/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*LINTLIBRARY*/
/*
* I18N message number ranges
* This file: 9000 - 9499
* Shared common messages: 1 - 1999
*/
/*
* This module is part of the photon library
*/
/* Includes */
#include <stdlib.h>
#include <stdio.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <assert.h>
#include <sys/scsi/scsi.h>
#include <dirent.h> /* for DIR */
#include <sys/vtoc.h>
#include <sys/dkio.h>
#include <nl_types.h>
#include <strings.h>
#include <sys/ddi.h> /* for max */
#include <l_common.h>
#include <stgcom.h>
#include <l_error.h>
#include <rom.h>
#include <exec.h>
#include <a_state.h>
#include <a5k.h>
/* Defines */
#define PLNDEF "SUNW,pln" /* check if box name starts with 'c' */
#define DOWNLOAD_RETRIES 60*5 /* 5 minutes */
#define IBFIRMWARE_FILE "/usr/lib/locale/C/LC_MESSAGES/ibfirmware"
/* Global variables */
extern uchar_t g_switch_to_alpa[];
extern uchar_t g_sf_alpa_to_switch[];
/* Forward declarations */
static int pwr_up_down(char *, L_state *, int, int, int, int);
static int load_flds_if_enc_disk(char *, struct path_struct **);
static int copy_config_page(struct l_state_struct *, uchar_t *);
static void copy_page_7(struct l_state_struct *, uchar_t *);
static int l_get_node_status(char *, struct l_disk_state_struct *,
int *, WWN_list *, int);
static int check_file(int, int, uchar_t **, int);
static int check_dpm_file(int);
static int ib_download_code_cmd(int, int, int, uchar_t *, int, int);
static int dak_download_code_cmd(int, uchar_t *, int);
static void free_mp_dev_map(struct gfc_map_mp **);
static int get_mp_dev_map(char *, struct gfc_map_mp **, int);
/*
* l_get_mode_pg() - Read all mode pages.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*
* INPUTS:
* path pointer to device path
* pg_buf ptr to mode pages
*
*/
/*ARGSUSED*/
int
l_get_mode_pg(char *path, uchar_t **pg_buf, int verbose)
{
Mode_header_10 *mode_header_ptr;
int status, size, fd;
P_DPRINTF(" l_get_mode_pg: Reading Mode Sense pages.\n");
/* do not do mode sense if this is a tape device */
/* mode sense will rewind the tape */
if (strstr(path, SLSH_DRV_NAME_ST)) {
return (-1);
}
/* open controller */
if ((fd = g_object_open(path, O_NDELAY | O_RDWR)) == -1)
return (L_OPEN_PATH_FAIL);
/*
* Read the first part of the page to get the page size
*/
size = 20;
if ((*pg_buf = (uchar_t *)g_zalloc(size)) == NULL) {
(void) close(fd);
return (L_MALLOC_FAILED);
}
/* read page */
if (status = g_scsi_mode_sense_cmd(fd, *pg_buf, size,
0, MODEPAGE_ALLPAGES)) {
(void) close(fd);
(void) g_destroy_data((char *)*pg_buf);
return (status);
}
/* Now get the size for all pages */
mode_header_ptr = (struct mode_header_10_struct *)(void *)*pg_buf;
size = mode_header_ptr->length + sizeof (mode_header_ptr->length);
(void) g_destroy_data((char *)*pg_buf);
if ((*pg_buf = (uchar_t *)g_zalloc(size)) == NULL) {
(void) close(fd);
return (L_MALLOC_FAILED);
}
/* read all pages */
if (status = g_scsi_mode_sense_cmd(fd, *pg_buf, size,
0, MODEPAGE_ALLPAGES)) {
(void) close(fd);
(void) g_destroy_data((char *)*pg_buf);
return (status);
}
(void) close(fd);
return (0);
}
/*
* Format QLA21xx status
*
* INPUTS: message buffer
* Count
* status
*
* OUTPUT: Message of this format in message buffer
* "status type: 0xstatus count"
*/
int
l_format_ifp_status_msg(char *status_msg_buf, int count, int status)
{
if (status_msg_buf == NULL) {
return (0);
}
switch (status) {
case IFP_CMD_CMPLT:
(void) sprintf(status_msg_buf,
MSGSTR(9000, "O.K. 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_INCOMPLETE:
(void) sprintf(status_msg_buf,
MSGSTR(9001, "Cmd incomplete 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_DMA_DERR:
(void) sprintf(status_msg_buf,
MSGSTR(9002, "DMA direction error 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_TRAN_ERR:
(void) sprintf(status_msg_buf,
MSGSTR(9003, "Unspecified transport error 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_RESET:
(void) sprintf(status_msg_buf,
MSGSTR(9004, "Reset aborted transport 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_ABORTED:
(void) sprintf(status_msg_buf,
MSGSTR(9005, "Cmd aborted 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_TIMEOUT:
(void) sprintf(status_msg_buf,
MSGSTR(9006, "Cmd Timeout 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_DATA_OVR:
(void) sprintf(status_msg_buf,
MSGSTR(9007, "Data Overrun 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_ABORT_REJECTED:
(void) sprintf(status_msg_buf,
MSGSTR(9008, "Target rejected abort msg 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_RESET_REJECTED:
(void) sprintf(status_msg_buf,
MSGSTR(9009, "Target rejected reset msg 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_DATA_UNDER:
(void) sprintf(status_msg_buf,
MSGSTR(9010, "Data underrun 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_QUEUE_FULL:
(void) sprintf(status_msg_buf,
MSGSTR(9011, "Queue full SCSI status 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_PORT_UNAVAIL:
(void) sprintf(status_msg_buf,
MSGSTR(9012, "Port unavailable 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_PORT_LOGGED_OUT:
(void) sprintf(status_msg_buf,
MSGSTR(9013, "Port loged out 0x%-2x"
" %d"), status, count);
break;
case IFP_CMD_PORT_CONFIG_CHANGED:
/* Not enough packets for given request */
(void) sprintf(status_msg_buf,
MSGSTR(9014, "Port name changed 0x%-2x"
" %d"), status, count);
break;
default:
(void) sprintf(status_msg_buf,
"%s 0x%-2x"
" %d", MSGSTR(4, "Unknown status"),
status, count);
} /* End of switch() */
return (0);
}
/*
* Format Fibre Channel status
*
* INPUTS: message buffer
* Count
* status
*
* OUTPUT: Message of this format in message buffer
* "status type: 0xstatus count"
*/
int
l_format_fc_status_msg(char *status_msg_buf, int count, int status)
{
if (status_msg_buf == NULL) {
return (0);
}
switch (status) {
case FCAL_STATUS_OK:
(void) sprintf(status_msg_buf,
MSGSTR(9015, "O.K. 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_P_RJT:
(void) sprintf(status_msg_buf,
MSGSTR(9016, "P_RJT (Frame Rejected) 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_F_RJT:
(void) sprintf(status_msg_buf,
MSGSTR(9017, "F_RJT (Frame Rejected) 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_P_BSY:
(void) sprintf(status_msg_buf,
MSGSTR(9018, "P_BSY (Port Busy) 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_F_BSY:
(void) sprintf(status_msg_buf,
MSGSTR(9019, "F_BSY (Port Busy) 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_OLDPORT_ONLINE:
/* Should not happen. */
(void) sprintf(status_msg_buf,
MSGSTR(9020, "Old port Online 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_ERR_OFFLINE:
(void) sprintf(status_msg_buf,
MSGSTR(9021, "Link Offline 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_TIMEOUT:
/* Should not happen. */
(void) sprintf(status_msg_buf,
MSGSTR(9022, "Sequence Timeout 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_ERR_OVERRUN:
(void) sprintf(status_msg_buf,
MSGSTR(9023, "Sequence Payload Overrun 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_LOOP_ONLINE:
(void) sprintf(status_msg_buf,
MSGSTR(9060, "Loop Online 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_OLD_PORT:
(void) sprintf(status_msg_buf,
MSGSTR(9061, "Old port 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_AL_PORT:
(void) sprintf(status_msg_buf,
MSGSTR(9062, "AL port 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_UNKNOWN_CQ_TYPE:
(void) sprintf(status_msg_buf,
MSGSTR(9024, "Unknown request type 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_BAD_SEG_CNT:
(void) sprintf(status_msg_buf,
MSGSTR(9025, "Bad segment count 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_MAX_XCHG_EXCEEDED:
(void) sprintf(status_msg_buf,
MSGSTR(9026, "Maximum exchanges exceeded 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_BAD_XID:
(void) sprintf(status_msg_buf,
MSGSTR(9027, "Bad exchange identifier 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_XCHG_BUSY:
(void) sprintf(status_msg_buf,
MSGSTR(9028, "Duplicate exchange request 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_BAD_POOL_ID:
(void) sprintf(status_msg_buf,
MSGSTR(9029, "Bad memory pool ID 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_INSUFFICIENT_CQES:
/* Not enough packets for given request */
(void) sprintf(status_msg_buf,
MSGSTR(9030, "Invalid # of segments for req 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_ALLOC_FAIL:
(void) sprintf(status_msg_buf,
MSGSTR(9031, "Resource allocation failure 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_BAD_SID:
(void) sprintf(status_msg_buf,
MSGSTR(9032, "Bad Source Identifier(S_ID) 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_NO_SEQ_INIT:
(void) sprintf(status_msg_buf,
MSGSTR(9033, "No sequence initiative 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_BAD_DID:
(void) sprintf(status_msg_buf,
MSGSTR(9034, "Bad Destination ID(D_ID) 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_ABORTED:
(void) sprintf(status_msg_buf,
MSGSTR(9035, "Received BA_ACC from abort 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_ABORT_FAILED:
(void) sprintf(status_msg_buf,
MSGSTR(9036, "Received BA_RJT from abort 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_DIAG_BUSY:
(void) sprintf(status_msg_buf,
MSGSTR(9037, "Diagnostics currently busy 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_DIAG_INVALID:
(void) sprintf(status_msg_buf,
MSGSTR(9038, "Diagnostics illegal request 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_INCOMPLETE_DMA_ERR:
(void) sprintf(status_msg_buf,
MSGSTR(9039, "SBus DMA did not complete 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_CRC_ERR:
(void) sprintf(status_msg_buf,
MSGSTR(9040, "CRC error detected 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_OPEN_FAIL:
(void) sprintf(status_msg_buf,
MSGSTR(9063, "Open failure 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_ERROR:
(void) sprintf(status_msg_buf,
MSGSTR(9041, "Invalid status error 0x%-2x"
" %d"), status, count);
break;
case FCAL_STATUS_ONLINE_TIMEOUT:
(void) sprintf(status_msg_buf,
MSGSTR(9042, "Timed out before ONLINE 0x%-2x"
" %d"), status, count);
break;
default:
(void) sprintf(status_msg_buf,
"%s 0x%-2x"
" %d", MSGSTR(4, "Unknown status"),
status, count);
} /* End of switch() */
return (0);
}
/*
* Get the indexes to the disk device elements in page 2,
* based on the locations found in page 1.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_disk_element_index(struct l_state_struct *l_state, int *front_index,
int *rear_index)
{
int index = 0, front_flag = 0, local_front = 0, local_rear = 0;
int i, rear_flag = 0;
if ((l_state == NULL) || (front_index == NULL) ||
(rear_index == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
*front_index = *rear_index = 0;
/* Get the indexes to the disk device elements */
for (i = 0; i < (int)l_state->ib_tbl.config.enc_num_elem; i++) {
if (l_state->ib_tbl.config.type_hdr[i].type == ELM_TYP_DD) {
if (front_flag) {
local_rear = index;
rear_flag = 1;
break;
} else {
local_front = index;
front_flag = 1;
}
}
index += l_state->ib_tbl.config.type_hdr[i].num;
index++; /* for global element */
}
D_DPRINTF(" l_get_disk_element_index:"
" Index to front disk elements 0x%x\n"
" l_get_disk_element_index:"
" Index to rear disk elements 0x%x\n",
local_front, local_rear);
if (!front_flag && !rear_flag) { /* neither is found */
return (L_RD_NO_DISK_ELEM);
}
*front_index = local_front;
*rear_index = local_rear;
return (0);
}
/*
* l_led() manage the device led's
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_led(struct path_struct *path_struct, int led_action,
struct device_element *status,
int verbose)
{
gfc_map_t map;
char ses_path[MAXPATHLEN];
uchar_t *page_buf;
int err, write, fd, front_index, rear_index, offset;
unsigned short page_len;
struct device_element *elem;
L_state *l_state;
int enc_type;
if ((path_struct == NULL) || (status == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
/*
* Need to get a valid location, front/rear & slot.
*
* The path_struct will return a valid slot
* and the IB path or a disk path.
*/
map.dev_addr = (gfc_port_dev_info_t *)NULL;
if (!path_struct->ib_path_flag) {
if ((err = g_get_dev_map(path_struct->p_physical_path,
&map, verbose)) != 0)
return (err);
if ((err = l_get_ses_path(path_struct->p_physical_path,
ses_path, &map, verbose)) != 0) {
free((void *)map.dev_addr);
return (err);
}
} else {
(void) strcpy(ses_path, path_struct->p_physical_path);
}
if ((l_state = (L_state *)calloc(1, sizeof (L_state))) == NULL) {
free((void *)map.dev_addr);
return (L_MALLOC_FAILED);
}
if (!path_struct->slot_valid) {
if ((map.dev_addr != NULL) &&
(err = g_get_dev_map(path_struct->p_physical_path,
&map, verbose)) != 0) {
(void) l_free_lstate(&l_state);
return (err);
}
if ((err = l_get_ses_path(path_struct->p_physical_path,
ses_path, &map, verbose)) != 0) {
(void) l_free_lstate(&l_state);
free((void *)map.dev_addr);
return (err);
}
if ((err = l_get_status(ses_path, l_state, verbose)) != 0) {
(void) l_free_lstate(&l_state);
free((void *)map.dev_addr);
return (err);
}
/* We are passing the disks path */
if (err = l_get_slot(path_struct, l_state, verbose)) {
(void) l_free_lstate(&l_state);
free((void *)map.dev_addr);
return (err);
}
}
if (map.dev_addr != NULL)
free((void *)map.dev_addr); /* Not used anymore */
if ((page_buf = (uchar_t *)calloc(1,
MAX_REC_DIAG_LENGTH)) == NULL) {
(void) l_free_lstate(&l_state);
return (L_MALLOC_FAILED);
}
if ((fd = g_object_open(ses_path, O_NDELAY | O_RDWR)) == -1) {
(void) l_free_lstate(&l_state);
(void) g_destroy_data(page_buf);
return (L_OPEN_PATH_FAIL);
}
if (err = l_get_envsen_page(fd, page_buf, MAX_REC_DIAG_LENGTH,
L_PAGE_2, verbose)) {
(void) l_free_lstate(&l_state);
(void) close(fd);
(void) g_destroy_data(page_buf);
return (err);
}
page_len = (page_buf[2] << 8 | page_buf[3]) + HEADER_LEN;
/* Get index to the disk we are interested in */
if (err = l_get_status(ses_path, l_state, verbose)) {
(void) l_free_lstate(&l_state);
(void) close(fd);
(void) g_destroy_data(page_buf);
return (err);
}
/* find enclosure type */
if ((strncmp((char *)l_state->ib_tbl.config.prod_id, DAK_OFF_NAME,
strlen(DAK_OFF_NAME)) == 0) ||
(strncmp((char *)l_state->ib_tbl.config.prod_id, DAK_PROD_STR,
strlen(DAK_PROD_STR)) == 0)) {
enc_type = DAK_ENC_TYPE;
} else {
enc_type = SENA_ENC_TYPE;
}
/* Double check slot. */
if (path_struct->slot >= l_state->total_num_drv/2) {
(void) l_free_lstate(&l_state);
return (L_INVALID_SLOT);
}
if (err = l_get_disk_element_index(l_state, &front_index,
&rear_index)) {
(void) l_free_lstate(&l_state);
return (err);
}
/* Skip global element */
front_index++;
if (enc_type == DAK_ENC_TYPE) {
rear_index += l_state->total_num_drv/2 + 1;
} else {
rear_index++;
}
if (path_struct->f_flag) {
offset = (8 + (front_index + path_struct->slot)*4);
} else {
offset = (8 + (rear_index + path_struct->slot)*4);
}
elem = (struct device_element *)(page_buf + offset);
/*
* now do requested action.
*/
bcopy((const void *)elem, (void *)status,
sizeof (struct device_element)); /* save status */
bzero(elem, sizeof (struct device_element));
elem->select = 1;
elem->dev_off = status->dev_off;
elem->en_bypass_a = status->en_bypass_a;
elem->en_bypass_b = status->en_bypass_b;
write = 1;
switch (led_action) {
case L_LED_STATUS:
write = 0;
break;
case L_LED_RQST_IDENTIFY:
elem->ident = 1;
if (verbose) {
if (enc_type == DAK_ENC_TYPE) {
(void) fprintf(stdout,
MSGSTR(9043, " Blinking LED for slot %d in enclosure"
" %s\n"), path_struct->f_flag ? path_struct->slot :
path_struct->slot + (MAX_DRIVES_DAK/2),
l_state->ib_tbl.enclosure_name);
} else {
(void) fprintf(stdout,
MSGSTR(9043, " Blinking LED for slot %d in enclosure"
" %s\n"), path_struct->slot,
l_state->ib_tbl.enclosure_name);
}
}
break;
case L_LED_OFF:
if (verbose) {
if (enc_type == DAK_ENC_TYPE) {
(void) fprintf(stdout,
MSGSTR(9044,
" Turning off LED for slot %d in enclosure"
" %s\n"), path_struct->f_flag ? path_struct->slot
: path_struct->slot + (MAX_DRIVES_DAK/2),
l_state->ib_tbl.enclosure_name);
} else {
(void) fprintf(stdout,
MSGSTR(9044,
" Turning off LED for slot %d in enclosure"
" %s\n"), path_struct->slot,
l_state->ib_tbl.enclosure_name);
}
}
break;
default:
(void) l_free_lstate(&l_state);
return (L_INVALID_LED_RQST);
} /* End of switch */
if (write) {
if (getenv("_LUX_D_DEBUG") != NULL) {
g_dump(" l_led: Updating led state: "
"Device Status Element ",
(uchar_t *)elem, sizeof (struct device_element),
HEX_ONLY);
}
if (err = g_scsi_send_diag_cmd(fd,
(uchar_t *)page_buf, page_len)) {
(void) close(fd);
(void) g_destroy_data(page_buf);
(void) l_free_lstate(&l_state);
return (err);
}
bzero(page_buf, MAX_REC_DIAG_LENGTH);
if (err = l_get_envsen_page(fd, page_buf, MAX_REC_DIAG_LENGTH,
L_PAGE_2, verbose)) {
(void) g_destroy_data(page_buf);
(void) close(fd);
(void) l_free_lstate(&l_state);
return (err);
}
elem = (struct device_element *)(page_buf + offset);
bcopy((const void *)elem, (void *)status,
sizeof (struct device_element));
}
if (getenv("_LUX_D_DEBUG") != NULL) {
g_dump(" l_led: Device Status Element ",
(uchar_t *)status, sizeof (struct device_element),
HEX_ONLY);
}
(void) l_free_lstate(&l_state);
(void) close(fd);
(void) g_destroy_data(page_buf);
return (0);
}
/*
* frees the previously alloced l_state
* structure.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_free_lstate(L_state **l_state)
{
int i;
if ((l_state == NULL) || (*l_state == NULL))
return (0);
for (i = 0; i < (int)(*l_state)->total_num_drv/2; i++) {
if ((*l_state)->drv_front[i].g_disk_state.multipath_list != NULL)
(void) g_free_multipath(
(*l_state)->drv_front[i].g_disk_state.multipath_list);
if ((*l_state)->drv_rear[i].g_disk_state.multipath_list != NULL)
(void) g_free_multipath(
(*l_state)->drv_rear[i].g_disk_state.multipath_list);
}
(void) g_destroy_data (*l_state);
l_state = NULL;
return (0);
}
/*
* Set the state of an individual disk
* in the Photon enclosure the powered
* up/down mode. The path must point to
* a disk or the ib_path_flag must be set.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_dev_pwr_up_down(char *path_phys, struct path_struct *path_struct,
int power_off_flag, int verbose, int force_flag)
/*ARGSUSED*/
{
gfc_map_t map;
char ses_path[MAXPATHLEN], dev_path[MAXPATHLEN];
int slot, err = 0;
L_state *l_state = NULL;
struct l_disk_state_struct *drive;
struct dlist *dl, *dl1;
devctl_hdl_t devhdl;
WWN_list *wwn_list = NULL;
L_inquiry inq;
if (path_struct == NULL) {
return (L_INVALID_PATH_FORMAT);
}
dl = (struct dlist *)NULL;
map.dev_addr = (gfc_port_dev_info_t *)NULL;
if (err = g_get_dev_map(path_struct->p_physical_path,
&map, verbose))
return (err);
if (err = l_get_ses_path(path_struct->p_physical_path,
ses_path, &map, verbose)) {
free((void *)map.dev_addr);
return (err);
}
free((void *)map.dev_addr); /* Not used anymore */
/*
* Check to see if we have a photon, and if not, don't allow
* this operation
*/
if (err = g_get_inquiry(ses_path, &inq)) {
return (err);
}
if (l_get_enc_type(inq) != SENA_ENC_TYPE) {
return (L_ENCL_INVALID_PATH);
}
/*
* OK, so we have a photon... we can continue
*/
if ((l_state = (L_state *)calloc(1, sizeof (L_state))) == NULL) {
return (L_MALLOC_FAILED);
}
if (err = l_get_status(ses_path, l_state, verbose)) {
(void) l_free_lstate(&l_state);
return (err);
}
if (!path_struct->slot_valid) {
/* We are passing the disks path */
if (err = l_get_slot(path_struct, l_state, verbose)) {
(void) l_free_lstate(&l_state);
return (err);
}
}
slot = path_struct->slot;
(void) strcpy(dev_path, path_struct->p_physical_path);
/*
* Either front or rear drive
*/
if (path_struct->f_flag) {
drive = &l_state->drv_front[slot];
} else {
drive = &l_state->drv_rear[slot];
}
/*
* Check for drive presence always
*/
if (drive->ib_status.code == S_NOT_INSTALLED) {
(void) l_free_lstate(&l_state);
return (L_SLOT_EMPTY);
}
/*
* Check disk state
* before the power off.
*
*/
if (power_off_flag && !force_flag) {
goto pre_pwr_dwn;
} else {
goto pwr_up_dwn;
}
pre_pwr_dwn:
/*
* Check whether disk
* is reserved by another
* host
*/
if ((drive->g_disk_state.d_state_flags[PORT_A] & L_RESERVED) ||
(drive->g_disk_state.d_state_flags[PORT_B] &
L_RESERVED)) {
(void) l_free_lstate(&l_state);
return (L_DEVICE_RESERVED);
}
if ((dl = (struct dlist *)g_zalloc(sizeof (struct dlist))) == NULL) {
(void) l_free_lstate(&l_state);
return (L_MALLOC_FAILED);
}
/*
* NOTE: It is not necessary to get the multipath list here as ------
* we alread have it after getting the status earlier.
* - REWRITE -
*/
/*
* Get path to all the FC disk and tape devices.
*
* I get this now and pass down for performance
* reasons.
* If for some reason the list can become invalid,
* i.e. device being offlined, then the list
* must be re-gotten.
*/
if (err = g_get_wwn_list(&wwn_list, verbose)) {
(void) g_destroy_data(dl);
(void) l_free_lstate(&l_state);
return (err); /* Failure */
}
dl->dev_path = dev_path;
if ((err = g_get_multipath(dev_path,
&(dl->multipath), wwn_list, verbose)) != 0) {
(void) g_destroy_data(dl);
(void) g_free_wwn_list(&wwn_list);
(void) l_free_lstate(&l_state);
return (err);
}
for (dl1 = dl->multipath; dl1 != NULL; dl1 = dl1->next) {
if ((devhdl = devctl_device_acquire(dl1->dev_path,
DC_EXCL)) == NULL) {
if (errno != EBUSY) {
ER_DPRINTF("%s could not acquire"
" the device: %s\n\n",
strerror(errno), dl1->dev_path);
continue;
}
}
if (devctl_device_offline(devhdl) != 0) {
(void) devctl_release(devhdl);
(void) g_free_multipath(dl->multipath);
(void) g_destroy_data(dl);
(void) g_free_wwn_list(&wwn_list);
(void) l_free_lstate(&l_state);
return (L_POWER_OFF_FAIL_BUSY);
}
(void) devctl_release(devhdl);
}
pwr_up_dwn:
err = pwr_up_down(ses_path, l_state, path_struct->f_flag,
path_struct->slot, power_off_flag, verbose);
if (dl != NULL) {
(void) g_free_multipath(dl->multipath);
(void) g_destroy_data(dl);
}
(void) g_free_wwn_list(&wwn_list);
(void) l_free_lstate(&l_state);
if (err) {
return (err);
}
return (0);
}
/*
* l_pho_pwr_up_down() Set the state of the Photon enclosure
* the powered up/down mode.
* The path must point to an IB.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_pho_pwr_up_down(char *dev_name, char *path_phys, int power_off_flag,
int verbose, int force_flag)
{
L_state *l_state = NULL;
int i, err = 0;
struct dlist *dl, *dl1;
char dev_path[MAXPATHLEN];
devctl_hdl_t devhdl;
WWN_list *wwn_list = NULL;
if (path_phys == NULL) {
return (L_INVALID_PATH_FORMAT);
}
dl = (struct dlist *)NULL;
if ((l_state = (L_state *)calloc(1, sizeof (L_state))) == NULL) {
return (L_MALLOC_FAILED);
}
if (err = l_get_status(path_phys, l_state, verbose)) {
(void) l_free_lstate(&l_state);
return (err);
}
if (power_off_flag && !force_flag) {
goto pre_pwr_dwn;
} else {
goto pwr_up_dwn;
}
pre_pwr_dwn:
/*
* Check if any disk in this enclosure
* is reserved by another host before
* the power off.
*/
for (i = 0; i < l_state->total_num_drv/2; i++) {
if ((l_state->drv_front[i].g_disk_state.d_state_flags[PORT_A] &
L_RESERVED) ||
(l_state->drv_front[i].g_disk_state.d_state_flags[PORT_B] &
L_RESERVED) ||
(l_state->drv_rear[i].g_disk_state.d_state_flags[PORT_A] &
L_RESERVED) ||
(l_state->drv_rear[i].g_disk_state.d_state_flags[PORT_B] &
L_RESERVED)) {
return (L_DISKS_RESERVED);
}
}
/*
* Check if any disk in this enclosure
* Get path to all the FC disk and tape devices.
*
* I get this now and pass down for performance
* reasons.
* If for some reason the list can become invalid,
* i.e. device being offlined, then the list
* must be re-gotten.
*/
if (err = g_get_wwn_list(&wwn_list, verbose)) {
(void) l_free_lstate(&l_state);
return (err); /* Failure */
}
for (i = 0; i < l_state->total_num_drv/2; i++) {
if (*l_state->drv_front[i].g_disk_state.physical_path) {
(void) memset(dev_path, 0, MAXPATHLEN);
(void) strcpy(dev_path,
(char *)&l_state->drv_front[i].g_disk_state.physical_path);
if ((dl = (struct dlist *)
g_zalloc(sizeof (struct dlist))) == NULL) {
(void) g_free_wwn_list(&wwn_list);
(void) l_free_lstate(&l_state);
return (L_MALLOC_FAILED);
}
dl->dev_path = dev_path;
if (g_get_multipath(dev_path, &(dl->multipath),
wwn_list, verbose) != 0) {
(void) g_destroy_data(dl);
continue;
}
for (dl1 = dl->multipath;
dl1 != NULL;
dl1 = dl1->next) {
/* attempt to acquire the device */
if ((devhdl = devctl_device_acquire(
dl1->dev_path, DC_EXCL)) == NULL) {
if (errno != EBUSY) {
ER_DPRINTF("%s: Could not "
"acquire the device: %s\n\n",
strerror(errno),
dl1->dev_path);
continue;
}
}
/* attempt to offline the device */
if (devctl_device_offline(devhdl) != 0) {
(void) devctl_release(devhdl);
(void) g_free_multipath(
dl->multipath);
(void) g_destroy_data(dl);
(void) g_free_wwn_list(&wwn_list);
(void) l_free_lstate(&l_state);
return (L_POWER_OFF_FAIL_BUSY);
}
/* release handle acquired above */
(void) devctl_release(devhdl);
}
(void) g_free_multipath(dl->multipath);
(void) g_destroy_data(dl);
}
if (*l_state->drv_rear[i].g_disk_state.physical_path) {
(void) memset(dev_path, 0, MAXPATHLEN);
(void) strcpy(dev_path,
(char *)&l_state->drv_rear[i].g_disk_state.physical_path);
if ((dl = (struct dlist *)
g_zalloc(sizeof (struct dlist))) == NULL) {
(void) g_free_wwn_list(&wwn_list);
(void) l_free_lstate(&l_state);
return (L_MALLOC_FAILED);
}
dl->dev_path = dev_path;
if (g_get_multipath(dev_path, &(dl->multipath),
wwn_list, verbose) != 0) {
(void) g_destroy_data(dl);
continue;
}
for (dl1 = dl->multipath;
dl1 != NULL;
dl1 = dl1->next) {
/* attempt to acquire the device */
if ((devhdl = devctl_device_acquire(
dl1->dev_path, DC_EXCL)) == NULL) {
if (errno != EBUSY) {
ER_DPRINTF("%s: Could not "
"acquire the device: %s\n\n",
strerror(errno),
dl1->dev_path);
continue;
}
}
/* attempt to offline the device */
if (devctl_device_offline(devhdl) != 0) {
(void) devctl_release(devhdl);
(void) g_free_multipath(
dl->multipath);
(void) g_destroy_data(dl);
(void) g_free_wwn_list(&wwn_list);
(void) l_free_lstate(&l_state);
return (L_POWER_OFF_FAIL_BUSY);
}
/* release handle acquired above */
(void) devctl_release(devhdl);
}
(void) g_free_multipath(dl->multipath);
(void) g_destroy_data(dl);
}
}
pwr_up_dwn:
(void) g_free_wwn_list(&wwn_list);
if ((err = pwr_up_down(path_phys, l_state, 0, -1,
power_off_flag, verbose)) != 0) {
(void) l_free_lstate(&l_state);
return (err);
}
(void) l_free_lstate(&l_state);
return (0);
}
/*
* Set the state of the Photon enclosure or disk
* powered up/down mode.
* The path must point to an IB.
* slot == -1 implies entire enclosure.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
static int
pwr_up_down(char *path_phys, L_state *l_state, int front, int slot,
int power_off_flag, int verbose)
{
L_inquiry inq;
int fd, status, err;
uchar_t *page_buf;
int front_index, rear_index, front_offset, rear_offset;
unsigned short page_len;
struct device_element *front_elem, *rear_elem;
(void) memset(&inq, 0, sizeof (inq));
if ((fd = g_object_open(path_phys, O_NDELAY | O_RDONLY)) == -1) {
return (L_OPEN_PATH_FAIL);
}
/* Verify it is a Photon */
if (status = g_scsi_inquiry_cmd(fd,
(uchar_t *)&inq, sizeof (struct l_inquiry_struct))) {
(void) close(fd);
return (status);
}
if ((strstr((char *)inq.inq_pid, ENCLOSURE_PROD_ID) == 0) &&
(!(strncmp((char *)inq.inq_vid, "SUN ",
sizeof (inq.inq_vid)) &&
((inq.inq_dtype & DTYPE_MASK) == DTYPE_ESI)))) {
(void) close(fd);
return (L_ENCL_INVALID_PATH);
}
/*
* To power up/down a Photon we use the Driver Off
* bit in the global device control element.
*/
if ((page_buf = (uchar_t *)malloc(MAX_REC_DIAG_LENGTH)) == NULL) {
return (L_MALLOC_FAILED);
}
if (err = l_get_envsen_page(fd, page_buf, MAX_REC_DIAG_LENGTH,
L_PAGE_2, verbose)) {
(void) close(fd);
(void) g_destroy_data(page_buf);
return (err);
}
page_len = (page_buf[2] << 8 | page_buf[3]) + HEADER_LEN;
/* Double check slot as convert_name only does gross check */
if (slot >= l_state->total_num_drv/2) {
(void) close(fd);
(void) g_destroy_data(page_buf);
return (L_INVALID_SLOT);
}
if (err = l_get_disk_element_index(l_state, &front_index,
&rear_index)) {
(void) close(fd);
(void) g_destroy_data(page_buf);
return (err);
}
/* Skip global element */
front_index++;
rear_index++;
front_offset = (8 + (front_index + slot)*4);
rear_offset = (8 + (rear_index + slot)*4);
front_elem = (struct device_element *)(page_buf + front_offset);
rear_elem = (struct device_element *)(page_buf + rear_offset);
if (front || slot == -1) {
/*
* now do requested action.
*/
bzero(front_elem, sizeof (struct device_element));
/* Set/reset power off bit */
front_elem->dev_off = power_off_flag;
front_elem->select = 1;
}
if (!front || slot == -1) {
/* Now do rear */
bzero(rear_elem, sizeof (struct device_element));
/* Set/reset power off bit */
rear_elem->dev_off = power_off_flag;
rear_elem->select = 1;
}
if (getenv("_LUX_D_DEBUG") != NULL) {
if (front || slot == -1) {
g_dump(" pwr_up_down: "
"Front Device Status Element ",
(uchar_t *)front_elem,
sizeof (struct device_element),
HEX_ONLY);
}
if (!front || slot == -1) {
g_dump(" pwr_up_down: "
"Rear Device Status Element ",
(uchar_t *)rear_elem,
sizeof (struct device_element),
HEX_ONLY);
}
}
if (err = g_scsi_send_diag_cmd(fd,
(uchar_t *)page_buf, page_len)) {
(void) close(fd);
(void) g_destroy_data(page_buf);
return (err);
}
(void) close(fd);
(void) g_destroy_data(page_buf);
return (0);
}
/*
* Set the password of the FPM by sending the password
* in page 4 of the Send Diagnostic command.
*
* The path must point to an IB.
*
* The size of the password string must be <= 8 bytes.
* The string can also be NULL. This is the way the user
* chooses to not have a password.
*
* I then tell the photon by giving him 4 NULL bytes.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_new_password(char *path_phys, char *password)
{
Page4_name page4;
L_inquiry inq;
int fd, status;
(void) memset(&inq, 0, sizeof (inq));
(void) memset(&page4, 0, sizeof (page4));
if ((fd = g_object_open(path_phys, O_NDELAY | O_RDONLY)) == -1) {
return (L_OPEN_PATH_FAIL);
}
/* Verify it is a Photon */
if (status = g_scsi_inquiry_cmd(fd,
(uchar_t *)&inq, sizeof (struct l_inquiry_struct))) {
(void) close(fd);
return (status);
}
if ((strstr((char *)inq.inq_pid, ENCLOSURE_PROD_ID) == 0) &&
(!(strncmp((char *)inq.inq_vid, "SUN ",
sizeof (inq.inq_vid)) &&
((inq.inq_dtype & DTYPE_MASK) == DTYPE_ESI)))) {
(void) close(fd);
return (L_ENCL_INVALID_PATH);
}
page4.page_code = L_PAGE_4;
page4.page_len = (ushort_t)max((strlen(password) + 4), 8);
/* Double check */
if (strlen(password) > 8) {
return (L_INVALID_PASSWORD_LEN);
}
page4.string_code = L_PASSWORD;
page4.enable = 1;
(void) strcpy((char *)page4.name, password);
if (status = g_scsi_send_diag_cmd(fd, (uchar_t *)&page4,
page4.page_len + HEADER_LEN)) {
(void) close(fd);
return (status);
}
(void) close(fd);
return (0);
}
/*
* Set the name of the enclosure by sending the name
* in page 4 of the Send Diagnostic command.
*
* The path must point to an IB.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_new_name(char *path_phys, char *name)
{
Page4_name page4;
L_inquiry inq;
int fd, status;
if ((path_phys == NULL) || (name == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
(void) memset(&inq, 0, sizeof (inq));
(void) memset(&page4, 0, sizeof (page4));
if ((fd = g_object_open(path_phys, O_NDELAY | O_RDONLY)) == -1) {
return (L_OPEN_PATH_FAIL);
}
/* Verify it is a Photon */
if (status = g_scsi_inquiry_cmd(fd,
(uchar_t *)&inq, sizeof (struct l_inquiry_struct))) {
(void) close(fd);
return (status);
}
if ((strstr((char *)inq.inq_pid, ENCLOSURE_PROD_ID) == 0) &&
(!(strncmp((char *)inq.inq_vid, "SUN ",
sizeof (inq.inq_vid)) &&
((inq.inq_dtype & DTYPE_MASK) == DTYPE_ESI)))) {
(void) close(fd);
return (L_ENCL_INVALID_PATH);
}
page4.page_code = L_PAGE_4;
page4.page_len = (ushort_t)((sizeof (struct page4_name) - 4));
page4.string_code = L_ENCL_NAME;
page4.enable = 1;
strncpy((char *)page4.name, name, sizeof (page4.name));
if (status = g_scsi_send_diag_cmd(fd, (uchar_t *)&page4,
sizeof (page4))) {
(void) close(fd);
return (status);
}
/*
* Check the name really changed.
*/
if (status = g_scsi_inquiry_cmd(fd,
(uchar_t *)&inq, sizeof (struct l_inquiry_struct))) {
(void) close(fd);
return (status);
}
if (strncmp((char *)inq.inq_box_name, name, sizeof (page4.name)) != 0) {
char name_buf[MAXNAMELEN];
(void) close(fd);
strncpy((char *)name_buf, (char *)inq.inq_box_name,
sizeof (inq.inq_box_name));
return (L_ENCL_NAME_CHANGE_FAIL);
}
(void) close(fd);
return (0);
}
/*
* Issue a Loop Port enable Primitive sequence
* to the device specified by the pathname.
*/
int
l_enable(char *path, int verbose)
/*ARGSUSED*/
{
return (0);
}
/*
* Issue a Loop Port Bypass Primitive sequence
* to the device specified by the pathname. This requests the
* device to set its L_Port into the bypass mode.
*/
int
l_bypass(char *path, int verbose)
/*ARGSUSED*/
{
return (0);
}
/*
* Create a linked list of all the Photon enclosures that
* are attached to this host.
*
* RETURN VALUES: 0 O.K.
*
* box_list pointer:
* NULL: No enclosures found.
* !NULL: Enclosures found
* box_list points to a linked list of boxes.
*/
int
l_get_box_list(struct box_list_struct **box_list_ptr, int verbose)
{
char *dev_name;
DIR *dirp;
struct dirent *entp;
char namebuf[MAXPATHLEN];
struct stat sb;
char *result = NULL;
int fd, status;
L_inquiry inq;
Box_list *box_list, *l1, *l2;
IB_page_config page1;
uchar_t node_wwn[WWN_SIZE], port_wwn[WWN_SIZE];
int al_pa;
if (box_list_ptr == NULL) {
return (L_INVALID_PATH_FORMAT);
}
box_list = *box_list_ptr = NULL;
if ((dev_name = (char *)g_zalloc(sizeof ("/dev/es"))) == NULL) {
return (L_MALLOC_FAILED);
}
(void) sprintf((char *)dev_name, "/dev/es");
if (verbose) {
(void) fprintf(stdout,
MSGSTR(9045,
" Searching directory %s for links to enclosures\n"),
dev_name);
}
if ((dirp = opendir(dev_name)) == NULL) {
(void) g_destroy_data(dev_name);
/* No Photons found */
B_DPRINTF(" l_get_box_list: No Photons found\n");
return (0);
}
while ((entp = readdir(dirp)) != NULL) {
if (strcmp(entp->d_name, ".") == 0 ||
strcmp(entp->d_name, "..") == 0)
continue;
(void) sprintf(namebuf, "%s/%s", dev_name, entp->d_name);
if ((lstat(namebuf, &sb)) < 0) {
ER_DPRINTF("Warning: Cannot stat %s\n",
namebuf);
continue;
}
if (!S_ISLNK(sb.st_mode)) {
ER_DPRINTF("Warning: %s is not a symbolic link\n",
namebuf);
continue;
}
if ((result = g_get_physical_name_from_link(namebuf)) == NULL) {
ER_DPRINTF(" Warning: Get physical name from"
" link failed. Link=%s\n", namebuf);
continue;
}
/* Found a SES card. */
B_DPRINTF(" l_get_box_list: Link to SES Card found: %s/%s\n",
dev_name, entp->d_name);
if ((fd = g_object_open(result, O_NDELAY | O_RDONLY)) == -1) {
g_destroy_data(result);
continue; /* Ignore errors */
}
/* Get the box name */
if (status = g_scsi_inquiry_cmd(fd,
(uchar_t *)&inq, sizeof (struct l_inquiry_struct))) {
(void) close(fd);
g_destroy_data(result);
continue; /* Ignore errors */
}
if ((strstr((char *)inq.inq_pid, ENCLOSURE_PROD_ID) != NULL) ||
(((inq.inq_dtype & DTYPE_MASK) == DTYPE_ESI) &&
(l_get_enc_type(inq) == DAK_ENC_TYPE))) {
/*
* Found Photon/Daktari
*/
/* Get the port WWN from the IB, page 1 */
if ((status = l_get_envsen_page(fd, (uchar_t *)&page1,
sizeof (page1), 1, 0)) != NULL) {
(void) close(fd);
g_destroy_data(result);
(void) g_destroy_data(dev_name);
closedir(dirp);
return (status);
}
/*
* Build list of names.
*/
if ((l2 = (struct box_list_struct *)
g_zalloc(sizeof (struct box_list_struct)))
== NULL) {
(void) close(fd);
g_destroy_data(result);
g_destroy_data(dev_name);
closedir(dirp);
return (L_MALLOC_FAILED);
}
/* Fill in structure */
(void) strcpy((char *)l2->b_physical_path,
(char *)result);
(void) strcpy((char *)l2->logical_path,
(char *)namebuf);
bcopy((void *)page1.enc_node_wwn,
(void *)l2->b_node_wwn, WWN_SIZE);
(void) sprintf(l2->b_node_wwn_s,
"%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x",
page1.enc_node_wwn[0],
page1.enc_node_wwn[1],
page1.enc_node_wwn[2],
page1.enc_node_wwn[3],
page1.enc_node_wwn[4],
page1.enc_node_wwn[5],
page1.enc_node_wwn[6],
page1.enc_node_wwn[7]);
strncpy((char *)l2->prod_id_s,
(char *)inq.inq_pid,
sizeof (inq.inq_pid));
strncpy((char *)l2->b_name,
(char *)inq.inq_box_name,
sizeof (inq.inq_box_name));
/* make sure null terminated */
l2->b_name[sizeof (l2->b_name) - 1] = NULL;
/*
* Now get the port WWN for the port
* we are connected to.
*/
status = g_get_wwn(result, port_wwn, node_wwn,
&al_pa, verbose);
if (status == 0) {
(void) sprintf(l2->b_port_wwn_s,
"%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x",
port_wwn[0], port_wwn[1], port_wwn[2],
port_wwn[3], port_wwn[4], port_wwn[5],
port_wwn[6], port_wwn[7]);
bcopy((void *)port_wwn,
(void *)l2->b_port_wwn, WWN_SIZE);
B_DPRINTF(" l_get_box_list:"
" Found enclosure named:%s\n", l2->b_name);
if (box_list == NULL) {
l1 = box_list = l2;
} else {
l2->box_prev = l1;
l1 = l1->box_next = l2;
}
} else {
(void) close(fd);
g_destroy_data(result);
(void) g_destroy_data(dev_name);
(void) g_destroy_data(l2);
closedir(dirp);
return (status);
}
}
g_destroy_data(result);
(void) close(fd);
*box_list_ptr = box_list; /* pass back ptr to list */
}
(void) g_destroy_data(dev_name);
closedir(dirp);
return (0);
}
void
l_free_box_list(struct box_list_struct **box_list)
{
Box_list *next = NULL;
if (box_list == NULL) {
return;
}
for (; *box_list != NULL; *box_list = next) {
next = (*box_list)->box_next;
(void) g_destroy_data(*box_list);
}
*box_list = NULL;
}
/*
* Finds out if there are any other boxes
* with the same name as "name".
*
* RETURNS:
* 0 There are no other boxes with the same name.
* >0 if duplicate names found
*/
/*ARGSUSED*/
int
l_duplicate_names(Box_list *b_list, char wwn[], char *name, int verbose)
{
int dup_flag = 0;
Box_list *box_list_ptr = NULL;
if ((name == NULL) || (wwn == NULL))
return (0);
box_list_ptr = b_list;
while (box_list_ptr != NULL) {
if ((strcmp(name, (const char *)box_list_ptr->b_name) == 0) &&
(strcmp(box_list_ptr->b_node_wwn_s, wwn) != 0)) {
dup_flag++;
break;
}
box_list_ptr = box_list_ptr->box_next;
}
return (dup_flag);
}
/*
* Checks for a name conflict with an SSA cN type name.
*/
int
l_get_conflict(char *name, char **result, int verbose)
{
char s[MAXPATHLEN];
char *p = NULL;
char *pp = NULL;
Box_list *box_list = NULL;
int found_box = 0, err = 0;
(void) strcpy(s, name);
if ((*result = g_get_physical_name(s)) == NULL) {
return (0);
}
if ((strstr((const char *)*result, PLNDEF)) == NULL) {
(void) g_destroy_data(*result);
*result = NULL;
return (0);
}
P_DPRINTF(" l_get_conflict: Found "
"SSA path using %s\n", s);
/* Find path to IB */
if ((err = l_get_box_list(&box_list, verbose)) != 0) {
return (err); /* Failure */
}
/*
* Valid cN type name found.
*/
while (box_list != NULL) {
if ((strcmp((char *)s,
(char *)box_list->b_name)) == 0) {
found_box = 1;
if (p == NULL) {
if ((p = g_zalloc(strlen(
box_list->b_physical_path)
+ 2)) == NULL) {
(void) l_free_box_list(&box_list);
return (errno);
}
} else {
if ((pp = g_zalloc(strlen(
box_list->b_physical_path)
+ strlen(p)
+ 2)) == NULL) {
(void) l_free_box_list(&box_list);
return (errno);
}
(void) strcpy(pp, p);
(void) g_destroy_data(p);
p = pp;
}
(void) strcat(p, box_list->b_physical_path);
(void) strcat(p, "\n");
}
box_list = box_list->box_next;
}
if (found_box) {
D_DPRINTF("There is a conflict between the "
"enclosure\nwith this name, %s, "
"and a SSA name of the same form.\n"
"Please use one of the following physical "
"pathnames:\n%s\n%s\n",
s, *result, p);
(void) l_free_box_list(&box_list);
(void) g_destroy_data(p);
return (L_SSA_CONFLICT); /* failure */
}
(void) l_free_box_list(&box_list);
return (0);
}
/*
* This function sets the "slot", "slot_valid" and "f_flag" fields of the
* path_struct that is passed in IFF the device path passed in ("phys_path")
* is a disk in an A5K or a Daktari. This is achieved by calling l_get_slot().
*
* INPUT :
* phys_path - physical path to a device
* path_sturct - Pointer to pointer to a path_struct data structure
*
* OUTPUT :
* if phys_path is that of an A5K/Daktari disk
* path_struct->slot is set to the slot position in enclosure
* path_struct->slot_valid is set to 1
* path_struct->f_flag is set to 1 if in the front of an A5k
* or if among the first 6 disks on a Daktari
* else
* they are left as they were
* RETURNS:
* 0 on SUCCESS
* non-zero otherwise
*/
static int
load_flds_if_enc_disk(char *phys_path, struct path_struct **path_struct)
{
int err = 0, verbose = 0;
char ses_path[MAXPATHLEN];
gfc_map_t map;
L_inquiry inq;
L_state *l_state = NULL;
if ((path_struct == NULL) || (*path_struct == NULL) ||
(phys_path == NULL) || (*phys_path == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
if ((strstr(phys_path, SLSH_DRV_NAME_SSD) == NULL) ||
(g_get_path_type(phys_path) == 0)) {
/*
* Don't proceed when not a disk device or if it is not a
* valid FC device on which g_get_dev_map() can be done
* (for example, g_get_dev_map() will fail on SSAs).
*
* Just return success
*/
return (0);
}
if ((*path_struct)->ib_path_flag) {
/*
* If this flag is set, l_get_slot() should not be called
* So, no point in proceeding. Just return success.
*/
return (0);
}
if ((err = g_get_dev_map(phys_path, &map, verbose)) != 0) {
return (err);
}
if ((err = l_get_ses_path(phys_path, ses_path, &map, verbose)) != 0) {
(void) free(map.dev_addr);
if (err == L_NO_SES_PATH) {
/*
* This is not an error since this could be a device
* which does not have SES nodes
*/
return (0);
}
return (err);
}
/*
* There is a SES path on the same FCA as the given disk. But if the
* SES node is not of a photon/Daktari, we dont proceed
*/
if ((err = g_get_inquiry(ses_path, &inq)) != 0) {
(void) free(map.dev_addr);
return (err);
}
/*
* only want to continue if this is a photon or a Daktari
*
* if product ID is not SENA or VID is not "SUN" (checks for photon)
* and if enclosure type is not a Daktari, then I return
*/
if (((strstr((char *)inq.inq_pid, ENCLOSURE_PROD_ID) == 0) ||
(strncmp((char *)inq.inq_vid, "SUN ",
sizeof (inq.inq_vid)) != 0)) &&
((l_get_enc_type(inq) != DAK_ENC_TYPE))) {
/* Not a photon/Daktari */
(void) free(map.dev_addr);
return (0);
}
/* Now, set some fields that l_get_slot() uses and then call it */
if ((l_state = (L_state *)g_zalloc(sizeof (L_state))) == NULL) {
(void) free(map.dev_addr);
return (L_MALLOC_FAILED);
}
if ((err = l_get_ib_status(ses_path, l_state, verbose)) != 0) {
(void) free(map.dev_addr);
(void) l_free_lstate(&l_state);
return (err);
}
if ((err = l_get_slot(*path_struct, l_state, verbose)) != 0) {
(void) free(map.dev_addr);
(void) l_free_lstate(&l_state);
return (err);
}
(void) free(map.dev_addr);
(void) l_free_lstate(&l_state);
return (0);
}
/*
* convert box name or WWN or logical path to physical path.
*
* OUTPUT:
* path_struct:
* - This structure is used to return more detailed
* information about the path.
* - *p_physical_path
* Normally this is the requested physical path.
* If the requested path is not found then iff the
* ib_path_flag is set this is the IB path.
* - *argv
* This is the argument variable input. e.g. Bob,f1
* - slot_valid
* - slot
* This is the slot number that was entered when using
* the box,[fr]slot format. It is only valid if the
* slot_valid flag is set.
* - f_flag
* Front flag - If set, the requested device is located in the
* front of the enclosure.
* - ib_path_flag
* If this flag is set it means a devices path was requested
* but could not be found but an IB's path was found and
* the p_physical_path points to that path.
* - **phys_path
* physical path to the device.
* RETURNS:
* - 0 if O.K.
* - error otherwise.
*/
int
l_convert_name(char *name, char **phys_path,
struct path_struct **path_struct, int verbose)
{
char tmp_name[MAXPATHLEN], ses_path[MAXPATHLEN];
char *char_ptr, *ptr = NULL;
char *result = NULL;
char *env = NULL;
char save_frd; /* which designator was it? */
int slot = 0, slot_flag = 0, found_box = 0, found_comma = 0;
int err = 0, enc_type = 0;
hrtime_t start_time, end_time;
Box_list *box_list = NULL, *box_list_ptr = NULL;
L_inquiry inq;
L_state *l_state = NULL;
Path_struct *path_ptr = NULL;
WWN_list *wwn_list, *wwn_list_ptr;
if ((name == NULL) || (phys_path == NULL) ||
(path_struct == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
if ((env = getenv("_LUX_T_DEBUG")) != NULL) {
start_time = gethrtime();
}
if ((*path_struct = path_ptr = (struct path_struct *)
g_zalloc(sizeof (struct path_struct))) == NULL) {
return (L_MALLOC_FAILED);
}
*phys_path = NULL;
/*
* If the path contains a "/" then assume
* it is a logical or physical path as the
* box name or wwn can not contain "/"s.
*/
if (strchr(name, '/') != NULL) {
if ((result = g_get_physical_name(name)) == NULL) {
return (L_NO_PHYS_PATH);
}
path_ptr->p_physical_path = result;
/*
* Make sure it's a disk or tape path
*/
if (strstr(name, DEV_RDIR) || strstr(name, SLSH_DRV_NAME_SSD) ||
strstr(name, DEV_TAPE_DIR) ||
strstr(name, SLSH_DRV_NAME_ST)) {
if ((err = g_get_inquiry(result, &inq)) != 0) {
(void) free(result);
return (L_SCSI_ERROR);
}
/*
* Check to see if it is not a
* A5K/v880/v890 disk
*
*/
if (!g_enclDiskChk((char *)inq.inq_vid,
(char *)inq.inq_pid)) {
path_ptr->argv = name;
*phys_path = result;
return (0);
}
}
if (err = load_flds_if_enc_disk(result, path_struct)) {
(void) free(result);
return (err);
}
goto done;
}
(void) strcpy(tmp_name, name);
if ((tmp_name[0] == 'c') &&
((int)strlen(tmp_name) > 1) && ((int)strlen(tmp_name) < 5)) {
if ((err = l_get_conflict(tmp_name, &result, verbose)) != 0) {
if (result != NULL) {
(void) g_destroy_data(result);
}
return (err);
}
if (result != NULL) {
path_ptr->p_physical_path = result;
if ((err = g_get_inquiry(result, &inq)) != 0) {
(void) free(result);
return (L_SCSI_ERROR);
}
/*
* Check to see if it is a supported
* A5K/v880/v890 storage subsystem disk
*/
if (g_enclDiskChk((char *)inq.inq_vid,
(char *)inq.inq_pid)) {
if (err = load_flds_if_enc_disk(
result, path_struct)) {
(void) free(result);
return (err);
}
}
goto done;
}
}
/*
* Check to see if we have a box or WWN name.
*
* If it contains a , then the format must be
* box_name,f1 where f is front and 1 is the slot number
* or it is a format like
* ssd@w2200002037049adf,0:h,raw
* or
* SUNW,pln@a0000000,77791d:ctlr
*/
if (((char_ptr = strstr(tmp_name, ",")) != NULL) &&
((*(char_ptr + 1) == 'f') || (*(char_ptr + 1) == 'r') ||
(*(char_ptr + 1) == 's'))) {
char_ptr++; /* point to f/r */
if ((*char_ptr == 'f') || (*char_ptr == 's')) {
path_ptr->f_flag = 1;
} else if (*char_ptr != 'r') {
return (L_INVALID_PATH_FORMAT);
}
save_frd = (char)*char_ptr; /* save it */
char_ptr++;
slot = strtol(char_ptr, &ptr, 10);
/*
* NOTE: Need to double check the slot when we get
* the number of the devices actually in the box.
*/
if ((slot < 0) || (ptr == char_ptr) ||
((save_frd == 's' && slot >= MAX_DRIVES_DAK) ||
((save_frd != 's' && slot >= (MAX_DRIVES_PER_BOX/2))))) {
return (L_INVALID_SLOT);
}
/* Say slot valid. */
slot_flag = path_ptr->slot_valid = 1;
if (save_frd == 's' && slot >= (MAX_DRIVES_DAK/2)) {
path_ptr->slot = slot = slot % (MAX_DRIVES_DAK/2);
path_ptr->f_flag = 0;
} else
path_ptr->slot = slot;
}
if (((char_ptr = strstr(tmp_name, ",")) != NULL) &&
((*(char_ptr + 1) == 'f') || (*(char_ptr + 1) == 'r') ||
(*(char_ptr + 1) == 's'))) {
*char_ptr = NULL; /* make just box name */
found_comma = 1;
}
/* Find path to IB */
if ((err = l_get_box_list(&box_list, verbose)) != 0) {
(void) l_free_box_list(&box_list);
return (err);
}
box_list_ptr = box_list;
/* Look for box name. */
while (box_list != NULL) {
if ((strcmp((char *)tmp_name, (char *)box_list->b_name)) == 0) {
result =
g_alloc_string(box_list->b_physical_path);
L_DPRINTF(" l_convert_name:"
" Found subsystem: name %s WWN %s\n",
box_list->b_name, box_list->b_node_wwn_s);
/*
* Check for another box with this name.
*/
if (l_duplicate_names(box_list_ptr,
box_list->b_node_wwn_s,
(char *)box_list->b_name,
verbose)) {
(void) l_free_box_list(&box_list_ptr);
(void) g_destroy_data(result);
return (L_DUPLICATE_ENCLOSURES);
}
found_box = 1;
break;
}
box_list = box_list->box_next;
}
/*
* Check to see if we must get individual disks path.
*/
if (found_box && slot_flag) {
if ((l_state = (L_state *)g_zalloc(sizeof (L_state))) == NULL) {
(void) g_destroy_data(result);
(void) l_free_box_list(&box_list_ptr);
return (L_MALLOC_FAILED);
}
(void) strcpy(ses_path, result);
if ((err = l_get_status(ses_path, l_state,
verbose)) != 0) {
(void) g_destroy_data(result);
(void) g_destroy_data(l_state);
(void) l_free_box_list(&box_list_ptr);
return (err);
}
/*
* Now double check the slot number.
*/
if (slot >= l_state->total_num_drv/2) {
path_ptr->slot_valid = 0;
(void) g_destroy_data(result);
(void) l_free_box_list(&box_list_ptr);
(void) l_free_lstate(&l_state);
return (L_INVALID_SLOT);
}
/* Only allow the single slot version for Daktari */
if (g_get_inquiry(ses_path, &inq)) {
return (L_SCSI_ERROR);
}
enc_type = l_get_enc_type(inq);
if (((enc_type == DAK_ENC_TYPE) && (save_frd != 's')) ||
((enc_type != DAK_ENC_TYPE) && (save_frd == 's'))) {
path_ptr->slot_valid = 0;
(void) g_destroy_data(result);
(void) l_free_box_list(&box_list_ptr);
(void) l_free_lstate(&l_state);
return (L_INVALID_SLOT);
}
if (path_ptr->f_flag) {
if (*l_state->drv_front[slot].g_disk_state.physical_path) {
result =
g_alloc_string(l_state->drv_front[slot].g_disk_state.physical_path);
} else {
/* Result is the IB path */
path_ptr->ib_path_flag = 1;
path_ptr->p_physical_path =
g_alloc_string(result);
(void) g_destroy_data(result);
result = NULL;
}
} else {
if (*l_state->drv_rear[slot].g_disk_state.physical_path) {
result =
g_alloc_string(l_state->drv_rear[slot].g_disk_state.physical_path);
} else {
/* Result is the IB path */
path_ptr->ib_path_flag = 1;
path_ptr->p_physical_path =
g_alloc_string(result);
(void) g_destroy_data(result);
result = NULL;
}
}
(void) l_free_lstate(&l_state);
goto done;
}
if (found_box || found_comma) {
goto done;
}
/*
* No luck with the box name.
*
* Try WWN's
*/
/* Look for the SES's WWN */
box_list = box_list_ptr;
while (box_list != NULL) {
if (((strcasecmp((char *)tmp_name,
(char *)box_list->b_port_wwn_s)) == 0) ||
((strcasecmp((char *)tmp_name,
(char *)box_list->b_node_wwn_s)) == 0)) {
result =
g_alloc_string(box_list->b_physical_path);
L_DPRINTF(" l_convert_name:"
" Found subsystem using the WWN"
": name %s WWN %s\n",
box_list->b_name, box_list->b_node_wwn_s);
goto done;
}
box_list = box_list->box_next;
}
/* Look for a device's WWN */
if (strlen(tmp_name) <= L_WWN_LENGTH) {
if ((err = g_get_wwn_list(&wwn_list, verbose)) != 0) {
(void) l_free_box_list(&box_list_ptr);
return (err);
}
for (wwn_list_ptr = wwn_list; wwn_list_ptr != NULL;
wwn_list_ptr = wwn_list_ptr->wwn_next) {
if (((strcasecmp((char *)tmp_name,
(char *)wwn_list_ptr->node_wwn_s)) == 0) ||
((strcasecmp((char *)tmp_name,
(char *)wwn_list_ptr->port_wwn_s)) == 0)) {
/*
* Found the device's WWN in the global WWN list.
* It MAY be in a photon/Daktari. If it is, we'll set
* additional fields in path_struct.
*/
result = g_alloc_string(wwn_list_ptr->physical_path);
L_DPRINTF(" l_convert_name:"
" Found device: WWN %s Path %s\n",
tmp_name, wwn_list_ptr->logical_path);
(void) g_free_wwn_list(&wwn_list);
/*
* Now check if it is a disk in an A5K and set
* path_struct fields
*/
path_ptr->p_physical_path = result;
if ((err = g_get_inquiry(result, &inq)) != 0) {
(void) free(result);
return (L_SCSI_ERROR);
}
/*
* Check to see if it is a supported
* A5K/v880/v890 storage subsystem disk
*/
if (g_enclDiskChk((char *)inq.inq_vid,
(char *)inq.inq_pid)) {
if (err = load_flds_if_enc_disk(
result, path_struct)) {
(void) free(result);
return (err);
}
}
goto done;
}
}
}
/*
* Try again in case we were in the /dev
* or /devices directory.
*/
result = g_get_physical_name(name);
done:
(void) l_free_box_list(&box_list_ptr);
path_ptr->argv = name;
if (result == NULL) {
if (!path_ptr->ib_path_flag)
return (-1);
} else {
path_ptr->p_physical_path = result;
}
L_DPRINTF(" l_convert_name: path_struct:\n\tphysical_path:\n\t %s\n"
"\targv:\t\t%s"
"\n\tslot_valid\t%d"
"\n\tslot\t\t%d"
"\n\tf_flag\t\t%d"
"\n\tib_path_flag\t%d\n",
path_ptr->p_physical_path,
path_ptr->argv,
path_ptr->slot_valid,
path_ptr->slot,
path_ptr->f_flag,
path_ptr->ib_path_flag);
if (env != NULL) {
end_time = gethrtime();
(void) fprintf(stdout, " l_convert_name: "
"Time = %lld millisec\n",
(end_time - start_time)/1000000);
}
if (path_ptr->ib_path_flag)
return (-1);
*phys_path = result;
return (0);
}
/*
* Gets envsen information of an enclosure from IB
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_envsen_page(int fd, uchar_t *buf, int buf_size, uchar_t page_code,
int verbose)
{
Rec_diag_hdr hdr;
uchar_t *pg;
int size, new_size, status;
if (buf == NULL) {
return (L_INVALID_BUF_LEN);
}
if (verbose) {
(void) fprintf(stdout,
MSGSTR(9046, " Reading SES page %x\n"), page_code);
}
(void) memset(&hdr, 0, sizeof (struct rec_diag_hdr));
if (status = g_scsi_rec_diag_cmd(fd, (uchar_t *)&hdr,
sizeof (struct rec_diag_hdr), page_code)) {
return (status);
}
/* Check */
if ((hdr.page_code != page_code) || (hdr.page_len == 0)) {
return (L_RD_PG_INVLD_CODE);
}
size = HEADER_LEN + hdr.page_len;
/*
* Because of a hardware restriction in the soc+ chip
* the transfers must be word aligned.
*/
while (size & 0x03) {
size++;
if (size > buf_size) {
return (L_RD_PG_MIN_BUFF);
}
P_DPRINTF(" l_get_envsen_page: Adjusting size of the "
"g_scsi_rec_diag_cmd buffer.\n");
}
if ((pg = (uchar_t *)g_zalloc(size)) == NULL) {
return (L_MALLOC_FAILED);
}
P_DPRINTF(" l_get_envsen_page: Reading page %x of size 0x%x\n",
page_code, size);
if (status = g_scsi_rec_diag_cmd(fd, pg, size, page_code)) {
(void) g_destroy_data((char *)pg);
return (status);
}
new_size = MIN(size, buf_size);
bcopy((const void *)pg, (void *)buf, (size_t)new_size);
(void) g_destroy_data(pg);
return (0);
}
/*
* Get consolidated copy of all environmental information
* into buf structure.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_envsen(char *path_phys, uchar_t *buf, int size, int verbose)
{
int fd, rval;
uchar_t *page_list_ptr, page_code, *local_buf_ptr = buf;
Rec_diag_hdr *hdr = (struct rec_diag_hdr *)(void *)buf;
ushort_t num_pages;
if ((path_phys == NULL) || (buf == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
page_code = L_PAGE_PAGE_LIST;
/* open IB */
if ((fd = g_object_open(path_phys, O_NDELAY | O_RDONLY)) == -1)
return (L_OPEN_PATH_FAIL);
P_DPRINTF(" l_get_envsen: Getting list of supported"
" pages from IB\n");
if (verbose) {
(void) fprintf(stdout,
MSGSTR(9047, " Getting list of supported pages from IB\n"));
}
/* Get page 0 */
if ((rval = l_get_envsen_page(fd, local_buf_ptr,
size, page_code, verbose)) != NULL) {
(void) close(fd);
return (rval);
}
page_list_ptr = buf + HEADER_LEN + 1; /* +1 to skip page 0 */
num_pages = hdr->page_len - 1;
/*
* check whether the number of pages received
* from IB are valid. SENA enclosure
* supports only 8 pages of sense information.
* According to SES specification dpANS X3.xxx-1997
* X3T10/Project 1212-D/Rev 8a, the enclosure supported
* pages can go upto L_MAX_POSSIBLE_PAGES (0xFF).
* Return an error if no. of pages exceeds L_MAX_POSSIBLE_PAGES.
* See if (num_pages >= L_MAX_POSSIBLE_PAGES) since 1 page (page 0)
* was already subtracted from the total number of pages before.
*/
if (num_pages < 1 || num_pages >= L_MAX_POSSIBLE_PAGES) {
return (L_INVALID_NO_OF_ENVSEN_PAGES);
}
/*
* Buffer size of MAX_REC_DIAG_LENGTH can be small if the
* number of pages exceed more than L_MAX_SENAIB_PAGES
* but less than L_MAX_POSSIBLE_PAGES.
*/
if (size == MAX_REC_DIAG_LENGTH &&
num_pages >= L_MAX_SENAIB_PAGES) {
return (L_INVALID_BUF_LEN);
}
/* Align buffer */
while (hdr->page_len & 0x03) {
hdr->page_len++;
}
local_buf_ptr += HEADER_LEN + hdr->page_len;
/*
* Getting all pages and appending to buf
*/
for (; num_pages--; page_list_ptr++) {
/*
* The fifth byte of page 0 is the start
* of the list of pages not including page 0.
*/
page_code = *page_list_ptr;
if ((rval = l_get_envsen_page(fd, local_buf_ptr,
size, page_code, verbose)) != NULL) {
(void) close(fd);
return (rval);
}
hdr = (struct rec_diag_hdr *)(void *)local_buf_ptr;
local_buf_ptr += HEADER_LEN + hdr->page_len;
}
(void) close(fd);
return (0);
}
/*
* Get the individual disk status.
* Path must be physical and point to a disk.
*
* This function updates the d_state_flags, port WWN's
* and num_blocks for all accessiable ports
* in l_disk_state->g_disk_state structure.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_disk_status(char *path, struct l_disk_state_struct *l_disk_state,
WWN_list *wwn_list, int verbose)
{
struct dlist *ml;
char path_a[MAXPATHLEN], path_b[MAXPATHLEN], ses_path[MAXPATHLEN];
gfc_map_t map;
int path_a_found = 0, path_b_found = 0, local_port_a_flag;
uchar_t node_wwn[WWN_SIZE], port_wwn[WWN_SIZE];
int al_pa, err, pathcnt = 1;
int i = 0;
char temppath[MAXPATHLEN];
mp_pathlist_t pathlist;
char pwwn[WWN_S_LEN];
struct stat sbuf;
if ((path == NULL) || (l_disk_state == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
/* Check device name */
if (stat(path, &sbuf) || (sbuf.st_rdev == NODEV)) {
G_DPRINTF(" l_get_disk_status: invalid device %s\n", path);
return (L_INVALID_PATH);
}
/* Initialize */
*path_a = *path_b = NULL;
l_disk_state->g_disk_state.num_blocks = 0;
/* Get paths. */
g_get_multipath(path,
&(l_disk_state->g_disk_state.multipath_list),
wwn_list, verbose);
ml = l_disk_state->g_disk_state.multipath_list;
if (ml == NULL) {
l_disk_state->l_state_flag = L_NO_PATH_FOUND;
G_DPRINTF(" l_get_disk_status: Error finding a "
"multipath to the disk.\n");
return (0);
}
if (strstr(path, SCSI_VHCI) != NULL) {
/*
* It is an MPXIO Path
*/
(void) strcpy(temppath, path);
if (g_get_pathlist(temppath, &pathlist)) {
return (0);
}
pathcnt = pathlist.path_count;
for (i = 0; i < pathcnt; i++) {
/*
* Skip inactive paths.
* A path that is not in either
* MDI_PATHINFO_STATE_ONLINE or
* MDI_PATHINFO_STATE_STANDBY state is not
* an active path.
*
* When a disk port is bypassed and mpxio is
* enabled, the path_state for that path goes to the
* offline state
*/
if (pathlist.path_info[i].path_state !=
MDI_PATHINFO_STATE_ONLINE &&
pathlist.path_info[i].path_state !=
MDI_PATHINFO_STATE_STANDBY) {
continue;
}
(void) strncpy(pwwn, pathlist.path_info[i].path_addr,
L_WWN_LENGTH);
pwwn[L_WWN_LENGTH] = '\0';
if (!(path_a_found || path_b_found)) {
if (pwwn[1] == '1') {
local_port_a_flag = 1;
} else {
local_port_a_flag = 0;
}
} else if (path_a_found &&
(strstr(l_disk_state->g_disk_state.port_a_wwn_s,
pwwn) == NULL)) {
/* do port b */
local_port_a_flag = 0;
} else if (path_b_found &&
(strstr(l_disk_state->g_disk_state.port_b_wwn_s,
pwwn) == NULL)) {
/* do port a */
local_port_a_flag = 1;
}
if (err = l_get_disk_port_status(path,
l_disk_state, local_port_a_flag, verbose)) {
return (err);
}
if (local_port_a_flag && (!path_a_found)) {
(void) strcpy(l_disk_state->
g_disk_state.port_a_wwn_s, pwwn);
l_disk_state->g_disk_state.port_a_valid++;
path_a_found++;
}
if ((!local_port_a_flag) && (!path_b_found)) {
(void) strcpy(l_disk_state->
g_disk_state.port_b_wwn_s, pwwn);
l_disk_state->g_disk_state.port_b_valid++;
path_b_found++;
}
}
free(pathlist.path_info);
return (0);
}
while (ml && (!(path_a_found && path_b_found))) {
if (err = g_get_dev_map(ml->dev_path, &map, verbose)) {
(void) g_free_multipath(ml);
return (err);
}
if ((err = l_get_ses_path(ml->dev_path, ses_path,
&map, verbose)) != 0) {
(void) g_free_multipath(ml);
free((void *)map.dev_addr);
return (err);
}
free((void *)map.dev_addr); /* Not used anymore */
/*
* Get the port, A or B, of the disk,
* by passing the IB path.
*/
if (err = l_get_port(ses_path, &local_port_a_flag, verbose)) {
(void) g_free_multipath(ml);
return (err);
}
if (local_port_a_flag && (!path_a_found)) {
G_DPRINTF(" l_get_disk_status: Path to Port A "
"found: %s\n", ml->dev_path);
if (err = l_get_disk_port_status(ml->dev_path,
l_disk_state, local_port_a_flag, verbose)) {
(void) g_free_multipath(ml);
return (err);
}
if (err = g_get_wwn(ml->dev_path,
port_wwn, node_wwn,
&al_pa, verbose)) {
(void) g_free_multipath(ml);
return (err);
}
(void) sprintf(l_disk_state->g_disk_state.port_a_wwn_s,
"%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x",
port_wwn[0], port_wwn[1], port_wwn[2], port_wwn[3],
port_wwn[4], port_wwn[5], port_wwn[6], port_wwn[7]);
l_disk_state->g_disk_state.port_a_valid++;
path_a_found++;
}
if ((!local_port_a_flag) && (!path_b_found)) {
G_DPRINTF(" l_get_disk_status: Path to Port B "
"found: %s\n", ml->dev_path);
if (err = l_get_disk_port_status(ml->dev_path,
l_disk_state, local_port_a_flag, verbose)) {
return (err);
}
if (err = g_get_wwn(ml->dev_path,
port_wwn, node_wwn,
&al_pa, verbose)) {
(void) g_free_multipath(ml);
return (err);
}
(void) sprintf(l_disk_state->g_disk_state.port_b_wwn_s,
"%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x",
port_wwn[0], port_wwn[1], port_wwn[2], port_wwn[3],
port_wwn[4], port_wwn[5], port_wwn[6], port_wwn[7]);
l_disk_state->g_disk_state.port_b_valid++;
path_b_found++;
}
ml = ml->next;
}
return (0);
}
/*
* Check for Persistent Reservations.
*/
int
l_persistent_check(int fd, struct l_disk_state_struct *l_disk_state,
int verbose)
{
int status;
Read_keys read_key_buf;
Read_reserv read_reserv_buf;
(void) memset(&read_key_buf, 0, sizeof (struct read_keys_struct));
if ((status = g_scsi_persistent_reserve_in_cmd(fd,
(uchar_t *)&read_key_buf, sizeof (struct read_keys_struct),
ACTION_READ_KEYS))) {
return (status);
}
/* This means persistent reservations are supported by the disk. */
l_disk_state->g_disk_state.persistent_reserv_flag = 1;
if (read_key_buf.rk_length) {
l_disk_state->g_disk_state.persistent_registered = 1;
}
(void) memset(&read_reserv_buf, 0,
sizeof (struct read_reserv_struct));
if ((status = g_scsi_persistent_reserve_in_cmd(fd,
(uchar_t *)&read_reserv_buf,
sizeof (struct read_reserv_struct),
ACTION_READ_RESERV))) {
return (status);
}
if (read_reserv_buf.rr_length) {
l_disk_state->g_disk_state.persistent_active = 1;
}
if (verbose) {
(void) fprintf(stdout,
MSGSTR(9048, " Checking for Persistent "
"Reservations:"));
if (l_disk_state->g_disk_state.persistent_reserv_flag) {
if (l_disk_state->g_disk_state.persistent_active != NULL) {
(void) fprintf(stdout, MSGSTR(39, "Active"));
} else {
(void) fprintf(stdout, MSGSTR(9049, "Registered"));
}
} else {
(void) fprintf(stdout,
MSGSTR(87,
"Not being used"));
}
(void) fprintf(stdout, "\n");
}
return (0);
}
/*
* Gets the disk status and
* updates the l_disk_state_struct structure.
* Checks for open fail, Reservation Conflicts,
* Not Ready and so on.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_disk_port_status(char *path, struct l_disk_state_struct *l_disk_state,
int port_a_flag, int verbose)
{
int fd, status = 0, local_state = 0;
Read_capacity_data capacity; /* local read capacity buffer */
struct vtoc vtoc;
if ((path == NULL) || (l_disk_state == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
/*
* Try to open drive.
*/
if ((fd = g_object_open(path, O_RDONLY)) == -1) {
if ((fd = g_object_open(path,
O_RDONLY | O_NDELAY)) == -1) {
G_DPRINTF(" l_get_disk_port_status: Error "
"opening drive %s\n", path);
local_state = L_OPEN_FAIL;
} else {
/* See if drive ready */
if (status = g_scsi_tur(fd)) {
if ((status & L_SCSI_ERROR) &&
((status & ~L_SCSI_ERROR) == STATUS_CHECK)) {
/*
* TBD
* This is where I should figure out
* if the device is Not Ready or whatever.
*/
local_state = L_NOT_READY;
} else if ((status & L_SCSI_ERROR) &&
((status & ~L_SCSI_ERROR) ==
STATUS_RESERVATION_CONFLICT)) {
/* mark reserved */
local_state = L_RESERVED;
} else {
local_state = L_SCSI_ERR;
}
/*
* There may not be a label on the drive - check
*/
} else if (ioctl(fd, DKIOCGVTOC, &vtoc) == 0) {
/*
* Sanity-check the vtoc
*/
if (vtoc.v_sanity != VTOC_SANE ||
vtoc.v_sectorsz != DEV_BSIZE) {
local_state = L_NO_LABEL;
G_DPRINTF(" l_get_disk_port_status: "
"Checking vtoc - No Label found.\n");
}
} else if (errno != ENOTSUP) {
I_DPRINTF("\t- DKIOCGVTOC ioctl failed: "
" invalid geometry\n");
local_state = L_NO_LABEL;
}
}
}
/*
* Need an extra check for tape devices
* read capacity should not be run on tape devices.
* It will always return Not Readable
*/
if (((local_state == 0) || (local_state == L_NO_LABEL)) &&
! (strstr(path, SLSH_DRV_NAME_ST))) {
if (status = g_scsi_read_capacity_cmd(fd, (uchar_t *)&capacity,
sizeof (capacity))) {
G_DPRINTF(" l_get_disk_port_status: "
"Read Capacity failed.\n");
if (status & L_SCSI_ERROR) {
if ((status & ~L_SCSI_ERROR) ==
STATUS_RESERVATION_CONFLICT) {
/* mark reserved */
local_state |= L_RESERVED;
} else
/* mark bad */
local_state |= L_NOT_READABLE;
} else {
/*
* TBD
* Need a more complete state definition here.
*/
l_disk_state->g_disk_state.d_state_flags[port_a_flag] =
L_SCSI_ERR;
(void) close(fd);
return (0);
}
} else {
/* save capacity */
l_disk_state->g_disk_state.num_blocks =
capacity.last_block_addr + 1;
}
}
(void) close(fd);
l_disk_state->g_disk_state.d_state_flags[port_a_flag] = local_state;
G_DPRINTF(" l_get_disk_port_status: Individual Disk"
" Status: 0x%x for"
" port %s for path:"
" %s\n", local_state,
port_a_flag ? "A" : "B", path);
return (0);
}
/*
* Copy and format page 1 from big buffer to state structure.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
static int
copy_config_page(struct l_state_struct *l_state, uchar_t *from_ptr)
{
IB_page_config *encl_ptr;
int size, i;
encl_ptr = (struct ib_page_config *)(void *)from_ptr;
/* Sanity check. */
if ((encl_ptr->enc_len > MAX_VEND_SPECIFIC_ENC) ||
(encl_ptr->enc_len == 0)) {
return (L_REC_DIAG_PG1);
}
if ((encl_ptr->enc_num_elem > MAX_IB_ELEMENTS) ||
(encl_ptr->enc_num_elem == 0)) {
return (L_REC_DIAG_PG1);
}
size = HEADER_LEN + 4 + HEADER_LEN + encl_ptr->enc_len;
bcopy((void *)(from_ptr),
(void *)&l_state->ib_tbl.config, (size_t)size);
/*
* Copy Type Descriptors seperately to get aligned.
*/
from_ptr += size;
size = (sizeof (struct type_desc_hdr))*encl_ptr->enc_num_elem;
bcopy((void *)(from_ptr),
(void *)&l_state->ib_tbl.config.type_hdr, (size_t)size);
/*
* Copy Text Descriptors seperately to get aligned.
*
* Must use the text size from the Type Descriptors.
*/
from_ptr += size;
for (i = 0; i < (int)l_state->ib_tbl.config.enc_num_elem; i++) {
size = l_state->ib_tbl.config.type_hdr[i].text_len;
bcopy((void *)(from_ptr),
(void *)&l_state->ib_tbl.config.text[i], (size_t)size);
from_ptr += size;
}
return (0);
}
/*
* Copy page 7 (Element Descriptor page) to state structure.
* Copy header then copy each element descriptor
* seperately.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
static void
copy_page_7(struct l_state_struct *l_state, uchar_t *from_ptr)
{
uchar_t *my_from_ptr;
int size, j, k, p7_index;
size = HEADER_LEN +
sizeof (l_state->ib_tbl.p7_s.gen_code);
bcopy((void *)(from_ptr),
(void *)&l_state->ib_tbl.p7_s, (size_t)size);
my_from_ptr = from_ptr + size;
if (getenv("_LUX_D_DEBUG") != NULL) {
g_dump(" copy_page_7: Page 7 header: ",
(uchar_t *)&l_state->ib_tbl.p7_s, size,
HEX_ASCII);
(void) fprintf(stdout,
" copy_page_7: Elements being stored "
"in state table\n"
" ");
}
/* I am assuming page 1 has been read. */
for (j = 0, p7_index = 0;
j < (int)l_state->ib_tbl.config.enc_num_elem; j++) {
/* Copy global element */
size = HEADER_LEN +
((*(my_from_ptr + 2) << 8) | *(my_from_ptr + 3));
bcopy((void *)(my_from_ptr),
(void *)&l_state->ib_tbl.p7_s.element_desc[p7_index++],
(size_t)size);
my_from_ptr += size;
for (k = 0; k < (int)l_state->ib_tbl.config.type_hdr[j].num;
k++) {
/* Copy individual elements */
size = HEADER_LEN +
((*(my_from_ptr + 2) << 8) |
*(my_from_ptr + 3));
bcopy((void *)(my_from_ptr),
(void *)&l_state->ib_tbl.p7_s.element_desc[p7_index++],
(size_t)size);
my_from_ptr += size;
D_DPRINTF(".");
}
}
D_DPRINTF("\n");
}
/*
* Gets IB diagnostic pages on a given pathname from l_get_envsen().
* It also fills up the individual device element of l_state_struct using
* diagnostics pages.
* Gets IB diagnostic pages on a given pathname from l_get_envsen().
* It also fills up the individual device element of l_state_struct using
* diagnostics pages.
*
* The path must be of the ses driver.
* e.g.
* /devices/sbus@1f,0/SUNW,socal@1,0/SUNW,sf@0,0/ses@e,0:0
* or
* /devices/sbus@1f,0/SUNW,socal@1,0/SUNW,sf@0,0/ses@WWN,0:0
*
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_ib_status(char *path, struct l_state_struct *l_state,
int verbose)
{
L_inquiry inq;
uchar_t *ib_buf, *from_ptr;
int num_pages, i, size, err;
IB_page_2 *encl_ptr;
int front_index, rear_index;
int enc_type = 0;
if ((path == NULL) || (l_state == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
/*
* get big buffer
*/
if ((ib_buf = (uchar_t *)calloc(1,
MAX_REC_DIAG_LENGTH)) == NULL) {
return (L_MALLOC_FAILED);
}
/*
* Get IB information
* Even if there are 2 IB's in this box on this loop don't bother
* talking to the other one as both IB's in a box
* are supposed to report the same information.
*/
if (err = l_get_envsen(path, ib_buf, MAX_REC_DIAG_LENGTH,
verbose)) {
(void) g_destroy_data(ib_buf);
return (err);
}
/*
* Set up state structure
*/
bcopy((void *)ib_buf, (void *)&l_state->ib_tbl.p0,
(size_t)sizeof (struct ib_page_0));
num_pages = l_state->ib_tbl.p0.page_len;
from_ptr = ib_buf + HEADER_LEN + l_state->ib_tbl.p0.page_len;
for (i = 1; i < num_pages; i++) {
if (l_state->ib_tbl.p0.sup_page_codes[i] == L_PAGE_1) {
if (err = copy_config_page(l_state, from_ptr)) {
return (err);
}
} else if (l_state->ib_tbl.p0.sup_page_codes[i] ==
L_PAGE_2) {
encl_ptr = (struct ib_page_2 *)(void *)from_ptr;
size = HEADER_LEN + encl_ptr->page_len;
bcopy((void *)(from_ptr),
(void *)&l_state->ib_tbl.p2_s, (size_t)size);
if (getenv("_LUX_D_DEBUG") != NULL) {
g_dump(" l_get_ib_status: Page 2: ",
(uchar_t *)&l_state->ib_tbl.p2_s, size,
HEX_ONLY);
}
} else if (l_state->ib_tbl.p0.sup_page_codes[i] ==
L_PAGE_7) {
(void) copy_page_7(l_state, from_ptr);
}
from_ptr += ((*(from_ptr + 2) << 8) | *(from_ptr + 3));
from_ptr += HEADER_LEN;
}
(void) g_destroy_data(ib_buf);
G_DPRINTF(" l_get_ib_status: Read %d Receive Diagnostic pages "
"from the IB.\n", num_pages);
if (err = g_get_inquiry(path, &inq)) {
return (err);
}
enc_type = l_get_enc_type(inq);
/*
* Get the total number of drives per box.
* This assumes front & rear are the same.
*/
l_state->total_num_drv = 0; /* default to use as a flag */
for (i = 0; i < (int)l_state->ib_tbl.config.enc_num_elem; i++) {
if (l_state->ib_tbl.config.type_hdr[i].type == ELM_TYP_DD) {
if (l_state->total_num_drv) {
if (l_state->total_num_drv !=
(l_state->ib_tbl.config.type_hdr[i].num * 2)) {
return (L_INVALID_NUM_DISKS_ENCL);
}
} else {
if (enc_type == DAK_ENC_TYPE) {
l_state->total_num_drv =
l_state->ib_tbl.config.type_hdr[i].num;
} else {
l_state->total_num_drv =
l_state->ib_tbl.config.type_hdr[i].num * 2;
}
}
}
}
/*
* transfer the individual drive Device Element information
* from IB state to drive state.
*/
if (err = l_get_disk_element_index(l_state, &front_index,
&rear_index)) {
return (err);
}
/* Skip global element */
front_index++;
if (enc_type == DAK_ENC_TYPE) {
rear_index += l_state->total_num_drv/2 + 1;
} else {
rear_index++;
}
for (i = 0; i < l_state->total_num_drv/2; i++) {
bcopy((void *)&l_state->ib_tbl.p2_s.element[front_index + i],
(void *)&l_state->drv_front[i].ib_status,
(size_t)sizeof (struct device_element));
bcopy((void *)&l_state->ib_tbl.p2_s.element[rear_index + i],
(void *)&l_state->drv_rear[i].ib_status,
(size_t)sizeof (struct device_element));
}
if (getenv("_LUX_G_DEBUG") != NULL) {
g_dump(" l_get_ib_status: disk elements: ",
(uchar_t *)&l_state->ib_tbl.p2_s.element[front_index],
((sizeof (struct device_element)) * (l_state->total_num_drv)),
HEX_ONLY);
}
return (0);
}
/*
* Given an IB path get the port, A or B.
*
* OUTPUT:
* port_a: sets to 1 for port A
* and 0 for port B.
* RETURNS:
* err: 0 O.k.
* non-zero otherwise
*/
int
l_get_port(char *ses_path, int *port_a, int verbose)
{
L_state *ib_state = NULL;
Ctlr_elem_st ctlr;
int i, err, elem_index = 0;
if ((ses_path == NULL) || (port_a == NULL)) {
return (L_NO_SES_PATH);
}
if ((ib_state = (L_state *)calloc(1, sizeof (L_state))) == NULL) {
return (L_MALLOC_FAILED);
}
bzero(&ctlr, sizeof (ctlr));
if (err = l_get_ib_status(ses_path, ib_state, verbose)) {
(void) l_free_lstate(&ib_state);
return (err);
}
for (i = 0; i < (int)ib_state->ib_tbl.config.enc_num_elem; i++) {
elem_index++; /* skip global */
if (ib_state->ib_tbl.config.type_hdr[i].type == ELM_TYP_IB) {
bcopy((const void *)
&ib_state->ib_tbl.p2_s.element[elem_index],
(void *)&ctlr, sizeof (ctlr));
break;
}
elem_index += ib_state->ib_tbl.config.type_hdr[i].num;
}
*port_a = ctlr.report;
G_DPRINTF(" l_get_port: Found ses is the %s card.\n",
ctlr.report ? "A" : "B");
(void) l_free_lstate(&ib_state);
return (0);
}
/*
* This function expects a pointer to a device path ending in the form
* .../ses@w<NODEWWN>,<something> or .../ssd@w<NODEWWN>,<something>
*
* No validity checking of the path is done by the function.
*
* It gets the wwn (node wwn) out of the passed string, searches the passed
* map for a match, gets the corresponding phys addr (port id) for that entry
* and stores in the pointer the caller has passed as an argument (pid)
*
* This function is to be called only for public/fabric topologies
*
* If this interface is going to get exported, one point to be
* considered is if a call to g_get_path_type() has to be made.
*
* INPUT:
* path - pointer to the enclosure/disk device path
* map - pointer to the map
*
* OUTPUT:
* pid - the physical address associated for the node WWN that was found
* in the map
*
* RETURNS:
* 0 - on success
* non-zero - otherwise
*/
int
l_get_pid_from_path(const char *path, const gfc_map_t *map, int *pid)
{
int i;
unsigned long long ll_wwn;
char *char_ptr, wwn_str[WWN_SIZE * 2 + 1];
char *byte_ptr, *temp_ptr;
gfc_port_dev_info_t *dev_addr_ptr;
mp_pathlist_t pathlist;
char path0[MAXPATHLEN], pwwn0[WWN_S_LEN];
/* if mpxio device */
if (strstr(path, SCSI_VHCI) != NULL) {
(void) strcpy(path0, path);
if (g_get_pathlist(path0, &pathlist)) {
return (L_INVALID_PATH);
} else {
(void) strncpy(pwwn0, pathlist.path_info[0].
path_addr, L_WWN_LENGTH);
pwwn0[L_WWN_LENGTH] = '\0';
free(pathlist.path_info);
char_ptr = pwwn0;
}
} else {
/* First a quick check on the path */
if (((char_ptr = strrchr(path, '@')) == NULL) ||
(*++char_ptr != 'w')) {
return (L_INVALID_PATH);
} else {
char_ptr++;
}
}
if (strlen(char_ptr) < (WWN_SIZE * 2)) {
return (L_INVALID_PATH);
}
(void) strncpy(wwn_str, char_ptr, WWN_SIZE * 2);
wwn_str[WWN_SIZE * 2] = '\0';
errno = 0; /* For error checking */
ll_wwn = strtoull(wwn_str, &temp_ptr, L_WWN_LENGTH);
if (errno || (temp_ptr != (wwn_str + (WWN_SIZE * 2)))) {
return (L_INVALID_PATH);
}
byte_ptr = (char *)&ll_wwn;
/*
* Search for the ses's node wwn in map to get the area and
* domain ids from the corresponding port id (phys address).
*/
for (dev_addr_ptr = map->dev_addr, i = 0; i < map->count;
dev_addr_ptr++, i++) {
if (bcmp((char *)dev_addr_ptr->gfc_port_dev.
pub_port.dev_nwwn.raw_wwn, byte_ptr, WWN_SIZE) == 0)
break;
}
if (i >= map->count)
return (L_INVALID_PATH);
*pid = dev_addr_ptr->gfc_port_dev.pub_port.dev_did.port_id;
return (0);
}
/*
* Finds the disk's node wwn string, and
* port A and B's WWNs and their port status.
*
* INPUT:
* path - pointer to a ses path
* wwn_list - pointer to the wwn_list
*
* OUTPUT:
* state - node_wwn and wwn of ports A & B of disk, etc are inited
* - by l_get_disk_status()
* found_flag - incremented after each examined element in the map
*
* RETURNS:
* 0 O.K.
* non-zero otherwise.
*/
static int
l_get_node_status(char *path, struct l_disk_state_struct *state,
int *found_flag, WWN_list *wwn_list, int verbose)
{
int j, select_id, err;
int path_pid;
char temp_path[MAXPATHLEN];
char sbuf[MAXPATHLEN], *char_ptr;
gfc_map_mp_t *map_mp, *map_ptr;
struct stat stat_buf;
WWN_list *wwnlp;
char wwnp[WWN_S_LEN];
/*
* Get a new map.
*/
map_mp = NULL;
if (err = get_mp_dev_map(path, &map_mp, verbose))
return (err);
for (map_ptr = map_mp; map_ptr != NULL; map_ptr = map_ptr->map_next) {
switch (map_ptr->map.hba_addr.port_topology) {
case FC_TOP_PRIVATE_LOOP:
for (j = 0; j < map_ptr->map.count; j++) {
/*
* Get a generic path to a device
*
* This assumes the path looks something like this
* /devices/sbus@1f,0/SUNW,socal@1,0/SUNW,sf@0,0/...
* ...ses@x,0:0
* then creates a path that looks like
* /devices/sbus@1f,0/SUNW,socal@1,0/SUNW,sf@0,0/ssd@
*/
(void) strcpy(temp_path, path);
if ((char_ptr = strrchr(temp_path, '/')) == NULL) {
free_mp_dev_map(&map_mp);
return (L_INVALID_PATH);
}
*char_ptr = '\0'; /* Terminate sting */
(void) strcat(temp_path, SLSH_DRV_NAME_SSD);
/*
* Create complete path.
*
* Build entry ssd@xx,0:c,raw
* where xx is the WWN.
*/
select_id = g_sf_alpa_to_switch[map_ptr->map.
dev_addr[j].gfc_port_dev.priv_port.sf_al_pa];
G_DPRINTF(" l_get_node_status: Searching loop map "
"to find disk: ID:0x%x"
" AL_PA:0x%x\n", select_id,
state->ib_status.sel_id);
if (strstr(path, SCSI_VHCI) == NULL) {
(void) sprintf(sbuf,
"w%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x,0:c,raw",
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_port_wwn[0],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_port_wwn[1],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_port_wwn[2],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_port_wwn[3],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_port_wwn[4],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_port_wwn[5],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_port_wwn[6],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_port_wwn[7]);
(void) strcat(temp_path, sbuf);
}
/*
* If we find a device on this loop in this box
* update its status.
*/
if (state->ib_status.sel_id == select_id) {
/*
* Found a device on this loop in this box.
*
* Update state.
*/
(void) sprintf(state->g_disk_state.node_wwn_s,
"%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x",
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[0],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[1],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[2],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[3],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[4],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[5],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[6],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[7]);
if (strstr(path, SCSI_VHCI) != NULL) {
(void) g_ll_to_str(map_ptr->map.dev_addr[j].gfc_port_dev.
priv_port.sf_node_wwn, wwnp);
for (wwnlp = wwn_list; wwnlp != NULL;
wwnlp = wwnlp->wwn_next) {
if (strcmp(wwnlp->node_wwn_s, wwnp) == 0) {
(void) strcpy(temp_path, wwnlp->physical_path);
break;
}
}
if (wwnlp == NULL) {
(void) sprintf(sbuf,
"g%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x:c,raw",
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[0],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[1],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[2],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[3],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[4],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[5],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[6],
map_ptr->map.dev_addr[j].gfc_port_dev.priv_port.
sf_node_wwn[7]);
(void) strcat(temp_path, sbuf);
/*
* check to make sure this is a valid path.
* Paths may not always be created on the
* host. So, we make a quick check.
*/
if (stat(temp_path, &stat_buf) == -1) {
free_mp_dev_map(&map_mp);
return (errno);
}
}
}
(void) strcpy(state->g_disk_state.physical_path,
temp_path);
/* Bad if WWN is all zeros. */
if (is_null_wwn(map_ptr->map.dev_addr[j].
gfc_port_dev.priv_port.
sf_node_wwn)) {
state->l_state_flag = L_INVALID_WWN;
G_DPRINTF(" l_get_node_status: "
"Disk state was "
" Invalid WWN.\n");
(*found_flag)++;
free_mp_dev_map(&map_mp);
return (0);
}
/* get device status */
if (err = l_get_disk_status(temp_path, state,
wwn_list, verbose)) {
free_mp_dev_map(&map_mp);
return (err);
}
/*
* found device in map. Don't need to look
* any further
*/
(*found_flag)++;
free_mp_dev_map(&map_mp);
return (0);
}
} /* for loop */
break;
case FC_TOP_PUBLIC_LOOP:
case FC_TOP_FABRIC:
/*
* Get a generic path to a device
* This assumes the path looks something like this
* /devices/sbus@1f,0/SUNW,socal@1,0/SUNW,sf@0,0/ses@wWWN,0:0
* then creates a path that looks like
* /devices/sbus@1f,0/SUNW,socal@1,0/SUNW,sf@0,0/ssd@
*/
(void) strcpy(temp_path, path);
if ((char_ptr = strrchr(temp_path, '/')) == NULL) {
free_mp_dev_map(&map_mp);
return (L_INVALID_PATH);
}
*char_ptr = '\0'; /* Terminate sting */
if (err = l_get_pid_from_path(path, &map_ptr->map, &path_pid)) {
free_mp_dev_map(&map_mp);
return (err);
}
/* Now append the ssd string */
(void) strcat(temp_path, SLSH_DRV_NAME_SSD);
/*
* Create complete path.
*
* Build entry ssd@WWN,0:c,raw
*
* First, search the map for a device with the area code and
* domain as in 'path_pid'.
*/
for (j = 0; j < map_ptr->map.count; j++) {
if (map_ptr->map.dev_addr[j].gfc_port_dev.pub_port.
dev_dtype != DTYPE_ESI) {
select_id = g_sf_alpa_to_switch[map_ptr->map.
dev_addr[j].gfc_port_dev.pub_port.dev_did.
port_id & 0xFF];
if (((map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_did.port_id &
AREA_DOMAIN_ID) ==
(path_pid & AREA_DOMAIN_ID)) &&
(state->ib_status.sel_id == select_id)) {
/*
* Found the device. Update state.
*/
if (strstr(temp_path, SCSI_VHCI) == NULL) {
(void) sprintf(sbuf,
"w%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x,0:c,raw",
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_pwwn.raw_wwn[0],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_pwwn.raw_wwn[1],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_pwwn.raw_wwn[2],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_pwwn.raw_wwn[3],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_pwwn.raw_wwn[4],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_pwwn.raw_wwn[5],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_pwwn.raw_wwn[6],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_pwwn.raw_wwn[7]);
(void) strcat(temp_path, sbuf);
/*
* Paths for fabric cases may not always
* be created on the host. So, we make a
* quick check.
*/
if (stat(temp_path, &stat_buf) == -1) {
free_mp_dev_map(&map_mp);
return (errno);
}
(void) sprintf(state->
g_disk_state.node_wwn_s,
"%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x",
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_nwwn.raw_wwn[0],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_nwwn.raw_wwn[1],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_nwwn.raw_wwn[2],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_nwwn.raw_wwn[3],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_nwwn.raw_wwn[4],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_nwwn.raw_wwn[5],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_nwwn.raw_wwn[6],
map_ptr->map.dev_addr[j].gfc_port_dev.
pub_port.dev_nwwn.raw_wwn[7]);
} else {
(void) g_ll_to_str(map_ptr->map.dev_addr[j].gfc_port_dev.
priv_port.sf_node_wwn, wwnp);
for (wwnlp = wwn_list; wwnlp != NULL;
wwnlp = wwnlp->wwn_next) {
if (strcmp(wwnlp->node_wwn_s, wwnp) == 0) {
(void) strcpy(temp_path, wwnlp->physical_path);
break;
}
}
if (wwnlp == NULL) {
(void) sprintf(sbuf,
"w%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x%1.2x,0:c,raw",
map_ptr->map.dev_addr[j].gfc_port_dev.pub_port.
dev_nwwn.raw_wwn[0],
map_ptr->map.dev_addr[j].gfc_port_dev.pub_port.
dev_nwwn.raw_wwn[1],
map_ptr->map.dev_addr[j].gfc_port_dev.pub_port.
dev_nwwn.raw_wwn[2],
map_ptr->map.dev_addr[j].gfc_port_dev.pub_port.
dev_nwwn.raw_wwn[3],
map_ptr->map.dev_addr[j].gfc_port_dev.pub_port.
dev_nwwn.raw_wwn[4],
map_ptr->map.dev_addr[j].gfc_port_dev.pub_port.
dev_nwwn.raw_wwn[5],
map_ptr->map.dev_addr[j].gfc_port_dev.pub_port.
dev_nwwn.raw_wwn[6],
map_ptr->map.dev_addr[j].gfc_port_dev.pub_port.
dev_nwwn.raw_wwn[7]);
(void) strcat(temp_path, sbuf);
}
}
(void) strcpy(state->g_disk_state.physical_path,
temp_path);
/* Bad if WWN is all zeros. */
if (is_null_wwn(map_ptr->map.
dev_addr[j].gfc_port_dev.
pub_port.dev_nwwn.
raw_wwn)) {
state->l_state_flag =
L_INVALID_WWN;
G_DPRINTF(
" l_get_node_status: "
"Disk state was "
" Invalid WWN.\n");
(*found_flag)++;
free_mp_dev_map(&map_mp);
return (0);
}
/* get device status */
if (err = l_get_disk_status(temp_path,
state, wwn_list, verbose)) {
free_mp_dev_map(&map_mp);
return (err);
}
(*found_flag)++;
free_mp_dev_map(&map_mp);
return (0);
} /* if select_id match */
} /* if !DTYPE_ESI */
} /* for loop */
break;
case FC_TOP_PT_PT:
free_mp_dev_map(&map_mp);
return (L_PT_PT_FC_TOP_NOT_SUPPORTED);
default:
free_mp_dev_map(&map_mp);
return (L_UNEXPECTED_FC_TOPOLOGY);
} /* End of switch on port_topology */
}
free_mp_dev_map(&map_mp);
return (0);
}
/*
* Get the individual drives status for the device specified by the index.
* device at the path where the path is of the IB and updates the
* g_disk_state_struct structure.
*
* If the disk's port is bypassed, it gets the
* drive status such as node WWN from the second port.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_individual_state(char *path,
struct l_disk_state_struct *state, Ib_state *ib_state,
int front_flag, struct box_list_struct *box_list,
struct wwn_list_struct *wwn_list, int verbose)
{
int found_flag = 0, elem_index = 0;
int port_a_flag, err, j;
struct dlist *seslist = NULL;
Bp_elem_st bpf, bpr;
hrtime_t start_time, end_time;
if ((path == NULL) || (state == NULL) ||
(ib_state == NULL) || (box_list == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
start_time = gethrtime();
if ((state->ib_status.code != S_NOT_INSTALLED) &&
(state->ib_status.code != S_NOT_AVAILABLE)) {
/*
* Disk could have been bypassed on this loop.
* Check the port state before l_state_flag
* is set to L_INVALID_MAP.
*/
for (j = 0;
j < (int)ib_state->config.enc_num_elem;
j++) {
elem_index++;
if (ib_state->config.type_hdr[j].type ==
ELM_TYP_BP)
break;
elem_index +=
ib_state->config.type_hdr[j].num;
}
/*
* check if port A & B of backplane are bypassed.
* If so, do not bother.
*/
if (front_flag) {
bcopy((const void *)
&(ib_state->p2_s.element[elem_index]),
(void *)&bpf, sizeof (bpf));
if ((bpf.byp_a_enabled || bpf.en_bypass_a) &&
(bpf.byp_b_enabled || bpf.en_bypass_b))
return (0);
} else {
/* if disk is in rear slot */
bcopy((const void *)
&(ib_state->p2_s.element[elem_index+1]),
(void *)&bpr, sizeof (bpr));
if ((bpr.byp_b_enabled || bpr.en_bypass_b) &&
(bpr.byp_a_enabled || bpr.en_bypass_a))
return (0);
}
if ((err = l_get_node_status(path, state,
&found_flag, wwn_list, verbose)) != 0)
return (err);
if (!found_flag) {
if ((err = l_get_allses(path, box_list,
&seslist, 0)) != 0) {
return (err);
}
if (err = l_get_port(path, &port_a_flag, verbose))
goto done;
if (port_a_flag) {
if ((state->ib_status.bypass_a_en &&
!(state->ib_status.bypass_b_en)) ||
!(state->ib_status.bypass_b_en)) {
while (seslist != NULL && !found_flag) {
if (err = l_get_port(
seslist->dev_path,
&port_a_flag, verbose)) {
goto done;
}
if ((strcmp(seslist->dev_path,
path) != 0) &&
!port_a_flag) {
*path = NULL;
(void) strcpy(path,
seslist->dev_path);
if (err =
l_get_node_status(path,
state, &found_flag,
wwn_list, verbose)) {
goto done;
}
}
seslist = seslist->next;
}
}
} else {
if ((state->ib_status.bypass_b_en &&
!(state->ib_status.bypass_a_en)) ||
!(state->ib_status.bypass_a_en)) {
while (seslist != NULL && !found_flag) {
if (err = l_get_port(
seslist->dev_path,
&port_a_flag, verbose)) {
goto done;
}
if ((strcmp(seslist->dev_path,
path) != 0) && port_a_flag) {
*path = NULL;
(void) strcpy(path,
seslist->dev_path);
if (err =
l_get_node_status(path,
state, &found_flag,
wwn_list, verbose)) {
goto done;
}
}
seslist = seslist->next;
}
}
}
if (!found_flag) {
state->l_state_flag = L_INVALID_MAP;
G_DPRINTF(" l_get_individual_state: "
"Disk state was "
"Not in map.\n");
} else {
G_DPRINTF(" l_get_individual_state: "
"Disk was found in the map.\n");
}
if (seslist != NULL)
(void) g_free_multipath(seslist);
}
} else {
G_DPRINTF(" l_get_individual_state: Disk state was %s.\n",
(state->ib_status.code == S_NOT_INSTALLED) ?
"Not Installed" : "Not Available");
}
if (getenv("_LUX_T_DEBUG") != NULL) {
end_time = gethrtime();
(void) fprintf(stdout, " l_get_individual_state:"
"\tTime = %lld millisec\n",
(end_time - start_time)/1000000);
}
return (0);
done:
(void) g_free_multipath(seslist);
return (err);
}
/*
* Get the global state of the photon.
*
* INPUT:
* path and verbose flag
*
* "path" must be of the ses driver.
* e.g.
* /devices/sbus@1f,0/SUNW,socal@1,0/SUNW,sf@0,0/ses@e,0:0
* or
* /devices/sbus@1f,0/SUNW,socal@1,0/SUNW,sf@0,0/ses@WWN,0:0
*
* OUTPUT:
* The struct l_state (which was passed in) has the status info
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_status(char *path, struct l_state_struct *l_state, int verbose)
{
int err = 0, i, count;
L_inquiry inq;
uchar_t node_wwn[WWN_SIZE], port_wwn[WWN_SIZE];
int al_pa, found_front, found_rear, front_flag, enc_type;
char ses_path_front[MAXPATHLEN];
char ses_path_rear[MAXPATHLEN];
Box_list *b_list = NULL;
Box_list *o_list = NULL;
char node_wwn_s[(WWN_SIZE*2)+1];
uint_t select_id;
hrtime_t start_time, end_time;
WWN_list *wwn_list = NULL;
if ((path == NULL) || (l_state == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
start_time = gethrtime();
G_DPRINTF(" l_get_status: Get Status for enclosure at: "
" %s\n", path);
/* initialization */
(void) memset(l_state, 0, sizeof (struct l_state_struct));
if (err = g_get_inquiry(path, &inq)) {
return (err);
}
if ((strstr((char *)inq.inq_pid, ENCLOSURE_PROD_ID) == 0) &&
(!(strncmp((char *)inq.inq_vid, "SUN ",
sizeof (inq.inq_vid)) &&
((inq.inq_dtype & DTYPE_MASK) == DTYPE_ESI)))) {
return (L_ENCL_INVALID_PATH);
}
(void) strncpy((char *)l_state->ib_tbl.enclosure_name,
(char *)inq.inq_box_name, sizeof (inq.inq_box_name));
/*
* Get all of the IB Receive Diagnostic pages.
*/
if (err = l_get_ib_status(path, l_state, verbose)) {
return (err);
}
/*
* Now get the individual devices information from
* the device itself.
*
* May need to use multiple paths to get to the
* front and rear drives in the box.
* If the loop is split some drives may not even be available
* from this host.
*
* The way this works is in the select ID the front disks
* are accessed via the IB with the bit 4 = 0
* and the rear disks by the IB with bit 4 = 1.
*
* First get device map from fc nexus driver for this loop.
*/
/*
* Get the boxes node WWN & al_pa for this path.
*/
if (err = g_get_wwn(path, port_wwn, node_wwn, &al_pa, verbose)) {
return (err);
}
if (err = l_get_box_list(&o_list, verbose)) {
(void) l_free_box_list(&o_list);
return (err); /* Failure */
}
found_front = found_rear = 0;
for (i = 0; i < WWN_SIZE; i++) {
(void) sprintf(&node_wwn_s[i << 1], "%02x", node_wwn[i]);
}
/*
* The al_pa (or pa) can be 24 bits in size for fabric loops.
* But we will take only the low order byte to get the select_id.
* Private loops have al_pa which is only a byte in size.
*/
select_id = g_sf_alpa_to_switch[al_pa & 0xFF];
l_state->ib_tbl.box_id = (select_id & BOX_ID_MASK) >> 5;
G_DPRINTF(" l_get_status: Using this select_id 0x%x "
"and node WWN %s\n",
select_id, node_wwn_s);
if (strstr(path, SCSI_VHCI) != NULL) {
/* there is no way to obtain all the al_pa with */
/* current implementation. assume both front */
/* and rear. need changes later on. */
found_rear = 1;
found_front = 1;
(void) strcpy(ses_path_rear, path);
(void) strcpy(ses_path_front, path);
} else {
if (select_id & ALT_BOX_ID) {
found_rear = 1;
(void) strcpy(ses_path_rear, path);
b_list = o_list;
while (b_list) {
if (strcmp(b_list->b_node_wwn_s, node_wwn_s) == 0) {
if (err = g_get_wwn(b_list->b_physical_path,
port_wwn, node_wwn,
&al_pa, verbose)) {
(void) l_free_box_list(&o_list);
return (err);
}
/* Take the low order byte of al_pa */
select_id = g_sf_alpa_to_switch[al_pa & 0xFF];
if (!(select_id & ALT_BOX_ID)) {
(void) strcpy(ses_path_front,
b_list->b_physical_path);
found_front = 1;
break;
}
}
b_list = b_list->box_next;
}
} else {
(void) strcpy(ses_path_front, path);
found_front = 1;
b_list = o_list;
while (b_list) {
if (strcmp(b_list->b_node_wwn_s, node_wwn_s) == 0) {
if (err = g_get_wwn(b_list->b_physical_path,
port_wwn, node_wwn,
&al_pa, verbose)) {
(void) l_free_box_list(&o_list);
return (err);
}
select_id = g_sf_alpa_to_switch[al_pa & 0xFF];
if (select_id & ALT_BOX_ID) {
(void) strcpy(ses_path_rear,
b_list->b_physical_path);
found_rear = 1;
break;
}
}
b_list = b_list->box_next;
}
}
}
if (getenv("_LUX_G_DEBUG") != NULL) {
if (!found_front) {
(void) printf("l_get_status: Loop to front disks not found.\n");
}
if (!found_rear) {
(void) printf("l_get_status: Loop to rear disks not found.\n");
}
}
/*
* Get path to all the FC disk and tape devices.
*
* I get this now and pass down for performance
* reasons.
* If for some reason the list can become invalid,
* i.e. device being offlined, then the list
* must be re-gotten.
*/
if (err = g_get_wwn_list(&wwn_list, verbose)) {
return (err); /* Failure */
}
enc_type = l_get_enc_type(inq);
if (found_front) {
front_flag = 1;
for (i = 0, count = 0; i < l_state->total_num_drv/2;
count++, i++) {
if (enc_type == DAK_ENC_TYPE) {
G_DPRINTF(" l_get_status: Getting individual"
" State for disk in slot %d\n", count);
} else {
G_DPRINTF(" l_get_status: Getting individual"
" State for front disk in slot %d\n", i);
}
if (err = l_get_individual_state(ses_path_front,
(struct l_disk_state_struct *)&l_state->drv_front[i],
&l_state->ib_tbl, front_flag, o_list,
wwn_list, verbose)) {
(void) l_free_box_list(&o_list);
(void) g_free_wwn_list(&wwn_list);
return (err);
}
}
} else {
/* Set to loop not accessable. */
for (i = 0; i < l_state->total_num_drv/2; i++) {
l_state->drv_front[i].l_state_flag = L_NO_LOOP;
}
}
/*
* For Daktari's, disk 0-5 information are located in the
* l_state->drv_front array
* For Daktari's, disk 6-11 information are located in the
* l_state->drv_rear array
*
* For this reason, on daktari's, I ignore the found_front and
* found_rear flags and check both the drv_front and drv_rear
*/
if (enc_type == DAK_ENC_TYPE && found_front) {
front_flag = 1;
for (i = 0; i < l_state->total_num_drv/2; i++, count++) {
G_DPRINTF(" l_get_status: Getting individual"
" State for disk in slot %d\n", count);
if (err = l_get_individual_state(ses_path_front,
(struct l_disk_state_struct *)&l_state->drv_rear[i],
&l_state->ib_tbl, front_flag, o_list,
wwn_list, verbose)) {
(void) l_free_box_list(&o_list);
(void) g_free_wwn_list(&wwn_list);
return (err);
}
}
} else if (enc_type != DAK_ENC_TYPE && found_rear) {
for (i = 0; i < l_state->total_num_drv/2; i++, count++) {
G_DPRINTF(" l_get_status: Getting individual"
" State for rear disk in slot %d\n", i);
if (err = l_get_individual_state(ses_path_rear,
(struct l_disk_state_struct *)&l_state->drv_rear[i],
&l_state->ib_tbl, front_flag, o_list,
wwn_list, verbose)) {
(void) l_free_box_list(&o_list);
(void) g_free_wwn_list(&wwn_list);
return (err);
}
}
} else if (enc_type != DAK_ENC_TYPE) {
/* Set to loop not accessable. */
for (i = 0; i < l_state->total_num_drv/2; i++) {
l_state->drv_rear[i].l_state_flag = L_NO_LOOP;
}
}
(void) l_free_box_list(&o_list);
(void) g_free_wwn_list(&wwn_list);
if (getenv("_LUX_T_DEBUG") != NULL) {
end_time = gethrtime();
(void) fprintf(stdout, " l_get_status: "
"Time = %lld millisec\n",
(end_time - start_time)/1000000);
}
return (0);
}
/*
* Check the SENA file for validity:
* - verify the size is that of 3 proms worth of text.
* - verify PROM_MAGIC.
* - verify (and print) the date.
* - verify the checksum.
* - verify the WWN == 0.
* Since this requires reading the entire file, do it now and pass a pointer
* to the allocated buffer back to the calling routine (which is responsible
* for freeing it). If the buffer is not allocated it will be NULL.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
static int
check_file(int fd, int verbose, uchar_t **buf_ptr, int dl_info_offset)
{
struct exec the_exec;
int temp, i, j, *p, size, *start;
uchar_t *buf;
char *date_str;
struct dl_info *dl_info;
*buf_ptr = NULL;
/* read exec header */
if (lseek(fd, 0, SEEK_SET) == -1)
return (errno);
if ((temp = read(fd, (char *)&the_exec, sizeof (the_exec))) == -1) {
return (L_DWNLD_READ_HEADER_FAIL);
}
if (temp != sizeof (the_exec)) {
return (L_DWNLD_READ_INCORRECT_BYTES);
}
if (the_exec.a_text != PROMSIZE) {
return (L_DWNLD_INVALID_TEXT_SIZE);
}
if (!(buf = (uchar_t *)g_zalloc(PROMSIZE)))
return (L_MALLOC_FAILED);
if ((temp = read(fd, buf, PROMSIZE)) == -1) {
return (L_DWNLD_READ_ERROR);
}
if (temp != PROMSIZE) {
return (L_DWNLD_READ_INCORRECT_BYTES);
}
/* check the IB firmware MAGIC */
dl_info = (struct dl_info *)(unsigned long)(buf + dl_info_offset);
if (dl_info->magic != PROM_MAGIC) {
return (L_DWNLD_BAD_FRMWARE);
}
/*
* Get the date
*/
date_str = ctime(&dl_info->datecode);
if (verbose) {
(void) fprintf(stdout,
MSGSTR(9050, " IB Prom Date: %s"),
date_str);
}
/*
* verify checksum
*/
if (dl_info_offset == FPM_DL_INFO) {
start = (int *)(long)(buf + FPM_OFFSET);
size = FPM_SZ;
} else {
start = (int *)(long)buf;
size = TEXT_SZ + IDATA_SZ;
}
for (j = 0, p = start, i = 0; i < (size/ 4); i++, j ^= *p++);
if (j != 0) {
return (L_DWNLD_CHKSUM_FAILED);
}
/* file verified */
*buf_ptr = buf;
return (0);
}
/*
* Check the DPM file for validity:
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
#define dakstring "64616B74617269"
#define dakoffs "BFC00000"
static int
check_dpm_file(int fd)
{
struct s3hdr {
char rtype[2];
char rlen[2];
char data[255];
} theRec;
int nread;
int reclen;
if (fd < 0) {
return (L_DWNLD_READ_ERROR);
}
lseek(fd, 0, SEEK_SET);
/* First record */
memset((void*)&theRec, 0, sizeof (struct s3hdr));
nread = read(fd, (void *)&theRec, 4);
if (nread != 4) {
/* error reading first record/length */
return (L_DWNLD_READ_ERROR);
}
if (strncmp((char *)&theRec.rtype[0], "S0", 2) != 0) {
/* error in first record type */
return (L_DWNLD_READ_HEADER_FAIL);
}
reclen = strtol(&theRec.rlen[0], (char **)NULL, 16);
if (reclen == 0) {
/* error in length == 0 */
return (L_DWNLD_READ_HEADER_FAIL);
}
nread = read(fd, (void *)&theRec.data[0], ((reclen*2) +1));
if (nread != ((reclen*2) +1)) {
/* error in trying to read data */
return (L_DWNLD_READ_HEADER_FAIL);
}
if (strncmp(&theRec.data[4], dakstring, 14) != 0) {
/* error in compiled file name */
return (L_DWNLD_READ_HEADER_FAIL);
}
/* Second record */
memset((void*)&theRec, 0, sizeof (struct s3hdr));
nread = read(fd, (void *)&theRec, 4);
if (nread != 4) {
/* error reading second record/length */
return (L_DWNLD_READ_ERROR);
}
if (strncmp((char *)&theRec.rtype[0], "S3", 2) != 0) {
/* error in second record type */
return (L_DWNLD_READ_HEADER_FAIL);
}
reclen = strtol(&theRec.rlen[0], (char **)NULL, 16);
if (reclen == 0) {
/* error in length == 0 */
return (L_DWNLD_READ_HEADER_FAIL);
}
nread = read(fd, (void *)&theRec.data[0], ((reclen*2) +1));
if (nread != ((reclen*2) +1)) {
/* error in trying to read data */
return (L_DWNLD_READ_HEADER_FAIL);
}
if (strncmp(&theRec.data[0], dakoffs, 8) != 0) {
/* error in SSC100 offset pointer */
return (L_DWNLD_READ_HEADER_FAIL);
}
lseek(fd, 0, SEEK_SET);
return (0);
}
int
l_check_file(char *file, int verbose)
{
int file_fd;
int err;
uchar_t *buf;
if ((file_fd = g_object_open(file, O_RDONLY)) == -1) {
return (L_OPEN_PATH_FAIL);
}
err = check_file(file_fd, verbose, &buf, FW_DL_INFO);
if (buf)
(void) g_destroy_data((char *)buf);
return (err);
}
/*
* Write buffer command set up to download
* firmware to the Photon IB.
*
* RETURNS:
* status
*/
static int
ib_download_code_cmd(int fd, int promid, int off, uchar_t *buf_ptr,
int buf_len, int sp)
{
int status, sz;
while (buf_len) {
sz = MIN(256, buf_len);
buf_len -= sz;
status = g_scsi_writebuffer_cmd(fd, off, buf_ptr, sz,
(sp) ? 3 : 2, promid);
if (status)
return (status);
buf_ptr += sz;
off += sz;
}
return (status);
}
/*
*
* Downloads the code to the DAKTARI/DPM with the hdr set correctly
*
*
* Inputs:
* fd - int for the file descriptor
* buf_ptr - uchar_t pointer to the firmware itself
* buf_len - int for the length of the data
*
* Returns:
* status: 0 indicates success, != 0 failure, returned from writebuffer
*
*/
static int
dak_download_code_cmd(int fd, uchar_t *buf_ptr, int buf_len)
{
int status = 0;
int sz = 0;
int offs = 0;
while (buf_len > 0) {
sz = MIN(256, buf_len);
buf_len -= sz;
status = g_scsi_writebuffer_cmd(fd, offs, buf_ptr, sz, 0x07, 0);
if (status != 0) {
return (status);
}
buf_ptr += sz;
offs += sz;
}
return (status);
}
/*
* Downloads the new prom image to IB.
*
* INPUTS:
* path - physical path of Photon SES card
* file - input file for new code (may be NULL)
* ps - whether the "save" bit should be set
* verbose - to be verbose or not
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_download(char *path_phys, char *file, int ps, int verbose)
{
int file_fd, controller_fd;
int err, status;
uchar_t *buf_ptr;
char printbuf[MAXPATHLEN];
int retry;
char file_path[MAXPATHLEN];
struct stat statbuf;
int enc_type;
L_inquiry inq;
if (path_phys == NULL) {
return (L_INVALID_PATH_FORMAT);
}
if (!file) {
(void) strcpy(file_path, IBFIRMWARE_FILE);
} else {
(void) strncpy(file_path, file, sizeof (file_path));
}
if (verbose)
(void) fprintf(stdout, "%s\n",
MSGSTR(9051, " Opening the IB for I/O."));
if ((controller_fd = g_object_open(path_phys, O_NDELAY | O_RDWR)) == -1)
return (L_OPEN_PATH_FAIL);
(void) sprintf(printbuf, MSGSTR(9052, " Doing download to:"
"\n\t%s.\n From file: %s."), path_phys, file_path);
if (verbose)
(void) fprintf(stdout, "%s\n", printbuf);
P_DPRINTF(" Doing download to:"
"\n\t%s\n From file: %s\n", path_phys, file_path);
if ((file_fd = g_object_open(file_path, O_NDELAY | O_RDONLY)) == -1) {
/*
* Return a different error code here to differentiate between
* this failure in g_object_open() and the one above.
*/
return (L_INVALID_PATH);
}
if (g_scsi_inquiry_cmd(controller_fd, (uchar_t *)&inq, sizeof (inq))) {
return (L_SCSI_ERROR);
}
enc_type = l_get_enc_type(inq);
switch (enc_type) {
case DAK_ENC_TYPE:
/*
* We don't have a default daktari file location, so
* the user must specify the firmware file on the command line
*/
if (!file) {
return (L_REQUIRE_FILE);
}
/* Validate the file */
if ((err = check_dpm_file(file_fd))) {
return (err);
}
/* Now go ahead and load up the data */
if (fstat(file_fd, &statbuf) == -1) {
err = errno;
(void) fprintf(stdout, "%s %s\n",
MSGSTR(9101, " Stat'ing the F/W file:"), strerror(err));
return (L_OPEN_PATH_FAIL);
}
buf_ptr = (uchar_t *)g_zalloc(statbuf.st_size);
if (buf_ptr == NULL) {
err = errno;
(void) fprintf(stdout, "%s %s\n",
MSGSTR(9102, " Cannot alloc mem to read F/W file:"),
strerror(err));
return (L_MALLOC_FAILED);
}
if (read(file_fd, buf_ptr, statbuf.st_size) == -1) {
err = errno;
(void) fprintf(stdout, "%s %s\n",
MSGSTR(9103, " Reading F/W file:"), strerror(err));
g_destroy_data((char *)buf_ptr);
return (L_DWNLD_READ_ERROR);
}
break;
default:
if (err = check_file(file_fd, verbose, &buf_ptr, FW_DL_INFO)) {
if (buf_ptr) {
(void) g_destroy_data((char *)buf_ptr);
return (err);
}
}
break;
}
if (verbose) {
(void) fprintf(stdout, " ");
(void) fprintf(stdout, MSGSTR(127, "Checkfile O.K."));
(void) fprintf(stdout, "\n");
}
P_DPRINTF(" Checkfile OK.\n");
(void) close(file_fd);
if (verbose) {
(void) fprintf(stdout, MSGSTR(9053,
" Verifying the IB is available.\n"));
}
retry = DOWNLOAD_RETRIES;
while (retry) {
if ((status = g_scsi_tur(controller_fd)) == 0) {
break;
} else {
if ((retry % 30) == 0) {
ER_DPRINTF(" Waiting for the IB to be"
" available.\n");
}
(void) sleep(1);
}
}
if (!retry) {
if (buf_ptr)
(void) g_destroy_data((char *)buf_ptr);
(void) close(controller_fd);
return (status);
}
if (verbose)
(void) fprintf(stdout, "%s\n",
MSGSTR(9054, " Writing new text image to IB."));
P_DPRINTF(" Writing new image to IB\n");
switch (enc_type) {
case DAK_ENC_TYPE:
status = dak_download_code_cmd(controller_fd, buf_ptr,
statbuf.st_size);
if (status != 0) {
if (buf_ptr != NULL) {
g_destroy_data((char *)buf_ptr);
}
(void) close(controller_fd);
return (status);
}
break;
default:
status = ib_download_code_cmd(controller_fd, IBEEPROM, TEXT_OFFSET,
(uchar_t *)(buf_ptr + TEXT_OFFSET), TEXT_SZ, ps);
if (status) {
(void) close(controller_fd);
(void) g_destroy_data((char *)buf_ptr);
return (status);
}
if (verbose) {
(void) fprintf(stdout, "%s\n",
MSGSTR(9055, " Writing new data image to IB."));
}
status = ib_download_code_cmd(controller_fd, IBEEPROM, IDATA_OFFSET,
(uchar_t *)(buf_ptr + IDATA_OFFSET), IDATA_SZ, ps);
if (status) {
(void) close(controller_fd);
(void) g_destroy_data((char *)buf_ptr);
return (status);
}
break;
}
if (verbose) {
(void) fprintf(stdout, MSGSTR(9056,
" Re-verifying the IB is available.\n"));
}
retry = DOWNLOAD_RETRIES;
while (retry) {
if ((status = g_scsi_tur(controller_fd)) == 0) {
break;
} else {
if ((retry % 30) == 0) {
ER_DPRINTF(" Waiting for the IB to be"
" available.\n");
}
(void) sleep(1);
}
retry--;
}
if (!retry) {
(void) close(controller_fd);
(void) g_destroy_data((char *)buf_ptr);
return (L_DWNLD_TIMED_OUT);
}
switch (enc_type) {
case DAK_ENC_TYPE:
break;
default:
if (verbose) {
(void) fprintf(stdout, "%s\n",
MSGSTR(9057, " Writing new image to FPM."));
}
status = ib_download_code_cmd(controller_fd, MBEEPROM, FPM_OFFSET,
(uchar_t *)(buf_ptr + FPM_OFFSET), FPM_SZ, ps);
break;
}
if ((!status) && ps) {
/*
* Reset the IB
*/
status = g_scsi_reset(controller_fd);
}
(void) close(controller_fd);
return (status);
}
/*
* Set the World Wide Name
* in page 4 of the Send Diagnostic command.
*
* Is it allowed to change the wwn ???
* The path must point to an IB.
*
*/
int
l_set_wwn(char *path_phys, char *wwn)
{
Page4_name page4;
L_inquiry inq;
int fd, status;
char wwnp[WWN_SIZE];
(void) memset(&inq, 0, sizeof (inq));
(void) memset(&page4, 0, sizeof (page4));
if ((fd = g_object_open(path_phys, O_NDELAY | O_RDONLY)) == -1) {
return (L_OPEN_PATH_FAIL);
}
/* Verify it is a Photon */
if (status = g_scsi_inquiry_cmd(fd,
(uchar_t *)&inq, sizeof (struct l_inquiry_struct))) {
(void) close(fd);
return (status);
}
if ((strstr((char *)inq.inq_pid, ENCLOSURE_PROD_ID) == 0) &&
(!(strncmp((char *)inq.inq_vid, "SUN ",
sizeof (inq.inq_vid)) &&
((inq.inq_dtype & DTYPE_MASK) == DTYPE_ESI)))) {
(void) close(fd);
return (L_ENCL_INVALID_PATH);
}
page4.page_code = L_PAGE_4;
page4.page_len = (ushort_t)((sizeof (struct page4_name) - 4));
page4.string_code = L_WWN;
page4.enable = 1;
if (g_string_to_wwn((uchar_t *)wwn, (uchar_t *)&page4.name)) {
close(fd);
return (EINVAL);
}
bcopy((void *)wwnp, (void *)page4.name, (size_t)WWN_SIZE);
if (status = g_scsi_send_diag_cmd(fd, (uchar_t *)&page4,
sizeof (page4))) {
(void) close(fd);
return (status);
}
/*
* Check the wwn really changed.
*/
bzero((char *)page4.name, 32);
if (status = g_scsi_rec_diag_cmd(fd, (uchar_t *)&page4,
sizeof (page4), L_PAGE_4)) {
(void) close(fd);
return (status);
}
if (bcmp((char *)page4.name, wwnp, WWN_SIZE)) {
(void) close(fd);
return (L_WARNING);
}
(void) close(fd);
return (0);
}
/*
* Use a physical path to a disk in a Photon box
* as the base to genererate a path to a SES
* card in this box.
*
* path_phys: Physical path to a Photon disk.
* ses_path: This must be a pointer to an already allocated path string.
*
* RETURNS:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_ses_path(char *path_phys, char *ses_path, gfc_map_t *map,
int verbose)
{
char *char_ptr, id_buf[MAXPATHLEN], wwn[20];
uchar_t t_wwn[20], *ses_wwn, *ses_wwn1, *ses_nwwn;
int j, al_pa, al_pa1, box_id, fd, disk_flag = 0;
int err, found = 0;
gfc_port_dev_info_t *dev_addr_ptr;
if ((path_phys == NULL) || (ses_path == NULL) || (map == NULL)) {
return (L_NO_SES_PATH);
}
(void) strcpy(ses_path, path_phys);
if ((char_ptr = strrchr(ses_path, '/')) == NULL) {
return (L_INVLD_PATH_NO_SLASH_FND);
}
disk_flag++;
*char_ptr = '\0'; /* Terminate sting */
(void) strcat(ses_path, SLSH_SES_NAME);
/*
* Figure out and create the boxes pathname.
*
* NOTE: This uses the fact that the disks's
* AL_PA and the boxes AL_PA must match
* the assigned hard address in the current
* implementations. This may not be true in the
* future.
*/
if ((char_ptr = strrchr(path_phys, '@')) == NULL) {
return (L_INVLD_PATH_NO_ATSIGN_FND);
}
char_ptr++; /* point to the loop identifier */
if ((err = g_get_wwn(path_phys, t_wwn, t_wwn,
&al_pa, verbose)) != 0) {
return (err);
}
box_id = g_sf_alpa_to_switch[al_pa & 0xFF] & BOX_ID_MASK;
switch (map->hba_addr.port_topology) {
case FC_TOP_PRIVATE_LOOP:
for (j = 0, dev_addr_ptr = map->dev_addr;
j < map->count; j++, dev_addr_ptr++) {
if (dev_addr_ptr->gfc_port_dev.priv_port.
sf_inq_dtype == DTYPE_ESI) {
al_pa1 = dev_addr_ptr->gfc_port_dev.
priv_port.sf_al_pa;
if (box_id == (g_sf_alpa_to_switch[al_pa1] &
BOX_ID_MASK)) {
if (!found) {
ses_wwn = dev_addr_ptr->
gfc_port_dev.priv_port.sf_port_wwn;
ses_nwwn = dev_addr_ptr->
gfc_port_dev.priv_port.sf_node_wwn;
if (getenv("_LUX_P_DEBUG")) {
(void) g_ll_to_str(ses_wwn,
(char *)t_wwn);
(void) printf(
" l_get_ses_path: "
"Found ses wwn = %s "
"al_pa 0x%x\n", t_wwn, al_pa1);
}
} else {
ses_wwn1 = dev_addr_ptr->
gfc_port_dev.priv_port.sf_port_wwn;
if (getenv("_LUX_P_DEBUG")) {
(void) g_ll_to_str(ses_wwn1,
(char *)t_wwn);
(void) printf(
" l_get_ses_path: "
"Found second ses " "wwn = %s "
"al_pa 0x%x\n", t_wwn, al_pa1);
}
}
found++;
}
}
}
break;
case FC_TOP_FABRIC:
case FC_TOP_PUBLIC_LOOP:
for (j = 0, dev_addr_ptr = map->dev_addr;
j < map->count; j++, dev_addr_ptr++) {
if (dev_addr_ptr->gfc_port_dev.pub_port.dev_dtype ==
DTYPE_ESI) {
/*
* We found an enclosure, lets match the
* area and domain codes for this enclosure with
* that of the ses path since there may be
* multiple enclosures with same box id on a
* fabric
*/
al_pa1 = dev_addr_ptr->gfc_port_dev.
pub_port.dev_did.port_id;
if ((al_pa & AREA_DOMAIN_ID) ==
(al_pa1 & AREA_DOMAIN_ID)) {
/*
* The area and domain matched. Now, we
* match the box id of the disk with
* this enclosure
*/
if (box_id ==
(g_sf_alpa_to_switch[al_pa1 &
0xFF] & BOX_ID_MASK)) {
if (!found) {
ses_wwn = dev_addr_ptr->
gfc_port_dev.pub_port.
dev_pwwn.raw_wwn;
ses_nwwn = dev_addr_ptr->
gfc_port_dev.pub_port.
dev_nwwn.raw_wwn;
if (getenv("_LUX_P_DEBUG")) {
(void) g_ll_to_str(ses_wwn,
(char *)t_wwn);
(void) printf(
" l_get_ses_path: "
"Found ses wwn = %s "
"al_pa 0x%x\n", t_wwn,
al_pa1);
}
} else {
ses_wwn1 = dev_addr_ptr->
gfc_port_dev.pub_port.
dev_pwwn.raw_wwn;
if (getenv("_LUX_P_DEBUG")) {
(void) g_ll_to_str(ses_wwn1,
(char *)t_wwn);
(void) printf(
" l_get_ses_path: "
"Found second ses "
"wwn = %s "
"al_pa 0x%x\n", t_wwn,
al_pa1);
}
}
found++;
}
}
}
}
break;
case FC_TOP_PT_PT:
return (L_PT_PT_FC_TOP_NOT_SUPPORTED);
default:
return (L_UNEXPECTED_FC_TOPOLOGY);
} /* End of switch on port_topology */
if (!found) {
return (L_NO_SES_PATH);
}
if (strstr(path_phys, SCSI_VHCI) != NULL) {
(void) g_ll_to_str(ses_nwwn, wwn);
(void) sprintf(id_buf, "g%s:0", wwn);
} else {
(void) g_ll_to_str(ses_wwn, wwn);
(void) sprintf(id_buf, "w%s,0:0", wwn);
}
(void) strcat(ses_path, id_buf);
if (verbose) {
(void) fprintf(stdout,
MSGSTR(9058, " Creating enclosure path:\n %s\n"),
ses_path);
}
/*
* see if these paths exist.
*/
if ((fd = g_object_open(ses_path, O_NDELAY | O_RDONLY)) == -1) {
if (strstr(path_phys, SCSI_VHCI) != NULL) {
return (L_INVALID_PATH);
}
char_ptr = strrchr(ses_path, '/');
*char_ptr = '\0';
(void) strcat(ses_path, SLSH_SES_NAME);
if (found > 1) {
(void) g_ll_to_str(ses_wwn1, wwn);
P_DPRINTF(" l_get_ses_path: "
"Using second path, ses wwn1 = %s\n",
wwn);
(void) sprintf(id_buf, "w%s,0:0", wwn);
strcat(ses_path, id_buf);
return (0);
} else {
return (L_NO_SES_PATH);
}
}
close(fd);
return (0);
}
/*
* Get a valid location, front/rear & slot.
*
* path_struct->p_physical_path must be of a disk.
*
* OUTPUT: path_struct->slot_valid
* path_struct->slot
* path_struct->f_flag
*
* RETURN:
* 0 O.K.
* non-zero otherwise
*/
int
l_get_slot(struct path_struct *path_struct, L_state *l_state, int verbose)
{
int err, al_pa, slot, found = 0;
uchar_t node_wwn[WWN_SIZE], port_wwn[WWN_SIZE];
uint_t select_id;
if ((path_struct == NULL) || (l_state == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
/* Double check to see if we need to calculate. */
if (path_struct->slot_valid)
return (0);
/* Programming error if this occures */
assert(path_struct->ib_path_flag == 0);
if (strstr(path_struct->p_physical_path, "ssd") == NULL) {
return (L_INVLD_PHYS_PATH_TO_DISK);
}
if (err = g_get_wwn(path_struct->p_physical_path, port_wwn, node_wwn,
&al_pa, verbose)) {
return (err);
}
/*
* Find the slot by searching for the matching hard address.
* Take only the low order byte ignoring area and domain code in
* fabric devices' 24 bit al_pa
*/
select_id = g_sf_alpa_to_switch[al_pa & 0xFF];
P_DPRINTF(" l_get_slot: Searching Receive Diagnostic page 2, "
"to find the slot number with this ID:0x%x\n",
select_id);
for (slot = 0; slot < l_state->total_num_drv/2; slot++) {
if (l_state->drv_front[slot].ib_status.sel_id ==
select_id) {
path_struct->f_flag = 1;
found = 1;
break;
} else if (l_state->drv_rear[slot].ib_status.sel_id ==
select_id) {
path_struct->f_flag = 0;
found = 1;
break;
}
}
if (!found) {
return (L_INVALID_SLOT); /* Failure */
}
if ((strncmp((char *)l_state->ib_tbl.config.prod_id, DAK_OFF_NAME,
strlen(DAK_OFF_NAME)) == 0) ||
(strncmp((char *)l_state->ib_tbl.config.prod_id, DAK_PROD_STR,
strlen(DAK_OFF_NAME)) == 0)) {
P_DPRINTF(" l_get_slot: Found slot %d.\n",
path_struct->f_flag ? slot : slot + (MAX_DRIVES_DAK/2));
} else {
P_DPRINTF(" l_get_slot: Found slot %d %s.\n", slot,
path_struct->f_flag ? "Front" : "Rear");
}
path_struct->slot = slot;
path_struct->slot_valid = 1;
return (0);
}
void
l_element_msg_string(uchar_t code, char *es)
{
if (code == S_OK) {
(void) sprintf(es, MSGSTR(29, "O.K."));
} else if (code == S_NOT_AVAILABLE) {
(void) sprintf(es, MSGSTR(34, "Disabled"));
} else if (code == S_NOT_INSTALLED) {
(void) sprintf(es, MSGSTR(30, "Not Installed"));
} else if (code == S_NONCRITICAL) {
(void) sprintf(es, MSGSTR(9059, "Noncritical failure"));
} else if (code == S_CRITICAL) {
(void) sprintf(es, MSGSTR(122, "Critical failure"));
} else {
(void) sprintf(es, MSGSTR(4, "Unknown status"));
}
}
/*
* Get all ses paths paths to a given box.
* The arg should be the physical path to one of the box's IB.
* NOTE: The caller must free the allocated lists.
*
* OUTPUT:
* a pointer to a list of ses paths if found
* NULL on error.
*
* RETURNS:
* 0 if O.K.
* non-zero otherwise
*/
int
l_get_allses(char *path, struct box_list_struct *box_list,
struct dlist **ses_list, int verbose)
{
struct box_list_struct *box_list_ptr;
char node_wwn_s[WWN_S_LEN];
struct dlist *dlt, *dl;
if ((path == NULL) || (box_list == NULL) || (ses_list == NULL)) {
return (L_INVALID_PATH_FORMAT);
}
/* Initialize lists/arrays */
*ses_list = dlt = dl = (struct dlist *)NULL;
node_wwn_s[0] = '\0';
H_DPRINTF(" l_get_allses: Looking for all ses paths for"
" box at path: %s\n", path);
for (box_list_ptr = box_list; box_list_ptr != NULL;
box_list_ptr = box_list_ptr->box_next) {
H_DPRINTF(" l_get_allses: physical_path= %s\n",
box_list_ptr->b_physical_path);
if (strcmp(path, box_list_ptr->b_physical_path) == 0) {
(void) strcpy(node_wwn_s, box_list_ptr->b_node_wwn_s);
break;
}
}
if (node_wwn_s[0] == '\0') {
H_DPRINTF("node_wwn_s is NULL!\n");
return (L_NO_NODE_WWN_IN_BOXLIST);
}
H_DPRINTF(" l_get_allses: node_wwn=%s\n", node_wwn_s);
for (box_list_ptr = box_list; box_list_ptr != NULL;
box_list_ptr = box_list_ptr->box_next) {
if (strcmp(node_wwn_s, box_list_ptr->b_node_wwn_s) == 0) {
if ((dl = (struct dlist *)
g_zalloc(sizeof (struct dlist))) == NULL) {
while (*ses_list != NULL) {
dl = dlt->next;
(void) g_destroy_data(dlt);
dlt = dl;
}
return (L_MALLOC_FAILED);
}
H_DPRINTF(" l_get_allses: Found ses=%s\n",
box_list_ptr->b_physical_path);
dl->dev_path = strdup(box_list_ptr->b_physical_path);
dl->logical_path = strdup(box_list_ptr->logical_path);
if (*ses_list == NULL) {
*ses_list = dlt = dl;
} else {
dlt->next = dl;
dl->prev = dlt;
dlt = dl;
}
}
}
return (0);
}
/*
* Routine to return the enclosure type pointed to by the path.
* Inputs: The inquiry data for the device in question
*
* Return: >= 0 is the type:
*
* Types are defined in storage/libg_fc/common/hdrs/g_state.h:
*
* 0 -> default (SENA)
* 1 -> Daktari
* 2 -> Other Enclosures
*
*/
int
l_get_enc_type(L_inquiry inq)
{
if (strncmp((char *)&inq.inq_pid[0], ENCLOSURE_PROD_ID,
strlen(ENCLOSURE_PROD_ID)) == 0) {
return (SENA_ENC_TYPE);
}
if (strncmp((char *)&inq.inq_pid[0], DAK_OFF_NAME,
strlen(DAK_OFF_NAME)) == 0) {
return (DAK_ENC_TYPE);
}
if (strncmp((char *)&inq.inq_pid[0], DAK_PROD_STR,
strlen(DAK_PROD_STR)) == 0) {
return (DAK_ENC_TYPE);
}
/*
* ADD OTHERS here if ever needed/wanted, and add to def's
* as noted above
*/
return (UNDEF_ENC_TYPE);
}
void
free_mp_dev_map(gfc_map_mp_t **map_mp_ptr) {
gfc_map_mp_t *next = NULL;
for (; *map_mp_ptr != NULL; *map_mp_ptr = next) {
next = (*map_mp_ptr)->map_next;
(void) g_destroy_data((*map_mp_ptr)->map.dev_addr);
(void) g_destroy_data(*map_mp_ptr);
}
*map_mp_ptr = NULL;
}
/*
* This function will return a linked list of device maps
* An example of when this will be used is when we want to return the device
* map of a vhci path.
*/
int
get_mp_dev_map(char *path, gfc_map_mp_t **map_mp_ptr, int verbose) {
int pathcnt, i, err;
mp_pathlist_t pathlist;
gfc_map_mp_t *new_map_mp_ptr;
char drvr_path[MAXPATHLEN];
if (strstr(path, SCSI_VHCI)) {
if (g_get_pathlist(path, &pathlist)) {
return (L_INVALID_PATH);
}
pathcnt = pathlist.path_count;
for (i = 0; i < pathcnt; i++) {
if (pathlist.path_info[i].path_state < MAXPATHSTATE) {
/*
* only pay attention to paths that are either
* ONLINE or STANDBY
*/
if ((pathlist.path_info[i].path_state ==
MDI_PATHINFO_STATE_ONLINE) ||
(pathlist.path_info[i].path_state ==
MDI_PATHINFO_STATE_STANDBY)) {
if ((new_map_mp_ptr = (gfc_map_mp_t *)
g_zalloc(sizeof (gfc_map_mp_t)))
== NULL) {
free(pathlist.path_info);
free_mp_dev_map(map_mp_ptr);
return (L_MALLOC_FAILED);
}
(void) strcpy(drvr_path,
pathlist.path_info[i].path_hba);
(void) strcat(drvr_path, FC_CTLR);
if (err = g_get_dev_map(drvr_path,
&(new_map_mp_ptr->map),
verbose)) {
free(pathlist.path_info);
free_mp_dev_map(map_mp_ptr);
return (err);
}
/* add newly created map onto list */
if (*map_mp_ptr == NULL) {
new_map_mp_ptr->map_next = NULL;
*map_mp_ptr = new_map_mp_ptr;
} else {
new_map_mp_ptr->map_next =
*map_mp_ptr;
*map_mp_ptr = new_map_mp_ptr;
}
}
}
}
free(pathlist.path_info);
} else {
if ((new_map_mp_ptr = (gfc_map_mp_t *)g_zalloc
(sizeof (gfc_map_mp_t))) == NULL) {
return (L_MALLOC_FAILED);
}
g_get_dev_map(path, &(new_map_mp_ptr->map), verbose);
*map_mp_ptr = new_map_mp_ptr;
}
return (0);
}