/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 1999-2002 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* Javelin Platform specific functions.
*
* called when :
* machine_type == MTYPE_JAVELIN
*
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <string.h>
#include <kvm.h>
#include <varargs.h>
#include <errno.h>
#include <time.h>
#include <dirent.h>
#include <fcntl.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/openpromio.h>
#include <kstat.h>
#include <libintl.h>
#include <syslog.h>
#include <sys/dkio.h>
#include "pdevinfo.h"
#include "display.h"
#include "pdevinfo_sun4u.h"
#include "display_sun4u.h"
#include "libprtdiag.h"
#if !defined(TEXT_DOMAIN)
#define TEXT_DOMAIN "SYS_TEST"
#endif
extern int print_flag;
/*
* these functions will overlay the symbol table of libprtdiag
* at runtime (workgroup server systems only)
*/
int error_check(Sys_tree *tree, struct system_kstat_data *kstats);
void display_memoryconf(Sys_tree *tree, struct grp_info *grps);
int disp_fail_parts(Sys_tree *tree);
void display_hp_fail_fault(Sys_tree *tree, struct system_kstat_data *kstats);
void display_diaginfo(int flag, Prom_node *root, Sys_tree *tree,
struct system_kstat_data *kstats);
void display_boardnum(int num);
void display_pci(Board_node *);
void display_io_cards(struct io_card *list);
void display_ffb(Board_node *, int);
void read_platform_kstats(Sys_tree *tree,
struct system_kstat_data *sys_kstat,
struct bd_kstat_data *bdp, struct envctrl_kstat_data *ep);
/* local functions */
static int disp_envc_status(struct system_kstat_data *);
static void tazjav_disp_asic_revs(Sys_tree *);
static int tazmo_physical_slot(Prom_node *, Prom_node *, int, char *);
static Prom_node *dev_next_node_sibling(Prom_node *root, char *name);
int
error_check(Sys_tree *tree, struct system_kstat_data *kstats)
{
int exit_code = 0; /* init to all OK */
#ifdef lint
kstats = kstats;
#endif
/*
* silently check for any types of machine errors
*/
print_flag = 0;
if (disp_fail_parts(tree) || disp_envc_status(kstats)) {
/* set exit_code to show failures */
exit_code = 1;
}
print_flag = 1;
return (exit_code);
}
/* Search for and return the node's sibling */
static Prom_node *
dev_next_node_sibling(Prom_node *root, char *name)
{
if (root == NULL)
return (NULL);
/* look at your siblings */
if (dev_find_node(root->sibling, name) != NULL)
return (root->sibling);
return (NULL); /* not found */
}
/*
* This function displays memory configurations specific to Tazmo/Javelin.
* The PROM device tree is read to obtain this information.
* Some of the information obtained is memory interleave factor,
* DIMM sizes, DIMM socket names.
*/
void
display_memoryconf(Sys_tree *tree, struct grp_info *grps)
{
Board_node *bnode;
Prom_node *memory;
Prom_node *bank;
Prom_node *dimm;
uint_t *preg;
uint_t interlv;
unsigned long size = 0;
int bank_count = 0;
char *sock_name;
char *status;
Prop *status_prop;
char interleave[8];
int total_size = 0;
#ifdef lint
grps = grps;
#endif
log_printf("\n", 0);
log_printf("=========================", 0);
log_printf(dgettext(TEXT_DOMAIN, " Memory "), 0);
log_printf("=========================", 0);
log_printf("\n", 0);
log_printf("\n", 0);
bnode = tree->bd_list;
memory = dev_find_node(bnode->nodes, "memory");
preg = (uint_t *)(get_prop_val(find_prop(memory, "interleave")));
if (preg) {
interlv = preg[4];
log_printf("Memory Interleave Factor = %d-way\n\n", interlv, 0);
}
log_printf(" Interlv. Socket Size\n", 0);
log_printf("Bank Group Name (MB) Status\n", 0);
log_printf("---- ----- ------ ---- ------\n", 0);
dimm = bnode->nodes;
for (bank = dev_find_node(bnode->nodes, "bank"); bank != NULL;
bank = dev_next_node(bank, "bank")) {
int bank_size = 0;
uint_t *reg_prop;
preg = (uint_t *)(get_prop_val(
find_prop(bank, "bank-interleave")));
reg_prop = (uint_t *)(get_prop_val(
find_prop(bank, "reg")));
/*
* Skip empty banks
*/
if (((reg_prop[2]<<12) + (reg_prop[3]>>20)) == 0) {
bank_count++;
continue;
}
if (preg) {
interlv = preg[2];
(void) sprintf(interleave, " %d ", interlv);
bank_size = (preg[0]<<12) + (preg[1]>>20);
} else {
(void) sprintf(interleave, "%s", "none");
preg = (uint_t *)(get_prop_val(find_prop(bank, "reg")));
if (preg) {
bank_size = (preg[2]<<12) + (preg[3]>>20);
}
}
for (dimm = dev_find_node(bank, "dimm"); dimm != NULL;
dimm = dev_next_node_sibling(dimm, "dimm")) {
char dimm_status[16];
sock_name = (char *)(get_prop_val(
find_prop(dimm, "socket-name")));
preg = (uint_t *)(get_prop_val(find_prop(dimm, "reg")));
size = (preg[2]<<12) + (preg[3]>>20);
if ((status_prop = find_prop(dimm, "status")) == NULL) {
(void) sprintf(dimm_status, "%s", "OK");
} else {
status = (char *)(get_prop_val(status_prop));
(void) sprintf(dimm_status, "%s", status);
}
log_printf("%3d %5s %6s %4d %6s\n",
bank_count, interleave, sock_name,
size, dimm_status, 0);
}
total_size += bank_size;
bank_count++;
}
log_printf("\n", 0);
}
/*
* disp_fail_parts
*
* Display the failed parts in the system. This function looks for
* the status property in all PROM nodes. On systems where
* the PROM does not supports passing diagnostic information
* thruogh the device tree, this routine will be silent.
*/
int
disp_fail_parts(Sys_tree *tree)
{
int exit_code;
int system_failed = 0;
Board_node *bnode = tree->bd_list;
Prom_node *pnode;
char *fru;
char *sock_name;
char slot_str[MAXSTRLEN];
exit_code = 0;
/* go through all of the boards looking for failed units. */
while (bnode != NULL) {
/* find failed chips */
pnode = find_failed_node(bnode->nodes);
if ((pnode != NULL) && !system_failed) {
system_failed = 1;
exit_code = 1;
if (print_flag == 0) {
return (exit_code);
}
log_printf("\n", 0);
log_printf(dgettext(TEXT_DOMAIN, "Failed Field "
"Replaceable Units (FRU) in System:\n"), 0);
log_printf("=========================="
"====================\n", 0);
}
while (pnode != NULL) {
void *value;
char *name; /* node name string */
char *type; /* node type string */
value = get_prop_val(find_prop(pnode, "status"));
name = get_node_name(pnode);
/* sanity check of data retreived from PROM */
if ((value == NULL) || (name == NULL)) {
pnode = next_failed_node(pnode);
continue;
}
log_printf(dgettext(TEXT_DOMAIN, "%s unavailable :\n"),
name, 0);
log_printf(dgettext(TEXT_DOMAIN, "\tPROM fault "
"string: %s\n"), value, 0);
log_printf(dgettext(TEXT_DOMAIN, "\tFailed Field "
"Replaceable Unit is "), 0);
/*
* Determine whether FRU is CPU module, system
* board, or SBus card.
*/
if ((name != NULL) && (strstr(name, "sbus"))) {
log_printf(dgettext(TEXT_DOMAIN, "SBus "
"Card %d\n"), get_sbus_slot(pnode), 0);
} else if (((name = get_node_name(pnode)) !=
NULL) && (strstr(name, "pci"))) {
log_printf(dgettext(TEXT_DOMAIN, "system "
"board\n"), 0);
} else if (((name = get_node_name(pnode)) !=
NULL) && (strstr(name, "ffb"))) {
log_printf(dgettext(TEXT_DOMAIN, "FFB "
"Card %d\n"), tazmo_physical_slot(
dev_find_node(bnode->nodes, "slot2dev"),
pnode, -1, slot_str), 0);
} else if (((name = get_node_name(pnode->parent)) !=
NULL) && (strstr(name, "pci"))) {
(void) tazmo_physical_slot(
NULL,
pnode->parent,
get_pci_device(pnode),
slot_str);
log_printf(dgettext(TEXT_DOMAIN, "PCI Card "
"in %s\n"), slot_str, 0);
} else if (((type = get_node_type(pnode)) != NULL) &&
(strstr(type, "cpu"))) {
log_printf(
dgettext(TEXT_DOMAIN, "UltraSPARC "
"module Module %d\n"),
get_id(pnode));
} else if (((type = get_node_type(pnode)) != NULL) &&
(strstr(type, "memory-module"))) {
fru = (char *)(get_prop_val(
find_prop(pnode, "fru")));
sock_name = (char *)(get_prop_val(
find_prop(pnode, "socket-name")));
log_printf(
dgettext(TEXT_DOMAIN, "%s in "
"socket %s\n"), fru,
sock_name, 0);
}
pnode = next_failed_node(pnode);
}
bnode = bnode->next;
}
if (!system_failed) {
log_printf("\n", 0);
log_printf(dgettext(TEXT_DOMAIN, "No failures found "
"in System\n"), 0);
log_printf("===========================\n", 0);
}
if (system_failed)
return (1);
else
return (0);
}
void
display_hp_fail_fault(Sys_tree *tree, struct system_kstat_data *kstats)
{
#ifdef lint
kstats = kstats;
#endif
/* Display failed units */
(void) disp_fail_parts(tree);
}
void
display_diaginfo(int flag, Prom_node *root, Sys_tree *tree,
struct system_kstat_data *kstats)
{
/*
* Now display the last powerfail time and the fatal hardware
* reset information. We do this under a couple of conditions.
* First if the user asks for it. The second is iof the user
* told us to do logging, and we found a system failure.
*/
if (flag) {
/*
* display time of latest powerfail. Not all systems
* have this capability. For those that do not, this
* is just a no-op.
*/
disp_powerfail(root);
(void) disp_envc_status(kstats);
tazjav_disp_asic_revs(tree);
platform_disp_prom_version(tree);
}
return;
}
/* ARGSUSED */
void
display_boardnum(int num)
{
log_printf("SYS ", 0);
}
/*
* display_pci
* Display all the PCI IO cards on this board.
*/
/* ARGSUSED */
void
display_pci(Board_node *board)
{
struct io_card *card_list = NULL;
struct io_card card;
void *value;
Prom_node *pci;
Prom_node *card_node;
if (board == NULL)
return;
/* Initialize all the common information */
card.display = 1;
card.board = board->board_num;
(void) sprintf(card.bus_type, "PCI");
for (pci = dev_find_node(board->nodes, PCI_NAME); pci != NULL;
pci = dev_next_node(pci, PCI_NAME)) {
char *name;
Prom_node *prev_parent = NULL;
int prev_device = -1;
int pci_pci_bridge = 0;
/*
* If we have reached a pci-to-pci bridge node,
* we are one level below the 'pci' nodes level
* in the device tree. To get back to that level,
* the search should continue with the sibling of
* the parent or else the remaining 'pci' cards
* will not show up in the output.
*/
if (find_prop(pci, "upa-portid") == NULL) {
if ((pci->parent->sibling != NULL) &&
(strcmp(get_prop_val(
find_prop(pci->parent->sibling,
"name")), PCI_NAME) == 0))
pci = pci->parent->sibling;
else {
pci = pci->parent->sibling;
continue;
}
}
/* Skip all failed nodes for now */
if (node_failed(pci))
continue;
/* Fill in frequency */
value = get_prop_val(find_prop(pci, "clock-frequency"));
if (value == NULL)
card.freq = -1;
else
card.freq = ((*(int *)value) + 500000) / 1000000;
/* Walk through the PSYCHO children */
card_node = pci->child;
while (card_node != NULL) {
Prop *compat = NULL;
/* If it doesn't have a name, skip it */
name = (char *)get_prop_val(
find_prop(card_node, "name"));
if (name == NULL) {
card_node = card_node->sibling;
continue;
}
/*
* If this is a PCI bridge, then display its
* children.
*/
if (strcmp(name, "pci") == 0) {
card_node = card_node->child;
pci_pci_bridge = 1;
continue;
}
/* Get the slot number for this card */
if (pci_pci_bridge) {
card.slot = tazmo_physical_slot(
dev_find_node(board->nodes, "slot2dev"),
pci,
get_pci_to_pci_device(
card_node->parent),
card.slot_str);
} else
card.slot = tazmo_physical_slot(
dev_find_node(board->nodes,
"slot2dev"),
pci,
get_pci_device(card_node),
card.slot_str);
/*
* Check that duplicate devices are not reported
* on Tazmo.
*/
if ((card_node->parent == prev_parent) &&
(get_pci_device(card_node) == prev_device) &&
(pci_pci_bridge == 0))
card.slot = -1;
prev_parent = card_node->parent;
prev_device = get_pci_device(card_node);
if (card.slot == -1 || strstr(name, "ebus")) {
card_node = card_node->sibling;
continue;
}
/* XXX - Don't know how to get status for PCI cards */
card.status[0] = '\0';
/* Get the model of this card */
value = get_prop_val(find_prop(card_node, "model"));
if (value == NULL)
card.model[0] = '\0';
else
(void) sprintf(card.model, "%s",
(char *)value);
/*
* Check if further processing is necessary to display
* this card uniquely.
*/
distinguish_identical_io_cards(name, card_node, &card);
/*
* If we haven't figured out the frequency yet,
* try and get it from the card.
*/
value = get_prop_val(find_prop(pci, "clock-frequency"));
if (value != NULL && card.freq == -1)
card.freq = ((*(int *)value) + 500000)
/ 1000000;
value = get_prop_val(find_prop(card_node,
"compatible"));
/*
* On Tazmo, we would like to print out the last
* string of the "compatible" property if it exists.
* The IEEE 1275 spec. states that this last string
* will be the classcode name.
*/
if (value != NULL) {
char *tval;
int index;
const int always = 1;
tval = (char *)value;
index = 0;
compat = find_prop(card_node, "compatible");
while (always) {
if ((strlen(tval) + 1) ==
(compat->size - index))
break;
index += strlen(tval) + 1;
tval += strlen(tval) + 1;
}
value = (void *)tval;
}
if (value != NULL)
(void) sprintf(card.name, "%s-%s",
(char *)name, (char *)value);
else
(void) sprintf(card.name, "%s",
(char *)name);
if (card.freq != -1)
card_list = insert_io_card(card_list, &card);
/*
* If we are done with the children of the pci bridge,
* we must continue with the remaining siblings of
* the pci-to-pci bridge.
*/
if ((card_node->sibling == NULL) && pci_pci_bridge) {
card_node = card_node->parent->sibling;
pci_pci_bridge = 0;
} else
card_node = card_node->sibling;
}
}
display_io_cards(card_list);
free_io_cards(card_list);
}
/*
* Print out all the io cards in the list. Also print the column
* headers if told to do so.
*/
void
display_io_cards(struct io_card *list)
{
static int banner = 0; /* Have we printed the column headings? */
struct io_card *p;
if (list == NULL)
return;
if (banner == 0) {
log_printf(" Bus Freq\n", 0);
log_printf("Brd Type MHz Slot "
"Name "
"Model", 0);
log_printf("\n", 0);
log_printf("--- ---- ---- ---- "
"-------------------------------- "
"----------------------", 0);
log_printf("\n", 0);
banner = 1;
}
for (p = list; p != NULL; p = p -> next) {
log_printf("SYS ", p->board, 0);
log_printf("%-4s ", p->bus_type, 0);
log_printf("%3d ", p->freq, 0);
log_printf("%3d ", p->slot, 0);
log_printf("%-32.32s", p->name, 0);
if (strlen(p->name) > 32)
log_printf("+ ", 0);
else
log_printf(" ", 0);
log_printf("%-22.22s", p->model, 0);
if (strlen(p->model) > 22)
log_printf("+", 0);
log_printf("\n", 0);
}
}
/*
* display_ffb
* Display all FFBs on this board. It can either be in tabular format,
* or a more verbose format.
*/
void
display_ffb(Board_node *board, int table)
{
Prom_node *ffb;
void *value;
struct io_card *card_list = NULL;
struct io_card card;
if (board == NULL)
return;
/* Fill in common information */
card.display = 1;
card.board = board->board_num;
(void) sprintf(card.bus_type, "UPA");
card.freq = sys_clk;
for (ffb = dev_find_node(board->nodes, FFB_NAME); ffb != NULL;
ffb = dev_next_node(ffb, FFB_NAME)) {
if (table == 1) {
/* Print out in table format */
/* XXX - Get the slot number (hack) */
card.slot = tazmo_physical_slot(
dev_find_node(board->nodes, "slot2dev"),
ffb,
-1,
card.slot_str);
/* Find out if it's single or double buffered */
(void) sprintf(card.name, "FFB");
value = get_prop_val(find_prop(ffb, "board_type"));
if (value != NULL)
if ((*(int *)value) & FFB_B_BUFF)
(void) sprintf(card.name,
"FFB, Double Buffered");
else
(void) sprintf(card.name,
"FFB, Single Buffered");
/* Print model number */
card.model[0] = '\0';
value = get_prop_val(find_prop(ffb, "model"));
if (value != NULL)
(void) sprintf(card.model, "%s",
(char *)value);
card_list = insert_io_card(card_list, &card);
} else {
/* print in long format */
char device[MAXSTRLEN];
int fd = -1;
struct dirent *direntp;
DIR *dirp;
union strap_un strap;
struct ffb_sys_info fsi;
/* Find the device node using upa address */
value = get_prop_val(find_prop(ffb, "upa-portid"));
if (value == NULL)
continue;
(void) sprintf(device, "%s@%x", FFB_NAME,
*(int *)value);
if ((dirp = opendir("/devices")) == NULL)
continue;
while ((direntp = readdir(dirp)) != NULL) {
if (strstr(direntp->d_name, device) != NULL) {
(void) sprintf(device, "/devices/%s",
direntp->d_name);
fd = open(device, O_RDWR, 0666);
break;
}
}
(void) closedir(dirp);
if (fd == -1)
continue;
if (ioctl(fd, FFB_SYS_INFO, &fsi) < 0)
continue;
log_printf("FFB Hardware Configuration:\n", 0);
log_printf("-----------------------------------\n", 0);
strap.ffb_strap_bits = fsi.ffb_strap_bits;
log_printf("\tBoard rev: %d\n",
(int)strap.fld.board_rev, 0);
log_printf("\tFBC version: "
"0x%x\n", fsi.fbc_version, 0);
log_printf("\tDAC: %s\n",
fmt_manf_id(fsi.dac_version, device), 0);
log_printf("\t3DRAM: %s\n",
fmt_manf_id(fsi.fbram_version, device), 0);
log_printf("\n", 0);
}
}
display_io_cards(card_list);
free_io_cards(card_list);
}
/*
* This module does the reading and interpreting of javelin system
* kstats. These kstats are created by the environ drivers.
*/
void
read_platform_kstats(Sys_tree *tree, struct system_kstat_data *sys_kstat,
struct bd_kstat_data *bdp, struct envctrl_kstat_data *ep)
{
kstat_ctl_t *kc;
struct envctrltwo_kstat_data *ecp;
kstat_t *ksp;
if ((kc = kstat_open()) == NULL) {
return;
}
#ifdef lint
tree = tree;
bdp = bdp;
ep = ep;
#endif
/* read the envctrltwo kstats */
ecp = &sys_kstat->envc_data;
/* Read the power supply kstats */
ksp = kstat_lookup(kc, ENVCTRL_MODULE_NAME, INSTANCE_0,
ENVCTRL_KSTAT_PSNAME2);
if (ksp != NULL && (kstat_read(kc, ksp, NULL) != -1)) {
(void) memcpy(ecp->ps_kstats, ksp->ks_data,
ksp->ks_ndata * sizeof (envctrl_ps2_t));
} else {
sys_kstat->envctrltwo_kstat_ok = B_FALSE;
return;
}
ecp->num_ps_kstats = ksp->ks_ndata;
/* Read the fan status kstats */
ksp = kstat_lookup(kc, ENVCTRL_MODULE_NAME, INSTANCE_0,
ENVCTRL_KSTAT_FANSTAT);
if (ksp != NULL && (kstat_read(kc, ksp, NULL) != -1)) {
(void) memcpy(ecp->fan_kstats, ksp->ks_data,
ksp->ks_ndata * sizeof (envctrl_fan_t));
} else {
sys_kstat->envctrltwo_kstat_ok = B_FALSE;
return;
}
ecp->num_fan_kstats = ksp->ks_ndata;
/* Read the enclosure kstats */
ksp = kstat_lookup(kc, ENVCTRL_MODULE_NAME, INSTANCE_0,
ENVCTRL_KSTAT_ENCL);
if (ksp != NULL && (kstat_read(kc, ksp, NULL) != -1)) {
(void) memcpy(ecp->encl_kstats, ksp->ks_data,
ksp->ks_ndata * sizeof (envctrl_encl_t));
} else {
sys_kstat->envctrltwo_kstat_ok = B_FALSE;
return;
}
ecp->num_encl_kstats = ksp->ks_ndata;
/* Read the temperature kstats */
ksp = kstat_lookup(kc, ENVCTRL_MODULE_NAME, INSTANCE_0,
ENVCTRL_KSTAT_TEMPERATURE);
if (ksp != NULL && (kstat_read(kc, ksp, NULL) != -1)) {
(void) memcpy(ecp->temp_kstats, ksp->ks_data,
ksp->ks_ndata * sizeof (envctrl_temp_t));
} else {
sys_kstat->envctrltwo_kstat_ok = B_FALSE;
return;
}
ecp->num_temp_kstats = ksp->ks_ndata;
/* Read the disk kstats */
ksp = kstat_lookup(kc, ENVCTRL_MODULE_NAME, INSTANCE_0,
ENVCTRL_KSTAT_DISK);
if (ksp != NULL && (kstat_read(kc, ksp, NULL) != -1)) {
(void) memcpy(ecp->disk_kstats, ksp->ks_data,
ksp->ks_ndata * sizeof (envctrl_disk_t));
} else {
sys_kstat->envctrltwo_kstat_ok = B_FALSE;
return;
}
ecp->num_disk_kstats = ksp->ks_ndata;
sys_kstat->envctrltwo_kstat_ok = 1;
return;
}
/*
* Walk the PROM device tree and build the system tree and root tree.
* Nodes that have a board number property are placed in the board
* structures for easier processing later. Child nodes are placed
* under their parents. ffb (Fusion Frame Buffer) nodes are handled
* specially, because they do not contain board number properties.
* This was requested from OBP, but was not granted. So this code
* must parse the MID of the FFB to find the board#.
*/
Prom_node *
walk(Sys_tree *tree, Prom_node *root, int id)
{
register int curnode;
Prom_node *pnode;
char *name;
char *type;
char *model;
int board_node = 0;
/* allocate a node for this level */
if ((pnode = (Prom_node *) malloc(sizeof (struct prom_node))) ==
NULL) {
perror("malloc");
exit(2); /* program errors cause exit 2 */
}
/* assign parent Prom_node */
pnode->parent = root;
pnode->sibling = NULL;
pnode->child = NULL;
/* read properties for this node */
dump_node(pnode);
/*
* Place a node in a 'board' if it has 'board'-ness. The definition
* is that all nodes that are children of root should have a
* board# property. But the PROM tree does not exactly follow
* this. This is where we start hacking. The name 'ffb' can
* change, so watch out for this.
*
* The UltraSPARC, sbus, pci and ffb nodes will exit in
* the desktops and will not have board# properties. These
* cases must be handled here.
*
* PCI to PCI bridges also have the name "pci", but with different
* model property values. They should not be put under 'board'.
*/
name = get_node_name(pnode);
type = get_node_type(pnode);
model = (char *)get_prop_val(find_prop(pnode, "model"));
#ifdef DEBUG
if (name != NULL)
printf("name=%s ", name);
if (type != NULL)
printf("type=%s ", type);
if (model != NULL)
printf("model=%s", model);
printf("\n");
if (model == NULL)
model = "";
#endif
if (type == NULL)
type = "";
if (name != NULL) {
if (has_board_num(pnode)) {
add_node(tree, pnode);
board_node = 1;
#ifdef DEBUG
printf("ADDED BOARD name=%s type=%s model=%s\n",
name, type, model);
#endif
} else if ((strcmp(name, FFB_NAME) == 0) ||
(strcmp(type, "cpu") == 0) ||
((strcmp(name, "pci") == 0) && (model != NULL) &&
(strcmp(model, "SUNW,psycho") == 0)) ||
((strcmp(name, "pci") == 0) && (model != NULL) &&
(strcmp(model, "SUNW,sabre") == 0)) ||
(strcmp(name, "counter-timer") == 0) ||
(strcmp(name, "sbus") == 0) ||
(strcmp(name, "memory") == 0) ||
(strcmp(name, "mc") == 0) ||
(strcmp(name, "associations") == 0)) {
add_node(tree, pnode);
board_node = 1;
#ifdef DEBUG
printf("ADDED BOARD name=%s type=%s model=%s\n",
name, type, model);
#endif
}
#ifdef DEBUG
else
printf("node not added: name=%s type=%s\n", name, type);
#endif
}
if (curnode = child(id)) {
pnode->child = walk(tree, pnode, curnode);
}
if (curnode = next(id)) {
if (board_node) {
return (walk(tree, root, curnode));
} else {
pnode->sibling = walk(tree, root, curnode);
}
}
if (board_node) {
return (NULL);
} else {
return (pnode);
}
}
/*
* local functions
*/
/*
* disp_envc_status
*
* This routine displays the environmental status passed up from
* device drivers via kstats. The kstat names are defined in
* kernel header files included by this module.
* This is a Javelin specific environmental information display routine.
*/
static int
disp_envc_status(struct system_kstat_data *sys_kstats)
{
struct envctrltwo_kstat_data *ecp;
envctrl_ps2_t ps_ks;
envctrl_fan_t fans_ks;
envctrl_encl_t encl_ks;
envctrl_temp_t temp_ks;
envctrl_disk_t disk_ks;
char state[48];
uchar_t val, fsp_value;
uchar_t disk_pr, disk_fl;
int i;
int exit_code = 0;
if (sys_kstats->envctrltwo_kstat_ok == 0) {
log_printf("\n", 0);
log_printf(dgettext(TEXT_DOMAIN, "Environmental information "
"is not available\n"), 0);
log_printf(dgettext(TEXT_DOMAIN, "Environmental driver may "
"not be installed\n"), 0);
log_printf("\n", 0);
return (1);
}
ecp = &sys_kstats->envc_data;
log_printf("\n", 0);
log_printf("=========================", 0);
log_printf(dgettext(TEXT_DOMAIN, " Environmental Status "), 0);
log_printf("=========================", 0);
log_printf("\n", 0);
log_printf("\n", 0);
log_printf("System Temperatures (Celsius):\n", 0);
log_printf("------------------------------\n", 0);
for (i = 0; i < ecp->num_temp_kstats; i++) {
temp_ks = ecp->temp_kstats[i];
log_printf("%10s %d", temp_ks.label, temp_ks.value);
if (temp_ks.value >= temp_ks.shutdown_threshold) {
log_printf(" CRITICAL\n", 0);
exit_code = 1;
} else if (temp_ks.value >= temp_ks.warning_threshold) {
log_printf(" WARNING\n", 0);
exit_code = 1;
} else if (temp_ks.value < temp_ks.min) {
log_printf(" WARNING\n", 0);
exit_code = 1;
} else
log_printf("\n", 0);
}
log_printf("\n", 0);
log_printf("=================================\n", 0);
log_printf("\n", 0);
encl_ks = ecp->encl_kstats[0];
val = encl_ks.value & ENVCTRL_UE250_FSP_KEYMASK;
fsp_value = encl_ks.value;
switch (val) {
case ENVCTRL_UE250_FSP_KEYOFF:
(void) sprintf(state, "%s", "Off");
break;
case ENVCTRL_UE250_FSP_KEYON:
(void) sprintf(state, "%s", "On");
break;
case ENVCTRL_UE250_FSP_KEYDIAG:
(void) sprintf(state, "%s", "Diagnostic");
break;
case ENVCTRL_UE250_FSP_KEYLOCKED:
(void) sprintf(state, "%s", "Secure");
break;
default:
(void) sprintf(state, "%s", "Broken!");
exit_code = 1;
break;
}
log_printf("Front Status Panel:\n", 0);
log_printf("-------------------\n", 0);
log_printf("Keyswitch position is in %s mode.\n", state);
log_printf("\n", 0);
val = fsp_value & (ENVCTRL_UE250_FSP_DISK_ERR |
ENVCTRL_UE250_FSP_PS_ERR | ENVCTRL_UE250_FSP_TEMP_ERR |
ENVCTRL_UE250_FSP_GEN_ERR | ENVCTRL_UE250_FSP_ACTIVE);
log_printf("System LED Status: DISK ERROR POWER \n", 0);
log_printf(" [%3s] [ ON] \n",
val & ENVCTRL_UE250_FSP_DISK_ERR ? "ON" : "OFF");
log_printf(" POWER SUPPLY ERROR ACTIVITY \n", 0);
log_printf(" [%3s] [%3s] \n",
val & ENVCTRL_UE250_FSP_PS_ERR ? "ON" : "OFF",
val & ENVCTRL_UE250_FSP_ACTIVE ? "ON" : "OFF");
log_printf(" GENERAL ERROR THERMAL ERROR \n", 0);
log_printf(" [%3s] [%3s] \n",
val & ENVCTRL_UE250_FSP_GEN_ERR ? "ON" : "OFF",
val & ENVCTRL_UE250_FSP_TEMP_ERR ? "ON" : "OFF");
if (val & (ENVCTRL_UE250_FSP_DISK_ERR | ENVCTRL_UE250_FSP_PS_ERR |
ENVCTRL_UE250_FSP_GEN_ERR | ENVCTRL_UE250_FSP_TEMP_ERR)) {
exit_code = 1;
}
log_printf("\n", 0);
log_printf("=================================\n", 0);
log_printf("\n", 0);
disk_pr = disk_fl = 0;
for (i = 0; i < ecp->num_disk_kstats; i++) {
disk_ks = ecp->disk_kstats[i];
if (disk_ks.slot == -1)
continue;
disk_pr |= 1 << disk_ks.slot;
if (disk_ks.disk_ok == 0)
disk_fl |= 1 << disk_ks.slot;
}
log_printf("Disk LED Status: OK = GREEN ERROR = YELLOW\n", 0);
log_printf(" DISK 5: %7s DISK 3: %7s DISK 1: %7s\n",
disk_pr & ENVCTRL_DISK_5 ?
disk_fl & ENVCTRL_DISK_5 ? "[ERROR]" : "[OK]" : "[EMPTY]",
disk_pr & ENVCTRL_DISK_3 ?
disk_fl & ENVCTRL_DISK_3 ? "[ERROR]" : "[OK]" : "[EMPTY]",
disk_pr & ENVCTRL_DISK_1 ?
disk_fl & ENVCTRL_DISK_1 ? "[ERROR]" : "[OK]" : "[EMPTY]");
log_printf(" DISK 4: %7s DISK 2: %7s DISK 0: %7s\n",
disk_pr & ENVCTRL_DISK_4 ?
disk_fl & ENVCTRL_DISK_4 ? "[ERROR]" : "[OK]" : "[EMPTY]",
disk_pr & ENVCTRL_DISK_2 ?
disk_fl & ENVCTRL_DISK_2 ? "[ERROR]" : "[OK]" : "[EMPTY]",
disk_pr & ENVCTRL_DISK_0 ?
disk_fl & ENVCTRL_DISK_0 ? "[ERROR]" : "[OK]" : "[EMPTY]");
log_printf("\n", 0);
log_printf("=================================\n", 0);
log_printf("\n", 0);
log_printf("Fan Bank :\n", 0);
log_printf("----------\n", 0);
log_printf("\n", 0);
fans_ks = ecp->fan_kstats[0];
log_printf("Bank Speed Status\n", 0);
log_printf(" (0-255) \n", 0);
log_printf("---- ----- ------\n", 0);
if (fans_ks.fans_ok == B_TRUE)
log_printf(" SYS %5d OK\n", fans_ks.fanspeed);
else if (fans_ks.fans_ok != B_TRUE) {
log_printf(" SYS %5d FAILED\n", fans_ks.fanspeed);
exit_code = 1;
}
log_printf("\n", 0);
log_printf("=================================\n", 0);
log_printf("\n", 0);
log_printf("Power Supplies:\n", 0);
log_printf("---------------\n", 0);
log_printf("\n", 0);
log_printf("Supply Status\n", 0);
log_printf("------ ------\n", 0);
for (i = 0; i < ecp->num_ps_kstats; i++) {
ps_ks = ecp->ps_kstats[i];
if (ps_ks.ps_ok == B_TRUE)
(void) sprintf(state, "%s", " OK ");
else if (ps_ks.ps_ok != B_TRUE) {
(void) sprintf(state, "%s", "FAILED: DC "
"Power Failure");
exit_code = 1;
}
log_printf(" %2d %s\n", ps_ks.slot, state);
}
return (exit_code);
}
void
tazjav_disp_asic_revs(Sys_tree *tree)
{
Board_node *bnode;
Prom_node *pnode;
char *name;
int *version;
char *model;
/* Print the header */
log_printf("\n", 0);
log_printf("=========================", 0);
log_printf(" HW Revisions ", 0);
log_printf("=========================", 0);
log_printf("\n", 0);
log_printf("\n", 0);
bnode = tree->bd_list;
log_printf("ASIC Revisions:\n", 0);
log_printf("---------------\n", 0);
/* Find sysio and print rev */
for (pnode = dev_find_node(bnode->nodes, "sbus"); pnode != NULL;
pnode = dev_next_node(pnode, "sbus")) {
version = (int *)get_prop_val(find_prop(pnode, "version#"));
name = get_prop_val(find_prop(pnode, "name"));
if ((version != NULL) && (name != NULL)) {
log_printf("SBus: %s Rev %d\n", name, *version, 0);
}
}
/* Find Psycho and print rev */
for (pnode = dev_find_node(bnode->nodes, "pci"); pnode != NULL;
pnode = dev_next_node(pnode, "pci")) {
Prom_node *parsib = pnode->parent->sibling;
if (find_prop(pnode, "upa-portid") == NULL) {
if ((parsib != NULL) &&
(strcmp(get_prop_val(
find_prop(parsib, "name")),
PCI_NAME) == 0))
pnode = parsib;
else {
pnode = parsib;
continue;
}
}
version = (int *)get_prop_val(find_prop(pnode, "version#"));
name = get_prop_val(find_prop(pnode, "name"));
if ((version != NULL) && (name != NULL))
if (get_pci_bus(pnode) == 0)
log_printf("STP2223BGA: Rev %d\n", *version, 0);
}
/* Find Cheerio and print rev */
for (pnode = dev_find_node(bnode->nodes, "ebus"); pnode != NULL;
pnode = dev_next_node(pnode, "ebus")) {
version = (int *)get_prop_val(find_prop(pnode, "revision-id"));
name = get_prop_val(find_prop(pnode, "name"));
if ((version != NULL) && (name != NULL))
log_printf("STP2003QFP: Rev %d\n", *version, 0);
}
/* Find System Controller and print rev */
for (pnode = dev_find_node(bnode->nodes, "sc"); pnode != NULL;
pnode = dev_next_node(pnode, "sc")) {
version = (int *)get_prop_val(find_prop(pnode, "version#"));
model = (char *)get_prop_val(find_prop(pnode, "model"));
name = get_prop_val(find_prop(pnode, "name"));
if ((version != NULL) && (name != NULL)) {
if ((strcmp(model, "SUNW,sc-marvin") == 0))
log_printf("STP2205BGA: Rev %d\n", *version, 0);
}
}
/* Find the FEPS and print rev */
for (pnode = dev_find_node(bnode->nodes, "SUNW,hme"); pnode != NULL;
pnode = dev_next_node(pnode, "SUNW,hme")) {
version = (int *)get_prop_val(find_prop(pnode, "hm-rev"));
name = get_prop_val(find_prop(pnode, "name"));
if ((version != NULL) && (name != NULL)) {
log_printf("FEPS: %s Rev ", name);
if (*version == 0xa0) {
log_printf("2.0\n", 0);
} else if (*version == 0x20) {
log_printf("2.1\n", 0);
} else {
log_printf("%x\n", *version, 0);
}
}
}
log_printf("\n", 0);
if (dev_find_node(bnode->nodes, FFB_NAME) != NULL) {
display_ffb(bnode, 0);
}
}
/*
* Determine the physical PCI slot based on which Psycho is the parent
* of the PCI card.
*/
static int
tazmo_physical_slot(Prom_node *slotd, Prom_node *parent, int device, char *str)
{
int *upa_id = NULL;
int *reg = NULL;
int offset;
char controller[MAXSTRLEN];
char *name;
Prop *prop;
char *devpath_p;
char slotx[16] = "";
int *slot_names_mask;
char *slot_names;
int shift = 0;
int slot;
int slots, start_slot;
/*
* If slotd != NULL, then we must return the physical PCI slot
* number based on the information in the slot2dev associations
* node. This routine is called from display_pci() with slotd
* != NULL. If so, we return without obtaining the slot name.
* If slotd == NULL, we look for the slot name through the
* slot-names property in the bus node.
*/
if (slotd != NULL) {
(void) strcpy(str, "");
if ((prop = find_prop(parent, "upa-portid")) != NULL)
upa_id = (int *)(get_prop_val(prop));
if ((prop = find_prop(parent, "reg")) != NULL)
reg = (int *)(get_prop_val(prop));
if ((prop = find_prop(parent, "name")) != NULL)
name = (char *)(get_prop_val(prop));
if ((upa_id == NULL) || (reg == NULL)) {
return (-1);
}
offset = reg[1];
if (strcmp(name, "pci") == 0) {
(void) sprintf(controller, "/pci@%x,%x/*@%x,*",
*upa_id, offset, device);
slots = 20;
} else if (strcmp(name, "SUNW,ffb") == 0) {
(void) sprintf(controller, "/*@%x,0", *upa_id);
slots = 2;
}
/*
* Javelin and future projects will use 0 based
* numbering for slots.
*/
start_slot = 0;
slots = slots - 1;
for (slot = start_slot; slot <= slots; slot++) {
if (strcmp(name, "pci") == 0)
(void) sprintf(slotx, "pci-slot#%d", slot);
else if (strcmp(name, "SUNW,ffb") == 0)
(void) sprintf(slotx, "graphics#%d", slot);
if ((prop = find_prop(slotd, slotx)) != NULL)
if ((devpath_p = (char *)(get_prop_val
(prop))) != NULL)
if (strcmp(devpath_p, controller) ==
NULL)
return (slot);
}
return (-1);
}
/*
* Get slot-names property from parent node.
* This property consists of a 32 bit mask indicating which
* devices are relevant to this bus node. Following are a
* number of strings depending on how many bits are set in the
* bit mask; the first string gives the label that is printed
* on the chassis for the smallest device number, and so on.
*/
prop = find_prop(parent, "slot-names");
if (prop == NULL) {
(void) strcpy(str, "");
return (-1);
}
slot_names_mask = (int *)(get_prop_val(prop));
slot_names = (char *)slot_names_mask;
slot = 1;
slot_names += 4; /* Skip the 4 byte bitmask */
while (shift < 32) {
/*
* Shift through the bitmask looking to see if the
* bit corresponding to "device" is set. If so, copy
* the correcsponding string to the provided pointer.
*/
if (*slot_names_mask & slot) {
if (shift == device) {
(void) strcpy(str, slot_names);
return (0);
}
slot_names += strlen(slot_names)+1;
}
shift++;
slot = slot << 1;
}
return (-1);
}