/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
*/
#include <sys/sysmacros.h>
#include <strings.h>
#include <unistd.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <alloca.h>
#include <assert.h>
#include <libgen.h>
#include <limits.h>
#include <dt_impl.h>
static const struct {
size_t dtps_offset;
size_t dtps_len;
} dtrace_probespecs[] = {
{ offsetof(dtrace_probedesc_t, dtpd_provider), DTRACE_PROVNAMELEN },
{ offsetof(dtrace_probedesc_t, dtpd_mod), DTRACE_MODNAMELEN },
{ offsetof(dtrace_probedesc_t, dtpd_func), DTRACE_FUNCNAMELEN },
{ offsetof(dtrace_probedesc_t, dtpd_name), DTRACE_NAMELEN }
};
int
dtrace_xstr2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec,
const char *s, int argc, char *const argv[], dtrace_probedesc_t *pdp)
{
size_t off, len, vlen, wlen;
const char *p, *q, *v, *w;
char buf[32]; /* for id_t as %d (see below) */
if (spec < DTRACE_PROBESPEC_NONE || spec > DTRACE_PROBESPEC_NAME)
return (dt_set_errno(dtp, EINVAL));
bzero(pdp, sizeof (dtrace_probedesc_t));
p = s + strlen(s) - 1;
do {
for (len = 0; p >= s && *p != ':'; len++)
p--; /* move backward until we find a delimiter */
q = p + 1;
vlen = 0;
w = NULL;
wlen = 0;
if ((v = strchr(q, '$')) != NULL && v < q + len) {
/*
* Set vlen to the length of the variable name and then
* reset len to the length of the text prior to '$'. If
* the name begins with a digit, interpret it using the
* the argv[] array. Otherwise we look in dt_macros.
* For the moment, all dt_macros variables are of type
* id_t (see dtrace_update() for more details on that).
*/
vlen = (size_t)(q + len - v);
len = (size_t)(v - q);
/*
* If the variable string begins with $$, skip past the
* leading dollar sign since $ and $$ are equivalent
* macro reference operators in a probe description.
*/
if (vlen > 2 && v[1] == '$') {
vlen--;
v++;
}
if (isdigit(v[1])) {
long i;
errno = 0;
i = strtol(v + 1, (char **)&w, 10);
wlen = vlen - (w - v);
if (i < 0 || i >= argc || errno != 0)
return (dt_set_errno(dtp, EDT_BADSPCV));
v = argv[i];
vlen = strlen(v);
if (yypcb != NULL && yypcb->pcb_sargv == argv)
yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
} else if (vlen > 1) {
char *vstr = alloca(vlen);
dt_ident_t *idp;
(void) strncpy(vstr, v + 1, vlen - 1);
vstr[vlen - 1] = '\0';
idp = dt_idhash_lookup(dtp->dt_macros, vstr);
if (idp == NULL)
return (dt_set_errno(dtp, EDT_BADSPCV));
v = buf;
vlen = snprintf(buf, 32, "%d", idp->di_id);
} else
return (dt_set_errno(dtp, EDT_BADSPCV));
}
if (spec == DTRACE_PROBESPEC_NONE)
return (dt_set_errno(dtp, EDT_BADSPEC));
if (len + vlen >= dtrace_probespecs[spec].dtps_len)
return (dt_set_errno(dtp, ENAMETOOLONG));
off = dtrace_probespecs[spec--].dtps_offset;
bcopy(q, (char *)pdp + off, len);
bcopy(v, (char *)pdp + off + len, vlen);
bcopy(w, (char *)pdp + off + len + vlen, wlen);
} while (--p >= s);
pdp->dtpd_id = DTRACE_IDNONE;
return (0);
}
int
dtrace_str2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec,
const char *s, dtrace_probedesc_t *pdp)
{
return (dtrace_xstr2desc(dtp, spec, s, 0, NULL, pdp));
}
int
dtrace_id2desc(dtrace_hdl_t *dtp, dtrace_id_t id, dtrace_probedesc_t *pdp)
{
bzero(pdp, sizeof (dtrace_probedesc_t));
pdp->dtpd_id = id;
if (dt_ioctl(dtp, DTRACEIOC_PROBES, pdp) == -1 ||
pdp->dtpd_id != id)
return (dt_set_errno(dtp, EDT_BADID));
return (0);
}
char *
dtrace_desc2str(const dtrace_probedesc_t *pdp, char *buf, size_t len)
{
if (pdp->dtpd_id == 0) {
(void) snprintf(buf, len, "%s:%s:%s:%s", pdp->dtpd_provider,
pdp->dtpd_mod, pdp->dtpd_func, pdp->dtpd_name);
} else
(void) snprintf(buf, len, "%u", pdp->dtpd_id);
return (buf);
}
char *
dtrace_attr2str(dtrace_attribute_t attr, char *buf, size_t len)
{
const char *name = dtrace_stability_name(attr.dtat_name);
const char *data = dtrace_stability_name(attr.dtat_data);
const char *class = dtrace_class_name(attr.dtat_class);
if (name == NULL || data == NULL || class == NULL)
return (NULL); /* one or more invalid attributes */
(void) snprintf(buf, len, "%s/%s/%s", name, data, class);
return (buf);
}
static char *
dt_getstrattr(char *p, char **qp)
{
char *q;
if (*p == '\0')
return (NULL);
if ((q = strchr(p, '/')) == NULL)
q = p + strlen(p);
else
*q++ = '\0';
*qp = q;
return (p);
}
int
dtrace_str2attr(const char *str, dtrace_attribute_t *attr)
{
dtrace_stability_t s;
dtrace_class_t c;
char *p, *q;
if (str == NULL || attr == NULL)
return (-1); /* invalid function arguments */
*attr = _dtrace_maxattr;
p = strdupa(str);
if ((p = dt_getstrattr(p, &q)) == NULL)
return (0);
for (s = 0; s <= DTRACE_STABILITY_MAX; s++) {
if (strcasecmp(p, dtrace_stability_name(s)) == 0) {
attr->dtat_name = s;
break;
}
}
if (s > DTRACE_STABILITY_MAX)
return (-1);
if ((p = dt_getstrattr(q, &q)) == NULL)
return (0);
for (s = 0; s <= DTRACE_STABILITY_MAX; s++) {
if (strcasecmp(p, dtrace_stability_name(s)) == 0) {
attr->dtat_data = s;
break;
}
}
if (s > DTRACE_STABILITY_MAX)
return (-1);
if ((p = dt_getstrattr(q, &q)) == NULL)
return (0);
for (c = 0; c <= DTRACE_CLASS_MAX; c++) {
if (strcasecmp(p, dtrace_class_name(c)) == 0) {
attr->dtat_class = c;
break;
}
}
if (c > DTRACE_CLASS_MAX || (p = dt_getstrattr(q, &q)) != NULL)
return (-1);
return (0);
}
const char *
dtrace_stability_name(dtrace_stability_t s)
{
switch (s) {
case DTRACE_STABILITY_INTERNAL: return ("Internal");
case DTRACE_STABILITY_PRIVATE: return ("Private");
case DTRACE_STABILITY_OBSOLETE: return ("Obsolete");
case DTRACE_STABILITY_EXTERNAL: return ("External");
case DTRACE_STABILITY_UNSTABLE: return ("Unstable");
case DTRACE_STABILITY_EVOLVING: return ("Evolving");
case DTRACE_STABILITY_STABLE: return ("Stable");
case DTRACE_STABILITY_STANDARD: return ("Standard");
default: return (NULL);
}
}
const char *
dtrace_class_name(dtrace_class_t c)
{
switch (c) {
case DTRACE_CLASS_UNKNOWN: return ("Unknown");
case DTRACE_CLASS_CPU: return ("CPU");
case DTRACE_CLASS_PLATFORM: return ("Platform");
case DTRACE_CLASS_GROUP: return ("Group");
case DTRACE_CLASS_ISA: return ("ISA");
case DTRACE_CLASS_COMMON: return ("Common");
default: return (NULL);
}
}
dtrace_attribute_t
dt_attr_min(dtrace_attribute_t a1, dtrace_attribute_t a2)
{
dtrace_attribute_t am;
am.dtat_name = MIN(a1.dtat_name, a2.dtat_name);
am.dtat_data = MIN(a1.dtat_data, a2.dtat_data);
am.dtat_class = MIN(a1.dtat_class, a2.dtat_class);
return (am);
}
dtrace_attribute_t
dt_attr_max(dtrace_attribute_t a1, dtrace_attribute_t a2)
{
dtrace_attribute_t am;
am.dtat_name = MAX(a1.dtat_name, a2.dtat_name);
am.dtat_data = MAX(a1.dtat_data, a2.dtat_data);
am.dtat_class = MAX(a1.dtat_class, a2.dtat_class);
return (am);
}
/*
* Compare two attributes and return an integer value in the following ranges:
*
* <0 if any of a1's attributes are less than a2's attributes
* =0 if all of a1's attributes are equal to a2's attributes
* >0 if all of a1's attributes are greater than or equal to a2's attributes
*
* To implement this function efficiently, we subtract a2's attributes from
* a1's to obtain a negative result if an a1 attribute is less than its a2
* counterpart. We then OR the intermediate results together, relying on the
* twos-complement property that if any result is negative, the bitwise union
* will also be negative since the highest bit will be set in the result.
*/
int
dt_attr_cmp(dtrace_attribute_t a1, dtrace_attribute_t a2)
{
return (((int)a1.dtat_name - a2.dtat_name) |
((int)a1.dtat_data - a2.dtat_data) |
((int)a1.dtat_class - a2.dtat_class));
}
char *
dt_attr_str(dtrace_attribute_t a, char *buf, size_t len)
{
static const char stability[] = "ipoxuesS";
static const char class[] = "uCpgIc";
if (a.dtat_name < sizeof (stability) &&
a.dtat_data < sizeof (stability) && a.dtat_class < sizeof (class)) {
(void) snprintf(buf, len, "[%c/%c/%c]", stability[a.dtat_name],
stability[a.dtat_data], class[a.dtat_class]);
} else {
(void) snprintf(buf, len, "[%u/%u/%u]",
a.dtat_name, a.dtat_data, a.dtat_class);
}
return (buf);
}
char *
dt_version_num2str(dt_version_t v, char *buf, size_t len)
{
uint_t M = DT_VERSION_MAJOR(v);
uint_t m = DT_VERSION_MINOR(v);
uint_t u = DT_VERSION_MICRO(v);
if (u == 0)
(void) snprintf(buf, len, "%u.%u", M, m);
else
(void) snprintf(buf, len, "%u.%u.%u", M, m, u);
return (buf);
}
int
dt_version_str2num(const char *s, dt_version_t *vp)
{
int i = 0, n[3] = { 0, 0, 0 };
char c;
while ((c = *s++) != '\0') {
if (isdigit(c))
n[i] = n[i] * 10 + c - '0';
else if (c != '.' || i++ >= sizeof (n) / sizeof (n[0]) - 1)
return (-1);
}
if (n[0] > DT_VERSION_MAJMAX ||
n[1] > DT_VERSION_MINMAX ||
n[2] > DT_VERSION_MICMAX)
return (-1);
if (vp != NULL)
*vp = DT_VERSION_NUMBER(n[0], n[1], n[2]);
return (0);
}
int
dt_version_defined(dt_version_t v)
{
int i;
for (i = 0; _dtrace_versions[i] != 0; i++) {
if (_dtrace_versions[i] == v)
return (1);
}
return (0);
}
char *
dt_cpp_add_arg(dtrace_hdl_t *dtp, const char *str)
{
char *arg;
if (dtp->dt_cpp_argc == dtp->dt_cpp_args) {
int olds = dtp->dt_cpp_args;
int news = olds * 2;
char **argv = realloc(dtp->dt_cpp_argv, sizeof (char *) * news);
if (argv == NULL)
return (NULL);
bzero(&argv[olds], sizeof (char *) * olds);
dtp->dt_cpp_argv = argv;
dtp->dt_cpp_args = news;
}
if ((arg = strdup(str)) == NULL)
return (NULL);
assert(dtp->dt_cpp_argc < dtp->dt_cpp_args);
dtp->dt_cpp_argv[dtp->dt_cpp_argc++] = arg;
return (arg);
}
char *
dt_cpp_pop_arg(dtrace_hdl_t *dtp)
{
char *arg;
if (dtp->dt_cpp_argc <= 1)
return (NULL); /* dt_cpp_argv[0] cannot be popped */
arg = dtp->dt_cpp_argv[--dtp->dt_cpp_argc];
dtp->dt_cpp_argv[dtp->dt_cpp_argc] = NULL;
return (arg);
}
/*PRINTFLIKE1*/
void
dt_dprintf(const char *format, ...)
{
if (_dtrace_debug) {
va_list alist;
va_start(alist, format);
(void) fputs("libdtrace DEBUG: ", stderr);
(void) vfprintf(stderr, format, alist);
va_end(alist);
}
}
int
dt_ioctl(dtrace_hdl_t *dtp, int val, void *arg)
{
const dtrace_vector_t *v = dtp->dt_vector;
if (v != NULL)
return (v->dtv_ioctl(dtp->dt_varg, val, arg));
if (dtp->dt_fd >= 0)
return (ioctl(dtp->dt_fd, val, arg));
errno = EBADF;
return (-1);
}
int
dt_status(dtrace_hdl_t *dtp, processorid_t cpu)
{
const dtrace_vector_t *v = dtp->dt_vector;
if (v == NULL)
return (p_online(cpu, P_STATUS));
return (v->dtv_status(dtp->dt_varg, cpu));
}
long
dt_sysconf(dtrace_hdl_t *dtp, int name)
{
const dtrace_vector_t *v = dtp->dt_vector;
if (v == NULL)
return (sysconf(name));
return (v->dtv_sysconf(dtp->dt_varg, name));
}
/*
* Wrapper around write(2) to handle partial writes. For maximum safety of
* output files and proper error reporting, we continuing writing in the
* face of partial writes until write(2) fails or 'buf' is completely written.
* We also record any errno in the specified dtrace_hdl_t as well as 'errno'.
*/
ssize_t
dt_write(dtrace_hdl_t *dtp, int fd, const void *buf, size_t n)
{
ssize_t resid = n;
ssize_t len;
while (resid != 0) {
if ((len = write(fd, buf, resid)) <= 0)
break;
resid -= len;
buf = (char *)buf + len;
}
if (resid == n && n != 0)
return (dt_set_errno(dtp, errno));
return (n - resid);
}
/*
* This function handles all output from libdtrace, as well as the
* dtrace_sprintf() case. If we're here due to dtrace_sprintf(), then
* dt_sprintf_buflen will be non-zero; in this case, we sprintf into the
* specified buffer and return. Otherwise, if output is buffered (denoted by
* a NULL fp), we sprintf the desired output into the buffered buffer
* (expanding the buffer if required). If we don't satisfy either of these
* conditions (that is, if we are to actually generate output), then we call
* fprintf with the specified fp. In this case, we need to deal with one of
* the more annoying peculiarities of libc's printf routines: any failed
* write persistently sets an error flag inside the FILE causing every
* subsequent write to fail, but only the caller that initiated the error gets
* the errno. Since libdtrace clients often intercept SIGINT, this case is
* particularly frustrating since we don't want the EINTR on one attempt to
* write to the output file to preclude later attempts to write. This
* function therefore does a clearerr() if any error occurred, and saves the
* errno for the caller inside the specified dtrace_hdl_t.
*/
/*PRINTFLIKE3*/
int
dt_printf(dtrace_hdl_t *dtp, FILE *fp, const char *format, ...)
{
va_list ap;
int n;
va_start(ap, format);
if (dtp->dt_sprintf_buflen != 0) {
int len;
char *buf;
assert(dtp->dt_sprintf_buf != NULL);
buf = &dtp->dt_sprintf_buf[len = strlen(dtp->dt_sprintf_buf)];
len = dtp->dt_sprintf_buflen - len;
assert(len >= 0);
if ((n = vsnprintf(buf, len, format, ap)) < 0)
n = dt_set_errno(dtp, errno);
va_end(ap);
return (n);
}
if (fp == NULL) {
int needed, rval;
size_t avail;
/*
* Using buffered output is not allowed if a handler has
* not been installed.
*/
if (dtp->dt_bufhdlr == NULL) {
va_end(ap);
return (dt_set_errno(dtp, EDT_NOBUFFERED));
}
if (dtp->dt_buffered_buf == NULL) {
assert(dtp->dt_buffered_size == 0);
dtp->dt_buffered_size = 1;
dtp->dt_buffered_buf = malloc(dtp->dt_buffered_size);
if (dtp->dt_buffered_buf == NULL) {
va_end(ap);
return (dt_set_errno(dtp, EDT_NOMEM));
}
dtp->dt_buffered_offs = 0;
dtp->dt_buffered_buf[0] = '\0';
}
if ((needed = vsnprintf(NULL, 0, format, ap)) < 0) {
rval = dt_set_errno(dtp, errno);
va_end(ap);
return (rval);
}
if (needed == 0) {
va_end(ap);
return (0);
}
for (;;) {
char *newbuf;
assert(dtp->dt_buffered_offs < dtp->dt_buffered_size);
avail = dtp->dt_buffered_size - dtp->dt_buffered_offs;
if (needed + 1 < avail)
break;
if ((newbuf = realloc(dtp->dt_buffered_buf,
dtp->dt_buffered_size << 1)) == NULL) {
va_end(ap);
return (dt_set_errno(dtp, EDT_NOMEM));
}
dtp->dt_buffered_buf = newbuf;
dtp->dt_buffered_size <<= 1;
}
if (vsnprintf(&dtp->dt_buffered_buf[dtp->dt_buffered_offs],
avail, format, ap) < 0) {
rval = dt_set_errno(dtp, errno);
va_end(ap);
return (rval);
}
dtp->dt_buffered_offs += needed;
assert(dtp->dt_buffered_buf[dtp->dt_buffered_offs] == '\0');
return (0);
}
n = vfprintf(fp, format, ap);
va_end(ap);
if (n < 0) {
clearerr(fp);
return (dt_set_errno(dtp, errno));
}
return (n);
}
int
dt_buffered_flush(dtrace_hdl_t *dtp, dtrace_probedata_t *pdata,
const dtrace_recdesc_t *rec, const dtrace_aggdata_t *agg, uint32_t flags)
{
dtrace_bufdata_t data;
if (dtp->dt_buffered_offs == 0)
return (0);
data.dtbda_handle = dtp;
data.dtbda_buffered = dtp->dt_buffered_buf;
data.dtbda_probe = pdata;
data.dtbda_recdesc = rec;
data.dtbda_aggdata = agg;
data.dtbda_flags = flags;
if ((*dtp->dt_bufhdlr)(&data, dtp->dt_bufarg) == DTRACE_HANDLE_ABORT)
return (dt_set_errno(dtp, EDT_DIRABORT));
dtp->dt_buffered_offs = 0;
dtp->dt_buffered_buf[0] = '\0';
return (0);
}
void
dt_buffered_destroy(dtrace_hdl_t *dtp)
{
free(dtp->dt_buffered_buf);
dtp->dt_buffered_buf = NULL;
dtp->dt_buffered_offs = 0;
dtp->dt_buffered_size = 0;
}
void *
dt_zalloc(dtrace_hdl_t *dtp, size_t size)
{
void *data;
if ((data = malloc(size)) == NULL)
(void) dt_set_errno(dtp, EDT_NOMEM);
else
bzero(data, size);
return (data);
}
void *
dt_alloc(dtrace_hdl_t *dtp, size_t size)
{
void *data;
if ((data = malloc(size)) == NULL)
(void) dt_set_errno(dtp, EDT_NOMEM);
return (data);
}
void
dt_free(dtrace_hdl_t *dtp, void *data)
{
assert(dtp != NULL); /* ensure sane use of this interface */
free(data);
}
void
dt_difo_free(dtrace_hdl_t *dtp, dtrace_difo_t *dp)
{
if (dp == NULL)
return; /* simplify caller code */
dt_free(dtp, dp->dtdo_buf);
dt_free(dtp, dp->dtdo_inttab);
dt_free(dtp, dp->dtdo_strtab);
dt_free(dtp, dp->dtdo_vartab);
dt_free(dtp, dp->dtdo_kreltab);
dt_free(dtp, dp->dtdo_ureltab);
dt_free(dtp, dp->dtdo_xlmtab);
dt_free(dtp, dp);
}
/*
* dt_gmatch() is similar to gmatch(3GEN) and dtrace(7D) globbing, but also
* implements the behavior that an empty pattern matches any string.
*/
int
dt_gmatch(const char *s, const char *p)
{
return (p == NULL || *p == '\0' || gmatch(s, p));
}
char *
dt_basename(char *str)
{
char *last = strrchr(str, '/');
if (last == NULL)
return (str);
return (last + 1);
}
/*
* dt_popc() is a fast implementation of population count. The algorithm is
* from "Hacker's Delight" by Henry Warren, Jr with a 64-bit equivalent added.
*/
ulong_t
dt_popc(ulong_t x)
{
#ifdef _ILP32
x = x - ((x >> 1) & 0x55555555UL);
x = (x & 0x33333333UL) + ((x >> 2) & 0x33333333UL);
x = (x + (x >> 4)) & 0x0F0F0F0FUL;
x = x + (x >> 8);
x = x + (x >> 16);
return (x & 0x3F);
#endif
#ifdef _LP64
x = x - ((x >> 1) & 0x5555555555555555ULL);
x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
x = x + (x >> 8);
x = x + (x >> 16);
x = x + (x >> 32);
return (x & 0x7F);
#endif
}
/*
* dt_popcb() is a bitmap-based version of population count that returns the
* number of one bits in the specified bitmap 'bp' at bit positions below 'n'.
*/
ulong_t
dt_popcb(const ulong_t *bp, ulong_t n)
{
ulong_t maxb = n & BT_ULMASK;
ulong_t maxw = n >> BT_ULSHIFT;
ulong_t w, popc = 0;
if (n == 0)
return (0);
for (w = 0; w < maxw; w++)
popc += dt_popc(bp[w]);
return (popc + dt_popc(bp[maxw] & ((1UL << maxb) - 1)));
}
static int
dt_string2str(char *s, char *str, int nbytes)
{
int len = strlen(s);
if (nbytes == 0) {
/*
* Like snprintf(3C), we don't check the value of str if the
* number of bytes is 0.
*/
return (len);
}
if (nbytes <= len) {
(void) strncpy(str, s, nbytes - 1);
/*
* Like snprintf(3C) (and unlike strncpy(3C)), we guarantee
* that the string is null-terminated.
*/
str[nbytes - 1] = '\0';
} else {
(void) strcpy(str, s);
}
return (len);
}
int
dtrace_addr2str(dtrace_hdl_t *dtp, uint64_t addr, char *str, int nbytes)
{
dtrace_syminfo_t dts;
GElf_Sym sym;
size_t n = 20; /* for 0x%llx\0 */
char *s;
int err;
if ((err = dtrace_lookup_by_addr(dtp, addr, &sym, &dts)) == 0)
n += strlen(dts.dts_object) + strlen(dts.dts_name) + 2; /* +` */
s = alloca(n);
if (err == 0 && addr != sym.st_value) {
(void) snprintf(s, n, "%s`%s+0x%llx", dts.dts_object,
dts.dts_name, (u_longlong_t)addr - sym.st_value);
} else if (err == 0) {
(void) snprintf(s, n, "%s`%s",
dts.dts_object, dts.dts_name);
} else {
/*
* We'll repeat the lookup, but this time we'll specify a NULL
* GElf_Sym -- indicating that we're only interested in the
* containing module.
*/
if (dtrace_lookup_by_addr(dtp, addr, NULL, &dts) == 0) {
(void) snprintf(s, n, "%s`0x%llx", dts.dts_object,
(u_longlong_t)addr);
} else {
(void) snprintf(s, n, "0x%llx", (u_longlong_t)addr);
}
}
return (dt_string2str(s, str, nbytes));
}
int
dtrace_uaddr2str(dtrace_hdl_t *dtp, pid_t pid,
uint64_t addr, char *str, int nbytes)
{
char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
struct ps_prochandle *P = NULL;
GElf_Sym sym;
char *obj;
if (pid != 0)
P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
if (P == NULL) {
(void) snprintf(c, sizeof (c), "0x%llx", addr);
return (dt_string2str(c, str, nbytes));
}
dt_proc_lock(dtp, P);
if (Plookup_by_addr(P, addr, name, sizeof (name), &sym) == 0) {
(void) Pobjname(P, addr, objname, sizeof (objname));
obj = dt_basename(objname);
if (addr > sym.st_value) {
(void) snprintf(c, sizeof (c), "%s`%s+0x%llx", obj,
name, (u_longlong_t)(addr - sym.st_value));
} else {
(void) snprintf(c, sizeof (c), "%s`%s", obj, name);
}
} else if (Pobjname(P, addr, objname, sizeof (objname)) != NULL) {
(void) snprintf(c, sizeof (c), "%s`0x%llx",
dt_basename(objname), addr);
} else {
(void) snprintf(c, sizeof (c), "0x%llx", addr);
}
dt_proc_unlock(dtp, P);
dt_proc_release(dtp, P);
return (dt_string2str(c, str, nbytes));
}