/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <libipmi.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include "ipmi_impl.h"
/*
* Extracts bits between index h (high, inclusive) and l (low, exclusive) from
* u, which must be an unsigned integer.
*/
#define BITX(u, h, l) (((u) >> (l)) & ((1LU << ((h) - (l) + 1LU)) - 1LU))
/*
* Error handling
*/
int
ipmi_set_error(ipmi_handle_t *ihp, int error, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
ihp->ih_errno = error;
if (fmt == NULL)
ihp->ih_errmsg[0] = '\0';
else
(void) vsnprintf(ihp->ih_errmsg, sizeof (ihp->ih_errmsg),
fmt, ap);
va_end(ap);
return (-1);
}
int
ipmi_errno(ipmi_handle_t *ihp)
{
return (ihp->ih_errno);
}
/* ARGSUSED */
const char *
ipmi_errmsg(ipmi_handle_t *ihp)
{
int i;
const char *str;
str = NULL;
for (i = 0; ipmi_errno_table[i].int_name != NULL; i++) {
if (ipmi_errno_table[i].int_value == ihp->ih_errno) {
str = ipmi_errno_table[i].int_name;
break;
}
}
if (str == NULL && (str = strerror(ihp->ih_errno)) == NULL)
str = "unknown failure";
if (ihp->ih_errmsg[0] == '\0')
return (str);
(void) snprintf(ihp->ih_errbuf, sizeof (ihp->ih_errbuf),
"%s: %s", str, ihp->ih_errmsg);
return (ihp->ih_errbuf);
}
/*
* Memory allocation
*/
void *
ipmi_alloc(ipmi_handle_t *ihp, size_t size)
{
void *ptr;
if ((ptr = malloc(size)) == NULL)
(void) ipmi_set_error(ihp, EIPMI_NOMEM, NULL);
return (ptr);
}
void *
ipmi_zalloc(ipmi_handle_t *ihp, size_t size)
{
void *ptr;
if ((ptr = calloc(size, 1)) == NULL)
(void) ipmi_set_error(ihp, EIPMI_NOMEM, NULL);
return (ptr);
}
char *
ipmi_strdup(ipmi_handle_t *ihp, const char *str)
{
char *ptr;
if ((ptr = strdup(str)) == NULL)
(void) ipmi_set_error(ihp, EIPMI_NOMEM, NULL);
return (ptr);
}
/* ARGSUSED */
void
ipmi_free(ipmi_handle_t *ihp, void *ptr)
{
free(ptr);
}
/*
* Translation between #defines and strings.
*/
void
ipmi_entity_name(uint8_t id, char *buf, size_t len)
{
ipmi_name_trans_t *ntp;
for (ntp = &ipmi_entity_table[0]; ntp->int_name != NULL; ntp++) {
if (ntp->int_value == id) {
(void) strlcpy(buf, ntp->int_name, len);
return;
}
}
(void) snprintf(buf, len, "0x%02x", id);
}
void
ipmi_sensor_type_name(uint8_t type, char *buf, size_t len)
{
ipmi_name_trans_t *ntp;
for (ntp = &ipmi_sensor_type_table[0]; ntp->int_name != NULL; ntp++) {
if (ntp->int_value == type) {
(void) strlcpy(buf, ntp->int_name, len);
return;
}
}
(void) snprintf(buf, len, "0x%02x", type);
}
void
ipmi_sensor_units_name(uint8_t type, char *buf, size_t len)
{
ipmi_name_trans_t *ntp;
for (ntp = &ipmi_units_type_table[0]; ntp->int_name != NULL; ntp++) {
if (ntp->int_value == type) {
(void) strlcpy(buf, ntp->int_name, len);
return;
}
}
(void) snprintf(buf, len, "0x%02x", type);
}
void
ipmi_sensor_reading_name(uint8_t sensor_type, uint8_t reading_type,
char *buf, size_t len)
{
uint8_t val;
ipmi_name_trans_t *ntp;
if (reading_type == IPMI_RT_SPECIFIC) {
val = sensor_type;
ntp = &ipmi_sensor_type_table[0];
} else {
val = reading_type;
ntp = &ipmi_reading_type_table[0];
}
for (; ntp->int_name != NULL; ntp++) {
if (ntp->int_value == val) {
(void) strlcpy(buf, ntp->int_name, len);
return;
}
}
if (reading_type == IPMI_RT_SPECIFIC)
(void) snprintf(buf, len, "%02x/%02x", reading_type,
sensor_type);
else
(void) snprintf(buf, len, "%02x", reading_type);
}
/*
* Converts a BCD decimal value to an integer.
*/
int
ipmi_convert_bcd(int value)
{
int ret = 0;
int digit;
int i;
for (i = 7; i >= 0; i--) {
digit = ((value & (0xf << (i * 4))) >> (i * 4));
ret += digit * 10 * i;
}
return (ret);
}
/*
* See sections 43.15 and 43.16
*
* This is a utility function for decoding the strings that are packed into
* sensor data records. If the type is 6-bit packed ASCII, then it converts
* the string to an 8-bit ASCII string and copies that into the suuplied buffer.
* If it is 8-bit ASCII, it copies the string into the supplied buffer as-is.
*/
void
ipmi_decode_string(uint8_t type, uint8_t len, char *data, char *buf)
{
int i, j = 0, chunks, leftovers;
uint8_t tmp, lo;
if (len == 0) {
*buf = '\0';
return;
}
/*
* If the type is 8-bit ASCII, we can simply copy the string and return
*/
if (type == 0x3) {
(void) strncpy(buf, data, len);
*(buf+len) = '\0';
return;
} else if (type == 0x1 || type == 0x0) {
/*
* Yuck - they either used BCD plus encoding, which we don't
* currently handle, or they used an unspecified encoding type.
* In these cases we'll set buf to an empty string. We still
* need to return the length so that we can get to the next
* record.
*/
*buf = '\0';
return;
}
/*
* Otherwise, it's 6-bit packed ASCII, so we have to convert the
* data first
*/
chunks = len / 3;
leftovers = len % 3;
/*
* First we decode the 6-bit string in chunks of 3 bytes as far as
* possible
*/
for (i = 0; i < chunks; i++) {
tmp = BITX(*(data+j), 5, 0);
*buf++ = (char)(tmp + 32);
lo = BITX(*(data+j++), 7, 6);
tmp = BITX(*(data+j), 3, 0);
tmp = (tmp << 2) | lo;
*buf++ = (char)(tmp + 32);
lo = BITX(*(data+j++), 7, 4);
tmp = BITX(*(data+j), 1, 0);
tmp = (tmp << 4) | lo;
*buf++ = (char)(tmp + 32);
tmp = BITX(*(data+j++), 7, 2);
*buf++ = (char)(tmp + 32);
}
switch (leftovers) {
case 1:
tmp = BITX(*(data+j), 5, 0);
*buf++ = (char)(tmp + 32);
break;
case 2:
tmp = BITX(*(data+j), 5, 0);
*buf++ = (char)(tmp + 32);
lo = BITX(*(data+j++), 7, 6);
tmp = BITX(*(data+j), 3, 0);
tmp = (tmp << 2) | lo;
*buf++ = (char)(tmp + 32);
break;
}
*buf = '\0';
}