DELAY will be returned and a recall on
* the associated file will be done if the I/O is not consistent with any
* delegation in effect on the file. Should be holding VOP_RWLOCK, either
* as reader or writer as appropriate. rfs4_op_open will acquire the
* VOP_RWLOCK as writer when setting up delegation. If the stateid is bad
* this routine will return NFS4ERR_BAD_STATEID. In addition, through the
* deleg parameter, we will return whether a write delegation is held by
* the client associated with this stateid.
* If the server instance associated with the relevant client is in its
* grace period, return NFS4ERR_GRACE.
*/
nfsstat4
rfs4_check_stateid(int mode, vnode_t *vp,
stateid4 *stateid, bool_t trunc, bool_t *deleg,
bool_t do_access, caller_context_t *ct)
{
rfs4_file_t *fp;
bool_t create = FALSE;
rfs4_state_t *sp;
rfs4_deleg_state_t *dsp;
rfs4_lo_state_t *lsp;
stateid_t *id = (stateid_t *)stateid;
nfsstat4 stat = NFS4_OK;
if (ct != NULL) {
ct->cc_sysid = 0;
ct->cc_pid = 0;
ct->cc_caller_id = nfs4_srv_caller_id;
ct->cc_flags = CC_DONTBLOCK;
}
if (ISSPECIAL(stateid)) {
fp = rfs4_findfile(vp, NULL, &create);
if (fp == NULL)
return (NFS4_OK);
if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_NONE) {
rfs4_file_rele(fp);
return (NFS4_OK);
}
if (mode == FWRITE ||
fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_WRITE) {
rfs4_recall_deleg(fp, trunc, NULL);
rfs4_file_rele(fp);
return (NFS4ERR_DELAY);
}
rfs4_file_rele(fp);
return (NFS4_OK);
} else {
stat = rfs4_get_all_state(stateid, &sp, &dsp, &lsp);
if (stat != NFS4_OK)
return (stat);
if (lsp != NULL) {
/* Is associated server instance in its grace period? */
if (rfs4_clnt_in_grace(lsp->rls_locker->rl_client)) {
rfs4_lo_state_rele(lsp, FALSE);
if (sp != NULL)
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_GRACE);
}
if (id->bits.type == LOCKID) {
/* Seqid in the future? - that's bad */
if (lsp->rls_lockid.bits.chgseq <
id->bits.chgseq) {
rfs4_lo_state_rele(lsp, FALSE);
if (sp != NULL)
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_BAD_STATEID);
}
/* Seqid in the past? - that's old */
if (lsp->rls_lockid.bits.chgseq >
id->bits.chgseq) {
rfs4_lo_state_rele(lsp, FALSE);
if (sp != NULL)
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_OLD_STATEID);
}
/* Ensure specified filehandle matches */
if (lsp->rls_state->rs_finfo->rf_vp != vp) {
rfs4_lo_state_rele(lsp, FALSE);
if (sp != NULL)
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_BAD_STATEID);
}
}
if (ct != NULL) {
ct->cc_sysid =
lsp->rls_locker->rl_client->rc_sysidt;
ct->cc_pid = lsp->rls_locker->rl_pid;
}
rfs4_lo_state_rele(lsp, FALSE);
}
/* Stateid provided was an "open" stateid */
if (sp != NULL) {
/* Is associated server instance in its grace period? */
if (rfs4_clnt_in_grace(sp->rs_owner->ro_client)) {
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_GRACE);
}
if (id->bits.type == OPENID) {
/* Seqid in the future? - that's bad */
if (sp->rs_stateid.bits.chgseq <
id->bits.chgseq) {
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_BAD_STATEID);
}
/* Seqid in the past - that's old */
if (sp->rs_stateid.bits.chgseq >
id->bits.chgseq) {
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_OLD_STATEID);
}
}
/* Ensure specified filehandle matches */
if (sp->rs_finfo->rf_vp != vp) {
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_BAD_STATEID);
}
if (sp->rs_owner->ro_need_confirm) {
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_BAD_STATEID);
}
if (sp->rs_closed == TRUE) {
rfs4_state_rele_nounlock(sp);
return (NFS4ERR_OLD_STATEID);
}
if (do_access)
stat = rfs4_state_has_access(sp, mode, vp);
else
stat = NFS4_OK;
/*
* Return whether this state has write
* delegation if desired
*/
if (deleg && (sp->rs_finfo->rf_dinfo.rd_dtype ==
OPEN_DELEGATE_WRITE))
*deleg = TRUE;
/*
* We got a valid stateid, so we update the
* lease on the client. Ideally we would like
* to do this after the calling op succeeds,
* but for now this will be good
* enough. Callers of this routine are
* currently insulated from the state stuff.
*/
rfs4_update_lease(sp->rs_owner->ro_client);
/*
* If a delegation is present on this file and
* this is a WRITE, then update the lastwrite
* time to indicate that activity is present.
*/
if (sp->rs_finfo->rf_dinfo.rd_dtype ==
OPEN_DELEGATE_WRITE &&
mode == FWRITE) {
sp->rs_finfo->rf_dinfo.rd_time_lastwrite =
gethrestime_sec();
}
rfs4_state_rele_nounlock(sp);
return (stat);
}
if (dsp != NULL) {
/* Is associated server instance in its grace period? */
if (rfs4_clnt_in_grace(dsp->rds_client)) {
rfs4_deleg_state_rele(dsp);
return (NFS4ERR_GRACE);
}
if (dsp->rds_delegid.bits.chgseq != id->bits.chgseq) {
rfs4_deleg_state_rele(dsp);
return (NFS4ERR_BAD_STATEID);
}
/* Ensure specified filehandle matches */
if (dsp->rds_finfo->rf_vp != vp) {
rfs4_deleg_state_rele(dsp);
return (NFS4ERR_BAD_STATEID);
}
/*
* Return whether this state has write
* delegation if desired
*/
if (deleg && (dsp->rds_finfo->rf_dinfo.rd_dtype ==
OPEN_DELEGATE_WRITE))
*deleg = TRUE;
rfs4_update_lease(dsp->rds_client);
/*
* If a delegation is present on this file and
* this is a WRITE, then update the lastwrite
* time to indicate that activity is present.
*/
if (dsp->rds_finfo->rf_dinfo.rd_dtype ==
OPEN_DELEGATE_WRITE && mode == FWRITE) {
dsp->rds_finfo->rf_dinfo.rd_time_lastwrite =
gethrestime_sec();
}
/*
* XXX - what happens if this is a WRITE and the
* delegation type of for READ.
*/
rfs4_deleg_state_rele(dsp);
return (stat);
}
/*
* If we got this far, something bad happened
*/
return (NFS4ERR_BAD_STATEID);
}
}
/*
* This is a special function in that for the file struct provided the
* server wants to remove/close all current state associated with the
* file. The prime use of this would be with OP_REMOVE to force the
* release of state and particularly of file locks.
*
* There is an assumption that there is no delegations outstanding on
* this file at this point. The caller should have waited for those
* to be returned or revoked.
*/
void
rfs4_close_all_state(rfs4_file_t *fp)
{
rfs4_state_t *sp;
rfs4_dbe_lock(fp->rf_dbe);
#ifdef DEBUG
/* only applies when server is handing out delegations */
if (rfs4_deleg_policy != SRV_NEVER_DELEGATE)
ASSERT(fp->rf_dinfo.rd_hold_grant > 0);
#endif
/* No delegations for this file */
ASSERT(list_is_empty(&fp->rf_delegstatelist));
/* Make sure that it can not be found */
rfs4_dbe_invalidate(fp->rf_dbe);
if (fp->rf_vp == NULL) {
rfs4_dbe_unlock(fp->rf_dbe);
return;
}
rfs4_dbe_unlock(fp->rf_dbe);
/*
* Hold as writer to prevent other server threads from
* processing requests related to the file while all state is
* being removed.
*/
rw_enter(&fp->rf_file_rwlock, RW_WRITER);
/* Remove ALL state from the file */
while (sp = rfs4_findstate_by_file(fp)) {
rfs4_state_close(sp, FALSE, FALSE, CRED());
rfs4_state_rele_nounlock(sp);
}
/*
* This is only safe since there are no further references to
* the file.
*/
rfs4_dbe_lock(fp->rf_dbe);
if (fp->rf_vp) {
vnode_t *vp = fp->rf_vp;
mutex_enter(&vp->v_vsd_lock);
(void) vsd_set(vp, nfs4_srv_vkey, NULL);
mutex_exit(&vp->v_vsd_lock);
VN_RELE(vp);
fp->rf_vp = NULL;
}
rfs4_dbe_unlock(fp->rf_dbe);
/* Finally let other references to proceed */
rw_exit(&fp->rf_file_rwlock);
}
/*
* This function is used as a target for the rfs4_dbe_walk() call
* below. The purpose of this function is to see if the
* lockowner_state refers to a file that resides within the exportinfo
* export. If so, then remove the lock_owner state (file locks and
* share "locks") for this object since the intent is the server is
* unexporting the specified directory. Be sure to invalidate the
* object after the state has been released
*/
static void
rfs4_lo_state_walk_callout(rfs4_entry_t u_entry, void *e)
{
rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry;
struct exportinfo *exi = (struct exportinfo *)e;
nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp;
fhandle_t *efhp;
efhp = (fhandle_t *)&exi->exi_fh;
exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4;
FH_TO_FMT4(efhp, exi_fhp);
finfo_fhp = (nfs_fh4_fmt_t *)lsp->rls_state->rs_finfo->
rf_filehandle.nfs_fh4_val;
if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) &&
bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata,
exi_fhp->fh4_xlen) == 0) {
rfs4_state_close(lsp->rls_state, FALSE, FALSE, CRED());
rfs4_dbe_invalidate(lsp->rls_dbe);
rfs4_dbe_invalidate(lsp->rls_state->rs_dbe);
}
}
/*
* This function is used as a target for the rfs4_dbe_walk() call
* below. The purpose of this function is to see if the state refers
* to a file that resides within the exportinfo export. If so, then
* remove the open state for this object since the intent is the
* server is unexporting the specified directory. The main result for
* this type of entry is to invalidate it such it will not be found in
* the future.
*/
static void
rfs4_state_walk_callout(rfs4_entry_t u_entry, void *e)
{
rfs4_state_t *sp = (rfs4_state_t *)u_entry;
struct exportinfo *exi = (struct exportinfo *)e;
nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp;
fhandle_t *efhp;
efhp = (fhandle_t *)&exi->exi_fh;
exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4;
FH_TO_FMT4(efhp, exi_fhp);
finfo_fhp =
(nfs_fh4_fmt_t *)sp->rs_finfo->rf_filehandle.nfs_fh4_val;
if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) &&
bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata,
exi_fhp->fh4_xlen) == 0) {
rfs4_state_close(sp, TRUE, FALSE, CRED());
rfs4_dbe_invalidate(sp->rs_dbe);
}
}
/*
* This function is used as a target for the rfs4_dbe_walk() call
* below. The purpose of this function is to see if the state refers
* to a file that resides within the exportinfo export. If so, then
* remove the deleg state for this object since the intent is the
* server is unexporting the specified directory. The main result for
* this type of entry is to invalidate it such it will not be found in
* the future.
*/
static void
rfs4_deleg_state_walk_callout(rfs4_entry_t u_entry, void *e)
{
rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry;
struct exportinfo *exi = (struct exportinfo *)e;
nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp;
fhandle_t *efhp;
efhp = (fhandle_t *)&exi->exi_fh;
exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4;
FH_TO_FMT4(efhp, exi_fhp);
finfo_fhp =
(nfs_fh4_fmt_t *)dsp->rds_finfo->rf_filehandle.nfs_fh4_val;
if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) &&
bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata,
exi_fhp->fh4_xlen) == 0) {
rfs4_dbe_invalidate(dsp->rds_dbe);
}
}
/*
* This function is used as a target for the rfs4_dbe_walk() call
* below. The purpose of this function is to see if the state refers
* to a file that resides within the exportinfo export. If so, then
* release vnode hold for this object since the intent is the server
* is unexporting the specified directory. Invalidation will prevent
* this struct from being found in the future.
*/
static void
rfs4_file_walk_callout(rfs4_entry_t u_entry, void *e)
{
rfs4_file_t *fp = (rfs4_file_t *)u_entry;
struct exportinfo *exi = (struct exportinfo *)e;
nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp;
fhandle_t *efhp;
efhp = (fhandle_t *)&exi->exi_fh;
exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4;
FH_TO_FMT4(efhp, exi_fhp);
finfo_fhp = (nfs_fh4_fmt_t *)fp->rf_filehandle.nfs_fh4_val;
if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) &&
bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata,
exi_fhp->fh4_xlen) == 0) {
if (fp->rf_vp) {
vnode_t *vp = fp->rf_vp;
/*
* don't leak monitors and remove the reference
* put on the vnode when the delegation was granted.
*/
if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_READ) {
(void) fem_uninstall(vp, deleg_rdops,
(void *)fp);
vn_open_downgrade(vp, FREAD);
} else if (fp->rf_dinfo.rd_dtype ==
OPEN_DELEGATE_WRITE) {
(void) fem_uninstall(vp, deleg_wrops,
(void *)fp);
vn_open_downgrade(vp, FREAD|FWRITE);
}
mutex_enter(&vp->v_vsd_lock);
(void) vsd_set(vp, nfs4_srv_vkey, NULL);
mutex_exit(&vp->v_vsd_lock);
VN_RELE(vp);
fp->rf_vp = NULL;
}
rfs4_dbe_invalidate(fp->rf_dbe);
}
}
/*
* Given a directory that is being unexported, cleanup/release all
* state in the server that refers to objects residing underneath this
* particular export. The ordering of the release is important.
* Lock_owner, then state and then file.
*/
void
rfs4_clean_state_exi(struct exportinfo *exi)
{
mutex_enter(&rfs4_state_lock);
if (rfs4_server_state == NULL) {
mutex_exit(&rfs4_state_lock);
return;
}
rfs4_dbe_walk(rfs4_lo_state_tab, rfs4_lo_state_walk_callout, exi);
rfs4_dbe_walk(rfs4_state_tab, rfs4_state_walk_callout, exi);
rfs4_dbe_walk(rfs4_deleg_state_tab, rfs4_deleg_state_walk_callout, exi);
rfs4_dbe_walk(rfs4_file_tab, rfs4_file_walk_callout, exi);
mutex_exit(&rfs4_state_lock);
}