/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include "libm_inlines.h"
#ifdef __RESTRICT
#define restrict _Restrict
#else
#define restrict
#endif
/* float rsqrtf(float x)
*
* Method :
* 1. Special cases:
* for x = NaN => QNaN;
* for x = +Inf => 0;
* for x is negative, -Inf => QNaN + invalid;
* for x = +0 => +Inf + divide-by-zero;
* for x = -0 => -Inf + divide-by-zero.
* 2. Computes reciprocal square root from:
* x = m * 2**n
* Where:
* m = [0.5, 2),
* n = ((exponent + 1) & ~1).
* Then:
* rsqrtf(x) = 1/sqrt( m * 2**n ) = (2 ** (-n/2)) * (1/sqrt(m))
* 2. Computes 1/sqrt(m) from:
* 1/sqrt(m) = (1/sqrt(m0)) * (1/sqrt(1 + (1/m0)*dm))
* Where:
* m = m0 + dm,
* m0 = 0.5 * (1 + k/64) for m = [0.5, 0.5+127/256), k = [0, 63];
* m0 = 1.0 * (0 + k/64) for m = [0.5+127/256, 1.0+127/128), k = [64, 127];
* Then:
* 1/sqrt(m0), 1/m0 are looked up in a table,
* 1/sqrt(1 + (1/m0)*dm) is computed using approximation:
* 1/sqrt(1 + z) = ((a3 * z + a2) * z + a1) * z + a0
* where z = [-1/64, 1/64].
*
* Accuracy:
* The maximum relative error for the approximating
* polynomial is 2**(-27.87).
* Maximum error observed: less than 0.534 ulp for the
* whole float type range.
*/
extern float sqrtf(float);
static const double __TBL_rsqrtf[] = {
/*
i = [0,63]
TBL[2*i ] = 1 / (*(double*)&(0x3fe0000000000000ULL + (i << 46))) * 2**-24;
TBL[2*i+1] = 1 / sqrtl(*(double*)&(0x3fe0000000000000ULL + (i << 46)));
i = [64,127]
TBL[2*i ] = 1 / (*(double*)&(0x3fe0000000000000ULL + (i << 46))) * 2**-23;
TBL[2*i+1] = 1 / sqrtl(*(double*)&(0x3fe0000000000000ULL + (i << 46)));
*/
1.1920928955078125000e-07, 1.4142135623730951455e+00,
1.1737530048076923728e-07, 1.4032928308912466786e+00,
1.1559688683712121533e-07, 1.3926212476455828160e+00,
1.1387156016791044559e-07, 1.3821894809301762397e+00,
1.1219697840073529256e-07, 1.3719886811400707760e+00,
1.1057093523550724772e-07, 1.3620104492139977204e+00,
1.0899135044642856803e-07, 1.3522468075656264297e+00,
1.0745626100352112918e-07, 1.3426901732747025253e+00,
1.0596381293402777190e-07, 1.3333333333333332593e+00,
1.0451225385273972023e-07, 1.3241694217637887121e+00,
1.0309992609797297870e-07, 1.3151918984428583315e+00,
1.0172526041666667320e-07, 1.3063945294843617440e+00,
1.0038677014802631022e-07, 1.2977713690461003537e+00,
9.9083045860389616921e-08, 1.2893167424406084542e+00,
9.7812750400641022247e-08, 1.2810252304406970492e+00,
9.6574614319620251657e-08, 1.2728916546811681609e+00,
9.5367431640625005294e-08, 1.2649110640673517647e+00,
9.4190055941358019463e-08, 1.2570787221094177344e+00,
9.3041396722560978838e-08, 1.2493900951088485751e+00,
9.1920416039156631290e-08, 1.2418408411301324890e+00,
9.0826125372023804482e-08, 1.2344267996967352996e+00,
8.9757582720588234048e-08, 1.2271439821557927896e+00,
8.8713889898255812722e-08, 1.2199885626608373279e+00,
8.7694190014367814875e-08, 1.2129568697262453902e+00,
8.6697665127840911497e-08, 1.2060453783110545167e+00,
8.5723534058988761666e-08, 1.1992507023933782762e+00,
8.4771050347222225457e-08, 1.1925695879998878812e+00,
8.3839500343406599951e-08, 1.1859989066577618644e+00,
8.2928201426630432481e-08, 1.1795356492391770864e+00,
8.2036500336021511923e-08, 1.1731769201708264205e+00,
8.1163771609042551220e-08, 1.1669199319831564665e+00,
8.0309416118421050820e-08, 1.1607620001760186046e+00,
7.9472859700520828922e-08, 1.1547005383792514621e+00,
7.8653551868556699530e-08, 1.1487330537883810866e+00,
7.7850964604591830522e-08, 1.1428571428571427937e+00,
7.7064591224747481298e-08, 1.1370704872299222110e+00,
7.6293945312500001588e-08, 1.1313708498984760276e+00,
7.5538559715346535571e-08, 1.1257560715684669095e+00,
7.4797985600490195040e-08, 1.1202240672224077489e+00,
7.4071791565533974158e-08, 1.1147728228665882977e+00,
7.3359562800480773303e-08, 1.1094003924504582947e+00,
7.2660900297619054173e-08, 1.1041048949477667573e+00,
7.1975420106132072725e-08, 1.0988845115895122806e+00,
7.1302752628504667579e-08, 1.0937374832394612945e+00,
7.0642541956018514597e-08, 1.0886621079036347126e+00,
6.9994445240825691959e-08, 1.0836567383657542685e+00,
6.9358132102272723904e-08, 1.0787197799411873955e+00,
6.8733284065315314719e-08, 1.0738496883424388795e+00,
6.8119594029017853361e-08, 1.0690449676496975862e+00,
6.7516765763274335346e-08, 1.0643041683803828867e+00,
6.6924513432017540145e-08, 1.0596258856520350822e+00,
6.6342561141304348632e-08, 1.0550087574332591700e+00,
6.5770642510775861156e-08, 1.0504514628777803509e+00,
6.5208500267094023655e-08, 1.0459527207369814228e+00,
6.4655885858050847233e-08, 1.0415112878465908608e+00,
6.4112559086134451001e-08, 1.0371259576834630511e+00,
6.3578287760416665784e-08, 1.0327955589886446131e+00,
6.3052847365702481089e-08, 1.0285189544531601058e+00,
6.2536020747950822927e-08, 1.0242950394631678002e+00,
6.2027597815040656970e-08, 1.0201227409013413627e+00,
6.1527375252016127325e-08, 1.0160010160015240377e+00,
6.1035156250000001271e-08, 1.0119288512538813229e+00,
6.0550750248015869655e-08, 1.0079052613579393416e+00,
6.0073972687007873182e-08, 1.0039292882210537616e+00,
1.1920928955078125000e-07, 1.0000000000000000000e+00,
1.1737530048076923728e-07, 9.9227787671366762812e-01,
1.1559688683712121533e-07, 9.8473192783466190203e-01,
1.1387156016791044559e-07, 9.7735555485044178781e-01,
1.1219697840073529256e-07, 9.7014250014533187638e-01,
1.1057093523550724772e-07, 9.6308682468615358641e-01,
1.0899135044642856803e-07, 9.5618288746751489704e-01,
1.0745626100352112918e-07, 9.4942532655508271588e-01,
1.0596381293402777190e-07, 9.4280904158206335630e-01,
1.0451225385273972023e-07, 9.3632917756904454620e-01,
1.0309992609797297870e-07, 9.2998110995055427441e-01,
1.0172526041666667320e-07, 9.2376043070340119190e-01,
1.0038677014802631022e-07, 9.1766293548224708854e-01,
9.9083045860389616921e-08, 9.1168461167710357351e-01,
9.7812750400641022247e-08, 9.0582162731567661407e-01,
9.6574614319620251657e-08, 9.0007032074081916306e-01,
9.5367431640625005294e-08, 8.9442719099991585541e-01,
9.4190055941358019463e-08, 8.8888888888888883955e-01,
9.3041396722560978838e-08, 8.8345220859877238162e-01,
9.1920416039156631290e-08, 8.7811407991752277180e-01,
9.0826125372023804482e-08, 8.7287156094396955996e-01,
8.9757582720588234048e-08, 8.6772183127462465535e-01,
8.8713889898255812722e-08, 8.6266218562750729415e-01,
8.7694190014367814875e-08, 8.5769002787023584933e-01,
8.6697665127840911497e-08, 8.5280286542244176928e-01,
8.5723534058988761666e-08, 8.4799830400508802164e-01,
8.4771050347222225457e-08, 8.4327404271156780613e-01,
8.3839500343406599951e-08, 8.3862786937753464045e-01,
8.2928201426630432481e-08, 8.3405765622829908246e-01,
8.2036500336021511923e-08, 8.2956135578434020417e-01,
8.1163771609042551220e-08, 8.2513699700703468931e-01,
8.0309416118421050820e-08, 8.2078268166812329287e-01,
7.9472859700520828922e-08, 8.1649658092772603446e-01,
7.8653551868556699530e-08, 8.1227693210689522196e-01,
7.7850964604591830522e-08, 8.0812203564176865456e-01,
7.7064591224747481298e-08, 8.0403025220736967782e-01,
7.6293945312500001588e-08, 8.0000000000000004441e-01,
7.5538559715346535571e-08, 7.9602975216799132241e-01,
7.4797985600490195040e-08, 7.9211803438133943089e-01,
7.4071791565533974158e-08, 7.8826342253143455441e-01,
7.3359562800480773303e-08, 7.8446454055273617811e-01,
7.2660900297619054173e-08, 7.8072005835882651859e-01,
7.1975420106132072725e-08, 7.7702868988581130782e-01,
7.1302752628504667579e-08, 7.7338919123653082632e-01,
7.0642541956018514597e-08, 7.6980035891950104876e-01,
6.9994445240825691959e-08, 7.6626102817692109959e-01,
6.9358132102272723904e-08, 7.6277007139647390321e-01,
6.8733284065315314719e-08, 7.5932639660199918730e-01,
6.8119594029017853361e-08, 7.5592894601845450619e-01,
6.7516765763274335346e-08, 7.5257669470687782454e-01,
6.6924513432017540145e-08, 7.4926864926535519107e-01,
6.6342561141304348632e-08, 7.4600384659225105199e-01,
6.5770642510775861156e-08, 7.4278135270820744296e-01,
6.5208500267094023655e-08, 7.3960026163363878915e-01,
6.4655885858050847233e-08, 7.3645969431865865307e-01,
6.4112559086134451001e-08, 7.3335879762256905856e-01,
6.3578287760416665784e-08, 7.3029674334022143256e-01,
6.3052847365702481089e-08, 7.2727272727272729291e-01,
6.2536020747950822927e-08, 7.2428596834014824513e-01,
6.2027597815040656970e-08, 7.2133570773394584119e-01,
6.1527375252016127325e-08, 7.1842120810709964029e-01,
6.1035156250000001271e-08, 7.1554175279993270653e-01,
6.0550750248015869655e-08, 7.1269664509979835376e-01,
6.0073972687007873182e-08, 7.0988520753289097165e-01,
};
static const unsigned long long LCONST[] = {
0x3feffffffee7f18fULL, /* A0 = 9.99999997962321453275e-01 */
0xbfdffffffe07e52fULL, /* A1 =-4.99999998166077580600e-01 */
0x3fd801180ca296d9ULL, /* A2 = 3.75066768969515586277e-01 */
0xbfd400fc0bbb8e78ULL, /* A3 =-3.12560092408808548438e-01 */
};
static void
__vrsqrtf_n(int n, float * restrict px, int stridex, float * restrict py, int stridey);
#pragma no_inline(__vrsqrtf_n)
#define RETURN(ret) \
{ \
*py = (ret); \
py += stridey; \
if (n_n == 0) \
{ \
spx = px; spy = py; \
ax0 = *(int*)px; \
continue; \
} \
n--; \
break; \
}
void
__vrsqrtf(int n, float * restrict px, int stridex, float * restrict py, int stridey)
{
float *spx, *spy;
int ax0, n_n;
float res;
float FONE = 1.0f, FTWO = 2.0f;
while (n > 1)
{
n_n = 0;
spx = px;
spy = py;
ax0 = *(int*)px;
for (; n > 1 ; n--)
{
px += stridex;
if (ax0 >= 0x7f800000) /* X = NaN or Inf */
{
res = *(px - stridex);
RETURN (FONE / res)
}
py += stridey;
if (ax0 < 0x00800000) /* X = denormal, zero or negative */
{
py -= stridey;
res = *(px - stridex);
if ((ax0 & 0x7fffffff) == 0) /* |X| = zero */
{
RETURN (FONE / res)
}
else if (ax0 >= 0) /* X = denormal */
{
double A0 = ((double*)LCONST)[0]; /* 9.99999997962321453275e-01 */
double A1 = ((double*)LCONST)[1]; /* -4.99999998166077580600e-01 */
double A2 = ((double*)LCONST)[2]; /* 3.75066768969515586277e-01 */
double A3 = ((double*)LCONST)[3]; /* -3.12560092408808548438e-01 */
double res0, xx0, tbl_div0, tbl_sqrt0;
float fres0;
int iax0, si0, iexp0;
res = *(int*)&res;
res *= FTWO;
ax0 = *(int*)&res;
iexp0 = ax0 >> 24;
iexp0 = 0x3f + 0x4b - iexp0;
iexp0 = iexp0 << 23;
si0 = (ax0 >> 13) & 0x7f0;
tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
iax0 = ax0 & 0x7ffe0000;
iax0 = ax0 - iax0;
xx0 = iax0 * tbl_div0;
res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
fres0 = res0;
iexp0 += *(int*)&fres0;
RETURN(*(float*)&iexp0)
}
else /* X = negative */
{
RETURN (sqrtf(res))
}
}
n_n++;
ax0 = *(int*)px;
}
if (n_n > 0)
__vrsqrtf_n(n_n, spx, stridex, spy, stridey);
}
if (n > 0)
{
ax0 = *(int*)px;
if (ax0 >= 0x7f800000) /* X = NaN or Inf */
{
res = *px;
*py = FONE / res;
}
else if (ax0 < 0x00800000) /* X = denormal, zero or negative */
{
res = *px;
if ((ax0 & 0x7fffffff) == 0) /* |X| = zero */
{
*py = FONE / res;
}
else if (ax0 >= 0) /* X = denormal */
{
double A0 = ((double*)LCONST)[0]; /* 9.99999997962321453275e-01 */
double A1 = ((double*)LCONST)[1]; /* -4.99999998166077580600e-01 */
double A2 = ((double*)LCONST)[2]; /* 3.75066768969515586277e-01 */
double A3 = ((double*)LCONST)[3]; /* -3.12560092408808548438e-01 */
double res0, xx0, tbl_div0, tbl_sqrt0;
float fres0;
int iax0, si0, iexp0;
res = *(int*)&res;
res *= FTWO;
ax0 = *(int*)&res;
iexp0 = ax0 >> 24;
iexp0 = 0x3f + 0x4b - iexp0;
iexp0 = iexp0 << 23;
si0 = (ax0 >> 13) & 0x7f0;
tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
iax0 = ax0 & 0x7ffe0000;
iax0 = ax0 - iax0;
xx0 = iax0 * tbl_div0;
res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
fres0 = res0;
iexp0 += *(int*)&fres0;
*(int*)py = iexp0;
}
else /* X = negative */
{
*py = sqrtf(res);
}
}
else
{
double A0 = ((double*)LCONST)[0]; /* 9.99999997962321453275e-01 */
double A1 = ((double*)LCONST)[1]; /* -4.99999998166077580600e-01 */
double A2 = ((double*)LCONST)[2]; /* 3.75066768969515586277e-01 */
double A3 = ((double*)LCONST)[3]; /* -3.12560092408808548438e-01 */
double res0, xx0, tbl_div0, tbl_sqrt0;
float fres0;
int iax0, si0, iexp0;
iexp0 = ax0 >> 24;
iexp0 = 0x3f - iexp0;
iexp0 = iexp0 << 23;
si0 = (ax0 >> 13) & 0x7f0;
tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
iax0 = ax0 & 0x7ffe0000;
iax0 = ax0 - iax0;
xx0 = iax0 * tbl_div0;
res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
fres0 = res0;
iexp0 += *(int*)&fres0;
*(int*)py = iexp0;
}
}
}
void
__vrsqrtf_n(int n, float * restrict px, int stridex, float * restrict py, int stridey)
{
double A0 = ((double*)LCONST)[0]; /* 9.99999997962321453275e-01 */
double A1 = ((double*)LCONST)[1]; /* -4.99999998166077580600e-01 */
double A2 = ((double*)LCONST)[2]; /* 3.75066768969515586277e-01 */
double A3 = ((double*)LCONST)[3]; /* -3.12560092408808548438e-01 */
double res0, xx0, tbl_div0, tbl_sqrt0;
float fres0;
int iax0, ax0, si0, iexp0;
#if defined(ARCH_v7) || defined(ARCH_v8)
double res1, xx1, tbl_div1, tbl_sqrt1;
double res2, xx2, tbl_div2, tbl_sqrt2;
float fres1, fres2;
int iax1, ax1, si1, iexp1;
int iax2, ax2, si2, iexp2;
for(; n > 2 ; n -= 3)
{
ax0 = *(int*)px;
px += stridex;
ax1 = *(int*)px;
px += stridex;
ax2 = *(int*)px;
px += stridex;
iexp0 = ax0 >> 24;
iexp1 = ax1 >> 24;
iexp2 = ax2 >> 24;
iexp0 = 0x3f - iexp0;
iexp1 = 0x3f - iexp1;
iexp2 = 0x3f - iexp2;
iexp0 = iexp0 << 23;
iexp1 = iexp1 << 23;
iexp2 = iexp2 << 23;
si0 = (ax0 >> 13) & 0x7f0;
si1 = (ax1 >> 13) & 0x7f0;
si2 = (ax2 >> 13) & 0x7f0;
tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
tbl_div1 = ((double*)((char*)__TBL_rsqrtf + si1))[0];
tbl_div2 = ((double*)((char*)__TBL_rsqrtf + si2))[0];
tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
tbl_sqrt1 = ((double*)((char*)__TBL_rsqrtf + si1))[1];
tbl_sqrt2 = ((double*)((char*)__TBL_rsqrtf + si2))[1];
iax0 = ax0 & 0x7ffe0000;
iax1 = ax1 & 0x7ffe0000;
iax2 = ax2 & 0x7ffe0000;
iax0 = ax0 - iax0;
iax1 = ax1 - iax1;
iax2 = ax2 - iax2;
xx0 = iax0 * tbl_div0;
xx1 = iax1 * tbl_div1;
xx2 = iax2 * tbl_div2;
res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
res1 = tbl_sqrt1 * (((A3 * xx1 + A2) * xx1 + A1) * xx1 + A0);
res2 = tbl_sqrt2 * (((A3 * xx2 + A2) * xx2 + A1) * xx2 + A0);
fres0 = res0;
fres1 = res1;
fres2 = res2;
iexp0 += *(int*)&fres0;
iexp1 += *(int*)&fres1;
iexp2 += *(int*)&fres2;
*(int*)py = iexp0;
py += stridey;
*(int*)py = iexp1;
py += stridey;
*(int*)py = iexp2;
py += stridey;
}
#endif
for(; n > 0 ; n--)
{
ax0 = *(int*)px;
px += stridex;
iexp0 = ax0 >> 24;
iexp0 = 0x3f - iexp0;
iexp0 = iexp0 << 23;
si0 = (ax0 >> 13) & 0x7f0;
tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
iax0 = ax0 & 0x7ffe0000;
iax0 = ax0 - iax0;
xx0 = iax0 * tbl_div0;
res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
fres0 = res0;
iexp0 += *(int*)&fres0;
*(int*)py = iexp0;
py += stridey;
}
}