/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* This file contains the core framework routines for the
* kernel cryptographic framework. These routines are at the
* layer, between the kernel API/ioctls and the SPI.
*/
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/cpuvar.h>
#include <sys/cpupart.h>
#include <sys/ksynch.h>
#include <sys/callb.h>
#include <sys/cmn_err.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/kstat.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/crypto/sched_impl.h>
#include <sys/crypto/api.h>
#include <sys/crypto/spi.h>
#include <sys/taskq_impl.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
kcf_global_swq_t *gswq; /* Global software queue */
/* Thread pool related variables */
static kcf_pool_t *kcfpool; /* Thread pool of kcfd LWPs */
int kcf_maxthreads = 2;
int kcf_minthreads = 1;
int kcf_thr_multiple = 2; /* Boot-time tunable for experimentation */
static ulong_t kcf_idlethr_timeout;
static boolean_t kcf_sched_running = B_FALSE;
#define KCF_DEFAULT_THRTIMEOUT 60000000 /* 60 seconds */
/* kmem caches used by the scheduler */
static struct kmem_cache *kcf_sreq_cache;
static struct kmem_cache *kcf_areq_cache;
static struct kmem_cache *kcf_context_cache;
/* Global request ID table */
static kcf_reqid_table_t *kcf_reqid_table[REQID_TABLES];
/* KCF stats. Not protected. */
static kcf_stats_t kcf_ksdata = {
{ "total threads in pool", KSTAT_DATA_UINT32},
{ "idle threads in pool", KSTAT_DATA_UINT32},
{ "min threads in pool", KSTAT_DATA_UINT32},
{ "max threads in pool", KSTAT_DATA_UINT32},
{ "requests in gswq", KSTAT_DATA_UINT32},
{ "max requests in gswq", KSTAT_DATA_UINT32},
{ "threads for HW taskq", KSTAT_DATA_UINT32},
{ "minalloc for HW taskq", KSTAT_DATA_UINT32},
{ "maxalloc for HW taskq", KSTAT_DATA_UINT32}
};
static kstat_t *kcf_misc_kstat = NULL;
ulong_t kcf_swprov_hndl = 0;
static kcf_areq_node_t *kcf_areqnode_alloc(kcf_provider_desc_t *,
kcf_context_t *, crypto_call_req_t *, kcf_req_params_t *, boolean_t);
static int kcf_disp_sw_request(kcf_areq_node_t *);
static void process_req_hwp(void *);
static kcf_areq_node_t *kcf_dequeue(void);
static int kcf_enqueue(kcf_areq_node_t *);
static void kcfpool_alloc(void);
static void kcf_reqid_delete(kcf_areq_node_t *areq);
static crypto_req_id_t kcf_reqid_insert(kcf_areq_node_t *areq);
static int kcf_misc_kstat_update(kstat_t *ksp, int rw);
static void compute_min_max_threads(void);
static void kcfpool_svc(void *);
static void kcfpoold(void *);
/*
* Create a new context.
*/
crypto_ctx_t *
kcf_new_ctx(crypto_call_req_t *crq, kcf_provider_desc_t *pd,
crypto_session_id_t sid)
{
crypto_ctx_t *ctx;
kcf_context_t *kcf_ctx;
kcf_ctx = kmem_cache_alloc(kcf_context_cache,
(crq == NULL) ? KM_SLEEP : KM_NOSLEEP);
if (kcf_ctx == NULL)
return (NULL);
/* initialize the context for the consumer */
kcf_ctx->kc_refcnt = 1;
kcf_ctx->kc_req_chain_first = NULL;
kcf_ctx->kc_req_chain_last = NULL;
kcf_ctx->kc_secondctx = NULL;
KCF_PROV_REFHOLD(pd);
kcf_ctx->kc_prov_desc = pd;
kcf_ctx->kc_sw_prov_desc = NULL;
kcf_ctx->kc_mech = NULL;
ctx = &kcf_ctx->kc_glbl_ctx;
ctx->cc_provider = pd->pd_prov_handle;
ctx->cc_session = sid;
ctx->cc_provider_private = NULL;
ctx->cc_framework_private = (void *)kcf_ctx;
ctx->cc_flags = 0;
ctx->cc_opstate = NULL;
return (ctx);
}
/*
* Allocate a new async request node.
*
* ictx - Framework private context pointer
* crq - Has callback function and argument. Should be non NULL.
* req - The parameters to pass to the SPI
*/
static kcf_areq_node_t *
kcf_areqnode_alloc(kcf_provider_desc_t *pd, kcf_context_t *ictx,
crypto_call_req_t *crq, kcf_req_params_t *req, boolean_t isdual)
{
kcf_areq_node_t *arptr, *areq;
ASSERT(crq != NULL);
arptr = kmem_cache_alloc(kcf_areq_cache, KM_NOSLEEP);
if (arptr == NULL)
return (NULL);
arptr->an_state = REQ_ALLOCATED;
arptr->an_reqarg = *crq;
arptr->an_params = *req;
arptr->an_context = ictx;
arptr->an_isdual = isdual;
arptr->an_next = arptr->an_prev = NULL;
KCF_PROV_REFHOLD(pd);
arptr->an_provider = pd;
arptr->an_tried_plist = NULL;
arptr->an_refcnt = 1;
arptr->an_idnext = arptr->an_idprev = NULL;
/*
* Requests for context-less operations do not use the
* fields - an_is_my_turn, and an_ctxchain_next.
*/
if (ictx == NULL)
return (arptr);
KCF_CONTEXT_REFHOLD(ictx);
/*
* Chain this request to the context.
*/
mutex_enter(&ictx->kc_in_use_lock);
arptr->an_ctxchain_next = NULL;
if ((areq = ictx->kc_req_chain_last) == NULL) {
arptr->an_is_my_turn = B_TRUE;
ictx->kc_req_chain_last =
ictx->kc_req_chain_first = arptr;
} else {
ASSERT(ictx->kc_req_chain_first != NULL);
arptr->an_is_my_turn = B_FALSE;
/* Insert the new request to the end of the chain. */
areq->an_ctxchain_next = arptr;
ictx->kc_req_chain_last = arptr;
}
mutex_exit(&ictx->kc_in_use_lock);
return (arptr);
}
/*
* Queue the request node and do one of the following:
* - If there is an idle thread signal it to run.
* - Else, signal the creator thread to possibly create more threads.
*/
static int
kcf_disp_sw_request(kcf_areq_node_t *areq)
{
int err;
if ((err = kcf_enqueue(areq)) != 0)
return (err);
if (kcfpool->kp_idlethreads > 0) {
/* Signal an idle thread to run */
mutex_enter(&gswq->gs_lock);
cv_signal(&gswq->gs_cv);
mutex_exit(&gswq->gs_lock);
return (CRYPTO_QUEUED);
}
/* Signal the creator thread for more threads */
mutex_enter(&kcfpool->kp_lock);
cv_signal(&kcfpool->kp_cv);
mutex_exit(&kcfpool->kp_lock);
return (CRYPTO_QUEUED);
}
/*
* This routine is called by the taskq associated with
* each hardware provider. We notify the kernel consumer
* via the callback routine in case of CRYPTO_SUCCESS or
* a failure.
*
* A request can be of type kcf_areq_node_t or of type
* kcf_sreq_node_t.
*/
static void
process_req_hwp(void *ireq)
{
int error = 0;
crypto_ctx_t *ctx;
kcf_call_type_t ctype;
kcf_provider_desc_t *pd;
kcf_areq_node_t *areq = (kcf_areq_node_t *)ireq;
kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)ireq;
kcf_prov_cpu_t *mp;
pd = ((ctype = GET_REQ_TYPE(ireq)) == CRYPTO_SYNCH) ?
sreq->sn_provider : areq->an_provider;
/*
* Wait if flow control is in effect for the provider. A
* CRYPTO_PROVIDER_READY or CRYPTO_PROVIDER_FAILED
* notification will signal us. We also get signaled if
* the provider is unregistering.
*/
if (pd->pd_state == KCF_PROV_BUSY) {
mutex_enter(&pd->pd_lock);
while (pd->pd_state == KCF_PROV_BUSY)
cv_wait(&pd->pd_resume_cv, &pd->pd_lock);
mutex_exit(&pd->pd_lock);
}
/*
* Bump the internal reference count while the request is being
* processed. This is how we know when it's safe to unregister
* a provider. This step must precede the pd_state check below.
*/
mp = &(pd->pd_percpu_bins[CPU_SEQID]);
KCF_PROV_JOB_HOLD(mp);
/*
* Fail the request if the provider has failed. We return a
* recoverable error and the notified clients attempt any
* recovery. For async clients this is done in kcf_aop_done()
* and for sync clients it is done in the k-api routines.
*/
if (pd->pd_state >= KCF_PROV_FAILED) {
error = CRYPTO_DEVICE_ERROR;
goto bail;
}
if (ctype == CRYPTO_SYNCH) {
mutex_enter(&sreq->sn_lock);
sreq->sn_state = REQ_INPROGRESS;
sreq->sn_mp = mp;
mutex_exit(&sreq->sn_lock);
ctx = sreq->sn_context ? &sreq->sn_context->kc_glbl_ctx : NULL;
error = common_submit_request(sreq->sn_provider, ctx,
sreq->sn_params, sreq);
} else {
kcf_context_t *ictx;
ASSERT(ctype == CRYPTO_ASYNCH);
/*
* We are in the per-hardware provider thread context and
* hence can sleep. Note that the caller would have done
* a taskq_dispatch(..., TQ_NOSLEEP) and would have returned.
*/
ctx = (ictx = areq->an_context) ? &ictx->kc_glbl_ctx : NULL;
mutex_enter(&areq->an_lock);
/*
* We need to maintain ordering for multi-part requests.
* an_is_my_turn is set to B_TRUE initially for a request
* when it is enqueued and there are no other requests
* for that context. It is set later from kcf_aop_done() when
* the request before us in the chain of requests for the
* context completes. We get signaled at that point.
*/
if (ictx != NULL) {
ASSERT(ictx->kc_prov_desc == areq->an_provider);
while (areq->an_is_my_turn == B_FALSE) {
cv_wait(&areq->an_turn_cv, &areq->an_lock);
}
}
areq->an_state = REQ_INPROGRESS;
areq->an_mp = mp;
mutex_exit(&areq->an_lock);
error = common_submit_request(areq->an_provider, ctx,
&areq->an_params, areq);
}
bail:
if (error == CRYPTO_QUEUED) {
/*
* The request is queued by the provider and we should
* get a crypto_op_notification() from the provider later.
* We notify the consumer at that time.
*/
return;
} else { /* CRYPTO_SUCCESS or other failure */
KCF_PROV_JOB_RELE(mp);
if (ctype == CRYPTO_SYNCH)
kcf_sop_done(sreq, error);
else
kcf_aop_done(areq, error);
}
}
/*
* This routine checks if a request can be retried on another
* provider. If true, mech1 is initialized to point to the mechanism
* structure. mech2 is also initialized in case of a dual operation. fg
* is initialized to the correct crypto_func_group_t bit flag. They are
* initialized by this routine, so that the caller can pass them to a
* kcf_get_mech_provider() or kcf_get_dual_provider() with no further change.
*
* We check that the request is for a init or atomic routine and that
* it is for one of the operation groups used from k-api .
*/
static boolean_t
can_resubmit(kcf_areq_node_t *areq, crypto_mechanism_t **mech1,
crypto_mechanism_t **mech2, crypto_func_group_t *fg)
{
kcf_req_params_t *params;
kcf_op_type_t optype;
params = &areq->an_params;
optype = params->rp_optype;
if (!(IS_INIT_OP(optype) || IS_ATOMIC_OP(optype)))
return (B_FALSE);
switch (params->rp_opgrp) {
case KCF_OG_DIGEST: {
kcf_digest_ops_params_t *dops = &params->rp_u.digest_params;
dops->do_mech.cm_type = dops->do_framework_mechtype;
*mech1 = &dops->do_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_DIGEST :
CRYPTO_FG_DIGEST_ATOMIC;
break;
}
case KCF_OG_MAC: {
kcf_mac_ops_params_t *mops = &params->rp_u.mac_params;
mops->mo_mech.cm_type = mops->mo_framework_mechtype;
*mech1 = &mops->mo_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_MAC :
CRYPTO_FG_MAC_ATOMIC;
break;
}
case KCF_OG_SIGN: {
kcf_sign_ops_params_t *sops = &params->rp_u.sign_params;
sops->so_mech.cm_type = sops->so_framework_mechtype;
*mech1 = &sops->so_mech;
switch (optype) {
case KCF_OP_INIT:
*fg = CRYPTO_FG_SIGN;
break;
case KCF_OP_ATOMIC:
*fg = CRYPTO_FG_SIGN_ATOMIC;
break;
default:
ASSERT(optype == KCF_OP_SIGN_RECOVER_ATOMIC);
*fg = CRYPTO_FG_SIGN_RECOVER_ATOMIC;
}
break;
}
case KCF_OG_VERIFY: {
kcf_verify_ops_params_t *vops = &params->rp_u.verify_params;
vops->vo_mech.cm_type = vops->vo_framework_mechtype;
*mech1 = &vops->vo_mech;
switch (optype) {
case KCF_OP_INIT:
*fg = CRYPTO_FG_VERIFY;
break;
case KCF_OP_ATOMIC:
*fg = CRYPTO_FG_VERIFY_ATOMIC;
break;
default:
ASSERT(optype == KCF_OP_VERIFY_RECOVER_ATOMIC);
*fg = CRYPTO_FG_VERIFY_RECOVER_ATOMIC;
}
break;
}
case KCF_OG_ENCRYPT: {
kcf_encrypt_ops_params_t *eops = &params->rp_u.encrypt_params;
eops->eo_mech.cm_type = eops->eo_framework_mechtype;
*mech1 = &eops->eo_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_ENCRYPT :
CRYPTO_FG_ENCRYPT_ATOMIC;
break;
}
case KCF_OG_DECRYPT: {
kcf_decrypt_ops_params_t *dcrops = &params->rp_u.decrypt_params;
dcrops->dop_mech.cm_type = dcrops->dop_framework_mechtype;
*mech1 = &dcrops->dop_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_DECRYPT :
CRYPTO_FG_DECRYPT_ATOMIC;
break;
}
case KCF_OG_ENCRYPT_MAC: {
kcf_encrypt_mac_ops_params_t *eops =
&params->rp_u.encrypt_mac_params;
eops->em_encr_mech.cm_type = eops->em_framework_encr_mechtype;
*mech1 = &eops->em_encr_mech;
eops->em_mac_mech.cm_type = eops->em_framework_mac_mechtype;
*mech2 = &eops->em_mac_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_ENCRYPT_MAC :
CRYPTO_FG_ENCRYPT_MAC_ATOMIC;
break;
}
case KCF_OG_MAC_DECRYPT: {
kcf_mac_decrypt_ops_params_t *dops =
&params->rp_u.mac_decrypt_params;
dops->md_mac_mech.cm_type = dops->md_framework_mac_mechtype;
*mech1 = &dops->md_mac_mech;
dops->md_decr_mech.cm_type = dops->md_framework_decr_mechtype;
*mech2 = &dops->md_decr_mech;
*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_MAC_DECRYPT :
CRYPTO_FG_MAC_DECRYPT_ATOMIC;
break;
}
default:
return (B_FALSE);
}
return (B_TRUE);
}
/*
* This routine is called when a request to a provider has failed
* with a recoverable error. This routine tries to find another provider
* and dispatches the request to the new provider, if one is available.
* We reuse the request structure.
*
* A return value of NULL from kcf_get_mech_provider() indicates
* we have tried the last provider.
*/
static int
kcf_resubmit_request(kcf_areq_node_t *areq)
{
int error = CRYPTO_FAILED;
kcf_context_t *ictx;
kcf_provider_desc_t *old_pd;
kcf_provider_desc_t *new_pd;
crypto_mechanism_t *mech1 = NULL, *mech2 = NULL;
crypto_mech_type_t prov_mt1, prov_mt2;
crypto_func_group_t fg;
if (!can_resubmit(areq, &mech1, &mech2, &fg))
return (error);
old_pd = areq->an_provider;
/*
* Add old_pd to the list of providers already tried.
* We release the new hold on old_pd in kcf_free_triedlist().
*/
if (kcf_insert_triedlist(&areq->an_tried_plist, old_pd,
KM_NOSLEEP | KCF_HOLD_PROV) == NULL)
return (error);
if (mech1 && !mech2) {
new_pd = kcf_get_mech_provider(mech1->cm_type, NULL, NULL,
&error, areq->an_tried_plist, fg, 0);
} else {
ASSERT(mech1 != NULL && mech2 != NULL);
new_pd = kcf_get_dual_provider(mech1, NULL, mech2, NULL,
NULL, &prov_mt1,
&prov_mt2, &error, areq->an_tried_plist, fg, fg, 0);
}
if (new_pd == NULL)
return (error);
/*
* We reuse the old context by resetting provider specific
* fields in it.
*/
if ((ictx = areq->an_context) != NULL) {
crypto_ctx_t *ctx;
ASSERT(old_pd == ictx->kc_prov_desc);
KCF_PROV_REFRELE(ictx->kc_prov_desc);
KCF_PROV_REFHOLD(new_pd);
ictx->kc_prov_desc = new_pd;
ctx = &ictx->kc_glbl_ctx;
ctx->cc_provider = new_pd->pd_prov_handle;
ctx->cc_session = new_pd->pd_sid;
ctx->cc_provider_private = NULL;
}
/* We reuse areq. by resetting the provider and context fields. */
KCF_PROV_REFRELE(old_pd);
KCF_PROV_REFHOLD(new_pd);
areq->an_provider = new_pd;
mutex_enter(&areq->an_lock);
areq->an_state = REQ_WAITING;
mutex_exit(&areq->an_lock);
switch (new_pd->pd_prov_type) {
case CRYPTO_SW_PROVIDER:
error = kcf_disp_sw_request(areq);
break;
case CRYPTO_HW_PROVIDER: {
taskq_t *taskq = new_pd->pd_taskq;
if (taskq_dispatch(taskq, process_req_hwp, areq, TQ_NOSLEEP) ==
(taskqid_t)0) {
error = CRYPTO_HOST_MEMORY;
} else {
error = CRYPTO_QUEUED;
}
break;
}
}
KCF_PROV_REFRELE(new_pd);
return (error);
}
#define EMPTY_TASKQ(tq) ((tq)->tq_task.tqent_next == &(tq)->tq_task)
/*
* Routine called by both ioctl and k-api. The consumer should
* bundle the parameters into a kcf_req_params_t structure. A bunch
* of macros are available in ops_impl.h for this bundling. They are:
*
* KCF_WRAP_DIGEST_OPS_PARAMS()
* KCF_WRAP_MAC_OPS_PARAMS()
* KCF_WRAP_ENCRYPT_OPS_PARAMS()
* KCF_WRAP_DECRYPT_OPS_PARAMS() ... etc.
*
* It is the caller's responsibility to free the ctx argument when
* appropriate. See the KCF_CONTEXT_COND_RELEASE macro for details.
*/
int
kcf_submit_request(kcf_provider_desc_t *pd, crypto_ctx_t *ctx,
crypto_call_req_t *crq, kcf_req_params_t *params, boolean_t cont)
{
int error;
kcf_areq_node_t *areq;
kcf_sreq_node_t *sreq;
kcf_context_t *kcf_ctx;
taskq_t *taskq;
kcf_prov_cpu_t *mp;
kcf_ctx = ctx ? (kcf_context_t *)ctx->cc_framework_private : NULL;
/* Synchronous cases */
if (crq == NULL) {
switch (pd->pd_prov_type) {
case CRYPTO_SW_PROVIDER:
error = common_submit_request(pd, ctx, params,
KCF_RHNDL(KM_SLEEP));
break;
case CRYPTO_HW_PROVIDER:
taskq = pd->pd_taskq;
/*
* Special case for CRYPTO_SYNCHRONOUS providers that
* never return a CRYPTO_QUEUED error. We skip any
* request allocation and call the SPI directly.
*/
if ((pd->pd_flags & CRYPTO_SYNCHRONOUS) &&
EMPTY_TASKQ(taskq)) {
mp = &(pd->pd_percpu_bins[CPU_SEQID]);
KCF_PROV_JOB_HOLD(mp);
if (pd->pd_state == KCF_PROV_READY) {
error = common_submit_request(pd, ctx,
params, KCF_RHNDL(KM_SLEEP));
KCF_PROV_JOB_RELE(mp);
ASSERT(error != CRYPTO_QUEUED);
break;
}
KCF_PROV_JOB_RELE(mp);
}
sreq = kmem_cache_alloc(kcf_sreq_cache, KM_SLEEP);
sreq->sn_state = REQ_ALLOCATED;
sreq->sn_rv = CRYPTO_FAILED;
sreq->sn_params = params;
/*
* Note that we do not need to hold the context
* for synchronous case as the context will never
* become invalid underneath us. We do not need to hold
* the provider here either as the caller has a hold.
*/
sreq->sn_context = kcf_ctx;
ASSERT(KCF_PROV_REFHELD(pd));
sreq->sn_provider = pd;
ASSERT(taskq != NULL);
/*
* Call the SPI directly if the taskq is empty and the
* provider is not busy, else dispatch to the taskq.
* Calling directly is fine as this is the synchronous
* case. This is unlike the asynchronous case where we
* must always dispatch to the taskq.
*/
if (EMPTY_TASKQ(taskq) &&
pd->pd_state == KCF_PROV_READY) {
process_req_hwp(sreq);
} else {
/*
* We can not tell from taskq_dispatch() return
* value if we exceeded maxalloc. Hence the
* check here. Since we are allowed to wait in
* the synchronous case, we wait for the taskq
* to become empty.
*/
if (taskq->tq_nalloc >= crypto_taskq_maxalloc) {
taskq_wait(taskq);
}
(void) taskq_dispatch(taskq, process_req_hwp,
sreq, TQ_SLEEP);
}
/*
* Wait for the notification to arrive,
* if the operation is not done yet.
* Bug# 4722589 will make the wait a cv_wait_sig().
*/
mutex_enter(&sreq->sn_lock);
while (sreq->sn_state < REQ_DONE)
cv_wait(&sreq->sn_cv, &sreq->sn_lock);
mutex_exit(&sreq->sn_lock);
error = sreq->sn_rv;
kmem_cache_free(kcf_sreq_cache, sreq);
break;
default:
error = CRYPTO_FAILED;
break;
}
} else { /* Asynchronous cases */
switch (pd->pd_prov_type) {
case CRYPTO_SW_PROVIDER:
if (!(crq->cr_flag & CRYPTO_ALWAYS_QUEUE)) {
/*
* This case has less overhead since there is
* no switching of context.
*/
error = common_submit_request(pd, ctx, params,
KCF_RHNDL(KM_NOSLEEP));
} else {
/*
* CRYPTO_ALWAYS_QUEUE is set. We need to
* queue the request and return.
*/
areq = kcf_areqnode_alloc(pd, kcf_ctx, crq,
params, cont);
if (areq == NULL)
error = CRYPTO_HOST_MEMORY;
else {
if (!(crq->cr_flag
& CRYPTO_SKIP_REQID)) {
/*
* Set the request handle. This handle
* is used for any crypto_cancel_req(9f)
* calls from the consumer. We have to
* do this before dispatching the
* request.
*/
crq->cr_reqid = kcf_reqid_insert(areq);
}
error = kcf_disp_sw_request(areq);
/*
* There is an error processing this
* request. Remove the handle and
* release the request structure.
*/
if (error != CRYPTO_QUEUED) {
if (!(crq->cr_flag
& CRYPTO_SKIP_REQID))
kcf_reqid_delete(areq);
KCF_AREQ_REFRELE(areq);
}
}
}
break;
case CRYPTO_HW_PROVIDER:
/*
* We need to queue the request and return.
*/
areq = kcf_areqnode_alloc(pd, kcf_ctx, crq, params,
cont);
if (areq == NULL) {
error = CRYPTO_HOST_MEMORY;
goto done;
}
taskq = pd->pd_taskq;
ASSERT(taskq != NULL);
/*
* We can not tell from taskq_dispatch() return
* value if we exceeded maxalloc. Hence the check
* here.
*/
if (taskq->tq_nalloc >= crypto_taskq_maxalloc) {
error = CRYPTO_BUSY;
KCF_AREQ_REFRELE(areq);
goto done;
}
if (!(crq->cr_flag & CRYPTO_SKIP_REQID)) {
/*
* Set the request handle. This handle is used
* for any crypto_cancel_req(9f) calls from the
* consumer. We have to do this before dispatching
* the request.
*/
crq->cr_reqid = kcf_reqid_insert(areq);
}
if (taskq_dispatch(taskq,
process_req_hwp, areq, TQ_NOSLEEP) ==
(taskqid_t)0) {
error = CRYPTO_HOST_MEMORY;
if (!(crq->cr_flag & CRYPTO_SKIP_REQID))
kcf_reqid_delete(areq);
KCF_AREQ_REFRELE(areq);
} else {
error = CRYPTO_QUEUED;
}
break;
default:
error = CRYPTO_FAILED;
break;
}
}
done:
return (error);
}
/*
* We're done with this framework context, so free it. Note that freeing
* framework context (kcf_context) frees the global context (crypto_ctx).
*
* The provider is responsible for freeing provider private context after a
* final or single operation and resetting the cc_provider_private field
* to NULL. It should do this before it notifies the framework of the
* completion. We still need to call KCF_PROV_FREE_CONTEXT to handle cases
* like crypto_cancel_ctx(9f).
*/
void
kcf_free_context(kcf_context_t *kcf_ctx)
{
kcf_provider_desc_t *pd = kcf_ctx->kc_prov_desc;
crypto_ctx_t *gctx = &kcf_ctx->kc_glbl_ctx;
kcf_context_t *kcf_secondctx = kcf_ctx->kc_secondctx;
kcf_prov_cpu_t *mp;
/* Release the second context, if any */
if (kcf_secondctx != NULL)
KCF_CONTEXT_REFRELE(kcf_secondctx);
if (gctx->cc_provider_private != NULL) {
mutex_enter(&pd->pd_lock);
if (!KCF_IS_PROV_REMOVED(pd)) {
/*
* Increment the provider's internal refcnt so it
* doesn't unregister from the framework while
* we're calling the entry point.
*/
mp = &(pd->pd_percpu_bins[CPU_SEQID]);
KCF_PROV_JOB_HOLD(mp);
mutex_exit(&pd->pd_lock);
(void) KCF_PROV_FREE_CONTEXT(pd, gctx);
KCF_PROV_JOB_RELE(mp);
} else {
mutex_exit(&pd->pd_lock);
}
}
/* kcf_ctx->kc_prov_desc has a hold on pd */
KCF_PROV_REFRELE(kcf_ctx->kc_prov_desc);
/* check if this context is shared with a software provider */
if ((gctx->cc_flags & CRYPTO_INIT_OPSTATE) &&
kcf_ctx->kc_sw_prov_desc != NULL) {
KCF_PROV_REFRELE(kcf_ctx->kc_sw_prov_desc);
}
kmem_cache_free(kcf_context_cache, kcf_ctx);
}
/*
* Free the request after releasing all the holds.
*/
void
kcf_free_req(kcf_areq_node_t *areq)
{
KCF_PROV_REFRELE(areq->an_provider);
if (areq->an_context != NULL)
KCF_CONTEXT_REFRELE(areq->an_context);
if (areq->an_tried_plist != NULL)
kcf_free_triedlist(areq->an_tried_plist);
kmem_cache_free(kcf_areq_cache, areq);
}
/*
* Utility routine to remove a request from the chain of requests
* hanging off a context.
*/
void
kcf_removereq_in_ctxchain(kcf_context_t *ictx, kcf_areq_node_t *areq)
{
kcf_areq_node_t *cur, *prev;
/*
* Get context lock, search for areq in the chain and remove it.
*/
ASSERT(ictx != NULL);
mutex_enter(&ictx->kc_in_use_lock);
prev = cur = ictx->kc_req_chain_first;
while (cur != NULL) {
if (cur == areq) {
if (prev == cur) {
if ((ictx->kc_req_chain_first =
cur->an_ctxchain_next) == NULL)
ictx->kc_req_chain_last = NULL;
} else {
if (cur == ictx->kc_req_chain_last)
ictx->kc_req_chain_last = prev;
prev->an_ctxchain_next = cur->an_ctxchain_next;
}
break;
}
prev = cur;
cur = cur->an_ctxchain_next;
}
mutex_exit(&ictx->kc_in_use_lock);
}
/*
* Remove the specified node from the global software queue.
*
* The caller must hold the queue lock and request lock (an_lock).
*/
void
kcf_remove_node(kcf_areq_node_t *node)
{
kcf_areq_node_t *nextp = node->an_next;
kcf_areq_node_t *prevp = node->an_prev;
ASSERT(mutex_owned(&gswq->gs_lock));
if (nextp != NULL)
nextp->an_prev = prevp;
else
gswq->gs_last = prevp;
if (prevp != NULL)
prevp->an_next = nextp;
else
gswq->gs_first = nextp;
ASSERT(mutex_owned(&node->an_lock));
node->an_state = REQ_CANCELED;
}
/*
* Remove and return the first node in the global software queue.
*
* The caller must hold the queue lock.
*/
static kcf_areq_node_t *
kcf_dequeue(void)
{
kcf_areq_node_t *tnode = NULL;
ASSERT(mutex_owned(&gswq->gs_lock));
if ((tnode = gswq->gs_first) == NULL) {
return (NULL);
} else {
ASSERT(gswq->gs_first->an_prev == NULL);
gswq->gs_first = tnode->an_next;
if (tnode->an_next == NULL)
gswq->gs_last = NULL;
else
tnode->an_next->an_prev = NULL;
}
gswq->gs_njobs--;
return (tnode);
}
/*
* Add the request node to the end of the global software queue.
*
* The caller should not hold the queue lock. Returns 0 if the
* request is successfully queued. Returns CRYPTO_BUSY if the limit
* on the number of jobs is exceeded.
*/
static int
kcf_enqueue(kcf_areq_node_t *node)
{
kcf_areq_node_t *tnode;
mutex_enter(&gswq->gs_lock);
if (gswq->gs_njobs >= gswq->gs_maxjobs) {
mutex_exit(&gswq->gs_lock);
return (CRYPTO_BUSY);
}
if (gswq->gs_last == NULL) {
gswq->gs_first = gswq->gs_last = node;
} else {
ASSERT(gswq->gs_last->an_next == NULL);
tnode = gswq->gs_last;
tnode->an_next = node;
gswq->gs_last = node;
node->an_prev = tnode;
}
gswq->gs_njobs++;
/* an_lock not needed here as we hold gs_lock */
node->an_state = REQ_WAITING;
mutex_exit(&gswq->gs_lock);
return (0);
}
/*
* Function run by a thread from kcfpool to work on global software queue.
*/
void
kcfpool_svc(void *arg)
{
_NOTE(ARGUNUSED(arg));
int error = 0;
clock_t rv;
clock_t timeout_val = drv_usectohz(kcf_idlethr_timeout);
kcf_areq_node_t *req;
kcf_context_t *ictx;
kcf_provider_desc_t *pd;
KCF_ATOMIC_INCR(kcfpool->kp_threads);
for (;;) {
mutex_enter(&gswq->gs_lock);
while ((req = kcf_dequeue()) == NULL) {
KCF_ATOMIC_INCR(kcfpool->kp_idlethreads);
rv = cv_reltimedwait(&gswq->gs_cv,
&gswq->gs_lock, timeout_val, TR_CLOCK_TICK);
KCF_ATOMIC_DECR(kcfpool->kp_idlethreads);
switch (rv) {
case 0:
case -1:
/*
* Woke up with no work to do. Check
* if this thread should exit. We keep
* at least kcf_minthreads.
*/
if (kcfpool->kp_threads > kcf_minthreads) {
KCF_ATOMIC_DECR(kcfpool->kp_threads);
mutex_exit(&gswq->gs_lock);
/*
* lwp_exit() assumes it is called
* with the proc lock held. But the
* first thing it does is drop it.
* This ensures that lwp does not
* exit before lwp_create is done
* with it.
*/
mutex_enter(&curproc->p_lock);
lwp_exit(); /* does not return */
}
/* Resume the wait for work. */
break;
default:
/*
* We are signaled to work on the queue.
*/
break;
}
}
mutex_exit(&gswq->gs_lock);
ictx = req->an_context;
if (ictx == NULL) { /* Context-less operation */
pd = req->an_provider;
error = common_submit_request(pd, NULL,
&req->an_params, req);
kcf_aop_done(req, error);
continue;
}
/*
* We check if we can work on the request now.
* Solaris does not guarantee any order on how the threads
* are scheduled or how the waiters on a mutex are chosen.
* So, we need to maintain our own order.
*
* is_my_turn is set to B_TRUE initially for a request when
* it is enqueued and there are no other requests
* for that context. Note that a thread sleeping on
* an_turn_cv is not counted as an idle thread. This is
* because we define an idle thread as one that sleeps on the
* global queue waiting for new requests.
*/
mutex_enter(&req->an_lock);
while (req->an_is_my_turn == B_FALSE) {
KCF_ATOMIC_INCR(kcfpool->kp_blockedthreads);
cv_wait(&req->an_turn_cv, &req->an_lock);
KCF_ATOMIC_DECR(kcfpool->kp_blockedthreads);
}
req->an_state = REQ_INPROGRESS;
mutex_exit(&req->an_lock);
pd = ictx->kc_prov_desc;
ASSERT(pd == req->an_provider);
error = common_submit_request(pd, &ictx->kc_glbl_ctx,
&req->an_params, req);
kcf_aop_done(req, error);
}
}
/*
* kmem_cache_alloc constructor for sync request structure.
*/
/* ARGSUSED */
static int
kcf_sreq_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)buf;
sreq->sn_type = CRYPTO_SYNCH;
cv_init(&sreq->sn_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&sreq->sn_lock, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
/* ARGSUSED */
static void
kcf_sreq_cache_destructor(void *buf, void *cdrarg)
{
kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)buf;
mutex_destroy(&sreq->sn_lock);
cv_destroy(&sreq->sn_cv);
}
/*
* kmem_cache_alloc constructor for async request structure.
*/
/* ARGSUSED */
static int
kcf_areq_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
kcf_areq_node_t *areq = (kcf_areq_node_t *)buf;
areq->an_type = CRYPTO_ASYNCH;
areq->an_refcnt = 0;
mutex_init(&areq->an_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&areq->an_done, NULL, CV_DEFAULT, NULL);
cv_init(&areq->an_turn_cv, NULL, CV_DEFAULT, NULL);
return (0);
}
/* ARGSUSED */
static void
kcf_areq_cache_destructor(void *buf, void *cdrarg)
{
kcf_areq_node_t *areq = (kcf_areq_node_t *)buf;
ASSERT(areq->an_refcnt == 0);
mutex_destroy(&areq->an_lock);
cv_destroy(&areq->an_done);
cv_destroy(&areq->an_turn_cv);
}
/*
* kmem_cache_alloc constructor for kcf_context structure.
*/
/* ARGSUSED */
static int
kcf_context_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
kcf_context_t *kctx = (kcf_context_t *)buf;
kctx->kc_refcnt = 0;
mutex_init(&kctx->kc_in_use_lock, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
/* ARGSUSED */
static void
kcf_context_cache_destructor(void *buf, void *cdrarg)
{
kcf_context_t *kctx = (kcf_context_t *)buf;
ASSERT(kctx->kc_refcnt == 0);
mutex_destroy(&kctx->kc_in_use_lock);
}
/*
* Creates and initializes all the structures needed by the framework.
*/
void
kcf_sched_init(void)
{
int i;
kcf_reqid_table_t *rt;
/*
* Create all the kmem caches needed by the framework. We set the
* align argument to 64, to get a slab aligned to 64-byte as well as
* have the objects (cache_chunksize) to be a 64-byte multiple.
* This helps to avoid false sharing as this is the size of the
* CPU cache line.
*/
kcf_sreq_cache = kmem_cache_create("kcf_sreq_cache",
sizeof (struct kcf_sreq_node), 64, kcf_sreq_cache_constructor,
kcf_sreq_cache_destructor, NULL, NULL, NULL, 0);
kcf_areq_cache = kmem_cache_create("kcf_areq_cache",
sizeof (struct kcf_areq_node), 64, kcf_areq_cache_constructor,
kcf_areq_cache_destructor, NULL, NULL, NULL, 0);
kcf_context_cache = kmem_cache_create("kcf_context_cache",
sizeof (struct kcf_context), 64, kcf_context_cache_constructor,
kcf_context_cache_destructor, NULL, NULL, NULL, 0);
gswq = kmem_alloc(sizeof (kcf_global_swq_t), KM_SLEEP);
mutex_init(&gswq->gs_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&gswq->gs_cv, NULL, CV_DEFAULT, NULL);
gswq->gs_njobs = 0;
gswq->gs_maxjobs = kcf_maxthreads * crypto_taskq_maxalloc;
gswq->gs_first = gswq->gs_last = NULL;
/* Initialize the global reqid table */
for (i = 0; i < REQID_TABLES; i++) {
rt = kmem_zalloc(sizeof (kcf_reqid_table_t), KM_SLEEP);
kcf_reqid_table[i] = rt;
mutex_init(&rt->rt_lock, NULL, MUTEX_DEFAULT, NULL);
rt->rt_curid = i;
}
/* Allocate and initialize the thread pool */
kcfpool_alloc();
/* Initialize the event notification list variables */
mutex_init(&ntfy_list_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&ntfy_list_cv, NULL, CV_DEFAULT, NULL);
/* Initialize the crypto_bufcall list variables */
mutex_init(&cbuf_list_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&cbuf_list_cv, NULL, CV_DEFAULT, NULL);
/* Create the kcf kstat */
kcf_misc_kstat = kstat_create("kcf", 0, "framework_stats", "crypto",
KSTAT_TYPE_NAMED, sizeof (kcf_stats_t) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (kcf_misc_kstat != NULL) {
kcf_misc_kstat->ks_data = &kcf_ksdata;
kcf_misc_kstat->ks_update = kcf_misc_kstat_update;
kstat_install(kcf_misc_kstat);
}
}
/*
* This routine should only be called by drv/cryptoadm.
*
* kcf_sched_running flag isn't protected by a lock. But, we are safe because
* the first thread ("cryptoadm refresh") calling this routine during
* boot time completes before any other thread that can call this routine.
*/
void
kcf_sched_start(void)
{
if (kcf_sched_running)
return;
/* Start the background processing thread. */
(void) thread_create(NULL, 0, &crypto_bufcall_service, 0, 0, &p0,
TS_RUN, minclsyspri);
kcf_sched_running = B_TRUE;
}
/*
* Signal the waiting sync client.
*/
void
kcf_sop_done(kcf_sreq_node_t *sreq, int error)
{
mutex_enter(&sreq->sn_lock);
sreq->sn_state = REQ_DONE;
sreq->sn_rv = error;
cv_signal(&sreq->sn_cv);
mutex_exit(&sreq->sn_lock);
}
/*
* Callback the async client with the operation status.
* We free the async request node and possibly the context.
* We also handle any chain of requests hanging off of
* the context.
*/
void
kcf_aop_done(kcf_areq_node_t *areq, int error)
{
kcf_op_type_t optype;
boolean_t skip_notify = B_FALSE;
kcf_context_t *ictx;
kcf_areq_node_t *nextreq;
/*
* Handle recoverable errors. This has to be done first
* before doing any thing else in this routine so that
* we do not change the state of the request.
*/
if (error != CRYPTO_SUCCESS && IS_RECOVERABLE(error)) {
/*
* We try another provider, if one is available. Else
* we continue with the failure notification to the
* client.
*/
if (kcf_resubmit_request(areq) == CRYPTO_QUEUED)
return;
}
mutex_enter(&areq->an_lock);
areq->an_state = REQ_DONE;
mutex_exit(&areq->an_lock);
optype = (&areq->an_params)->rp_optype;
if ((ictx = areq->an_context) != NULL) {
/*
* A request after it is removed from the request
* queue, still stays on a chain of requests hanging
* of its context structure. It needs to be removed
* from this chain at this point.
*/
mutex_enter(&ictx->kc_in_use_lock);
nextreq = areq->an_ctxchain_next;
if (nextreq != NULL) {
mutex_enter(&nextreq->an_lock);
nextreq->an_is_my_turn = B_TRUE;
cv_signal(&nextreq->an_turn_cv);
mutex_exit(&nextreq->an_lock);
}
ictx->kc_req_chain_first = nextreq;
if (nextreq == NULL)
ictx->kc_req_chain_last = NULL;
mutex_exit(&ictx->kc_in_use_lock);
if (IS_SINGLE_OP(optype) || IS_FINAL_OP(optype)) {
ASSERT(nextreq == NULL);
KCF_CONTEXT_REFRELE(ictx);
} else if (error != CRYPTO_SUCCESS && IS_INIT_OP(optype)) {
/*
* NOTE - We do not release the context in case of update
* operations. We require the consumer to free it explicitly,
* in case it wants to abandon an update operation. This is done
* as there may be mechanisms in ECB mode that can continue
* even if an operation on a block fails.
*/
KCF_CONTEXT_REFRELE(ictx);
}
}
/* Deal with the internal continuation to this request first */
if (areq->an_isdual) {
kcf_dual_req_t *next_arg;
next_arg = (kcf_dual_req_t *)areq->an_reqarg.cr_callback_arg;
next_arg->kr_areq = areq;
KCF_AREQ_REFHOLD(areq);
areq->an_isdual = B_FALSE;
NOTIFY_CLIENT(areq, error);
return;
}
/*
* If CRYPTO_NOTIFY_OPDONE flag is set, we should notify
* always. If this flag is clear, we skip the notification
* provided there are no errors. We check this flag for only
* init or update operations. It is ignored for single, final or
* atomic operations.
*/
skip_notify = (IS_UPDATE_OP(optype) || IS_INIT_OP(optype)) &&
(!(areq->an_reqarg.cr_flag & CRYPTO_NOTIFY_OPDONE)) &&
(error == CRYPTO_SUCCESS);
if (!skip_notify) {
NOTIFY_CLIENT(areq, error);
}
if (!(areq->an_reqarg.cr_flag & CRYPTO_SKIP_REQID))
kcf_reqid_delete(areq);
KCF_AREQ_REFRELE(areq);
}
/*
* kcfpool thread spawner. This runs as a process that never exits.
* Its a process so that the threads it owns can be manipulated via priocntl.
*/
static void
kcfpoold(void *arg)
{
callb_cpr_t cprinfo;
user_t *pu = PTOU(curproc);
int cnt;
clock_t timeout_val = drv_usectohz(kcf_idlethr_timeout);
_NOTE(ARGUNUSED(arg));
CALLB_CPR_INIT(&cprinfo, &kcfpool->kp_lock,
callb_generic_cpr, "kcfpool");
/* make our process "kcfpoold" */
(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), "kcfpoold");
(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
mutex_enter(&kcfpool->kp_lock);
/*
* Go to sleep, waiting for the signaled flag. Note that as
* we always do the same thing, and its always idempotent, we
* don't even need to have a real condition to check against.
*/
for (;;) {
int rv;
CALLB_CPR_SAFE_BEGIN(&cprinfo);
rv = cv_reltimedwait(&kcfpool->kp_cv,
&kcfpool->kp_lock, timeout_val, TR_CLOCK_TICK);
CALLB_CPR_SAFE_END(&cprinfo, &kcfpool->kp_lock);
switch (rv) {
case -1:
/* Timed out. Recalculate the min/max threads */
compute_min_max_threads();
break;
default:
/* Someone may be looking for a worker thread */
break;
}
/*
* We keep the number of running threads to be at
* kcf_minthreads to reduce gs_lock contention.
*/
cnt = kcf_minthreads -
(kcfpool->kp_threads - kcfpool->kp_blockedthreads);
if (cnt > 0) {
/*
* The following ensures the number of threads in pool
* does not exceed kcf_maxthreads.
*/
cnt = min(cnt, kcf_maxthreads - kcfpool->kp_threads);
}
for (int i = 0; i < cnt; i++) {
(void) lwp_kernel_create(curproc,
kcfpool_svc, NULL, TS_RUN, curthread->t_pri);
}
}
}
/*
* Allocate the thread pool and initialize all the fields.
*/
static void
kcfpool_alloc(void)
{
kcfpool = kmem_alloc(sizeof (kcf_pool_t), KM_SLEEP);
kcfpool->kp_threads = kcfpool->kp_idlethreads = 0;
kcfpool->kp_blockedthreads = 0;
mutex_init(&kcfpool->kp_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&kcfpool->kp_cv, NULL, CV_DEFAULT, NULL);
kcf_idlethr_timeout = KCF_DEFAULT_THRTIMEOUT;
/*
* Create the daemon thread.
*/
if (newproc(kcfpoold, NULL, syscid, minclsyspri,
NULL, 0) != 0) {
cmn_err(CE_PANIC, "unable to fork kcfpoold()");
}
}
/*
* This routine introduces a locking order for gswq->gs_lock followed
* by cpu_lock.
* This means that no consumer of the k-api should hold cpu_lock when calling
* k-api routines.
*/
static void
compute_min_max_threads(void)
{
mutex_enter(&gswq->gs_lock);
mutex_enter(&cpu_lock);
kcf_minthreads = curthread->t_cpupart->cp_ncpus;
mutex_exit(&cpu_lock);
kcf_maxthreads = kcf_thr_multiple * kcf_minthreads;
gswq->gs_maxjobs = kcf_maxthreads * crypto_taskq_maxalloc;
mutex_exit(&gswq->gs_lock);
}
/*
* Insert the async request in the hash table after assigning it
* an ID. Returns the ID.
*
* The ID is used by the caller to pass as an argument to a
* cancel_req() routine later.
*/
static crypto_req_id_t
kcf_reqid_insert(kcf_areq_node_t *areq)
{
int indx;
crypto_req_id_t id;
kcf_areq_node_t *headp;
kcf_reqid_table_t *rt =
kcf_reqid_table[CPU->cpu_seqid & REQID_TABLE_MASK];
mutex_enter(&rt->rt_lock);
rt->rt_curid = id =
(rt->rt_curid - REQID_COUNTER_LOW) | REQID_COUNTER_HIGH;
SET_REQID(areq, id);
indx = REQID_HASH(id);
headp = areq->an_idnext = rt->rt_idhash[indx];
areq->an_idprev = NULL;
if (headp != NULL)
headp->an_idprev = areq;
rt->rt_idhash[indx] = areq;
mutex_exit(&rt->rt_lock);
return (id);
}
/*
* Delete the async request from the hash table.
*/
static void
kcf_reqid_delete(kcf_areq_node_t *areq)
{
int indx;
kcf_areq_node_t *nextp, *prevp;
crypto_req_id_t id = GET_REQID(areq);
kcf_reqid_table_t *rt;
rt = kcf_reqid_table[id & REQID_TABLE_MASK];
indx = REQID_HASH(id);
mutex_enter(&rt->rt_lock);
nextp = areq->an_idnext;
prevp = areq->an_idprev;
if (nextp != NULL)
nextp->an_idprev = prevp;
if (prevp != NULL)
prevp->an_idnext = nextp;
else
rt->rt_idhash[indx] = nextp;
SET_REQID(areq, 0);
cv_broadcast(&areq->an_done);
mutex_exit(&rt->rt_lock);
}
/*
* Cancel a single asynchronous request.
*
* We guarantee that no problems will result from calling
* crypto_cancel_req() for a request which is either running, or
* has already completed. We remove the request from any queues
* if it is possible. We wait for request completion if the
* request is dispatched to a provider.
*
* Calling context:
* Can be called from user context only.
*
* NOTE: We acquire the following locks in this routine (in order):
* - rt_lock (kcf_reqid_table_t)
* - gswq->gs_lock
* - areq->an_lock
* - ictx->kc_in_use_lock (from kcf_removereq_in_ctxchain())
*
* This locking order MUST be maintained in code every where else.
*/
void
crypto_cancel_req(crypto_req_id_t id)
{
int indx;
kcf_areq_node_t *areq;
kcf_provider_desc_t *pd;
kcf_context_t *ictx;
kcf_reqid_table_t *rt;
rt = kcf_reqid_table[id & REQID_TABLE_MASK];
indx = REQID_HASH(id);
mutex_enter(&rt->rt_lock);
for (areq = rt->rt_idhash[indx]; areq; areq = areq->an_idnext) {
if (GET_REQID(areq) == id) {
/*
* We found the request. It is either still waiting
* in the framework queues or running at the provider.
*/
pd = areq->an_provider;
ASSERT(pd != NULL);
switch (pd->pd_prov_type) {
case CRYPTO_SW_PROVIDER:
mutex_enter(&gswq->gs_lock);
mutex_enter(&areq->an_lock);
/* This request can be safely canceled. */
if (areq->an_state <= REQ_WAITING) {
/* Remove from gswq, global software queue. */
kcf_remove_node(areq);
if ((ictx = areq->an_context) != NULL)
kcf_removereq_in_ctxchain(ictx, areq);
mutex_exit(&areq->an_lock);
mutex_exit(&gswq->gs_lock);
mutex_exit(&rt->rt_lock);
/* Remove areq from hash table and free it. */
kcf_reqid_delete(areq);
KCF_AREQ_REFRELE(areq);
return;
}
mutex_exit(&areq->an_lock);
mutex_exit(&gswq->gs_lock);
break;
case CRYPTO_HW_PROVIDER:
/*
* There is no interface to remove an entry
* once it is on the taskq. So, we do not do
* any thing for a hardware provider.
*/
break;
}
/*
* The request is running. Wait for the request completion
* to notify us.
*/
KCF_AREQ_REFHOLD(areq);
while (GET_REQID(areq) == id)
cv_wait(&areq->an_done, &rt->rt_lock);
KCF_AREQ_REFRELE(areq);
break;
}
}
mutex_exit(&rt->rt_lock);
}
/*
* Cancel all asynchronous requests associated with the
* passed in crypto context and free it.
*
* A client SHOULD NOT call this routine after calling a crypto_*_final
* routine. This routine is called only during intermediate operations.
* The client should not use the crypto context after this function returns
* since we destroy it.
*
* Calling context:
* Can be called from user context only.
*/
void
crypto_cancel_ctx(crypto_context_t ctx)
{
kcf_context_t *ictx;
kcf_areq_node_t *areq;
if (ctx == NULL)
return;
ictx = (kcf_context_t *)((crypto_ctx_t *)ctx)->cc_framework_private;
mutex_enter(&ictx->kc_in_use_lock);
/* Walk the chain and cancel each request */
while ((areq = ictx->kc_req_chain_first) != NULL) {
/*
* We have to drop the lock here as we may have
* to wait for request completion. We hold the
* request before dropping the lock though, so that it
* won't be freed underneath us.
*/
KCF_AREQ_REFHOLD(areq);
mutex_exit(&ictx->kc_in_use_lock);
crypto_cancel_req(GET_REQID(areq));
KCF_AREQ_REFRELE(areq);
mutex_enter(&ictx->kc_in_use_lock);
}
mutex_exit(&ictx->kc_in_use_lock);
KCF_CONTEXT_REFRELE(ictx);
}
/*
* Update kstats.
*/
static int
kcf_misc_kstat_update(kstat_t *ksp, int rw)
{
kcf_stats_t *ks_data;
if (rw == KSTAT_WRITE)
return (EACCES);
ks_data = ksp->ks_data;
ks_data->ks_thrs_in_pool.value.ui32 = kcfpool->kp_threads;
ks_data->ks_idle_thrs.value.ui32 = kcfpool->kp_idlethreads;
ks_data->ks_minthrs.value.ui32 = kcf_minthreads;
ks_data->ks_maxthrs.value.ui32 = kcf_maxthreads;
ks_data->ks_swq_njobs.value.ui32 = gswq->gs_njobs;
ks_data->ks_swq_maxjobs.value.ui32 = gswq->gs_maxjobs;
ks_data->ks_taskq_threads.value.ui32 = crypto_taskq_threads;
ks_data->ks_taskq_minalloc.value.ui32 = crypto_taskq_minalloc;
ks_data->ks_taskq_maxalloc.value.ui32 = crypto_taskq_maxalloc;
return (0);
}
/*
* Allocate and initiatize a kcf_dual_req, used for saving the arguments of
* a dual operation or an atomic operation that has to be internally
* simulated with multiple single steps.
* crq determines the memory allocation flags.
*/
kcf_dual_req_t *
kcf_alloc_req(crypto_call_req_t *crq)
{
kcf_dual_req_t *kcr;
kcr = kmem_alloc(sizeof (kcf_dual_req_t), KCF_KMFLAG(crq));
if (kcr == NULL)
return (NULL);
/* Copy the whole crypto_call_req struct, as it isn't persistent */
if (crq != NULL)
kcr->kr_callreq = *crq;
else
bzero(&(kcr->kr_callreq), sizeof (crypto_call_req_t));
kcr->kr_areq = NULL;
kcr->kr_saveoffset = 0;
kcr->kr_savelen = 0;
return (kcr);
}
/*
* Callback routine for the next part of a simulated dual part.
* Schedules the next step.
*
* This routine can be called from interrupt context.
*/
void
kcf_next_req(void *next_req_arg, int status)
{
kcf_dual_req_t *next_req = (kcf_dual_req_t *)next_req_arg;
kcf_req_params_t *params = &(next_req->kr_params);
kcf_areq_node_t *areq = next_req->kr_areq;
int error = status;
kcf_provider_desc_t *pd;
crypto_dual_data_t *ct;
/* Stop the processing if an error occurred at this step */
if (error != CRYPTO_SUCCESS) {
out:
areq->an_reqarg = next_req->kr_callreq;
KCF_AREQ_REFRELE(areq);
kmem_free(next_req, sizeof (kcf_dual_req_t));
areq->an_isdual = B_FALSE;
kcf_aop_done(areq, error);
return;
}
switch (params->rp_opgrp) {
case KCF_OG_MAC: {
/*
* The next req is submitted with the same reqid as the
* first part. The consumer only got back that reqid, and
* should still be able to cancel the operation during its
* second step.
*/
kcf_mac_ops_params_t *mops = &(params->rp_u.mac_params);
crypto_ctx_template_t mac_tmpl;
kcf_mech_entry_t *me;
ct = (crypto_dual_data_t *)mops->mo_data;
mac_tmpl = (crypto_ctx_template_t)mops->mo_templ;
/* No expected recoverable failures, so no retry list */
pd = kcf_get_mech_provider(mops->mo_framework_mechtype, NULL,
&me, &error, NULL, CRYPTO_FG_MAC_ATOMIC, ct->dd_len2);
if (pd == NULL) {
error = CRYPTO_MECH_NOT_SUPPORTED;
goto out;
}
/* Validate the MAC context template here */
if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) &&
(mac_tmpl != NULL)) {
kcf_ctx_template_t *ctx_mac_tmpl;
ctx_mac_tmpl = (kcf_ctx_template_t *)mac_tmpl;
if (ctx_mac_tmpl->ct_generation != me->me_gen_swprov) {
KCF_PROV_REFRELE(pd);
error = CRYPTO_OLD_CTX_TEMPLATE;
goto out;
}
mops->mo_templ = ctx_mac_tmpl->ct_prov_tmpl;
}
break;
}
case KCF_OG_DECRYPT: {
kcf_decrypt_ops_params_t *dcrops =
&(params->rp_u.decrypt_params);
ct = (crypto_dual_data_t *)dcrops->dop_ciphertext;
/* No expected recoverable failures, so no retry list */
pd = kcf_get_mech_provider(dcrops->dop_framework_mechtype,
NULL, NULL, &error, NULL, CRYPTO_FG_DECRYPT_ATOMIC,
ct->dd_len1);
if (pd == NULL) {
error = CRYPTO_MECH_NOT_SUPPORTED;
goto out;
}
break;
}
}
/* The second step uses len2 and offset2 of the dual_data */
next_req->kr_saveoffset = ct->dd_offset1;
next_req->kr_savelen = ct->dd_len1;
ct->dd_offset1 = ct->dd_offset2;
ct->dd_len1 = ct->dd_len2;
areq->an_reqarg.cr_flag = 0;
areq->an_reqarg.cr_callback_func = kcf_last_req;
areq->an_reqarg.cr_callback_arg = next_req;
areq->an_isdual = B_TRUE;
/*
* We would like to call kcf_submit_request() here. But,
* that is not possible as that routine allocates a new
* kcf_areq_node_t request structure, while we need to
* reuse the existing request structure.
*/
switch (pd->pd_prov_type) {
case CRYPTO_SW_PROVIDER:
error = common_submit_request(pd, NULL, params,
KCF_RHNDL(KM_NOSLEEP));
break;
case CRYPTO_HW_PROVIDER: {
kcf_provider_desc_t *old_pd;
taskq_t *taskq = pd->pd_taskq;
/*
* Set the params for the second step in the
* dual-ops.
*/
areq->an_params = *params;
old_pd = areq->an_provider;
KCF_PROV_REFRELE(old_pd);
KCF_PROV_REFHOLD(pd);
areq->an_provider = pd;
/*
* Note that we have to do a taskq_dispatch()
* here as we may be in interrupt context.
*/
if (taskq_dispatch(taskq, process_req_hwp, areq,
TQ_NOSLEEP) == (taskqid_t)0) {
error = CRYPTO_HOST_MEMORY;
} else {
error = CRYPTO_QUEUED;
}
break;
}
}
/*
* We have to release the holds on the request and the provider
* in all cases.
*/
KCF_AREQ_REFRELE(areq);
KCF_PROV_REFRELE(pd);
if (error != CRYPTO_QUEUED) {
/* restore, clean up, and invoke the client's callback */
ct->dd_offset1 = next_req->kr_saveoffset;
ct->dd_len1 = next_req->kr_savelen;
areq->an_reqarg = next_req->kr_callreq;
kmem_free(next_req, sizeof (kcf_dual_req_t));
areq->an_isdual = B_FALSE;
kcf_aop_done(areq, error);
}
}
/*
* Last part of an emulated dual operation.
* Clean up and restore ...
*/
void
kcf_last_req(void *last_req_arg, int status)
{
kcf_dual_req_t *last_req = (kcf_dual_req_t *)last_req_arg;
kcf_req_params_t *params = &(last_req->kr_params);
kcf_areq_node_t *areq = last_req->kr_areq;
crypto_dual_data_t *ct;
switch (params->rp_opgrp) {
case KCF_OG_MAC: {
kcf_mac_ops_params_t *mops = &(params->rp_u.mac_params);
ct = (crypto_dual_data_t *)mops->mo_data;
break;
}
case KCF_OG_DECRYPT: {
kcf_decrypt_ops_params_t *dcrops =
&(params->rp_u.decrypt_params);
ct = (crypto_dual_data_t *)dcrops->dop_ciphertext;
break;
}
}
ct->dd_offset1 = last_req->kr_saveoffset;
ct->dd_len1 = last_req->kr_savelen;
/* The submitter used kcf_last_req as its callback */
if (areq == NULL) {
crypto_call_req_t *cr = &last_req->kr_callreq;
(*(cr->cr_callback_func))(cr->cr_callback_arg, status);
kmem_free(last_req, sizeof (kcf_dual_req_t));
return;
}
areq->an_reqarg = last_req->kr_callreq;
KCF_AREQ_REFRELE(areq);
kmem_free(last_req, sizeof (kcf_dual_req_t));
areq->an_isdual = B_FALSE;
kcf_aop_done(areq, status);
}