/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/isa_defs.h>
#include "libm_inlines.h"
#ifdef _LITTLE_ENDIAN
#define HI(x) *(1+(int*)x)
#define LO(x) *(unsigned*)x
#else
#define HI(x) *(int*)x
#define LO(x) *(1+(unsigned*)x)
#endif
#ifdef __RESTRICT
#define restrict _Restrict
#else
#define restrict
#endif
/* double rsqrt(double x)
*
* Method :
* 1. Special cases:
* for x = NaN => QNaN;
* for x = +Inf => 0;
* for x is negative, -Inf => QNaN + invalid;
* for x = +0 => +Inf + divide-by-zero;
* for x = -0 => -Inf + divide-by-zero.
* 2. Computes reciprocal square root from:
* x = m * 2**n
* Where:
* m = [0.5, 2),
* n = ((exponent + 1) & ~1).
* Then:
* rsqrt(x) = 1/sqrt( m * 2**n ) = (2 ** (-n/2)) * (1/sqrt(m))
* 2. Computes 1/sqrt(m) from:
* 1/sqrt(m) = (1/sqrt(m0)) * (1/sqrt(1 + (1/m0)*dm))
* Where:
* m = m0 + dm,
* m0 = 0.5 * (1 + k/64) for m = [0.5, 0.5+127/256), k = [0, 63];
* m0 = 1.0 * (0 + k/64) for m = [0.5+127/256, 1.0+127/128), k = [64, 127];
* m0 = 2.0 for m = [1.0+127/128, 2.0), k = 128.
* Then:
* 1/sqrt(m0) is looked up in a table,
* 1/m0 is computed as (1/sqrt(m0)) * (1/sqrt(m0)).
* 1/sqrt(1 + (1/m0)*dm) is computed using approximation:
* 1/sqrt(1 + z) = (((((a6 * z + a5) * z + a4) * z + a3)
* * z + a2) * z + a1) * z + a0
* where z = [-1/128, 1/128].
*
* Accuracy:
* The maximum relative error for the approximating
* polynomial is 2**(-56.26).
* Maximum error observed: less than 0.563 ulp after 1.500.000.000
* results.
*/
extern double sqrt (double);
extern const double __vlibm_TBL_rsqrt[];
static void
__vrsqrt_n(int n, double * restrict px, int stridex, double * restrict py, int stridey);
#pragma no_inline(__vrsqrt_n)
#define RETURN(ret) \
{ \
*py = (ret); \
py += stridey; \
if (n_n == 0) \
{ \
spx = px; spy = py; \
hx = HI(px); \
continue; \
} \
n--; \
break; \
}
static const double
DONE = 1.0,
K1 = -5.00000000000005209867e-01,
K2 = 3.75000000000004884257e-01,
K3 = -3.12499999317136886551e-01,
K4 = 2.73437499359815081532e-01,
K5 = -2.46116125605037803130e-01,
K6 = 2.25606914648617522896e-01;
void
__vrsqrt(int n, double * restrict px, int stridex, double * restrict py, int stridey)
{
double *spx, *spy;
int ax, lx, hx, n_n;
double res;
while (n > 1)
{
n_n = 0;
spx = px;
spy = py;
hx = HI(px);
for (; n > 1 ; n--)
{
px += stridex;
if (hx >= 0x7ff00000) /* X = NaN or Inf */
{
res = *(px - stridex);
RETURN (DONE / res)
}
py += stridey;
if (hx < 0x00100000) /* X = denormal, zero or negative */
{
py -= stridey;
ax = hx & 0x7fffffff;
lx = LO((px - stridex));
res = *(px - stridex);
if ((ax | lx) == 0) /* |X| = zero */
{
RETURN (DONE / res)
}
else if (hx >= 0) /* X = denormal */
{
double res_c0, dsqrt_exp0;
int ind0, sqrt_exp0;
double xx0, dexp_hi0, dexp_lo0;
int hx0, resh0, res_ch0;
res = *(long long*)&res;
hx0 = HI(&res);
sqrt_exp0 = (0x817 - (hx0 >> 21)) << 20;
ind0 = (((hx0 >> 10) & 0x7f8) + 8) & -16;
resh0 = (hx0 & 0x001fffff) | 0x3fe00000;
res_ch0 = (resh0 + 0x00002000) & 0x7fffc000;
HI(&res) = resh0;
HI(&res_c0) = res_ch0;
LO(&res_c0) = 0;
dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0];
dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1];
xx0 = dexp_hi0 * dexp_hi0;
xx0 = (res - res_c0) * xx0;
res = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0;
res = dexp_hi0 * res + dexp_lo0 + dexp_hi0;
HI(&dsqrt_exp0) = sqrt_exp0;
LO(&dsqrt_exp0) = 0;
res *= dsqrt_exp0;
RETURN (res)
}
else /* X = negative */
{
RETURN (sqrt(res))
}
}
n_n++;
hx = HI(px);
}
if (n_n > 0)
__vrsqrt_n(n_n, spx, stridex, spy, stridey);
}
if (n > 0)
{
hx = HI(px);
if (hx >= 0x7ff00000) /* X = NaN or Inf */
{
res = *px;
*py = DONE / res;
}
else if (hx < 0x00100000) /* X = denormal, zero or negative */
{
ax = hx & 0x7fffffff;
lx = LO(px);
res = *px;
if ((ax | lx) == 0) /* |X| = zero */
{
*py = DONE / res;
}
else if (hx >= 0) /* X = denormal */
{
double res_c0, dsqrt_exp0;
int ind0, sqrt_exp0;
double xx0, dexp_hi0, dexp_lo0;
int hx0, resh0, res_ch0;
res = *(long long*)&res;
hx0 = HI(&res);
sqrt_exp0 = (0x817 - (hx0 >> 21)) << 20;
ind0 = (((hx0 >> 10) & 0x7f8) + 8) & -16;
resh0 = (hx0 & 0x001fffff) | 0x3fe00000;
res_ch0 = (resh0 + 0x00002000) & 0x7fffc000;
HI(&res) = resh0;
HI(&res_c0) = res_ch0;
LO(&res_c0) = 0;
dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0];
dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1];
xx0 = dexp_hi0 * dexp_hi0;
xx0 = (res - res_c0) * xx0;
res = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0;
res = dexp_hi0 * res + dexp_lo0 + dexp_hi0;
HI(&dsqrt_exp0) = sqrt_exp0;
LO(&dsqrt_exp0) = 0;
res *= dsqrt_exp0;
*py = res;
}
else /* X = negative */
{
*py = sqrt(res);
}
}
else
{
double res_c0, dsqrt_exp0;
int ind0, sqrt_exp0;
double xx0, dexp_hi0, dexp_lo0;
int resh0, res_ch0;
sqrt_exp0 = (0x5fe - (hx >> 21)) << 20;
ind0 = (((hx >> 10) & 0x7f8) + 8) & -16;
resh0 = (hx & 0x001fffff) | 0x3fe00000;
res_ch0 = (resh0 + 0x00002000) & 0x7fffc000;
HI(&res) = resh0;
LO(&res) = LO(px);
HI(&res_c0) = res_ch0;
LO(&res_c0) = 0;
dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0];
dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1];
xx0 = dexp_hi0 * dexp_hi0;
xx0 = (res - res_c0) * xx0;
res = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0;
res = dexp_hi0 * res + dexp_lo0 + dexp_hi0;
HI(&dsqrt_exp0) = sqrt_exp0;
LO(&dsqrt_exp0) = 0;
res *= dsqrt_exp0;
*py = res;
}
}
}
static void
__vrsqrt_n(int n, double * restrict px, int stridex, double * restrict py, int stridey)
{
double res0, res_c0, dsqrt_exp0;
double res1, res_c1, dsqrt_exp1;
double res2, res_c2, dsqrt_exp2;
int ind0, sqrt_exp0;
int ind1, sqrt_exp1;
int ind2, sqrt_exp2;
double xx0, dexp_hi0, dexp_lo0;
double xx1, dexp_hi1, dexp_lo1;
double xx2, dexp_hi2, dexp_lo2;
int hx0, resh0, res_ch0;
int hx1, resh1, res_ch1;
int hx2, resh2, res_ch2;
LO(&dsqrt_exp0) = 0;
LO(&dsqrt_exp1) = 0;
LO(&dsqrt_exp2) = 0;
LO(&res_c0) = 0;
LO(&res_c1) = 0;
LO(&res_c2) = 0;
for(; n > 2 ; n -= 3)
{
hx0 = HI(px);
LO(&res0) = LO(px);
px += stridex;
hx1 = HI(px);
LO(&res1) = LO(px);
px += stridex;
hx2 = HI(px);
LO(&res2) = LO(px);
px += stridex;
sqrt_exp0 = (0x5fe - (hx0 >> 21)) << 20;
sqrt_exp1 = (0x5fe - (hx1 >> 21)) << 20;
sqrt_exp2 = (0x5fe - (hx2 >> 21)) << 20;
ind0 = (((hx0 >> 10) & 0x7f8) + 8) & -16;
ind1 = (((hx1 >> 10) & 0x7f8) + 8) & -16;
ind2 = (((hx2 >> 10) & 0x7f8) + 8) & -16;
resh0 = (hx0 & 0x001fffff) | 0x3fe00000;
resh1 = (hx1 & 0x001fffff) | 0x3fe00000;
resh2 = (hx2 & 0x001fffff) | 0x3fe00000;
res_ch0 = (resh0 + 0x00002000) & 0x7fffc000;
res_ch1 = (resh1 + 0x00002000) & 0x7fffc000;
res_ch2 = (resh2 + 0x00002000) & 0x7fffc000;
HI(&res0) = resh0;
HI(&res1) = resh1;
HI(&res2) = resh2;
HI(&res_c0) = res_ch0;
HI(&res_c1) = res_ch1;
HI(&res_c2) = res_ch2;
dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0];
dexp_hi1 = ((double*)((char*)__vlibm_TBL_rsqrt + ind1))[0];
dexp_hi2 = ((double*)((char*)__vlibm_TBL_rsqrt + ind2))[0];
dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1];
dexp_lo1 = ((double*)((char*)__vlibm_TBL_rsqrt + ind1))[1];
dexp_lo2 = ((double*)((char*)__vlibm_TBL_rsqrt + ind2))[1];
xx0 = dexp_hi0 * dexp_hi0;
xx1 = dexp_hi1 * dexp_hi1;
xx2 = dexp_hi2 * dexp_hi2;
xx0 = (res0 - res_c0) * xx0;
xx1 = (res1 - res_c1) * xx1;
xx2 = (res2 - res_c2) * xx2;
res0 = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0;
res1 = (((((K6 * xx1 + K5) * xx1 + K4) * xx1 + K3) * xx1 + K2) * xx1 + K1) * xx1;
res2 = (((((K6 * xx2 + K5) * xx2 + K4) * xx2 + K3) * xx2 + K2) * xx2 + K1) * xx2;
res0 = dexp_hi0 * res0 + dexp_lo0 + dexp_hi0;
res1 = dexp_hi1 * res1 + dexp_lo1 + dexp_hi1;
res2 = dexp_hi2 * res2 + dexp_lo2 + dexp_hi2;
HI(&dsqrt_exp0) = sqrt_exp0;
HI(&dsqrt_exp1) = sqrt_exp1;
HI(&dsqrt_exp2) = sqrt_exp2;
res0 *= dsqrt_exp0;
res1 *= dsqrt_exp1;
res2 *= dsqrt_exp2;
*py = res0;
py += stridey;
*py = res1;
py += stridey;
*py = res2;
py += stridey;
}
for(; n > 0 ; n--)
{
hx0 = HI(px);
sqrt_exp0 = (0x5fe - (hx0 >> 21)) << 20;
ind0 = (((hx0 >> 10) & 0x7f8) + 8) & -16;
resh0 = (hx0 & 0x001fffff) | 0x3fe00000;
res_ch0 = (resh0 + 0x00002000) & 0x7fffc000;
HI(&res0) = resh0;
LO(&res0) = LO(px);
HI(&res_c0) = res_ch0;
LO(&res_c0) = 0;
px += stridex;
dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0];
dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1];
xx0 = dexp_hi0 * dexp_hi0;
xx0 = (res0 - res_c0) * xx0;
res0 = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0;
res0 = dexp_hi0 * res0 + dexp_lo0 + dexp_hi0;
HI(&dsqrt_exp0) = sqrt_exp0;
LO(&dsqrt_exp0) = 0;
res0 *= dsqrt_exp0;
*py = res0;
py += stridey;
}
}