/***********************************************************************
* *
* This software is part of the ast package *
* Copyright (c) 1982-2010 AT&T Intellectual Property *
* and is licensed under the *
* Common Public License, Version 1.0 *
* by AT&T Intellectual Property *
* *
* A copy of the License is available at *
* http://www.opensource.org/licenses/cpl1.0.txt *
* (with md5 checksum 059e8cd6165cb4c31e351f2b69388fd9) *
* *
* Information and Software Systems Research *
* AT&T Research *
* Florham Park NJ *
* *
* David Korn <dgk@research.att.com> *
* *
***********************************************************************/
#pragma prototyped
/*
* Array processing routines
*
* David Korn
* AT&T Labs
* dgk@research.att.com
*
*/
#include "defs.h"
#include <stak.h>
#include "name.h"
#define NUMSIZE (4+(ARRAY_MAX>999)+(ARRAY_MAX>9999)+(ARRAY_MAX>99999))
#define is_associative(ap) array_assoc((Namarr_t*)(ap))
#define array_setbit(cp, n, b) (cp[n] |= (b))
#define array_clrbit(cp, n, b) (cp[n] &= ~(b))
#define array_isbit(cp, n, b) (cp[n] & (b))
#define NV_CHILD NV_EXPORT
#define ARRAY_CHILD 1
#define ARRAY_NOFREE 2
struct index_array
{
Namarr_t header;
void *xp; /* if set, subscripts will be converted */
int cur; /* index of current element */
int maxi; /* maximum index for array */
unsigned char *bits; /* bit array for child subscripts */
union Value val[1]; /* array of value holders */
};
struct assoc_array
{
Namarr_t header;
Namval_t *pos;
Namval_t *nextpos;
Namval_t *cur;
};
static Namarr_t *array_scope(Namval_t *np, Namarr_t *ap, int flags)
{
Namarr_t *aq;
struct index_array *ar;
size_t size = ap->hdr.dsize;
if(size==0)
size = ap->hdr.disc->dsize;
if(!(aq=newof(NIL(Namarr_t*),Namarr_t,1,size-sizeof(Namarr_t))))
return(0);
memcpy(aq,ap,size);
aq->hdr.nofree &= ~1;
aq->hdr.nofree |= (flags&NV_RDONLY)?1:0;
if(is_associative(aq))
{
aq->scope = (void*)dtopen(&_Nvdisc,Dtoset);
dtview((Dt_t*)aq->scope,aq->table);
aq->table = (Dt_t*)aq->scope;
return(aq);
}
aq->scope = (void*)ap;
ar = (struct index_array*)aq;
memset(ar->val, 0, ar->maxi*sizeof(char*));
return(aq);
}
static int array_unscope(Namval_t *np,Namarr_t *ap)
{
Namfun_t *fp;
if(!ap->scope)
return(0);
if(is_associative(ap))
(*ap->fun)(np, NIL(char*), NV_AFREE);
if((fp = nv_disc(np,(Namfun_t*)ap,NV_POP)) && !(fp->nofree&1))
free((void*)fp);
nv_delete(np,(Dt_t*)0,0);
return(1);
}
static void array_syncsub(Namarr_t *ap, Namarr_t *aq)
{
((struct index_array*)ap)->cur = ((struct index_array*)aq)->cur;
}
static int array_covered(Namval_t *np, struct index_array *ap)
{
struct index_array *aq = (struct index_array*)ap->header.scope;
if(!ap->header.fun && aq)
return ((ap->cur<aq->maxi) && aq->val[ap->cur].cp);
return(0);
}
/*
* replace discipline with new one
*/
static void array_setptr(register Namval_t *np, struct index_array *old, struct index_array *new)
{
register Namfun_t **fp = &np->nvfun;
while(*fp && *fp!= &old->header.hdr)
fp = &((*fp)->next);
if(*fp)
{
new->header.hdr.next = (*fp)->next;
*fp = &new->header.hdr;
}
else sfprintf(sfstderr,"discipline not replaced\n");
}
/*
* Calculate the amount of space to be allocated to hold an
* indexed array into which <maxi> is a legal index. The number of
* elements that will actually fit into the array (> <maxi>
* but <= ARRAY_MAX) is returned.
*
*/
static int arsize(struct index_array *ap, register int maxi)
{
if(ap && maxi < 2*ap->maxi)
maxi = 2*ap->maxi;
maxi = roundof(maxi,ARRAY_INCR);
return (maxi>ARRAY_MAX?ARRAY_MAX:maxi);
}
static struct index_array *array_grow(Namval_t*, struct index_array*,int);
/* return index of highest element of an array */
int array_maxindex(Namval_t *np)
{
register struct index_array *ap = (struct index_array*)nv_arrayptr(np);
register int i = ap->maxi;
if(is_associative(ap))
return(-1);
while(i>0 && ap->val[--i].cp==0);
return(i+1);
}
static union Value *array_getup(Namval_t *np, Namarr_t *arp, int update)
{
register struct index_array *ap = (struct index_array*)arp;
register union Value *up;
int nofree;
if(!arp)
return(&np->nvalue);
if(is_associative(ap))
{
Namval_t *mp;
mp = (Namval_t*)((*arp->fun)(np,NIL(char*),NV_ACURRENT));
if(mp)
{
nofree = nv_isattr(mp,NV_NOFREE);
up = &mp->nvalue;
}
else
return((union Value*)((*arp->fun)(np,NIL(char*),0)));
}
else
{
if(ap->cur >= ap->maxi)
errormsg(SH_DICT,ERROR_exit(1),e_subscript,nv_name(np));
up = &(ap->val[ap->cur]);
nofree = array_isbit(ap->bits,ap->cur,ARRAY_NOFREE);
}
if(update)
{
if(nofree)
nv_onattr(np,NV_NOFREE);
else
nv_offattr(np,NV_NOFREE);
}
return(up);
}
int nv_arrayisset(Namval_t *np, Namarr_t *arp)
{
register struct index_array *ap = (struct index_array*)arp;
union Value *up;
if(is_associative(ap))
return((np = nv_opensub(np)) && !nv_isnull(np));
if(ap->cur >= ap->maxi)
return(0);
up = &(ap->val[ap->cur]);
return(up->cp && up->cp!=Empty);
}
/*
* Get the Value pointer for an array.
* Delete space as necessary if flag is ARRAY_DELETE
* After the lookup is done the last @ or * subscript is incremented
*/
static Namval_t *array_find(Namval_t *np,Namarr_t *arp, int flag)
{
register struct index_array *ap = (struct index_array*)arp;
register union Value *up;
Namval_t *mp;
int wasundef;
if(flag&ARRAY_LOOKUP)
ap->header.nelem &= ~ARRAY_NOSCOPE;
else
ap->header.nelem |= ARRAY_NOSCOPE;
if(wasundef = ap->header.nelem&ARRAY_UNDEF)
{
ap->header.nelem &= ~ARRAY_UNDEF;
/* delete array is the same as delete array[@] */
if(flag&ARRAY_DELETE)
{
nv_putsub(np, NIL(char*), ARRAY_SCAN|ARRAY_NOSCOPE);
ap->header.nelem |= ARRAY_SCAN;
}
else /* same as array[0] */
{
if(is_associative(ap))
(*ap->header.fun)(np,"0",flag==ARRAY_ASSIGN?NV_AADD:0);
else
ap->cur = 0;
}
}
if(is_associative(ap))
{
mp = (Namval_t*)((*arp->fun)(np,NIL(char*),NV_ACURRENT));
if(!mp)
up = (union Value*)&mp;
else if(nv_isarray(mp))
{
if(wasundef)
nv_putsub(mp,NIL(char*),ARRAY_UNDEF);
return(mp);
}
else
{
up = &mp->nvalue;
if(nv_isvtree(mp))
{
if(!up->cp && flag==ARRAY_ASSIGN)
{
nv_arraychild(np,mp,0);
ap->header.nelem++;
}
return(mp);
}
}
}
else
{
if(!(ap->header.nelem&ARRAY_SCAN) && ap->cur >= ap->maxi)
ap = array_grow(np, ap, (int)ap->cur);
if(ap->cur>=ap->maxi)
errormsg(SH_DICT,ERROR_exit(1),e_subscript,nv_name(np));
up = &(ap->val[ap->cur]);
if((!up->cp||up->cp==Empty) && nv_type(np) && nv_isvtree(np))
{
char *cp;
if(!ap->header.table)
ap->header.table = dtopen(&_Nvdisc,Dtoset);
sfprintf(sh.strbuf,"%d",ap->cur);
cp = sfstruse(sh.strbuf);
mp = nv_search(cp, ap->header.table, NV_ADD);
mp->nvenv = (char*)np;
nv_arraychild(np,mp,0);
}
if(up->np && array_isbit(ap->bits,ap->cur,ARRAY_CHILD))
{
if(wasundef && nv_isarray(up->np))
nv_putsub(up->np,NIL(char*),ARRAY_UNDEF);
return(up->np);
}
}
np->nvalue.cp = up->cp;
if(!up->cp)
{
char *xp = nv_setdisc(np,"get",np,(Namfun_t*)np);
if(flag!=ARRAY_ASSIGN)
return(xp && xp!=(char*)np?np:0);
if(!array_covered(np,ap))
ap->header.nelem++;
}
return(np);
}
#if SHOPT_TYPEDEF
int nv_arraysettype(Namval_t *np, Namval_t *tp, const char *sub, int flags)
{
Namval_t *nq;
char *av[2];
int rdonly = nv_isattr(np,NV_RDONLY);
int xtrace = sh_isoption(SH_XTRACE);
Namarr_t *ap = nv_arrayptr(np);
av[1] = 0;
sh.last_table = 0;
if(!ap->table)
ap->table = dtopen(&_Nvdisc,Dtoset);
if(nq = nv_search(sub, ap->table, NV_ADD))
{
if(!nq->nvfun && nq->nvalue.cp && *nq->nvalue.cp==0)
_nv_unset(nq,NV_RDONLY);
nv_arraychild(np,nq,0);
if(!nv_isattr(tp,NV_BINARY))
{
sfprintf(sh.strbuf,"%s=%s",nv_name(nq),nv_getval(np));
av[0] = strdup(sfstruse(sh.strbuf));
}
if(!nv_clone(tp,nq,flags|NV_NOFREE))
return(0);
ap->nelem |= ARRAY_SCAN;
if(!rdonly)
nv_offattr(nq,NV_RDONLY);
if(!nv_isattr(tp,NV_BINARY))
{
if(xtrace)
sh_offoption(SH_XTRACE);
ap->nelem &= ~ARRAY_SCAN;
sh_eval(sh_sfeval(av),0);
ap->nelem |= ARRAY_SCAN;
free((void*)av[0]);
if(xtrace)
sh_onoption(SH_XTRACE);
}
return(1);
}
return(0);
}
#endif /* SHOPT_TYPEDEF */
static Namfun_t *array_clone(Namval_t *np, Namval_t *mp, int flags, Namfun_t *fp)
{
Namarr_t *ap = (Namarr_t*)fp;
Namval_t *nq, *mq;
char *name, *sub=0;
int nelem, skipped=0;
Dt_t *otable=ap->table;
struct index_array *aq = (struct index_array*)ap, *ar;
Shell_t *shp = sh_getinterp();
if(flags&NV_MOVE)
{
if((flags&NV_COMVAR) && nv_putsub(np,NIL(char*),ARRAY_SCAN))
{
do
{
if(nq=nv_opensub(np))
nq->nvenv = (void*)mp;
}
while(nv_nextsub(np));
}
return(fp);
}
nelem = ap->nelem;
if(nelem&ARRAY_NOCLONE)
return(0);
if((flags&NV_TYPE) && !ap->scope)
{
ap = array_scope(np,ap,flags);
return(&ap->hdr);
}
ap = (Namarr_t*)nv_clone_disc(fp,0);
if(flags&NV_COMVAR)
{
ap->scope = 0;
ap->nelem = 0;
sh.prev_table = sh.last_table;
sh.prev_root = sh.last_root;
}
if(ap->table)
{
ap->table = dtopen(&_Nvdisc,Dtoset);
if(ap->scope && !(flags&NV_COMVAR))
{
ap->scope = ap->table;
dtview(ap->table, otable->view);
}
}
mp->nvfun = (Namfun_t*)ap;
mp->nvflag &= NV_MINIMAL;
mp->nvflag |= (np->nvflag&~(NV_MINIMAL|NV_NOFREE));
if(!(nelem&(ARRAY_SCAN|ARRAY_UNDEF)) && (sub=nv_getsub(np)))
sub = strdup(sub);
ar = (struct index_array*)ap;
if(!is_associative(ap))
ar->bits = (unsigned char*)&ar->val[ar->maxi];
if(!nv_putsub(np,NIL(char*),ARRAY_SCAN|((flags&NV_COMVAR)?0:ARRAY_NOSCOPE)))
{
if(ap->fun)
(*ap->fun)(np,(char*)np,0);
skipped=1;
goto skip;
}
do
{
name = nv_getsub(np);
nv_putsub(mp,name,ARRAY_ADD|ARRAY_NOSCOPE);
mq = 0;
if(nq=nv_opensub(np))
mq = nv_search(name,ap->table,NV_ADD);
if(nq && (flags&NV_COMVAR) && nv_isvtree(nq))
{
mq->nvalue.cp = 0;
if(!is_associative(ap))
ar->val[ar->cur].np = mq;
nv_clone(nq,mq,flags);
}
else if(flags&NV_ARRAY)
{
if((flags&NV_NOFREE) && !is_associative(ap))
array_setbit(aq->bits,aq->cur,ARRAY_NOFREE);
else if(nq && (flags&NV_NOFREE))
{
mq->nvalue = nq->nvalue;
nv_onattr(nq,NV_NOFREE);
}
}
else if(nv_isattr(np,NV_INTEGER))
{
Sfdouble_t d= nv_getnum(np);
if(!is_associative(ap))
ar->val[ar->cur].cp = 0;
nv_putval(mp,(char*)&d,NV_LDOUBLE);
}
else
{
if(!is_associative(ap))
ar->val[ar->cur].cp = 0;
nv_putval(mp,nv_getval(np),NV_RDONLY);
}
aq->header.nelem |= ARRAY_NOSCOPE;
}
while(nv_nextsub(np));
skip:
if(sub)
{
if(!skipped)
nv_putsub(np,sub,0L);
free((void*)sub);
}
aq->header.nelem = ap->nelem = nelem;
return(&ap->hdr);
}
static char *array_getval(Namval_t *np, Namfun_t *disc)
{
register Namarr_t *aq,*ap = (Namarr_t*)disc;
register Namval_t *mp;
if((mp=array_find(np,ap,ARRAY_LOOKUP))!=np)
{
if(!mp && !is_associative(ap) && (aq=(Namarr_t*)ap->scope))
{
array_syncsub(aq,ap);
if((mp=array_find(np,aq,ARRAY_LOOKUP))==np)
return(nv_getv(np,&aq->hdr));
}
return(mp?nv_getval(mp):0);
}
return(nv_getv(np,&ap->hdr));
}
static Sfdouble_t array_getnum(Namval_t *np, Namfun_t *disc)
{
register Namarr_t *aq,*ap = (Namarr_t*)disc;
register Namval_t *mp;
if((mp=array_find(np,ap,ARRAY_LOOKUP))!=np)
{
if(!mp && !is_associative(ap) && (aq=(Namarr_t*)ap->scope))
{
array_syncsub(aq,ap);
if((mp=array_find(np,aq,ARRAY_LOOKUP))==np)
return(nv_getn(np,&aq->hdr));
}
return(mp?nv_getnum(mp):0);
}
return(nv_getn(np,&ap->hdr));
}
static void array_putval(Namval_t *np, const char *string, int flags, Namfun_t *dp)
{
register Namarr_t *ap = (Namarr_t*)dp;
register union Value *up;
register Namval_t *mp;
register struct index_array *aq = (struct index_array*)ap;
int scan,nofree = nv_isattr(np,NV_NOFREE);
do
{
mp = array_find(np,ap,string?ARRAY_ASSIGN:ARRAY_DELETE);
scan = ap->nelem&ARRAY_SCAN;
if(mp && mp!=np)
{
if(!is_associative(ap) && string && !(flags&NV_APPEND) && !nv_type(np) && nv_isvtree(mp))
{
if(!nv_isattr(np,NV_NOFREE))
_nv_unset(mp,flags&NV_RDONLY);
array_clrbit(aq->bits,aq->cur,ARRAY_CHILD);
aq->val[aq->cur].cp = 0;
if(!nv_isattr(mp,NV_NOFREE))
nv_delete(mp,ap->table,0);
goto skip;
}
nv_putval(mp, string, flags);
if(string)
{
#if SHOPT_TYPEDEF
if(ap->hdr.type && ap->hdr.type!=nv_type(mp))
nv_arraysettype(np,ap->hdr.type,nv_getsub(np),0);
#endif /* SHOPT_TYPEDEF */
continue;
}
ap->nelem |= scan;
}
if(!string)
{
if(mp)
{
if(is_associative(ap))
{
(*ap->fun)(np,NIL(char*),NV_ADELETE);
np->nvalue.cp = 0;
}
else
{
if(mp!=np)
{
array_clrbit(aq->bits,aq->cur,ARRAY_CHILD);
aq->val[aq->cur].cp = 0;
nv_delete(mp,ap->table,0);
}
if(!array_covered(np,(struct index_array*)ap))
ap->nelem--;
}
}
if(array_elem(ap)==0 && (ap->nelem&ARRAY_SCAN))
{
if(is_associative(ap))
(*ap->fun)(np, NIL(char*), NV_AFREE);
else if(ap->table)
dtclose(ap->table);
nv_offattr(np,NV_ARRAY);
}
if(!mp || mp!=np || is_associative(ap))
continue;
}
skip:
/* prevent empty string from being deleted */
up = array_getup(np,ap,!nofree);
if(up->cp == Empty)
up->cp = 0;
if(nv_isarray(np))
np->nvalue.up = up;
nv_putv(np,string,flags,&ap->hdr);
if(!is_associative(ap))
{
if(string)
array_clrbit(aq->bits,aq->cur,ARRAY_NOFREE);
else if(mp==np)
aq->val[aq->cur].cp = 0;
}
#if SHOPT_TYPEDEF
if(string && ap->hdr.type && nv_isvtree(np))
nv_arraysettype(np,ap->hdr.type,nv_getsub(np),0);
#endif /* SHOPT_TYPEDEF */
}
while(!string && nv_nextsub(np));
if(ap)
ap->nelem &= ~ARRAY_NOSCOPE;
if(nofree)
nv_onattr(np,NV_NOFREE);
else
nv_offattr(np,NV_NOFREE);
if(!string && !nv_isattr(np,NV_ARRAY))
{
Namfun_t *nfp;
if(!is_associative(ap) && aq->xp)
{
_nv_unset(nv_namptr(aq->xp,0),NV_RDONLY);
free((void*)aq->xp);
}
if((nfp = nv_disc(np,(Namfun_t*)ap,NV_POP)) && !(nfp->nofree&1))
free((void*)nfp);
if(!nv_isnull(np))
{
nv_onattr(np,NV_NOFREE);
_nv_unset(np,flags);
}
if(np->nvalue.cp==Empty)
np->nvalue.cp = 0;
}
if(!string && (flags&NV_TYPE))
array_unscope(np,ap);
}
static const Namdisc_t array_disc =
{
sizeof(Namarr_t),
array_putval,
array_getval,
array_getnum,
0,
0,
array_clone
};
static void array_copytree(Namval_t *np, Namval_t *mp)
{
Namfun_t *fp = nv_disc(np,NULL,NV_POP);
nv_offattr(np,NV_ARRAY);
nv_clone(np,mp,0);
if(np->nvalue.cp && !nv_isattr(np,NV_NOFREE))
free((void*)np->nvalue.cp);
np->nvalue.cp = 0;
np->nvalue.up = &mp->nvalue;
fp->nofree &= ~1;
nv_disc(np,(Namfun_t*)fp, NV_FIRST);
fp->nofree |= 1;
nv_onattr(np,NV_ARRAY);
mp->nvenv = (char*)np;
}
/*
* Increase the size of the indexed array of elements in <arp>
* so that <maxi> is a legal index. If <arp> is 0, an array
* of the required size is allocated. A pointer to the
* allocated Namarr_t structure is returned.
* <maxi> becomes the current index of the array.
*/
static struct index_array *array_grow(Namval_t *np, register struct index_array *arp,int maxi)
{
register struct index_array *ap;
register int i;
register int newsize = arsize(arp,maxi+1);
if (maxi >= ARRAY_MAX)
errormsg(SH_DICT,ERROR_exit(1),e_subscript, fmtbase((long)maxi,10,0));
i = (newsize-1)*sizeof(union Value*)+newsize;
ap = new_of(struct index_array,i);
memset((void*)ap,0,sizeof(*ap)+i);
ap->maxi = newsize;
ap->cur = maxi;
ap->bits = (unsigned char*)&ap->val[newsize];
memset(ap->bits, 0, newsize);
if(arp)
{
ap->header = arp->header;
ap->header.hdr.dsize = sizeof(*ap) + i;
for(i=0;i < arp->maxi;i++)
ap->val[i].cp = arp->val[i].cp;
memcpy(ap->bits, arp->bits, arp->maxi);
array_setptr(np,arp,ap);
free((void*)arp);
}
else
{
Namval_t *mp=0;
ap->header.hdr.dsize = sizeof(*ap) + i;
i = 0;
ap->header.fun = 0;
if(nv_isnull(np) && nv_isattr(np,NV_NOFREE))
{
i = ARRAY_TREE;
nv_offattr(np,NV_NOFREE);
}
if(np->nvalue.cp==Empty)
np->nvalue.cp=0;
if(nv_hasdisc(np,&array_disc) || nv_isvtree(np))
{
ap->header.table = dtopen(&_Nvdisc,Dtoset);
mp = nv_search("0", ap->header.table,NV_ADD);
if(mp && nv_isnull(mp))
{
Namfun_t *fp;
ap->val[0].np = mp;
array_setbit(ap->bits,0,ARRAY_CHILD);
for(fp=np->nvfun; fp && !fp->disc->readf; fp=fp->next);
if(fp && fp->disc && fp->disc->readf)
(*fp->disc->readf)(mp,(Sfio_t*)0,0,fp);
i++;
}
}
else if((ap->val[0].cp=np->nvalue.cp))
i++;
else if(nv_isattr(np,NV_INTEGER) && !nv_isnull(np))
{
Sfdouble_t d= nv_getnum(np);
i++;
}
ap->header.nelem = i;
ap->header.hdr.disc = &array_disc;
nv_disc(np,(Namfun_t*)ap, NV_FIRST);
nv_onattr(np,NV_ARRAY);
if(mp)
{
array_copytree(np,mp);
ap->header.hdr.nofree &= ~1;
}
}
for(;i < newsize;i++)
ap->val[i].cp = 0;
return(ap);
}
int nv_atypeindex(Namval_t *np, const char *tname)
{
Namval_t *tp;
int offset = staktell();
int n = strlen(tname)-1;
sfprintf(stkstd,"%s.%.*s%c",NV_CLASS,n,tname,0);
tp = nv_open(stakptr(offset), sh.var_tree, NV_NOADD|NV_VARNAME);
stakseek(offset);
if(tp)
{
struct index_array *ap = (struct index_array*)nv_arrayptr(np);
if(!nv_hasdisc(tp,&ENUM_disc))
errormsg(SH_DICT,ERROR_exit(1),e_notenum,tp->nvname);
if(!ap)
ap = array_grow(np,ap,1);
ap->xp = calloc(NV_MINSZ,1);
np = nv_namptr(ap->xp,0);
np->nvname = tp->nvname;
nv_onattr(np,NV_MINIMAL);
nv_clone(tp,np,NV_NOFREE);
nv_offattr(np,NV_RDONLY);
return(1);
}
errormsg(SH_DICT,ERROR_exit(1),e_unknowntype, n,tname);
return(0);
}
Namarr_t *nv_arrayptr(register Namval_t *np)
{
if(nv_isattr(np,NV_ARRAY))
return((Namarr_t*)nv_hasdisc(np, &array_disc));
return(0);
}
/*
* Verify that argument is an indexed array and convert to associative,
* freeing relevant storage
*/
static Namarr_t *nv_changearray(Namval_t *np, void *(*fun)(Namval_t*,const char*,int))
{
register Namarr_t *ap;
char numbuff[NUMSIZE+1];
unsigned dot, digit, n;
union Value *up;
struct index_array *save_ap;
register char *string_index=&numbuff[NUMSIZE];
numbuff[NUMSIZE]='\0';
if(!fun || !(ap = nv_arrayptr(np)) || is_associative(ap))
return(NIL(Namarr_t*));
nv_stack(np,&ap->hdr);
save_ap = (struct index_array*)nv_stack(np,0);
ap = (Namarr_t*)((*fun)(np, NIL(char*), NV_AINIT));
ap->nelem = 0;
ap->fun = fun;
nv_onattr(np,NV_ARRAY);
for(dot = 0; dot < (unsigned)save_ap->maxi; dot++)
{
if(save_ap->val[dot].cp)
{
if ((digit = dot)== 0)
*--string_index = '0';
else while( n = digit )
{
digit /= 10;
*--string_index = '0' + (n-10*digit);
}
nv_putsub(np, string_index, ARRAY_ADD);
up = (union Value*)((*ap->fun)(np,NIL(char*),0));
up->cp = save_ap->val[dot].cp;
save_ap->val[dot].cp = 0;
}
string_index = &numbuff[NUMSIZE];
}
free((void*)save_ap);
return(ap);
}
/*
* set the associative array processing method for node <np> to <fun>
* The array pointer is returned if sucessful.
*/
Namarr_t *nv_setarray(Namval_t *np, void *(*fun)(Namval_t*,const char*,int))
{
register Namarr_t *ap;
char *value=0;
Namfun_t *fp;
int nelem = 0;
if(fun && (ap = nv_arrayptr(np)))
{
/*
* if it's already an indexed array, convert to
* associative structure
*/
if(!is_associative(ap))
ap = nv_changearray(np, fun);
return(ap);
}
if(nv_isnull(np) && nv_isattr(np,NV_NOFREE))
{
nelem = ARRAY_TREE;
nv_offattr(np,NV_NOFREE);
}
if(!(fp=nv_isvtree(np)))
value = nv_getval(np);
if(fun && !ap && (ap = (Namarr_t*)((*fun)(np, NIL(char*), NV_AINIT))))
{
/* check for preexisting initialization and save */
ap->nelem = nelem;
ap->fun = fun;
nv_onattr(np,NV_ARRAY);
if(fp || value)
{
nv_putsub(np, "0", ARRAY_ADD);
if(value)
nv_putval(np, value, 0);
else
{
Namval_t *mp = (Namval_t*)((*fun)(np,NIL(char*),NV_ACURRENT));
array_copytree(np,mp);
}
}
return(ap);
}
return(NIL(Namarr_t*));
}
/*
* move parent subscript into child
*/
Namval_t *nv_arraychild(Namval_t *np, Namval_t *nq, int c)
{
Namfun_t *fp;
register Namarr_t *ap = nv_arrayptr(np);
union Value *up;
Namval_t *tp;
if(!nq)
return(ap?array_find(np,ap, ARRAY_LOOKUP):0);
if(!ap)
{
nv_putsub(np, NIL(char*), ARRAY_FILL);
ap = nv_arrayptr(np);
}
if(!(up = array_getup(np,ap,0)))
return((Namval_t*)0);
np->nvalue.cp = up->cp;
if((tp=nv_type(np)) || c)
{
ap->nelem |= ARRAY_NOCLONE;
nq->nvenv = (char*)np;
if(c=='t')
nv_clone(tp,nq, 0);
else
nv_clone(np, nq, NV_NODISC);
nv_offattr(nq,NV_ARRAY);
ap->nelem &= ~ARRAY_NOCLONE;
}
nq->nvenv = (char*)np;
if((fp=nq->nvfun) && fp->disc && fp->disc->setdisc && (fp = nv_disc(nq,fp,NV_POP)))
free((void*)fp);
if(!ap->fun)
{
struct index_array *aq = (struct index_array*)ap;
array_setbit(aq->bits,aq->cur,ARRAY_CHILD);
up->np = nq;
}
if(c=='.')
nv_setvtree(nq);
return(nq);
}
/*
* This routine sets subscript of <np> to the next element, if any.
* The return value is zero, if there are no more elements
* Otherwise, 1 is returned.
*/
int nv_nextsub(Namval_t *np)
{
register struct index_array *ap = (struct index_array*)nv_arrayptr(np);
register unsigned dot;
struct index_array *aq=0, *ar=0;
if(!ap || !(ap->header.nelem&ARRAY_SCAN))
return(0);
if(is_associative(ap))
{
Namval_t *nq;
if(nq=(*ap->header.fun)(np,NIL(char*),NV_ANEXT))
{
if(nv_isattr(nq,NV_CHILD))
nv_putsub(nq->nvalue.np,NIL(char*),ARRAY_UNDEF);
return(1);
}
ap->header.nelem &= ~(ARRAY_SCAN|ARRAY_NOCHILD);
return(0);
}
if(!(ap->header.nelem&ARRAY_NOSCOPE))
ar = (struct index_array*)ap->header.scope;
for(dot=ap->cur+1; dot < (unsigned)ap->maxi; dot++)
{
aq = ap;
if(!ap->val[dot].cp && !(ap->header.nelem&ARRAY_NOSCOPE))
{
if(!(aq=ar) || dot>=(unsigned)aq->maxi)
continue;
}
if(aq->val[dot].cp)
{
ap->cur = dot;
if(array_isbit(aq->bits, dot,ARRAY_CHILD))
{
Namval_t *mp = aq->val[dot].np;
if((aq->header.nelem&ARRAY_NOCHILD) && nv_isvtree(mp) && !mp->nvfun->dsize)
continue;
if(nv_isarray(mp))
nv_putsub(mp,NIL(char*),ARRAY_UNDEF);
}
return(1);
}
}
ap->header.nelem &= ~(ARRAY_SCAN|ARRAY_NOCHILD);
ap->cur = 0;
return(0);
}
/*
* Set an array subscript for node <np> given the subscript <sp>
* An array is created if necessary.
* <mode> can be a number, plus or more of symbolic constants
* ARRAY_SCAN, ARRAY_UNDEF, ARRAY_ADD
* The node pointer is returned which can be NULL if <np> is
* not already array and the ARRAY_ADD bit of <mode> is not set.
* ARRAY_FILL sets the specified subscript to the empty string when
* ARRAY_ADD is specified and there is no value or sets all
* the elements up to the number specified if ARRAY_ADD is not specified
*/
Namval_t *nv_putsub(Namval_t *np,register char *sp,register long mode)
{
register struct index_array *ap = (struct index_array*)nv_arrayptr(np);
register int size = (mode&ARRAY_MASK);
if(!ap || !ap->header.fun)
{
if(sp)
{
if(ap && ap->xp && !strmatch(sp,"+([0-9])"))
{
Namval_t *mp = nv_namptr(ap->xp,0);
nv_putval(mp, sp,0);
size = nv_getnum(mp);
}
else
size = (int)sh_arith((char*)sp);
}
if(size <0 && ap)
size += array_maxindex(np);
if(size >= ARRAY_MAX || (size < 0))
{
errormsg(SH_DICT,ERROR_exit(1),e_subscript, nv_name(np));
return(NIL(Namval_t*));
}
if(!ap || size>=ap->maxi)
{
if(size==0 && !(mode&ARRAY_FILL))
return(NIL(Namval_t*));
if(sh.subshell)
np = sh_assignok(np,1);
ap = array_grow(np, ap,size);
}
ap->header.nelem &= ~ARRAY_UNDEF;
ap->header.nelem |= (mode&(ARRAY_SCAN|ARRAY_NOCHILD|ARRAY_UNDEF|ARRAY_NOSCOPE));
#if 0
if(array_isbit(ap->bits,oldsize,ARRAY_CHILD))
mp = ap->val[oldsize].np;
if(size != oldsize && mp->nvalue.cp)
{
Namfun_t *nfp;
for(nfp=np->nvfun; nfp; nfp=nfp->next)
{
if(nfp->disc && nfp->disc->readf)
{
(*nfp->disc->readf)(mp,(Sfio_t*)0,0,nfp);
break;
}
}
}
#endif
ap->cur = size;
if((mode&ARRAY_SCAN) && (ap->cur--,!nv_nextsub(np)))
np = 0;
if(mode&(ARRAY_FILL|ARRAY_ADD))
{
if(!(mode&ARRAY_ADD))
{
int n;
for(n=0; n <= size; n++)
{
if(!ap->val[n].cp)
{
ap->val[n].cp = Empty;
if(!array_covered(np,ap))
ap->header.nelem++;
}
}
if(n=ap->maxi-ap->maxi)
memset(&ap->val[size],0,n*sizeof(union Value));
}
else if(!ap->val[size].cp)
{
if(sh.subshell)
np = sh_assignok(np,1);
ap->val[size].cp = Empty;
if(!array_covered(np,ap))
ap->header.nelem++;
}
}
else if(!(mode&ARRAY_SCAN))
{
ap->header.nelem &= ~ARRAY_SCAN;
if(array_isbit(ap->bits,size,ARRAY_CHILD))
nv_putsub(ap->val[size].np,NIL(char*),ARRAY_UNDEF);
if(sp && !(mode&ARRAY_ADD) && !ap->val[size].cp)
np = 0;
}
return((Namval_t*)np);
}
ap->header.nelem &= ~ARRAY_UNDEF;
if(!(mode&ARRAY_FILL))
ap->header.nelem &= ~ARRAY_SCAN;
ap->header.nelem |= (mode&(ARRAY_SCAN|ARRAY_NOCHILD|ARRAY_UNDEF|ARRAY_NOSCOPE));
if(sp)
{
if(mode&ARRAY_SETSUB)
{
(*ap->header.fun)(np, sp, NV_ASETSUB);
return(np);
}
(*ap->header.fun)(np, sp, (mode&ARRAY_ADD)?NV_AADD:0);
if(!(mode&(ARRAY_SCAN|ARRAY_ADD)) && !(*ap->header.fun)(np,NIL(char*),NV_ACURRENT))
np = 0;
}
else if(mode&ARRAY_SCAN)
(*ap->header.fun)(np,(char*)np,0);
else if(mode&ARRAY_UNDEF)
(*ap->header.fun)(np, "",0);
if((mode&ARRAY_SCAN) && !nv_nextsub(np))
np = 0;
return(np);
}
/*
* process an array subscript for node <np> given the subscript <cp>
* returns pointer to character after the subscript
*/
char *nv_endsubscript(Namval_t *np, register char *cp, int mode)
{
register int count=1, quoted=0, c;
register char *sp = cp+1;
/* first find matching ']' */
while(count>0 && (c= *++cp))
{
if(c=='\\' && (!(mode&NV_SUBQUOTE) || (c=cp[1])=='[' || c==']' || c=='\\' || c=='*' || c=='@'))
{
quoted=1;
cp++;
}
else if(c=='[')
count++;
else if(c==']')
count--;
}
*cp = 0;
if(quoted)
{
/* strip escape characters */
count = staktell();
stakwrite(sp,1+cp-sp);
sh_trim(sp=stakptr(count));
}
if(mode && np)
{
Namarr_t *ap = nv_arrayptr(np);
int scan = 0;
if(ap)
scan = ap->nelem&ARRAY_SCAN;
if((mode&NV_ASSIGN) && (cp[1]=='=' || cp[1]=='+'))
mode |= NV_ADD;
nv_putsub(np, sp, ((mode&NV_ADD)?ARRAY_ADD:0)|(cp[1]&&(mode&NV_ADD)?ARRAY_FILL:mode&ARRAY_FILL));
if(scan)
ap->nelem |= scan;
}
if(quoted)
stakseek(count);
*cp++ = c;
return(cp);
}
Namval_t *nv_opensub(Namval_t* np)
{
register struct index_array *ap = (struct index_array*)nv_arrayptr(np);
if(ap)
{
if(is_associative(ap))
return((Namval_t*)((*ap->header.fun)(np,NIL(char*),NV_ACURRENT)));
else if(array_isbit(ap->bits,ap->cur,ARRAY_CHILD))
return(ap->val[ap->cur].np);
}
return(NIL(Namval_t*));
}
char *nv_getsub(Namval_t* np)
{
static char numbuff[NUMSIZE];
register struct index_array *ap;
register unsigned dot, n;
register char *cp = &numbuff[NUMSIZE];
if(!np || !(ap = (struct index_array*)nv_arrayptr(np)))
return(NIL(char*));
if(is_associative(ap))
return((char*)((*ap->header.fun)(np,NIL(char*),NV_ANAME)));
if(ap->xp)
{
np = nv_namptr(ap->xp,0);
np->nvalue.s = ap->cur;
return(nv_getval(np));
}
if((dot = ap->cur)==0)
*--cp = '0';
else while(n=dot)
{
dot /= 10;
*--cp = '0' + (n-10*dot);
}
return(cp);
}
/*
* If <np> is an indexed array node, the current subscript index
* returned, otherwise returns -1
*/
int nv_aindex(register Namval_t* np)
{
Namarr_t *ap = nv_arrayptr(np);
if(!ap)
return(0);
else if(is_associative(ap))
return(-1);
return(((struct index_array*)(ap))->cur&ARRAY_MASK);
}
int nv_arraynsub(register Namarr_t* ap)
{
return(array_elem(ap));
}
int nv_aimax(register Namval_t* np)
{
struct index_array *ap = (struct index_array*)nv_arrayptr(np);
int sub = -1;
if(!ap || is_associative(&ap->header))
return(-1);
sub = ap->maxi;
while(--sub>0 && ap->val[sub].cp==0);
return(sub);
}
/*
* This is the default implementation for associative arrays
*/
void *nv_associative(register Namval_t *np,const char *sp,int mode)
{
register struct assoc_array *ap = (struct assoc_array*)nv_arrayptr(np);
register int type;
switch(mode)
{
case NV_AINIT:
if(ap = (struct assoc_array*)calloc(1,sizeof(struct assoc_array)))
{
ap->header.table = dtopen(&_Nvdisc,Dtoset);
ap->cur = 0;
ap->pos = 0;
ap->header.hdr.disc = &array_disc;
nv_disc(np,(Namfun_t*)ap, NV_FIRST);
ap->header.hdr.dsize = sizeof(struct assoc_array);
ap->header.hdr.nofree &= ~1;
}
return((void*)ap);
case NV_ADELETE:
if(ap->cur)
{
if(!ap->header.scope || (Dt_t*)ap->header.scope==ap->header.table || !nv_search(ap->cur->nvname,(Dt_t*)ap->header.scope,0))
ap->header.nelem--;
_nv_unset(ap->cur,NV_RDONLY);
nv_delete(ap->cur,ap->header.table,0);
ap->cur = 0;
}
return((void*)ap);
case NV_AFREE:
ap->pos = 0;
if(ap->header.scope)
{
ap->header.table = dtview(ap->header.table,(Dt_t*)0);
dtclose(ap->header.scope);
ap->header.scope = 0;
}
else
dtclose(ap->header.table);
return((void*)ap);
case NV_ANEXT:
if(!ap->pos)
{
if((ap->header.nelem&ARRAY_NOSCOPE) && ap->header.scope && dtvnext(ap->header.table))
{
ap->header.scope = dtvnext(ap->header.table);
ap->header.table->view = 0;
}
if(!(ap->pos=ap->cur))
ap->pos = (Namval_t*)dtfirst(ap->header.table);
}
else
ap->pos = ap->nextpos;
for(;ap->cur=ap->pos; ap->pos=ap->nextpos)
{
ap->nextpos = (Namval_t*)dtnext(ap->header.table,ap->pos);
if(ap->cur->nvalue.cp)
{
if((ap->header.nelem&ARRAY_NOCHILD) && nv_isattr(ap->cur,NV_CHILD))
continue;
return((void*)ap);
}
}
if((ap->header.nelem&ARRAY_NOSCOPE) && ap->header.scope && !dtvnext(ap->header.table))
{
ap->header.table->view = (Dt_t*)ap->header.scope;
ap->header.scope = ap->header.table;
}
return(NIL(void*));
case NV_ASETSUB:
ap->cur = (Namval_t*)sp;
return((void*)ap->cur);
case NV_ACURRENT:
if(ap->cur)
ap->cur->nvenv = (char*)np;
return((void*)ap->cur);
case NV_ANAME:
if(ap->cur)
{
Shell_t *shp = sh_getinterp();
if(!shp->instance && nv_isnull(ap->cur))
return(NIL(void*));
return((void*)ap->cur->nvname);
}
return(NIL(void*));
default:
if(sp)
{
Namval_t *mp=0;
ap->cur = 0;
if(sp==(char*)np)
return(0);
type = nv_isattr(np,NV_PUBLIC&~(NV_ARRAY|NV_CHILD|NV_MINIMAL));
if(mode)
mode = NV_ADD|HASH_NOSCOPE;
else if(ap->header.nelem&ARRAY_NOSCOPE)
mode = HASH_NOSCOPE;
if(*sp==0 && sh_isoption(SH_XTRACE) && (mode&NV_ADD))
errormsg(SH_DICT,ERROR_warn(0),"adding empty subscript");
if(sh.subshell && (mp=nv_search(sp,ap->header.table,0)) && nv_isnull(mp))
ap->cur = mp;
if((mp || (mp=nv_search(sp,ap->header.table,mode))) && nv_isnull(mp) && (mode&NV_ADD))
{
nv_onattr(mp,type);
mp->nvenv = (char*)np;
if((mode&NV_ADD) && nv_type(np))
nv_arraychild(np,mp,0);
if(sh.subshell)
np = sh_assignok(np,1);
if(!ap->header.scope || !nv_search(sp,dtvnext(ap->header.table),0))
ap->header.nelem++;
if(nv_isnull(mp))
{
if(ap->header.nelem&ARRAY_TREE)
nv_setvtree(mp);
mp->nvalue.cp = Empty;
}
}
else if(ap->header.nelem&ARRAY_SCAN)
{
Namval_t fake;
fake.nvname = (char*)sp;
ap->pos = mp = (Namval_t*)dtprev(ap->header.table,&fake);
ap->nextpos = (Namval_t*)dtnext(ap->header.table,mp);
}
else if(!mp && *sp && mode==0)
mp = nv_search(sp,ap->header.table,NV_ADD);
np = mp;
if(ap->pos && ap->pos==np)
ap->header.nelem |= ARRAY_SCAN;
else if(!(ap->header.nelem&ARRAY_SCAN))
ap->pos = 0;
ap->cur = np;
}
if(ap->cur)
return((void*)(&ap->cur->nvalue));
else
return((void*)(&ap->cur));
}
}
/*
* Assign values to an array
*/
void nv_setvec(register Namval_t *np,int append,register int argc,register char *argv[])
{
int arg0=0;
struct index_array *ap=0,*aq;
if(nv_isarray(np))
{
ap = (struct index_array*)nv_arrayptr(np);
if(ap && is_associative(ap))
errormsg(SH_DICT,ERROR_exit(1),"cannot append index array to associative array %s",nv_name(np));
}
if(append)
{
if(ap)
{
if(!(aq = (struct index_array*)ap->header.scope))
aq = ap;
arg0 = ap->maxi;
while(--arg0>0 && ap->val[arg0].cp==0 && aq->val[arg0].cp==0);
arg0++;
}
else if(!nv_isnull(np))
arg0=1;
}
while(--argc >= 0)
{
nv_putsub(np,NIL(char*),(long)argc+arg0|ARRAY_FILL|ARRAY_ADD);
nv_putval(np,argv[argc],0);
}
}