/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* INDENT OFF */
/*
* __k_sin( double x; double y )
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
*
* Accurate Table look-up algorithm by K.C. Ng, May, 1995.
*
* Algorithm: see __sincos.c
*/
#include "libm.h"
static const double sc[] = {
/* ONE = */ 1.0,
/* NONE = */ -1.0,
/*
* |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
*/
/* PP1 = */ -0.166666666666316558867252052378889521480627858683055567,
/* PP2 = */ .008333315652997472323564894248466758248475374977974017927,
/*
* |(sin(x) - (x+p1*x^3+...+p4*x^9)|
* |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
* | x |
*/
/* P1 = */ -1.666666666666629669805215138920301589656e-0001,
/* P2 = */ 8.333333332390951295683993455280336376663e-0003,
/* P3 = */ -1.984126237997976692791551778230098403960e-0004,
/* P4 = */ 2.753403624854277237649987622848330351110e-0006,
/*
* |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
*/
/* QQ1 = */ -0.4999999999975492381842911981948418542742729,
/* QQ2 = */ 0.041666542904352059294545209158357640398771740,
/*
* |cos(x) - (1+q1*x^2+...+q4*x^8)| <= 2^-55.86 for |x| <= 0.1640625 (10.5/64)
*/
/* Q1 = */ -0.5,
/* Q2 = */ 4.166666666500350703680945520860748617445e-0002,
/* Q3 = */ -1.388888596436972210694266290577848696006e-0003,
/* Q4 = */ 2.478563078858589473679519517892953492192e-0005,
};
/* INDENT ON */
extern const double _TBL_sincos[], _TBL_sincosx[];
double
__k_sin(double x, double y) {
double z, w, s, v, p, q;
if ((int)x == 0)
return (x + y);
z = x * x;
else
z * P4)) + y;
return (x + p);
} else { /* 0.164062500 < |x| < ~pi/4 */
n = ix >> 20;
j = i - 10;
if (hx < 0)
v = -y - (_TBL_sincosx[j] + x);
else
v = y - (_TBL_sincosx[j] - x);
s = v * v;
j <<= 1;
w = _TBL_sincos[j];
z = _TBL_sincos[j+1];
p = v + v * p;
s = w * q + z * p;
return ((hx >= 0)? w + s : -(w + s));
}
}