/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
* All Rights Reserved
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/thread.h>
#include <sys/t_lock.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/errno.h>
#include <sys/buf.h>
#include <sys/stat.h>
#include <sys/cred.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/dnlc.h>
#include <sys/vmsystm.h>
#include <sys/flock.h>
#include <sys/share.h>
#include <sys/cmn_err.h>
#include <sys/tiuser.h>
#include <sys/sysmacros.h>
#include <sys/callb.h>
#include <sys/acl.h>
#include <sys/kstat.h>
#include <sys/signal.h>
#include <sys/disp.h>
#include <sys/atomic.h>
#include <sys/list.h>
#include <sys/sdt.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include <rpc/auth.h>
#include <rpc/clnt.h>
#include <nfs/nfs.h>
#include <nfs/nfs_clnt.h>
#include <nfs/nfs_acl.h>
#include <nfs/nfs4.h>
#include <nfs/rnode4.h>
#include <nfs/nfs4_clnt.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <vm/page.h>
#include <vm/pvn.h>
#include <vm/seg.h>
#include <vm/seg_map.h>
#include <vm/seg_vn.h>
#include <sys/ddi.h>
/*
* Arguments to page-flush thread.
*/
typedef struct {
vnode_t *vp;
cred_t *cr;
} pgflush_t;
#ifdef DEBUG
int nfs4_client_lease_debug;
int nfs4_sharedfh_debug;
int nfs4_fname_debug;
/* temporary: panic if v_type is inconsistent with r_attr va_type */
int nfs4_vtype_debug;
uint_t nfs4_tsd_key;
#endif
static time_t nfs4_client_resumed = 0;
static callb_id_t cid = 0;
static int nfs4renew(nfs4_server_t *);
static void nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int);
static void nfs4_pgflush_thread(pgflush_t *);
static boolean_t nfs4_client_cpr_callb(void *, int);
struct mi4_globals {
kmutex_t mig_lock; /* lock protecting mig_list */
list_t mig_list; /* list of NFS v4 mounts in zone */
boolean_t mig_destructor_called;
};
static zone_key_t mi4_list_key;
/*
* Attributes caching:
*
* Attributes are cached in the rnode in struct vattr form.
* There is a time associated with the cached attributes (r_time_attr_inval)
* which tells whether the attributes are valid. The time is initialized
* to the difference between current time and the modify time of the vnode
* when new attributes are cached. This allows the attributes for
* files that have changed recently to be timed out sooner than for files
* that have not changed for a long time. There are minimum and maximum
* timeout values that can be set per mount point.
*/
/*
* If a cache purge is in progress, wait for it to finish.
*
* The current thread must not be in the middle of an
* nfs4_start_op/nfs4_end_op region. Otherwise, there could be a deadlock
* between this thread, a recovery thread, and the page flush thread.
*/
int
nfs4_waitfor_purge_complete(vnode_t *vp)
{
rnode4_t *rp;
k_sigset_t smask;
rp = VTOR4(vp);
if ((rp->r_serial != NULL && rp->r_serial != curthread) ||
((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) {
mutex_enter(&rp->r_statelock);
sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
while ((rp->r_serial != NULL && rp->r_serial != curthread) ||
((rp->r_flags & R4PGFLUSH) &&
rp->r_pgflush != curthread)) {
if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
sigunintr(&smask);
mutex_exit(&rp->r_statelock);
return (EINTR);
}
}
sigunintr(&smask);
mutex_exit(&rp->r_statelock);
}
return (0);
}
/*
* Validate caches by checking cached attributes. If they have timed out,
* then get new attributes from the server. As a side effect, cache
* invalidation is done if the attributes have changed.
*
* If the attributes have not timed out and if there is a cache
* invalidation being done by some other thread, then wait until that
* thread has completed the cache invalidation.
*/
int
nfs4_validate_caches(vnode_t *vp, cred_t *cr)
{
int error;
nfs4_ga_res_t gar;
if (ATTRCACHE4_VALID(vp)) {
error = nfs4_waitfor_purge_complete(vp);
if (error)
return (error);
return (0);
}
return (nfs4_getattr_otw(vp, &gar, cr, 0));
}
/*
* Fill in attribute from the cache.
* If valid, then return 0 to indicate that no error occurred,
* otherwise return 1 to indicate that an error occurred.
*/
static int
nfs4_getattr_cache(vnode_t *vp, struct vattr *vap)
{
rnode4_t *rp;
rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
mutex_enter(&rp->r_statev4_lock);
if (ATTRCACHE4_VALID(vp)) {
mutex_exit(&rp->r_statev4_lock);
/*
* Cached attributes are valid
*/
*vap = rp->r_attr;
mutex_exit(&rp->r_statelock);
return (0);
}
mutex_exit(&rp->r_statev4_lock);
mutex_exit(&rp->r_statelock);
return (1);
}
/*
* If returned error is ESTALE flush all caches. The nfs4_purge_caches()
* call is synchronous because all the pages were invalidated by the
* nfs4_invalidate_pages() call.
*/
void
nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr)
{
struct rnode4 *rp = VTOR4(vp);
/* Ensure that the ..._end_op() call has been done */
ASSERT(tsd_get(nfs4_tsd_key) == NULL);
if (errno != ESTALE)
return;
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4STALE;
if (!rp->r_error)
rp->r_error = errno;
mutex_exit(&rp->r_statelock);
if (nfs4_has_pages(vp))
nfs4_invalidate_pages(vp, (u_offset_t)0, cr);
nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE);
}
/*
* Purge all of the various NFS `data' caches. If "asyncpg" is TRUE, the
* page purge is done asynchronously.
*/
void
nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg)
{
rnode4_t *rp;
char *contents;
vnode_t *xattr;
int size;
int pgflush; /* are we the page flush thread? */
/*
* Purge the DNLC for any entries which refer to this file.
*/
if (vp->v_count > 1 &&
(vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC))
dnlc_purge_vp(vp);
/*
* Clear any readdir state bits and purge the readlink response cache.
*/
rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~R4LOOKUP;
contents = rp->r_symlink.contents;
size = rp->r_symlink.size;
rp->r_symlink.contents = NULL;
xattr = rp->r_xattr_dir;
rp->r_xattr_dir = NULL;
/*
* Purge pathconf cache too.
*/
rp->r_pathconf.pc4_xattr_valid = 0;
rp->r_pathconf.pc4_cache_valid = 0;
pgflush = (curthread == rp->r_pgflush);
mutex_exit(&rp->r_statelock);
if (contents != NULL) {
kmem_free((void *)contents, size);
}
if (xattr != NULL)
VN_RELE(xattr);
/*
* Flush the page cache. If the current thread is the page flush
* thread, don't initiate a new page flush. There's no need for
* it, and doing it correctly is hard.
*/
if (nfs4_has_pages(vp) && !pgflush) {
if (!asyncpg) {
(void) nfs4_waitfor_purge_complete(vp);
nfs4_flush_pages(vp, cr);
} else {
pgflush_t *args;
/*
* We don't hold r_statelock while creating the
* thread, in case the call blocks. So we use a
* flag to indicate that a page flush thread is
* active.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4PGFLUSH) {
mutex_exit(&rp->r_statelock);
} else {
rp->r_flags |= R4PGFLUSH;
mutex_exit(&rp->r_statelock);
args = kmem_alloc(sizeof (pgflush_t),
KM_SLEEP);
args->vp = vp;
VN_HOLD(args->vp);
args->cr = cr;
crhold(args->cr);
(void) zthread_create(NULL, 0,
nfs4_pgflush_thread, args, 0,
minclsyspri);
}
}
}
/*
* Flush the readdir response cache.
*/
nfs4_purge_rddir_cache(vp);
}
/*
* Invalidate all pages for the given file, after writing back the dirty
* ones.
*/
void
nfs4_flush_pages(vnode_t *vp, cred_t *cr)
{
int error;
rnode4_t *rp = VTOR4(vp);
error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
if (error == ENOSPC || error == EDQUOT) {
mutex_enter(&rp->r_statelock);
if (!rp->r_error)
rp->r_error = error;
mutex_exit(&rp->r_statelock);
}
}
/*
* Page flush thread.
*/
static void
nfs4_pgflush_thread(pgflush_t *args)
{
rnode4_t *rp = VTOR4(args->vp);
/* remember which thread we are, so we don't deadlock ourselves */
mutex_enter(&rp->r_statelock);
ASSERT(rp->r_pgflush == NULL);
rp->r_pgflush = curthread;
mutex_exit(&rp->r_statelock);
nfs4_flush_pages(args->vp, args->cr);
mutex_enter(&rp->r_statelock);
rp->r_pgflush = NULL;
rp->r_flags &= ~R4PGFLUSH;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
VN_RELE(args->vp);
crfree(args->cr);
kmem_free(args, sizeof (pgflush_t));
zthread_exit();
}
/*
* Purge the readdir cache of all entries which are not currently
* being filled.
*/
void
nfs4_purge_rddir_cache(vnode_t *vp)
{
rnode4_t *rp;
rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
rp->r_direof = NULL;
rp->r_flags &= ~R4LOOKUP;
rp->r_flags |= R4READDIRWATTR;
rddir4_cache_purge(rp);
mutex_exit(&rp->r_statelock);
}
/*
* Set attributes cache for given vnode using virtual attributes. There is
* no cache validation, but if the attributes are deemed to be stale, they
* are ignored. This corresponds to nfs3_attrcache().
*
* Set the timeout value on the attribute cache and fill it
* with the passed in attributes.
*/
void
nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t)
{
rnode4_t *rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
if (rp->r_time_attr_saved <= t)
nfs4_attrcache_va(vp, garp, FALSE);
mutex_exit(&rp->r_statelock);
}
/*
* Use the passed in virtual attributes to check to see whether the
* data and metadata caches are valid, cache the new attributes, and
* then do the cache invalidation if required.
*
* The cache validation and caching of the new attributes is done
* atomically via the use of the mutex, r_statelock. If required,
* the cache invalidation is done atomically w.r.t. the cache
* validation and caching of the attributes via the pseudo lock,
* r_serial.
*
* This routine is used to do cache validation and attributes caching
* for operations with a single set of post operation attributes.
*/
void
nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp,
hrtime_t t, cred_t *cr, int async,
change_info4 *cinfo)
{
rnode4_t *rp;
int mtime_changed = 0;
int ctime_changed = 0;
vsecattr_t *vsp;
int was_serial, set_time_cache_inval, recov;
vattr_t *vap = &garp->n4g_va;
mntinfo4_t *mi = VTOMI4(vp);
len_t preattr_rsize;
boolean_t writemodify_set = B_FALSE;
boolean_t cachepurge_set = B_FALSE;
ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid);
/* Is curthread the recovery thread? */
mutex_enter(&mi->mi_lock);
recov = (VTOMI4(vp)->mi_recovthread == curthread);
mutex_exit(&mi->mi_lock);
rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
was_serial = (rp->r_serial == curthread);
if (rp->r_serial && !was_serial) {
klwp_t *lwp = ttolwp(curthread);
/*
* If we're the recovery thread, then purge current attrs
* and bail out to avoid potential deadlock between another
* thread caching attrs (r_serial thread), recov thread,
* and an async writer thread.
*/
if (recov) {
PURGE_ATTRCACHE4_LOCKED(rp);
mutex_exit(&rp->r_statelock);
return;
}
if (lwp != NULL)
lwp->lwp_nostop++;
while (rp->r_serial != NULL) {
if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
mutex_exit(&rp->r_statelock);
if (lwp != NULL)
lwp->lwp_nostop--;
return;
}
}
if (lwp != NULL)
lwp->lwp_nostop--;
}
/*
* If there is a page flush thread, the current thread needs to
* bail out, to prevent a possible deadlock between the current
* thread (which might be in a start_op/end_op region), the
* recovery thread, and the page flush thread. Expire the
* attribute cache, so that any attributes the current thread was
* going to set are not lost.
*/
if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) {
PURGE_ATTRCACHE4_LOCKED(rp);
mutex_exit(&rp->r_statelock);
return;
}
if (rp->r_time_attr_saved > t) {
/*
* Attributes have been cached since these attributes were
* probably made. If there is an inconsistency in what is
* cached, mark them invalid. If not, don't act on them.
*/
if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
PURGE_ATTRCACHE4_LOCKED(rp);
mutex_exit(&rp->r_statelock);
return;
}
set_time_cache_inval = 0;
if (cinfo) {
/*
* Only directory modifying callers pass non-NULL cinfo.
*/
ASSERT(vp->v_type == VDIR);
/*
* If the cache timeout either doesn't exist or hasn't expired,
* and dir didn't changed on server before dirmod op
* and dir didn't change after dirmod op but before getattr
* then there's a chance that the client's cached data for
* this object is current (not stale). No immediate cache
* flush is required.
*
*/
if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) &&
cinfo->before == rp->r_change &&
(garp->n4g_change_valid &&
cinfo->after == garp->n4g_change)) {
/*
* If atomic isn't set, then the before/after info
* cannot be blindly trusted. For this case, we tell
* nfs4_attrcache_va to cache the attrs but also
* establish an absolute maximum cache timeout. When
* the timeout is reached, caches will be flushed.
*/
if (! cinfo->atomic)
set_time_cache_inval = 1;
} else {
/*
* We're not sure exactly what changed, but we know
* what to do. flush all caches for dir. remove the
* attr timeout.
*
* a) timeout expired. flush all caches.
* b) r_change != cinfo.before. flush all caches.
* c) r_change == cinfo.before, but cinfo.after !=
* post-op getattr(change). flush all caches.
* d) post-op getattr(change) not provided by server.
* flush all caches.
*/
mtime_changed = 1;
ctime_changed = 1;
rp->r_time_cache_inval = 0;
}
} else {
/*
* Write thread after writing data to file on remote server,
* will always set R4WRITEMODIFIED to indicate that file on
* remote server was modified with a WRITE operation and would
* have marked attribute cache as timed out. If R4WRITEMODIFIED
* is set, then do not check for mtime and ctime change.
*/
if (!(rp->r_flags & R4WRITEMODIFIED)) {
if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
mtime_changed = 1;
if (rp->r_attr.va_ctime.tv_sec !=
vap->va_ctime.tv_sec ||
rp->r_attr.va_ctime.tv_nsec !=
vap->va_ctime.tv_nsec)
ctime_changed = 1;
/*
* If the change attribute was not provided by server
* or it differs, then flush all caches.
*/
if (!garp->n4g_change_valid ||
rp->r_change != garp->n4g_change) {
mtime_changed = 1;
ctime_changed = 1;
}
} else {
writemodify_set = B_TRUE;
}
}
preattr_rsize = rp->r_size;
nfs4_attrcache_va(vp, garp, set_time_cache_inval);
/*
* If we have updated filesize in nfs4_attrcache_va, as soon as we
* drop statelock we will be in transition of purging all
* our caches and updating them. It is possible for another
* thread to pick this new file size and read in zeroed data.
* stall other threads till cache purge is complete.
*/
if ((!cinfo) && (rp->r_size != preattr_rsize)) {
/*
* If R4WRITEMODIFIED was set and we have updated the file
* size, Server's returned file size need not necessarily
* be because of this Client's WRITE. We need to purge
* all caches.
*/
if (writemodify_set)
mtime_changed = 1;
if (mtime_changed && !(rp->r_flags & R4INCACHEPURGE)) {
rp->r_flags |= R4INCACHEPURGE;
cachepurge_set = B_TRUE;
}
}
if (!mtime_changed && !ctime_changed) {
mutex_exit(&rp->r_statelock);
return;
}
rp->r_serial = curthread;
mutex_exit(&rp->r_statelock);
/*
* If we're the recov thread, then force async nfs4_purge_caches
* to avoid potential deadlock.
*/
if (mtime_changed)
nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async);
if ((rp->r_flags & R4INCACHEPURGE) && cachepurge_set) {
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~R4INCACHEPURGE;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
cachepurge_set = B_FALSE;
}
if (ctime_changed) {
(void) nfs4_access_purge_rp(rp);
if (rp->r_secattr != NULL) {
mutex_enter(&rp->r_statelock);
vsp = rp->r_secattr;
rp->r_secattr = NULL;
mutex_exit(&rp->r_statelock);
if (vsp != NULL)
nfs4_acl_free_cache(vsp);
}
}
if (!was_serial) {
mutex_enter(&rp->r_statelock);
rp->r_serial = NULL;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
}
}
/*
* Set attributes cache for given vnode using virtual attributes.
*
* Set the timeout value on the attribute cache and fill it
* with the passed in attributes.
*
* The caller must be holding r_statelock.
*/
static void
nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout)
{
rnode4_t *rp;
mntinfo4_t *mi;
hrtime_t delta;
hrtime_t now;
vattr_t *vap = &garp->n4g_va;
rp = VTOR4(vp);
ASSERT(MUTEX_HELD(&rp->r_statelock));
ASSERT(vap->va_mask == AT_ALL);
/* Switch to master before checking v_flag */
if (IS_SHADOW(vp, rp))
vp = RTOV4(rp);
now = gethrtime();
mi = VTOMI4(vp);
/*
* Only establish a new cache timeout (if requested). Never
* extend a timeout. Never clear a timeout. Clearing a timeout
* is done by nfs4_update_dircaches (ancestor in our call chain)
*/
if (set_cache_timeout && ! rp->r_time_cache_inval)
rp->r_time_cache_inval = now + mi->mi_acdirmax;
/*
* Delta is the number of nanoseconds that we will
* cache the attributes of the file. It is based on
* the number of nanoseconds since the last time that
* we detected a change. The assumption is that files
* that changed recently are likely to change again.
* There is a minimum and a maximum for regular files
* and for directories which is enforced though.
*
* Using the time since last change was detected
* eliminates direct comparison or calculation
* using mixed client and server times. NFS does
* not make any assumptions regarding the client
* and server clocks being synchronized.
*/
if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
vap->va_size != rp->r_attr.va_size) {
rp->r_time_attr_saved = now;
}
if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE))
delta = 0;
else {
delta = now - rp->r_time_attr_saved;
if (vp->v_type == VDIR) {
if (delta < mi->mi_acdirmin)
delta = mi->mi_acdirmin;
else if (delta > mi->mi_acdirmax)
delta = mi->mi_acdirmax;
} else {
if (delta < mi->mi_acregmin)
delta = mi->mi_acregmin;
else if (delta > mi->mi_acregmax)
delta = mi->mi_acregmax;
}
}
rp->r_time_attr_inval = now + delta;
rp->r_attr = *vap;
if (garp->n4g_change_valid)
rp->r_change = garp->n4g_change;
/*
* The attributes that were returned may be valid and can
* be used, but they may not be allowed to be cached.
* Reset the timers to cause immediate invalidation and
* clear r_change so no VERIFY operations will suceed
*/
if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) {
rp->r_time_attr_inval = now;
rp->r_time_attr_saved = now;
rp->r_change = 0;
}
/*
* If mounted_on_fileid returned AND the object is a stub,
* then set object's va_nodeid to the mounted over fid
* returned by server.
*
* If mounted_on_fileid not provided/supported, then
* just set it to 0 for now. Eventually it would be
* better to set it to a hashed version of FH. This
* would probably be good enough to provide a unique
* fid/d_ino within a dir.
*
* We don't need to carry mounted_on_fileid in the
* rnode as long as the client never requests fileid
* without also requesting mounted_on_fileid. For
* now, it stays.
*/
if (garp->n4g_mon_fid_valid) {
rp->r_mntd_fid = garp->n4g_mon_fid;
if (RP_ISSTUB(rp))
rp->r_attr.va_nodeid = rp->r_mntd_fid;
}
/*
* Check to see if there are valid pathconf bits to
* cache in the rnode.
*/
if (garp->n4g_ext_res) {
if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) {
rp->r_pathconf = garp->n4g_ext_res->n4g_pc4;
} else {
if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) {
rp->r_pathconf.pc4_xattr_valid = TRUE;
rp->r_pathconf.pc4_xattr_exists =
garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists;
}
}
}
/*
* Update the size of the file if there is no cached data or if
* the cached data is clean and there is no data being written
* out.
*/
if (rp->r_size != vap->va_size &&
(!vn_has_cached_data(vp) ||
(!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) {
rp->r_size = vap->va_size;
}
nfs_setswaplike(vp, vap);
rp->r_flags &= ~R4WRITEMODIFIED;
}
/*
* Get attributes over-the-wire and update attributes cache
* if no error occurred in the over-the-wire operation.
* Return 0 if successful, otherwise error.
*/
int
nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl)
{
mntinfo4_t *mi = VTOMI4(vp);
hrtime_t t;
nfs4_recov_state_t recov_state;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
/* Save the original mount point security flavor */
(void) save_mnt_secinfo(mi->mi_curr_serv);
recov_retry:
if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR,
&recov_state, NULL))) {
(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
return (e.error);
}
t = gethrtime();
nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl);
if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) {
if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
NULL, OP_GETATTR, NULL, NULL, NULL) == FALSE) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR,
&recov_state, 1);
goto recov_retry;
}
}
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0);
if (!e.error) {
if (e.stat == NFS4_OK) {
nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
} else {
e.error = geterrno4(e.stat);
nfs4_purge_stale_fh(e.error, vp, cr);
}
}
/*
* If getattr a node that is a stub for a crossed
* mount point, keep the original secinfo flavor for
* the current file system, not the crossed one.
*/
(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
return (e.error);
}
/*
* Generate a compound to get attributes over-the-wire.
*/
void
nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp,
nfs4_error_t *ep, cred_t *cr, int get_acl)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
int doqueue;
rnode4_t *rp = VTOR4(vp);
nfs_argop4 argop[2];
args.ctag = TAG_GETATTR;
args.array_len = 2;
args.array = argop;
/* putfh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
/* getattr */
/*
* Unlike nfs version 2 and 3, where getattr returns all the
* attributes, nfs version 4 returns only the ones explicitly
* asked for. This creates problems, as some system functions
* (e.g. cache check) require certain attributes and if the
* cached node lacks some attributes such as uid/gid, it can
* affect system utilities (e.g. "ls") that rely on the information
* to be there. This can lead to anything from system crashes to
* corrupted information processed by user apps.
* So to ensure that all bases are covered, request at least
* the AT_ALL attribute mask.
*/
argop[1].argop = OP_GETATTR;
argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
if (get_acl)
argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK;
argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
doqueue = 1;
rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep);
if (ep->error)
return;
if (res.status != NFS4_OK) {
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
return;
}
*garp = res.array[1].nfs_resop4_u.opgetattr.ga_res;
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
}
/*
* Return either cached or remote attributes. If get remote attr
* use them to check and invalidate caches, then cache the new attributes.
*/
int
nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr)
{
int error;
rnode4_t *rp;
nfs4_ga_res_t gar;
ASSERT(nfs4_consistent_type(vp));
/*
* If we've got cached attributes, we're done, otherwise go
* to the server to get attributes, which will update the cache
* in the process. Either way, use the cached attributes for
* the caller's vattr_t.
*
* Note that we ignore the gar set by the OTW call: the attr caching
* code may make adjustments when storing to the rnode, and we want
* to see those changes here.
*/
rp = VTOR4(vp);
error = 0;
mutex_enter(&rp->r_statelock);
if (!ATTRCACHE4_VALID(vp)) {
mutex_exit(&rp->r_statelock);
error = nfs4_getattr_otw(vp, &gar, cr, 0);
mutex_enter(&rp->r_statelock);
}
if (!error)
*vap = rp->r_attr;
/* Return the client's view of file size */
vap->va_size = rp->r_size;
mutex_exit(&rp->r_statelock);
ASSERT(nfs4_consistent_type(vp));
return (error);
}
int
nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type,
nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
int doqueue;
nfs_argop4 argop[2];
mntinfo4_t *mi = VTOMI4(vp);
bool_t needrecov = FALSE;
nfs4_recov_state_t recov_state;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
nfs4_ga_ext_res_t *gerp;
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
args.ctag = tag_type;
args.array_len = 2;
args.array = argop;
e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL);
if (e.error)
return (e.error);
/* putfh */
argop[0].argop = OP_CPUTFH;
argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
/* getattr */
argop[1].argop = OP_GETATTR;
argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap;
argop[1].nfs_argop4_u.opgetattr.mi = mi;
doqueue = 1;
NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
"nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first",
rnode4info(VTOR4(vp))));
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
if (!needrecov && e.error) {
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
needrecov);
return (e.error);
}
if (needrecov) {
bool_t abort;
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4_attr_otw: initiating recovery\n"));
abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
NULL, OP_GETATTR, NULL, NULL, NULL);
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
needrecov);
if (!e.error) {
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
e.error = geterrno4(res.status);
}
if (abort == FALSE)
goto recov_retry;
return (e.error);
}
if (res.status) {
e.error = geterrno4(res.status);
} else {
gerp = garp->n4g_ext_res;
bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res,
garp, sizeof (nfs4_ga_res_t));
garp->n4g_ext_res = gerp;
if (garp->n4g_ext_res &&
res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res)
bcopy(res.array[1].nfs_resop4_u.opgetattr.
ga_res.n4g_ext_res,
garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t));
}
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
needrecov);
return (e.error);
}
/*
* Asynchronous I/O parameters. nfs_async_threads is the high-water mark
* for the demand-based allocation of async threads per-mount. The
* nfs_async_timeout is the amount of time a thread will live after it
* becomes idle, unless new I/O requests are received before the thread
* dies. See nfs4_async_putpage and nfs4_async_start.
*/
static void nfs4_async_start(struct vfs *);
static void nfs4_async_pgops_start(struct vfs *);
static void nfs4_async_common_start(struct vfs *, int);
static void
free_async_args4(struct nfs4_async_reqs *args)
{
rnode4_t *rp;
if (args->a_io != NFS4_INACTIVE) {
rp = VTOR4(args->a_vp);
mutex_enter(&rp->r_statelock);
rp->r_count--;
if (args->a_io == NFS4_PUTAPAGE ||
args->a_io == NFS4_PAGEIO)
rp->r_awcount--;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
VN_RELE(args->a_vp);
}
crfree(args->a_cred);
kmem_free(args, sizeof (*args));
}
/*
* Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
* pageout(), running in the global zone, have legitimate reasons to do
* VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts. We avoid the problem by
* use of a a per-mount "asynchronous requests manager thread" which is
* signaled by the various asynchronous work routines when there is
* asynchronous work to be done. It is responsible for creating new
* worker threads if necessary, and notifying existing worker threads
* that there is work to be done.
*
* In other words, it will "take the specifications from the customers and
* give them to the engineers."
*
* Worker threads die off of their own accord if they are no longer
* needed.
*
* This thread is killed when the zone is going away or the filesystem
* is being unmounted.
*/
void
nfs4_async_manager(vfs_t *vfsp)
{
callb_cpr_t cprinfo;
mntinfo4_t *mi;
uint_t max_threads;
mi = VFTOMI4(vfsp);
CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
"nfs4_async_manager");
mutex_enter(&mi->mi_async_lock);
/*
* We want to stash the max number of threads that this mount was
* allowed so we can use it later when the variable is set to zero as
* part of the zone/mount going away.
*
* We want to be able to create at least one thread to handle
* asynchronous inactive calls.
*/
max_threads = MAX(mi->mi_max_threads, 1);
/*
* We don't want to wait for mi_max_threads to go to zero, since that
* happens as part of a failed unmount, but this thread should only
* exit when the mount is really going away.
*
* Once MI4_ASYNC_MGR_STOP is set, no more async operations will be
* attempted: the various _async_*() functions know to do things
* inline if mi_max_threads == 0. Henceforth we just drain out the
* outstanding requests.
*
* Note that we still create zthreads even if we notice the zone is
* shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone
* shutdown sequence to take slightly longer in some cases, but
* doesn't violate the protocol, as all threads will exit as soon as
* they're done processing the remaining requests.
*/
for (;;) {
while (mi->mi_async_req_count > 0) {
/*
* Paranoia: If the mount started out having
* (mi->mi_max_threads == 0), and the value was
* later changed (via a debugger or somesuch),
* we could be confused since we will think we
* can't create any threads, and the calling
* code (which looks at the current value of
* mi->mi_max_threads, now non-zero) thinks we
* can.
*
* So, because we're paranoid, we create threads
* up to the maximum of the original and the
* current value. This means that future
* (debugger-induced) alterations of
* mi->mi_max_threads are ignored for our
* purposes, but who told them they could change
* random values on a live kernel anyhow?
*/
if (mi->mi_threads[NFS4_ASYNC_QUEUE] <
MAX(mi->mi_max_threads, max_threads)) {
mi->mi_threads[NFS4_ASYNC_QUEUE]++;
mutex_exit(&mi->mi_async_lock);
MI4_HOLD(mi);
VFS_HOLD(vfsp); /* hold for new thread */
(void) zthread_create(NULL, 0, nfs4_async_start,
vfsp, 0, minclsyspri);
mutex_enter(&mi->mi_async_lock);
} else if (mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] <
NUM_ASYNC_PGOPS_THREADS) {
mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE]++;
mutex_exit(&mi->mi_async_lock);
MI4_HOLD(mi);
VFS_HOLD(vfsp); /* hold for new thread */
(void) zthread_create(NULL, 0,
nfs4_async_pgops_start, vfsp, 0,
minclsyspri);
mutex_enter(&mi->mi_async_lock);
}
NFS4_WAKE_ASYNC_WORKER(mi->mi_async_work_cv);
ASSERT(mi->mi_async_req_count != 0);
mi->mi_async_req_count--;
}
mutex_enter(&mi->mi_lock);
if (mi->mi_flags & MI4_ASYNC_MGR_STOP) {
mutex_exit(&mi->mi_lock);
break;
}
mutex_exit(&mi->mi_lock);
CALLB_CPR_SAFE_BEGIN(&cprinfo);
cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
}
NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
"nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp));
/*
* Let everyone know we're done.
*/
mi->mi_manager_thread = NULL;
/*
* Wake up the inactive thread.
*/
cv_broadcast(&mi->mi_inact_req_cv);
/*
* Wake up anyone sitting in nfs4_async_manager_stop()
*/
cv_broadcast(&mi->mi_async_cv);
/*
* There is no explicit call to mutex_exit(&mi->mi_async_lock)
* since CALLB_CPR_EXIT is actually responsible for releasing
* 'mi_async_lock'.
*/
CALLB_CPR_EXIT(&cprinfo);
VFS_RELE(vfsp); /* release thread's hold */
MI4_RELE(mi);
zthread_exit();
}
/*
* Signal (and wait for) the async manager thread to clean up and go away.
*/
void
nfs4_async_manager_stop(vfs_t *vfsp)
{
mntinfo4_t *mi = VFTOMI4(vfsp);
mutex_enter(&mi->mi_async_lock);
mutex_enter(&mi->mi_lock);
mi->mi_flags |= MI4_ASYNC_MGR_STOP;
mutex_exit(&mi->mi_lock);
cv_broadcast(&mi->mi_async_reqs_cv);
/*
* Wait for the async manager thread to die.
*/
while (mi->mi_manager_thread != NULL)
cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
mutex_exit(&mi->mi_async_lock);
}
int
nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
u_offset_t, caddr_t, struct seg *, cred_t *))
{
rnode4_t *rp;
mntinfo4_t *mi;
struct nfs4_async_reqs *args;
rp = VTOR4(vp);
ASSERT(rp->r_freef == NULL);
mi = VTOMI4(vp);
/*
* If addr falls in a different segment, don't bother doing readahead.
*/
if (addr >= seg->s_base + seg->s_size)
return (-1);
/*
* If we can't allocate a request structure, punt on the readahead.
*/
if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
return (-1);
/*
* If a lock operation is pending, don't initiate any new
* readaheads. Otherwise, bump r_count to indicate the new
* asynchronous I/O.
*/
if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
kmem_free(args, sizeof (*args));
return (-1);
}
mutex_enter(&rp->r_statelock);
rp->r_count++;
mutex_exit(&rp->r_statelock);
nfs_rw_exit(&rp->r_lkserlock);
args->a_next = NULL;
#ifdef DEBUG
args->a_queuer = curthread;
#endif
VN_HOLD(vp);
args->a_vp = vp;
ASSERT(cr != NULL);
crhold(cr);
args->a_cred = cr;
args->a_io = NFS4_READ_AHEAD;
args->a_nfs4_readahead = readahead;
args->a_nfs4_blkoff = blkoff;
args->a_nfs4_seg = seg;
args->a_nfs4_addr = addr;
mutex_enter(&mi->mi_async_lock);
/*
* If asyncio has been disabled, don't bother readahead.
*/
if (mi->mi_max_threads == 0) {
mutex_exit(&mi->mi_async_lock);
goto noasync;
}
/*
* Link request structure into the async list and
* wakeup async thread to do the i/o.
*/
if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) {
mi->mi_async_reqs[NFS4_READ_AHEAD] = args;
mi->mi_async_tail[NFS4_READ_AHEAD] = args;
} else {
mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args;
mi->mi_async_tail[NFS4_READ_AHEAD] = args;
}
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
mi->mi_async_req_count++;
ASSERT(mi->mi_async_req_count != 0);
cv_signal(&mi->mi_async_reqs_cv);
mutex_exit(&mi->mi_async_lock);
return (0);
noasync:
mutex_enter(&rp->r_statelock);
rp->r_count--;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
VN_RELE(vp);
crfree(cr);
kmem_free(args, sizeof (*args));
return (-1);
}
static void
nfs4_async_start(struct vfs *vfsp)
{
nfs4_async_common_start(vfsp, NFS4_ASYNC_QUEUE);
}
static void
nfs4_async_pgops_start(struct vfs *vfsp)
{
nfs4_async_common_start(vfsp, NFS4_ASYNC_PGOPS_QUEUE);
}
/*
* The async queues for each mounted file system are arranged as a
* set of queues, one for each async i/o type. Requests are taken
* from the queues in a round-robin fashion. A number of consecutive
* requests are taken from each queue before moving on to the next
* queue. This functionality may allow the NFS Version 2 server to do
* write clustering, even if the client is mixing writes and reads
* because it will take multiple write requests from the queue
* before processing any of the other async i/o types.
*
* XXX The nfs4_async_common_start thread is unsafe in the light of the present
* model defined by cpr to suspend the system. Specifically over the
* wire calls are cpr-unsafe. The thread should be reevaluated in
* case of future updates to the cpr model.
*/
static void
nfs4_async_common_start(struct vfs *vfsp, int async_queue)
{
struct nfs4_async_reqs *args;
mntinfo4_t *mi = VFTOMI4(vfsp);
clock_t time_left = 1;
callb_cpr_t cprinfo;
int i;
extern int nfs_async_timeout;
int async_types;
kcondvar_t *async_work_cv;
if (async_queue == NFS4_ASYNC_QUEUE) {
async_types = NFS4_ASYNC_TYPES;
async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_QUEUE];
} else {
async_types = NFS4_ASYNC_PGOPS_TYPES;
async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE];
}
/*
* Dynamic initialization of nfs_async_timeout to allow nfs to be
* built in an implementation independent manner.
*/
if (nfs_async_timeout == -1)
nfs_async_timeout = NFS_ASYNC_TIMEOUT;
CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
mutex_enter(&mi->mi_async_lock);
for (;;) {
/*
* Find the next queue containing an entry. We start
* at the current queue pointer and then round robin
* through all of them until we either find a non-empty
* queue or have looked through all of them.
*/
for (i = 0; i < async_types; i++) {
args = *mi->mi_async_curr[async_queue];
if (args != NULL)
break;
mi->mi_async_curr[async_queue]++;
if (mi->mi_async_curr[async_queue] ==
&mi->mi_async_reqs[async_types]) {
mi->mi_async_curr[async_queue] =
&mi->mi_async_reqs[0];
}
}
/*
* If we didn't find a entry, then block until woken up
* again and then look through the queues again.
*/
if (args == NULL) {
/*
* Exiting is considered to be safe for CPR as well
*/
CALLB_CPR_SAFE_BEGIN(&cprinfo);
/*
* Wakeup thread waiting to unmount the file
* system only if all async threads are inactive.
*
* If we've timed-out and there's nothing to do,
* then get rid of this thread.
*/
if (mi->mi_max_threads == 0 || time_left <= 0) {
--mi->mi_threads[async_queue];
if (mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0)
cv_signal(&mi->mi_async_cv);
CALLB_CPR_EXIT(&cprinfo);
VFS_RELE(vfsp); /* release thread's hold */
MI4_RELE(mi);
zthread_exit();
/* NOTREACHED */
}
time_left = cv_reltimedwait(async_work_cv,
&mi->mi_async_lock, nfs_async_timeout,
TR_CLOCK_TICK);
CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
continue;
} else {
time_left = 1;
}
/*
* Remove the request from the async queue and then
* update the current async request queue pointer. If
* the current queue is empty or we have removed enough
* consecutive entries from it, then reset the counter
* for this queue and then move the current pointer to
* the next queue.
*/
*mi->mi_async_curr[async_queue] = args->a_next;
if (*mi->mi_async_curr[async_queue] == NULL ||
--mi->mi_async_clusters[args->a_io] == 0) {
mi->mi_async_clusters[args->a_io] =
mi->mi_async_init_clusters;
mi->mi_async_curr[async_queue]++;
if (mi->mi_async_curr[async_queue] ==
&mi->mi_async_reqs[async_types]) {
mi->mi_async_curr[async_queue] =
&mi->mi_async_reqs[0];
}
}
if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
mutex_exit(&mi->mi_async_lock);
/*
* Obtain arguments from the async request structure.
*/
if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) {
(*args->a_nfs4_readahead)(args->a_vp,
args->a_nfs4_blkoff, args->a_nfs4_addr,
args->a_nfs4_seg, args->a_cred);
} else if (args->a_io == NFS4_PUTAPAGE) {
(void) (*args->a_nfs4_putapage)(args->a_vp,
args->a_nfs4_pp, args->a_nfs4_off,
args->a_nfs4_len, args->a_nfs4_flags,
args->a_cred);
} else if (args->a_io == NFS4_PAGEIO) {
(void) (*args->a_nfs4_pageio)(args->a_vp,
args->a_nfs4_pp, args->a_nfs4_off,
args->a_nfs4_len, args->a_nfs4_flags,
args->a_cred);
} else if (args->a_io == NFS4_READDIR) {
(void) ((*args->a_nfs4_readdir)(args->a_vp,
args->a_nfs4_rdc, args->a_cred));
} else if (args->a_io == NFS4_COMMIT) {
(*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist,
args->a_nfs4_offset, args->a_nfs4_count,
args->a_cred);
} else if (args->a_io == NFS4_INACTIVE) {
nfs4_inactive_otw(args->a_vp, args->a_cred);
}
/*
* Now, release the vnode and free the credentials
* structure.
*/
free_async_args4(args);
/*
* Reacquire the mutex because it will be needed above.
*/
mutex_enter(&mi->mi_async_lock);
}
}
/*
* nfs4_inactive_thread - look for vnodes that need over-the-wire calls as
* part of VOP_INACTIVE.
*/
void
nfs4_inactive_thread(mntinfo4_t *mi)
{
struct nfs4_async_reqs *args;
callb_cpr_t cprinfo;
vfs_t *vfsp = mi->mi_vfsp;
CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
"nfs4_inactive_thread");
for (;;) {
mutex_enter(&mi->mi_async_lock);
args = mi->mi_async_reqs[NFS4_INACTIVE];
if (args == NULL) {
mutex_enter(&mi->mi_lock);
/*
* We don't want to exit until the async manager is done
* with its work; hence the check for mi_manager_thread
* being NULL.
*
* The async manager thread will cv_broadcast() on
* mi_inact_req_cv when it's done, at which point we'll
* wake up and exit.
*/
if (mi->mi_manager_thread == NULL)
goto die;
mi->mi_flags |= MI4_INACTIVE_IDLE;
mutex_exit(&mi->mi_lock);
cv_signal(&mi->mi_async_cv);
CALLB_CPR_SAFE_BEGIN(&cprinfo);
cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock);
CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
mutex_exit(&mi->mi_async_lock);
} else {
mutex_enter(&mi->mi_lock);
mi->mi_flags &= ~MI4_INACTIVE_IDLE;
mutex_exit(&mi->mi_lock);
mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next;
mutex_exit(&mi->mi_async_lock);
nfs4_inactive_otw(args->a_vp, args->a_cred);
crfree(args->a_cred);
kmem_free(args, sizeof (*args));
}
}
die:
mutex_exit(&mi->mi_lock);
mi->mi_inactive_thread = NULL;
cv_signal(&mi->mi_async_cv);
/*
* There is no explicit call to mutex_exit(&mi->mi_async_lock) since
* CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'.
*/
CALLB_CPR_EXIT(&cprinfo);
NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
"nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp));
MI4_RELE(mi);
zthread_exit();
/* NOTREACHED */
}
/*
* nfs_async_stop:
* Wait for all outstanding putpage operations and the inactive thread to
* complete; nfs4_async_stop_sig() without interruptibility.
*/
void
nfs4_async_stop(struct vfs *vfsp)
{
mntinfo4_t *mi = VFTOMI4(vfsp);
/*
* Wait for all outstanding async operations to complete and for
* worker threads to exit.
*/
mutex_enter(&mi->mi_async_lock);
mi->mi_max_threads = 0;
NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0)
cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
/*
* Wait for the inactive thread to finish doing what it's doing. It
* won't exit until the last reference to the vfs_t goes away.
*/
if (mi->mi_inactive_thread != NULL) {
mutex_enter(&mi->mi_lock);
while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
(mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
mutex_exit(&mi->mi_lock);
cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
mutex_enter(&mi->mi_lock);
}
mutex_exit(&mi->mi_lock);
}
mutex_exit(&mi->mi_async_lock);
}
/*
* nfs_async_stop_sig:
* Wait for all outstanding putpage operations and the inactive thread to
* complete. If a signal is delivered we will abort and return non-zero;
* otherwise return 0. Since this routine is called from nfs4_unmount, we
* need to make it interruptible.
*/
int
nfs4_async_stop_sig(struct vfs *vfsp)
{
mntinfo4_t *mi = VFTOMI4(vfsp);
ushort_t omax;
bool_t intr = FALSE;
/*
* Wait for all outstanding putpage operations to complete and for
* worker threads to exit.
*/
mutex_enter(&mi->mi_async_lock);
omax = mi->mi_max_threads;
mi->mi_max_threads = 0;
NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0) {
if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) {
intr = TRUE;
goto interrupted;
}
}
/*
* Wait for the inactive thread to finish doing what it's doing. It
* won't exit until the a last reference to the vfs_t goes away.
*/
if (mi->mi_inactive_thread != NULL) {
mutex_enter(&mi->mi_lock);
while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
(mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
mutex_exit(&mi->mi_lock);
if (!cv_wait_sig(&mi->mi_async_cv,
&mi->mi_async_lock)) {
intr = TRUE;
goto interrupted;
}
mutex_enter(&mi->mi_lock);
}
mutex_exit(&mi->mi_lock);
}
interrupted:
if (intr)
mi->mi_max_threads = omax;
mutex_exit(&mi->mi_async_lock);
return (intr);
}
int
nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
u_offset_t, size_t, int, cred_t *))
{
rnode4_t *rp;
mntinfo4_t *mi;
struct nfs4_async_reqs *args;
ASSERT(flags & B_ASYNC);
ASSERT(vp->v_vfsp != NULL);
rp = VTOR4(vp);
ASSERT(rp->r_count > 0);
mi = VTOMI4(vp);
/*
* If we can't allocate a request structure, do the putpage
* operation synchronously in this thread's context.
*/
if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
goto noasync;
args->a_next = NULL;
#ifdef DEBUG
args->a_queuer = curthread;
#endif
VN_HOLD(vp);
args->a_vp = vp;
ASSERT(cr != NULL);
crhold(cr);
args->a_cred = cr;
args->a_io = NFS4_PUTAPAGE;
args->a_nfs4_putapage = putapage;
args->a_nfs4_pp = pp;
args->a_nfs4_off = off;
args->a_nfs4_len = (uint_t)len;
args->a_nfs4_flags = flags;
mutex_enter(&mi->mi_async_lock);
/*
* If asyncio has been disabled, then make a synchronous request.
* This check is done a second time in case async io was diabled
* while this thread was blocked waiting for memory pressure to
* reduce or for the queue to drain.
*/
if (mi->mi_max_threads == 0) {
mutex_exit(&mi->mi_async_lock);
VN_RELE(vp);
crfree(cr);
kmem_free(args, sizeof (*args));
goto noasync;
}
/*
* Link request structure into the async list and
* wakeup async thread to do the i/o.
*/
if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) {
mi->mi_async_reqs[NFS4_PUTAPAGE] = args;
mi->mi_async_tail[NFS4_PUTAPAGE] = args;
} else {
mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args;
mi->mi_async_tail[NFS4_PUTAPAGE] = args;
}
mutex_enter(&rp->r_statelock);
rp->r_count++;
rp->r_awcount++;
mutex_exit(&rp->r_statelock);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
mi->mi_async_req_count++;
ASSERT(mi->mi_async_req_count != 0);
cv_signal(&mi->mi_async_reqs_cv);
mutex_exit(&mi->mi_async_lock);
return (0);
noasync:
if (curproc == proc_pageout || curproc == proc_fsflush) {
/*
* If we get here in the context of the pageout/fsflush,
* or we have run out of memory or we're attempting to
* unmount we refuse to do a sync write, because this may
* hang pageout/fsflush and the machine. In this case,
* we just re-mark the page as dirty and punt on the page.
*
* Make sure B_FORCE isn't set. We can re-mark the
* pages as dirty and unlock the pages in one swoop by
* passing in B_ERROR to pvn_write_done(). However,
* we should make sure B_FORCE isn't set - we don't
* want the page tossed before it gets written out.
*/
if (flags & B_FORCE)
flags &= ~(B_INVAL | B_FORCE);
pvn_write_done(pp, flags | B_ERROR);
return (0);
}
if (nfs_zone() != mi->mi_zone) {
/*
* So this was a cross-zone sync putpage.
*
* We pass in B_ERROR to pvn_write_done() to re-mark the pages
* as dirty and unlock them.
*
* We don't want to clear B_FORCE here as the caller presumably
* knows what they're doing if they set it.
*/
pvn_write_done(pp, flags | B_ERROR);
return (EPERM);
}
return ((*putapage)(vp, pp, off, len, flags, cr));
}
int
nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
size_t, int, cred_t *))
{
rnode4_t *rp;
mntinfo4_t *mi;
struct nfs4_async_reqs *args;
ASSERT(flags & B_ASYNC);
ASSERT(vp->v_vfsp != NULL);
rp = VTOR4(vp);
ASSERT(rp->r_count > 0);
mi = VTOMI4(vp);
/*
* If we can't allocate a request structure, do the pageio
* request synchronously in this thread's context.
*/
if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
goto noasync;
args->a_next = NULL;
#ifdef DEBUG
args->a_queuer = curthread;
#endif
VN_HOLD(vp);
args->a_vp = vp;
ASSERT(cr != NULL);
crhold(cr);
args->a_cred = cr;
args->a_io = NFS4_PAGEIO;
args->a_nfs4_pageio = pageio;
args->a_nfs4_pp = pp;
args->a_nfs4_off = io_off;
args->a_nfs4_len = (uint_t)io_len;
args->a_nfs4_flags = flags;
mutex_enter(&mi->mi_async_lock);
/*
* If asyncio has been disabled, then make a synchronous request.
* This check is done a second time in case async io was diabled
* while this thread was blocked waiting for memory pressure to
* reduce or for the queue to drain.
*/
if (mi->mi_max_threads == 0) {
mutex_exit(&mi->mi_async_lock);
VN_RELE(vp);
crfree(cr);
kmem_free(args, sizeof (*args));
goto noasync;
}
/*
* Link request structure into the async list and
* wakeup async thread to do the i/o.
*/
if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) {
mi->mi_async_reqs[NFS4_PAGEIO] = args;
mi->mi_async_tail[NFS4_PAGEIO] = args;
} else {
mi->mi_async_tail[NFS4_PAGEIO]->a_next = args;
mi->mi_async_tail[NFS4_PAGEIO] = args;
}
mutex_enter(&rp->r_statelock);
rp->r_count++;
rp->r_awcount++;
mutex_exit(&rp->r_statelock);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
mi->mi_async_req_count++;
ASSERT(mi->mi_async_req_count != 0);
cv_signal(&mi->mi_async_reqs_cv);
mutex_exit(&mi->mi_async_lock);
return (0);
noasync:
/*
* If we can't do it ASYNC, for reads we do nothing (but cleanup
* the page list), for writes we do it synchronously, except for
* proc_pageout/proc_fsflush as described below.
*/
if (flags & B_READ) {
pvn_read_done(pp, flags | B_ERROR);
return (0);
}
if (curproc == proc_pageout || curproc == proc_fsflush) {
/*
* If we get here in the context of the pageout/fsflush,
* we refuse to do a sync write, because this may hang
* pageout/fsflush (and the machine). In this case, we just
* re-mark the page as dirty and punt on the page.
*
* Make sure B_FORCE isn't set. We can re-mark the
* pages as dirty and unlock the pages in one swoop by
* passing in B_ERROR to pvn_write_done(). However,
* we should make sure B_FORCE isn't set - we don't
* want the page tossed before it gets written out.
*/
if (flags & B_FORCE)
flags &= ~(B_INVAL | B_FORCE);
pvn_write_done(pp, flags | B_ERROR);
return (0);
}
if (nfs_zone() != mi->mi_zone) {
/*
* So this was a cross-zone sync pageio. We pass in B_ERROR
* to pvn_write_done() to re-mark the pages as dirty and unlock
* them.
*
* We don't want to clear B_FORCE here as the caller presumably
* knows what they're doing if they set it.
*/
pvn_write_done(pp, flags | B_ERROR);
return (EPERM);
}
return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
}
void
nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr,
int (*readdir)(vnode_t *, rddir4_cache *, cred_t *))
{
rnode4_t *rp;
mntinfo4_t *mi;
struct nfs4_async_reqs *args;
rp = VTOR4(vp);
ASSERT(rp->r_freef == NULL);
mi = VTOMI4(vp);
/*
* If we can't allocate a request structure, skip the readdir.
*/
if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
goto noasync;
args->a_next = NULL;
#ifdef DEBUG
args->a_queuer = curthread;
#endif
VN_HOLD(vp);
args->a_vp = vp;
ASSERT(cr != NULL);
crhold(cr);
args->a_cred = cr;
args->a_io = NFS4_READDIR;
args->a_nfs4_readdir = readdir;
args->a_nfs4_rdc = rdc;
mutex_enter(&mi->mi_async_lock);
/*
* If asyncio has been disabled, then skip this request
*/
if (mi->mi_max_threads == 0) {
mutex_exit(&mi->mi_async_lock);
VN_RELE(vp);
crfree(cr);
kmem_free(args, sizeof (*args));
goto noasync;
}
/*
* Link request structure into the async list and
* wakeup async thread to do the i/o.
*/
if (mi->mi_async_reqs[NFS4_READDIR] == NULL) {
mi->mi_async_reqs[NFS4_READDIR] = args;
mi->mi_async_tail[NFS4_READDIR] = args;
} else {
mi->mi_async_tail[NFS4_READDIR]->a_next = args;
mi->mi_async_tail[NFS4_READDIR] = args;
}
mutex_enter(&rp->r_statelock);
rp->r_count++;
mutex_exit(&rp->r_statelock);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
mi->mi_async_req_count++;
ASSERT(mi->mi_async_req_count != 0);
cv_signal(&mi->mi_async_reqs_cv);
mutex_exit(&mi->mi_async_lock);
return;
noasync:
mutex_enter(&rp->r_statelock);
rdc->entries = NULL;
/*
* Indicate that no one is trying to fill this entry and
* it still needs to be filled.
*/
rdc->flags &= ~RDDIR;
rdc->flags |= RDDIRREQ;
rddir4_cache_rele(rp, rdc);
mutex_exit(&rp->r_statelock);
}
void
nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
cred_t *))
{
rnode4_t *rp;
mntinfo4_t *mi;
struct nfs4_async_reqs *args;
page_t *pp;
rp = VTOR4(vp);
mi = VTOMI4(vp);
/*
* If we can't allocate a request structure, do the commit
* operation synchronously in this thread's context.
*/
if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
goto noasync;
args->a_next = NULL;
#ifdef DEBUG
args->a_queuer = curthread;
#endif
VN_HOLD(vp);
args->a_vp = vp;
ASSERT(cr != NULL);
crhold(cr);
args->a_cred = cr;
args->a_io = NFS4_COMMIT;
args->a_nfs4_commit = commit;
args->a_nfs4_plist = plist;
args->a_nfs4_offset = offset;
args->a_nfs4_count = count;
mutex_enter(&mi->mi_async_lock);
/*
* If asyncio has been disabled, then make a synchronous request.
* This check is done a second time in case async io was diabled
* while this thread was blocked waiting for memory pressure to
* reduce or for the queue to drain.
*/
if (mi->mi_max_threads == 0) {
mutex_exit(&mi->mi_async_lock);
VN_RELE(vp);
crfree(cr);
kmem_free(args, sizeof (*args));
goto noasync;
}
/*
* Link request structure into the async list and
* wakeup async thread to do the i/o.
*/
if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) {
mi->mi_async_reqs[NFS4_COMMIT] = args;
mi->mi_async_tail[NFS4_COMMIT] = args;
} else {
mi->mi_async_tail[NFS4_COMMIT]->a_next = args;
mi->mi_async_tail[NFS4_COMMIT] = args;
}
mutex_enter(&rp->r_statelock);
rp->r_count++;
mutex_exit(&rp->r_statelock);
if (mi->mi_io_kstats) {
mutex_enter(&mi->mi_lock);
kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
mutex_exit(&mi->mi_lock);
}
mi->mi_async_req_count++;
ASSERT(mi->mi_async_req_count != 0);
cv_signal(&mi->mi_async_reqs_cv);
mutex_exit(&mi->mi_async_lock);
return;
noasync:
if (curproc == proc_pageout || curproc == proc_fsflush ||
nfs_zone() != mi->mi_zone) {
while (plist != NULL) {
pp = plist;
page_sub(&plist, pp);
pp->p_fsdata = C_COMMIT;
page_unlock(pp);
}
return;
}
(*commit)(vp, plist, offset, count, cr);
}
/*
* nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread. The
* reference to the vnode is handed over to the thread; the caller should
* no longer refer to the vnode.
*
* Unlike most of the async routines, this handoff is needed for
* correctness reasons, not just performance. So doing operations in the
* context of the current thread is not an option.
*/
void
nfs4_async_inactive(vnode_t *vp, cred_t *cr)
{
mntinfo4_t *mi;
struct nfs4_async_reqs *args;
boolean_t signal_inactive_thread = B_FALSE;
mi = VTOMI4(vp);
args = kmem_alloc(sizeof (*args), KM_SLEEP);
args->a_next = NULL;
#ifdef DEBUG
args->a_queuer = curthread;
#endif
args->a_vp = vp;
ASSERT(cr != NULL);
crhold(cr);
args->a_cred = cr;
args->a_io = NFS4_INACTIVE;
/*
* Note that we don't check mi->mi_max_threads here, since we
* *need* to get rid of this vnode regardless of whether someone
* set nfs4_max_threads to zero in /etc/system.
*
* The manager thread knows about this and is willing to create
* at least one thread to accommodate us.
*/
mutex_enter(&mi->mi_async_lock);
if (mi->mi_inactive_thread == NULL) {
rnode4_t *rp;
vnode_t *unldvp = NULL;
char *unlname;
cred_t *unlcred;
mutex_exit(&mi->mi_async_lock);
/*
* We just need to free up the memory associated with the
* vnode, which can be safely done from within the current
* context.
*/
crfree(cr); /* drop our reference */
kmem_free(args, sizeof (*args));
rp = VTOR4(vp);
mutex_enter(&rp->r_statelock);
if (rp->r_unldvp != NULL) {
unldvp = rp->r_unldvp;
rp->r_unldvp = NULL;
unlname = rp->r_unlname;
rp->r_unlname = NULL;
unlcred = rp->r_unlcred;
rp->r_unlcred = NULL;
}
mutex_exit(&rp->r_statelock);
/*
* No need to explicitly throw away any cached pages. The
* eventual r4inactive() will attempt a synchronous
* VOP_PUTPAGE() which will immediately fail since the request
* is coming from the wrong zone, and then will proceed to call
* nfs4_invalidate_pages() which will clean things up for us.
*
* Throw away the delegation here so rp4_addfree()'s attempt to
* return any existing delegations becomes a no-op.
*/
if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
FALSE);
(void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
nfs_rw_exit(&mi->mi_recovlock);
}
nfs4_clear_open_streams(rp);
rp4_addfree(rp, cr);
if (unldvp != NULL) {
kmem_free(unlname, MAXNAMELEN);
VN_RELE(unldvp);
crfree(unlcred);
}
return;
}
if (mi->mi_manager_thread == NULL) {
/*
* We want to talk to the inactive thread.
*/
signal_inactive_thread = B_TRUE;
}
/*
* Enqueue the vnode and wake up either the special thread (empty
* list) or an async thread.
*/
if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) {
mi->mi_async_reqs[NFS4_INACTIVE] = args;
mi->mi_async_tail[NFS4_INACTIVE] = args;
signal_inactive_thread = B_TRUE;
} else {
mi->mi_async_tail[NFS4_INACTIVE]->a_next = args;
mi->mi_async_tail[NFS4_INACTIVE] = args;
}
if (signal_inactive_thread) {
cv_signal(&mi->mi_inact_req_cv);
} else {
mi->mi_async_req_count++;
ASSERT(mi->mi_async_req_count != 0);
cv_signal(&mi->mi_async_reqs_cv);
}
mutex_exit(&mi->mi_async_lock);
}
int
writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
{
int pagecreate;
int n;
int saved_n;
caddr_t saved_base;
u_offset_t offset;
int error;
int sm_error;
vnode_t *vp = RTOV(rp);
ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
if (!vpm_enable) {
ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
}
/*
* Move bytes in at most PAGESIZE chunks. We must avoid
* spanning pages in uiomove() because page faults may cause
* the cache to be invalidated out from under us. The r_size is not
* updated until after the uiomove. If we push the last page of a
* file before r_size is correct, we will lose the data written past
* the current (and invalid) r_size.
*/
do {
offset = uio->uio_loffset;
pagecreate = 0;
/*
* n is the number of bytes required to satisfy the request
* or the number of bytes to fill out the page.
*/
n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
/*
* Check to see if we can skip reading in the page
* and just allocate the memory. We can do this
* if we are going to rewrite the entire mapping
* or if we are going to write to or beyond the current
* end of file from the beginning of the mapping.
*
* The read of r_size is now protected by r_statelock.
*/
mutex_enter(&rp->r_statelock);
/*
* When pgcreated is nonzero the caller has already done
* a segmap_getmapflt with forcefault 0 and S_WRITE. With
* segkpm this means we already have at least one page
* created and mapped at base.
*/
pagecreate = pgcreated ||
((offset & PAGEOFFSET) == 0 &&
(n == PAGESIZE || ((offset + n) >= rp->r_size)));
mutex_exit(&rp->r_statelock);
if (!vpm_enable && pagecreate) {
/*
* The last argument tells segmap_pagecreate() to
* always lock the page, as opposed to sometimes
* returning with the page locked. This way we avoid a
* fault on the ensuing uiomove(), but also
* more importantly (to fix bug 1094402) we can
* call segmap_fault() to unlock the page in all
* cases. An alternative would be to modify
* segmap_pagecreate() to tell us when it is
* locking a page, but that's a fairly major
* interface change.
*/
if (pgcreated == 0)
(void) segmap_pagecreate(segkmap, base,
(uint_t)n, 1);
saved_base = base;
saved_n = n;
}
/*
* The number of bytes of data in the last page can not
* be accurately be determined while page is being
* uiomove'd to and the size of the file being updated.
* Thus, inform threads which need to know accurately
* how much data is in the last page of the file. They
* will not do the i/o immediately, but will arrange for
* the i/o to happen later when this modify operation
* will have finished.
*/
ASSERT(!(rp->r_flags & R4MODINPROGRESS));
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4MODINPROGRESS;
rp->r_modaddr = (offset & MAXBMASK);
mutex_exit(&rp->r_statelock);
if (vpm_enable) {
/*
* Copy data. If new pages are created, part of
* the page that is not written will be initizliazed
* with zeros.
*/
error = vpm_data_copy(vp, offset, n, uio,
!pagecreate, NULL, 0, S_WRITE);
} else {
error = uiomove(base, n, UIO_WRITE, uio);
}
/*
* r_size is the maximum number of
* bytes known to be in the file.
* Make sure it is at least as high as the
* first unwritten byte pointed to by uio_loffset.
*/
mutex_enter(&rp->r_statelock);
if (rp->r_size < uio->uio_loffset)
rp->r_size = uio->uio_loffset;
rp->r_flags &= ~R4MODINPROGRESS;
rp->r_flags |= R4DIRTY;
mutex_exit(&rp->r_statelock);
/* n = # of bytes written */
n = (int)(uio->uio_loffset - offset);
if (!vpm_enable) {
base += n;
}
tcount -= n;
/*
* If we created pages w/o initializing them completely,
* we need to zero the part that wasn't set up.
* This happens on a most EOF write cases and if
* we had some sort of error during the uiomove.
*/
if (!vpm_enable && pagecreate) {
if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
(void) kzero(base, PAGESIZE - n);
if (pgcreated) {
/*
* Caller is responsible for this page,
* it was not created in this loop.
*/
pgcreated = 0;
} else {
/*
* For bug 1094402: segmap_pagecreate locks
* page. Unlock it. This also unlocks the
* pages allocated by page_create_va() in
* segmap_pagecreate().
*/
sm_error = segmap_fault(kas.a_hat, segkmap,
saved_base, saved_n,
F_SOFTUNLOCK, S_WRITE);
if (error == 0)
error = sm_error;
}
}
} while (tcount > 0 && error == 0);
return (error);
}
int
nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
{
rnode4_t *rp;
page_t *pp;
u_offset_t eoff;
u_offset_t io_off;
size_t io_len;
int error;
int rdirty;
int err;
rp = VTOR4(vp);
ASSERT(rp->r_count > 0);
if (!nfs4_has_pages(vp))
return (0);
ASSERT(vp->v_type != VCHR);
/*
* If R4OUTOFSPACE is set, then all writes turn into B_INVAL
* writes. B_FORCE is set to force the VM system to actually
* invalidate the pages, even if the i/o failed. The pages
* need to get invalidated because they can't be written out
* because there isn't any space left on either the server's
* file system or in the user's disk quota. The B_FREE bit
* is cleared to avoid confusion as to whether this is a
* request to place the page on the freelist or to destroy
* it.
*/
if ((rp->r_flags & R4OUTOFSPACE) ||
(vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
if (len == 0) {
/*
* If doing a full file synchronous operation, then clear
* the R4DIRTY bit. If a page gets dirtied while the flush
* is happening, then R4DIRTY will get set again. The
* R4DIRTY bit must get cleared before the flush so that
* we don't lose this information.
*
* If there are no full file async write operations
* pending and RDIRTY bit is set, clear it.
*/
if (off == (u_offset_t)0 &&
!(flags & B_ASYNC) &&
(rp->r_flags & R4DIRTY)) {
mutex_enter(&rp->r_statelock);
rdirty = (rp->r_flags & R4DIRTY);
rp->r_flags &= ~R4DIRTY;
mutex_exit(&rp->r_statelock);
} else if (flags & B_ASYNC && off == (u_offset_t)0) {
mutex_enter(&rp->r_statelock);
if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) {
rdirty = (rp->r_flags & R4DIRTY);
rp->r_flags &= ~R4DIRTY;
}
mutex_exit(&rp->r_statelock);
} else
rdirty = 0;
/*
* Search the entire vp list for pages >= off, and flush
* the dirty pages.
*/
error = pvn_vplist_dirty(vp, off, rp->r_putapage,
flags, cr);
/*
* If an error occurred and the file was marked as dirty
* before and we aren't forcibly invalidating pages, then
* reset the R4DIRTY flag.
*/
if (error && rdirty &&
(flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
mutex_enter(&rp->r_statelock);
rp->r_flags |= R4DIRTY;
mutex_exit(&rp->r_statelock);
}
} else {
/*
* Do a range from [off...off + len) looking for pages
* to deal with.
*/
error = 0;
io_len = 0;
eoff = off + len;
mutex_enter(&rp->r_statelock);
for (io_off = off; io_off < eoff && io_off < rp->r_size;
io_off += io_len) {
mutex_exit(&rp->r_statelock);
/*
* If we are not invalidating, synchronously
* freeing or writing pages use the routine
* page_lookup_nowait() to prevent reclaiming
* them from the free list.
*/
if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
pp = page_lookup(vp, io_off,
(flags & (B_INVAL | B_FREE)) ?
SE_EXCL : SE_SHARED);
} else {
pp = page_lookup_nowait(vp, io_off,
(flags & B_FREE) ? SE_EXCL : SE_SHARED);
}
if (pp == NULL || !pvn_getdirty(pp, flags))
io_len = PAGESIZE;
else {
err = (*rp->r_putapage)(vp, pp, &io_off,
&io_len, flags, cr);
if (!error)
error = err;
/*
* "io_off" and "io_len" are returned as
* the range of pages we actually wrote.
* This allows us to skip ahead more quickly
* since several pages may've been dealt
* with by this iteration of the loop.
*/
}
mutex_enter(&rp->r_statelock);
}
mutex_exit(&rp->r_statelock);
}
return (error);
}
void
nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
{
rnode4_t *rp;
rp = VTOR4(vp);
if (IS_SHADOW(vp, rp))
vp = RTOV4(rp);
mutex_enter(&rp->r_statelock);
while (rp->r_flags & R4TRUNCATE)
cv_wait(&rp->r_cv, &rp->r_statelock);
rp->r_flags |= R4TRUNCATE;
if (off == (u_offset_t)0) {
rp->r_flags &= ~R4DIRTY;
if (!(rp->r_flags & R4STALE))
rp->r_error = 0;
}
rp->r_truncaddr = off;
mutex_exit(&rp->r_statelock);
(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
B_INVAL | B_TRUNC, cr);
mutex_enter(&rp->r_statelock);
rp->r_flags &= ~R4TRUNCATE;
cv_broadcast(&rp->r_cv);
mutex_exit(&rp->r_statelock);
}
static int
nfs4_mnt_kstat_update(kstat_t *ksp, int rw)
{
mntinfo4_t *mi;
struct mntinfo_kstat *mik;
vfs_t *vfsp;
/* this is a read-only kstat. Bail out on a write */
if (rw == KSTAT_WRITE)
return (EACCES);
/*
* We don't want to wait here as kstat_chain_lock could be held by
* dounmount(). dounmount() takes vfs_reflock before the chain lock
* and thus could lead to a deadlock.
*/
vfsp = (struct vfs *)ksp->ks_private;
mi = VFTOMI4(vfsp);
mik = (struct mntinfo_kstat *)ksp->ks_data;
(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
mik->mik_vers = (uint32_t)mi->mi_vers;
mik->mik_flags = mi->mi_flags;
/*
* The sv_secdata holds the flavor the client specifies.
* If the client uses default and a security negotiation
* occurs, sv_currsec will point to the current flavor
* selected from the server flavor list.
* sv_currsec is NULL if no security negotiation takes place.
*/
mik->mik_secmod = mi->mi_curr_serv->sv_currsec ?
mi->mi_curr_serv->sv_currsec->secmod :
mi->mi_curr_serv->sv_secdata->secmod;
mik->mik_curread = (uint32_t)mi->mi_curread;
mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
mik->mik_retrans = mi->mi_retrans;
mik->mik_timeo = mi->mi_timeo;
mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
mik->mik_failover = (uint32_t)mi->mi_failover;
mik->mik_remap = (uint32_t)mi->mi_remap;
(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
return (0);
}
void
nfs4_mnt_kstat_init(struct vfs *vfsp)
{
mntinfo4_t *mi = VFTOMI4(vfsp);
/*
* PSARC 2001/697 Contract Private Interface
* All nfs kstats are under SunMC contract
* Please refer to the PSARC listed above and contact
* SunMC before making any changes!
*
* Changes must be reviewed by Solaris File Sharing
* Changes must be communicated to contract-2001-697@sun.com
*
*/
mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
if (mi->mi_io_kstats) {
if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
mi->mi_io_kstats->ks_lock = &mi->mi_lock;
kstat_install(mi->mi_io_kstats);
}
if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update;
mi->mi_ro_kstats->ks_private = (void *)vfsp;
kstat_install(mi->mi_ro_kstats);
}
nfs4_mnt_recov_kstat_init(vfsp);
}
void
nfs4_write_error(vnode_t *vp, int error, cred_t *cr)
{
mntinfo4_t *mi;
clock_t now = ddi_get_lbolt();
mi = VTOMI4(vp);
/*
* In case of forced unmount, do not print any messages
* since it can flood the console with error messages.
*/
if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)
return;
/*
* If the mount point is dead, not recoverable, do not
* print error messages that can flood the console.
*/
if (mi->mi_flags & MI4_RECOV_FAIL)
return;
/*
* No use in flooding the console with ENOSPC
* messages from the same file system.
*/
if ((error != ENOSPC && error != EDQUOT) ||
now - mi->mi_printftime > 0) {
zoneid_t zoneid = mi->mi_zone->zone_id;
#ifdef DEBUG
nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL);
#else
nfs_perror(error, "NFS write error on host %s: %m.\n",
VTOR4(vp)->r_server->sv_hostname, NULL);
#endif
if (error == ENOSPC || error == EDQUOT) {
zcmn_err(zoneid, CE_CONT,
"^File: userid=%d, groupid=%d\n",
crgetuid(cr), crgetgid(cr));
if (crgetuid(curthread->t_cred) != crgetuid(cr) ||
crgetgid(curthread->t_cred) != crgetgid(cr)) {
zcmn_err(zoneid, CE_CONT,
"^User: userid=%d, groupid=%d\n",
crgetuid(curthread->t_cred),
crgetgid(curthread->t_cred));
}
mi->mi_printftime = now +
nfs_write_error_interval * hz;
}
sfh4_printfhandle(VTOR4(vp)->r_fh);
#ifdef DEBUG
if (error == EACCES) {
zcmn_err(zoneid, CE_CONT,
"nfs_bio: cred is%s kcred\n",
cr == kcred ? "" : " not");
}
#endif
}
}
/*
* Return non-zero if the given file can be safely memory mapped. Locks
* are safe if whole-file (length and offset are both zero).
*/
#define SAFE_LOCK(flk) ((flk).l_start == 0 && (flk).l_len == 0)
static int
nfs4_safemap(const vnode_t *vp)
{
locklist_t *llp, *next_llp;
int safe = 1;
rnode4_t *rp = VTOR4(vp);
ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: "
"vp = %p", (void *)vp));
/*
* Review all the locks for the vnode, both ones that have been
* acquired and ones that are pending. We assume that
* flk_active_locks_for_vp() has merged any locks that can be
* merged (so that if a process has the entire file locked, it is
* represented as a single lock).
*
* Note that we can't bail out of the loop if we find a non-safe
* lock, because we have to free all the elements in the llp list.
* We might be able to speed up this code slightly by not looking
* at each lock's l_start and l_len fields once we've found a
* non-safe lock.
*/
llp = flk_active_locks_for_vp(vp);
while (llp) {
NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
"nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")",
llp->ll_flock.l_start, llp->ll_flock.l_len));
if (!SAFE_LOCK(llp->ll_flock)) {
safe = 0;
NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
"nfs4_safemap: unsafe active lock (%" PRId64
", %" PRId64 ")", llp->ll_flock.l_start,
llp->ll_flock.l_len));
}
next_llp = llp->ll_next;
VN_RELE(llp->ll_vp);
kmem_free(llp, sizeof (*llp));
llp = next_llp;
}
NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s",
safe ? "safe" : "unsafe"));
return (safe);
}
/*
* Return whether there is a lost LOCK or LOCKU queued up for the given
* file that would make an mmap request unsafe. cf. nfs4_safemap().
*/
bool_t
nfs4_map_lost_lock_conflict(vnode_t *vp)
{
bool_t conflict = FALSE;
nfs4_lost_rqst_t *lrp;
mntinfo4_t *mi = VTOMI4(vp);
mutex_enter(&mi->mi_lock);
for (lrp = list_head(&mi->mi_lost_state); lrp != NULL;
lrp = list_next(&mi->mi_lost_state, lrp)) {
if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU)
continue;
ASSERT(lrp->lr_vp != NULL);
if (!VOP_CMP(lrp->lr_vp, vp, NULL))
continue; /* different file */
if (!SAFE_LOCK(*lrp->lr_flk)) {
conflict = TRUE;
break;
}
}
mutex_exit(&mi->mi_lock);
return (conflict);
}
/*
* nfs_lockcompletion:
*
* If the vnode has a lock that makes it unsafe to cache the file, mark it
* as non cachable (set VNOCACHE bit).
*/
void
nfs4_lockcompletion(vnode_t *vp, int cmd)
{
rnode4_t *rp = VTOR4(vp);
ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
ASSERT(!IS_SHADOW(vp, rp));
if (cmd == F_SETLK || cmd == F_SETLKW) {
if (!nfs4_safemap(vp)) {
mutex_enter(&vp->v_lock);
vp->v_flag |= VNOCACHE;
mutex_exit(&vp->v_lock);
} else {
mutex_enter(&vp->v_lock);
vp->v_flag &= ~VNOCACHE;
mutex_exit(&vp->v_lock);
}
}
/*
* The cached attributes of the file are stale after acquiring
* the lock on the file. They were updated when the file was
* opened, but not updated when the lock was acquired. Therefore the
* cached attributes are invalidated after the lock is obtained.
*/
PURGE_ATTRCACHE4(vp);
}
/* ARGSUSED */
static void *
nfs4_mi_init(zoneid_t zoneid)
{
struct mi4_globals *mig;
mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&mig->mig_list, sizeof (mntinfo4_t),
offsetof(mntinfo4_t, mi_zone_node));
mig->mig_destructor_called = B_FALSE;
return (mig);
}
/*
* Callback routine to tell all NFSv4 mounts in the zone to start tearing down
* state and killing off threads.
*/
/* ARGSUSED */
static void
nfs4_mi_shutdown(zoneid_t zoneid, void *data)
{
struct mi4_globals *mig = data;
mntinfo4_t *mi;
nfs4_server_t *np;
NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
"nfs4_mi_shutdown zone %d\n", zoneid));
ASSERT(mig != NULL);
for (;;) {
mutex_enter(&mig->mig_lock);
mi = list_head(&mig->mig_list);
if (mi == NULL) {
mutex_exit(&mig->mig_lock);
break;
}
NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
"nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp));
/*
* purge the DNLC for this filesystem
*/
(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
/*
* Tell existing async worker threads to exit.
*/
mutex_enter(&mi->mi_async_lock);
mi->mi_max_threads = 0;
NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
/*
* Set the appropriate flags, signal and wait for both the
* async manager and the inactive thread to exit when they're
* done with their current work.
*/
mutex_enter(&mi->mi_lock);
mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD);
mutex_exit(&mi->mi_lock);
mutex_exit(&mi->mi_async_lock);
if (mi->mi_manager_thread) {
nfs4_async_manager_stop(mi->mi_vfsp);
}
if (mi->mi_inactive_thread) {
mutex_enter(&mi->mi_async_lock);
cv_signal(&mi->mi_inact_req_cv);
/*
* Wait for the inactive thread to exit.
*/
while (mi->mi_inactive_thread != NULL) {
cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
}
mutex_exit(&mi->mi_async_lock);
}
/*
* Wait for the recovery thread to complete, that is, it will
* signal when it is done using the "mi" structure and about
* to exit
*/
mutex_enter(&mi->mi_lock);
while (mi->mi_in_recovery > 0)
cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
mutex_exit(&mi->mi_lock);
/*
* We're done when every mi has been done or the list is empty.
* This one is done, remove it from the list.
*/
list_remove(&mig->mig_list, mi);
mutex_exit(&mig->mig_lock);
zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
/*
* Release hold on vfs and mi done to prevent race with zone
* shutdown. This releases the hold in nfs4_mi_zonelist_add.
*/
VFS_RELE(mi->mi_vfsp);
MI4_RELE(mi);
}
/*
* Tell each renew thread in the zone to exit
*/
mutex_enter(&nfs4_server_lst_lock);
for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
mutex_enter(&np->s_lock);
if (np->zoneid == zoneid) {
/*
* We add another hold onto the nfs4_server_t
* because this will make sure tha the nfs4_server_t
* stays around until nfs4_callback_fini_zone destroys
* the zone. This way, the renew thread can
* unconditionally release its holds on the
* nfs4_server_t.
*/
np->s_refcnt++;
nfs4_mark_srv_dead(np);
}
mutex_exit(&np->s_lock);
}
mutex_exit(&nfs4_server_lst_lock);
}
static void
nfs4_mi_free_globals(struct mi4_globals *mig)
{
list_destroy(&mig->mig_list); /* makes sure the list is empty */
mutex_destroy(&mig->mig_lock);
kmem_free(mig, sizeof (*mig));
}
/* ARGSUSED */
static void
nfs4_mi_destroy(zoneid_t zoneid, void *data)
{
struct mi4_globals *mig = data;
NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
"nfs4_mi_destroy zone %d\n", zoneid));
ASSERT(mig != NULL);
mutex_enter(&mig->mig_lock);
if (list_head(&mig->mig_list) != NULL) {
/* Still waiting for VFS_FREEVFS() */
mig->mig_destructor_called = B_TRUE;
mutex_exit(&mig->mig_lock);
return;
}
nfs4_mi_free_globals(mig);
}
/*
* Add an NFS mount to the per-zone list of NFS mounts.
*/
void
nfs4_mi_zonelist_add(mntinfo4_t *mi)
{
struct mi4_globals *mig;
mig = zone_getspecific(mi4_list_key, mi->mi_zone);
mutex_enter(&mig->mig_lock);
list_insert_head(&mig->mig_list, mi);
/*
* hold added to eliminate race with zone shutdown -this will be
* released in mi_shutdown
*/
MI4_HOLD(mi);
VFS_HOLD(mi->mi_vfsp);
mutex_exit(&mig->mig_lock);
}
/*
* Remove an NFS mount from the per-zone list of NFS mounts.
*/
int
nfs4_mi_zonelist_remove(mntinfo4_t *mi)
{
struct mi4_globals *mig;
int ret = 0;
mig = zone_getspecific(mi4_list_key, mi->mi_zone);
mutex_enter(&mig->mig_lock);
mutex_enter(&mi->mi_lock);
/* if this mi is marked dead, then the zone already released it */
if (!(mi->mi_flags & MI4_DEAD)) {
list_remove(&mig->mig_list, mi);
mutex_exit(&mi->mi_lock);
/* release the holds put on in zonelist_add(). */
VFS_RELE(mi->mi_vfsp);
MI4_RELE(mi);
ret = 1;
} else {
mutex_exit(&mi->mi_lock);
}
/*
* We can be called asynchronously by VFS_FREEVFS() after the zone
* shutdown/destroy callbacks have executed; if so, clean up the zone's
* mi globals.
*/
if (list_head(&mig->mig_list) == NULL &&
mig->mig_destructor_called == B_TRUE) {
nfs4_mi_free_globals(mig);
return (ret);
}
mutex_exit(&mig->mig_lock);
return (ret);
}
void
nfs_free_mi4(mntinfo4_t *mi)
{
nfs4_open_owner_t *foop;
nfs4_oo_hash_bucket_t *bucketp;
nfs4_debug_msg_t *msgp;
int i;
servinfo4_t *svp;
/*
* Code introduced here should be carefully evaluated to make
* sure none of the freed resources are accessed either directly
* or indirectly after freeing them. For eg: Introducing calls to
* NFS4_DEBUG that use mntinfo4_t structure member after freeing
* the structure members or other routines calling back into NFS
* accessing freed mntinfo4_t structure member.
*/
mutex_enter(&mi->mi_lock);
ASSERT(mi->mi_recovthread == NULL);
ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP);
mutex_exit(&mi->mi_lock);
mutex_enter(&mi->mi_async_lock);
ASSERT(mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0);
ASSERT(mi->mi_manager_thread == NULL);
mutex_exit(&mi->mi_async_lock);
if (mi->mi_io_kstats) {
kstat_delete(mi->mi_io_kstats);
mi->mi_io_kstats = NULL;
}
if (mi->mi_ro_kstats) {
kstat_delete(mi->mi_ro_kstats);
mi->mi_ro_kstats = NULL;
}
if (mi->mi_recov_ksp) {
kstat_delete(mi->mi_recov_ksp);
mi->mi_recov_ksp = NULL;
}
mutex_enter(&mi->mi_msg_list_lock);
while (msgp = list_head(&mi->mi_msg_list)) {
list_remove(&mi->mi_msg_list, msgp);
nfs4_free_msg(msgp);
}
mutex_exit(&mi->mi_msg_list_lock);
list_destroy(&mi->mi_msg_list);
if (mi->mi_fname != NULL)
fn_rele(&mi->mi_fname);
if (mi->mi_rootfh != NULL)
sfh4_rele(&mi->mi_rootfh);
if (mi->mi_srvparentfh != NULL)
sfh4_rele(&mi->mi_srvparentfh);
svp = mi->mi_servers;
sv4_free(svp);
mutex_destroy(&mi->mi_lock);
mutex_destroy(&mi->mi_async_lock);
mutex_destroy(&mi->mi_msg_list_lock);
nfs_rw_destroy(&mi->mi_recovlock);
nfs_rw_destroy(&mi->mi_rename_lock);
nfs_rw_destroy(&mi->mi_fh_lock);
cv_destroy(&mi->mi_failover_cv);
cv_destroy(&mi->mi_async_reqs_cv);
cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]);
cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]);
cv_destroy(&mi->mi_async_cv);
cv_destroy(&mi->mi_inact_req_cv);
/*
* Destroy the oo hash lists and mutexes for the cred hash table.
*/
for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
bucketp = &(mi->mi_oo_list[i]);
/* Destroy any remaining open owners on the list */
foop = list_head(&bucketp->b_oo_hash_list);
while (foop != NULL) {
list_remove(&bucketp->b_oo_hash_list, foop);
nfs4_destroy_open_owner(foop);
foop = list_head(&bucketp->b_oo_hash_list);
}
list_destroy(&bucketp->b_oo_hash_list);
mutex_destroy(&bucketp->b_lock);
}
/*
* Empty and destroy the freed open owner list.
*/
foop = list_head(&mi->mi_foo_list);
while (foop != NULL) {
list_remove(&mi->mi_foo_list, foop);
nfs4_destroy_open_owner(foop);
foop = list_head(&mi->mi_foo_list);
}
list_destroy(&mi->mi_foo_list);
list_destroy(&mi->mi_bseqid_list);
list_destroy(&mi->mi_lost_state);
avl_destroy(&mi->mi_filehandles);
kmem_free(mi, sizeof (*mi));
}
void
mi_hold(mntinfo4_t *mi)
{
atomic_inc_32(&mi->mi_count);
ASSERT(mi->mi_count != 0);
}
void
mi_rele(mntinfo4_t *mi)
{
ASSERT(mi->mi_count != 0);
if (atomic_dec_32_nv(&mi->mi_count) == 0) {
nfs_free_mi4(mi);
}
}
vnode_t nfs4_xattr_notsupp_vnode;
void
nfs4_clnt_init(void)
{
nfs4_vnops_init();
(void) nfs4_rnode_init();
(void) nfs4_shadow_init();
(void) nfs4_acache_init();
(void) nfs4_subr_init();
nfs4_acl_init();
nfs_idmap_init();
nfs4_callback_init();
nfs4_secinfo_init();
#ifdef DEBUG
tsd_create(&nfs4_tsd_key, NULL);
#endif
/*
* Add a CPR callback so that we can update client
* lease after a suspend and resume.
*/
cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4");
zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown,
nfs4_mi_destroy);
/*
* Initialise the reference count of the notsupp xattr cache vnode to 1
* so that it never goes away (VOP_INACTIVE isn't called on it).
*/
nfs4_xattr_notsupp_vnode.v_count = 1;
}
void
nfs4_clnt_fini(void)
{
(void) zone_key_delete(mi4_list_key);
nfs4_vnops_fini();
(void) nfs4_rnode_fini();
(void) nfs4_shadow_fini();
(void) nfs4_acache_fini();
(void) nfs4_subr_fini();
nfs_idmap_fini();
nfs4_callback_fini();
nfs4_secinfo_fini();
#ifdef DEBUG
tsd_destroy(&nfs4_tsd_key);
#endif
if (cid)
(void) callb_delete(cid);
}
/*ARGSUSED*/
static boolean_t
nfs4_client_cpr_callb(void *arg, int code)
{
/*
* We get called for Suspend and Resume events.
* For the suspend case we simply don't care!
*/
if (code == CB_CODE_CPR_CHKPT) {
return (B_TRUE);
}
/*
* When we get to here we are in the process of
* resuming the system from a previous suspend.
*/
nfs4_client_resumed = gethrestime_sec();
return (B_TRUE);
}
void
nfs4_renew_lease_thread(nfs4_server_t *sp)
{
int error = 0;
time_t tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs;
clock_t tick_delay = 0;
clock_t time_left = 0;
callb_cpr_t cpr_info;
kmutex_t cpr_lock;
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp));
mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease");
mutex_enter(&sp->s_lock);
/* sp->s_lease_time is set via a GETATTR */
sp->last_renewal_time = gethrestime_sec();
sp->lease_valid = NFS4_LEASE_UNINITIALIZED;
ASSERT(sp->s_refcnt >= 1);
for (;;) {
if (!sp->state_ref_count ||
sp->lease_valid != NFS4_LEASE_VALID) {
kip_secs = MAX((sp->s_lease_time >> 1) -
(3 * sp->propagation_delay.tv_sec), 1);
tick_delay = SEC_TO_TICK(kip_secs);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: no renew : thread "
"wait %ld secs", kip_secs));
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: no renew : "
"state_ref_count %d, lease_valid %d",
sp->state_ref_count, sp->lease_valid));
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_BEGIN(&cpr_info);
mutex_exit(&cpr_lock);
time_left = cv_reltimedwait(&sp->cv_thread_exit,
&sp->s_lock, tick_delay, TR_CLOCK_TICK);
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
mutex_exit(&cpr_lock);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: no renew: "
"time left %ld", time_left));
if (sp->s_thread_exit == NFS4_THREAD_EXIT)
goto die;
continue;
}
tmp_last_renewal_time = sp->last_renewal_time;
tmp_time = gethrestime_sec() - sp->last_renewal_time +
(3 * sp->propagation_delay.tv_sec);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: tmp_time %ld, "
"sp->last_renewal_time %ld", tmp_time,
sp->last_renewal_time));
kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1);
tick_delay = SEC_TO_TICK(kip_secs);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: valid lease: sleep for %ld "
"secs", kip_secs));
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_BEGIN(&cpr_info);
mutex_exit(&cpr_lock);
time_left = cv_reltimedwait(&sp->cv_thread_exit, &sp->s_lock,
tick_delay, TR_CLOCK_TICK);
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
mutex_exit(&cpr_lock);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: valid lease: time left %ld :"
"sp last_renewal_time %ld, nfs4_client_resumed %ld, "
"tmp_last_renewal_time %ld", time_left,
sp->last_renewal_time, nfs4_client_resumed,
tmp_last_renewal_time));
if (sp->s_thread_exit == NFS4_THREAD_EXIT)
goto die;
if (tmp_last_renewal_time == sp->last_renewal_time ||
(nfs4_client_resumed != 0 &&
nfs4_client_resumed > sp->last_renewal_time)) {
/*
* Issue RENEW op since we haven't renewed the lease
* since we slept.
*/
tmp_now_time = gethrestime_sec();
error = nfs4renew(sp);
/*
* Need to re-acquire sp's lock, nfs4renew()
* relinqueshes it.
*/
mutex_enter(&sp->s_lock);
/*
* See if someone changed s_thread_exit while we gave
* up s_lock.
*/
if (sp->s_thread_exit == NFS4_THREAD_EXIT)
goto die;
if (!error) {
/*
* check to see if we implicitly renewed while
* we waited for a reply for our RENEW call.
*/
if (tmp_last_renewal_time ==
sp->last_renewal_time) {
/* no implicit renew came */
sp->last_renewal_time = tmp_now_time;
} else {
NFS4_DEBUG(nfs4_client_lease_debug,
(CE_NOTE, "renew_thread: did "
"implicit renewal before reply "
"from server for RENEW"));
}
} else {
/* figure out error */
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"renew_thread: nfs4renew returned error"
" %d", error));
}
}
}
die:
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: thread exiting"));
while (sp->s_otw_call_count != 0) {
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: waiting for outstanding "
"otw calls to finish for sp 0x%p, current "
"s_otw_call_count %d", (void *)sp,
sp->s_otw_call_count));
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_BEGIN(&cpr_info);
mutex_exit(&cpr_lock);
cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
mutex_enter(&cpr_lock);
CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
mutex_exit(&cpr_lock);
}
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp); /* free the thread's reference */
nfs4_server_rele(sp); /* free the list's reference */
sp = NULL;
done:
mutex_enter(&cpr_lock);
CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */
mutex_destroy(&cpr_lock);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_renew_lease_thread: renew thread exit officially"));
zthread_exit();
/* NOT REACHED */
}
/*
* Send out a RENEW op to the server.
* Assumes sp is locked down.
*/
static int
nfs4renew(nfs4_server_t *sp)
{
COMPOUND4args_clnt args;
COMPOUND4res_clnt res;
nfs_argop4 argop[1];
int doqueue = 1;
int rpc_error;
cred_t *cr;
mntinfo4_t *mi;
timespec_t prop_time, after_time;
int needrecov = FALSE;
nfs4_recov_state_t recov_state;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew"));
recov_state.rs_flags = 0;
recov_state.rs_num_retry_despite_err = 0;
recov_retry:
mi = sp->mntinfo4_list;
VFS_HOLD(mi->mi_vfsp);
mutex_exit(&sp->s_lock);
ASSERT(mi != NULL);
e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
if (e.error) {
VFS_RELE(mi->mi_vfsp);
return (e.error);
}
/* Check to see if we're dealing with a marked-dead sp */
mutex_enter(&sp->s_lock);
if (sp->s_thread_exit == NFS4_THREAD_EXIT) {
mutex_exit(&sp->s_lock);
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
VFS_RELE(mi->mi_vfsp);
return (0);
}
/* Make sure mi hasn't changed on us */
if (mi != sp->mntinfo4_list) {
/* Must drop sp's lock to avoid a recursive mutex enter */
mutex_exit(&sp->s_lock);
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
VFS_RELE(mi->mi_vfsp);
mutex_enter(&sp->s_lock);
goto recov_retry;
}
mutex_exit(&sp->s_lock);
args.ctag = TAG_RENEW;
args.array_len = 1;
args.array = argop;
argop[0].argop = OP_RENEW;
mutex_enter(&sp->s_lock);
argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid;
cr = sp->s_cred;
crhold(cr);
mutex_exit(&sp->s_lock);
ASSERT(cr != NULL);
/* used to figure out RTT for sp */
gethrestime(&prop_time);
NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
"nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first",
(void*)sp));
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ",
prop_time.tv_sec, prop_time.tv_nsec));
DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp,
mntinfo4_t *, mi);
rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
crfree(cr);
DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp,
mntinfo4_t *, mi);
gethrestime(&after_time);
mutex_enter(&sp->s_lock);
sp->propagation_delay.tv_sec =
MAX(1, after_time.tv_sec - prop_time.tv_sec);
mutex_exit(&sp->s_lock);
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ",
after_time.tv_sec, after_time.tv_nsec));
if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) {
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_delegreturn_all(sp);
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
VFS_RELE(mi->mi_vfsp);
/*
* If the server returns CB_PATH_DOWN, it has renewed
* the lease and informed us that the callback path is
* down. Since the lease is renewed, just return 0 and
* let the renew thread proceed as normal.
*/
return (0);
}
needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
if (!needrecov && e.error) {
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
VFS_RELE(mi->mi_vfsp);
return (e.error);
}
rpc_error = e.error;
if (needrecov) {
NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4renew: initiating recovery\n"));
if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
OP_RENEW, NULL, NULL, NULL) == FALSE) {
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
VFS_RELE(mi->mi_vfsp);
if (!e.error)
(void) xdr_free(xdr_COMPOUND4res_clnt,
(caddr_t)&res);
mutex_enter(&sp->s_lock);
goto recov_retry;
}
/* fall through for res.status case */
}
if (res.status) {
if (res.status == NFS4ERR_LEASE_MOVED) {
/*EMPTY*/
/*
* XXX need to try every mntinfo4 in sp->mntinfo4_list
* to renew the lease on that server
*/
}
e.error = geterrno4(res.status);
}
if (!rpc_error)
(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
VFS_RELE(mi->mi_vfsp);
return (e.error);
}
void
nfs4_inc_state_ref_count(mntinfo4_t *mi)
{
nfs4_server_t *sp;
/* this locks down sp if it is found */
sp = find_nfs4_server(mi);
if (sp != NULL) {
nfs4_inc_state_ref_count_nolock(sp, mi);
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
}
}
/*
* Bump the number of OPEN files (ie: those with state) so we know if this
* nfs4_server has any state to maintain a lease for or not.
*
* Also, marks the nfs4_server's lease valid if it hasn't been done so already.
*/
void
nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
{
ASSERT(mutex_owned(&sp->s_lock));
sp->state_ref_count++;
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_inc_state_ref_count: state_ref_count now %d",
sp->state_ref_count));
if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED)
sp->lease_valid = NFS4_LEASE_VALID;
/*
* If this call caused the lease to be marked valid and/or
* took the state_ref_count from 0 to 1, then start the time
* on lease renewal.
*/
if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1)
sp->last_renewal_time = gethrestime_sec();
/* update the number of open files for mi */
mi->mi_open_files++;
}
void
nfs4_dec_state_ref_count(mntinfo4_t *mi)
{
nfs4_server_t *sp;
/* this locks down sp if it is found */
sp = find_nfs4_server_all(mi, 1);
if (sp != NULL) {
nfs4_dec_state_ref_count_nolock(sp, mi);
mutex_exit(&sp->s_lock);
nfs4_server_rele(sp);
}
}
/*
* Decrement the number of OPEN files (ie: those with state) so we know if
* this nfs4_server has any state to maintain a lease for or not.
*/
void
nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
{
ASSERT(mutex_owned(&sp->s_lock));
ASSERT(sp->state_ref_count != 0);
sp->state_ref_count--;
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_dec_state_ref_count: state ref count now %d",
sp->state_ref_count));
mi->mi_open_files--;
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x",
mi->mi_open_files, mi->mi_flags));
/* We don't have to hold the mi_lock to test mi_flags */
if (mi->mi_open_files == 0 &&
(mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) {
NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
"nfs4_dec_state_ref_count: remove mntinfo4 %p since "
"we have closed the last open file", (void*)mi));
nfs4_remove_mi_from_server(mi, sp);
}
}
bool_t
inlease(nfs4_server_t *sp)
{
bool_t result;
ASSERT(mutex_owned(&sp->s_lock));
if (sp->lease_valid == NFS4_LEASE_VALID &&
gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time)
result = TRUE;
else
result = FALSE;
return (result);
}
/*
* Return non-zero if the given nfs4_server_t is going through recovery.
*/
int
nfs4_server_in_recovery(nfs4_server_t *sp)
{
return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER));
}
/*
* Compare two shared filehandle objects. Returns -1, 0, or +1, if the
* first is less than, equal to, or greater than the second.
*/
int
sfh4cmp(const void *p1, const void *p2)
{
const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1;
const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2;
return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh));
}
/*
* Create a table for shared filehandle objects.
*/
void
sfh4_createtab(avl_tree_t *tab)
{
avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t),
offsetof(nfs4_sharedfh_t, sfh_tree));
}
/*
* Return a shared filehandle object for the given filehandle. The caller
* is responsible for eventually calling sfh4_rele().
*/
nfs4_sharedfh_t *
sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key)
{
nfs4_sharedfh_t *sfh, *nsfh;
avl_index_t where;
nfs4_sharedfh_t skey;
if (!key) {
skey.sfh_fh = *fh;
key = &skey;
}
nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP);
nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len;
/*
* We allocate the largest possible filehandle size because it's
* not that big, and it saves us from possibly having to resize the
* buffer later.
*/
nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP);
bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len);
mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL);
nsfh->sfh_refcnt = 1;
nsfh->sfh_flags = SFH4_IN_TREE;
nsfh->sfh_mi = mi;
NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)",
(void *)nsfh));
(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
sfh = avl_find(&mi->mi_filehandles, key, &where);
if (sfh != NULL) {
mutex_enter(&sfh->sfh_lock);
sfh->sfh_refcnt++;
mutex_exit(&sfh->sfh_lock);
nfs_rw_exit(&mi->mi_fh_lock);
/* free our speculative allocs */
kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
kmem_free(nsfh, sizeof (nfs4_sharedfh_t));
return (sfh);
}
avl_insert(&mi->mi_filehandles, nsfh, where);
nfs_rw_exit(&mi->mi_fh_lock);
return (nsfh);
}
/*
* Return a shared filehandle object for the given filehandle. The caller
* is responsible for eventually calling sfh4_rele().
*/
nfs4_sharedfh_t *
sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi)
{
nfs4_sharedfh_t *sfh;
nfs4_sharedfh_t key;
ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE);
#ifdef DEBUG
if (nfs4_sharedfh_debug) {
nfs4_fhandle_t fhandle;
fhandle.fh_len = fh->nfs_fh4_len;
bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len);
zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:");
nfs4_printfhandle(&fhandle);
}
#endif
/*
* If there's already an object for the given filehandle, bump the
* reference count and return it. Otherwise, create a new object
* and add it to the AVL tree.
*/
key.sfh_fh = *fh;
(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
sfh = avl_find(&mi->mi_filehandles, &key, NULL);
if (sfh != NULL) {
mutex_enter(&sfh->sfh_lock);
sfh->sfh_refcnt++;
NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
"sfh4_get: found existing %p, new refcnt=%d",
(void *)sfh, sfh->sfh_refcnt));
mutex_exit(&sfh->sfh_lock);
nfs_rw_exit(&mi->mi_fh_lock);
return (sfh);
}
nfs_rw_exit(&mi->mi_fh_lock);
return (sfh4_put(fh, mi, &key));
}
/*
* Get a reference to the given shared filehandle object.
*/
void
sfh4_hold(nfs4_sharedfh_t *sfh)
{
ASSERT(sfh->sfh_refcnt > 0);
mutex_enter(&sfh->sfh_lock);
sfh->sfh_refcnt++;
NFS4_DEBUG(nfs4_sharedfh_debug,
(CE_NOTE, "sfh4_hold %p, new refcnt=%d",
(void *)sfh, sfh->sfh_refcnt));
mutex_exit(&sfh->sfh_lock);
}
/*
* Release a reference to the given shared filehandle object and null out
* the given pointer.
*/
void
sfh4_rele(nfs4_sharedfh_t **sfhpp)
{
mntinfo4_t *mi;
nfs4_sharedfh_t *sfh = *sfhpp;
ASSERT(sfh->sfh_refcnt > 0);
mutex_enter(&sfh->sfh_lock);
if (sfh->sfh_refcnt > 1) {
sfh->sfh_refcnt--;
NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
"sfh4_rele %p, new refcnt=%d",
(void *)sfh, sfh->sfh_refcnt));
mutex_exit(&sfh->sfh_lock);
goto finish;
}
mutex_exit(&sfh->sfh_lock);
/*
* Possibly the last reference, so get the lock for the table in
* case it's time to remove the object from the table.
*/
mi = sfh->sfh_mi;
(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
mutex_enter(&sfh->sfh_lock);
sfh->sfh_refcnt--;
if (sfh->sfh_refcnt > 0) {
NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
"sfh4_rele %p, new refcnt=%d",
(void *)sfh, sfh->sfh_refcnt));
mutex_exit(&sfh->sfh_lock);
nfs_rw_exit(&mi->mi_fh_lock);
goto finish;
}
NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
"sfh4_rele %p, last ref", (void *)sfh));
if (sfh->sfh_flags & SFH4_IN_TREE) {
avl_remove(&mi->mi_filehandles, sfh);
sfh->sfh_flags &= ~SFH4_IN_TREE;
}
mutex_exit(&sfh->sfh_lock);
nfs_rw_exit(&mi->mi_fh_lock);
mutex_destroy(&sfh->sfh_lock);
kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
kmem_free(sfh, sizeof (nfs4_sharedfh_t));
finish:
*sfhpp = NULL;
}
/*
* Update the filehandle for the given shared filehandle object.
*/
int nfs4_warn_dupfh = 0; /* if set, always warn about dup fhs below */
void
sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh)
{
mntinfo4_t *mi = sfh->sfh_mi;
nfs4_sharedfh_t *dupsfh;
avl_index_t where;
nfs4_sharedfh_t key;
#ifdef DEBUG
mutex_enter(&sfh->sfh_lock);
ASSERT(sfh->sfh_refcnt > 0);
mutex_exit(&sfh->sfh_lock);
#endif
ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE);
/*
* The basic plan is to remove the shared filehandle object from
* the table, update it to have the new filehandle, then reinsert
* it.
*/
(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
mutex_enter(&sfh->sfh_lock);
if (sfh->sfh_flags & SFH4_IN_TREE) {
avl_remove(&mi->mi_filehandles, sfh);
sfh->sfh_flags &= ~SFH4_IN_TREE;
}
mutex_exit(&sfh->sfh_lock);
sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len;
bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val,
sfh->sfh_fh.nfs_fh4_len);
/*
* XXX If there is already a shared filehandle object with the new
* filehandle, we're in trouble, because the rnode code assumes
* that there is only one shared filehandle object for a given
* filehandle. So issue a warning (for read-write mounts only)
* and don't try to re-insert the given object into the table.
* Hopefully the given object will quickly go away and everyone
* will use the new object.
*/
key.sfh_fh = *newfh;
dupsfh = avl_find(&mi->mi_filehandles, &key, &where);
if (dupsfh != NULL) {
if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) {
zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: "
"duplicate filehandle detected");
sfh4_printfhandle(dupsfh);
}
} else {
avl_insert(&mi->mi_filehandles, sfh, where);
mutex_enter(&sfh->sfh_lock);
sfh->sfh_flags |= SFH4_IN_TREE;
mutex_exit(&sfh->sfh_lock);
}
nfs_rw_exit(&mi->mi_fh_lock);
}
/*
* Copy out the current filehandle for the given shared filehandle object.
*/
void
sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp)
{
mntinfo4_t *mi = sfh->sfh_mi;
ASSERT(sfh->sfh_refcnt > 0);
(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
fhp->fh_len = sfh->sfh_fh.nfs_fh4_len;
ASSERT(fhp->fh_len <= NFS4_FHSIZE);
bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len);
nfs_rw_exit(&mi->mi_fh_lock);
}
/*
* Print out the filehandle for the given shared filehandle object.
*/
void
sfh4_printfhandle(const nfs4_sharedfh_t *sfh)
{
nfs4_fhandle_t fhandle;
sfh4_copyval(sfh, &fhandle);
nfs4_printfhandle(&fhandle);
}
/*
* Compare 2 fnames. Returns -1 if the first is "less" than the second, 0
* if they're the same, +1 if the first is "greater" than the second. The
* caller (or whoever's calling the AVL package) is responsible for
* handling locking issues.
*/
static int
fncmp(const void *p1, const void *p2)
{
const nfs4_fname_t *f1 = p1;
const nfs4_fname_t *f2 = p2;
int res;
res = strcmp(f1->fn_name, f2->fn_name);
/*
* The AVL package wants +/-1, not arbitrary positive or negative
* integers.
*/
if (res > 0)
res = 1;
else if (res < 0)
res = -1;
return (res);
}
/*
* Get or create an fname with the given name, as a child of the given
* fname. The caller is responsible for eventually releasing the reference
* (fn_rele()). parent may be NULL.
*/
nfs4_fname_t *
fn_get(nfs4_fname_t *parent, char *name, nfs4_sharedfh_t *sfh)
{
nfs4_fname_t key;
nfs4_fname_t *fnp;
avl_index_t where;
key.fn_name = name;
/*
* If there's already an fname registered with the given name, bump
* its reference count and return it. Otherwise, create a new one
* and add it to the parent's AVL tree.
*
* fname entries we are looking for should match both name
* and sfh stored in the fname.
*/
again:
if (parent != NULL) {
mutex_enter(&parent->fn_lock);
fnp = avl_find(&parent->fn_children, &key, &where);
if (fnp != NULL) {
/*
* This hold on fnp is released below later,
* in case this is not the fnp we want.
*/
fn_hold(fnp);
if (fnp->fn_sfh == sfh) {
/*
* We have found our entry.
* put an hold and return it.
*/
mutex_exit(&parent->fn_lock);
return (fnp);
}
/*
* We have found an entry that has a mismatching
* fn_sfh. This could be a stale entry due to
* server side rename. We will remove this entry
* and make sure no such entries exist.
*/
mutex_exit(&parent->fn_lock);
mutex_enter(&fnp->fn_lock);
if (fnp->fn_parent == parent) {
/*
* Remove ourselves from parent's
* fn_children tree.
*/
mutex_enter(&parent->fn_lock);
avl_remove(&parent->fn_children, fnp);
mutex_exit(&parent->fn_lock);
fn_rele(&fnp->fn_parent);
}
mutex_exit(&fnp->fn_lock);
fn_rele(&fnp);
goto again;
}
}
fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP);
mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL);
fnp->fn_parent = parent;
if (parent != NULL)
fn_hold(parent);
fnp->fn_len = strlen(name);
ASSERT(fnp->fn_len < MAXNAMELEN);
fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP);
(void) strcpy(fnp->fn_name, name);
fnp->fn_refcnt = 1;
/*
* This hold on sfh is later released
* when we do the final fn_rele() on this fname.
*/
sfh4_hold(sfh);
fnp->fn_sfh = sfh;
avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t),
offsetof(nfs4_fname_t, fn_tree));
NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
"fn_get %p:%s, a new nfs4_fname_t!",
(void *)fnp, fnp->fn_name));
if (parent != NULL) {
avl_insert(&parent->fn_children, fnp, where);
mutex_exit(&parent->fn_lock);
}
return (fnp);
}
void
fn_hold(nfs4_fname_t *fnp)
{
atomic_inc_32(&fnp->fn_refcnt);
NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
"fn_hold %p:%s, new refcnt=%d",
(void *)fnp, fnp->fn_name, fnp->fn_refcnt));
}
/*
* Decrement the reference count of the given fname, and destroy it if its
* reference count goes to zero. Nulls out the given pointer.
*/
void
fn_rele(nfs4_fname_t **fnpp)
{
nfs4_fname_t *parent;
uint32_t newref;
nfs4_fname_t *fnp;
recur:
fnp = *fnpp;
*fnpp = NULL;
mutex_enter(&fnp->fn_lock);
parent = fnp->fn_parent;
if (parent != NULL)
mutex_enter(&parent->fn_lock); /* prevent new references */
newref = atomic_dec_32_nv(&fnp->fn_refcnt);
if (newref > 0) {
NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
"fn_rele %p:%s, new refcnt=%d",
(void *)fnp, fnp->fn_name, fnp->fn_refcnt));
if (parent != NULL)
mutex_exit(&parent->fn_lock);
mutex_exit(&fnp->fn_lock);
return;
}
NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
"fn_rele %p:%s, last reference, deleting...",
(void *)fnp, fnp->fn_name));
if (parent != NULL) {
avl_remove(&parent->fn_children, fnp);
mutex_exit(&parent->fn_lock);
}
kmem_free(fnp->fn_name, fnp->fn_len + 1);
sfh4_rele(&fnp->fn_sfh);
mutex_destroy(&fnp->fn_lock);
avl_destroy(&fnp->fn_children);
kmem_free(fnp, sizeof (nfs4_fname_t));
/*
* Recursivly fn_rele the parent.
* Use goto instead of a recursive call to avoid stack overflow.
*/
if (parent != NULL) {
fnpp = &parent;
goto recur;
}
}
/*
* Returns the single component name of the given fname, in a MAXNAMELEN
* string buffer, which the caller is responsible for freeing. Note that
* the name may become invalid as a result of fn_move().
*/
char *
fn_name(nfs4_fname_t *fnp)
{
char *name;
ASSERT(fnp->fn_len < MAXNAMELEN);
name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
mutex_enter(&fnp->fn_lock);
(void) strcpy(name, fnp->fn_name);
mutex_exit(&fnp->fn_lock);
return (name);
}
/*
* fn_path_realloc
*
* This function, used only by fn_path, constructs
* a new string which looks like "prepend" + "/" + "current".
* by allocating a new string and freeing the old one.
*/
static void
fn_path_realloc(char **curses, char *prepend)
{
int len, curlen = 0;
char *news;
if (*curses == NULL) {
/*
* Prime the pump, allocate just the
* space for prepend and return that.
*/
len = strlen(prepend) + 1;
news = kmem_alloc(len, KM_SLEEP);
(void) strncpy(news, prepend, len);
} else {
/*
* Allocate the space for a new string
* +1 +1 is for the "/" and the NULL
* byte at the end of it all.
*/
curlen = strlen(*curses);
len = curlen + strlen(prepend) + 1 + 1;
news = kmem_alloc(len, KM_SLEEP);
(void) strncpy(news, prepend, len);
(void) strcat(news, "/");
(void) strcat(news, *curses);
kmem_free(*curses, curlen + 1);
}
*curses = news;
}
/*
* Returns the path name (starting from the fs root) for the given fname.
* The caller is responsible for freeing. Note that the path may be or
* become invalid as a result of fn_move().
*/
char *
fn_path(nfs4_fname_t *fnp)
{
char *path;
nfs4_fname_t *nextfnp;
if (fnp == NULL)
return (NULL);
path = NULL;
/* walk up the tree constructing the pathname. */
fn_hold(fnp); /* adjust for later rele */
do {
mutex_enter(&fnp->fn_lock);
/*
* Add fn_name in front of the current path
*/
fn_path_realloc(&path, fnp->fn_name);
nextfnp = fnp->fn_parent;
if (nextfnp != NULL)
fn_hold(nextfnp);
mutex_exit(&fnp->fn_lock);
fn_rele(&fnp);
fnp = nextfnp;
} while (fnp != NULL);
return (path);
}
/*
* Return a reference to the parent of the given fname, which the caller is
* responsible for eventually releasing.
*/
nfs4_fname_t *
fn_parent(nfs4_fname_t *fnp)
{
nfs4_fname_t *parent;
mutex_enter(&fnp->fn_lock);
parent = fnp->fn_parent;
if (parent != NULL)
fn_hold(parent);
mutex_exit(&fnp->fn_lock);
return (parent);
}
/*
* Update fnp so that its parent is newparent and its name is newname.
*/
void
fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname)
{
nfs4_fname_t *parent, *tmpfnp;
ssize_t newlen;
nfs4_fname_t key;
avl_index_t where;
/*
* This assert exists to catch the client trying to rename
* a dir to be a child of itself. This happened at a recent
* bakeoff against a 3rd party (broken) server which allowed
* the rename to succeed. If it trips it means that:
* a) the code in nfs4rename that detects this case is broken
* b) the server is broken (since it allowed the bogus rename)
*
* For non-DEBUG kernels, prepare for a recursive mutex_enter
* panic below from: mutex_enter(&newparent->fn_lock);
*/
ASSERT(fnp != newparent);
/*
* Remove fnp from its current parent, change its name, then add it
* to newparent. It might happen that fnp was replaced by another
* nfs4_fname_t with the same fn_name in parent->fn_children.
* In such case, fnp->fn_parent is NULL and we skip the removal
* of fnp from its current parent.
*/
mutex_enter(&fnp->fn_lock);
parent = fnp->fn_parent;
if (parent != NULL) {
mutex_enter(&parent->fn_lock);
avl_remove(&parent->fn_children, fnp);
mutex_exit(&parent->fn_lock);
fn_rele(&fnp->fn_parent);
}
newlen = strlen(newname);
if (newlen != fnp->fn_len) {
ASSERT(newlen < MAXNAMELEN);
kmem_free(fnp->fn_name, fnp->fn_len + 1);
fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP);
fnp->fn_len = newlen;
}
(void) strcpy(fnp->fn_name, newname);
again:
mutex_enter(&newparent->fn_lock);
key.fn_name = fnp->fn_name;
tmpfnp = avl_find(&newparent->fn_children, &key, &where);
if (tmpfnp != NULL) {
/*
* This could be due to a file that was unlinked while
* open, or perhaps the rnode is in the free list. Remove
* it from newparent and let it go away on its own. The
* contorted code is to deal with lock order issues and
* race conditions.
*/
fn_hold(tmpfnp);
mutex_exit(&newparent->fn_lock);
mutex_enter(&tmpfnp->fn_lock);
if (tmpfnp->fn_parent == newparent) {
mutex_enter(&newparent->fn_lock);
avl_remove(&newparent->fn_children, tmpfnp);
mutex_exit(&newparent->fn_lock);
fn_rele(&tmpfnp->fn_parent);
}
mutex_exit(&tmpfnp->fn_lock);
fn_rele(&tmpfnp);
goto again;
}
fnp->fn_parent = newparent;
fn_hold(newparent);
avl_insert(&newparent->fn_children, fnp, where);
mutex_exit(&newparent->fn_lock);
mutex_exit(&fnp->fn_lock);
}
#ifdef DEBUG
/*
* Return non-zero if the type information makes sense for the given vnode.
* Otherwise panic.
*/
int
nfs4_consistent_type(vnode_t *vp)
{
rnode4_t *rp = VTOR4(vp);
if (nfs4_vtype_debug && vp->v_type != VNON &&
rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) {
cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, "
"rnode attr type=%d", (void *)vp, vp->v_type,
rp->r_attr.va_type);
}
return (1);
}
#endif /* DEBUG */