/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/signal.h>
#include <sys/stack.h>
#include <sys/pcb.h>
#include <sys/user.h>
#include <sys/systm.h>
#include <sys/sysinfo.h>
#include <sys/errno.h>
#include <sys/cmn_err.h>
#include <sys/cred.h>
#include <sys/resource.h>
#include <sys/task.h>
#include <sys/project.h>
#include <sys/proc.h>
#include <sys/debug.h>
#include <sys/disp.h>
#include <sys/class.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kp.h>
#include <sys/machlock.h>
#include <sys/kmem.h>
#include <sys/varargs.h>
#include <sys/turnstile.h>
#include <sys/poll.h>
#include <sys/vtrace.h>
#include <sys/callb.h>
#include <c2/audit.h>
#include <sys/tnf.h>
#include <sys/sobject.h>
#include <sys/cpupart.h>
#include <sys/pset.h>
#include <sys/door.h>
#include <sys/spl.h>
#include <sys/copyops.h>
#include <sys/rctl.h>
#include <sys/brand.h>
#include <sys/pool.h>
#include <sys/zone.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tndb.h>
#include <sys/cpc_impl.h>
#include <sys/sdt.h>
#include <sys/reboot.h>
#include <sys/kdi.h>
#include <sys/schedctl.h>
#include <sys/waitq.h>
#include <sys/cpucaps.h>
#include <sys/kiconv.h>
struct kmem_cache *thread_cache; /* cache of free threads */
struct kmem_cache *lwp_cache; /* cache of free lwps */
struct kmem_cache *turnstile_cache; /* cache of free turnstiles */
/*
* allthreads is only for use by kmem_readers. All kernel loops can use
* the current thread as a start/end point.
*/
kthread_t *allthreads = &t0; /* circular list of all threads */
static kcondvar_t reaper_cv; /* synchronization var */
kthread_t *thread_deathrow; /* circular list of reapable threads */
kthread_t *lwp_deathrow; /* circular list of reapable threads */
kmutex_t reaplock; /* protects lwp and thread deathrows */
int thread_reapcnt = 0; /* number of threads on deathrow */
int lwp_reapcnt = 0; /* number of lwps on deathrow */
int reaplimit = 16; /* delay reaping until reaplimit */
thread_free_lock_t *thread_free_lock;
/* protects tick thread from reaper */
extern int nthread;
/* System Scheduling classes. */
id_t syscid; /* system scheduling class ID */
id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */
void *segkp_thread; /* cookie for segkp pool */
int lwp_cache_sz = 32;
int t_cache_sz = 8;
static kt_did_t next_t_id = 1;
/* Default mode for thread binding to CPUs and processor sets */
int default_binding_mode = TB_ALLHARD;
/*
* Min/Max stack sizes for stack size parameters
*/
#define MAX_STKSIZE (32 * DEFAULTSTKSZ)
#define MIN_STKSIZE DEFAULTSTKSZ
/*
* default_stksize overrides lwp_default_stksize if it is set.
*/
int default_stksize;
int lwp_default_stksize;
static zone_key_t zone_thread_key;
unsigned int kmem_stackinfo; /* stackinfo feature on-off */
kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */
static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */
/*
* forward declarations for internal thread specific data (tsd)
*/
static void *tsd_realloc(void *, size_t, size_t);
void thread_reaper(void);
/* forward declarations for stackinfo feature */
static void stkinfo_begin(kthread_t *);
static void stkinfo_end(kthread_t *);
static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
/*ARGSUSED*/
static int
turnstile_constructor(void *buf, void *cdrarg, int kmflags)
{
bzero(buf, sizeof (turnstile_t));
return (0);
}
/*ARGSUSED*/
static void
turnstile_destructor(void *buf, void *cdrarg)
{
turnstile_t *ts = buf;
ASSERT(ts->ts_free == NULL);
ASSERT(ts->ts_waiters == 0);
ASSERT(ts->ts_inheritor == NULL);
ASSERT(ts->ts_sleepq[0].sq_first == NULL);
ASSERT(ts->ts_sleepq[1].sq_first == NULL);
}
void
thread_init(void)
{
kthread_t *tp;
extern char sys_name[];
extern void idle();
struct cpu *cpu = CPU;
int i;
kmutex_t *lp;
mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
thread_free_lock =
kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
for (i = 0; i < THREAD_FREE_NUM; i++) {
lp = &thread_free_lock[i].tf_lock;
mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
}
#if defined(__i386) || defined(__amd64)
thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
/*
* "struct _klwp" includes a "struct pcb", which includes a
* "struct fpu", which needs to be 64-byte aligned on amd64
* (and even on i386) for xsave/xrstor.
*/
lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
64, NULL, NULL, NULL, NULL, NULL, 0);
#else
/*
* Allocate thread structures from static_arena. This prevents
* issues where a thread tries to relocate its own thread
* structure and touches it after the mapping has been suspended.
*/
thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
lwp_stk_cache_init();
lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
0, NULL, NULL, NULL, NULL, NULL, 0);
#endif
turnstile_cache = kmem_cache_create("turnstile_cache",
sizeof (turnstile_t), 0,
turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
label_init();
cred_init();
/*
* Initialize various resource management facilities.
*/
rctl_init();
cpucaps_init();
/*
* Zone_init() should be called before project_init() so that project ID
* for the first project is initialized correctly.
*/
zone_init();
project_init();
brand_init();
kiconv_init();
task_init();
tcache_init();
pool_init();
curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
/*
* Originally, we had two parameters to set default stack
* size: one for lwp's (lwp_default_stksize), and one for
* kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
* Now we have a third parameter that overrides both if it is
* set to a legal stack size, called default_stksize.
*/
if (default_stksize == 0) {
default_stksize = DEFAULTSTKSZ;
} else if (default_stksize % PAGESIZE != 0 ||
default_stksize > MAX_STKSIZE ||
default_stksize < MIN_STKSIZE) {
cmn_err(CE_WARN, "Illegal stack size. Using %d",
(int)DEFAULTSTKSZ);
default_stksize = DEFAULTSTKSZ;
} else {
lwp_default_stksize = default_stksize;
}
if (lwp_default_stksize == 0) {
lwp_default_stksize = default_stksize;
} else if (lwp_default_stksize % PAGESIZE != 0 ||
lwp_default_stksize > MAX_STKSIZE ||
lwp_default_stksize < MIN_STKSIZE) {
cmn_err(CE_WARN, "Illegal stack size. Using %d",
default_stksize);
lwp_default_stksize = default_stksize;
}
segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
lwp_default_stksize,
(KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
segkp_thread = segkp_cache_init(segkp, t_cache_sz,
default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
(void) getcid(sys_name, &syscid);
curthread->t_cid = syscid; /* current thread is t0 */
/*
* Set up the first CPU's idle thread.
* It runs whenever the CPU has nothing worthwhile to do.
*/
tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
cpu->cpu_idle_thread = tp;
tp->t_preempt = 1;
tp->t_disp_queue = cpu->cpu_disp;
ASSERT(tp->t_disp_queue != NULL);
tp->t_bound_cpu = cpu;
tp->t_affinitycnt = 1;
/*
* Registering a thread in the callback table is usually
* done in the initialization code of the thread. In this
* case, we do it right after thread creation to avoid
* blocking idle thread while registering itself. It also
* avoids the possibility of reregistration in case a CPU
* restarts its idle thread.
*/
CALLB_CPR_INIT_SAFE(tp, "idle");
/*
* Create the thread_reaper daemon. From this point on, exited
* threads will get reaped.
*/
(void) thread_create(NULL, 0, (void (*)())thread_reaper,
NULL, 0, &p0, TS_RUN, minclsyspri);
/*
* Finish initializing the kernel memory allocator now that
* thread_create() is available.
*/
kmem_thread_init();
if (boothowto & RB_DEBUG)
kdi_dvec_thravail();
}
/*
* Create a thread.
*
* thread_create() blocks for memory if necessary. It never fails.
*
* If stk is NULL, the thread is created at the base of the stack
* and cannot be swapped.
*/
kthread_t *
thread_create(
caddr_t stk,
size_t stksize,
void (*proc)(),
void *arg,
size_t len,
proc_t *pp,
int state,
pri_t pri)
{
kthread_t *t;
extern struct classfuncs sys_classfuncs;
turnstile_t *ts;
/*
* Every thread keeps a turnstile around in case it needs to block.
* The only reason the turnstile is not simply part of the thread
* structure is that we may have to break the association whenever
* more than one thread blocks on a given synchronization object.
* From a memory-management standpoint, turnstiles are like the
* "attached mblks" that hang off dblks in the streams allocator.
*/
ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
if (stk == NULL) {
/*
* alloc both thread and stack in segkp chunk
*/
if (stksize < default_stksize)
stksize = default_stksize;
if (stksize == default_stksize) {
stk = (caddr_t)segkp_cache_get(segkp_thread);
} else {
stksize = roundup(stksize, PAGESIZE);
stk = (caddr_t)segkp_get(segkp, stksize,
(KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
}
ASSERT(stk != NULL);
/*
* The machine-dependent mutex code may require that
* thread pointers (since they may be used for mutex owner
* fields) have certain alignment requirements.
* PTR24_ALIGN is the size of the alignment quanta.
* XXX - assumes stack grows toward low addresses.
*/
if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
cmn_err(CE_PANIC, "thread_create: proposed stack size"
" too small to hold thread.");
#ifdef STACK_GROWTH_DOWN
stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
stksize &= -PTR24_ALIGN; /* make thread aligned */
t = (kthread_t *)(stk + stksize);
bzero(t, sizeof (kthread_t));
if (audit_active)
audit_thread_create(t);
t->t_stk = stk + stksize;
t->t_stkbase = stk;
#else /* stack grows to larger addresses */
stksize -= SA(sizeof (kthread_t));
t = (kthread_t *)(stk);
bzero(t, sizeof (kthread_t));
t->t_stk = stk + sizeof (kthread_t);
t->t_stkbase = stk + stksize + sizeof (kthread_t);
#endif /* STACK_GROWTH_DOWN */
t->t_flag |= T_TALLOCSTK;
t->t_swap = stk;
} else {
t = kmem_cache_alloc(thread_cache, KM_SLEEP);
bzero(t, sizeof (kthread_t));
ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
if (audit_active)
audit_thread_create(t);
/*
* Initialize t_stk to the kernel stack pointer to use
* upon entry to the kernel
*/
#ifdef STACK_GROWTH_DOWN
t->t_stk = stk + stksize;
t->t_stkbase = stk;
#else
t->t_stk = stk; /* 3b2-like */
t->t_stkbase = stk + stksize;
#endif /* STACK_GROWTH_DOWN */
}
if (kmem_stackinfo != 0) {
stkinfo_begin(t);
}
t->t_ts = ts;
/*
* p_cred could be NULL if it thread_create is called before cred_init
* is called in main.
*/
mutex_enter(&pp->p_crlock);
if (pp->p_cred)
crhold(t->t_cred = pp->p_cred);
mutex_exit(&pp->p_crlock);
t->t_start = gethrestime_sec();
t->t_startpc = proc;
t->t_procp = pp;
t->t_clfuncs = &sys_classfuncs.thread;
t->t_cid = syscid;
t->t_pri = pri;
t->t_stime = ddi_get_lbolt();
t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
t->t_bind_cpu = PBIND_NONE;
t->t_bindflag = (uchar_t)default_binding_mode;
t->t_bind_pset = PS_NONE;
t->t_plockp = &pp->p_lock;
t->t_copyops = NULL;
t->t_taskq = NULL;
t->t_anttime = 0;
t->t_hatdepth = 0;
t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */
CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
#ifndef NPROBE
/* Kernel probe */
tnf_thread_create(t);
#endif /* NPROBE */
LOCK_INIT_CLEAR(&t->t_lock);
/*
* Callers who give us a NULL proc must do their own
* stack initialization. e.g. lwp_create()
*/
if (proc != NULL) {
t->t_stk = thread_stk_init(t->t_stk);
thread_load(t, proc, arg, len);
}
/*
* Put a hold on project0. If this thread is actually in a
* different project, then t_proj will be changed later in
* lwp_create(). All kernel-only threads must be in project 0.
*/
t->t_proj = project_hold(proj0p);
lgrp_affinity_init(&t->t_lgrp_affinity);
mutex_enter(&pidlock);
nthread++;
t->t_did = next_t_id++;
t->t_prev = curthread->t_prev;
t->t_next = curthread;
/*
* Add the thread to the list of all threads, and initialize
* its t_cpu pointer. We need to block preemption since
* cpu_offline walks the thread list looking for threads
* with t_cpu pointing to the CPU being offlined. We want
* to make sure that the list is consistent and that if t_cpu
* is set, the thread is on the list.
*/
kpreempt_disable();
curthread->t_prev->t_next = t;
curthread->t_prev = t;
/*
* Threads should never have a NULL t_cpu pointer so assign it
* here. If the thread is being created with state TS_RUN a
* better CPU may be chosen when it is placed on the run queue.
*
* We need to keep kernel preemption disabled when setting all
* three fields to keep them in sync. Also, always create in
* the default partition since that's where kernel threads go
* (if this isn't a kernel thread, t_cpupart will be changed
* in lwp_create before setting the thread runnable).
*/
t->t_cpupart = &cp_default;
/*
* For now, affiliate this thread with the root lgroup.
* Since the kernel does not (presently) allocate its memory
* in a locality aware fashion, the root is an appropriate home.
* If this thread is later associated with an lwp, it will have
* it's lgroup re-assigned at that time.
*/
lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
/*
* Inherit the current cpu. If this cpu isn't part of the chosen
* lgroup, a new cpu will be chosen by cpu_choose when the thread
* is ready to run.
*/
if (CPU->cpu_part == &cp_default)
t->t_cpu = CPU;
else
t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
t->t_pri, NULL);
t->t_disp_queue = t->t_cpu->cpu_disp;
kpreempt_enable();
/*
* Initialize thread state and the dispatcher lock pointer.
* Need to hold onto pidlock to block allthreads walkers until
* the state is set.
*/
switch (state) {
case TS_RUN:
curthread->t_oldspl = splhigh(); /* get dispatcher spl */
THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
CL_SETRUN(t);
thread_unlock(t);
break;
case TS_ONPROC:
THREAD_ONPROC(t, t->t_cpu);
break;
case TS_FREE:
/*
* Free state will be used for intr threads.
* The interrupt routine must set the thread dispatcher
* lock pointer (t_lockp) if starting on a CPU
* other than the current one.
*/
THREAD_FREEINTR(t, CPU);
break;
case TS_STOPPED:
THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
break;
default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */
cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
}
mutex_exit(&pidlock);
return (t);
}
/*
* Move thread to project0 and take care of project reference counters.
*/
void
thread_rele(kthread_t *t)
{
kproject_t *kpj;
thread_lock(t);
ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
kpj = ttoproj(t);
t->t_proj = proj0p;
thread_unlock(t);
if (kpj != proj0p) {
project_rele(kpj);
(void) project_hold(proj0p);
}
}
void
thread_exit(void)
{
kthread_t *t = curthread;
if ((t->t_proc_flag & TP_ZTHREAD) != 0)
cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
tsd_exit(); /* Clean up this thread's TSD */
kcpc_passivate(); /* clean up performance counter state */
/*
* No kernel thread should have called poll() without arranging
* calling pollcleanup() here.
*/
ASSERT(t->t_pollstate == NULL);
ASSERT(t->t_schedctl == NULL);
if (t->t_door)
door_slam(); /* in case thread did an upcall */
#ifndef NPROBE
/* Kernel probe */
if (t->t_tnf_tpdp)
tnf_thread_exit();
#endif /* NPROBE */
thread_rele(t);
t->t_preempt++;
/*
* remove thread from the all threads list so that
* death-row can use the same pointers.
*/
mutex_enter(&pidlock);
t->t_next->t_prev = t->t_prev;
t->t_prev->t_next = t->t_next;
ASSERT(allthreads != t); /* t0 never exits */
cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */
mutex_exit(&pidlock);
if (t->t_ctx != NULL)
exitctx(t);
if (t->t_procp->p_pctx != NULL)
exitpctx(t->t_procp);
if (kmem_stackinfo != 0) {
stkinfo_end(t);
}
t->t_state = TS_ZOMB; /* set zombie thread */
swtch_from_zombie(); /* give up the CPU */
/* NOTREACHED */
}
/*
* Check to see if the specified thread is active (defined as being on
* the thread list). This is certainly a slow way to do this; if there's
* ever a reason to speed it up, we could maintain a hash table of active
* threads indexed by their t_did.
*/
static kthread_t *
did_to_thread(kt_did_t tid)
{
kthread_t *t;
ASSERT(MUTEX_HELD(&pidlock));
for (t = curthread->t_next; t != curthread; t = t->t_next) {
if (t->t_did == tid)
break;
}
if (t->t_did == tid)
return (t);
else
return (NULL);
}
/*
* Wait for specified thread to exit. Returns immediately if the thread
* could not be found, meaning that it has either already exited or never
* existed.
*/
void
thread_join(kt_did_t tid)
{
kthread_t *t;
ASSERT(tid != curthread->t_did);
ASSERT(tid != t0.t_did);
mutex_enter(&pidlock);
/*
* Make sure we check that the thread is on the thread list
* before blocking on it; otherwise we could end up blocking on
* a cv that's already been freed. In other words, don't cache
* the thread pointer across calls to cv_wait.
*
* The choice of loop invariant means that whenever a thread
* is taken off the allthreads list, a cv_broadcast must be
* performed on that thread's t_joincv to wake up any waiters.
* The broadcast doesn't have to happen right away, but it
* shouldn't be postponed indefinitely (e.g., by doing it in
* thread_free which may only be executed when the deathrow
* queue is processed.
*/
while (t = did_to_thread(tid))
cv_wait(&t->t_joincv, &pidlock);
mutex_exit(&pidlock);
}
void
thread_free_prevent(kthread_t *t)
{
kmutex_t *lp;
lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
mutex_enter(lp);
}
void
thread_free_allow(kthread_t *t)
{
kmutex_t *lp;
lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
mutex_exit(lp);
}
static void
thread_free_barrier(kthread_t *t)
{
kmutex_t *lp;
lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
mutex_enter(lp);
mutex_exit(lp);
}
void
thread_free(kthread_t *t)
{
boolean_t allocstk = (t->t_flag & T_TALLOCSTK);
klwp_t *lwp = t->t_lwp;
caddr_t swap = t->t_swap;
ASSERT(t != &t0 && t->t_state == TS_FREE);
ASSERT(t->t_door == NULL);
ASSERT(t->t_schedctl == NULL);
ASSERT(t->t_pollstate == NULL);
t->t_pri = 0;
t->t_pc = 0;
t->t_sp = 0;
t->t_wchan0 = NULL;
t->t_wchan = NULL;
if (t->t_cred != NULL) {
crfree(t->t_cred);
t->t_cred = 0;
}
if (t->t_pdmsg) {
kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
t->t_pdmsg = NULL;
}
if (audit_active)
audit_thread_free(t);
#ifndef NPROBE
if (t->t_tnf_tpdp)
tnf_thread_free(t);
#endif /* NPROBE */
if (t->t_cldata) {
CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
}
if (t->t_rprof != NULL) {
kmem_free(t->t_rprof, sizeof (*t->t_rprof));
t->t_rprof = NULL;
}
t->t_lockp = NULL; /* nothing should try to lock this thread now */
if (lwp)
lwp_freeregs(lwp, 0);
if (t->t_ctx)
freectx(t, 0);
t->t_stk = NULL;
if (lwp)
lwp_stk_fini(lwp);
lock_clear(&t->t_lock);
if (t->t_ts->ts_waiters > 0)
panic("thread_free: turnstile still active");
kmem_cache_free(turnstile_cache, t->t_ts);
free_afd(&t->t_activefd);
/*
* Barrier for the tick accounting code. The tick accounting code
* holds this lock to keep the thread from going away while it's
* looking at it.
*/
thread_free_barrier(t);
ASSERT(ttoproj(t) == proj0p);
project_rele(ttoproj(t));
lgrp_affinity_free(&t->t_lgrp_affinity);
mutex_enter(&pidlock);
nthread--;
mutex_exit(&pidlock);
/*
* Free thread, lwp and stack. This needs to be done carefully, since
* if T_TALLOCSTK is set, the thread is part of the stack.
*/
t->t_lwp = NULL;
t->t_swap = NULL;
if (swap) {
segkp_release(segkp, swap);
}
if (lwp) {
kmem_cache_free(lwp_cache, lwp);
}
if (!allocstk) {
kmem_cache_free(thread_cache, t);
}
}
/*
* Removes threads associated with the given zone from a deathrow queue.
* tp is a pointer to the head of the deathrow queue, and countp is a
* pointer to the current deathrow count. Returns a linked list of
* threads removed from the list.
*/
static kthread_t *
thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
{
kthread_t *tmp, *list = NULL;
cred_t *cr;
ASSERT(MUTEX_HELD(&reaplock));
while (*tp != NULL) {
if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
tmp = *tp;
*tp = tmp->t_forw;
tmp->t_forw = list;
list = tmp;
(*countp)--;
} else {
tp = &(*tp)->t_forw;
}
}
return (list);
}
static void
thread_reap_list(kthread_t *t)
{
kthread_t *next;
while (t != NULL) {
next = t->t_forw;
thread_free(t);
t = next;
}
}
/* ARGSUSED */
static void
thread_zone_destroy(zoneid_t zoneid, void *unused)
{
kthread_t *t, *l;
mutex_enter(&reaplock);
/*
* Pull threads and lwps associated with zone off deathrow lists.
*/
t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
mutex_exit(&reaplock);
/*
* Guard against race condition in mutex_owner_running:
* thread=owner(mutex)
* <interrupt>
* thread exits mutex
* thread exits
* thread reaped
* thread struct freed
* cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
* A cross call to all cpus will cause the interrupt handler
* to reset the PC if it is in mutex_owner_running, refreshing
* stale thread pointers.
*/
mutex_sync(); /* sync with mutex code */
/*
* Reap threads
*/
thread_reap_list(t);
/*
* Reap lwps
*/
thread_reap_list(l);
}
/*
* cleanup zombie threads that are on deathrow.
*/
void
thread_reaper()
{
kthread_t *t, *l;
callb_cpr_t cprinfo;
/*
* Register callback to clean up threads when zone is destroyed.
*/
zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
for (;;) {
mutex_enter(&reaplock);
while (thread_deathrow == NULL && lwp_deathrow == NULL) {
CALLB_CPR_SAFE_BEGIN(&cprinfo);
cv_wait(&reaper_cv, &reaplock);
CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
}
/*
* mutex_sync() needs to be called when reaping, but
* not too often. We limit reaping rate to once
* per second. Reaplimit is max rate at which threads can
* be freed. Does not impact thread destruction/creation.
*/
t = thread_deathrow;
l = lwp_deathrow;
thread_deathrow = NULL;
lwp_deathrow = NULL;
thread_reapcnt = 0;
lwp_reapcnt = 0;
mutex_exit(&reaplock);
/*
* Guard against race condition in mutex_owner_running:
* thread=owner(mutex)
* <interrupt>
* thread exits mutex
* thread exits
* thread reaped
* thread struct freed
* cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
* A cross call to all cpus will cause the interrupt handler
* to reset the PC if it is in mutex_owner_running, refreshing
* stale thread pointers.
*/
mutex_sync(); /* sync with mutex code */
/*
* Reap threads
*/
thread_reap_list(t);
/*
* Reap lwps
*/
thread_reap_list(l);
delay(hz);
}
}
/*
* This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
* thread_deathrow. The thread's state is changed already TS_FREE to indicate
* that is reapable. The thread already holds the reaplock, and was already
* freed.
*/
void
reapq_move_lq_to_tq(kthread_t *t)
{
ASSERT(t->t_state == TS_FREE);
ASSERT(MUTEX_HELD(&reaplock));
t->t_forw = thread_deathrow;
thread_deathrow = t;
thread_reapcnt++;
if (lwp_reapcnt + thread_reapcnt > reaplimit)
cv_signal(&reaper_cv); /* wake the reaper */
}
/*
* This is called by resume() to put a zombie thread onto deathrow.
* The thread's state is changed to TS_FREE to indicate that is reapable.
* This is called from the idle thread so it must not block - just spin.
*/
void
reapq_add(kthread_t *t)
{
mutex_enter(&reaplock);
/*
* lwp_deathrow contains threads with lwp linkage and
* swappable thread stacks which have the default stacksize.
* These threads' lwps and stacks may be reused by lwp_create().
*
* Anything else goes on thread_deathrow(), where it will eventually
* be thread_free()d.
*/
if (t->t_flag & T_LWPREUSE) {
ASSERT(ttolwp(t) != NULL);
t->t_forw = lwp_deathrow;
lwp_deathrow = t;
lwp_reapcnt++;
} else {
t->t_forw = thread_deathrow;
thread_deathrow = t;
thread_reapcnt++;
}
if (lwp_reapcnt + thread_reapcnt > reaplimit)
cv_signal(&reaper_cv); /* wake the reaper */
t->t_state = TS_FREE;
lock_clear(&t->t_lock);
/*
* Before we return, we need to grab and drop the thread lock for
* the dead thread. At this point, the current thread is the idle
* thread, and the dead thread's CPU lock points to the current
* CPU -- and we must grab and drop the lock to synchronize with
* a racing thread walking a blocking chain that the zombie thread
* was recently in. By this point, that blocking chain is (by
* definition) stale: the dead thread is not holding any locks, and
* is therefore not in any blocking chains -- but if we do not regrab
* our lock before freeing the dead thread's data structures, the
* thread walking the (stale) blocking chain will die on memory
* corruption when it attempts to drop the dead thread's lock. We
* only need do this once because there is no way for the dead thread
* to ever again be on a blocking chain: once we have grabbed and
* dropped the thread lock, we are guaranteed that anyone that could
* have seen this thread in a blocking chain can no longer see it.
*/
thread_lock(t);
thread_unlock(t);
mutex_exit(&reaplock);
}
/*
* Install thread context ops for the current thread.
*/
void
installctx(
kthread_t *t,
void *arg,
void (*save)(void *),
void (*restore)(void *),
void (*fork)(void *, void *),
void (*lwp_create)(void *, void *),
void (*exit)(void *),
void (*free)(void *, int))
{
struct ctxop *ctx;
ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
ctx->save_op = save;
ctx->restore_op = restore;
ctx->fork_op = fork;
ctx->lwp_create_op = lwp_create;
ctx->exit_op = exit;
ctx->free_op = free;
ctx->arg = arg;
ctx->next = t->t_ctx;
t->t_ctx = ctx;
}
/*
* Remove the thread context ops from a thread.
*/
int
removectx(
kthread_t *t,
void *arg,
void (*save)(void *),
void (*restore)(void *),
void (*fork)(void *, void *),
void (*lwp_create)(void *, void *),
void (*exit)(void *),
void (*free)(void *, int))
{
struct ctxop *ctx, *prev_ctx;
/*
* The incoming kthread_t (which is the thread for which the
* context ops will be removed) should be one of the following:
*
* a) the current thread,
*
* b) a thread of a process that's being forked (SIDL),
*
* c) a thread that belongs to the same process as the current
* thread and for which the current thread is the agent thread,
*
* d) a thread that is TS_STOPPED which is indicative of it
* being (if curthread is not an agent) a thread being created
* as part of an lwp creation.
*/
ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
/*
* Serialize modifications to t->t_ctx to prevent the agent thread
* and the target thread from racing with each other during lwp exit.
*/
mutex_enter(&t->t_ctx_lock);
prev_ctx = NULL;
kpreempt_disable();
for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
if (ctx->save_op == save && ctx->restore_op == restore &&
ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
ctx->exit_op == exit && ctx->free_op == free &&
ctx->arg == arg) {
if (prev_ctx)
prev_ctx->next = ctx->next;
else
t->t_ctx = ctx->next;
mutex_exit(&t->t_ctx_lock);
if (ctx->free_op != NULL)
(ctx->free_op)(ctx->arg, 0);
kmem_free(ctx, sizeof (struct ctxop));
kpreempt_enable();
return (1);
}
prev_ctx = ctx;
}
mutex_exit(&t->t_ctx_lock);
kpreempt_enable();
return (0);
}
void
savectx(kthread_t *t)
{
struct ctxop *ctx;
ASSERT(t == curthread);
for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
if (ctx->save_op != NULL)
(ctx->save_op)(ctx->arg);
}
void
restorectx(kthread_t *t)
{
struct ctxop *ctx;
ASSERT(t == curthread);
for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
if (ctx->restore_op != NULL)
(ctx->restore_op)(ctx->arg);
}
void
forkctx(kthread_t *t, kthread_t *ct)
{
struct ctxop *ctx;
for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
if (ctx->fork_op != NULL)
(ctx->fork_op)(t, ct);
}
/*
* Note that this operator is only invoked via the _lwp_create
* system call. The system may have other reasons to create lwps
* e.g. the agent lwp or the doors unreferenced lwp.
*/
void
lwp_createctx(kthread_t *t, kthread_t *ct)
{
struct ctxop *ctx;
for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
if (ctx->lwp_create_op != NULL)
(ctx->lwp_create_op)(t, ct);
}
/*
* exitctx is called from thread_exit() and lwp_exit() to perform any actions
* needed when the thread/LWP leaves the processor for the last time. This
* routine is not intended to deal with freeing memory; freectx() is used for
* that purpose during thread_free(). This routine is provided to allow for
* clean-up that can't wait until thread_free().
*/
void
exitctx(kthread_t *t)
{
struct ctxop *ctx;
for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
if (ctx->exit_op != NULL)
(ctx->exit_op)(t);
}
/*
* freectx is called from thread_free() and exec() to get
* rid of old thread context ops.
*/
void
freectx(kthread_t *t, int isexec)
{
struct ctxop *ctx;
kpreempt_disable();
while ((ctx = t->t_ctx) != NULL) {
t->t_ctx = ctx->next;
if (ctx->free_op != NULL)
(ctx->free_op)(ctx->arg, isexec);
kmem_free(ctx, sizeof (struct ctxop));
}
kpreempt_enable();
}
/*
* freectx_ctx is called from lwp_create() when lwp is reused from
* lwp_deathrow and its thread structure is added to thread_deathrow.
* The thread structure to which this ctx was attached may be already
* freed by the thread reaper so free_op implementations shouldn't rely
* on thread structure to which this ctx was attached still being around.
*/
void
freectx_ctx(struct ctxop *ctx)
{
struct ctxop *nctx;
ASSERT(ctx != NULL);
kpreempt_disable();
do {
nctx = ctx->next;
if (ctx->free_op != NULL)
(ctx->free_op)(ctx->arg, 0);
kmem_free(ctx, sizeof (struct ctxop));
} while ((ctx = nctx) != NULL);
kpreempt_enable();
}
/*
* Set the thread running; arrange for it to be swapped in if necessary.
*/
void
setrun_locked(kthread_t *t)
{
ASSERT(THREAD_LOCK_HELD(t));
if (t->t_state == TS_SLEEP) {
/*
* Take off sleep queue.
*/
SOBJ_UNSLEEP(t->t_sobj_ops, t);
} else if (t->t_state & (TS_RUN | TS_ONPROC)) {
/*
* Already on dispatcher queue.
*/
return;
} else if (t->t_state == TS_WAIT) {
waitq_setrun(t);
} else if (t->t_state == TS_STOPPED) {
/*
* All of the sending of SIGCONT (TC_XSTART) and /proc
* (TC_PSTART) and lwp_continue() (TC_CSTART) must have
* requested that the thread be run.
* Just calling setrun() is not sufficient to set a stopped
* thread running. TP_TXSTART is always set if the thread
* is not stopped by a jobcontrol stop signal.
* TP_TPSTART is always set if /proc is not controlling it.
* TP_TCSTART is always set if lwp_suspend() didn't stop it.
* The thread won't be stopped unless one of these
* three mechanisms did it.
*
* These flags must be set before calling setrun_locked(t).
* They can't be passed as arguments because the streams
* code calls setrun() indirectly and the mechanism for
* doing so admits only one argument. Note that the
* thread must be locked in order to change t_schedflags.
*/
if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
return;
/*
* Process is no longer stopped (a thread is running).
*/
t->t_whystop = 0;
t->t_whatstop = 0;
/*
* Strictly speaking, we do not have to clear these
* flags here; they are cleared on entry to stop().
* However, they are confusing when doing kernel
* debugging or when they are revealed by ps(1).
*/
t->t_schedflag &= ~TS_ALLSTART;
THREAD_TRANSITION(t); /* drop stopped-thread lock */
ASSERT(t->t_lockp == &transition_lock);
ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
/*
* Let the class put the process on the dispatcher queue.
*/
CL_SETRUN(t);
}
}
void
setrun(kthread_t *t)
{
thread_lock(t);
setrun_locked(t);
thread_unlock(t);
}
/*
* Unpin an interrupted thread.
* When an interrupt occurs, the interrupt is handled on the stack
* of an interrupt thread, taken from a pool linked to the CPU structure.
*
* When swtch() is switching away from an interrupt thread because it
* blocked or was preempted, this routine is called to complete the
* saving of the interrupted thread state, and returns the interrupted
* thread pointer so it may be resumed.
*
* Called by swtch() only at high spl.
*/
kthread_t *
thread_unpin()
{
kthread_t *t = curthread; /* current thread */
kthread_t *itp; /* interrupted thread */
int i; /* interrupt level */
extern int intr_passivate();
ASSERT(t->t_intr != NULL);
itp = t->t_intr; /* interrupted thread */
t->t_intr = NULL; /* clear interrupt ptr */
/*
* Get state from interrupt thread for the one
* it interrupted.
*/
i = intr_passivate(t, itp);
TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
"intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
i, t, t, itp, itp);
/*
* Dissociate the current thread from the interrupted thread's LWP.
*/
t->t_lwp = NULL;
/*
* Interrupt handlers above the level that spinlocks block must
* not block.
*/
#if DEBUG
if (i < 0 || i > LOCK_LEVEL)
cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
#endif
/*
* Compute the CPU's base interrupt level based on the active
* interrupts.
*/
ASSERT(CPU->cpu_intr_actv & (1 << i));
set_base_spl();
return (itp);
}
/*
* Create and initialize an interrupt thread.
* Returns non-zero on error.
* Called at spl7() or better.
*/
void
thread_create_intr(struct cpu *cp)
{
kthread_t *tp;
tp = thread_create(NULL, 0,
(void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
/*
* Set the thread in the TS_FREE state. The state will change
* to TS_ONPROC only while the interrupt is active. Think of these
* as being on a private free list for the CPU. Being TS_FREE keeps
* inactive interrupt threads out of debugger thread lists.
*
* We cannot call thread_create with TS_FREE because of the current
* checks there for ONPROC. Fix this when thread_create takes flags.
*/
THREAD_FREEINTR(tp, cp);
/*
* Nobody should ever reference the credentials of an interrupt
* thread so make it NULL to catch any such references.
*/
tp->t_cred = NULL;
tp->t_flag |= T_INTR_THREAD;
tp->t_cpu = cp;
tp->t_bound_cpu = cp;
tp->t_disp_queue = cp->cpu_disp;
tp->t_affinitycnt = 1;
tp->t_preempt = 1;
/*
* Don't make a user-requested binding on this thread so that
* the processor can be offlined.
*/
tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */
tp->t_bind_pset = PS_NONE;
#if defined(__i386) || defined(__amd64)
tp->t_stk -= STACK_ALIGN;
*(tp->t_stk) = 0; /* terminate intr thread stack */
#endif
/*
* Link onto CPU's interrupt pool.
*/
tp->t_link = cp->cpu_intr_thread;
cp->cpu_intr_thread = tp;
}
/*
* TSD -- THREAD SPECIFIC DATA
*/
static kmutex_t tsd_mutex; /* linked list spin lock */
static uint_t tsd_nkeys; /* size of destructor array */
/* per-key destructor funcs */
static void (**tsd_destructor)(void *);
/* list of tsd_thread's */
static struct tsd_thread *tsd_list;
/*
* Default destructor
* Needed because NULL destructor means that the key is unused
*/
/* ARGSUSED */
void
tsd_defaultdestructor(void *value)
{}
/*
* Create a key (index into per thread array)
* Locks out tsd_create, tsd_destroy, and tsd_exit
* May allocate memory with lock held
*/
void
tsd_create(uint_t *keyp, void (*destructor)(void *))
{
int i;
uint_t nkeys;
/*
* if key is allocated, do nothing
*/
mutex_enter(&tsd_mutex);
if (*keyp) {
mutex_exit(&tsd_mutex);
return;
}
/*
* find an unused key
*/
if (destructor == NULL)
destructor = tsd_defaultdestructor;
for (i = 0; i < tsd_nkeys; ++i)
if (tsd_destructor[i] == NULL)
break;
/*
* if no unused keys, increase the size of the destructor array
*/
if (i == tsd_nkeys) {
if ((nkeys = (tsd_nkeys << 1)) == 0)
nkeys = 1;
tsd_destructor =
(void (**)(void *))tsd_realloc((void *)tsd_destructor,
(size_t)(tsd_nkeys * sizeof (void (*)(void *))),
(size_t)(nkeys * sizeof (void (*)(void *))));
tsd_nkeys = nkeys;
}
/*
* allocate the next available unused key
*/
tsd_destructor[i] = destructor;
*keyp = i + 1;
mutex_exit(&tsd_mutex);
}
/*
* Destroy a key -- this is for unloadable modules
*
* Assumes that the caller is preventing tsd_set and tsd_get
* Locks out tsd_create, tsd_destroy, and tsd_exit
* May free memory with lock held
*/
void
tsd_destroy(uint_t *keyp)
{
uint_t key;
struct tsd_thread *tsd;
/*
* protect the key namespace and our destructor lists
*/
mutex_enter(&tsd_mutex);
key = *keyp;
*keyp = 0;
ASSERT(key <= tsd_nkeys);
/*
* if the key is valid
*/
if (key != 0) {
uint_t k = key - 1;
/*
* for every thread with TSD, call key's destructor
*/
for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
/*
* no TSD for key in this thread
*/
if (key > tsd->ts_nkeys)
continue;
/*
* call destructor for key
*/
if (tsd->ts_value[k] && tsd_destructor[k])
(*tsd_destructor[k])(tsd->ts_value[k]);
/*
* reset value for key
*/
tsd->ts_value[k] = NULL;
}
/*
* actually free the key (NULL destructor == unused)
*/
tsd_destructor[k] = NULL;
}
mutex_exit(&tsd_mutex);
}
/*
* Quickly return the per thread value that was stored with the specified key
* Assumes the caller is protecting key from tsd_create and tsd_destroy
*/
void *
tsd_get(uint_t key)
{
return (tsd_agent_get(curthread, key));
}
/*
* Set a per thread value indexed with the specified key
*/
int
tsd_set(uint_t key, void *value)
{
return (tsd_agent_set(curthread, key, value));
}
/*
* Like tsd_get(), except that the agent lwp can get the tsd of
* another thread in the same process (the agent thread only runs when the
* process is completely stopped by /proc), or syslwp is creating a new lwp.
*/
void *
tsd_agent_get(kthread_t *t, uint_t key)
{
struct tsd_thread *tsd = t->t_tsd;
ASSERT(t == curthread ||
ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
if (key && tsd != NULL && key <= tsd->ts_nkeys)
return (tsd->ts_value[key - 1]);
return (NULL);
}
/*
* Like tsd_set(), except that the agent lwp can set the tsd of
* another thread in the same process, or syslwp can set the tsd
* of a thread it's in the middle of creating.
*
* Assumes the caller is protecting key from tsd_create and tsd_destroy
* May lock out tsd_destroy (and tsd_create), may allocate memory with
* lock held
*/
int
tsd_agent_set(kthread_t *t, uint_t key, void *value)
{
struct tsd_thread *tsd = t->t_tsd;
ASSERT(t == curthread ||
ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
if (key == 0)
return (EINVAL);
if (tsd == NULL)
tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
if (key <= tsd->ts_nkeys) {
tsd->ts_value[key - 1] = value;
return (0);
}
ASSERT(key <= tsd_nkeys);
/*
* lock out tsd_destroy()
*/
mutex_enter(&tsd_mutex);
if (tsd->ts_nkeys == 0) {
/*
* Link onto list of threads with TSD
*/
if ((tsd->ts_next = tsd_list) != NULL)
tsd_list->ts_prev = tsd;
tsd_list = tsd;
}
/*
* Allocate thread local storage and set the value for key
*/
tsd->ts_value = tsd_realloc(tsd->ts_value,
tsd->ts_nkeys * sizeof (void *),
key * sizeof (void *));
tsd->ts_nkeys = key;
tsd->ts_value[key - 1] = value;
mutex_exit(&tsd_mutex);
return (0);
}
/*
* Return the per thread value that was stored with the specified key
* If necessary, create the key and the value
* Assumes the caller is protecting *keyp from tsd_destroy
*/
void *
tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
{
void *value;
uint_t key = *keyp;
struct tsd_thread *tsd = curthread->t_tsd;
if (tsd == NULL)
tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
return (value);
if (key == 0)
tsd_create(keyp, destroy);
(void) tsd_set(*keyp, value = (*allocate)());
return (value);
}
/*
* Called from thread_exit() to run the destructor function for each tsd
* Locks out tsd_create and tsd_destroy
* Assumes that the destructor *DOES NOT* use tsd
*/
void
tsd_exit(void)
{
int i;
struct tsd_thread *tsd = curthread->t_tsd;
if (tsd == NULL)
return;
if (tsd->ts_nkeys == 0) {
kmem_free(tsd, sizeof (*tsd));
curthread->t_tsd = NULL;
return;
}
/*
* lock out tsd_create and tsd_destroy, call
* the destructor, and mark the value as destroyed.
*/
mutex_enter(&tsd_mutex);
for (i = 0; i < tsd->ts_nkeys; i++) {
if (tsd->ts_value[i] && tsd_destructor[i])
(*tsd_destructor[i])(tsd->ts_value[i]);
tsd->ts_value[i] = NULL;
}
/*
* remove from linked list of threads with TSD
*/
if (tsd->ts_next)
tsd->ts_next->ts_prev = tsd->ts_prev;
if (tsd->ts_prev)
tsd->ts_prev->ts_next = tsd->ts_next;
if (tsd_list == tsd)
tsd_list = tsd->ts_next;
mutex_exit(&tsd_mutex);
/*
* free up the TSD
*/
kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
kmem_free(tsd, sizeof (struct tsd_thread));
curthread->t_tsd = NULL;
}
/*
* realloc
*/
static void *
tsd_realloc(void *old, size_t osize, size_t nsize)
{
void *new;
new = kmem_zalloc(nsize, KM_SLEEP);
if (old) {
bcopy(old, new, osize);
kmem_free(old, osize);
}
return (new);
}
/*
* Return non-zero if an interrupt is being serviced.
*/
int
servicing_interrupt()
{
int onintr = 0;
/* Are we an interrupt thread */
if (curthread->t_flag & T_INTR_THREAD)
return (1);
/* Are we servicing a high level interrupt? */
if (CPU_ON_INTR(CPU)) {
kpreempt_disable();
onintr = CPU_ON_INTR(CPU);
kpreempt_enable();
}
return (onintr);
}
/*
* Change the dispatch priority of a thread in the system.
* Used when raising or lowering a thread's priority.
* (E.g., priority inheritance)
*
* Since threads are queued according to their priority, we
* we must check the thread's state to determine whether it
* is on a queue somewhere. If it is, we've got to:
*
* o Dequeue the thread.
* o Change its effective priority.
* o Enqueue the thread.
*
* Assumptions: The thread whose priority we wish to change
* must be locked before we call thread_change_(e)pri().
* The thread_change(e)pri() function doesn't drop the thread
* lock--that must be done by its caller.
*/
void
thread_change_epri(kthread_t *t, pri_t disp_pri)
{
uint_t state;
ASSERT(THREAD_LOCK_HELD(t));
/*
* If the inherited priority hasn't actually changed,
* just return.
*/
if (t->t_epri == disp_pri)
return;
state = t->t_state;
/*
* If it's not on a queue, change the priority with impunity.
*/
if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
t->t_epri = disp_pri;
if (state == TS_ONPROC) {
cpu_t *cp = t->t_disp_queue->disp_cpu;
if (t == cp->cpu_dispthread)
cp->cpu_dispatch_pri = DISP_PRIO(t);
}
} else if (state == TS_SLEEP) {
/*
* Take the thread out of its sleep queue.
* Change the inherited priority.
* Re-enqueue the thread.
* Each synchronization object exports a function
* to do this in an appropriate manner.
*/
SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
} else if (state == TS_WAIT) {
/*
* Re-enqueue a thread on the wait queue if its
* effective priority needs to change.
*/
if (disp_pri != t->t_epri)
waitq_change_pri(t, disp_pri);
} else {
/*
* The thread is on a run queue.
* Note: setbackdq() may not put the thread
* back on the same run queue where it originally
* resided.
*/
(void) dispdeq(t);
t->t_epri = disp_pri;
setbackdq(t);
}
schedctl_set_cidpri(t);
}
/*
* Function: Change the t_pri field of a thread.
* Side Effects: Adjust the thread ordering on a run queue
* or sleep queue, if necessary.
* Returns: 1 if the thread was on a run queue, else 0.
*/
int
thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
{
uint_t state;
int on_rq = 0;
ASSERT(THREAD_LOCK_HELD(t));
state = t->t_state;
THREAD_WILLCHANGE_PRI(t, disp_pri);
/*
* If it's not on a queue, change the priority with impunity.
*/
if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
t->t_pri = disp_pri;
if (state == TS_ONPROC) {
cpu_t *cp = t->t_disp_queue->disp_cpu;
if (t == cp->cpu_dispthread)
cp->cpu_dispatch_pri = DISP_PRIO(t);
}
} else if (state == TS_SLEEP) {
/*
* If the priority has changed, take the thread out of
* its sleep queue and change the priority.
* Re-enqueue the thread.
* Each synchronization object exports a function
* to do this in an appropriate manner.
*/
if (disp_pri != t->t_pri)
SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
} else if (state == TS_WAIT) {
/*
* Re-enqueue a thread on the wait queue if its
* priority needs to change.
*/
if (disp_pri != t->t_pri)
waitq_change_pri(t, disp_pri);
} else {
/*
* The thread is on a run queue.
* Note: setbackdq() may not put the thread
* back on the same run queue where it originally
* resided.
*
* We still requeue the thread even if the priority
* is unchanged to preserve round-robin (and other)
* effects between threads of the same priority.
*/
on_rq = dispdeq(t);
ASSERT(on_rq);
t->t_pri = disp_pri;
if (front) {
setfrontdq(t);
} else {
setbackdq(t);
}
}
schedctl_set_cidpri(t);
return (on_rq);
}
/*
* Tunable kmem_stackinfo is set, fill the kernel thread stack with a
* specific pattern.
*/
static void
stkinfo_begin(kthread_t *t)
{
caddr_t start; /* stack start */
caddr_t end; /* stack end */
uint64_t *ptr; /* pattern pointer */
/*
* Stack grows up or down, see thread_create(),
* compute stack memory area start and end (start < end).
*/
if (t->t_stk > t->t_stkbase) {
/* stack grows down */
start = t->t_stkbase;
end = t->t_stk;
} else {
/* stack grows up */
start = t->t_stk;
end = t->t_stkbase;
}
/*
* Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
* alignement for start and end in stack area boundaries
* (protection against corrupt t_stkbase/t_stk data).
*/
if ((((uintptr_t)start) & 0x7) != 0) {
start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
}
end = (caddr_t)(((uintptr_t)end) & (~0x7));
if ((end <= start) || (end - start) > (1024 * 1024)) {
/* negative or stack size > 1 meg, assume bogus */
return;
}
/* fill stack area with a pattern (instead of zeros) */
ptr = (uint64_t *)((void *)start);
while (ptr < (uint64_t *)((void *)end)) {
*ptr++ = KMEM_STKINFO_PATTERN;
}
}
/*
* Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
* compute the percentage of kernel stack really used, and set in the log
* if it's the latest highest percentage.
*/
static void
stkinfo_end(kthread_t *t)
{
caddr_t start; /* stack start */
caddr_t end; /* stack end */
uint64_t *ptr; /* pattern pointer */
size_t stksz; /* stack size */
size_t smallest = 0;
size_t percent = 0;
uint_t index = 0;
uint_t i;
static size_t smallest_percent = (size_t)-1;
static uint_t full = 0;
/* create the stackinfo log, if doesn't already exist */
mutex_enter(&kmem_stkinfo_lock);
if (kmem_stkinfo_log == NULL) {
kmem_stkinfo_log = (kmem_stkinfo_t *)
kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
(sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
if (kmem_stkinfo_log == NULL) {
mutex_exit(&kmem_stkinfo_lock);
return;
}
}
mutex_exit(&kmem_stkinfo_lock);
/*
* Stack grows up or down, see thread_create(),
* compute stack memory area start and end (start < end).
*/
if (t->t_stk > t->t_stkbase) {
/* stack grows down */
start = t->t_stkbase;
end = t->t_stk;
} else {
/* stack grows up */
start = t->t_stk;
end = t->t_stkbase;
}
/* stack size as found in kthread_t */
stksz = end - start;
/*
* Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
* alignement for start and end in stack area boundaries
* (protection against corrupt t_stkbase/t_stk data).
*/
if ((((uintptr_t)start) & 0x7) != 0) {
start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
}
end = (caddr_t)(((uintptr_t)end) & (~0x7));
if ((end <= start) || (end - start) > (1024 * 1024)) {
/* negative or stack size > 1 meg, assume bogus */
return;
}
/* search until no pattern in the stack */
if (t->t_stk > t->t_stkbase) {
/* stack grows down */
#if defined(__i386) || defined(__amd64)
/*
* 6 longs are pushed on stack, see thread_load(). Skip
* them, so if kthread has never run, percent is zero.
* 8 bytes alignement is preserved for a 32 bit kernel,
* 6 x 4 = 24, 24 is a multiple of 8.
*
*/
end -= (6 * sizeof (long));
#endif
ptr = (uint64_t *)((void *)start);
while (ptr < (uint64_t *)((void *)end)) {
if (*ptr != KMEM_STKINFO_PATTERN) {
percent = stkinfo_percent(end,
start, (caddr_t)ptr);
break;
}
ptr++;
}
} else {
/* stack grows up */
ptr = (uint64_t *)((void *)end);
ptr--;
while (ptr >= (uint64_t *)((void *)start)) {
if (*ptr != KMEM_STKINFO_PATTERN) {
percent = stkinfo_percent(start,
end, (caddr_t)ptr);
break;
}
ptr--;
}
}
DTRACE_PROBE3(stack__usage, kthread_t *, t,
size_t, stksz, size_t, percent);
if (percent == 0) {
return;
}
mutex_enter(&kmem_stkinfo_lock);
if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
/*
* The log is full and already contains the highest values
*/
mutex_exit(&kmem_stkinfo_lock);
return;
}
/* keep a log of the highest used stack */
for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
if (kmem_stkinfo_log[i].percent == 0) {
index = i;
full++;
break;
}
if (smallest == 0) {
smallest = kmem_stkinfo_log[i].percent;
index = i;
continue;
}
if (kmem_stkinfo_log[i].percent < smallest) {
smallest = kmem_stkinfo_log[i].percent;
index = i;
}
}
if (percent >= kmem_stkinfo_log[index].percent) {
kmem_stkinfo_log[index].kthread = (caddr_t)t;
kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
kmem_stkinfo_log[index].start = start;
kmem_stkinfo_log[index].stksz = stksz;
kmem_stkinfo_log[index].percent = percent;
kmem_stkinfo_log[index].t_tid = t->t_tid;
kmem_stkinfo_log[index].cmd[0] = '\0';
if (t->t_tid != 0) {
stksz = strlen((t->t_procp)->p_user.u_comm);
if (stksz >= KMEM_STKINFO_STR_SIZE) {
stksz = KMEM_STKINFO_STR_SIZE - 1;
kmem_stkinfo_log[index].cmd[stksz] = '\0';
} else {
stksz += 1;
}
(void) memcpy(kmem_stkinfo_log[index].cmd,
(t->t_procp)->p_user.u_comm, stksz);
}
if (percent < smallest_percent) {
smallest_percent = percent;
}
}
mutex_exit(&kmem_stkinfo_lock);
}
/*
* Tunable kmem_stackinfo is set, compute stack utilization percentage.
*/
static size_t
stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
{
size_t percent;
size_t s;
if (t_stk > t_stkbase) {
/* stack grows down */
if (sp > t_stk) {
return (0);
}
if (sp < t_stkbase) {
return (100);
}
percent = t_stk - sp + 1;
s = t_stk - t_stkbase + 1;
} else {
/* stack grows up */
if (sp < t_stk) {
return (0);
}
if (sp > t_stkbase) {
return (100);
}
percent = sp - t_stk + 1;
s = t_stkbase - t_stk + 1;
}
percent = ((100 * percent) / s) + 1;
if (percent > 100) {
percent = 100;
}
return (percent);
}