/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* nexttoward(x, y) delivers the next representable number after x
* in the direction of y. If x and y are both zero, the result is
* zero with the same sign as y. If either x or y is NaN, the result
* is NaN.
*
* If x != y and the result is infinite, overflow is raised; if
* x != y and the result is subnormal or zero, underflow is raised.
* (This is wrong, but it's what C99 apparently wants.)
*/
#include "libm.h"
#if defined(__sparc)
static union {
unsigned i[2];
double d;
} C[] = {
0x00100000, 0,
0x7fe00000, 0,
0x7fffffff, 0xffffffff
};
#define tiny C[0].d
enum fcc_type {
fcc_equal = 0,
};
#ifdef __sparcv9
#endif
double
__nexttoward(double x, long double y) {
union {
unsigned i[2];
double d;
} xx;
union {
unsigned i[4];
long double q;
} yy;
long double lx;
unsigned hx;
volatile double dummy;
/*
* It would be somewhat more efficient to check for NaN and
* zero operands before converting x to long double and then
* to code the comparison in line rather than calling _Q_cmp.
* However, since this code probably won't get used much,
* I'm opting in favor of simplicity instead.
*/
/* check for each of four possible orderings */
if (rel == fcc_unordered)
return (qnan);
if (hx == 0) { /* x is zero; return zero with y's sign */
yy.q = y;
return (xx.d);
}
return (x);
}
if (hx == 0) { /* x is zero */
xx.i[0] = 0;
} else if ((int)xx.i[0] >= 0) { /* x is positive */
if (++xx.i[1] == 0)
xx.i[0]++;
} else {
if (xx.i[1]-- == 0)
xx.i[0]--;
}
} else {
if (hx == 0) { /* x is zero */
xx.i[0] = 0x80000000;
} else if ((int)xx.i[0] >= 0) { /* x is positive */
if (xx.i[1]-- == 0)
xx.i[0]--;
} else {
if (++xx.i[1] == 0)
xx.i[0]++;
}
}
/* raise exceptions as needed */
if (hx == 0x7ff00000) {
} else if (hx < 0x00100000) {
}
return (xx.d);
}
static union {
unsigned i[2];
double d;
} C[] = {
0, 0x00100000,
0, 0x7fe00000,
};
#define tiny C[0].d
double
__nexttoward(double x, long double y) {
union {
unsigned i[2];
double d;
} xx;
unsigned hx;
long double lx;
volatile double dummy;
/* check for each of four possible orderings */
if (isunordered(lx, y))
return ((double) (lx + y));
if (lx == y)
return ((double) y);
if (lx < y) {
if (hx == 0) { /* x is zero */
xx.i[0] = 0x00000001;
xx.i[1] = 0;
if (++xx.i[0] == 0)
xx.i[1]++;
} else {
if (xx.i[0]-- == 0)
xx.i[1]--;
}
} else {
if (hx == 0) { /* x is zero */
xx.i[0] = 0x00000001;
if (xx.i[0]-- == 0)
xx.i[1]--;
} else {
if (++xx.i[0] == 0)
xx.i[1]++;
}
}
/* raise exceptions as needed */
if (hx == 0x7ff00000) {
} else if (hx < 0x00100000) {
}
return (xx.d);
}
#else
#endif