/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
* Copyright (c) 2013 Joyent, Inc. All rights reserved.
*/
#include <sys/sysmacros.h>
#include <strings.h>
#include <stdlib.h>
#include <alloca.h>
#include <assert.h>
#include <errno.h>
#include <ctype.h>
#include <sys/procfs_isa.h>
#include <limits.h>
#include <dt_ident.h>
#include <dt_parser.h>
#include <dt_provider.h>
#include <dt_strtab.h>
#include <dt_impl.h>
/*
* Common code for cooking an identifier that uses a typed signature list (we
* use this for associative arrays and functions). If the argument list is
* of the same length and types, then return the return type. Otherwise
* print an appropriate compiler error message and abort the compile.
*/
static void
dt_idcook_sign(dt_node_t *dnp, dt_ident_t *idp,
int argc, dt_node_t *args, const char *prefix, const char *suffix)
{
dt_idsig_t *isp = idp->di_data;
int i, compat, mismatch, arglimit, iskey;
char n1[DT_TYPE_NAMELEN];
char n2[DT_TYPE_NAMELEN];
iskey = idp->di_kind == DT_IDENT_ARRAY || idp->di_kind == DT_IDENT_AGG;
if (isp->dis_varargs >= 0) {
mismatch = argc < isp->dis_varargs;
arglimit = isp->dis_varargs;
} else if (isp->dis_optargs >= 0) {
mismatch = (argc < isp->dis_optargs || argc > isp->dis_argc);
arglimit = argc;
} else {
mismatch = argc != isp->dis_argc;
arglimit = isp->dis_argc;
}
if (mismatch) {
xyerror(D_PROTO_LEN, "%s%s%s prototype mismatch: %d %s%s"
"passed, %s%d expected\n", prefix, idp->di_name, suffix,
argc, iskey ? "key" : "arg", argc == 1 ? " " : "s ",
isp->dis_optargs >= 0 ? "at least " : "",
isp->dis_optargs >= 0 ? isp->dis_optargs : arglimit);
}
for (i = 0; i < arglimit; i++, args = args->dn_list) {
if (isp->dis_args[i].dn_ctfp != NULL)
compat = dt_node_is_argcompat(&isp->dis_args[i], args);
else
compat = 1; /* "@" matches any type */
if (!compat) {
xyerror(D_PROTO_ARG,
"%s%s%s %s #%d is incompatible with "
"prototype:\n\tprototype: %s\n\t%9s: %s\n",
prefix, idp->di_name, suffix,
iskey ? "key" : "argument", i + 1,
dt_node_type_name(&isp->dis_args[i], n1,
sizeof (n1)),
iskey ? "key" : "argument",
dt_node_type_name(args, n2, sizeof (n2)));
}
}
dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
}
/*
* Cook an associative array identifier. If this is the first time we are
* cooking this array, create its signature based on the argument list.
* Otherwise validate the argument list against the existing signature.
*/
static void
dt_idcook_assc(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
{
if (idp->di_data == NULL) {
dt_idsig_t *isp = idp->di_data = malloc(sizeof (dt_idsig_t));
char n[DT_TYPE_NAMELEN];
int i;
if (isp == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
isp->dis_varargs = -1;
isp->dis_optargs = -1;
isp->dis_argc = argc;
isp->dis_args = NULL;
isp->dis_auxinfo = 0;
if (argc != 0 && (isp->dis_args = calloc(argc,
sizeof (dt_node_t))) == NULL) {
idp->di_data = NULL;
free(isp);
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
}
/*
* If this identifier has not been explicitly declared earlier,
* set the identifier's base type to be our special type <DYN>.
* If this ident is an aggregation, it will remain as is. If
* this ident is an associative array, it will be reassigned
* based on the result type of the first assignment statement.
*/
if (!(idp->di_flags & DT_IDFLG_DECL)) {
idp->di_ctfp = DT_DYN_CTFP(yypcb->pcb_hdl);
idp->di_type = DT_DYN_TYPE(yypcb->pcb_hdl);
}
for (i = 0; i < argc; i++, args = args->dn_list) {
if (dt_node_is_dynamic(args) || dt_node_is_void(args)) {
xyerror(D_KEY_TYPE, "%s expression may not be "
"used as %s index: key #%d\n",
dt_node_type_name(args, n, sizeof (n)),
dt_idkind_name(idp->di_kind), i + 1);
}
dt_node_type_propagate(args, &isp->dis_args[i]);
isp->dis_args[i].dn_list = &isp->dis_args[i + 1];
}
if (argc != 0)
isp->dis_args[argc - 1].dn_list = NULL;
dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
} else {
dt_idcook_sign(dnp, idp, argc, args,
idp->di_kind == DT_IDENT_AGG ? "@" : "", "[ ]");
}
}
/*
* Cook a function call. If this is the first time we are cooking this
* identifier, create its type signature based on predefined prototype stored
* in di_iarg. We then validate the argument list against this signature.
*/
static void
dt_idcook_func(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
{
if (idp->di_data == NULL) {
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
dtrace_typeinfo_t dtt;
dt_idsig_t *isp;
char *s, *p1, *p2;
int i = 0;
assert(idp->di_iarg != NULL);
s = strdupa(idp->di_iarg);
if ((p2 = strrchr(s, ')')) != NULL)
*p2 = '\0'; /* mark end of parameter list string */
if ((p1 = strchr(s, '(')) != NULL)
*p1++ = '\0'; /* mark end of return type string */
if (p1 == NULL || p2 == NULL) {
xyerror(D_UNKNOWN, "internal error: malformed entry "
"for built-in function %s\n", idp->di_name);
}
for (p2 = p1; *p2 != '\0'; p2++) {
if (!isspace(*p2)) {
i++;
break;
}
}
for (p2 = strchr(p2, ','); p2++ != NULL; i++)
p2 = strchr(p2, ',');
/*
* We first allocate a new ident signature structure with the
* appropriate number of argument entries, and then look up
* the return type and store its CTF data in di_ctfp/type.
*/
if ((isp = idp->di_data = malloc(sizeof (dt_idsig_t))) == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
isp->dis_varargs = -1;
isp->dis_optargs = -1;
isp->dis_argc = i;
isp->dis_args = NULL;
isp->dis_auxinfo = 0;
if (i != 0 && (isp->dis_args = calloc(i,
sizeof (dt_node_t))) == NULL) {
idp->di_data = NULL;
free(isp);
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
}
if (dt_type_lookup(s, &dtt) == -1) {
xyerror(D_UNKNOWN, "failed to resolve type of %s (%s):"
" %s\n", idp->di_name, s,
dtrace_errmsg(dtp, dtrace_errno(dtp)));
}
if (idp->di_kind == DT_IDENT_AGGFUNC) {
idp->di_ctfp = DT_DYN_CTFP(dtp);
idp->di_type = DT_DYN_TYPE(dtp);
} else {
idp->di_ctfp = dtt.dtt_ctfp;
idp->di_type = dtt.dtt_type;
}
/*
* For each comma-delimited parameter in the prototype string,
* we look up the corresponding type and store its CTF data in
* the corresponding location in dis_args[]. We also recognize
* the special type string "@" to indicate that the specified
* parameter may be a D expression of *any* type (represented
* as a dis_args[] element with ctfp = NULL, type == CTF_ERR).
* If a varargs "..." is present, we record the argument index
* in dis_varargs for the benefit of dt_idcook_sign(), above.
* If the type of an argument is enclosed in square brackets
* (e.g. "[int]"), the argument is considered optional: the
* argument may be absent, but if it is present, it must be of
* the specified type. Note that varargs may not optional,
* optional arguments may not follow varargs, and non-optional
* arguments may not follow optional arguments.
*/
for (i = 0; i < isp->dis_argc; i++, p1 = p2) {
while (isspace(*p1))
p1++; /* skip leading whitespace */
if ((p2 = strchr(p1, ',')) == NULL)
p2 = p1 + strlen(p1);
else
*p2++ = '\0';
if (strcmp(p1, "@") == 0 || strcmp(p1, "...") == 0) {
isp->dis_args[i].dn_ctfp = NULL;
isp->dis_args[i].dn_type = CTF_ERR;
if (*p1 == '.')
isp->dis_varargs = i;
continue;
}
if (*p1 == '[' && p1[strlen(p1) - 1] == ']') {
if (isp->dis_varargs != -1) {
xyerror(D_UNKNOWN, "optional arg#%d "
"may not follow variable arg#%d\n",
i + 1, isp->dis_varargs + 1);
}
if (isp->dis_optargs == -1)
isp->dis_optargs = i;
p1[strlen(p1) - 1] = '\0';
p1++;
} else if (isp->dis_optargs != -1) {
xyerror(D_UNKNOWN, "required arg#%d may not "
"follow optional arg#%d\n", i + 1,
isp->dis_optargs + 1);
}
if (dt_type_lookup(p1, &dtt) == -1) {
xyerror(D_UNKNOWN, "failed to resolve type of "
"%s arg#%d (%s): %s\n", idp->di_name, i + 1,
p1, dtrace_errmsg(dtp, dtrace_errno(dtp)));
}
dt_node_type_assign(&isp->dis_args[i],
dtt.dtt_ctfp, dtt.dtt_type, B_FALSE);
}
}
dt_idcook_sign(dnp, idp, argc, args, "", "( )");
}
/*
* Cook a reference to the dynamically typed args[] array. We verify that the
* reference is using a single integer constant, and then construct a new ident
* representing the appropriate type or translation specifically for this node.
*/
static void
dt_idcook_args(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *ap)
{
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
dt_probe_t *prp = yypcb->pcb_probe;
dt_node_t tag, *nnp, *xnp;
dt_xlator_t *dxp;
dt_ident_t *xidp;
char n1[DT_TYPE_NAMELEN];
char n2[DT_TYPE_NAMELEN];
if (argc != 1) {
xyerror(D_PROTO_LEN, "%s[ ] prototype mismatch: %d arg%s"
"passed, 1 expected\n", idp->di_name, argc,
argc == 1 ? " " : "s ");
}
if (ap->dn_kind != DT_NODE_INT) {
xyerror(D_PROTO_ARG, "%s[ ] argument #1 is incompatible with "
"prototype:\n\tprototype: %s\n\t argument: %s\n",
idp->di_name, "integer constant",
dt_type_name(ap->dn_ctfp, ap->dn_type, n1, sizeof (n1)));
}
if (yypcb->pcb_pdesc == NULL) {
xyerror(D_ARGS_NONE, "%s[ ] may not be referenced outside "
"of a probe clause\n", idp->di_name);
}
if (prp == NULL) {
xyerror(D_ARGS_MULTI,
"%s[ ] may not be referenced because probe description %s "
"matches an unstable set of probes\n", idp->di_name,
dtrace_desc2str(yypcb->pcb_pdesc, n1, sizeof (n1)));
}
if (ap->dn_value >= prp->pr_argc) {
xyerror(D_ARGS_IDX, "index %lld is out of range for %s %s[ ]\n",
(longlong_t)ap->dn_value, dtrace_desc2str(yypcb->pcb_pdesc,
n1, sizeof (n1)), idp->di_name);
}
/*
* Look up the native and translated argument types for the probe.
* If no translation is needed, these will be the same underlying node.
* If translation is needed, look up the appropriate translator. Once
* we have the appropriate node, create a new dt_ident_t for this node,
* assign it the appropriate attributes, and set the type of 'dnp'.
*/
xnp = prp->pr_xargv[ap->dn_value];
nnp = prp->pr_nargv[prp->pr_mapping[ap->dn_value]];
if (xnp->dn_type == CTF_ERR) {
xyerror(D_ARGS_TYPE, "failed to resolve translated type for "
"%s[%lld]\n", idp->di_name, (longlong_t)ap->dn_value);
}
if (nnp->dn_type == CTF_ERR) {
xyerror(D_ARGS_TYPE, "failed to resolve native type for "
"%s[%lld]\n", idp->di_name, (longlong_t)ap->dn_value);
}
if (dtp->dt_xlatemode == DT_XL_STATIC && (
nnp == xnp || dt_node_is_argcompat(nnp, xnp))) {
dnp->dn_ident = dt_ident_create(idp->di_name, idp->di_kind,
idp->di_flags | DT_IDFLG_ORPHAN, idp->di_id, idp->di_attr,
idp->di_vers, idp->di_ops, idp->di_iarg, idp->di_gen);
if (dnp->dn_ident == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
dt_node_type_assign(dnp,
prp->pr_argv[ap->dn_value].dtt_ctfp,
prp->pr_argv[ap->dn_value].dtt_type,
prp->pr_argv[ap->dn_value].dtt_flags & DTT_FL_USER ?
B_TRUE : B_FALSE);
} else if ((dxp = dt_xlator_lookup(dtp,
nnp, xnp, DT_XLATE_FUZZY)) != NULL || (
dxp = dt_xlator_lookup(dtp, dt_probe_tag(prp, ap->dn_value, &tag),
xnp, DT_XLATE_EXACT | DT_XLATE_EXTERN)) != NULL) {
xidp = dt_xlator_ident(dxp, xnp->dn_ctfp, xnp->dn_type);
dnp->dn_ident = dt_ident_create(idp->di_name, xidp->di_kind,
xidp->di_flags | DT_IDFLG_ORPHAN, idp->di_id, idp->di_attr,
idp->di_vers, idp->di_ops, idp->di_iarg, idp->di_gen);
if (dnp->dn_ident == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
if (dt_xlator_dynamic(dxp))
dxp->dx_arg = (int)ap->dn_value;
/*
* Propagate relevant members from the translator's internal
* dt_ident_t. This code must be kept in sync with the state
* that is initialized for idents in dt_xlator_create().
*/
dnp->dn_ident->di_data = xidp->di_data;
dnp->dn_ident->di_ctfp = xidp->di_ctfp;
dnp->dn_ident->di_type = xidp->di_type;
dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp),
B_FALSE);
} else {
xyerror(D_ARGS_XLATOR, "translator for %s[%lld] from %s to %s "
"is not defined\n", idp->di_name, (longlong_t)ap->dn_value,
dt_node_type_name(nnp, n1, sizeof (n1)),
dt_node_type_name(xnp, n2, sizeof (n2)));
}
assert(dnp->dn_ident->di_flags & DT_IDFLG_ORPHAN);
assert(dnp->dn_ident->di_id == idp->di_id);
}
static void
dt_idcook_regs(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *ap)
{
dtrace_typeinfo_t dtt;
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
char n[DT_TYPE_NAMELEN];
if (argc != 1) {
xyerror(D_PROTO_LEN, "%s[ ] prototype mismatch: %d arg%s"
"passed, 1 expected\n", idp->di_name,
argc, argc == 1 ? " " : "s ");
}
if (ap->dn_kind != DT_NODE_INT) {
xyerror(D_PROTO_ARG, "%s[ ] argument #1 is incompatible with "
"prototype:\n\tprototype: %s\n\t argument: %s\n",
idp->di_name, "integer constant",
dt_type_name(ap->dn_ctfp, ap->dn_type, n, sizeof (n)));
}
if ((ap->dn_flags & DT_NF_SIGNED) && (int64_t)ap->dn_value < 0) {
xyerror(D_REGS_IDX, "index %lld is out of range for array %s\n",
(longlong_t)ap->dn_value, idp->di_name);
}
if (dt_type_lookup("uint64_t", &dtt) == -1) {
xyerror(D_UNKNOWN, "failed to resolve type of %s: %s\n",
idp->di_name, dtrace_errmsg(dtp, dtrace_errno(dtp)));
}
idp->di_ctfp = dtt.dtt_ctfp;
idp->di_type = dtt.dtt_type;
dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
}
/*ARGSUSED*/
static void
dt_idcook_type(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
{
if (idp->di_type == CTF_ERR) {
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
dtrace_typeinfo_t dtt;
if (dt_type_lookup(idp->di_iarg, &dtt) == -1) {
xyerror(D_UNKNOWN,
"failed to resolve type %s for identifier %s: %s\n",
(const char *)idp->di_iarg, idp->di_name,
dtrace_errmsg(dtp, dtrace_errno(dtp)));
}
idp->di_ctfp = dtt.dtt_ctfp;
idp->di_type = dtt.dtt_type;
}
dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
}
/*ARGSUSED*/
static void
dt_idcook_thaw(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
{
if (idp->di_ctfp != NULL && idp->di_type != CTF_ERR)
dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
}
static void
dt_idcook_inline(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
{
if (idp->di_kind == DT_IDENT_ARRAY)
dt_idcook_assc(dnp, idp, argc, args);
else
dt_idcook_thaw(dnp, idp, argc, args);
}
static void
dt_iddtor_sign(dt_ident_t *idp)
{
if (idp->di_data != NULL)
free(((dt_idsig_t *)idp->di_data)->dis_args);
free(idp->di_data);
}
static void
dt_iddtor_free(dt_ident_t *idp)
{
free(idp->di_data);
}
static void
dt_iddtor_inline(dt_ident_t *idp)
{
dt_idnode_t *inp = idp->di_iarg;
if (inp != NULL) {
dt_node_link_free(&inp->din_list);
if (inp->din_hash != NULL)
dt_idhash_destroy(inp->din_hash);
free(inp->din_argv);
free(inp);
}
if (idp->di_kind == DT_IDENT_ARRAY)
dt_iddtor_sign(idp);
else
dt_iddtor_free(idp);
}
/*ARGSUSED*/
static void
dt_iddtor_none(dt_ident_t *idp)
{
/* do nothing */
}
static void
dt_iddtor_probe(dt_ident_t *idp)
{
if (idp->di_data != NULL)
dt_probe_destroy(idp->di_data);
}
static size_t
dt_idsize_type(dt_ident_t *idp)
{
return (ctf_type_size(idp->di_ctfp, idp->di_type));
}
/*ARGSUSED*/
static size_t
dt_idsize_none(dt_ident_t *idp)
{
return (0);
}
const dt_idops_t dt_idops_assc = {
dt_idcook_assc,
dt_iddtor_sign,
dt_idsize_none,
};
const dt_idops_t dt_idops_func = {
dt_idcook_func,
dt_iddtor_sign,
dt_idsize_none,
};
const dt_idops_t dt_idops_args = {
dt_idcook_args,
dt_iddtor_none,
dt_idsize_none,
};
const dt_idops_t dt_idops_regs = {
dt_idcook_regs,
dt_iddtor_free,
dt_idsize_none,
};
const dt_idops_t dt_idops_type = {
dt_idcook_type,
dt_iddtor_free,
dt_idsize_type,
};
const dt_idops_t dt_idops_thaw = {
dt_idcook_thaw,
dt_iddtor_free,
dt_idsize_type,
};
const dt_idops_t dt_idops_inline = {
dt_idcook_inline,
dt_iddtor_inline,
dt_idsize_type,
};
const dt_idops_t dt_idops_probe = {
dt_idcook_thaw,
dt_iddtor_probe,
dt_idsize_none,
};
static void
dt_idhash_populate(dt_idhash_t *dhp)
{
const dt_ident_t *idp = dhp->dh_tmpl;
dhp->dh_tmpl = NULL; /* clear dh_tmpl first to avoid recursion */
dt_dprintf("populating %s idhash from %p\n", dhp->dh_name, (void *)idp);
for (; idp->di_name != NULL; idp++) {
if (dt_idhash_insert(dhp, idp->di_name,
idp->di_kind, idp->di_flags, idp->di_id, idp->di_attr,
idp->di_vers, idp->di_ops ? idp->di_ops : &dt_idops_thaw,
idp->di_iarg, 0) == NULL)
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
}
}
dt_idhash_t *
dt_idhash_create(const char *name, const dt_ident_t *tmpl,
uint_t min, uint_t max)
{
dt_idhash_t *dhp;
size_t size;
assert(min <= max);
size = sizeof (dt_idhash_t) +
sizeof (dt_ident_t *) * (_dtrace_strbuckets - 1);
if ((dhp = malloc(size)) == NULL)
return (NULL);
bzero(dhp, size);
dhp->dh_name = name;
dhp->dh_tmpl = tmpl;
dhp->dh_nextid = min;
dhp->dh_minid = min;
dhp->dh_maxid = max;
dhp->dh_hashsz = _dtrace_strbuckets;
return (dhp);
}
/*
* Destroy an entire identifier hash. This must be done using two passes with
* an inlined version of dt_ident_destroy() to avoid referencing freed memory.
* In the first pass di_dtor() is called for all identifiers; then the second
* pass frees the actual dt_ident_t's. These must be done separately because
* a di_dtor() may operate on data structures which contain references to other
* identifiers inside of this hash itself (e.g. a global inline definition
* which contains a parse tree that refers to another global variable).
*/
void
dt_idhash_destroy(dt_idhash_t *dhp)
{
dt_ident_t *idp, *next;
ulong_t i;
for (i = 0; i < dhp->dh_hashsz; i++) {
for (idp = dhp->dh_hash[i]; idp != NULL; idp = next) {
next = idp->di_next;
idp->di_ops->di_dtor(idp);
}
}
for (i = 0; i < dhp->dh_hashsz; i++) {
for (idp = dhp->dh_hash[i]; idp != NULL; idp = next) {
next = idp->di_next;
free(idp->di_name);
free(idp);
}
}
free(dhp);
}
void
dt_idhash_update(dt_idhash_t *dhp)
{
uint_t nextid = dhp->dh_minid;
dt_ident_t *idp;
ulong_t i;
for (i = 0; i < dhp->dh_hashsz; i++) {
for (idp = dhp->dh_hash[i]; idp != NULL; idp = idp->di_next) {
/*
* Right now we're hard coding which types need to be
* reset, but ideally this would be done dynamically.
*/
if (idp->di_kind == DT_IDENT_ARRAY ||
idp->di_kind == DT_IDENT_SCALAR ||
idp->di_kind == DT_IDENT_AGG)
nextid = MAX(nextid, idp->di_id + 1);
}
}
dhp->dh_nextid = nextid;
}
dt_ident_t *
dt_idhash_lookup(dt_idhash_t *dhp, const char *name)
{
size_t len;
ulong_t h = dt_strtab_hash(name, &len) % dhp->dh_hashsz;
dt_ident_t *idp;
if (dhp->dh_tmpl != NULL)
dt_idhash_populate(dhp); /* fill hash w/ initial population */
for (idp = dhp->dh_hash[h]; idp != NULL; idp = idp->di_next) {
if (strcmp(idp->di_name, name) == 0)
return (idp);
}
return (NULL);
}
int
dt_idhash_nextid(dt_idhash_t *dhp, uint_t *p)
{
if (dhp->dh_nextid >= dhp->dh_maxid)
return (-1); /* no more id's are free to allocate */
*p = dhp->dh_nextid++;
return (0);
}
ulong_t
dt_idhash_size(const dt_idhash_t *dhp)
{
return (dhp->dh_nelems);
}
const char *
dt_idhash_name(const dt_idhash_t *dhp)
{
return (dhp->dh_name);
}
dt_ident_t *
dt_idhash_insert(dt_idhash_t *dhp, const char *name, ushort_t kind,
ushort_t flags, uint_t id, dtrace_attribute_t attr, uint_t vers,
const dt_idops_t *ops, void *iarg, ulong_t gen)
{
dt_ident_t *idp;
ulong_t h;
if (dhp->dh_tmpl != NULL)
dt_idhash_populate(dhp); /* fill hash w/ initial population */
idp = dt_ident_create(name, kind, flags, id,
attr, vers, ops, iarg, gen);
if (idp == NULL)
return (NULL);
h = dt_strtab_hash(name, NULL) % dhp->dh_hashsz;
idp->di_next = dhp->dh_hash[h];
dhp->dh_hash[h] = idp;
dhp->dh_nelems++;
if (dhp->dh_defer != NULL)
dhp->dh_defer(dhp, idp);
return (idp);
}
void
dt_idhash_xinsert(dt_idhash_t *dhp, dt_ident_t *idp)
{
ulong_t h;
if (dhp->dh_tmpl != NULL)
dt_idhash_populate(dhp); /* fill hash w/ initial population */
h = dt_strtab_hash(idp->di_name, NULL) % dhp->dh_hashsz;
idp->di_next = dhp->dh_hash[h];
idp->di_flags &= ~DT_IDFLG_ORPHAN;
dhp->dh_hash[h] = idp;
dhp->dh_nelems++;
if (dhp->dh_defer != NULL)
dhp->dh_defer(dhp, idp);
}
void
dt_idhash_delete(dt_idhash_t *dhp, dt_ident_t *key)
{
size_t len;
ulong_t h = dt_strtab_hash(key->di_name, &len) % dhp->dh_hashsz;
dt_ident_t **pp = &dhp->dh_hash[h];
dt_ident_t *idp;
for (idp = dhp->dh_hash[h]; idp != NULL; idp = idp->di_next) {
if (idp == key)
break;
else
pp = &idp->di_next;
}
assert(idp == key);
*pp = idp->di_next;
assert(dhp->dh_nelems != 0);
dhp->dh_nelems--;
if (!(idp->di_flags & DT_IDFLG_ORPHAN))
dt_ident_destroy(idp);
}
static int
dt_idhash_comp(const void *lp, const void *rp)
{
const dt_ident_t *lhs = *((const dt_ident_t **)lp);
const dt_ident_t *rhs = *((const dt_ident_t **)rp);
if (lhs->di_id != rhs->di_id)
return ((int)(lhs->di_id - rhs->di_id));
else
return (strcmp(lhs->di_name, rhs->di_name));
}
int
dt_idhash_iter(dt_idhash_t *dhp, dt_idhash_f *func, void *data)
{
dt_ident_t **ids;
dt_ident_t *idp;
ulong_t i, j, n;
int rv;
if (dhp->dh_tmpl != NULL)
dt_idhash_populate(dhp); /* fill hash w/ initial population */
n = dhp->dh_nelems;
ids = alloca(sizeof (dt_ident_t *) * n);
for (i = 0, j = 0; i < dhp->dh_hashsz; i++) {
for (idp = dhp->dh_hash[i]; idp != NULL; idp = idp->di_next)
ids[j++] = idp;
}
qsort(ids, dhp->dh_nelems, sizeof (dt_ident_t *), dt_idhash_comp);
for (i = 0; i < n; i++) {
if ((rv = func(dhp, ids[i], data)) != 0)
return (rv);
}
return (0);
}
dt_ident_t *
dt_idstack_lookup(dt_idstack_t *sp, const char *name)
{
dt_idhash_t *dhp;
dt_ident_t *idp;
for (dhp = dt_list_prev(&sp->dids_list);
dhp != NULL; dhp = dt_list_prev(dhp)) {
if ((idp = dt_idhash_lookup(dhp, name)) != NULL)
return (idp);
}
return (NULL);
}
void
dt_idstack_push(dt_idstack_t *sp, dt_idhash_t *dhp)
{
dt_list_append(&sp->dids_list, dhp);
}
void
dt_idstack_pop(dt_idstack_t *sp, dt_idhash_t *dhp)
{
assert(dt_list_prev(&sp->dids_list) == dhp);
dt_list_delete(&sp->dids_list, dhp);
}
dt_ident_t *
dt_ident_create(const char *name, ushort_t kind, ushort_t flags, uint_t id,
dtrace_attribute_t attr, uint_t vers,
const dt_idops_t *ops, void *iarg, ulong_t gen)
{
dt_ident_t *idp;
char *s = NULL;
if ((name != NULL && (s = strdup(name)) == NULL) ||
(idp = malloc(sizeof (dt_ident_t))) == NULL) {
free(s);
return (NULL);
}
idp->di_name = s;
idp->di_kind = kind;
idp->di_flags = flags;
idp->di_id = id;
idp->di_attr = attr;
idp->di_vers = vers;
idp->di_ops = ops;
idp->di_iarg = iarg;
idp->di_data = NULL;
idp->di_ctfp = NULL;
idp->di_type = CTF_ERR;
idp->di_next = NULL;
idp->di_gen = gen;
idp->di_lineno = yylineno;
return (idp);
}
/*
* Destroy an individual identifier. This code must be kept in sync with the
* dt_idhash_destroy() function below, which separates out the call to di_dtor.
*/
void
dt_ident_destroy(dt_ident_t *idp)
{
idp->di_ops->di_dtor(idp);
free(idp->di_name);
free(idp);
}
void
dt_ident_morph(dt_ident_t *idp, ushort_t kind,
const dt_idops_t *ops, void *iarg)
{
idp->di_ops->di_dtor(idp);
idp->di_kind = kind;
idp->di_ops = ops;
idp->di_iarg = iarg;
idp->di_data = NULL;
}
dtrace_attribute_t
dt_ident_cook(dt_node_t *dnp, dt_ident_t *idp, dt_node_t **pargp)
{
dtrace_attribute_t attr;
dt_node_t *args, *argp;
int argc = 0;
attr = dt_node_list_cook(pargp, DT_IDFLG_REF);
args = pargp ? *pargp : NULL;
for (argp = args; argp != NULL; argp = argp->dn_list)
argc++;
idp->di_ops->di_cook(dnp, idp, argc, args);
if (idp->di_flags & DT_IDFLG_USER)
dnp->dn_flags |= DT_NF_USERLAND;
return (dt_attr_min(attr, idp->di_attr));
}
void
dt_ident_type_assign(dt_ident_t *idp, ctf_file_t *fp, ctf_id_t type)
{
idp->di_ctfp = fp;
idp->di_type = type;
}
dt_ident_t *
dt_ident_resolve(dt_ident_t *idp)
{
while (idp->di_flags & DT_IDFLG_INLINE) {
const dt_node_t *dnp = ((dt_idnode_t *)idp->di_iarg)->din_root;
if (dnp == NULL)
break; /* can't resolve any further yet */
switch (dnp->dn_kind) {
case DT_NODE_VAR:
case DT_NODE_SYM:
case DT_NODE_FUNC:
case DT_NODE_AGG:
case DT_NODE_INLINE:
case DT_NODE_PROBE:
idp = dnp->dn_ident;
continue;
}
if (dt_node_is_dynamic(dnp))
idp = dnp->dn_ident;
else
break;
}
return (idp);
}
size_t
dt_ident_size(dt_ident_t *idp)
{
idp = dt_ident_resolve(idp);
return (idp->di_ops->di_size(idp));
}
int
dt_ident_unref(const dt_ident_t *idp)
{
return (idp->di_gen == yypcb->pcb_hdl->dt_gen &&
(idp->di_flags & (DT_IDFLG_REF|DT_IDFLG_MOD|DT_IDFLG_DECL)) == 0);
}
const char *
dt_idkind_name(uint_t kind)
{
switch (kind) {
case DT_IDENT_ARRAY: return ("associative array");
case DT_IDENT_SCALAR: return ("scalar");
case DT_IDENT_PTR: return ("pointer");
case DT_IDENT_FUNC: return ("function");
case DT_IDENT_AGG: return ("aggregation");
case DT_IDENT_AGGFUNC: return ("aggregating function");
case DT_IDENT_ACTFUNC: return ("tracing function");
case DT_IDENT_XLSOU: return ("translated data");
case DT_IDENT_XLPTR: return ("pointer to translated data");
case DT_IDENT_SYMBOL: return ("external symbol reference");
case DT_IDENT_ENUM: return ("enumerator");
case DT_IDENT_PRAGAT: return ("#pragma attributes");
case DT_IDENT_PRAGBN: return ("#pragma binding");
case DT_IDENT_PROBE: return ("probe definition");
default: return ("<?>");
}
}