/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/systeminfo.h>
#include <exacct.h>
#include <exacct_impl.h>
#include <sys/exacct_impl.h>
#include <fcntl.h>
#include <unistd.h>
#include <strings.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <thread.h>
#include <pthread.h>
#define EXACCT_HDR_STR "exacct"
#define EXACCT_HDR_LEN 7
#define DEFAULT_ENTRIES 4
#define SYSINFO_BUFSIZE 256
static thread_key_t errkey = THR_ONCE_KEY;
static int exacct_errval = 0;
/*
* extended accounting file access routines
*
* exacct_ops.c implements the library-specific routines of libexacct: the
* operations associated with file access and record traversal. (The
* complementary routines which permit hierarchy building and record packing
* are provided in exacct_core.c, which is used by both libexacct and the
* kernel.) At its heart are the unpack, get, and next routines, which
* navigate the packed records produced by ea_pack_object.
*/
/*
* Group stack manipulation code. As groups can be nested, we need a mechanism
* for saving and restoring the current position within the outer groups. This
* state stack is stored within the ea_file_impl_t structure, in the ef_depth,
* ef_ndeep and ef_mxdeep members. On error all these functions set
* exacct_error and return -1.
*/
/*
* If the stack is NULL, create and initialise it.
* If is is not NULL, check it still has space - if not, double its size.
*/
static int stack_check(ea_file_impl_t *f)
{
if (f->ef_depth == NULL) {
if ((f->ef_depth =
ea_alloc(DEFAULT_ENTRIES * sizeof (ea_file_depth_t)))
== NULL) {
/* exacct_errno set above. */
return (-1);
}
bzero(f->ef_depth, DEFAULT_ENTRIES * sizeof (ea_file_depth_t));
f->ef_mxdeep = DEFAULT_ENTRIES;
f->ef_ndeep = -1;
} else if (f->ef_ndeep + 1 >= f->ef_mxdeep) {
ea_file_depth_t *newstack;
if ((newstack =
ea_alloc(f->ef_mxdeep * 2 * sizeof (ea_file_depth_t)))
== NULL) {
/* exacct_errno set above. */
return (-1);
}
bcopy(f->ef_depth, newstack,
f->ef_mxdeep * sizeof (ea_file_depth_t));
bzero(newstack + f->ef_mxdeep,
f->ef_mxdeep * sizeof (ea_file_depth_t));
ea_free(f->ef_depth, f->ef_mxdeep * sizeof (ea_file_depth_t));
f->ef_mxdeep *= 2;
f->ef_depth = newstack;
}
return (0);
}
/*
* Free a stack.
*/
static void stack_free(ea_file_impl_t *f)
{
if (f->ef_depth != NULL) {
ea_free(f->ef_depth, f->ef_mxdeep * sizeof (ea_file_depth_t));
f->ef_depth = NULL;
}
f->ef_mxdeep = 0;
f->ef_ndeep = -1;
}
/*
* Add a new group onto the stack, pushing down one frame. nobj is the number
* of items in the group. We have to read this many objects before popping
* back up to an enclosing group - see next_object() and previous_object()
* below.
*/
static int stack_new_group(ea_file_impl_t *f, int nobjs)
{
if (stack_check(f) != 0) {
stack_free(f);
/* exacct_errno set above. */
return (-1);
}
f->ef_ndeep++;
f->ef_depth[f->ef_ndeep].efd_obj = 0;
f->ef_depth[f->ef_ndeep].efd_nobjs = nobjs;
return (0);
}
/*
* Step forwards along the objects within the current group. If we are still
* within a group, return 1. If we have reached the end of the current group,
* unwind the stack back up to the nearest enclosing group that still has
* unprocessed objects and return 0. On EOF or error, set exacct_error
* accordingly and return -1. xread() is required so that this function can
* work either on files or memory buffers.
*/
static int
stack_next_object(
ea_file_impl_t *f,
size_t (*xread)(ea_file_impl_t *, void *, size_t))
{
uint32_t scratch32;
/*
* If the stack is empty we are not in a group, so there will be no
* stack manipulation to do and no large backskips to step over.
*/
if (f->ef_ndeep < 0) {
return (0);
}
/*
* Otherwise we must be in a group. If there are objects left in the
* group, move onto the next one in the group and return.
*/
if (++f->ef_depth[f->ef_ndeep].efd_obj <
f->ef_depth[f->ef_ndeep].efd_nobjs) {
return (1);
/*
* If we are at the end of a group we need to move backwards up the
* stack, consuming the large backskips as we go, until we find a group
* that still contains unprocessed items, or until we have unwound back
* off the bottom of the stack (i.e. out of all the groups).
*/
} else {
while (f->ef_ndeep >= 0 &&
++f->ef_depth[f->ef_ndeep].efd_obj >=
f->ef_depth[f->ef_ndeep].efd_nobjs) {
/* Read the large backskip. */
f->ef_ndeep--;
if (xread(f, &scratch32, sizeof (scratch32)) !=
sizeof (scratch32)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (-1);
}
}
return (0);
}
}
/*
* Step backwards along the objects within the current group. If we are still
* within a group, return 1. If we have reached the end of the current group,
* unwind the stack back up to the enclosing group and return 0.
*/
static int stack_previous_object(ea_file_impl_t *f)
{
/*
* If the stack is empty we are not in a group, so there will be no
* stack manipulation to do.
*/
if (f->ef_ndeep < 0) {
return (0);
}
/*
* Otherwise we must be in a group. If there are objects left in the
* group, move onto the previous one in the group and return.
*/
if (--f->ef_depth[f->ef_ndeep].efd_obj >= 0) {
return (1);
/* Otherwise, step one level back up the group stack. */
} else {
f->ef_ndeep--;
return (0);
}
}
/*
* read/seek/pos virtualisation wrappers. Because objects can come either from
* a file or memory, the read/seek/pos functions need to be wrapped to allow
* them to be used on either a file handle or a memory buffer.
*/
static size_t
fread_wrapper(ea_file_impl_t *f, void *buf, size_t sz)
{
size_t retval;
retval = fread(buf, 1, sz, f->ef_fp);
if (retval == 0 && ferror(f->ef_fp)) {
retval = (size_t)-1;
}
return (retval);
}
static size_t
bufread_wrapper(ea_file_impl_t *f, void *buf, size_t sz)
{
if (f->ef_bufsize == 0 && sz != 0)
return ((size_t)0);
if (f->ef_bufsize < sz)
sz = f->ef_bufsize;
bcopy(f->ef_buf, buf, sz);
f->ef_buf += sz;
f->ef_bufsize -= sz;
return (sz);
}
static off_t
fseek_wrapper(ea_file_impl_t *f, off_t adv)
{
return (fseeko(f->ef_fp, adv, SEEK_CUR));
}
static off_t
bufseek_wrapper(ea_file_impl_t *f, off_t adv)
{
if (f->ef_bufsize == 0 && adv != 0)
return (-1);
if (f->ef_bufsize < adv)
adv = f->ef_bufsize;
f->ef_buf += adv;
f->ef_bufsize -= adv;
return (0);
}
/*ARGSUSED*/
static void *
fpos_wrapper(ea_file_impl_t *f)
{
return (NULL);
}
static void *
bufpos_wrapper(ea_file_impl_t *f)
{
return (f->ef_buf);
}
/*
* Public API
*/
void
exacct_seterr(int errval)
{
if (thr_main()) {
exacct_errval = errval;
return;
}
(void) thr_keycreate_once(&errkey, 0);
(void) thr_setspecific(errkey, (void *)(intptr_t)errval);
}
int
ea_error(void)
{
if (thr_main())
return (exacct_errval);
if (errkey == THR_ONCE_KEY)
return (EXR_OK);
return ((int)(uintptr_t)pthread_getspecific(errkey));
}
/*
* ea_next_object(), ea_previous_object(), and ea_get_object() are written such
* that the file cursor is always located on an object boundary.
*/
ea_object_type_t
ea_next_object(ea_file_t *ef, ea_object_t *obj)
{
ea_file_impl_t *f = (ea_file_impl_t *)ef;
ea_size_t len;
off_t backup;
size_t ret;
/*
* If ef_advance is zero, then we are executing after a get or previous
* operation and do not move to the next or previous object. Otherwise,
* advance to the next available item. Note that ef_advance does NOT
* include the large backskip at the end of a object, this being dealt
* with by the depth stack handling in stack_next_object.
*/
if (f->ef_advance != 0) {
if (fseeko(f->ef_fp, (off_t)f->ef_advance, SEEK_CUR) == -1) {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
return (EO_ERROR);
}
if (stack_next_object(f, fread_wrapper) == -1) {
/* exacct_error set above. */
return (EO_ERROR);
}
}
f->ef_advance = 0;
/* Read the catalog tag */
ret = fread(&obj->eo_catalog, 1, sizeof (ea_catalog_t), f->ef_fp);
if (ret == 0) {
EXACCT_SET_ERR(EXR_EOF);
return (EO_ERROR);
} else if (ret < sizeof (ea_catalog_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order32(&obj->eo_catalog);
backup = sizeof (ea_catalog_t);
obj->eo_type = EO_ITEM;
/* Figure out the offset to just before the large backskip. */
switch (obj->eo_catalog & EXT_TYPE_MASK) {
case EXT_GROUP:
obj->eo_type = EO_GROUP;
f->ef_advance = sizeof (uint32_t);
/* FALLTHROUGH */
case EXT_STRING:
case EXT_EXACCT_OBJECT:
case EXT_RAW:
if (fread(&len, 1, sizeof (ea_size_t), f->ef_fp)
< sizeof (ea_size_t)) {
obj->eo_type = EO_NONE;
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order64(&len);
/* Note: len already includes the size of the backskip. */
f->ef_advance += sizeof (ea_catalog_t) +
sizeof (ea_size_t) + len;
backup += sizeof (ea_size_t);
break;
case EXT_UINT8:
f->ef_advance = sizeof (ea_catalog_t) + sizeof (uint8_t) +
sizeof (uint32_t);
break;
case EXT_UINT16:
f->ef_advance = sizeof (ea_catalog_t) + sizeof (uint16_t) +
sizeof (uint32_t);
break;
case EXT_UINT32:
f->ef_advance = sizeof (ea_catalog_t) + sizeof (uint32_t) +
sizeof (uint32_t);
break;
case EXT_UINT64:
f->ef_advance = sizeof (ea_catalog_t) + sizeof (uint64_t) +
sizeof (uint32_t);
break;
case EXT_DOUBLE:
f->ef_advance = sizeof (ea_catalog_t) + sizeof (double) +
sizeof (uint32_t);
break;
default:
obj->eo_type = EO_NONE;
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
/* Reposition to the start of this object. */
if (fseeko(f->ef_fp, -backup, SEEK_CUR) == -1) {
obj->eo_type = EO_NONE;
f->ef_advance = 0;
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
return (EO_ERROR);
}
EXACCT_SET_ERR(EXR_OK);
return (obj->eo_type);
}
ea_object_type_t
ea_previous_object(ea_file_t *ef, ea_object_t *obj)
{
ea_file_impl_t *f = (ea_file_impl_t *)ef;
uint32_t bkskip;
int r;
if (fseeko(f->ef_fp, -((off_t)sizeof (uint32_t)), SEEK_CUR) == -1) {
if (errno == EINVAL) {
EXACCT_SET_ERR(EXR_EOF);
} else {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
}
return (EO_ERROR);
}
if ((r = fread(&bkskip, 1, sizeof (uint32_t), f->ef_fp)) !=
sizeof (uint32_t)) {
if (r == 0) {
EXACCT_SET_ERR(EXR_EOF);
} else {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
}
return (EO_ERROR);
}
exacct_order32(&bkskip);
/*
* A backskip of 0 means that the current record can't be skipped over.
* This will be true for the header record, and for records longer than
* 2^32.
*/
if (bkskip == 0) {
EXACCT_SET_ERR(EXR_EOF);
return (EO_ERROR);
}
(void) stack_previous_object(f);
if (fseeko(f->ef_fp, -((off_t)bkskip), SEEK_CUR) == -1) {
if (errno == EINVAL) {
/*
* If we attempted to seek past BOF, then the file was
* corrupt, as we can only trust the backskip we read.
*/
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
} else {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
}
return (EO_ERROR);
}
f->ef_advance = 0;
return (ea_next_object(ef, obj));
}
/*
* xget_object() contains the logic for extracting an individual object from a
* packed buffer, which it consumes using xread() and xseek() operations
* provided by the caller. flags may be set to either EUP_ALLOC, in which case
* new memory is allocated for the variable length items unpacked, or
* EUP_NOALLOC, in which case item data pointer indicate locations within the
* buffer, using the provided xpos() function. EUP_NOALLOC is generally not
* useful for callers representing interaction with actual file streams, and
* should not be specified thereby.
*/
static ea_object_type_t
xget_object(
ea_file_impl_t *f,
ea_object_t *obj,
size_t (*xread)(ea_file_impl_t *, void *, size_t),
off_t (*xseek)(ea_file_impl_t *, off_t),
void *(*xpos)(ea_file_impl_t *),
int flags)
{
ea_size_t sz;
uint32_t gp_backskip, scratch32;
void *buf;
size_t r;
/* Read the catalog tag. */
if ((r = xread(f, &obj->eo_catalog, sizeof (ea_catalog_t))) == 0) {
EXACCT_SET_ERR(EXR_EOF);
return (EO_ERROR);
} else if (r != sizeof (ea_catalog_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order32(&obj->eo_catalog);
/*
* If this is a record group, we treat it separately: only record
* groups cause us to allocate new depth frames.
*/
if ((obj->eo_catalog & EXT_TYPE_MASK) == EXT_GROUP) {
obj->eo_type = EO_GROUP;
/* Read size field, and number of objects. */
if (xread(f, &sz, sizeof (ea_size_t)) != sizeof (ea_size_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order64(&sz);
if (xread(f, &obj->eo_group.eg_nobjs, sizeof (uint32_t)) !=
sizeof (uint32_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order32(&obj->eo_group.eg_nobjs);
/* Now read the group's small backskip. */
if (xread(f, &gp_backskip, sizeof (uint32_t)) !=
sizeof (uint32_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
/* Push a new depth stack frame. */
if (stack_new_group(f, obj->eo_group.eg_nobjs) != 0) {
/* exacct_error set above */
return (EO_ERROR);
}
/*
* If the group has no items, we now need to position to the
* end of the group, because there will be no subsequent calls
* to process the group, it being empty.
*/
if (obj->eo_group.eg_nobjs == 0) {
if (stack_next_object(f, xread) == -1) {
/* exacct_error set above. */
return (EO_ERROR);
}
}
f->ef_advance = 0;
EXACCT_SET_ERR(EXR_OK);
return (obj->eo_type);
}
/*
* Otherwise we are reading an item.
*/
obj->eo_type = EO_ITEM;
switch (obj->eo_catalog & EXT_TYPE_MASK) {
case EXT_STRING:
case EXT_EXACCT_OBJECT:
case EXT_RAW:
if (xread(f, &sz, sizeof (ea_size_t)) != sizeof (ea_size_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order64(&sz);
/*
* Subtract backskip value from size.
*/
sz -= sizeof (uint32_t);
if ((flags & EUP_ALLOC_MASK) == EUP_NOALLOC) {
buf = xpos(f);
if (xseek(f, sz) == -1) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
} else {
if ((buf = ea_alloc(sz)) == NULL)
/* exacct_error set above. */
return (EO_ERROR);
if (xread(f, buf, sz) != sz) {
ea_free(buf, sz);
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
}
obj->eo_item.ei_string = buf;
/*
* Maintain our consistent convention that string lengths
* include the terminating NULL character.
*/
obj->eo_item.ei_size = sz;
break;
case EXT_UINT8:
if (xread(f, &obj->eo_item.ei_uint8, sizeof (uint8_t)) !=
sizeof (uint8_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
obj->eo_item.ei_size = sizeof (uint8_t);
break;
case EXT_UINT16:
if (xread(f, &obj->eo_item.ei_uint16, sizeof (uint16_t)) !=
sizeof (uint16_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order16(&obj->eo_item.ei_uint16);
obj->eo_item.ei_size = sizeof (uint16_t);
break;
case EXT_UINT32:
if (xread(f, &obj->eo_item.ei_uint32, sizeof (uint32_t)) !=
sizeof (uint32_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order32(&obj->eo_item.ei_uint32);
obj->eo_item.ei_size = sizeof (uint32_t);
break;
case EXT_UINT64:
if (xread(f, &obj->eo_item.ei_uint64, sizeof (uint64_t)) !=
sizeof (uint64_t)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order64(&obj->eo_item.ei_uint64);
obj->eo_item.ei_size = sizeof (uint64_t);
break;
case EXT_DOUBLE:
if (xread(f, &obj->eo_item.ei_double, sizeof (double)) !=
sizeof (double)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
exacct_order64((uint64_t *)&obj->eo_item.ei_double);
obj->eo_item.ei_size = sizeof (double);
break;
default:
/*
* We've encountered an unknown type value. Flag the error and
* exit.
*/
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
/*
* Advance over current large backskip value,
* and position at the start of the next object.
*/
if (xread(f, &scratch32, sizeof (scratch32)) != sizeof (scratch32)) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (EO_ERROR);
}
if (stack_next_object(f, xread) == -1) {
/* exacct_error set above. */
return (EO_ERROR);
}
f->ef_advance = 0;
EXACCT_SET_ERR(EXR_OK);
return (obj->eo_type);
}
ea_object_type_t
ea_get_object(ea_file_t *ef, ea_object_t *obj)
{
obj->eo_next = NULL;
return (xget_object((ea_file_impl_t *)ef, obj, fread_wrapper,
fseek_wrapper, fpos_wrapper, EUP_ALLOC));
}
/*
* unpack_group() recursively unpacks record groups from the buffer tucked
* within the passed ea_file, and attaches them to grp.
*/
static int
unpack_group(ea_file_impl_t *f, ea_object_t *grp, int flag)
{
ea_object_t *obj;
uint_t nobjs = grp->eo_group.eg_nobjs;
int i;
/*
* Set the group's object count to zero, as we will rebuild it via the
* individual object attachments.
*/
grp->eo_group.eg_nobjs = 0;
grp->eo_group.eg_objs = NULL;
for (i = 0; i < nobjs; i++) {
if ((obj = ea_alloc(sizeof (ea_object_t))) == NULL) {
/* exacct_errno set above. */
return (-1);
}
obj->eo_next = NULL;
if (xget_object(f, obj, bufread_wrapper, bufseek_wrapper,
bufpos_wrapper, flag) == -1) {
ea_free(obj, sizeof (ea_object_t));
/* exacct_errno set above. */
return (-1);
}
(void) ea_attach_to_group(grp, obj);
if (obj->eo_type == EO_GROUP &&
unpack_group(f, obj, flag) == -1) {
/* exacct_errno set above. */
return (-1);
}
}
if (nobjs != grp->eo_group.eg_nobjs) {
EXACCT_SET_ERR(EXR_CORRUPT_FILE);
return (-1);
}
EXACCT_SET_ERR(EXR_OK);
return (0);
}
/*
* ea_unpack_object() can be considered as a finite series of get operations on
* a given buffer, that rebuilds the hierarchy of objects compacted by a pack
* operation. Because there is complex state associated with the group depth,
* ea_unpack_object() must complete as one operation on a given buffer.
*/
ea_object_type_t
ea_unpack_object(ea_object_t **objp, int flag, void *buf, size_t bufsize)
{
ea_file_impl_t fake;
ea_object_t *obj;
ea_object_type_t first_obj_type;
*objp = NULL;
if (buf == NULL) {
EXACCT_SET_ERR(EXR_INVALID_BUF);
return (EO_ERROR);
}
/* Set up the structures needed for unpacking */
bzero(&fake, sizeof (ea_file_impl_t));
if (stack_check(&fake) == -1) {
/* exacct_errno set above. */
return (EO_ERROR);
}
fake.ef_buf = buf;
fake.ef_bufsize = bufsize;
/* Unpack the first object in the buffer - this should succeed. */
if ((obj = ea_alloc(sizeof (ea_object_t))) == NULL) {
stack_free(&fake);
/* exacct_errno set above. */
return (EO_ERROR);
}
obj->eo_next = NULL;
if ((first_obj_type = xget_object(&fake, obj, bufread_wrapper,
bufseek_wrapper, bufpos_wrapper, flag)) == -1) {
stack_free(&fake);
ea_free(obj, sizeof (ea_object_t));
/* exacct_errno set above. */
return (EO_ERROR);
}
if (obj->eo_type == EO_GROUP && unpack_group(&fake, obj, flag) == -1) {
stack_free(&fake);
ea_free_object(obj, flag);
/* exacct_errno set above. */
return (EO_ERROR);
}
*objp = obj;
/*
* There may be other objects in the buffer - if so, chain them onto
* the end of the list. We have reached the end of the list when
* xget_object() returns -1 with exacct_error set to EXR_EOF.
*/
for (;;) {
if ((obj = ea_alloc(sizeof (ea_object_t))) == NULL) {
stack_free(&fake);
ea_free_object(*objp, flag);
*objp = NULL;
/* exacct_errno set above. */
return (EO_ERROR);
}
obj->eo_next = NULL;
if (xget_object(&fake, obj, bufread_wrapper, bufseek_wrapper,
bufpos_wrapper, flag) == -1) {
stack_free(&fake);
ea_free(obj, sizeof (ea_object_t));
if (ea_error() == EXR_EOF) {
EXACCT_SET_ERR(EXR_OK);
return (first_obj_type);
} else {
ea_free_object(*objp, flag);
*objp = NULL;
/* exacct_error set above. */
return (EO_ERROR);
}
}
(void) ea_attach_to_object(*objp, obj);
if (obj->eo_type == EO_GROUP &&
unpack_group(&fake, obj, flag) == -1) {
stack_free(&fake);
ea_free(obj, sizeof (ea_object_t));
ea_free_object(*objp, flag);
*objp = NULL;
/* exacct_errno set above. */
return (EO_ERROR);
}
}
}
int
ea_write_object(ea_file_t *ef, ea_object_t *obj)
{
ea_size_t sz;
void *buf;
ea_file_impl_t *f = (ea_file_impl_t *)ef;
/*
* If we weren't opened for writing, this call fails.
*/
if ((f->ef_oflags & O_RDWR) == 0 &&
(f->ef_oflags & O_WRONLY) == 0) {
EXACCT_SET_ERR(EXR_NOTSUPP);
return (-1);
}
/* Pack with a null buffer to get the size. */
sz = ea_pack_object(obj, NULL, 0);
if (sz == -1 || (buf = ea_alloc(sz)) == NULL) {
/* exacct_error set above. */
return (-1);
}
if (ea_pack_object(obj, buf, sz) == (size_t)-1) {
ea_free(buf, sz);
/* exacct_error set above. */
return (-1);
}
if (fwrite(buf, sizeof (char), sz, f->ef_fp) != sz) {
ea_free(buf, sz);
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
return (-1);
}
ea_free(buf, sz);
EXACCT_SET_ERR(EXR_OK);
return (0);
}
/*
* validate_header() must be kept in sync with write_header(), given below, and
* exacct_create_header(), in uts/common/os/exacct.c.
*/
static int
validate_header(ea_file_t *ef, const char *creator)
{
ea_object_t hdr_grp;
ea_object_t scratch_obj;
int error = EXR_OK;
int saw_creator = 0;
int saw_version = 0;
int saw_type = 0;
int saw_hostname = 0;
int n;
ea_file_impl_t *f = (ea_file_impl_t *)ef;
bzero(&hdr_grp, sizeof (ea_object_t));
if (ea_get_object(ef, &hdr_grp) != EO_GROUP) {
error = ea_error();
goto error_case;
}
if (hdr_grp.eo_catalog !=
(EXT_GROUP | EXC_DEFAULT | EXD_GROUP_HEADER)) {
error = EXR_CORRUPT_FILE;
goto error_case;
}
for (n = 0; n < hdr_grp.eo_group.eg_nobjs; n++) {
bzero(&scratch_obj, sizeof (ea_object_t));
if (ea_get_object(ef, &scratch_obj) == -1) {
error = ea_error();
goto error_case;
}
switch (scratch_obj.eo_catalog) {
case EXT_UINT32 | EXC_DEFAULT | EXD_VERSION:
if (scratch_obj.eo_item.ei_uint32 != EXACCT_VERSION) {
error = EXR_UNKN_VERSION;
goto error_case;
}
saw_version++;
break;
case EXT_STRING | EXC_DEFAULT | EXD_FILETYPE:
if (strcmp(scratch_obj.eo_item.ei_string,
EXACCT_HDR_STR) != 0) {
error = EXR_CORRUPT_FILE;
goto error_case;
}
saw_type++;
break;
case EXT_STRING | EXC_DEFAULT | EXD_CREATOR:
f->ef_creator =
ea_strdup(scratch_obj.eo_item.ei_string);
if (f->ef_creator == NULL) {
error = ea_error();
goto error_case;
}
saw_creator++;
break;
/* The hostname is an optional field. */
case EXT_STRING | EXC_DEFAULT | EXD_HOSTNAME:
f->ef_hostname =
ea_strdup(scratch_obj.eo_item.ei_string);
if (f->ef_hostname == NULL) {
error = ea_error();
goto error_case;
}
saw_hostname++;
break;
default:
/* ignore unrecognized header members */
break;
}
(void) ea_free_item(&scratch_obj, EUP_ALLOC);
}
if (saw_version && saw_type && saw_creator) {
if (creator && strcmp(f->ef_creator, creator) != 0) {
error = EXR_NO_CREATOR;
goto error_case;
}
EXACCT_SET_ERR(EXR_OK);
return (0);
}
error_case:
(void) ea_free_item(&scratch_obj, EUP_ALLOC);
if (saw_hostname)
ea_strfree(f->ef_hostname);
if (saw_creator)
ea_strfree(f->ef_creator);
EXACCT_SET_ERR(error);
return (-1);
}
static int
write_header(ea_file_t *ef)
{
ea_object_t hdr_grp;
ea_object_t vers_obj;
ea_object_t creator_obj;
ea_object_t filetype_obj;
ea_object_t hostname_obj;
uint32_t bskip;
const uint32_t version = EXACCT_VERSION;
ea_file_impl_t *f = (ea_file_impl_t *)ef;
void *buf;
size_t bufsize;
char hostbuf[SYSINFO_BUFSIZE];
int error = EXR_OK;
bzero(&hdr_grp, sizeof (ea_object_t));
bzero(&vers_obj, sizeof (ea_object_t));
bzero(&creator_obj, sizeof (ea_object_t));
bzero(&filetype_obj, sizeof (ea_object_t));
bzero(&hostname_obj, sizeof (ea_object_t));
bzero(hostbuf, SYSINFO_BUFSIZE);
(void) sysinfo(SI_HOSTNAME, hostbuf, SYSINFO_BUFSIZE);
if (ea_set_item(&vers_obj, EXT_UINT32 | EXC_DEFAULT | EXD_VERSION,
(void *)&version, 0) == -1 ||
ea_set_item(&creator_obj, EXT_STRING | EXC_DEFAULT | EXD_CREATOR,
f->ef_creator, strlen(f->ef_creator)) == -1 ||
ea_set_item(&filetype_obj, EXT_STRING | EXC_DEFAULT | EXD_FILETYPE,
EXACCT_HDR_STR, strlen(EXACCT_HDR_STR)) == -1 ||
ea_set_item(&hostname_obj, EXT_STRING | EXC_DEFAULT | EXD_HOSTNAME,
hostbuf, strlen(hostbuf)) == -1) {
error = ea_error();
goto cleanup1;
}
(void) ea_set_group(&hdr_grp,
EXT_GROUP | EXC_DEFAULT | EXD_GROUP_HEADER);
(void) ea_attach_to_group(&hdr_grp, &vers_obj);
(void) ea_attach_to_group(&hdr_grp, &creator_obj);
(void) ea_attach_to_group(&hdr_grp, &filetype_obj);
(void) ea_attach_to_group(&hdr_grp, &hostname_obj);
/* Get the required size by passing a null buffer. */
bufsize = ea_pack_object(&hdr_grp, NULL, 0);
if ((buf = ea_alloc(bufsize)) == NULL) {
error = ea_error();
goto cleanup1;
}
if (ea_pack_object(&hdr_grp, buf, bufsize) == (size_t)-1) {
error = ea_error();
goto cleanup2;
}
/*
* To prevent reading the header when reading the file backwards,
* set the large backskip of the header group to 0 (last 4 bytes).
*/
bskip = 0;
exacct_order32(&bskip);
bcopy(&bskip, (char *)buf + bufsize - sizeof (bskip),
sizeof (bskip));
if (fwrite(buf, sizeof (char), bufsize, f->ef_fp) != bufsize ||
fflush(f->ef_fp) == EOF) {
error = EXR_SYSCALL_FAIL;
goto cleanup2;
}
cleanup2:
ea_free(buf, bufsize);
cleanup1:
(void) ea_free_item(&vers_obj, EUP_ALLOC);
(void) ea_free_item(&creator_obj, EUP_ALLOC);
(void) ea_free_item(&filetype_obj, EUP_ALLOC);
(void) ea_free_item(&hostname_obj, EUP_ALLOC);
EXACCT_SET_ERR(error);
return (error == EXR_OK ? 0 : -1);
}
const char *
ea_get_creator(ea_file_t *ef)
{
return ((const char *)((ea_file_impl_t *)ef)->ef_creator);
}
const char *
ea_get_hostname(ea_file_t *ef)
{
return ((const char *)((ea_file_impl_t *)ef)->ef_hostname);
}
int
ea_fdopen(ea_file_t *ef, int fd, const char *creator, int aflags, int oflags)
{
ea_file_impl_t *f = (ea_file_impl_t *)ef;
bzero(f, sizeof (*f));
f->ef_oflags = oflags;
f->ef_fd = fd;
/* Initialize depth stack. */
if (stack_check(f) == -1) {
/* exacct_error set above. */
goto error1;
}
/*
* 1. If we are O_CREAT, then we will need to write a header
* after opening name.
*/
if (oflags & O_CREAT) {
if (creator == NULL) {
EXACCT_SET_ERR(EXR_NO_CREATOR);
goto error2;
}
if ((f->ef_creator = ea_strdup(creator)) == NULL) {
/* exacct_error set above. */
goto error2;
}
if ((f->ef_fp = fdopen(f->ef_fd, "w")) == NULL) {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
goto error3;
}
if (write_header(ef) == -1) {
/* exacct_error set above. */
goto error3;
}
/*
* 2. If we are not O_CREAT, but are RDWR or WRONLY, we need to
* seek to EOF so that appends will succeed.
*/
} else if (oflags & O_RDWR || oflags & O_WRONLY) {
if ((f->ef_fp = fdopen(f->ef_fd, "r+")) == NULL) {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
goto error2;
}
if ((aflags & EO_VALIDATE_MSK) == EO_VALID_HDR) {
if (validate_header(ef, creator) < 0) {
/* exacct_error set above. */
goto error2;
}
}
if (fseeko(f->ef_fp, 0, SEEK_END) == -1) {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
goto error2;
}
/*
* 3. This is an undefined manner for opening an exacct file.
*/
} else if (oflags != O_RDONLY) {
EXACCT_SET_ERR(EXR_NOTSUPP);
goto error2;
/*
* 4a. If we are RDONLY, then we are in a position such that
* either a ea_get_object or an ea_next_object will succeed. If
* aflags was set to EO_TAIL, seek to the end of the file.
*/
} else {
if ((f->ef_fp = fdopen(f->ef_fd, "r")) == NULL) {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
goto error2;
}
if ((aflags & EO_VALIDATE_MSK) == EO_VALID_HDR) {
if (validate_header(ef, creator) == -1) {
/* exacct_error set above. */
goto error2;
}
}
/*
* 4b. Handle the "open at end" option, for consumers who want
* to go backwards through the file (i.e. lastcomm).
*/
if ((aflags & EO_POSN_MSK) == EO_TAIL) {
if (fseeko(f->ef_fp, 0, SEEK_END) < 0) {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
goto error2;
}
}
}
EXACCT_SET_ERR(EXR_OK);
return (0);
/* Error cleanup code */
error3:
ea_strfree(f->ef_creator);
error2:
stack_free(f);
error1:
bzero(f, sizeof (*f));
return (-1);
}
int
ea_open(ea_file_t *ef, const char *name, const char *creator,
int aflags, int oflags, mode_t mode)
{
int fd;
/*
* If overwriting an existing file, make sure to truncate it
* to prevent the file being created corrupt.
*/
if (oflags & O_CREAT)
oflags |= O_TRUNC;
if ((fd = open(name, oflags, mode)) == -1) {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
return (-1);
}
if (ea_fdopen(ef, fd, creator, aflags, oflags) == -1) {
(void) close(fd);
return (-1);
}
return (0);
}
/*
* ea_close() performs all appropriate close operations on the open exacct file,
* including releasing any memory allocated while parsing the file.
*/
int
ea_close(ea_file_t *ef)
{
ea_file_impl_t *f = (ea_file_impl_t *)ef;
if (f->ef_creator != NULL)
ea_strfree(f->ef_creator);
if (f->ef_hostname != NULL)
ea_strfree(f->ef_hostname);
ea_free(f->ef_depth, f->ef_mxdeep * sizeof (ea_file_depth_t));
if (fclose(f->ef_fp)) {
EXACCT_SET_ERR(EXR_SYSCALL_FAIL);
return (-1);
}
EXACCT_SET_ERR(EXR_OK);
return (0);
}
/*
* Empty the input buffer and clear any underlying EOF or error bits set on the
* underlying FILE. This can be used by any library clients who wish to handle
* files that are in motion or who wish to seek the underlying file descriptor.
*/
void
ea_clear(ea_file_t *ef)
{
ea_file_impl_t *f = (ea_file_impl_t *)ef;
(void) fflush(f->ef_fp);
clearerr(f->ef_fp);
}
/*
* Copy an ea_object_t. Note that in the case of a group, just the group
* object will be copied, and not its list of members. To recursively copy
* a group or a list of items use ea_copy_tree().
*/
ea_object_t *
ea_copy_object(const ea_object_t *src)
{
ea_object_t *dst;
/* Allocate a new object and copy to it. */
if ((dst = ea_alloc(sizeof (ea_object_t))) == NULL) {
return (NULL);
}
bcopy(src, dst, sizeof (ea_object_t));
dst->eo_next = NULL;
switch (src->eo_type) {
case EO_GROUP:
dst->eo_group.eg_nobjs = 0;
dst->eo_group.eg_objs = NULL;
break;
case EO_ITEM:
/* Items containing pointers need special treatment. */
switch (src->eo_catalog & EXT_TYPE_MASK) {
case EXT_STRING:
if (src->eo_item.ei_string != NULL) {
dst->eo_item.ei_string =
ea_strdup(src->eo_item.ei_string);
if (dst->eo_item.ei_string == NULL) {
ea_free_object(dst, EUP_ALLOC);
return (NULL);
}
}
break;
case EXT_RAW:
if (src->eo_item.ei_raw != NULL) {
dst->eo_item.ei_raw =
ea_alloc(src->eo_item.ei_size);
if (dst->eo_item.ei_raw == NULL) {
ea_free_object(dst, EUP_ALLOC);
return (NULL);
}
bcopy(src->eo_item.ei_raw, dst->eo_item.ei_raw,
(size_t)src->eo_item.ei_size);
}
break;
case EXT_EXACCT_OBJECT:
if (src->eo_item.ei_object != NULL) {
dst->eo_item.ei_object =
ea_alloc(src->eo_item.ei_size);
if (dst->eo_item.ei_object == NULL) {
ea_free_object(dst, EUP_ALLOC);
return (NULL);
}
bcopy(src->eo_item.ei_raw, dst->eo_item.ei_raw,
(size_t)src->eo_item.ei_size);
}
break;
default:
/* Other item types require no special handling. */
break;
}
break;
default:
ea_free_object(dst, EUP_ALLOC);
EXACCT_SET_ERR(EXR_INVALID_OBJ);
return (NULL);
}
EXACCT_SET_ERR(EXR_OK);
return (dst);
}
/*
* Recursively copy a list of ea_object_t. All the elements in the eo_next
* list will be copied, and any group objects will be recursively copied.
*/
ea_object_t *
ea_copy_object_tree(const ea_object_t *src)
{
ea_object_t *ret_obj, *dst, *last;
for (ret_obj = last = NULL; src != NULL;
last = dst, src = src->eo_next) {
/* Allocate a new object and copy to it. */
if ((dst = ea_copy_object(src)) == NULL) {
ea_free_object(ret_obj, EUP_ALLOC);
return (NULL);
}
/* Groups need the object list copying. */
if (src->eo_type == EO_GROUP) {
dst->eo_group.eg_objs =
ea_copy_object_tree(src->eo_group.eg_objs);
if (dst->eo_group.eg_objs == NULL) {
ea_free_object(ret_obj, EUP_ALLOC);
return (NULL);
}
dst->eo_group.eg_nobjs = src->eo_group.eg_nobjs;
}
/* Remember the list head the first time round. */
if (ret_obj == NULL) {
ret_obj = dst;
}
/* Link together if not at the list head. */
if (last != NULL) {
last->eo_next = dst;
}
}
EXACCT_SET_ERR(EXR_OK);
return (ret_obj);
}
/*
* Read in the specified number of objects, returning the same data
* structure that would have originally been passed to ea_write().
*/
ea_object_t *
ea_get_object_tree(ea_file_t *ef, uint32_t nobj)
{
ea_object_t *first_obj, *prev_obj, *obj;
first_obj = prev_obj = NULL;
while (nobj--) {
/* Allocate space for the new object. */
obj = ea_alloc(sizeof (ea_object_t));
bzero(obj, sizeof (*obj));
/* Read it in. */
if (ea_get_object(ef, obj) == -1) {
ea_free(obj, sizeof (ea_object_t));
if (first_obj != NULL) {
ea_free_object(first_obj, EUP_ALLOC);
}
return (NULL);
}
/* Link it into the list. */
if (first_obj == NULL) {
first_obj = obj;
}
if (prev_obj != NULL) {
prev_obj->eo_next = obj;
}
prev_obj = obj;
/* Recurse if the object is a group with contents. */
if (obj->eo_type == EO_GROUP && obj->eo_group.eg_nobjs > 0) {
if ((obj->eo_group.eg_objs = ea_get_object_tree(ef,
obj->eo_group.eg_nobjs)) == NULL) {
/* exacct_error set above. */
ea_free_object(first_obj, EUP_ALLOC);
return (NULL);
}
}
}
EXACCT_SET_ERR(EXR_OK);
return (first_obj);
}