/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <scsi/libses.h>
#include "ses_impl.h"
#define NEXT_ED(eip) \
((ses2_ed_impl_t *)((uint8_t *)(eip) + \
((eip)->st_hdr.sehi_ed_len + sizeof (ses2_ed_hdr_impl_t))))
static ses_node_t *
ses_find_enclosure(ses_snap_t *sp, uint64_t number)
{
ses_node_t *np;
for (np = sp->ss_root->sn_first_child; np != NULL;
np = np->sn_next_sibling) {
ASSERT(np->sn_type == SES_NODE_ENCLOSURE);
if (np->sn_enc_num == number)
return ((ses_node_t *)np);
}
return (NULL);
}
/*
* ses_snap_primary_enclosure() finds the primary enclosure for
* the supplied ses_snap_t.
*/
ses_node_t *
ses_snap_primary_enclosure(ses_snap_t *sp)
{
return (ses_find_enclosure(sp, 0));
}
void
ses_node_teardown(ses_node_t *np)
{
ses_node_t *rp;
if (np == NULL)
return;
for (; np != NULL; np = rp) {
ses_node_teardown(np->sn_first_child);
rp = np->sn_next_sibling;
nvlist_free(np->sn_props);
ses_free(np);
}
}
static ses_node_t *
ses_node_alloc(ses_snap_t *sp, ses_node_t *pnp)
{
ses_node_t *np;
np = ses_zalloc(sizeof (ses_node_t));
if (np == NULL)
goto fail;
if (nvlist_alloc(&np->sn_props, NV_UNIQUE_NAME, 0) != 0)
goto fail;
np->sn_snapshot = sp;
np->sn_id = sp->ss_n_nodes++;
if (pnp == NULL) {
ASSERT(sp->ss_root == NULL);
sp->ss_root = np;
} else {
np->sn_parent = pnp;
np->sn_prev_sibling = pnp->sn_last_child;
if (pnp->sn_first_child == NULL)
pnp->sn_first_child = np;
else
pnp->sn_last_child->sn_next_sibling = np;
pnp->sn_last_child = np;
}
return (np);
fail:
ses_free(np);
ses_node_teardown(sp->ss_root);
sp->ss_root = NULL;
return (NULL);
}
/*
* Parse element type descriptor.
*/
static int
elem_parse_td(ses2_td_hdr_impl_t *tip, const char *tp, nvlist_t *nvl)
{
int nverr;
if (tp != NULL)
SES_NV_ADD(fixed_string, nverr, nvl, SES_PROP_CLASS_DESCRIPTION,
tp, tip->sthi_text_len);
return (0);
}
/*
* Build a skeleton tree of nodes in the given snapshot. This is the heart of
* libses, and is responsible for parsing the config page into a tree and
* populating nodes with data from the config page.
*/
static int
ses_build_snap_skel(ses_snap_t *sp)
{
ses2_ed_impl_t *eip;
ses2_td_hdr_impl_t *tip, *ftip;
ses_node_t *np, *pnp, *cnp, *root;
ses_snap_page_t *pp;
ses2_config_page_impl_t *pip;
int i, j, n_etds = 0;
off_t toff;
char *tp, *text;
int err;
uint64_t idx, eidx;
pp = ses_snap_find_page(sp, SES2_DIAGPAGE_CONFIG, B_FALSE);
if (pp == NULL)
return (ses_error(ESES_BAD_RESPONSE, "target does not support "
"configuration diagnostic page"));
pip = (ses2_config_page_impl_t *)pp->ssp_page;
if (pp->ssp_len < offsetof(ses2_config_page_impl_t, scpi_data))
return (ses_error(ESES_BAD_RESPONSE, "no enclosure "
"descriptors found"));
/*
* Start with the root of the tree, which is a target node, containing
* just the SCSI inquiry properties.
*/
if ((root = ses_node_alloc(sp, sp->ss_root)) == NULL)
return (-1);
root->sn_type = SES_NODE_TARGET;
SES_NV_ADD(string, err, root->sn_props, SCSI_PROP_VENDOR,
libscsi_vendor(sp->ss_target->st_target));
SES_NV_ADD(string, err, root->sn_props, SCSI_PROP_PRODUCT,
libscsi_product(sp->ss_target->st_target));
SES_NV_ADD(string, err, root->sn_props, SCSI_PROP_REVISION,
libscsi_revision(sp->ss_target->st_target));
for (eip = (ses2_ed_impl_t *)pip->scpi_data, i = 0;
i < pip->scpi_n_subenclosures + 1;
i++, eip = NEXT_ED(eip)) {
if (!SES_WITHIN_PAGE_STRUCT(eip, pp->ssp_page, pp->ssp_len))
break;
n_etds += eip->st_hdr.sehi_n_etd_hdrs;
}
ftip = (ses2_td_hdr_impl_t *)eip;
/*
* There should really be only one Enclosure element possible for a
* give subenclosure ID. The standard never comes out and says this,
* but it does describe this element as "managing the enclosure itself"
* which implies rather strongly that the subenclosure ID field is that
* of, well, the enclosure itself. Since an enclosure can't contain
* itself, it follows logically that each subenclosure has at most one
* Enclosure type descriptor elements matching its ID. Of course, some
* enclosure firmware is buggy, so this may not always work out; in
* this case we just ignore all but the first Enclosure-type element
* with our subenclosure ID.
*/
for (eip = (ses2_ed_impl_t *)pip->scpi_data, i = 0;
i < pip->scpi_n_subenclosures + 1;
i++, eip = NEXT_ED(eip)) {
if (!SES_WITHIN_PAGE_STRUCT(eip, pp->ssp_page, pp->ssp_len))
break;
if ((np = ses_node_alloc(sp, root)) == NULL)
return (-1);
np->sn_type = SES_NODE_ENCLOSURE;
np->sn_enc_num = eip->st_hdr.sehi_subenclosure_id;
if (!SES_WITHIN_PAGE(eip, eip->st_hdr.sehi_ed_len +
sizeof (ses2_ed_hdr_impl_t),
pp->ssp_page, pp->ssp_len))
break;
if (enc_parse_ed(eip, np->sn_props) != 0)
return (-1);
}
if (root->sn_first_child == NULL)
return (ses_error(ESES_BAD_RESPONSE, "no enclosure "
"descriptors found"));
tp = (char *)(ftip + n_etds);
for (i = 0, toff = 0, idx = eidx = 0; i < n_etds; i++) {
tip = ftip + i;
if (!SES_WITHIN_PAGE_STRUCT(tip, pp->ssp_page, pp->ssp_len))
break;
pnp = ses_find_enclosure(sp,
tip->sthi_subenclosure_id);
if (pnp == NULL) {
idx += tip->sthi_max_elements + 1;
eidx += tip->sthi_max_elements;
toff += tip->sthi_text_len;
continue;
}
if (tip->sthi_element_type == SES_ET_ENCLOSURE) {
if (tip->sthi_max_elements == 0) {
SES_NV_ADD(uint64, err, pnp->sn_props,
SES_PROP_ELEMENT_INDEX, idx);
pnp->sn_rootidx = idx;
} else {
SES_NV_ADD(uint64, err, pnp->sn_props,
SES_PROP_ELEMENT_INDEX, idx + 1);
SES_NV_ADD(uint64, err, pnp->sn_props,
SES_PROP_ELEMENT_ONLY_INDEX, eidx);
pnp->sn_rootidx = idx + 1;
}
if (tip->sthi_text_len > 0 &&
SES_WITHIN_PAGE(tp + toff, tip->sthi_text_len,
pp->ssp_page, pp->ssp_len)) {
text = tp + toff;
toff += tip->sthi_text_len;
} else {
text = NULL;
}
SES_NV_ADD(uint64, err, pnp->sn_props,
SES_PROP_ELEMENT_TYPE, SES_ET_ENCLOSURE);
if (enc_parse_td(tip, text, pnp->sn_props) != 0)
return (-1);
idx += tip->sthi_max_elements + 1;
eidx += tip->sthi_max_elements;
continue;
}
if ((np = ses_node_alloc(sp, pnp)) == NULL)
return (-1);
np->sn_type = SES_NODE_AGGREGATE;
np->sn_enc_num = tip->sthi_subenclosure_id;
np->sn_parent = pnp;
np->sn_rootidx = idx;
SES_NV_ADD(uint64, err, np->sn_props,
SES_PROP_ELEMENT_INDEX, idx);
SES_NV_ADD(uint64, err, np->sn_props,
SES_PROP_ELEMENT_TYPE, tip->sthi_element_type);
if (tip->sthi_text_len > 0 &&
SES_WITHIN_PAGE(tp + toff, tip->sthi_text_len,
pp->ssp_page, pp->ssp_len)) {
text = tp + toff;
toff += tip->sthi_text_len;
} else {
text = NULL;
}
if (elem_parse_td(tip, text, np->sn_props) != 0)
return (-1);
idx += tip->sthi_max_elements + 1;
if (tip->sthi_max_elements == 0)
continue;
for (j = 0; j < tip->sthi_max_elements; j++) {
cnp = ses_node_alloc(sp, np);
if (cnp == NULL)
return (-1);
cnp->sn_type = SES_NODE_ELEMENT;
SES_NV_ADD(uint64, err, cnp->sn_props,
SES_PROP_ELEMENT_INDEX, np->sn_rootidx + j + 1);
SES_NV_ADD(uint64, err, cnp->sn_props,
SES_PROP_ELEMENT_ONLY_INDEX, eidx + j);
SES_NV_ADD(uint64, err, cnp->sn_props,
SES_PROP_ELEMENT_CLASS_INDEX, j);
SES_NV_ADD(uint64, err, cnp->sn_props,
SES_PROP_ELEMENT_TYPE, tip->sthi_element_type);
}
eidx += tip->sthi_max_elements;
}
np->sn_snapshot->ss_n_elem = idx;
return (0);
}
static int
ses_fill_tree(ses_node_t *np)
{
if (np == NULL)
return (0);
for (; np != NULL; np = np->sn_next_sibling) {
if (ses_fill_node(np) != 0)
return (-1);
if (ses_fill_tree(np->sn_first_child) != 0)
return (-1);
}
return (0);
}
int
ses_fill_snap(ses_snap_t *sp)
{
if (ses_build_snap_skel(sp) != 0)
return (-1);
if (ses_fill_tree(sp->ss_root) != 0)
return (-1);
return (0);
}
ses_node_t *
ses_root_node(ses_snap_t *sp)
{
return (sp->ss_root);
}
ses_node_t *
ses_node_sibling(ses_node_t *np)
{
return (np->sn_next_sibling);
}
ses_node_t *
ses_node_prev_sibling(ses_node_t *np)
{
return (np->sn_prev_sibling);
}
ses_node_t *
ses_node_parent(ses_node_t *np)
{
return (np->sn_parent);
}
ses_node_t *
ses_node_child(ses_node_t *np)
{
return (np->sn_first_child);
}
ses_node_type_t
ses_node_type(ses_node_t *np)
{
return (np->sn_type);
}
ses_snap_t *
ses_node_snapshot(ses_node_t *np)
{
return ((ses_snap_t *)np->sn_snapshot);
}
ses_target_t *
ses_node_target(ses_node_t *np)
{
return (np->sn_snapshot->ss_target);
}
nvlist_t *
ses_node_props(ses_node_t *np)
{
return (np->sn_props);
}
/*
* A node identifier is a (generation, index) tuple that can be used to lookup a
* node within this target at a later point. This will be valid across
* snapshots, though it will return failure if the generation count has changed.
*/
uint64_t
ses_node_id(ses_node_t *np)
{
return (((uint64_t)np->sn_snapshot->ss_generation << 32) |
np->sn_id);
}