/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright 2012 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
*/
#include <stdio.h>
#include <libzfs.h>
#include <string.h>
#include <strings.h>
#include <errno.h>
#include <libshare.h>
#include "libshare_impl.h"
#include <libintl.h>
#include <sys/mnttab.h>
#include <sys/mntent.h>
extern sa_share_t _sa_add_share(sa_group_t, char *, int, int *, uint64_t);
extern sa_group_t _sa_create_zfs_group(sa_group_t, char *);
extern char *sa_fstype(char *);
extern void set_node_attr(void *, char *, char *);
extern int sa_is_share(void *);
extern void sa_update_sharetab_ts(sa_handle_t);
/*
* File system specific code for ZFS. The original code was stolen
* from the "zfs" command and modified to better suit this library's
* usage.
*/
typedef struct get_all_cbdata {
zfs_handle_t **cb_handles;
size_t cb_alloc;
size_t cb_used;
uint_t cb_types;
} get_all_cbdata_t;
/*
* sa_zfs_init(impl_handle)
*
* Initialize an access handle into libzfs. The handle needs to stay
* around until sa_zfs_fini() in order to maintain the cache of
* mounts.
*/
int
sa_zfs_init(sa_handle_impl_t impl_handle)
{
impl_handle->zfs_libhandle = libzfs_init();
if (impl_handle->zfs_libhandle != NULL) {
libzfs_print_on_error(impl_handle->zfs_libhandle, B_TRUE);
return (B_TRUE);
}
return (B_FALSE);
}
/*
* sa_zfs_fini(impl_handle)
*
* cleanup data structures and the libzfs handle used for accessing
* zfs file share info.
*/
void
sa_zfs_fini(sa_handle_impl_t impl_handle)
{
if (impl_handle->zfs_libhandle != NULL) {
if (impl_handle->zfs_list != NULL) {
zfs_handle_t **zhp = impl_handle->zfs_list;
size_t i;
/*
* Contents of zfs_list need to be freed so we
* don't lose ZFS handles.
*/
for (i = 0; i < impl_handle->zfs_list_count; i++) {
zfs_close(zhp[i]);
}
free(impl_handle->zfs_list);
impl_handle->zfs_list = NULL;
impl_handle->zfs_list_count = 0;
}
libzfs_fini(impl_handle->zfs_libhandle);
impl_handle->zfs_libhandle = NULL;
}
}
/*
* get_one_filesystem(zfs_handle_t, data)
*
* an iterator function called while iterating through the ZFS
* root. It accumulates into an array of file system handles that can
* be used to derive info about those file systems.
*
* Note that as this function is called, we close all zhp handles that
* are not going to be places into the cp_handles list. We don't want
* to close the ones we are keeping, but all others would be leaked if
* not closed here.
*/
static int
get_one_filesystem(zfs_handle_t *zhp, void *data)
{
get_all_cbdata_t *cbp = data;
zfs_type_t type = zfs_get_type(zhp);
/*
* Interate over any nested datasets.
*/
if (type == ZFS_TYPE_FILESYSTEM &&
zfs_iter_filesystems(zhp, get_one_filesystem, data) != 0) {
zfs_close(zhp);
return (1);
}
/*
* Skip any datasets whose type does not match.
*/
if ((type & cbp->cb_types) == 0) {
zfs_close(zhp);
return (0);
}
if (cbp->cb_alloc == cbp->cb_used) {
zfs_handle_t **handles;
if (cbp->cb_alloc == 0)
cbp->cb_alloc = 64;
else
cbp->cb_alloc *= 2;
handles = (zfs_handle_t **)calloc(1,
cbp->cb_alloc * sizeof (void *));
if (handles == NULL) {
zfs_close(zhp);
return (0);
}
if (cbp->cb_handles) {
bcopy(cbp->cb_handles, handles,
cbp->cb_used * sizeof (void *));
free(cbp->cb_handles);
}
cbp->cb_handles = handles;
}
cbp->cb_handles[cbp->cb_used++] = zhp;
return (0);
}
/*
* get_all_filesystems(zfs_handle_t ***fslist, size_t *count)
*
* iterate through all ZFS file systems starting at the root. Returns
* a count and an array of handle pointers. Allocating is only done
* once. The caller does not need to free since it will be done at
* sa_zfs_fini() time.
*/
static void
get_all_filesystems(sa_handle_impl_t impl_handle,
zfs_handle_t ***fslist, size_t *count)
{
get_all_cbdata_t cb = { 0 };
cb.cb_types = ZFS_TYPE_FILESYSTEM;
if (impl_handle->zfs_list != NULL) {
*fslist = impl_handle->zfs_list;
*count = impl_handle->zfs_list_count;
return;
}
(void) zfs_iter_root(impl_handle->zfs_libhandle,
get_one_filesystem, &cb);
impl_handle->zfs_list = *fslist = cb.cb_handles;
impl_handle->zfs_list_count = *count = cb.cb_used;
}
/*
* mountpoint_compare(a, b)
*
* compares the mountpoint on two zfs file systems handles.
* returns values following strcmp() model.
*/
static int
mountpoint_compare(const void *a, const void *b)
{
zfs_handle_t **za = (zfs_handle_t **)a;
zfs_handle_t **zb = (zfs_handle_t **)b;
char mounta[MAXPATHLEN];
char mountb[MAXPATHLEN];
verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta,
sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb,
sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
return (strcmp(mounta, mountb));
}
/*
* return legacy mountpoint. Caller provides space for mountpoint and
* dataset.
*/
int
get_legacy_mountpoint(char *path, char *dataset, size_t dlen,
char *mountpoint, size_t mlen)
{
FILE *fp;
struct mnttab entry;
if ((fp = fopen(MNTTAB, "r")) == NULL) {
return (1);
}
while (getmntent(fp, &entry) == 0) {
if (entry.mnt_fstype == NULL ||
strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
continue;
if (strcmp(entry.mnt_mountp, path) == 0) {
if (mlen > 0)
(void) strlcpy(mountpoint, entry.mnt_mountp,
mlen);
if (dlen > 0)
(void) strlcpy(dataset, entry.mnt_special,
dlen);
break;
}
}
(void) fclose(fp);
return (1);
}
/*
* get_zfs_dataset(impl_handle, path)
*
* get the name of the ZFS dataset the path is equivalent to. The
* dataset name is used for get/set of ZFS properties since libzfs
* requires a dataset to do a zfs_open().
*/
static char *
get_zfs_dataset(sa_handle_impl_t impl_handle, char *path,
boolean_t search_mnttab)
{
size_t i, count = 0;
char *dataset = NULL;
zfs_handle_t **zlist;
char mountpoint[ZFS_MAXPROPLEN];
char canmount[ZFS_MAXPROPLEN];
get_all_filesystems(impl_handle, &zlist, &count);
for (i = 0; i < count; i++) {
/* must have a mountpoint */
if (zfs_prop_get(zlist[i], ZFS_PROP_MOUNTPOINT, mountpoint,
sizeof (mountpoint), NULL, NULL, 0, B_FALSE) != 0) {
/* no mountpoint */
continue;
}
/* mountpoint must be a path */
if (strcmp(mountpoint, ZFS_MOUNTPOINT_NONE) == 0 ||
strcmp(mountpoint, ZFS_MOUNTPOINT_LEGACY) == 0) {
/*
* Search mmttab for mountpoint and get dataset.
*/
if (search_mnttab == B_TRUE &&
get_legacy_mountpoint(path, mountpoint,
sizeof (mountpoint), NULL, 0) == 0) {
dataset = mountpoint;
break;
}
continue;
}
/* canmount must be set */
canmount[0] = '\0';
if (zfs_prop_get(zlist[i], ZFS_PROP_CANMOUNT, canmount,
sizeof (canmount), NULL, NULL, 0, B_FALSE) != 0 ||
strcmp(canmount, "off") == 0)
continue;
/*
* have a mountable handle but want to skip those marked none
* and legacy
*/
if (strcmp(mountpoint, path) == 0) {
dataset = (char *)zfs_get_name(zlist[i]);
break;
}
}
if (dataset != NULL)
dataset = strdup(dataset);
return (dataset);
}
/*
* get_zfs_property(dataset, property)
*
* Get the file system property specified from the ZFS dataset.
*/
static char *
get_zfs_property(char *dataset, zfs_prop_t property)
{
zfs_handle_t *handle = NULL;
char shareopts[ZFS_MAXPROPLEN];
libzfs_handle_t *libhandle;
libhandle = libzfs_init();
if (libhandle != NULL) {
handle = zfs_open(libhandle, dataset, ZFS_TYPE_FILESYSTEM);
if (handle != NULL) {
if (zfs_prop_get(handle, property, shareopts,
sizeof (shareopts), NULL, NULL, 0,
B_FALSE) == 0) {
zfs_close(handle);
libzfs_fini(libhandle);
return (strdup(shareopts));
}
zfs_close(handle);
}
libzfs_fini(libhandle);
}
return (NULL);
}
/*
* sa_zfs_is_shared(handle, path)
*
* Check to see if the ZFS path provided has the sharenfs option set
* or not.
*/
int
sa_zfs_is_shared(sa_handle_t sahandle, char *path)
{
int ret = 0;
char *dataset;
zfs_handle_t *handle = NULL;
char shareopts[ZFS_MAXPROPLEN];
libzfs_handle_t *libhandle;
dataset = get_zfs_dataset((sa_handle_t)sahandle, path, B_FALSE);
if (dataset != NULL) {
libhandle = libzfs_init();
if (libhandle != NULL) {
handle = zfs_open(libhandle, dataset,
ZFS_TYPE_FILESYSTEM);
if (handle != NULL) {
if (zfs_prop_get(handle, ZFS_PROP_SHARENFS,
shareopts, sizeof (shareopts), NULL, NULL,
0, B_FALSE) == 0 &&
strcmp(shareopts, "off") != 0) {
ret = 1; /* it is shared */
}
zfs_close(handle);
}
libzfs_fini(libhandle);
}
free(dataset);
}
return (ret);
}
/*
* find_or_create_group(handle, groupname, proto, *err)
*
* While walking the ZFS tree, we need to add shares to a defined
* group. If the group doesn't exist, create it first, making sure it
* is marked as a ZFS group.
*
* Note that all ZFS shares are in a subgroup of the top level group
* called "zfs".
*/
static sa_group_t
find_or_create_group(sa_handle_t handle, char *groupname, char *proto, int *err)
{
sa_group_t group;
sa_optionset_t optionset;
int ret = SA_OK;
/*
* we check to see if the "zfs" group exists. Since this
* should be the top level group, we don't want the
* parent. This is to make sure the zfs group has been created
* and to created if it hasn't been.
*/
group = sa_get_group(handle, groupname);
if (group == NULL) {
group = sa_create_group(handle, groupname, &ret);
/* make sure this is flagged as a ZFS group */
if (group != NULL)
ret = sa_set_group_attr(group, "zfs", "true");
}
if (group != NULL) {
if (proto != NULL) {
optionset = sa_get_optionset(group, proto);
if (optionset == NULL)
optionset = sa_create_optionset(group, proto);
}
}
if (err != NULL)
*err = ret;
return (group);
}
/*
* find_or_create_zfs_subgroup(groupname, optstring, *err)
*
* ZFS shares will be in a subgroup of the "zfs" master group. This
* function looks to see if the groupname exists and returns it if it
* does or else creates a new one with the specified name and returns
* that. The "zfs" group will exist before we get here, but we make
* sure just in case.
*
* err must be a valid pointer.
*/
static sa_group_t
find_or_create_zfs_subgroup(sa_handle_t handle, char *groupname, char *proto,
char *optstring, int *err)
{
sa_group_t group = NULL;
sa_group_t zfs;
char *name;
char *options;
/* start with the top-level "zfs" group */
zfs = sa_get_group(handle, "zfs");
*err = SA_OK;
if (zfs != NULL) {
for (group = sa_get_sub_group(zfs); group != NULL;
group = sa_get_next_group(group)) {
name = sa_get_group_attr(group, "name");
if (name != NULL && strcmp(name, groupname) == 0) {
/* have the group so break out of here */
sa_free_attr_string(name);
break;
}
if (name != NULL)
sa_free_attr_string(name);
}
if (group == NULL) {
/*
* Need to create the sub-group since it doesn't exist
*/
group = _sa_create_zfs_group(zfs, groupname);
if (group == NULL) {
*err = SA_NO_MEMORY;
return (NULL);
}
set_node_attr(group, "zfs", "true");
}
if (strcmp(optstring, "on") == 0)
optstring = "rw";
options = strdup(optstring);
if (options != NULL) {
*err = sa_parse_legacy_options(group, options,
proto);
/* If no optionset, add one. */
if (sa_get_optionset(group, proto) == NULL)
(void) sa_create_optionset(group, proto);
/*
* Do not forget to update an optionset of
* the parent group so that it contains
* all protocols its subgroups have.
*/
if (sa_get_optionset(zfs, proto) == NULL)
(void) sa_create_optionset(zfs, proto);
free(options);
} else {
*err = SA_NO_MEMORY;
}
}
return (group);
}
/*
* zfs_construct_resource(share, name, base, dataset)
*
* Add a resource to the share using name as a template. If name ==
* NULL, then construct a name based on the dataset value.
* name.
*/
static void
zfs_construct_resource(sa_share_t share, char *dataset)
{
char buff[SA_MAX_RESOURCE_NAME + 1];
int ret = SA_OK;
(void) snprintf(buff, SA_MAX_RESOURCE_NAME, "%s", dataset);
sa_fix_resource_name(buff);
(void) sa_add_resource(share, buff, SA_SHARE_TRANSIENT, &ret);
}
/*
* zfs_inherited(handle, source, sourcestr)
*
* handle case of inherited share{nfs,smb}. Pulled out of sa_get_zfs_shares
* for readability.
*/
static int
zfs_inherited(sa_handle_t handle, sa_share_t share, char *sourcestr,
char *shareopts, char *mountpoint, char *proto, char *dataset)
{
int doshopt = 0;
int err = SA_OK;
sa_group_t group;
sa_resource_t resource;
uint64_t features;
/*
* Need to find the "real" parent sub-group. It may not be
* mounted, but it was identified in the "sourcestr"
* variable. The real parent not mounted can occur if
* "canmount=off and sharenfs=on".
*/
group = find_or_create_zfs_subgroup(handle, sourcestr, proto,
shareopts, &doshopt);
if (group != NULL) {
/*
* We may need the first share for resource
* prototype. We only care about it if it has a
* resource that sets a prefix value.
*/
if (share == NULL)
share = _sa_add_share(group, mountpoint,
SA_SHARE_TRANSIENT, &err,
(uint64_t)SA_FEATURE_NONE);
/*
* some options may only be on shares. If the opt
* string contains one of those, we put it just on the
* share.
*/
if (share != NULL && doshopt == SA_PROP_SHARE_ONLY) {
char *options;
options = strdup(shareopts);
if (options != NULL) {
set_node_attr(share, "dataset", dataset);
err = sa_parse_legacy_options(share, options,
proto);
set_node_attr(share, "dataset", NULL);
free(options);
}
if (sa_get_optionset(group, proto) == NULL)
(void) sa_create_optionset(group, proto);
}
features = sa_proto_get_featureset(proto);
if (share != NULL && features & SA_FEATURE_RESOURCE) {
/*
* We have a share and the protocol requires
* that at least one resource exist (probably
* SMB). We need to make sure that there is at
* least one.
*/
resource = sa_get_share_resource(share, NULL);
if (resource == NULL) {
zfs_construct_resource(share, dataset);
}
}
} else {
err = SA_NO_MEMORY;
}
return (err);
}
/*
* zfs_notinherited(group, share, mountpoint, shareopts, proto, dataset,
* grouperr)
*
* handle case where this is the top of a sub-group in ZFS. Pulled out
* of sa_get_zfs_shares for readability. We need the grouperr from the
* creation of the subgroup to know whether to add the public
* property, etc. to the specific share.
*/
static int
zfs_notinherited(sa_group_t group, sa_share_t share, char *mountpoint,
char *shareopts, char *proto, char *dataset, int grouperr)
{
int err = SA_OK;
sa_resource_t resource;
uint64_t features;
set_node_attr(group, "zfs", "true");
if (share == NULL)
share = _sa_add_share(group, mountpoint, SA_SHARE_TRANSIENT,
&err, (uint64_t)SA_FEATURE_NONE);
if (err != SA_OK)
return (err);
if (strcmp(shareopts, "on") == 0)
shareopts = "";
if (shareopts != NULL) {
char *options;
if (grouperr == SA_PROP_SHARE_ONLY) {
/*
* Some properties may only be on shares, but
* due to the ZFS sub-groups being artificial,
* we sometimes get this and have to deal with
* it. We do it by attempting to put it on the
* share.
*/
options = strdup(shareopts);
if (options != NULL) {
err = sa_parse_legacy_options(share,
options, proto);
free(options);
}
}
/* Unmark the share's changed state */
set_node_attr(share, "changed", NULL);
}
features = sa_proto_get_featureset(proto);
if (share != NULL && features & SA_FEATURE_RESOURCE) {
/*
* We have a share and the protocol requires that at
* least one resource exist (probably SMB). We need to
* make sure that there is at least one.
*/
resource = sa_get_share_resource(share, NULL);
if (resource == NULL) {
zfs_construct_resource(share, dataset);
}
}
return (err);
}
/*
* zfs_grp_error(err)
*
* Print group create error, but only once. If err is 0 do the
* print else don't.
*/
static void
zfs_grp_error(int err)
{
if (err == 0) {
/* only print error once */
(void) fprintf(stderr, dgettext(TEXT_DOMAIN,
"Cannot create ZFS subgroup during initialization:"
" %s\n"), sa_errorstr(SA_SYSTEM_ERR));
}
}
/*
* zfs_process_share(handle, share, mountpoint, proto, source,
* shareopts, sourcestr)
*
* Creates the subgroup, if necessary and adds shares, resources
* and properties.
*/
int
sa_zfs_process_share(sa_handle_t handle, sa_group_t group, sa_share_t share,
char *mountpoint, char *proto, zprop_source_t source, char *shareopts,
char *sourcestr, char *dataset)
{
int err = SA_OK;
if (source & ZPROP_SRC_INHERITED) {
err = zfs_inherited(handle, share, sourcestr, shareopts,
mountpoint, proto, dataset);
} else {
group = find_or_create_zfs_subgroup(handle, dataset, proto,
shareopts, &err);
if (group == NULL) {
static boolean_t reported_error = B_FALSE;
/*
* There is a problem, but we can't do
* anything about it at this point so we issue
* a warning and move on.
*/
zfs_grp_error(reported_error);
reported_error = B_TRUE;
}
set_node_attr(group, "zfs", "true");
/*
* Add share with local opts via zfs_notinherited.
*/
err = zfs_notinherited(group, share, mountpoint, shareopts,
proto, dataset, err);
}
return (err);
}
/*
* sa_get_zfs_shares(handle, groupname)
*
* Walk the mnttab for all zfs mounts and determine which are
* shared. Find or create the appropriate group/sub-group to contain
* the shares.
*
* All shares are in a sub-group that will hold the properties. This
* allows representing the inherited property model.
*
* One area of complication is if "sharenfs" is set at one level of
* the directory tree and "sharesmb" is set at a different level, the
* a sub-group must be formed at the lower level for both
* protocols. That is the nature of the problem in CR 6667349.
*/
int
sa_get_zfs_shares(sa_handle_t handle, char *groupname)
{
sa_group_t zfsgroup;
boolean_t nfs;
boolean_t nfs_inherited;
boolean_t smb;
boolean_t smb_inherited;
zfs_handle_t **zlist;
char nfsshareopts[ZFS_MAXPROPLEN];
char smbshareopts[ZFS_MAXPROPLEN];
sa_share_t share;
zprop_source_t source;
char nfssourcestr[ZFS_MAXPROPLEN];
char smbsourcestr[ZFS_MAXPROPLEN];
char mountpoint[ZFS_MAXPROPLEN];
size_t count = 0, i;
libzfs_handle_t *zfs_libhandle;
int err = SA_OK;
/*
* If we can't access libzfs, don't bother doing anything.
*/
zfs_libhandle = ((sa_handle_impl_t)handle)->zfs_libhandle;
if (zfs_libhandle == NULL)
return (SA_SYSTEM_ERR);
zfsgroup = find_or_create_group(handle, groupname, NULL, &err);
/* Not an error, this could be a legacy condition */
if (zfsgroup == NULL)
return (SA_OK);
/*
* need to walk the mounted ZFS pools and datasets to
* find shares that are possible.
*/
get_all_filesystems((sa_handle_impl_t)handle, &zlist, &count);
qsort(zlist, count, sizeof (void *), mountpoint_compare);
for (i = 0; i < count; i++) {
char *dataset;
source = ZPROP_SRC_ALL;
/* If no mountpoint, skip. */
if (zfs_prop_get(zlist[i], ZFS_PROP_MOUNTPOINT,
mountpoint, sizeof (mountpoint), NULL, NULL, 0,
B_FALSE) != 0)
continue;
/*
* zfs_get_name value must not be freed. It is just a
* pointer to a value in the handle.
*/
if ((dataset = (char *)zfs_get_name(zlist[i])) == NULL)
continue;
/*
* only deal with "mounted" file systems since
* unmounted file systems can't actually be shared.
*/
if (!zfs_is_mounted(zlist[i], NULL))
continue;
nfs = nfs_inherited = B_FALSE;
if (zfs_prop_get(zlist[i], ZFS_PROP_SHARENFS, nfsshareopts,
sizeof (nfsshareopts), &source, nfssourcestr,
ZFS_MAXPROPLEN, B_FALSE) == 0 &&
strcmp(nfsshareopts, "off") != 0) {
if (source & ZPROP_SRC_INHERITED)
nfs_inherited = B_TRUE;
else
nfs = B_TRUE;
}
smb = smb_inherited = B_FALSE;
if (zfs_prop_get(zlist[i], ZFS_PROP_SHARESMB, smbshareopts,
sizeof (smbshareopts), &source, smbsourcestr,
ZFS_MAXPROPLEN, B_FALSE) == 0 &&
strcmp(smbshareopts, "off") != 0) {
if (source & ZPROP_SRC_INHERITED)
smb_inherited = B_TRUE;
else
smb = B_TRUE;
}
/*
* If the mountpoint is already shared, it must be a
* non-ZFS share. We want to remove the share from its
* parent group and reshare it under ZFS.
*/
share = sa_find_share(handle, mountpoint);
if (share != NULL &&
(nfs || smb || nfs_inherited || smb_inherited)) {
err = sa_remove_share(share);
share = NULL;
}
/*
* At this point, we have the information needed to
* determine what to do with the share.
*
* If smb or nfs is set, we have a new sub-group.
* If smb_inherit and/or nfs_inherit is set, then
* place on an existing sub-group. If both are set,
* the existing sub-group is the closest up the tree.
*/
if (nfs || smb) {
/*
* Non-inherited is the straightforward
* case. sa_zfs_process_share handles it
* directly. Make sure that if the "other"
* protocol is inherited, that we treat it as
* non-inherited as well.
*/
if (nfs || nfs_inherited) {
err = sa_zfs_process_share(handle, zfsgroup,
share, mountpoint, "nfs",
0, nfsshareopts,
nfssourcestr, dataset);
share = sa_find_share(handle, mountpoint);
}
if (smb || smb_inherited) {
err = sa_zfs_process_share(handle, zfsgroup,
share, mountpoint, "smb",
0, smbshareopts,
smbsourcestr, dataset);
}
} else if (nfs_inherited || smb_inherited) {
char *grpdataset;
/*
* If we only have inherited groups, it is
* important to find the closer of the two if
* the protocols are set at different
* levels. The closest sub-group is the one we
* want to work with.
*/
if (nfs_inherited && smb_inherited) {
if (strcmp(nfssourcestr, smbsourcestr) <= 0)
grpdataset = nfssourcestr;
else
grpdataset = smbsourcestr;
} else if (nfs_inherited) {
grpdataset = nfssourcestr;
} else if (smb_inherited) {
grpdataset = smbsourcestr;
}
if (nfs_inherited) {
err = sa_zfs_process_share(handle, zfsgroup,
share, mountpoint, "nfs",
ZPROP_SRC_INHERITED, nfsshareopts,
grpdataset, dataset);
share = sa_find_share(handle, mountpoint);
}
if (smb_inherited) {
err = sa_zfs_process_share(handle, zfsgroup,
share, mountpoint, "smb",
ZPROP_SRC_INHERITED, smbshareopts,
grpdataset, dataset);
}
}
}
/*
* Don't need to free the "zlist" variable since it is only a
* pointer to a cached value that will be freed when
* sa_fini() is called.
*/
return (err);
}
#define COMMAND "/usr/sbin/zfs"
/*
* sa_zfs_set_sharenfs(group, path, on)
*
* Update the "sharenfs" property on the path. If on is true, then set
* to the properties on the group or "on" if no properties are
* defined. Set to "off" if on is false.
*/
int
sa_zfs_set_sharenfs(sa_group_t group, char *path, int on)
{
int ret = SA_NOT_IMPLEMENTED;
char *command;
command = malloc(ZFS_MAXPROPLEN * 2);
if (command != NULL) {
char *opts = NULL;
char *dataset = NULL;
FILE *pfile;
sa_handle_impl_t impl_handle;
/* for now, NFS is always available for "zfs" */
if (on) {
opts = sa_proto_legacy_format("nfs", group, 1);
if (opts != NULL && strlen(opts) == 0) {
free(opts);
opts = strdup("on");
}
}
impl_handle = (sa_handle_impl_t)sa_find_group_handle(group);
assert(impl_handle != NULL);
if (impl_handle != NULL)
dataset = get_zfs_dataset(impl_handle, path, B_FALSE);
else
ret = SA_SYSTEM_ERR;
if (dataset != NULL) {
(void) snprintf(command, ZFS_MAXPROPLEN * 2,
"%s set sharenfs=\"%s\" %s", COMMAND,
opts != NULL ? opts : "off", dataset);
pfile = popen(command, "r");
if (pfile != NULL) {
ret = pclose(pfile);
if (ret != 0)
ret = SA_SYSTEM_ERR;
}
}
if (opts != NULL)
free(opts);
if (dataset != NULL)
free(dataset);
free(command);
}
return (ret);
}
/*
* add_resources(share, opt)
*
* Add resource properties to those in "opt". Resources are prefixed
* with name=resourcename.
*/
static char *
add_resources(sa_share_t share, char *opt)
{
char *newopt = NULL;
char *propstr;
sa_resource_t resource;
newopt = strdup(opt);
if (newopt == NULL)
return (newopt);
for (resource = sa_get_share_resource(share, NULL);
resource != NULL;
resource = sa_get_next_resource(resource)) {
char *name;
size_t size;
name = sa_get_resource_attr(resource, "name");
if (name == NULL) {
free(newopt);
return (NULL);
}
size = strlen(name) + strlen(opt) + sizeof ("name=") + 1;
newopt = calloc(1, size);
if (newopt != NULL)
(void) snprintf(newopt, size, "%s,name=%s", opt, name);
sa_free_attr_string(name);
free(opt);
opt = newopt;
propstr = sa_proto_legacy_format("smb", resource, 0);
if (propstr == NULL) {
free(opt);
return (NULL);
}
size = strlen(propstr) + strlen(opt) + 2;
newopt = calloc(1, size);
if (newopt != NULL)
(void) snprintf(newopt, size, "%s,%s", opt, propstr);
free(opt);
opt = newopt;
}
return (opt);
}
/*
* sa_zfs_set_sharesmb(group, path, on)
*
* Update the "sharesmb" property on the path. If on is true, then set
* to the properties on the group or "on" if no properties are
* defined. Set to "off" if on is false.
*/
int
sa_zfs_set_sharesmb(sa_group_t group, char *path, int on)
{
int ret = SA_NOT_IMPLEMENTED;
char *command;
sa_share_t share;
/* In case SMB not enabled */
if (sa_get_optionset(group, "smb") == NULL)
return (SA_NOT_SUPPORTED);
command = malloc(ZFS_MAXPROPLEN * 2);
if (command != NULL) {
char *opts = NULL;
char *dataset = NULL;
FILE *pfile;
sa_handle_impl_t impl_handle;
if (on) {
char *newopt;
share = sa_get_share(group, NULL);
opts = sa_proto_legacy_format("smb", share, 1);
if (opts != NULL && strlen(opts) == 0) {
free(opts);
opts = strdup("on");
}
newopt = add_resources(opts, share);
free(opts);
opts = newopt;
}
impl_handle = (sa_handle_impl_t)sa_find_group_handle(group);
assert(impl_handle != NULL);
if (impl_handle != NULL)
dataset = get_zfs_dataset(impl_handle, path, B_FALSE);
else
ret = SA_SYSTEM_ERR;
if (dataset != NULL) {
(void) snprintf(command, ZFS_MAXPROPLEN * 2,
"echo %s set sharesmb=\"%s\" %s", COMMAND,
opts != NULL ? opts : "off", dataset);
pfile = popen(command, "r");
if (pfile != NULL) {
ret = pclose(pfile);
if (ret != 0)
ret = SA_SYSTEM_ERR;
}
}
if (opts != NULL)
free(opts);
if (dataset != NULL)
free(dataset);
free(command);
}
return (ret);
}
/*
* sa_zfs_update(group)
*
* call back to ZFS to update the share if necessary.
* Don't do it if it isn't a real change.
*/
int
sa_zfs_update(sa_group_t group)
{
sa_optionset_t protopt;
sa_group_t parent;
char *command;
char *optstring;
int ret = SA_OK;
int doupdate = 0;
FILE *pfile;
if (sa_is_share(group))
parent = sa_get_parent_group(group);
else
parent = group;
if (parent != NULL) {
command = malloc(ZFS_MAXPROPLEN * 2);
if (command == NULL)
return (SA_NO_MEMORY);
*command = '\0';
for (protopt = sa_get_optionset(parent, NULL); protopt != NULL;
protopt = sa_get_next_optionset(protopt)) {
char *proto = sa_get_optionset_attr(protopt, "type");
char *path;
char *dataset = NULL;
char *zfsopts = NULL;
if (sa_is_share(group)) {
path = sa_get_share_attr((sa_share_t)group,
"path");
if (path != NULL) {
sa_handle_impl_t impl_handle;
impl_handle = sa_find_group_handle(
group);
if (impl_handle != NULL)
dataset = get_zfs_dataset(
impl_handle, path, B_FALSE);
else
ret = SA_SYSTEM_ERR;
sa_free_attr_string(path);
}
} else {
dataset = sa_get_group_attr(group, "name");
}
/* update only when there is an optstring found */
doupdate = 0;
if (proto != NULL && dataset != NULL) {
optstring = sa_proto_legacy_format(proto,
group, 1);
zfsopts = get_zfs_property(dataset,
ZFS_PROP_SHARENFS);
if (optstring != NULL && zfsopts != NULL) {
if (strcmp(optstring, zfsopts) != 0)
doupdate++;
}
if (doupdate) {
if (optstring != NULL &&
strlen(optstring) > 0) {
(void) snprintf(command,
ZFS_MAXPROPLEN * 2,
"%s set share%s=%s %s",
COMMAND, proto,
optstring, dataset);
} else {
(void) snprintf(command,
ZFS_MAXPROPLEN * 2,
"%s set share%s=on %s",
COMMAND, proto,
dataset);
}
pfile = popen(command, "r");
if (pfile != NULL)
ret = pclose(pfile);
switch (ret) {
default:
case 1:
ret = SA_SYSTEM_ERR;
break;
case 2:
ret = SA_SYNTAX_ERR;
break;
case 0:
break;
}
}
if (optstring != NULL)
free(optstring);
if (zfsopts != NULL)
free(zfsopts);
}
if (proto != NULL)
sa_free_attr_string(proto);
if (dataset != NULL)
free(dataset);
}
free(command);
}
return (ret);
}
/*
* sa_group_is_zfs(group)
*
* Given the group, determine if the zfs attribute is set.
*/
int
sa_group_is_zfs(sa_group_t group)
{
char *zfs;
int ret = 0;
zfs = sa_get_group_attr(group, "zfs");
if (zfs != NULL) {
ret = 1;
sa_free_attr_string(zfs);
}
return (ret);
}
/*
* sa_path_is_zfs(path)
*
* Check to see if the file system path represents is of type "zfs".
*/
int
sa_path_is_zfs(char *path)
{
char *fstype;
int ret = 0;
fstype = sa_fstype(path);
if (fstype != NULL && strcmp(fstype, "zfs") == 0)
ret = 1;
if (fstype != NULL)
sa_free_fstype(fstype);
return (ret);
}
int
sa_sharetab_fill_zfs(sa_share_t share, share_t *sh, char *proto)
{
char *path;
/* Make sure path is valid */
path = sa_get_share_attr(share, "path");
if (path != NULL) {
(void) memset(sh, 0, sizeof (sh));
(void) sa_fillshare(share, proto, sh);
sa_free_attr_string(path);
return (0);
} else
return (1);
}
#define SMAX(i, j) \
if ((j) > (i)) { \
(i) = (j); \
}
int
sa_share_zfs(sa_share_t share, sa_resource_t resource, char *path, share_t *sh,
void *exportdata, zfs_share_op_t operation)
{
libzfs_handle_t *libhandle;
sa_group_t group;
sa_handle_t sahandle;
char *dataset;
int err = EINVAL;
int i, j;
char newpath[MAXPATHLEN];
char *pathp;
/*
* First find the dataset name
*/
if ((group = sa_get_parent_group(share)) == NULL) {
return (EINVAL);
}
if ((sahandle = sa_find_group_handle(group)) == NULL) {
return (EINVAL);
}
/*
* If get_zfs_dataset fails, see if it is a subdirectory
*/
pathp = path;
while ((dataset = get_zfs_dataset(sahandle, pathp, B_TRUE)) == NULL) {
char *p;
if (pathp == path) {
(void) strlcpy(newpath, path, sizeof (newpath));
pathp = newpath;
}
/*
* Make sure only one leading '/' This condition came
* about when using HAStoragePlus which insisted on
* putting an extra leading '/' in the ZFS path
* name. The problem is fixed in other areas, but this
* will catch any other ways that a double slash might
* get introduced.
*/
while (*pathp == '/' && *(pathp + 1) == '/')
pathp++;
/*
* chop off part of path, but if we are at root then
* make sure path is a /
*/
if ((strlen(pathp) > 1) && (p = strrchr(pathp, '/'))) {
if (pathp == p) {
*(p + 1) = '\0'; /* skip over /, root case */
} else {
*p = '\0';
}
} else {
return (EINVAL);
}
}
libhandle = libzfs_init();
if (libhandle != NULL) {
char *resource_name;
i = (sh->sh_path ? strlen(sh->sh_path) : 0);
sh->sh_size = i;
j = (sh->sh_res ? strlen(sh->sh_res) : 0);
sh->sh_size += j;
SMAX(i, j);
j = (sh->sh_fstype ? strlen(sh->sh_fstype) : 0);
sh->sh_size += j;
SMAX(i, j);
j = (sh->sh_opts ? strlen(sh->sh_opts) : 0);
sh->sh_size += j;
SMAX(i, j);
j = (sh->sh_descr ? strlen(sh->sh_descr) : 0);
sh->sh_size += j;
SMAX(i, j);
resource_name = sa_get_resource_attr(resource, "name");
err = zfs_deleg_share_nfs(libhandle, dataset, path,
resource_name, exportdata, sh, i, operation);
if (err == SA_OK)
sa_update_sharetab_ts(sahandle);
else
err = errno;
if (resource_name)
sa_free_attr_string(resource_name);
libzfs_fini(libhandle);
}
free(dataset);
return (err);
}
/*
* sa_get_zfs_handle(handle)
*
* Given an sa_handle_t, return the libzfs_handle_t *. This is only
* used internally by libzfs. Needed in order to avoid including
* libshare_impl.h in libzfs.
*/
libzfs_handle_t *
sa_get_zfs_handle(sa_handle_t handle)
{
sa_handle_impl_t implhandle = (sa_handle_impl_t)handle;
return (implhandle->zfs_libhandle);
}
/*
* sa_get_zfs_info(libzfs, path, mountpoint, dataset)
*
* Find the ZFS dataset and mountpoint for a given path
*/
int
sa_zfs_get_info(libzfs_handle_t *libzfs, char *path, char *mountpointp,
char *datasetp)
{
get_all_cbdata_t cb = { 0 };
int i;
char mountpoint[ZFS_MAXPROPLEN];
char dataset[ZFS_MAXPROPLEN];
char canmount[ZFS_MAXPROPLEN];
char *dp;
int count;
int ret = 0;
cb.cb_types = ZFS_TYPE_FILESYSTEM;
if (libzfs == NULL)
return (0);
(void) zfs_iter_root(libzfs, get_one_filesystem, &cb);
count = cb.cb_used;
qsort(cb.cb_handles, count, sizeof (void *), mountpoint_compare);
for (i = 0; i < count; i++) {
/* must have a mountpoint */
if (zfs_prop_get(cb.cb_handles[i], ZFS_PROP_MOUNTPOINT,
mountpoint, sizeof (mountpoint),
NULL, NULL, 0, B_FALSE) != 0) {
/* no mountpoint */
continue;
}
/* mountpoint must be a path */
if (strcmp(mountpoint, ZFS_MOUNTPOINT_NONE) == 0 ||
strcmp(mountpoint, ZFS_MOUNTPOINT_LEGACY) == 0) {
/*
* Search mmttab for mountpoint
*/
if (get_legacy_mountpoint(path, dataset,
ZFS_MAXPROPLEN, mountpoint,
ZFS_MAXPROPLEN) == 0) {
ret = 1;
break;
}
continue;
}
/* canmount must be set */
canmount[0] = '\0';
if (zfs_prop_get(cb.cb_handles[i], ZFS_PROP_CANMOUNT, canmount,
sizeof (canmount), NULL, NULL, 0, B_FALSE) != 0 ||
strcmp(canmount, "off") == 0)
continue;
/*
* have a mountable handle but want to skip those marked none
* and legacy
*/
if (strcmp(mountpoint, path) == 0) {
dp = (char *)zfs_get_name(cb.cb_handles[i]);
if (dp != NULL) {
if (datasetp != NULL)
(void) strcpy(datasetp, dp);
if (mountpointp != NULL)
(void) strcpy(mountpointp, mountpoint);
ret = 1;
}
break;
}
}
return (ret);
}
/*
* This method builds values for "sharesmb" property from the
* nvlist argument. The values are returned in sharesmb_val variable.
*/
static int
sa_zfs_sprintf_new_prop(nvlist_t *nvl, char *sharesmb_val)
{
char cur_val[MAXPATHLEN];
char *name, *val;
nvpair_t *cur;
int err = 0;
cur = nvlist_next_nvpair(nvl, NULL);
while (cur != NULL) {
name = nvpair_name(cur);
err = nvpair_value_string(cur, &val);
if ((err != 0) || (name == NULL) || (val == NULL))
return (-1);
(void) snprintf(cur_val, MAXPATHLEN, "%s=%s,", name, val);
(void) strlcat(sharesmb_val, cur_val, MAXPATHLEN);
cur = nvlist_next_nvpair(nvl, cur);
}
return (0);
}
/*
* This method builds values for "sharesmb" property from values
* already existing on the share. The properties set via sa_zfs_sprint_new_prop
* method are passed in sharesmb_val. If a existing property is already
* set via sa_zfs_sprint_new_prop method, then they are not appended
* to the sharesmb_val string. The returned sharesmb_val string is a combination
* of new and existing values for 'sharesmb' property.
*/
static int
sa_zfs_sprintf_existing_prop(zfs_handle_t *handle, char *sharesmb_val)
{
char shareopts[ZFS_MAXPROPLEN], cur_val[MAXPATHLEN];
char *token, *last, *value;
if (zfs_prop_get(handle, ZFS_PROP_SHARESMB, shareopts,
sizeof (shareopts), NULL, NULL, 0, B_FALSE) != 0)
return (-1);
if (strstr(shareopts, "=") == NULL)
return (0);
for (token = strtok_r(shareopts, ",", &last); token != NULL;
token = strtok_r(NULL, ",", &last)) {
value = strchr(token, '=');
if (value == NULL)
return (-1);
*value++ = '\0';
(void) snprintf(cur_val, MAXPATHLEN, "%s=", token);
if (strstr(sharesmb_val, cur_val) == NULL) {
(void) strlcat(cur_val, value, MAXPATHLEN);
(void) strlcat(cur_val, ",", MAXPATHLEN);
(void) strlcat(sharesmb_val, cur_val, MAXPATHLEN);
}
}
return (0);
}
/*
* Sets the share properties on a ZFS share. For now, this method sets only
* the "sharesmb" property.
*
* This method includes building a comma seperated name-value string to be
* set on the "sharesmb" property of a ZFS share. This name-value string is
* build in 2 steps:
* - New property values given as name-value pair are set first.
* - Existing optionset properties, which are not part of the new properties
* passed in step 1, are appended to the newly set properties.
*/
int
sa_zfs_setprop(sa_handle_t handle, char *path, nvlist_t *nvl)
{
zfs_handle_t *z_fs;
libzfs_handle_t *z_lib;
char sharesmb_val[MAXPATHLEN];
char *dataset, *lastcomma;
if (nvlist_empty(nvl))
return (0);
if ((handle == NULL) || (path == NULL))
return (-1);
if ((dataset = get_zfs_dataset(handle, path, B_FALSE)) == NULL)
return (-1);
if ((z_lib = libzfs_init()) == NULL) {
free(dataset);
return (-1);
}
z_fs = zfs_open(z_lib, dataset, ZFS_TYPE_DATASET);
if (z_fs == NULL) {
free(dataset);
libzfs_fini(z_lib);
return (-1);
}
bzero(sharesmb_val, MAXPATHLEN);
if (sa_zfs_sprintf_new_prop(nvl, sharesmb_val) != 0) {
free(dataset);
zfs_close(z_fs);
libzfs_fini(z_lib);
return (-1);
}
if (sa_zfs_sprintf_existing_prop(z_fs, sharesmb_val) != 0) {
free(dataset);
zfs_close(z_fs);
libzfs_fini(z_lib);
return (-1);
}
lastcomma = strrchr(sharesmb_val, ',');
if ((lastcomma != NULL) && (lastcomma[1] == '\0'))
*lastcomma = '\0';
(void) zfs_prop_set(z_fs, zfs_prop_to_name(ZFS_PROP_SHARESMB),
sharesmb_val);
free(dataset);
zfs_close(z_fs);
libzfs_fini(z_lib);
return (0);
}