/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* NFS Version 4 state recovery code.
*/
#include <nfs/nfs4_clnt.h>
#include <nfs/nfs4.h>
#include <nfs/rnode4.h>
#include <sys/cmn_err.h>
#include <sys/cred.h>
#include <sys/systm.h>
#include <sys/flock.h>
#include <sys/dnlc.h>
#include <sys/ddi.h>
#include <sys/disp.h>
#include <sys/list.h>
#include <sys/sdt.h>
#include <sys/mount.h>
#include <sys/door.h>
#include <nfs/nfssys.h>
#include <nfs/nfsid_map.h>
#include <nfs/nfs4_idmap_impl.h>
extern r4hashq_t *rtable4;
/*
* Information that describes what needs to be done for recovery. It is
* passed to a client recovery thread as well as passed to various recovery
* routines. rc_mi, rc_vp1, and rc_vp2 refer to the filesystem and
* vnode(s) affected by recovery. rc_vp1 and rc_vp2 are references (use
* VN_HOLD) or NULL. rc_lost_rqst contains information about the lost
* lock or open/close request, and it holds reference counts for the
* various objects (vnode, etc.). The recovery thread also uses flags set
* in the mntinfo4_t or vnode_t to tell it what to do. rc_error is used
* to save the error that originally triggered the recovery event -- will
* later be used to set mi_error if recovery doesn't work. rc_bseqid_rqst
* contains information about the request that got NFS4ERR_BAD_SEQID, and
* it holds reference count for the various objects (vnode, open owner,
* open stream, lock owner).
*/
typedef struct {
mntinfo4_t *rc_mi;
vnode_t *rc_vp1;
vnode_t *rc_vp2;
nfs4_recov_t rc_action;
stateid4 rc_stateid;
bool_t rc_srv_reboot; /* server has rebooted */
nfs4_lost_rqst_t *rc_lost_rqst;
nfs4_error_t rc_orig_errors; /* original errors causing recovery */
int rc_error;
nfs4_bseqid_entry_t *rc_bseqid_rqst;
vnode_t *rc_moved_vp;
char *rc_moved_nm;
} recov_info_t;
/*
* How long to wait before trying again if there is an error doing
* recovery, in seconds.
*/
static int recov_err_delay = 1;
/*
* How long to wait when processing NFS4ERR_GRACE or NFS4ERR_DELAY
* errors. Expressed in seconds. Default is defined as
* NFS4ERR_DELAY_TIME and this variable is initialized in nfs4_subr_init()
*/
time_t nfs4err_delay_time = 0;
/*
* Tuneable to limit how many time "exempt" ops go OTW
* after a recovery error. Exempt op hints are OH_CLOSE,
* OH_LOCKU, OH_DELEGRETURN. These previously always went
* OTW even after rnode was "dead" due to recovery errors.
*
* The tuneable below limits the number of times a start_fop
* invocation will retry the exempt hints. After the limit
* is reached, nfs4_start_fop will return an error just like
* it would for non-exempt op hints.
*/
int nfs4_max_recov_error_retry = 3;
/*
* Number of seconds the recovery thread should pause before retry when the
* filesystem has been forcibly unmounted.
*/
int nfs4_unmount_delay = 1;
#ifdef DEBUG
/*
* How long to wait (in seconds) between recovery operations on a given
* file. Normally zero, but could be set longer for testing purposes.
*/
static int nfs4_recovdelay = 0;
/*
* Switch that controls whether to go into the debugger when recovery
* fails.
*/
static int nfs4_fail_recov_stop = 0;
/*
* Tuneables to debug client namespace interaction with server
* mount points:
*
* nfs4_srvmnt_fail_cnt:
* number of times EACCES returned because client
* attempted to cross server mountpoint
*
* nfs4_srvmnt_debug:
* trigger console printf whenever client attempts
* to cross server mountpoint
*/
int nfs4_srvmnt_fail_cnt = 0;
int nfs4_srvmnt_debug = 0;
#endif
extern zone_key_t nfs4clnt_zone_key;
/* forward references, in alphabetic order */
static void close_after_open_resend(vnode_t *, cred_t *, uint32_t,
nfs4_error_t *);
static void errs_to_action(recov_info_t *,
nfs4_server_t *, mntinfo4_t *, stateid4 *, nfs4_lost_rqst_t *, int,
nfs_opnum4, nfs4_bseqid_entry_t *);
static void flush_reinstate(nfs4_lost_rqst_t *);
static void free_milist(mntinfo4_t **, int);
static mntinfo4_t **make_milist(nfs4_server_t *, int *);
static int nfs4_check_recov_err(vnode_t *, nfs4_op_hint_t,
nfs4_recov_state_t *, int, char *);
static char *nfs4_getsrvnames(mntinfo4_t *, size_t *);
static void nfs4_recov_fh_fail(vnode_t *, int, nfsstat4);
static void nfs4_recov_thread(recov_info_t *);
static void nfs4_remove_lost_rqsts(mntinfo4_t *, nfs4_server_t *);
static void nfs4_resend_lost_rqsts(recov_info_t *, nfs4_server_t *);
static cred_t *pid_to_cr(pid_t);
static void reclaim_one_lock(vnode_t *, flock64_t *, nfs4_error_t *, int *);
static void recov_bad_seqid(recov_info_t *);
static void recov_badstate(recov_info_t *, vnode_t *, nfsstat4);
static void recov_clientid(recov_info_t *, nfs4_server_t *);
static void recov_done(mntinfo4_t *, recov_info_t *);
static void recov_filehandle(nfs4_recov_t, mntinfo4_t *, vnode_t *);
static void recov_newserver(recov_info_t *, nfs4_server_t **, bool_t *);
static void recov_openfiles(recov_info_t *, nfs4_server_t *);
static void recov_stale(mntinfo4_t *, vnode_t *);
static void nfs4_free_lost_rqst(nfs4_lost_rqst_t *, nfs4_server_t *);
static void recov_throttle(recov_info_t *, vnode_t *);
static void relock_skip_pid(locklist_t *, pid_t);
static void resend_lock(nfs4_lost_rqst_t *, nfs4_error_t *);
static void resend_one_op(nfs4_lost_rqst_t *, nfs4_error_t *, mntinfo4_t *,
nfs4_server_t *);
static void save_bseqid_rqst(nfs4_bseqid_entry_t *, recov_info_t *);
static void start_recovery(recov_info_t *, mntinfo4_t *, vnode_t *, vnode_t *,
nfs4_server_t *, vnode_t *, char *);
static void start_recovery_action(nfs4_recov_t, bool_t, mntinfo4_t *, vnode_t *,
vnode_t *);
static int wait_for_recovery(mntinfo4_t *, nfs4_op_hint_t);
/*
* Return non-zero if the given errno, status, and rpc status codes
* in the nfs4_error_t indicate that client recovery is needed.
* "stateful" indicates whether the call that got the error establishes or
* removes state on the server (open, close, lock, unlock, delegreturn).
*/
int
nfs4_needs_recovery(nfs4_error_t *ep, bool_t stateful, vfs_t *vfsp)
{
int recov = 0;
mntinfo4_t *mi;
/*
* Try failover if the error values justify it and if
* it's a failover mount. Don't try if the mount is in
* progress, failures are handled explicitly by nfs4rootvp.
*/
if (nfs4_try_failover(ep)) {
mi = VFTOMI4(vfsp);
mutex_enter(&mi->mi_lock);
recov = FAILOVER_MOUNT4(mi) && !(mi->mi_flags & MI4_MOUNTING);
mutex_exit(&mi->mi_lock);
if (recov)
return (recov);
}
if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vfsp)) {
/*
* The server may have gotten the request, so for stateful
* ops we need to resynchronize and possibly back out the
* op.
*/
return (stateful);
}
if (ep->error != 0)
return (0);
/* stat values are listed alphabetically */
/*
* There are two lists here: the errors for which we have code, and
* the errors for which we plan to have code before FCS. For the
* second list, print a warning message but don't attempt recovery.
*/
switch (ep->stat) {
case NFS4ERR_BADHANDLE:
case NFS4ERR_BAD_SEQID:
case NFS4ERR_BAD_STATEID:
case NFS4ERR_DELAY:
case NFS4ERR_EXPIRED:
case NFS4ERR_FHEXPIRED:
case NFS4ERR_GRACE:
case NFS4ERR_OLD_STATEID:
case NFS4ERR_RESOURCE:
case NFS4ERR_STALE_CLIENTID:
case NFS4ERR_STALE_STATEID:
case NFS4ERR_WRONGSEC:
case NFS4ERR_STALE:
recov = 1;
break;
#ifdef DEBUG
case NFS4ERR_LEASE_MOVED:
case NFS4ERR_MOVED:
zcmn_err(VFTOMI4(vfsp)->mi_zone->zone_id,
CE_WARN, "!Can't yet recover from NFS status %d",
ep->stat);
break;
#endif
}
return (recov);
}
/*
* Some operations such as DELEGRETURN want to avoid invoking
* recovery actions that will only mark the file dead. If
* better handlers are invoked for any of these errors, this
* routine should be modified.
*/
int
nfs4_recov_marks_dead(nfsstat4 status)
{
if (status == NFS4ERR_BAD_SEQID ||
status == NFS4ERR_EXPIRED ||
status == NFS4ERR_BAD_STATEID ||
status == NFS4ERR_OLD_STATEID)
return (1);
return (0);
}
/*
* Transfer the state recovery information in recovp to mi's resend queue,
* and mark mi as having a lost state request.
*/
static void
nfs4_enqueue_lost_rqst(recov_info_t *recovp, mntinfo4_t *mi)
{
nfs4_lost_rqst_t *lrp = recovp->rc_lost_rqst;
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
ASSERT(lrp != NULL && lrp->lr_op != 0);
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
"nfs4_enqueue_lost_rqst %p, op %d",
(void *)lrp, lrp->lr_op));
mutex_enter(&mi->mi_lock);
mi->mi_recovflags |= MI4R_LOST_STATE;
if (lrp->lr_putfirst)
list_insert_head(&mi->mi_lost_state, lrp);
else
list_insert_tail(&mi->mi_lost_state, lrp);
recovp->rc_lost_rqst = NULL;
mutex_exit(&mi->mi_lock);
nfs4_queue_event(RE_LOST_STATE, mi, NULL, lrp->lr_op, lrp->lr_vp,
lrp->lr_dvp, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
}
/*
* Transfer the bad seqid recovery information in recovp to mi's
* bad seqid queue, and mark mi as having a bad seqid request.
*/
void
enqueue_bseqid_rqst(recov_info_t *recovp, mntinfo4_t *mi)
{
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
ASSERT(recovp->rc_bseqid_rqst != NULL);
mutex_enter(&mi->mi_lock);
mi->mi_recovflags |= MI4R_BAD_SEQID;
list_insert_tail(&mi->mi_bseqid_list, recovp->rc_bseqid_rqst);
recovp->rc_bseqid_rqst = NULL;
mutex_exit(&mi->mi_lock);
}
/*
* Initiate recovery.
*
* The nfs4_error_t contains the return codes that triggered a recovery
* attempt. mi, vp1, and vp2 refer to the filesystem and files that were
* being operated on. vp1 and vp2 may be NULL.
*
* Multiple calls are okay. If recovery is already underway, the call
* updates the information about what state needs recovery but does not
* start a new thread. The caller should hold mi->mi_recovlock as a reader
* for proper synchronization with any recovery thread.
*
* This will return TRUE if recovery was aborted, and FALSE otherwise.
*/
bool_t
nfs4_start_recovery(nfs4_error_t *ep, mntinfo4_t *mi, vnode_t *vp1,
vnode_t *vp2, stateid4 *sid, nfs4_lost_rqst_t *lost_rqstp, nfs_opnum4 op,
nfs4_bseqid_entry_t *bsep, vnode_t *moved_vp, char *moved_nm)
{
recov_info_t *recovp;
nfs4_server_t *sp;
bool_t abort = FALSE;
bool_t gone = FALSE;
ASSERT(nfs_zone() == mi->mi_zone);
mutex_enter(&mi->mi_lock);
/*
* If there is lost state, we need to kick off recovery even if the
* filesystem has been unmounted or the zone is shutting down.
*/
gone = FS_OR_ZONE_GONE4(mi->mi_vfsp);
if (gone) {
ASSERT(ep->error != EINTR || lost_rqstp != NULL);
if (ep->error == EIO && lost_rqstp == NULL) {
/* failed due to forced unmount, no new lost state */
abort = TRUE;
}
if ((ep->error == 0 || ep->error == ETIMEDOUT) &&
!(mi->mi_recovflags & MI4R_LOST_STATE)) {
/* some other failure, no existing lost state */
abort = TRUE;
}
if (abort) {
mutex_exit(&mi->mi_lock);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4_start_recovery: fs unmounted"));
return (TRUE);
}
}
mi->mi_in_recovery++;
mutex_exit(&mi->mi_lock);
recovp = kmem_alloc(sizeof (recov_info_t), KM_SLEEP);
recovp->rc_orig_errors = *ep;
sp = find_nfs4_server(mi);
errs_to_action(recovp, sp, mi, sid, lost_rqstp, gone, op, bsep);
if (sp != NULL)
mutex_exit(&sp->s_lock);
start_recovery(recovp, mi, vp1, vp2, sp, moved_vp, moved_nm);
if (sp != NULL)
nfs4_server_rele(sp);
return (FALSE);
}
/*
* Internal version of nfs4_start_recovery. The difference is that the
* caller specifies the recovery action, rather than the errors leading to
* recovery.
*/
static void
start_recovery_action(nfs4_recov_t what, bool_t reboot, mntinfo4_t *mi,
vnode_t *vp1, vnode_t *vp2)
{
recov_info_t *recovp;
ASSERT(nfs_zone() == mi->mi_zone);
mutex_enter(&mi->mi_lock);
mi->mi_in_recovery++;
mutex_exit(&mi->mi_lock);
recovp = kmem_zalloc(sizeof (recov_info_t), KM_SLEEP);
recovp->rc_action = what;
recovp->rc_srv_reboot = reboot;
recovp->rc_error = EIO;
start_recovery(recovp, mi, vp1, vp2, NULL, NULL, NULL);
}
static void
start_recovery(recov_info_t *recovp, mntinfo4_t *mi,
vnode_t *vp1, vnode_t *vp2, nfs4_server_t *sp,
vnode_t *moved_vp, char *moved_nm)
{
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"start_recovery: mi %p, what %s", (void*)mi,
nfs4_recov_action_to_str(recovp->rc_action)));
/*
* Bump the reference on the vfs so that we can pass it to the
* recovery thread.
*/
VFS_HOLD(mi->mi_vfsp);
MI4_HOLD(mi);
again:
switch (recovp->rc_action) {
case NR_FAILOVER:
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
if (mi->mi_servers->sv_next == NULL)
goto out_no_thread;
mutex_enter(&mi->mi_lock);
mi->mi_recovflags |= MI4R_NEED_NEW_SERVER;
mutex_exit(&mi->mi_lock);
if (recovp->rc_lost_rqst != NULL)
nfs4_enqueue_lost_rqst(recovp, mi);
break;
case NR_CLIENTID:
/*
* If the filesystem has been unmounted, punt.
*/
if (sp == NULL)
goto out_no_thread;
/*
* If nobody else is working on the clientid, mark the
* clientid as being no longer set. Then mark the specific
* filesystem being worked on.
*/
if (!nfs4_server_in_recovery(sp)) {
mutex_enter(&sp->s_lock);
sp->s_flags &= ~N4S_CLIENTID_SET;
mutex_exit(&sp->s_lock);
}
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
mutex_enter(&mi->mi_lock);
mi->mi_recovflags |= MI4R_NEED_CLIENTID;
if (recovp->rc_srv_reboot)
mi->mi_recovflags |= MI4R_SRV_REBOOT;
mutex_exit(&mi->mi_lock);
break;
case NR_OPENFILES:
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
mutex_enter(&mi->mi_lock);
mi->mi_recovflags |= MI4R_REOPEN_FILES;
if (recovp->rc_srv_reboot)
mi->mi_recovflags |= MI4R_SRV_REBOOT;
mutex_exit(&mi->mi_lock);
break;
case NR_WRONGSEC:
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
mutex_enter(&mi->mi_lock);
mi->mi_recovflags |= MI4R_NEED_SECINFO;
mutex_exit(&mi->mi_lock);
break;
case NR_EXPIRED:
if (vp1 != NULL)
recov_badstate(recovp, vp1, NFS4ERR_EXPIRED);
if (vp2 != NULL)
recov_badstate(recovp, vp2, NFS4ERR_EXPIRED);
goto out_no_thread; /* no further recovery possible */
case NR_BAD_STATEID:
if (vp1 != NULL)
recov_badstate(recovp, vp1, NFS4ERR_BAD_STATEID);
if (vp2 != NULL)
recov_badstate(recovp, vp2, NFS4ERR_BAD_STATEID);
goto out_no_thread; /* no further recovery possible */
case NR_FHEXPIRED:
case NR_BADHANDLE:
if (vp1 != NULL)
recov_throttle(recovp, vp1);
if (vp2 != NULL)
recov_throttle(recovp, vp2);
/*
* Recover the filehandle now, rather than using a
* separate thread. We can do this because filehandle
* recovery is independent of any other state, and because
* we know that we are not competing with the recovery
* thread at this time. recov_filehandle will deal with
* threads that are competing to recover this filehandle.
*/
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
if (vp1 != NULL)
recov_filehandle(recovp->rc_action, mi, vp1);
if (vp2 != NULL)
recov_filehandle(recovp->rc_action, mi, vp2);
goto out_no_thread; /* no further recovery needed */
case NR_STALE:
/*
* NFS4ERR_STALE handling
* recov_stale() could set MI4R_NEED_NEW_SERVER to
* indicate that we can and should failover.
*/
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
if (vp1 != NULL)
recov_stale(mi, vp1);
if (vp2 != NULL)
recov_stale(mi, vp2);
mutex_enter(&mi->mi_lock);
if ((mi->mi_recovflags & MI4R_NEED_NEW_SERVER) == 0) {
mutex_exit(&mi->mi_lock);
goto out_no_thread;
}
mutex_exit(&mi->mi_lock);
recovp->rc_action = NR_FAILOVER;
goto again;
case NR_BAD_SEQID:
if (recovp->rc_bseqid_rqst) {
enqueue_bseqid_rqst(recovp, mi);
break;
}
if (vp1 != NULL)
recov_badstate(recovp, vp1, NFS4ERR_BAD_SEQID);
if (vp2 != NULL)
recov_badstate(recovp, vp2, NFS4ERR_BAD_SEQID);
goto out_no_thread; /* no further recovery possible */
case NR_OLDSTATEID:
if (vp1 != NULL)
recov_badstate(recovp, vp1, NFS4ERR_OLD_STATEID);
if (vp2 != NULL)
recov_badstate(recovp, vp2, NFS4ERR_OLD_STATEID);
goto out_no_thread; /* no further recovery possible */
case NR_GRACE:
nfs4_set_grace_wait(mi);
goto out_no_thread; /* no further action required for GRACE */
case NR_DELAY:
if (vp1)
nfs4_set_delay_wait(vp1);
goto out_no_thread; /* no further action required for DELAY */
case NR_LOST_STATE_RQST:
case NR_LOST_LOCK:
nfs4_enqueue_lost_rqst(recovp, mi);
break;
default:
nfs4_queue_event(RE_UNEXPECTED_ACTION, mi, NULL,
recovp->rc_action, NULL, NULL, 0, NULL, 0, TAG_NONE,
TAG_NONE, 0, 0);
goto out_no_thread;
}
/*
* If either file recently went through the same recovery, wait
* awhile. This is in case there is some sort of bug; we might not
* be able to recover properly, but at least we won't bombard the
* server with calls, and we won't tie up the client.
*/
if (vp1 != NULL)
recov_throttle(recovp, vp1);
if (vp2 != NULL)
recov_throttle(recovp, vp2);
/*
* If there's already a recovery thread, don't start another one.
*/
mutex_enter(&mi->mi_lock);
if (mi->mi_flags & MI4_RECOV_ACTIV) {
mutex_exit(&mi->mi_lock);
goto out_no_thread;
}
mi->mi_flags |= MI4_RECOV_ACTIV;
mutex_exit(&mi->mi_lock);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"start_recovery: starting new thread for mi %p", (void*)mi));
recovp->rc_mi = mi;
recovp->rc_vp1 = vp1;
if (vp1 != NULL) {
ASSERT(VTOMI4(vp1) == mi);
VN_HOLD(recovp->rc_vp1);
}
recovp->rc_vp2 = vp2;
if (vp2 != NULL) {
ASSERT(VTOMI4(vp2) == mi);
VN_HOLD(recovp->rc_vp2);
}
recovp->rc_moved_vp = moved_vp;
recovp->rc_moved_nm = moved_nm;
(void) zthread_create(NULL, 0, nfs4_recov_thread, recovp, 0,
minclsyspri);
return;
/* not reached by thread creating call */
out_no_thread:
mutex_enter(&mi->mi_lock);
mi->mi_in_recovery--;
if (mi->mi_in_recovery == 0)
cv_broadcast(&mi->mi_cv_in_recov);
mutex_exit(&mi->mi_lock);
VFS_RELE(mi->mi_vfsp);
MI4_RELE(mi);
/*
* Free up resources that were allocated for us.
*/
kmem_free(recovp, sizeof (recov_info_t));
}
static int
nfs4_check_recov_err(vnode_t *vp, nfs4_op_hint_t op,
nfs4_recov_state_t *rsp, int retry_err_cnt, char *str)
{
rnode4_t *rp;
int error = 0;
int exempt;
if (vp == NULL)
return (0);
exempt = (op == OH_CLOSE || op == OH_LOCKU || op == OH_DELEGRETURN);
rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
/*
* If there was a recovery error, then allow op hints "exempt" from
* recov errors to retry (currently 3 times). Either r_error or
* EIO is returned for non-exempt op hints.
*/
if (rp->r_flags & R4RECOVERR) {
if (exempt && rsp->rs_num_retry_despite_err <=
nfs4_max_recov_error_retry) {
/*
* Check to make sure that we haven't already inc'd
* rs_num_retry_despite_err for current nfs4_start_fop
* instance. We don't want to double inc (if we were
* called with vp2, then the vp1 call could have
* already incremented.
*/
if (retry_err_cnt == rsp->rs_num_retry_despite_err)
rsp->rs_num_retry_despite_err++;
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4_start_fop: %s %p DEAD, cnt=%d", str,
(void *)vp, rsp->rs_num_retry_despite_err));
} else {
error = (rp->r_error ? rp->r_error : EIO);
/*
* An ESTALE error on a non-regular file is not
* "sticky". Return the ESTALE error once, but
* clear the condition to allow future operations
* to go OTW. This will allow the client to
* recover if the server has merely unshared then
* re-shared the file system. For regular files,
* the unshare has destroyed the open state at the
* server and we aren't willing to do a reopen (yet).
*/
if (error == ESTALE && vp->v_type != VREG) {
rp->r_flags &=
~(R4RECOVERR|R4RECOVERRP|R4STALE);
rp->r_error = 0;
error = ESTALE;
}
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4_start_fop: %s %p DEAD, cnt=%d error=%d",
str, (void *)vp,
rsp->rs_num_retry_despite_err, error));
}
}
mutex_exit(&rp->r_statelock);
return (error);
}
/*
* Initial setup code that every operation should call if it might invoke
* client recovery. Can block waiting for recovery to finish on a
* filesystem. Either vnode ptr can be NULL.
*
* Returns 0 if there are no outstanding errors. Can return an
* errno value under various circumstances (e.g., failed recovery, or
* interrupted while waiting for recovery to finish).
*
* There must be a corresponding call to nfs4_end_op() to free up any locks
* or resources allocated by this call (assuming this call succeeded),
* using the same rsp that's passed in here.
*
* The open and lock seqid synchronization must be stopped before calling this
* function, as it could lead to deadlock when trying to reopen a file or
* reclaim a lock. The synchronization is obtained with calls to:
* nfs4_start_open_seqid_sync()
* nfs4_start_lock_seqid_sync()
*
* *startrecovp is set TRUE if the caller should not bother with the
* over-the-wire call, and just initiate recovery for the given request.
* This is typically used for state-releasing ops if the filesystem has
* been forcibly unmounted. startrecovp may be NULL for
* non-state-releasing ops.
*/
int
nfs4_start_fop(mntinfo4_t *mi, vnode_t *vp1, vnode_t *vp2, nfs4_op_hint_t op,
nfs4_recov_state_t *rsp, bool_t *startrecovp)
{
int error = 0, rerr_cnt;
nfs4_server_t *sp = NULL;
nfs4_server_t *tsp;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
uint_t droplock_cnt;
#ifdef DEBUG
void *fop_caller;
#endif
ASSERT(vp1 == NULL || vp1->v_vfsp == mi->mi_vfsp);
ASSERT(vp2 == NULL || vp2->v_vfsp == mi->mi_vfsp);
#ifdef DEBUG
if ((fop_caller = tsd_get(nfs4_tsd_key)) != NULL) {
cmn_err(CE_PANIC, "Missing nfs4_end_fop: last caller %p",
fop_caller);
}
(void) tsd_set(nfs4_tsd_key, caller());
#endif
rsp->rs_sp = NULL;
rsp->rs_flags &= ~NFS4_RS_RENAME_HELD;
rerr_cnt = rsp->rs_num_retry_despite_err;
/*
* Process the items that may delay() based on server response
*/
error = nfs4_wait_for_grace(mi, rsp);
if (error)
goto out;
if (vp1 != NULL) {
error = nfs4_wait_for_delay(vp1, rsp);
if (error)
goto out;
}
/* Wait for a delegation recall to complete. */
error = wait_for_recall(vp1, vp2, op, rsp);
if (error)
goto out;
/*
* Wait for any current recovery actions to finish. Note that a
* recovery thread can still start up after wait_for_recovery()
* finishes. We don't block out recovery operations until we
* acquire s_recovlock and mi_recovlock.
*/
error = wait_for_recovery(mi, op);
if (error)
goto out;
/*
* Check to see if the rnode is already marked with a
* recovery error. If so, return it immediately. But
* always pass CLOSE, LOCKU, and DELEGRETURN so we can
* clean up state on the server.
*/
if (vp1 != NULL) {
if (error = nfs4_check_recov_err(vp1, op, rsp, rerr_cnt, "vp1"))
goto out;
nfs4_check_remap(mi, vp1, NFS4_REMAP_CKATTRS, &e);
}
if (vp2 != NULL) {
if (error = nfs4_check_recov_err(vp2, op, rsp, rerr_cnt, "vp2"))
goto out;
nfs4_check_remap(mi, vp2, NFS4_REMAP_CKATTRS, &e);
}
/*
* The lock order calls for us to acquire s_recovlock before
* mi_recovlock, but we have to hold mi_recovlock to look up sp (to
* prevent races with the failover/migration code). So acquire
* mi_recovlock, look up sp, drop mi_recovlock, acquire
* s_recovlock and mi_recovlock, then verify that sp is still the
* right object. XXX Can we find a simpler way to deal with this?
*/
if (nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
mi->mi_flags & MI4_INT)) {
error = EINTR;
goto out;
}
get_sp:
sp = find_nfs4_server(mi);
if (sp != NULL) {
sp->s_otw_call_count++;
mutex_exit(&sp->s_lock);
droplock_cnt = mi->mi_srvset_cnt;
}
nfs_rw_exit(&mi->mi_recovlock);
if (sp != NULL) {
if (nfs_rw_enter_sig(&sp->s_recovlock, RW_READER,
mi->mi_flags & MI4_INT)) {
error = EINTR;
goto out;
}
}
if (nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
mi->mi_flags & MI4_INT)) {
if (sp != NULL)
nfs_rw_exit(&sp->s_recovlock);
error = EINTR;
goto out;
}
/*
* If the mntinfo4_t hasn't changed nfs4_sever_ts then
* there's no point in double checking to make sure it
* has switched.
*/
if (sp == NULL || droplock_cnt != mi->mi_srvset_cnt) {
tsp = find_nfs4_server(mi);
if (tsp != sp) {
/* try again */
if (tsp != NULL) {
mutex_exit(&tsp->s_lock);
nfs4_server_rele(tsp);
tsp = NULL;
}
if (sp != NULL) {
nfs_rw_exit(&sp->s_recovlock);
mutex_enter(&sp->s_lock);
sp->s_otw_call_count--;
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
sp = NULL;
}
goto get_sp;
} else {
if (tsp != NULL) {
mutex_exit(&tsp->s_lock);
nfs4_server_rele(tsp);
tsp = NULL;
}
}
}
if (sp != NULL) {
rsp->rs_sp = sp;
}
/*
* If the fileystem uses volatile filehandles, obtain a lock so
* that we synchronize with renames. Exception: mount operations
* can change mi_fh_expire_type, which could be a problem, since
* the end_op code needs to be consistent with the start_op code
* about mi_rename_lock. Since mounts don't compete with renames,
* it's simpler to just not acquire the rename lock for mounts.
*/
if (NFS4_VOLATILE_FH(mi) && op != OH_MOUNT) {
if (nfs_rw_enter_sig(&mi->mi_rename_lock,
op == OH_VFH_RENAME ? RW_WRITER : RW_READER,
mi->mi_flags & MI4_INT)) {
nfs_rw_exit(&mi->mi_recovlock);
if (sp != NULL)
nfs_rw_exit(&sp->s_recovlock);
error = EINTR;
goto out;
}
rsp->rs_flags |= NFS4_RS_RENAME_HELD;
}
if (OH_IS_STATE_RELE(op)) {
/*
* For forced unmount, letting the request proceed will
* almost always delay response to the user, so hand it off
* to the recovery thread. For exiting lwp's, we don't
* have a good way to tell if the request will hang. We
* generally want processes to handle their own requests so
* that they can be done in parallel, but if there is
* already a recovery thread, hand the request off to it.
* This will improve user response at no cost to overall
* system throughput. For zone shutdown, we'd prefer
* the recovery thread to handle this as well.
*/
ASSERT(startrecovp != NULL);
mutex_enter(&mi->mi_lock);
if (FS_OR_ZONE_GONE4(mi->mi_vfsp))
*startrecovp = TRUE;
else if ((curthread->t_proc_flag & TP_LWPEXIT) &&
(mi->mi_flags & MI4_RECOV_ACTIV))
*startrecovp = TRUE;
else
*startrecovp = FALSE;
mutex_exit(&mi->mi_lock);
} else
if (startrecovp != NULL)
*startrecovp = FALSE;
ASSERT(error == 0);
return (error);
out:
ASSERT(error != 0);
if (sp != NULL) {
mutex_enter(&sp->s_lock);
sp->s_otw_call_count--;
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
rsp->rs_sp = NULL;
}
nfs4_end_op_recall(vp1, vp2, rsp);
#ifdef DEBUG
(void) tsd_set(nfs4_tsd_key, NULL);
#endif
return (error);
}
/*
* It is up to the caller to determine if rsp->rs_sp being NULL
* is detrimental or not.
*/
int
nfs4_start_op(mntinfo4_t *mi, vnode_t *vp1, vnode_t *vp2,
nfs4_recov_state_t *rsp)
{
ASSERT(rsp->rs_num_retry_despite_err == 0);
rsp->rs_num_retry_despite_err = 0;
return (nfs4_start_fop(mi, vp1, vp2, OH_OTHER, rsp, NULL));
}
/*
* Release any resources acquired by nfs4_start_op().
* 'sp' should be the nfs4_server pointer returned by nfs4_start_op().
*
* The operation hint is used to avoid a deadlock by bypassing delegation
* return logic for writes, which are done while returning a delegation.
*/
void
nfs4_end_fop(mntinfo4_t *mi, vnode_t *vp1, vnode_t *vp2, nfs4_op_hint_t op,
nfs4_recov_state_t *rsp, bool_t needs_recov)
{
nfs4_server_t *sp = rsp->rs_sp;
rnode4_t *rp = NULL;
#ifdef lint
/*
* The op hint isn't used any more, but might be in
* the future.
*/
op = op;
#endif
#ifdef DEBUG
ASSERT(tsd_get(nfs4_tsd_key) != NULL);
(void) tsd_set(nfs4_tsd_key, NULL);
#endif
nfs4_end_op_recall(vp1, vp2, rsp);
if (rsp->rs_flags & NFS4_RS_RENAME_HELD)
nfs_rw_exit(&mi->mi_rename_lock);
if (!needs_recov) {
if (rsp->rs_flags & NFS4_RS_DELAY_MSG) {
/* may need to clear the delay interval */
if (vp1 != NULL) {
rp = VTOR4(vp1);
mutex_enter(&rp->r_statelock);
rp->r_delay_interval = 0;
mutex_exit(&rp->r_statelock);
}
}
rsp->rs_flags &= ~(NFS4_RS_GRACE_MSG|NFS4_RS_DELAY_MSG);
}
/*
* If the corresponding nfs4_start_op() found a sp,
* then there must still be a sp.
*/
if (sp != NULL) {
nfs_rw_exit(&mi->mi_recovlock);
nfs_rw_exit(&sp->s_recovlock);
mutex_enter(&sp->s_lock);
sp->s_otw_call_count--;
cv_broadcast(&sp->s_cv_otw_count);
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
} else {
nfs_rw_exit(&mi->mi_recovlock);
}
}
void
nfs4_end_op(mntinfo4_t *mi, vnode_t *vp1, vnode_t *vp2,
nfs4_recov_state_t *rsp, bool_t needrecov)
{
nfs4_end_fop(mi, vp1, vp2, OH_OTHER, rsp, needrecov);
}
/*
* If the filesystem is going through client recovery, block until
* finished.
* Exceptions:
* - state-releasing ops (CLOSE, LOCKU, DELEGRETURN) are allowed to proceed
* if the filesystem has been forcibly unmounted or the lwp is exiting.
*
* Return value:
* - 0 if no errors
* - EINTR if the call was interrupted
* - EIO if the filesystem has been forcibly unmounted (non-state-releasing
* op)
* - the errno value from the recovery thread, if recovery failed
*/
static int
wait_for_recovery(mntinfo4_t *mi, nfs4_op_hint_t op_hint)
{
int error = 0;
mutex_enter(&mi->mi_lock);
while (mi->mi_recovflags != 0) {
klwp_t *lwp = ttolwp(curthread);
if ((mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) ||
(mi->mi_flags & MI4_RECOV_FAIL))
break;
if (OH_IS_STATE_RELE(op_hint) &&
(curthread->t_proc_flag & TP_LWPEXIT))
break;
if (lwp != NULL)
lwp->lwp_nostop++;
/* XXX - use different cv? */
if (cv_wait_sig(&mi->mi_failover_cv, &mi->mi_lock) == 0) {
error = EINTR;
if (lwp != NULL)
lwp->lwp_nostop--;
break;
}
if (lwp != NULL)
lwp->lwp_nostop--;
}
if ((mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) &&
!OH_IS_STATE_RELE(op_hint)) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"wait_for_recovery: forced unmount"));
error = EIO;
} else if (mi->mi_flags & MI4_RECOV_FAIL) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"wait_for_recovery: fail since RECOV FAIL"));
error = mi->mi_error;
}
mutex_exit(&mi->mi_lock);
return (error);
}
/*
* If the client received NFS4ERR_GRACE for this particular mount,
* the client blocks here until it is time to try again.
*
* Return value:
* - 0 if wait was successful
* - EINTR if the call was interrupted
*/
int
nfs4_wait_for_grace(mntinfo4_t *mi, nfs4_recov_state_t *rsp)
{
int error = 0;
time_t curtime, time_to_wait;
/* do a unprotected check to reduce mi_lock contention */
if (mi->mi_grace_wait != 0) {
mutex_enter(&mi->mi_lock);
if (mi->mi_grace_wait != 0) {
if (!(rsp->rs_flags & NFS4_RS_GRACE_MSG))
rsp->rs_flags |= NFS4_RS_GRACE_MSG;
curtime = gethrestime_sec();
if (curtime < mi->mi_grace_wait) {
time_to_wait = mi->mi_grace_wait - curtime;
mutex_exit(&mi->mi_lock);
delay(SEC_TO_TICK(time_to_wait));
curtime = gethrestime_sec();
mutex_enter(&mi->mi_lock);
if (curtime >= mi->mi_grace_wait)
mi->mi_grace_wait = 0;
} else {
mi->mi_grace_wait = 0;
}
}
mutex_exit(&mi->mi_lock);
}
return (error);
}
/*
* If the client received NFS4ERR_DELAY for an operation on a vnode,
* the client blocks here until it is time to try again.
*
* Return value:
* - 0 if wait was successful
* - EINTR if the call was interrupted
*/
int
nfs4_wait_for_delay(vnode_t *vp, nfs4_recov_state_t *rsp)
{
int error = 0;
time_t curtime, time_to_wait;
rnode4_t *rp;
ASSERT(vp != NULL);
rp = VTOR4(vp);
/* do a unprotected check to reduce r_statelock contention */
if (rp->r_delay_wait != 0) {
mutex_enter(&rp->r_statelock);
if (rp->r_delay_wait != 0) {
if (!(rsp->rs_flags & NFS4_RS_DELAY_MSG)) {
rsp->rs_flags |= NFS4_RS_DELAY_MSG;
nfs4_mi_kstat_inc_delay(VTOMI4(vp));
}
curtime = gethrestime_sec();
if (curtime < rp->r_delay_wait) {
time_to_wait = rp->r_delay_wait - curtime;
mutex_exit(&rp->r_statelock);
delay(SEC_TO_TICK(time_to_wait));
curtime = gethrestime_sec();
mutex_enter(&rp->r_statelock);
if (curtime >= rp->r_delay_wait)
rp->r_delay_wait = 0;
} else {
rp->r_delay_wait = 0;
}
}
mutex_exit(&rp->r_statelock);
}
return (error);
}
/*
* The recovery thread.
*/
static void
nfs4_recov_thread(recov_info_t *recovp)
{
mntinfo4_t *mi = recovp->rc_mi;
nfs4_server_t *sp;
int done = 0, error = 0;
bool_t recov_fail = FALSE;
callb_cpr_t cpr_info;
kmutex_t cpr_lock;
nfs4_queue_event(RE_START, mi, NULL, mi->mi_recovflags,
recovp->rc_vp1, recovp->rc_vp2, 0, NULL, 0, TAG_NONE, TAG_NONE,
0, 0);
mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Recov");
mutex_enter(&mi->mi_lock);
mi->mi_recovthread = curthread;
mutex_exit(&mi->mi_lock);
/*
* We don't really need protection here against failover or
* migration, since the current thread is the one that would make
* any changes, but hold mi_recovlock anyway for completeness (and
* to satisfy any ASSERTs).
*/
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
sp = find_nfs4_server(mi);
if (sp != NULL)
mutex_exit(&sp->s_lock);
nfs_rw_exit(&mi->mi_recovlock);
/*
* Do any necessary recovery, based on the information in recovp
* and any recovery flags.
*/
do {
mutex_enter(&mi->mi_lock);
if (FS_OR_ZONE_GONE4(mi->mi_vfsp)) {
bool_t activesrv;
NFS4_DEBUG(nfs4_client_recov_debug &&
mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED, (CE_NOTE,
"nfs4_recov_thread: file system has been "
"unmounted"));
NFS4_DEBUG(nfs4_client_recov_debug &&
zone_status_get(curproc->p_zone) >=
ZONE_IS_SHUTTING_DOWN, (CE_NOTE,
"nfs4_recov_thread: zone shutting down"));
/*
* If the server has lost its state for us and
* the filesystem is unmounted, then the filesystem
* can be tossed, even if there are lost lock or
* lost state calls in the recovery queue.
*/
if (mi->mi_recovflags &
(MI4R_NEED_CLIENTID | MI4R_REOPEN_FILES)) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4_recov_thread: bailing out"));
mi->mi_flags |= MI4_RECOV_FAIL;
mi->mi_error = recovp->rc_error;
recov_fail = TRUE;
}
/*
* We don't know if the server has any state for
* us, and the filesystem has been unmounted. If
* there are "lost state" recovery items, keep
* trying to process them until there are no more
* mounted filesystems for the server. Otherwise,
* bail out. The reason we don't mark the
* filesystem as failing recovery is in case we
* have to do "lost state" recovery later (e.g., a
* user process exits).
*/
if (!(mi->mi_recovflags & MI4R_LOST_STATE)) {
done = 1;
mutex_exit(&mi->mi_lock);
break;
}
mutex_exit(&mi->mi_lock);
if (sp == NULL)
activesrv = FALSE;
else {
mutex_enter(&sp->s_lock);
activesrv = nfs4_fs_active(sp);
}
if (!activesrv) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"no active fs for server %p",
(void *)sp));
mutex_enter(&mi->mi_lock);
mi->mi_flags |= MI4_RECOV_FAIL;
mi->mi_error = recovp->rc_error;
mutex_exit(&mi->mi_lock);
recov_fail = TRUE;
if (sp != NULL) {
/*
* Mark the server instance as
* dead, so that nobody will attach
* a new filesystem.
*/
nfs4_mark_srv_dead(sp);
}
}
if (sp != NULL)
mutex_exit(&sp->s_lock);
} else {
mutex_exit(&mi->mi_lock);
}
/*
* Check if we need to select a new server for a
* failover. Choosing a new server will force at
* least a check of the clientid.
*/
mutex_enter(&mi->mi_lock);
if (!recov_fail &&
(mi->mi_recovflags & MI4R_NEED_NEW_SERVER)) {
mutex_exit(&mi->mi_lock);
recov_newserver(recovp, &sp, &recov_fail);
} else
mutex_exit(&mi->mi_lock);
/*
* Check if we need to recover the clientid. This
* must be done before file and lock recovery, and it
* potentially affects the recovery threads for other
* filesystems, so it gets special treatment.
*/
if (sp != NULL && recov_fail == FALSE) {
mutex_enter(&sp->s_lock);
if (!(sp->s_flags & N4S_CLIENTID_SET)) {
mutex_exit(&sp->s_lock);
recov_clientid(recovp, sp);
} else {
/*
* Unset this flag in case another recovery
* thread successfully recovered the clientid
* for us already.
*/
mutex_enter(&mi->mi_lock);
mi->mi_recovflags &= ~MI4R_NEED_CLIENTID;
mutex_exit(&mi->mi_lock);
mutex_exit(&sp->s_lock);
}
}
/*
* Check if we need to get the security information.
*/
mutex_enter(&mi->mi_lock);
if ((mi->mi_recovflags & MI4R_NEED_SECINFO) &&
!(mi->mi_flags & MI4_RECOV_FAIL)) {
mutex_exit(&mi->mi_lock);
(void) nfs_rw_enter_sig(&mi->mi_recovlock,
RW_WRITER, 0);
error = nfs4_secinfo_recov(recovp->rc_mi,
recovp->rc_vp1, recovp->rc_vp2);
/*
* If error, nothing more can be done, stop
* the recovery.
*/
if (error) {
mutex_enter(&mi->mi_lock);
mi->mi_flags |= MI4_RECOV_FAIL;
mi->mi_error = recovp->rc_error;
mutex_exit(&mi->mi_lock);
nfs4_queue_event(RE_WRONGSEC, mi, NULL,
error, recovp->rc_vp1, recovp->rc_vp2,
0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
}
nfs_rw_exit(&mi->mi_recovlock);
} else
mutex_exit(&mi->mi_lock);
/*
* Check if there's a bad seqid to recover.
*/
mutex_enter(&mi->mi_lock);
if ((mi->mi_recovflags & MI4R_BAD_SEQID) &&
!(mi->mi_flags & MI4_RECOV_FAIL)) {
mutex_exit(&mi->mi_lock);
(void) nfs_rw_enter_sig(&mi->mi_recovlock,
RW_WRITER, 0);
recov_bad_seqid(recovp);
nfs_rw_exit(&mi->mi_recovlock);
} else
mutex_exit(&mi->mi_lock);
/*
* Next check for recovery that affects the entire
* filesystem.
*/
if (sp != NULL) {
mutex_enter(&mi->mi_lock);
if ((mi->mi_recovflags & MI4R_REOPEN_FILES) &&
!(mi->mi_flags & MI4_RECOV_FAIL)) {
mutex_exit(&mi->mi_lock);
recov_openfiles(recovp, sp);
} else
mutex_exit(&mi->mi_lock);
}
/*
* Send any queued state recovery requests.
*/
mutex_enter(&mi->mi_lock);
if (sp != NULL &&
(mi->mi_recovflags & MI4R_LOST_STATE) &&
!(mi->mi_flags & MI4_RECOV_FAIL)) {
mutex_exit(&mi->mi_lock);
(void) nfs_rw_enter_sig(&mi->mi_recovlock,
RW_WRITER, 0);
nfs4_resend_lost_rqsts(recovp, sp);
if (list_head(&mi->mi_lost_state) == NULL) {
/* done */
mutex_enter(&mi->mi_lock);
mi->mi_recovflags &= ~MI4R_LOST_STATE;
mutex_exit(&mi->mi_lock);
}
nfs_rw_exit(&mi->mi_recovlock);
} else {
mutex_exit(&mi->mi_lock);
}
/*
* See if there is anything more to do. If not, announce
* that we are done and exit.
*
* Need mi_recovlock to keep 'sp' valid. Must grab
* mi_recovlock before mi_lock to preserve lock ordering.
*/
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
mutex_enter(&mi->mi_lock);
if ((mi->mi_recovflags & ~MI4R_SRV_REBOOT) == 0 ||
(mi->mi_flags & MI4_RECOV_FAIL)) {
list_t local_lost_state;
nfs4_lost_rqst_t *lrp;
/*
* We need to remove the lost requests before we
* unmark the mi as no longer doing recovery to
* avoid a race with a new thread putting new lost
* requests on the same mi (and the going away
* thread would remove the new lost requests).
*
* Move the lost requests to a local list since
* nfs4_remove_lost_rqst() drops mi_lock, and
* dropping the mi_lock would make our check to
* see if recovery is done no longer valid.
*/
list_create(&local_lost_state,
sizeof (nfs4_lost_rqst_t),
offsetof(nfs4_lost_rqst_t, lr_node));
list_move_tail(&local_lost_state, &mi->mi_lost_state);
done = 1;
mutex_exit(&mi->mi_lock);
/*
* Now officially free the "moved"
* lost requests.
*/
while ((lrp = list_head(&local_lost_state)) != NULL) {
list_remove(&local_lost_state, lrp);
nfs4_free_lost_rqst(lrp, sp);
}
list_destroy(&local_lost_state);
} else
mutex_exit(&mi->mi_lock);
nfs_rw_exit(&mi->mi_recovlock);
/*
* If the filesystem has been forcibly unmounted, there is
* probably no point in retrying immediately. Furthermore,
* there might be user processes waiting for a chance to
* queue up "lost state" requests, so that they can exit.
* So pause here for a moment. Same logic for zone shutdown.
*/
if (!done && FS_OR_ZONE_GONE4(mi->mi_vfsp)) {
mutex_enter(&mi->mi_lock);
cv_broadcast(&mi->mi_failover_cv);
mutex_exit(&mi->mi_lock);
delay(SEC_TO_TICK(nfs4_unmount_delay));
}
} while (!done);
if (sp != NULL)
nfs4_server_rele(sp);
/*
* Return all recalled delegations
*/
nfs4_dlistclean();
mutex_enter(&mi->mi_lock);
recov_done(mi, recovp);
mutex_exit(&mi->mi_lock);
/*
* Free up resources that were allocated for us.
*/
if (recovp->rc_vp1 != NULL)
VN_RELE(recovp->rc_vp1);
if (recovp->rc_vp2 != NULL)
VN_RELE(recovp->rc_vp2);
/* now we are done using the mi struct, signal the waiters */
mutex_enter(&mi->mi_lock);
mi->mi_in_recovery--;
if (mi->mi_in_recovery == 0)
cv_broadcast(&mi->mi_cv_in_recov);
mutex_exit(&mi->mi_lock);
VFS_RELE(mi->mi_vfsp);
MI4_RELE(mi);
kmem_free(recovp, sizeof (recov_info_t));
mutex_enter(&cpr_lock);
CALLB_CPR_EXIT(&cpr_info);
mutex_destroy(&cpr_lock);
zthread_exit();
}
/*
* Log the end of recovery and notify any waiting threads.
*/
static void
recov_done(mntinfo4_t *mi, recov_info_t *recovp)
{
ASSERT(MUTEX_HELD(&mi->mi_lock));
nfs4_queue_event(RE_END, mi, NULL, 0, recovp->rc_vp1,
recovp->rc_vp2, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
mi->mi_recovthread = NULL;
mi->mi_flags &= ~MI4_RECOV_ACTIV;
mi->mi_recovflags &= ~MI4R_SRV_REBOOT;
cv_broadcast(&mi->mi_failover_cv);
}
/*
* State-specific recovery routines, by state.
*/
/*
* Failover.
*
* Replaces *spp with a reference to the new server, which must
* eventually be freed.
*/
static void
recov_newserver(recov_info_t *recovp, nfs4_server_t **spp, bool_t *recov_fail)
{
mntinfo4_t *mi = recovp->rc_mi;
servinfo4_t *svp = NULL;
nfs4_server_t *osp = *spp;
CLIENT *cl;
enum clnt_stat status;
struct timeval tv;
int error;
int oncethru = 0;
rnode4_t *rp;
int index;
nfs_fh4 fh;
char *snames;
size_t len;
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_WRITER, 0);
tv.tv_sec = 2;
tv.tv_usec = 0;
#ifdef lint
/*
* Lint can't follow the logic, so thinks that snames and len
* can be used before being set. They can't, but lint can't
* figure it out. To address the lint warning, initialize
* snames and len for lint.
*/
snames = NULL;
len = 0;
#endif
/*
* Ping the null NFS procedure of every server in
* the list until one responds. We always start
* at the head of the list and always skip the one
* that is current, since it's caused us a problem.
*/
while (svp == NULL) {
for (svp = mi->mi_servers; svp; svp = svp->sv_next) {
mutex_enter(&mi->mi_lock);
if (FS_OR_ZONE_GONE4(mi->mi_vfsp)) {
mi->mi_flags |= MI4_RECOV_FAIL;
mutex_exit(&mi->mi_lock);
(void) nfs_rw_exit(&mi->mi_recovlock);
*recov_fail = TRUE;
if (oncethru)
kmem_free(snames, len);
return;
}
mutex_exit(&mi->mi_lock);
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
if (svp->sv_flags & SV4_NOTINUSE) {
nfs_rw_exit(&svp->sv_lock);
continue;
}
nfs_rw_exit(&svp->sv_lock);
if (!oncethru && svp == mi->mi_curr_serv)
continue;
error = clnt_tli_kcreate(svp->sv_knconf, &svp->sv_addr,
NFS_PROGRAM, NFS_V4, 0, 1, CRED(), &cl);
if (error)
continue;
if (!(mi->mi_flags & MI4_INT))
cl->cl_nosignal = TRUE;
status = CLNT_CALL(cl, RFS_NULL, xdr_void, NULL,
xdr_void, NULL, tv);
if (!(mi->mi_flags & MI4_INT))
cl->cl_nosignal = FALSE;
AUTH_DESTROY(cl->cl_auth);
CLNT_DESTROY(cl);
if (status == RPC_SUCCESS) {
nfs4_queue_event(RE_FAILOVER, mi,
svp == mi->mi_curr_serv ? NULL :
svp->sv_hostname, 0, NULL, NULL, 0,
NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
break;
}
}
if (svp == NULL) {
if (!oncethru) {
snames = nfs4_getsrvnames(mi, &len);
nfs4_queue_fact(RF_SRVS_NOT_RESPOND, mi,
0, 0, 0, FALSE, snames, 0, NULL);
oncethru = 1;
}
delay(hz);
}
}
if (oncethru) {
nfs4_queue_fact(RF_SRVS_OK, mi, 0, 0, 0, FALSE, snames,
0, NULL);
kmem_free(snames, len);
}
#if DEBUG
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
ASSERT((svp->sv_flags & SV4_NOTINUSE) == 0);
nfs_rw_exit(&svp->sv_lock);
#endif
mutex_enter(&mi->mi_lock);
mi->mi_recovflags &= ~MI4R_NEED_NEW_SERVER;
if (svp != mi->mi_curr_serv) {
servinfo4_t *osvp = mi->mi_curr_serv;
mutex_exit(&mi->mi_lock);
/*
* Update server-dependent fields in the root vnode.
*/
index = rtable4hash(mi->mi_rootfh);
rw_enter(&rtable4[index].r_lock, RW_WRITER);
rp = r4find(&rtable4[index], mi->mi_rootfh, mi->mi_vfsp);
if (rp != NULL) {
NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
"recov_newserver: remapping %s", rnode4info(rp)));
mutex_enter(&rp->r_statelock);
rp->r_server = svp;
PURGE_ATTRCACHE4_LOCKED(rp);
mutex_exit(&rp->r_statelock);
(void) nfs4_free_data_reclaim(rp);
nfs4_purge_rddir_cache(RTOV4(rp));
rw_exit(&rtable4[index].r_lock);
NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
"recov_newserver: done with %s",
rnode4info(rp)));
VN_RELE(RTOV4(rp));
} else
rw_exit(&rtable4[index].r_lock);
(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
mutex_enter(&mi->mi_lock);
mi->mi_recovflags |= MI4R_REOPEN_FILES | MI4R_REMAP_FILES;
if (recovp->rc_srv_reboot)
mi->mi_recovflags |= MI4R_SRV_REBOOT;
mi->mi_curr_serv = svp;
mi->mi_failover++;
mi->mi_flags &= ~MI4_BADOWNER_DEBUG;
mutex_exit(&mi->mi_lock);
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
fh.nfs_fh4_len = svp->sv_fhandle.fh_len;
fh.nfs_fh4_val = svp->sv_fhandle.fh_buf;
sfh4_update(mi->mi_rootfh, &fh);
fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
sfh4_update(mi->mi_srvparentfh, &fh);
nfs_rw_exit(&svp->sv_lock);
*spp = nfs4_move_mi(mi, osvp, svp);
if (osp != NULL)
nfs4_server_rele(osp);
} else
mutex_exit(&mi->mi_lock);
(void) nfs_rw_exit(&mi->mi_recovlock);
}
/*
* Clientid.
*/
static void
recov_clientid(recov_info_t *recovp, nfs4_server_t *sp)
{
mntinfo4_t *mi = recovp->rc_mi;
int error = 0;
int still_stale;
int need_new_s;
ASSERT(sp != NULL);
/*
* Acquire the recovery lock and then verify that the clientid
* still needs to be recovered. (Note that s_recovlock is supposed
* to be acquired before s_lock.) Since the thread holds the
* recovery lock, no other thread will recover the clientid.
*/
(void) nfs_rw_enter_sig(&sp->s_recovlock, RW_WRITER, 0);
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_WRITER, 0);
mutex_enter(&sp->s_lock);
still_stale = ((sp->s_flags & N4S_CLIENTID_SET) == 0);
mutex_exit(&sp->s_lock);
if (still_stale) {
nfs4_error_t n4e;
nfs4_error_zinit(&n4e);
nfs4setclientid(mi, kcred, TRUE, &n4e);
error = n4e.error;
if (error != 0) {
/*
* nfs4setclientid may have set MI4R_NEED_NEW_SERVER,
* if so, just return and let recov_thread drive
* failover.
*/
mutex_enter(&mi->mi_lock);
need_new_s = mi->mi_recovflags & MI4R_NEED_NEW_SERVER;
mutex_exit(&mi->mi_lock);
if (need_new_s) {
nfs_rw_exit(&mi->mi_recovlock);
nfs_rw_exit(&sp->s_recovlock);
return;
}
nfs4_queue_event(RE_CLIENTID, mi, NULL, n4e.error, NULL,
NULL, n4e.stat, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
mutex_enter(&mi->mi_lock);
mi->mi_flags |= MI4_RECOV_FAIL;
mi->mi_error = recovp->rc_error;
mutex_exit(&mi->mi_lock);
/* don't destroy the nfs4_server, let umount do it */
}
}
if (error == 0) {
mutex_enter(&mi->mi_lock);
mi->mi_recovflags &= ~MI4R_NEED_CLIENTID;
/*
* If still_stale isn't true, then another thread already
* recovered the clientid. And that thread that set the
* clientid will have initiated reopening files on all the
* filesystems for the server, so we should not initiate
* reopening for this filesystem here.
*/
if (still_stale) {
mi->mi_recovflags |= MI4R_REOPEN_FILES;
if (recovp->rc_srv_reboot)
mi->mi_recovflags |= MI4R_SRV_REBOOT;
}
mutex_exit(&mi->mi_lock);
}
nfs_rw_exit(&mi->mi_recovlock);
if (error != 0) {
nfs_rw_exit(&sp->s_recovlock);
mutex_enter(&mi->mi_lock);
if ((mi->mi_flags & MI4_RECOV_FAIL) == 0)
delay(SEC_TO_TICK(recov_err_delay));
mutex_exit(&mi->mi_lock);
} else {
mntinfo4_t **milist;
mntinfo4_t *tmi;
int nummi, i;
/*
* Initiate recovery of open files for other filesystems.
* We create an array of filesystems, rather than just
* walking the filesystem list, to avoid deadlock issues
* with s_lock and mi_recovlock.
*/
milist = make_milist(sp, &nummi);
for (i = 0; i < nummi; i++) {
tmi = milist[i];
if (tmi != mi) {
(void) nfs_rw_enter_sig(&tmi->mi_recovlock,
RW_READER, 0);
start_recovery_action(NR_OPENFILES, TRUE, tmi,
NULL, NULL);
nfs_rw_exit(&tmi->mi_recovlock);
}
}
free_milist(milist, nummi);
nfs_rw_exit(&sp->s_recovlock);
}
}
/*
* Return an array of filesystems associated with the given server. The
* caller should call free_milist() to free the references and memory.
*/
static mntinfo4_t **
make_milist(nfs4_server_t *sp, int *nummip)
{
int nummi, i;
mntinfo4_t **milist;
mntinfo4_t *tmi;
mutex_enter(&sp->s_lock);
nummi = 0;
for (tmi = sp->mntinfo4_list; tmi != NULL; tmi = tmi->mi_clientid_next)
nummi++;
milist = kmem_alloc(nummi * sizeof (mntinfo4_t *), KM_SLEEP);
for (i = 0, tmi = sp->mntinfo4_list; tmi != NULL; i++,
tmi = tmi->mi_clientid_next) {
milist[i] = tmi;
VFS_HOLD(tmi->mi_vfsp);
}
mutex_exit(&sp->s_lock);
*nummip = nummi;
return (milist);
}
/*
* Free the filesystem list created by make_milist().
*/
static void
free_milist(mntinfo4_t **milist, int nummi)
{
mntinfo4_t *tmi;
int i;
for (i = 0; i < nummi; i++) {
tmi = milist[i];
VFS_RELE(tmi->mi_vfsp);
}
kmem_free(milist, nummi * sizeof (mntinfo4_t *));
}
/*
* Filehandle
*/
/*
* Lookup the filehandle for the given vnode and update the rnode if it has
* changed.
*
* Errors:
* - if the filehandle could not be updated because of an error that
* requires further recovery, initiate that recovery and return.
* - if the filehandle could not be updated because of a signal, pretend we
* succeeded and let someone else deal with it.
* - if the filehandle could not be updated and the filesystem has been
* forcibly unmounted, pretend we succeeded, and let the caller deal with
* the forced unmount (to retry or not to retry, that is the question).
* - if the filehandle could not be updated because of some other error,
* mark the rnode bad and return.
*/
static void
recov_filehandle(nfs4_recov_t action, mntinfo4_t *mi, vnode_t *vp)
{
rnode4_t *rp = VTOR4(vp);
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
bool_t needrecov;
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERR) {
mutex_exit(&rp->r_statelock);
return;
}
/*
* If someone else is updating the filehandle, wait for them to
* finish and then let our caller retry.
*/
if (rp->r_flags & R4RECEXPFH) {
while (rp->r_flags & R4RECEXPFH) {
cv_wait(&rp->r_cv, &rp->r_statelock);
}
mutex_exit(&rp->r_statelock);
return;
}
rp->r_flags |= R4RECEXPFH;
mutex_exit(&rp->r_statelock);
if (action == NR_BADHANDLE) {
/* shouldn't happen */
nfs4_queue_event(RE_BADHANDLE, mi, NULL, 0,
vp, NULL, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
}
nfs4_remap_file(mi, vp, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
/*
* If we get BADHANDLE, FHEXPIRED or STALE in their handler,
* something is broken. Don't try to recover, just mark the
* file dead.
*/
DTRACE_PROBE2(recov__filehandle, nfs4_error_t, &e, vnode_t, vp);
if (needrecov) {
if (e.error == 0) {
switch (e.stat) {
case NFS4ERR_BADHANDLE:
case NFS4ERR_FHEXPIRED:
case NFS4ERR_STALE:
goto norec; /* Unrecoverable errors */
default:
break;
}
}
(void) nfs4_start_recovery(&e, mi, vp, NULL,
NULL, NULL, OP_LOOKUP, NULL, NULL, NULL);
} else if (e.error != EINTR &&
!NFS4_FRC_UNMT_ERR(e.error, mi->mi_vfsp) &&
(e.error != 0 || e.stat != NFS4_OK)) {
nfs4_recov_fh_fail(vp, e.error, e.stat);
/*
* Don't set r_error to ESTALE. Higher-level code (e.g.,
* cstatat_getvp()) retries on ESTALE, which would cause
* an infinite loop.
*/
}
norec:
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~R4RECEXPFH;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
}
/*
* Stale Filehandle
*/
/*
* A stale filehandle can happen when an individual file has
* been removed, or when an entire filesystem has been taken
* offline. To distinguish these cases, we do this:
* - if a GETATTR with the current filehandle is okay, we do
* nothing (this can happen with two-filehandle ops)
* - if the GETATTR fails, but a GETATTR of the root filehandle
* succeeds, mark the rnode with R4STALE, which will stop use
* - if the GETATTR fails, and a GETATTR of the root filehandle
* also fails, we consider the problem filesystem-wide, so:
* - if we can failover, we should
* - if we can't failover, we should mark both the original
* vnode and the root bad
*/
static void
recov_stale(mntinfo4_t *mi, vnode_t *vp)
{
rnode4_t *rp = VTOR4(vp);
vnode_t *rootvp = NULL;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
nfs4_ga_res_t gar;
char *fail_msg = "failed to recover from NFS4ERR_STALE";
bool_t needrecov;
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERR) {
mutex_exit(&rp->r_statelock);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_stale: already marked dead, rp %s",
rnode4info(rp)));
return;
}
if (rp->r_flags & R4STALE) {
mutex_exit(&rp->r_statelock);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_stale: already marked stale, rp %s",
rnode4info(rp)));
return;
}
mutex_exit(&rp->r_statelock);
/* Try a GETATTR on this vnode */
nfs4_getattr_otw_norecovery(vp, &gar, &e, CRED(), 0);
/*
* Handle non-STALE recoverable errors
*/
needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
if (needrecov) {
if (e.error == 0) {
switch (e.stat) {
case NFS4ERR_STALE:
case NFS4ERR_BADHANDLE:
goto norec; /* Unrecoverable */
default:
break;
}
}
(void) nfs4_start_recovery(&e, mi, vp, NULL,
NULL, NULL, OP_GETATTR, NULL, NULL, NULL);
goto out;
}
norec:
/* Are things OK for this vnode? */
if (!e.error && e.stat == NFS4_OK) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_stale: file appears fine, rp %s",
rnode4info(rp)));
goto out;
}
/* Did we get an unrelated non-recoverable error? */
if (e.error || e.stat != NFS4ERR_STALE) {
nfs4_fail_recov(vp, fail_msg, e.error, e.stat);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_stale: unrelated fatal error, rp %s",
rnode4info(rp)));
goto out;
}
/*
* If we don't appear to be dealing with the root node, find it.
*/
if ((vp->v_flag & VROOT) == 0) {
nfs4_error_zinit(&e);
e.error = VFS_ROOT(vp->v_vfsp, &rootvp);
if (e.error) {
nfs4_fail_recov(vp, fail_msg, 0, NFS4ERR_STALE);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_stale: can't find root node for rp %s",
rnode4info(rp)));
goto out;
}
}
/* Try a GETATTR on the root vnode */
if (rootvp != NULL) {
nfs4_error_zinit(&e);
nfs4_getattr_otw_norecovery(rootvp, &gar, &e, CRED(), 0);
needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
if (needrecov) {
if (e.error == 0) {
switch (e.stat) {
case NFS4ERR_STALE:
case NFS4ERR_BADHANDLE:
goto unrec; /* Unrecoverable */
default:
break;
}
}
(void) nfs4_start_recovery(&e, mi, rootvp, NULL,
NULL, NULL, OP_GETATTR, NULL, NULL, NULL);
}
unrec:
/*
* Check to see if a failover attempt is warranted
* NB: nfs4_try_failover doesn't check for STALE
* because recov_stale gets a shot first. Now that
* recov_stale has failed, go ahead and try failover.
*
* If the getattr on the root filehandle was successful,
* then mark recovery as failed for 'vp' and exit.
*/
if (nfs4_try_failover(&e) == 0 && e.stat != NFS4ERR_STALE) {
/*
* pass the original error to fail_recov, not
* the one from trying the root vnode.
*/
nfs4_fail_recov(vp, fail_msg, 0, NFS4ERR_STALE);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_stale: root node OK, marking "
"dead rp %s", rnode4info(rp)));
goto out;
}
}
/*
* Here, we know that both the original file and the
* root filehandle (which may be the same) are stale.
* We want to fail over if we can, and if we can't, we
* want to mark everything in sight bad.
*/
if (FAILOVER_MOUNT4(mi)) {
mutex_enter(&mi->mi_lock);
mi->mi_recovflags |= MI4R_NEED_NEW_SERVER;
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_stale: failing over due to rp %s",
rnode4info(rp)));
mutex_exit(&mi->mi_lock);
} else {
rnode4_t *rootrp;
servinfo4_t *svp;
/*
* Can't fail over, so mark things dead.
*
* If rootvp is set, we know we have a distinct
* non-root vnode which can be marked dead in
* the usual way.
*
* Then we want to mark the root vnode dead.
* Note that if rootvp wasn't set, our vp is
* actually the root vnode.
*/
if (rootvp != NULL) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_stale: can't fail over, marking dead rp %s",
rnode4info(rp)));
nfs4_fail_recov(vp, fail_msg, 0, NFS4ERR_STALE);
} else {
rootvp = vp;
VN_HOLD(rootvp);
}
/*
* Mark root dead, but quietly - since
* the root rnode is frequently recreated,
* we can encounter this at every access.
* Also mark recovery as failed on this VFS.
*/
rootrp = VTOR4(rootvp);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_CONT,
"recov_stale: marking dead root rp %s",
rnode4info(rootrp)));
mutex_enter(&rootrp->r_statelock);
rootrp->r_flags |= (R4RECOVERR | R4STALE);
rootrp->r_error = ESTALE;
mutex_exit(&rootrp->r_statelock);
mutex_enter(&mi->mi_lock);
mi->mi_error = ESTALE;
mutex_exit(&mi->mi_lock);
svp = mi->mi_curr_serv;
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
svp->sv_flags |= SV4_ROOT_STALE;
nfs_rw_exit(&svp->sv_lock);
}
out:
if (rootvp)
VN_RELE(rootvp);
}
/*
* Locks.
*/
/*
* Reclaim all the active (acquired) locks for the given file.
* If a process lost a lock, the process is sent a SIGLOST. This is not
* considered an error.
*
* Return values:
* Errors and status are returned via the nfs4_error_t parameter
* If an error indicates that recovery is needed, the caller is responsible
* for dealing with it.
*/
static void
relock_file(vnode_t *vp, mntinfo4_t *mi, nfs4_error_t *ep,
fattr4_change pre_change)
{
locklist_t *locks, *llp;
rnode4_t *rp;
ASSERT(ep != NULL);
nfs4_error_zinit(ep);
if (VTOMI4(vp)->mi_flags & MI4_LLOCK)
return;
nfs4_flush_lock_owners(VTOR4(vp));
/*
* If we get an error that requires recovery actions, just bail out
* and let the top-level recovery code handle it.
*
* If we get some other error, kill the process that owned the lock
* and mark its remaining locks (if any) as belonging to NOPID, so
* that we don't make any more reclaim requests for that process.
*/
rp = VTOR4(vp);
locks = flk_active_locks_for_vp(vp);
for (llp = locks; llp != NULL; llp = llp->ll_next) {
int did_reclaim = 1;
ASSERT(llp->ll_vp == vp);
if (llp->ll_flock.l_pid == NOPID)
continue;
reclaim_one_lock(vp, &llp->ll_flock, ep, &did_reclaim);
/*
* If we need to restart recovery, stop processing the
* list. Some errors would be recoverable under other
* circumstances, but if they happen here we just give up
* on the lock.
*/
if (nfs4_needs_recovery(ep, TRUE, vp->v_vfsp)) {
if (ep->error != 0)
break;
if (!nfs4_recov_marks_dead(ep->stat))
break;
}
/*
* In case the server isn't offering us a grace period, or
* if we missed it, we might have opened & locked from scratch,
* rather than reopened/reclaimed.
* We need to ensure that the object hadn't been otherwise
* changed during this time, by comparing the changeinfo.
* We get passed the changeinfo from before the reopen by our
* caller, in pre_change.
* The changeinfo from after the reopen is in rp->r_change,
* courtesy of the GETATTR in the reopen.
* If they're different, then the file has changed, and we
* have to SIGLOST the app.
*/
if (ep->error == 0 && ep->stat == NFS4_OK && !did_reclaim) {
mutex_enter(&rp->r_statelock);
if (pre_change != rp->r_change)
ep->stat = NFS4ERR_NO_GRACE;
mutex_exit(&rp->r_statelock);
}
if (ep->error != 0 || ep->stat != NFS4_OK) {
if (ep->error != 0)
nfs4_queue_event(RE_FAIL_RELOCK, mi,
NULL, ep->error, vp, NULL, 0, NULL,
llp->ll_flock.l_pid, TAG_NONE, TAG_NONE,
0, 0);
else
nfs4_queue_event(RE_FAIL_RELOCK, mi,
NULL, 0, vp, NULL, ep->stat, NULL,
llp->ll_flock.l_pid, TAG_NONE, TAG_NONE,
0, 0);
nfs4_send_siglost(llp->ll_flock.l_pid, mi, vp, TRUE,
ep->error, ep->stat);
relock_skip_pid(llp, llp->ll_flock.l_pid);
/* Reinitialize the nfs4_error and continue */
nfs4_error_zinit(ep);
}
}
if (locks != NULL)
flk_free_locklist(locks);
}
/*
* Reclaim the given lock.
* If the lock can't be reclaimed, the process is sent SIGLOST, but this is
* not considered an error.
*
* Errors are returned via the nfs4_error_t parameter.
*/
static void
reclaim_one_lock(vnode_t *vp, flock64_t *flk, nfs4_error_t *ep,
int *did_reclaimp)
{
cred_t *cr;
rnode4_t *rp = VTOR4(vp);
cr = pid_to_cr(flk->l_pid);
if (cr == NULL) {
nfs4_error_zinit(ep);
ep->error = ESRCH;
return;
}
do {
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4RECOVERR) {
/*
* This shouldn't affect other reclaims, so don't
* return an error.
*/
mutex_exit(&rp->r_statelock);
break;
}
mutex_exit(&rp->r_statelock);
nfs4frlock(NFS4_LCK_CTYPE_RECLAIM, vp, F_SETLK, flk,
FREAD|FWRITE, 0, cr, ep, NULL, did_reclaimp);
if (ep->error == 0 && ep->stat == NFS4ERR_FHEXPIRED)
start_recovery_action(NR_FHEXPIRED, TRUE, VTOMI4(vp),
vp, NULL);
} while (ep->error == 0 && ep->stat == NFS4ERR_FHEXPIRED);
crfree(cr);
}
/*
* Open files.
*/
/*
* Verifies if the nfsstat4 is a valid error for marking this vnode dead.
* Returns 1 if the error is valid; 0 otherwise.
*/
static int
nfs4_valid_recov_err_for_vp(vnode_t *vp, nfsstat4 stat)
{
/*
* We should not be marking non-regular files as dead,
* except in very rare cases (eg: BADHANDLE or NFS4ERR_BADNAME).
*/
if (vp->v_type != VREG && stat != NFS4ERR_BADHANDLE &&
stat != NFS4ERR_BADNAME)
return (0);
return (1);
}
/*
* Failed attempting to recover a filehandle. If 'stat' is valid for 'vp',
* then mark the object dead. Since we've had to do a lookup for
* filehandle recovery, we will mark the object dead if we got NOENT.
*/
static void
nfs4_recov_fh_fail(vnode_t *vp, int error, nfsstat4 stat)
{
ASSERT(vp != NULL);
if ((error == 0) && (stat != NFS4ERR_NOENT) &&
(!nfs4_valid_recov_err_for_vp(vp, stat)))
return;
nfs4_fail_recov(vp, "can't recover filehandle", error, stat);
}
/*
* Recovery from a "shouldn't happen" error. In the long term, we'd like
* to mark only the data structure(s) that provided the bad value as being
* bad. But for now we'll just mark the entire file.
*/
static void
recov_badstate(recov_info_t *recovp, vnode_t *vp, nfsstat4 stat)
{
ASSERT(vp != NULL);
recov_throttle(recovp, vp);
if (!nfs4_valid_recov_err_for_vp(vp, stat))
return;
nfs4_fail_recov(vp, "", 0, stat);
}
/*
* Free up the information saved for a lost state request.
*/
static void
nfs4_free_lost_rqst(nfs4_lost_rqst_t *lrp, nfs4_server_t *sp)
{
component4 *filep;
nfs4_open_stream_t *osp;
int have_sync_lock;
NFS4_DEBUG(nfs4_lost_rqst_debug,
(CE_NOTE, "nfs4_free_lost_rqst:"));
switch (lrp->lr_op) {
case OP_OPEN:
filep = &lrp->lr_ofile;
if (filep->utf8string_val) {
kmem_free(filep->utf8string_val, filep->utf8string_len);
filep->utf8string_val = NULL;
}
break;
case OP_DELEGRETURN:
nfs4delegreturn_cleanup(VTOR4(lrp->lr_vp), sp);
break;
case OP_CLOSE:
osp = lrp->lr_osp;
ASSERT(osp != NULL);
mutex_enter(&osp->os_sync_lock);
have_sync_lock = 1;
if (osp->os_pending_close) {
/* clean up the open file state. */
osp->os_pending_close = 0;
nfs4close_notw(lrp->lr_vp, osp, &have_sync_lock);
}
if (have_sync_lock)
mutex_exit(&osp->os_sync_lock);
break;
}
lrp->lr_op = 0;
if (lrp->lr_oop != NULL) {
open_owner_rele(lrp->lr_oop);
lrp->lr_oop = NULL;
}
if (lrp->lr_osp != NULL) {
open_stream_rele(lrp->lr_osp, VTOR4(lrp->lr_vp));
lrp->lr_osp = NULL;
}
if (lrp->lr_lop != NULL) {
lock_owner_rele(lrp->lr_lop);
lrp->lr_lop = NULL;
}
if (lrp->lr_flk != NULL) {
kmem_free(lrp->lr_flk, sizeof (flock64_t));
lrp->lr_flk = NULL;
}
if (lrp->lr_vp != NULL) {
VN_RELE(lrp->lr_vp);
lrp->lr_vp = NULL;
}
if (lrp->lr_dvp != NULL) {
VN_RELE(lrp->lr_dvp);
lrp->lr_dvp = NULL;
}
if (lrp->lr_cr != NULL) {
crfree(lrp->lr_cr);
lrp->lr_cr = NULL;
}
kmem_free(lrp, sizeof (nfs4_lost_rqst_t));
}
/*
* Remove any lost state requests and free them.
*/
static void
nfs4_remove_lost_rqsts(mntinfo4_t *mi, nfs4_server_t *sp)
{
nfs4_lost_rqst_t *lrp;
mutex_enter(&mi->mi_lock);
while ((lrp = list_head(&mi->mi_lost_state)) != NULL) {
list_remove(&mi->mi_lost_state, lrp);
mutex_exit(&mi->mi_lock);
nfs4_free_lost_rqst(lrp, sp);
mutex_enter(&mi->mi_lock);
}
mutex_exit(&mi->mi_lock);
}
/*
* Reopen all the files for the given filesystem and reclaim any locks.
*/
static void
recov_openfiles(recov_info_t *recovp, nfs4_server_t *sp)
{
mntinfo4_t *mi = recovp->rc_mi;
nfs4_opinst_t *reopenlist = NULL, *rep;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
open_claim_type4 claim;
int remap;
char *fail_msg = "No such file or directory on replica";
rnode4_t *rp;
fattr4_change pre_change;
ASSERT(sp != NULL);
/*
* This check is to allow a 10ms pause before we reopen files
* it should allow the server time to have received the CB_NULL
* reply and update its internal structures such that (if
* applicable) we are granted a delegation on reopened files.
*/
mutex_enter(&sp->s_lock);
if ((sp->s_flags & (N4S_CB_PINGED | N4S_CB_WAITER)) == 0) {
sp->s_flags |= N4S_CB_WAITER;
(void) cv_reltimedwait(&sp->wait_cb_null, &sp->s_lock,
drv_usectohz(N4S_CB_PAUSE_TIME), TR_CLOCK_TICK);
}
mutex_exit(&sp->s_lock);
(void) nfs_rw_enter_sig(&sp->s_recovlock, RW_READER, 0);
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_WRITER, 0);
if (NFS4_VOLATILE_FH(mi)) {
nfs4_remap_root(mi, &e, 0);
if (nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp)) {
(void) nfs4_start_recovery(&e, mi, NULL,
NULL, NULL, NULL, OP_LOOKUP, NULL, NULL, NULL);
}
}
mutex_enter(&mi->mi_lock);
if (recovp->rc_srv_reboot || (mi->mi_recovflags & MI4R_SRV_REBOOT))
claim = CLAIM_PREVIOUS;
else
claim = CLAIM_NULL;
mutex_exit(&mi->mi_lock);
if (e.error == 0 && e.stat == NFS4_OK) {
/*
* Get a snapshot of open files in the filesystem. Note
* that new opens will stall until the server's grace
* period is done.
*/
reopenlist = r4mkopenlist(mi);
mutex_enter(&mi->mi_lock);
remap = mi->mi_recovflags & MI4R_REMAP_FILES;
mutex_exit(&mi->mi_lock);
/*
* Since we are re-establishing state on the
* server, its ok to blow away the saved lost
* requests since we don't need to reissue it.
*/
nfs4_remove_lost_rqsts(mi, sp);
for (rep = reopenlist; rep; rep = rep->re_next) {
if (remap) {
nfs4_remap_file(mi, rep->re_vp,
NFS4_REMAP_CKATTRS, &e);
}
DTRACE_PROBE2(recov__openfiles, nfs4_error_t, &e,
vnode_t, rep->re_vp);
if (e.error == ENOENT || e.stat == NFS4ERR_NOENT) {
/*
* The current server does not have the file
* that is to be remapped. This is most
* likely due to an improperly maintained
* replica. The files that are missing from
* the server will be marked dead and logged
* in order to make sys admins aware of the
* problem.
*/
nfs4_fail_recov(rep->re_vp,
fail_msg, e.error, e.stat);
/*
* We've already handled the error so clear it.
*/
nfs4_error_zinit(&e);
continue;
} else if (e.error == 0 && e.stat == NFS4_OK) {
int j;
rp = VTOR4(rep->re_vp);
mutex_enter(&rp->r_statelock);
pre_change = rp->r_change;
mutex_exit(&rp->r_statelock);
for (j = 0; j < rep->re_numosp; j++) {
nfs4_reopen(rep->re_vp, rep->re_osp[j],
&e, claim, FALSE, TRUE);
if (e.error != 0 || e.stat != NFS4_OK)
break;
}
if (nfs4_needs_recovery(&e, TRUE,
mi->mi_vfsp)) {
(void) nfs4_start_recovery(&e, mi,
rep->re_vp, NULL, NULL, NULL,
OP_OPEN, NULL, NULL, NULL);
break;
}
}
#ifdef DEBUG
if (nfs4_recovdelay > 0)
delay(MSEC_TO_TICK(nfs4_recovdelay * 1000));
#endif
if (e.error == 0 && e.stat == NFS4_OK) {
relock_file(rep->re_vp, mi, &e, pre_change);
if (nfs4_needs_recovery(&e, TRUE, mi->mi_vfsp))
(void) nfs4_start_recovery(&e, mi,
rep->re_vp, NULL, NULL, NULL,
OP_LOCK, NULL, NULL, NULL);
}
if (e.error != 0 || e.stat != NFS4_OK)
break;
}
/*
* Check to see if we need to remap files passed in
* via the recovery arguments; this will have been
* done for open files. A failure here is not fatal.
*/
if (remap) {
nfs4_error_t ignore;
nfs4_check_remap(mi, recovp->rc_vp1, NFS4_REMAP_CKATTRS,
&ignore);
nfs4_check_remap(mi, recovp->rc_vp2, NFS4_REMAP_CKATTRS,
&ignore);
}
}
if (e.error == 0 && e.stat == NFS4_OK) {
mutex_enter(&mi->mi_lock);
mi->mi_recovflags &= ~(MI4R_REOPEN_FILES | MI4R_REMAP_FILES);
mutex_exit(&mi->mi_lock);
}
nfs_rw_exit(&mi->mi_recovlock);
nfs_rw_exit(&sp->s_recovlock);
if (reopenlist != NULL)
r4releopenlist(reopenlist);
}
/*
* Resend the queued state recovery requests in "rqsts".
*/
static void
nfs4_resend_lost_rqsts(recov_info_t *recovp, nfs4_server_t *sp)
{
nfs4_lost_rqst_t *lrp, *tlrp;
mntinfo4_t *mi = recovp->rc_mi;
nfs4_error_t n4e;
#ifdef NOTYET
uint32_t deny_bits = 0;
#endif
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_resend_lost_rqsts"));
ASSERT(mi != NULL);
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
mutex_enter(&mi->mi_lock);
lrp = list_head(&mi->mi_lost_state);
mutex_exit(&mi->mi_lock);
while (lrp != NULL) {
nfs4_error_zinit(&n4e);
resend_one_op(lrp, &n4e, mi, sp);
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
"nfs4_resend_lost_rqsts: resend request: for vp %p got "
"error %d stat %d", (void *)lrp->lr_vp, n4e.error,
n4e.stat));
/*
* If we get a recovery error that we can actually
* recover from (such as ETIMEDOUT, FHEXPIRED), we
* return and let the recovery thread redrive the call.
* Don't requeue unless the zone is still healthy.
*/
if (zone_status_get(curproc->p_zone) < ZONE_IS_SHUTTING_DOWN &&
nfs4_needs_recovery(&n4e, TRUE, mi->mi_vfsp) &&
(nfs4_try_failover(&n4e) ||
NFS4_FRC_UNMT_ERR(n4e.error, mi->mi_vfsp) ||
(n4e.error == 0 && n4e.stat != NFS4ERR_BADHANDLE &&
!nfs4_recov_marks_dead(n4e.stat)))) {
/*
* For these three errors, we want to delay a bit
* instead of pounding the server into submission.
* We have to do this manually; the normal
* processing for these errors only works for
* non-recovery requests.
*/
if ((n4e.error == 0 && n4e.stat == NFS4ERR_DELAY) ||
(n4e.error == 0 && n4e.stat == NFS4ERR_GRACE) ||
(n4e.error == 0 && n4e.stat == NFS4ERR_RESOURCE) ||
NFS4_FRC_UNMT_ERR(n4e.error, mi->mi_vfsp)) {
delay(SEC_TO_TICK(nfs4err_delay_time));
} else {
(void) nfs4_start_recovery(&n4e,
mi, lrp->lr_dvp, lrp->lr_vp, NULL, NULL,
lrp->lr_op, NULL, NULL, NULL);
}
return;
}
mutex_enter(&mi->mi_lock);
list_remove(&mi->mi_lost_state, lrp);
tlrp = lrp;
lrp = list_head(&mi->mi_lost_state);
mutex_exit(&mi->mi_lock);
nfs4_free_lost_rqst(tlrp, sp);
}
}
/*
* Resend the given op, and issue any necessary undo call.
* errors are returned via the nfs4_error_t parameter.
*/
static void
resend_one_op(nfs4_lost_rqst_t *lrp, nfs4_error_t *ep,
mntinfo4_t *mi, nfs4_server_t *sp)
{
vnode_t *vp;
nfs4_open_stream_t *osp;
cred_t *cr;
uint32_t acc_bits;
vp = lrp->lr_vp;
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "resend_one_op: "
"have a lost open/close request for vp %p", (void *)vp));
switch (lrp->lr_op) {
case OP_OPEN:
nfs4_resend_open_otw(&vp, lrp, ep);
break;
case OP_OPEN_DOWNGRADE:
ASSERT(lrp->lr_oop != NULL);
ep->error = nfs4_start_open_seqid_sync(lrp->lr_oop, mi);
ASSERT(!ep->error); /* recov thread always succeeds */
ASSERT(lrp->lr_osp != NULL);
mutex_enter(&lrp->lr_osp->os_sync_lock);
nfs4_open_downgrade(lrp->lr_dg_acc, lrp->lr_dg_deny,
lrp->lr_oop, lrp->lr_osp, vp, lrp->lr_cr, lrp,
ep, NULL, NULL);
mutex_exit(&lrp->lr_osp->os_sync_lock);
nfs4_end_open_seqid_sync(lrp->lr_oop);
break;
case OP_CLOSE:
osp = lrp->lr_osp;
cr = lrp->lr_cr;
acc_bits = 0;
mutex_enter(&osp->os_sync_lock);
if (osp->os_share_acc_read)
acc_bits |= OPEN4_SHARE_ACCESS_READ;
if (osp->os_share_acc_write)
acc_bits |= OPEN4_SHARE_ACCESS_WRITE;
mutex_exit(&osp->os_sync_lock);
nfs4close_one(vp, osp, cr, acc_bits, lrp, ep,
CLOSE_RESEND, 0, 0, 0);
break;
case OP_LOCK:
case OP_LOCKU:
resend_lock(lrp, ep);
goto done;
case OP_DELEGRETURN:
nfs4_resend_delegreturn(lrp, ep, sp);
goto done;
default:
#ifdef DEBUG
cmn_err(CE_PANIC, "resend_one_op: unexpected op: %d",
lrp->lr_op);
#endif
nfs4_queue_event(RE_LOST_STATE_BAD_OP, mi, NULL,
lrp->lr_op, lrp->lr_vp, lrp->lr_dvp, NFS4_OK, NULL, 0,
TAG_NONE, TAG_NONE, 0, 0);
nfs4_error_init(ep, EINVAL);
return;
}
/*
* No need to retry nor send an "undo" CLOSE in the
* event the server rebooted.
*/
if (ep->error == 0 && (ep->stat == NFS4ERR_STALE_CLIENTID ||
ep->stat == NFS4ERR_STALE_STATEID || ep->stat == NFS4ERR_EXPIRED))
goto done;
/*
* If we resent a CLOSE or OPEN_DOWNGRADE, there's nothing
* to undo. Undoing locking operations was handled by
* resend_lock().
*/
if (lrp->lr_op == OP_OPEN_DOWNGRADE || lrp->lr_op == OP_CLOSE)
goto done;
/*
* If we get any other error for OPEN, then don't attempt
* to undo the resend of the open (since it was never
* successful!).
*/
ASSERT(lrp->lr_op == OP_OPEN);
if (ep->error || ep->stat != NFS4_OK)
goto done;
/*
* Now let's undo our OPEN.
*/
nfs4_error_zinit(ep);
close_after_open_resend(vp, lrp->lr_cr, lrp->lr_oacc, ep);
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "resend_one_op: "
"nfs4close_one: for vp %p got error %d stat %d",
(void *)vp, ep->error, ep->stat));
done:
if (vp != lrp->lr_vp)
VN_RELE(vp);
}
/*
* Close a file that was opened via a resent OPEN.
* Most errors are passed back to the caller (via the return value and
* *statp), except for FHEXPIRED, which is retried.
*
* It might be conceptually cleaner to push the CLOSE request onto the
* front of the resend queue, rather than sending it here. That would
* match the way we undo lost lock requests. On the other
* hand, we've already got something that works, and there's no reason to
* change it at this time.
*/
static void
close_after_open_resend(vnode_t *vp, cred_t *cr, uint32_t acc_bits,
nfs4_error_t *ep)
{
for (;;) {
nfs4close_one(vp, NULL, cr, acc_bits, NULL, ep,
CLOSE_AFTER_RESEND, 0, 0, 0);
if (ep->error == 0 && ep->stat == NFS4_OK)
break; /* success; done */
if (ep->error != 0 || ep->stat != NFS4ERR_FHEXPIRED)
break;
/* else retry FHEXPIRED */
}
}
/*
* Resend the given lost lock request. Return an errno value. If zero,
* *statp is set to the NFS status code for the call.
*
* Issue a SIGLOST and mark the rnode dead if we get a non-recovery error or
* a recovery error that we don't actually recover from yet (eg: BAD_SEQID).
* Let the recovery thread redrive the call if we get a recovery error that
* we can actually recover from.
*/
static void
resend_lock(nfs4_lost_rqst_t *lrp, nfs4_error_t *ep)
{
bool_t send_siglost = FALSE;
vnode_t *vp = lrp->lr_vp;
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "resend_lock:"));
ASSERT(lrp->lr_ctype == NFS4_LCK_CTYPE_REINSTATE ||
lrp->lr_ctype == NFS4_LCK_CTYPE_RESEND);
nfs4frlock(lrp->lr_ctype, vp, F_SETLK,
lrp->lr_flk, FREAD|FWRITE, 0, lrp->lr_cr, ep, lrp, NULL);
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "resend_lock: "
"nfs4frlock for vp %p returned error %d, stat %d",
(void *)vp, ep->error, ep->stat));
if (ep->error == 0 && ep->stat == 0)
goto done;
if (ep->error == 0 && ep->stat == NFS4ERR_DENIED &&
lrp->lr_ctype == NFS4_LCK_CTYPE_RESEND)
goto done;
/*
* If we failed with a non-recovery error, send SIGLOST and
* mark the file dead.
*/
if (!nfs4_needs_recovery(ep, TRUE, vp->v_vfsp))
send_siglost = TRUE;
else {
/*
* Done with recovering LOST LOCK in the event the
* server rebooted or we've lost the lease.
*/
if (ep->error == 0 && (ep->stat == NFS4ERR_STALE_CLIENTID ||
ep->stat == NFS4ERR_STALE_STATEID ||
ep->stat == NFS4ERR_EXPIRED)) {
goto done;
}
/*
* BAD_STATEID on an unlock indicates that the server has
* forgotten about the lock anyway, so act like the call
* was successful.
*/
if (ep->error == 0 && ep->stat == NFS4ERR_BAD_STATEID &&
lrp->lr_op == OP_LOCKU)
goto done;
/*
* If we got a recovery error that we don't actually
* recover from, send SIGLOST. If the filesystem was
* forcibly unmounted, we skip the SIGLOST because (a) it's
* unnecessary noise, and (b) there could be a new process
* with the same pid as the one that had generated the lost
* state request.
*/
if (ep->error == 0 && (ep->stat == NFS4ERR_BADHANDLE ||
nfs4_recov_marks_dead(ep->stat))) {
if (!(vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
send_siglost = TRUE;
goto done;
}
/*
* If the filesystem was forcibly unmounted, we
* still need to synchronize with the server and
* release state. Try again later.
*/
if (NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))
goto done;
/*
* If we get a recovery error that we can actually
* recover from (such as ETIMEDOUT, FHEXPIRED),
* return and let the recovery thread redrive the call.
*
* For the three errors below, we want to delay a bit
* instead of pounding the server into submission.
*/
if ((ep->error == 0 && ep->stat == NFS4ERR_DELAY) ||
(ep->error == 0 && ep->stat == NFS4ERR_GRACE) ||
(ep->error == 0 && ep->stat == NFS4ERR_RESOURCE))
delay(SEC_TO_TICK(recov_err_delay));
goto done;
}
done:
if (send_siglost) {
cred_t *sv_cred;
/*
* Must be root or the actual thread being issued the
* SIGLOST for this to work, so just become root.
*/
sv_cred = curthread->t_cred;
curthread->t_cred = kcred;
nfs4_send_siglost(lrp->lr_flk->l_pid, VTOMI4(vp), vp, FALSE,
ep->error, ep->stat);
curthread->t_cred = sv_cred;
/*
* Flush any additional reinstantiation requests for
* this operation. Sending multiple SIGLOSTs to the user
* process is unlikely to help and may cause trouble.
*/
if (lrp->lr_ctype == NFS4_LCK_CTYPE_REINSTATE)
flush_reinstate(lrp);
}
}
/*
* Remove any lock reinstantiation requests that correspond to the given
* lost request. We only remove items that follow lrp in the queue,
* assuming that lrp will be removed by the generic lost state code.
*/
static void
flush_reinstate(nfs4_lost_rqst_t *lrp)
{
vnode_t *vp;
pid_t pid;
mntinfo4_t *mi;
nfs4_lost_rqst_t *nlrp;
vp = lrp->lr_vp;
mi = VTOMI4(vp);
pid = lrp->lr_flk->l_pid;
/*
* If there are any more reinstantation requests to get rid of,
* they should all be clustered at the front of the lost state
* queue.
*/
mutex_enter(&mi->mi_lock);
for (lrp = list_next(&mi->mi_lost_state, lrp); lrp != NULL;
lrp = nlrp) {
nlrp = list_next(&mi->mi_lost_state, lrp);
if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU)
break;
if (lrp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE)
break;
ASSERT(lrp->lr_vp == vp);
ASSERT(lrp->lr_flk->l_pid == pid);
NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
"remove reinstantiation %p", (void *)lrp));
list_remove(&mi->mi_lost_state, lrp);
nfs4_free_lost_rqst(lrp, NULL);
}
mutex_exit(&mi->mi_lock);
}
/*
* End of state-specific recovery routines.
*/
/*
* Allocate a lost request struct, initialize it from lost_rqstp (including
* bumping the reference counts for the referenced vnode, etc.), and hang
* it off of recovp.
*/
static void
nfs4_save_lost_rqst(nfs4_lost_rqst_t *lost_rqstp, recov_info_t *recovp,
nfs4_recov_t *action, mntinfo4_t *mi)
{
nfs4_lost_rqst_t *destp;
ASSERT(recovp->rc_lost_rqst == NULL);
destp = kmem_alloc(sizeof (nfs4_lost_rqst_t), KM_SLEEP);
recovp->rc_lost_rqst = destp;
if (lost_rqstp->lr_op == OP_LOCK ||
lost_rqstp->lr_op == OP_LOCKU) {
ASSERT(lost_rqstp->lr_lop);
*action = NR_LOST_LOCK;
destp->lr_ctype = lost_rqstp->lr_ctype;
destp->lr_locktype = lost_rqstp->lr_locktype;
} else if (lost_rqstp->lr_op == OP_OPEN) {
component4 *srcfp, *destfp;
destp->lr_oacc = lost_rqstp->lr_oacc;
destp->lr_odeny = lost_rqstp->lr_odeny;
destp->lr_oclaim = lost_rqstp->lr_oclaim;
if (lost_rqstp->lr_oclaim == CLAIM_DELEGATE_CUR)
destp->lr_ostateid = lost_rqstp->lr_ostateid;
srcfp = &lost_rqstp->lr_ofile;
destfp = &destp->lr_ofile;
/*
* Consume caller's utf8string
*/
destfp->utf8string_len = srcfp->utf8string_len;
destfp->utf8string_val = srcfp->utf8string_val;
srcfp->utf8string_len = 0;
srcfp->utf8string_val = NULL; /* make sure not reused */
*action = NR_LOST_STATE_RQST;
} else if (lost_rqstp->lr_op == OP_OPEN_DOWNGRADE) {
destp->lr_dg_acc = lost_rqstp->lr_dg_acc;
destp->lr_dg_deny = lost_rqstp->lr_dg_deny;
*action = NR_LOST_STATE_RQST;
} else if (lost_rqstp->lr_op == OP_CLOSE) {
ASSERT(lost_rqstp->lr_oop);
*action = NR_LOST_STATE_RQST;
} else if (lost_rqstp->lr_op == OP_DELEGRETURN) {
*action = NR_LOST_STATE_RQST;
} else {
#ifdef DEBUG
cmn_err(CE_PANIC, "nfs4_save_lost_rqst: bad op %d",
lost_rqstp->lr_op);
#endif
nfs4_queue_event(RE_LOST_STATE_BAD_OP, mi, NULL,
lost_rqstp->lr_op, lost_rqstp->lr_vp, lost_rqstp->lr_dvp,
NFS4_OK, NULL, curproc->p_pid, TAG_NONE, TAG_NONE, 0, 0);
*action = NR_UNUSED;
recovp->rc_lost_rqst = NULL;
kmem_free(destp, sizeof (nfs4_lost_rqst_t));
return;
}
destp->lr_op = lost_rqstp->lr_op;
destp->lr_vp = lost_rqstp->lr_vp;
if (destp->lr_vp)
VN_HOLD(destp->lr_vp);
destp->lr_dvp = lost_rqstp->lr_dvp;
if (destp->lr_dvp)
VN_HOLD(destp->lr_dvp);
destp->lr_oop = lost_rqstp->lr_oop;
if (destp->lr_oop)
open_owner_hold(destp->lr_oop);
destp->lr_osp = lost_rqstp->lr_osp;
if (destp->lr_osp)
open_stream_hold(destp->lr_osp);
destp->lr_lop = lost_rqstp->lr_lop;
if (destp->lr_lop)
lock_owner_hold(destp->lr_lop);
destp->lr_cr = lost_rqstp->lr_cr;
if (destp->lr_cr)
crhold(destp->lr_cr);
if (lost_rqstp->lr_flk == NULL)
destp->lr_flk = NULL;
else {
destp->lr_flk = kmem_alloc(sizeof (flock64_t), KM_SLEEP);
*destp->lr_flk = *lost_rqstp->lr_flk;
}
destp->lr_putfirst = lost_rqstp->lr_putfirst;
}
/*
* Map the given return values (errno and nfs4 status code) to a recovery
* action and fill in the following fields of recovp: rc_action,
* rc_srv_reboot, rc_stateid, rc_lost_rqst.
*/
void
errs_to_action(recov_info_t *recovp,
nfs4_server_t *sp, mntinfo4_t *mi, stateid4 *sidp,
nfs4_lost_rqst_t *lost_rqstp, int unmounted, nfs_opnum4 op,
nfs4_bseqid_entry_t *bsep)
{
nfs4_recov_t action = NR_UNUSED;
bool_t reboot = FALSE;
int try_f;
int error = recovp->rc_orig_errors.error;
nfsstat4 stat = recovp->rc_orig_errors.stat;
bzero(&recovp->rc_stateid, sizeof (stateid4));
recovp->rc_lost_rqst = NULL;
recovp->rc_bseqid_rqst = NULL;
try_f = nfs4_try_failover(&recovp->rc_orig_errors) &&
FAILOVER_MOUNT4(mi);
/*
* We start recovery for EINTR only in the lost lock
* or lost open/close case.
*/
if (try_f || error == EINTR || (error == EIO && unmounted)) {
recovp->rc_error = (error != 0 ? error : geterrno4(stat));
if (lost_rqstp) {
ASSERT(lost_rqstp->lr_op != 0);
nfs4_save_lost_rqst(lost_rqstp, recovp, &action, mi);
}
if (try_f)
action = NR_FAILOVER;
} else if (error != 0) {
recovp->rc_error = error;
nfs4_queue_event(RE_UNEXPECTED_ERRNO, mi, NULL, error, NULL,
NULL, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
action = NR_CLIENTID;
} else {
recovp->rc_error = geterrno4(stat);
switch (stat) {
#ifdef notyet
case NFS4ERR_LEASE_MOVED:
action = xxx;
break;
#endif
case NFS4ERR_MOVED:
action = NR_MOVED;
break;
case NFS4ERR_BADHANDLE:
action = NR_BADHANDLE;
break;
case NFS4ERR_BAD_SEQID:
if (bsep)
save_bseqid_rqst(bsep, recovp);
action = NR_BAD_SEQID;
break;
case NFS4ERR_OLD_STATEID:
action = NR_OLDSTATEID;
break;
case NFS4ERR_WRONGSEC:
action = NR_WRONGSEC;
break;
case NFS4ERR_FHEXPIRED:
action = NR_FHEXPIRED;
break;
case NFS4ERR_BAD_STATEID:
if (sp == NULL || (sp != NULL && inlease(sp))) {
action = NR_BAD_STATEID;
if (sidp)
recovp->rc_stateid = *sidp;
} else
action = NR_CLIENTID;
break;
case NFS4ERR_EXPIRED:
/*
* The client's lease has expired, either due
* to a network partition or perhaps a client
* error. In either case, try an NR_CLIENTID
* style recovery. reboot remains false, since
* there is no evidence the server has rebooted.
* This will cause CLAIM_NULL opens and lock
* requests without the reclaim bit.
*/
action = NR_CLIENTID;
DTRACE_PROBE4(nfs4__expired,
nfs4_server_t *, sp,
mntinfo4_t *, mi,
stateid4 *, sidp, int, op);
break;
case NFS4ERR_STALE_CLIENTID:
case NFS4ERR_STALE_STATEID:
action = NR_CLIENTID;
reboot = TRUE;
break;
case NFS4ERR_RESOURCE:
/*
* If this had been a FAILOVER mount, then
* we'd have tried failover. Since it's not,
* just delay a while and retry.
*/
action = NR_DELAY;
break;
case NFS4ERR_GRACE:
action = NR_GRACE;
break;
case NFS4ERR_DELAY:
action = NR_DELAY;
break;
case NFS4ERR_STALE:
action = NR_STALE;
break;
default:
nfs4_queue_event(RE_UNEXPECTED_STATUS, mi, NULL, 0,
NULL, NULL, stat, NULL, 0, TAG_NONE, TAG_NONE,
0, 0);
action = NR_CLIENTID;
break;
}
}
/* make sure action got set */
ASSERT(action != NR_UNUSED);
recovp->rc_srv_reboot = reboot;
recovp->rc_action = action;
nfs4_queue_fact(RF_ERR, mi, stat, action, op, reboot, NULL, error,
NULL);
}
/*
* Return the (held) credential for the process with the given pid.
* May return NULL (e.g., process not found).
*/
static cred_t *
pid_to_cr(pid_t pid)
{
proc_t *p;
cred_t *cr;
mutex_enter(&pidlock);
if ((p = prfind(pid)) == NULL) {
mutex_exit(&pidlock);
return (NULL);
}
mutex_enter(&p->p_crlock);
crhold(cr = p->p_cred);
mutex_exit(&p->p_crlock);
mutex_exit(&pidlock);
return (cr);
}
/*
* Send SIGLOST to the given process and queue the event.
*
* The 'dump' boolean tells us whether this action should dump the
* in-kernel queue of recovery messages or not.
*/
void
nfs4_send_siglost(pid_t pid, mntinfo4_t *mi, vnode_t *vp, bool_t dump,
int error, nfsstat4 stat)
{
proc_t *p;
mutex_enter(&pidlock);
p = prfind(pid);
if (p)
psignal(p, SIGLOST);
mutex_exit(&pidlock);
nfs4_queue_event(dump ? RE_SIGLOST : RE_SIGLOST_NO_DUMP, mi,
NULL, error, vp, NULL, stat, NULL, pid, TAG_NONE, TAG_NONE, 0, 0);
}
/*
* Scan the lock list for entries that match the given pid. Change the
* pid in those that do to NOPID.
*/
static void
relock_skip_pid(locklist_t *llp, pid_t pid)
{
for (; llp != NULL; llp = llp->ll_next) {
if (llp->ll_flock.l_pid == pid)
llp->ll_flock.l_pid = NOPID;
}
}
/*
* Mark a file as having failed recovery, after making a last-ditch effort
* to return any delegation.
*
* Sets r_error to EIO or ESTALE for the given vnode.
*/
void
nfs4_fail_recov(vnode_t *vp, char *why, int error, nfsstat4 stat)
{
rnode4_t *rp = VTOR4(vp);
#ifdef DEBUG
if (nfs4_fail_recov_stop)
debug_enter("nfs4_fail_recov");
#endif
mutex_enter(&rp->r_statelock);
if (rp->r_flags & (R4RECOVERR|R4RECOVERRP)) {
mutex_exit(&rp->r_statelock);
return;
}
/*
* Set R4RECOVERRP to indicate that a recovery error is in
* progress. This will shut down reads and writes at the top
* half. Don't set R4RECOVERR until after we've returned the
* delegation, otherwise it will fail.
*/
rp->r_flags |= R4RECOVERRP;
mutex_exit(&rp->r_statelock);
nfs4delegabandon(rp);
mutex_enter(&rp->r_statelock);
rp->r_flags |= (R4RECOVERR | R4STALE);
rp->r_error = (error == 0 && stat == NFS4ERR_STALE) ? ESTALE : EIO;
PURGE_ATTRCACHE4_LOCKED(rp);
if (!(vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
nfs4_queue_event(RE_DEAD_FILE, VTOMI4(vp), NULL, error,
vp, NULL, stat, why, 0, TAG_NONE, TAG_NONE, 0, 0);
mutex_exit(&rp->r_statelock);
dnlc_purge_vp(vp);
}
/*
* recov_throttle: if the file had the same recovery action within the
* throttle interval, wait for the throttle interval to finish before
* proceeding.
*
* Side effects: updates the rnode with the current recovery information.
*/
static void
recov_throttle(recov_info_t *recovp, vnode_t *vp)
{
time_t curtime, time_to_wait;
rnode4_t *rp = VTOR4(vp);
curtime = gethrestime_sec();
mutex_enter(&rp->r_statelock);
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_throttle: now: (%d, %ld), last: (%d, %ld)",
recovp->rc_action, curtime,
rp->r_recov_act, rp->r_last_recov));
if (recovp->rc_action == rp->r_recov_act &&
rp->r_last_recov + recov_err_delay > curtime) {
time_to_wait = rp->r_last_recov + recov_err_delay - curtime;
mutex_exit(&rp->r_statelock);
delay(SEC_TO_TICK(time_to_wait));
curtime = gethrestime_sec();
mutex_enter(&rp->r_statelock);
}
rp->r_last_recov = curtime;
rp->r_recov_act = recovp->rc_action;
mutex_exit(&rp->r_statelock);
}
/*
* React to NFS4ERR_GRACE by setting the time we'll permit
* the next call to this filesystem.
*/
void
nfs4_set_grace_wait(mntinfo4_t *mi)
{
mutex_enter(&mi->mi_lock);
/* Mark the time for the future */
mi->mi_grace_wait = gethrestime_sec() + nfs4err_delay_time;
mutex_exit(&mi->mi_lock);
}
/*
* React to MFS4ERR_DELAY by setting the time we'll permit
* the next call to this vnode.
*/
void
nfs4_set_delay_wait(vnode_t *vp)
{
rnode4_t *rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
/*
* Calculate amount we should delay, initial
* delay will be short and then we will back off.
*/
if (rp->r_delay_interval == 0)
rp->r_delay_interval = NFS4_INITIAL_DELAY_INTERVAL;
else
/* calculate next interval value */
rp->r_delay_interval =
MIN(NFS4_MAX_DELAY_INTERVAL, (rp->r_delay_interval << 1));
rp->r_delay_wait = gethrestime_sec() + rp->r_delay_interval;
mutex_exit(&rp->r_statelock);
}
/*
* The caller is responsible for freeing the returned string.
*/
static char *
nfs4_getsrvnames(mntinfo4_t *mi, size_t *len)
{
servinfo4_t *svp;
char *srvnames;
char *namep;
size_t length;
/*
* Calculate the length of the string required to hold all
* of the server names plus either a comma or a null
* character following each individual one.
*/
length = 0;
for (svp = mi->mi_servers; svp != NULL; svp = svp->sv_next) {
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
if (svp->sv_flags & SV4_NOTINUSE) {
nfs_rw_exit(&svp->sv_lock);
continue;
}
nfs_rw_exit(&svp->sv_lock);
length += svp->sv_hostnamelen;
}
srvnames = kmem_alloc(length, KM_SLEEP);
namep = srvnames;
for (svp = mi->mi_servers; svp != NULL; svp = svp->sv_next) {
(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
if (svp->sv_flags & SV4_NOTINUSE) {
nfs_rw_exit(&svp->sv_lock);
continue;
}
nfs_rw_exit(&svp->sv_lock);
(void) strcpy(namep, svp->sv_hostname);
namep += svp->sv_hostnamelen - 1;
*namep++ = ',';
}
*--namep = '\0';
*len = length;
return (srvnames);
}
static void
save_bseqid_rqst(nfs4_bseqid_entry_t *bsep, recov_info_t *recovp)
{
nfs4_bseqid_entry_t *destp;
destp = kmem_alloc(sizeof (nfs4_bseqid_entry_t), KM_SLEEP);
recovp->rc_bseqid_rqst = destp;
if (bsep->bs_oop)
open_owner_hold(bsep->bs_oop);
destp->bs_oop = bsep->bs_oop;
if (bsep->bs_lop)
lock_owner_hold(bsep->bs_lop);
destp->bs_lop = bsep->bs_lop;
if (bsep->bs_vp)
VN_HOLD(bsep->bs_vp);
destp->bs_vp = bsep->bs_vp;
destp->bs_pid = bsep->bs_pid;
destp->bs_tag = bsep->bs_tag;
destp->bs_seqid = bsep->bs_seqid;
}
static void
free_bseqid_rqst(nfs4_bseqid_entry_t *bsep)
{
if (bsep->bs_oop)
open_owner_rele(bsep->bs_oop);
if (bsep->bs_lop)
lock_owner_rele(bsep->bs_lop);
if (bsep->bs_vp)
VN_RELE(bsep->bs_vp);
kmem_free(bsep, sizeof (nfs4_bseqid_entry_t));
}
/*
* We don't actually fully recover from NFS4ERR_BAD_SEQID. We
* simply mark the open owner and open stream (if provided) as "bad".
* Then future uses of these data structures will be limited to basically
* just cleaning up the internal client state (no going OTW).
*
* The result of this is to return errors back to the app/usr when
* we receive NFS4ERR_BAD_SEQID, but also allow future/new calls to
* succeed so progress can be made.
*/
void
recov_bad_seqid(recov_info_t *recovp)
{
mntinfo4_t *mi = recovp->rc_mi;
nfs4_open_owner_t *bad_oop;
nfs4_lock_owner_t *bad_lop;
vnode_t *vp;
rnode4_t *rp = NULL;
pid_t pid;
nfs4_bseqid_entry_t *bsep, *tbsep;
int error;
ASSERT(mi != NULL);
ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
mutex_enter(&mi->mi_lock);
bsep = list_head(&mi->mi_bseqid_list);
mutex_exit(&mi->mi_lock);
/*
* Handle all the bad seqid entries on mi's list.
*/
while (bsep != NULL) {
bad_oop = bsep->bs_oop;
bad_lop = bsep->bs_lop;
vp = bsep->bs_vp;
pid = bsep->bs_pid;
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"recov_bad_seqid: mark oop %p lop %p as bad for "
"vp %p tag %s pid %d: last good seqid %d for tag %s",
(void *)bad_oop, (void *)bad_lop, (void *)vp,
nfs4_ctags[bsep->bs_tag].ct_str, pid,
bad_oop ? bad_oop->oo_last_good_seqid : 0,
bad_oop ? nfs4_ctags[bad_oop->oo_last_good_op].ct_str :
nfs4_ctags[TAG_NONE].ct_str));
nfs4_queue_event(RE_BAD_SEQID, mi, NULL,
0, vp, NULL, NFS4ERR_BAD_SEQID, NULL, pid, bsep->bs_tag,
bad_oop ? bad_oop->oo_last_good_op : TAG_NONE,
bsep->bs_seqid, bad_oop ? bad_oop->oo_last_good_seqid : 0);
if (bad_oop) {
/* essentially reset the open owner */
error = nfs4_start_open_seqid_sync(bad_oop, mi);
ASSERT(!error); /* recov thread always succeeds */
bad_oop->oo_name = nfs4_get_new_oo_name();
bad_oop->oo_seqid = 0;
nfs4_end_open_seqid_sync(bad_oop);
}
if (bad_lop) {
mutex_enter(&bad_lop->lo_lock);
bad_lop->lo_flags |= NFS4_BAD_SEQID_LOCK;
mutex_exit(&bad_lop->lo_lock);
ASSERT(vp != NULL);
rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4LODANGLERS;
mutex_exit(&rp->r_statelock);
nfs4_send_siglost(pid, mi, vp, TRUE,
0, NFS4ERR_BAD_SEQID);
}
mutex_enter(&mi->mi_lock);
list_remove(&mi->mi_bseqid_list, bsep);
tbsep = bsep;
bsep = list_head(&mi->mi_bseqid_list);
mutex_exit(&mi->mi_lock);
free_bseqid_rqst(tbsep);
}
mutex_enter(&mi->mi_lock);
mi->mi_recovflags &= ~MI4R_BAD_SEQID;
mutex_exit(&mi->mi_lock);
}