/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
* Copyright 2012 Joshua M. Clulow <josh@sysmgr.org>
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
*/
#include <libdisasm.h>
#include <stdlib.h>
#ifdef DIS_STANDALONE
#include <mdb/mdb_modapi.h>
#define _MDB
#include <mdb/mdb_io.h>
#else
#include <stdio.h>
#endif
#include "libdisasm_impl.h"
static int _dis_errno;
/*
* If we're building the standalone library, then we only want to
* include support for disassembly of the native architecture.
* The regular shared library should include support for all
* architectures.
*/
#if !defined(DIS_STANDALONE) || defined(__i386) || defined(__amd64)
extern dis_arch_t dis_arch_i386;
#endif
#if !defined(DIS_STANDALONE) || defined(__sparc)
extern dis_arch_t dis_arch_sparc;
#endif
#if !defined(DIS_STANDALONE) || defined(__s390) || defined(__s390x)
extern dis_arch_t dis_arch_s390;
#endif
static dis_arch_t *dis_archs[] = {
#if !defined(DIS_STANDALONE) || defined(__i386) || defined(__amd64)
&dis_arch_i386,
#endif
#if !defined(DIS_STANDALONE) || defined(__sparc)
&dis_arch_sparc,
#endif
#if !defined(DIS_STANDALONE) || defined(__s390) || defined(__s390x)
&dis_arch_s390,
#endif
NULL
};
/*
* For the standalone library, we need to link against mdb's malloc/free.
* Otherwise, use the standard malloc/free.
*/
#ifdef DIS_STANDALONE
void *
dis_zalloc(size_t bytes)
{
return (mdb_zalloc(bytes, UM_SLEEP));
}
void
dis_free(void *ptr, size_t bytes)
{
mdb_free(ptr, bytes);
}
#else
void *
dis_zalloc(size_t bytes)
{
return (calloc(1, bytes));
}
/*ARGSUSED*/
void
dis_free(void *ptr, size_t bytes)
{
free(ptr);
}
#endif
int
dis_seterrno(int error)
{
_dis_errno = error;
return (-1);
}
int
dis_errno(void)
{
return (_dis_errno);
}
const char *
dis_strerror(int error)
{
switch (error) {
case E_DIS_NOMEM:
return ("out of memory");
case E_DIS_INVALFLAG:
return ("invalid flags for this architecture");
case E_DIS_UNSUPARCH:
return ("unsupported machine architecture");
default:
return ("unknown error");
}
}
void
dis_set_data(dis_handle_t *dhp, void *data)
{
dhp->dh_data = data;
}
void
dis_flags_set(dis_handle_t *dhp, int f)
{
dhp->dh_flags |= f;
}
void
dis_flags_clear(dis_handle_t *dhp, int f)
{
dhp->dh_flags &= ~f;
}
void
dis_handle_destroy(dis_handle_t *dhp)
{
if (dhp->dh_arch->da_handle_detach != NULL)
dhp->dh_arch->da_handle_detach(dhp);
dis_free(dhp, sizeof (dis_handle_t));
}
dis_handle_t *
dis_handle_create(int flags, void *data, dis_lookup_f lookup_func,
dis_read_f read_func)
{
dis_handle_t *dhp;
dis_arch_t *arch = NULL;
int i;
/* Select an architecture based on flags */
for (i = 0; dis_archs[i] != NULL; i++) {
if (dis_archs[i]->da_supports_flags(flags)) {
arch = dis_archs[i];
break;
}
}
if (arch == NULL) {
(void) dis_seterrno(E_DIS_UNSUPARCH);
return (NULL);
}
if ((dhp = dis_zalloc(sizeof (dis_handle_t))) == NULL) {
(void) dis_seterrno(E_DIS_NOMEM);
return (NULL);
}
dhp->dh_arch = arch;
dhp->dh_lookup = lookup_func;
dhp->dh_read = read_func;
dhp->dh_flags = flags;
dhp->dh_data = data;
/*
* Allow the architecture-specific code to allocate
* its private data.
*/
if (arch->da_handle_attach != NULL &&
arch->da_handle_attach(dhp) != 0) {
dis_free(dhp, sizeof (dis_handle_t));
/* dis errno already set */
return (NULL);
}
return (dhp);
}
int
dis_disassemble(dis_handle_t *dhp, uint64_t addr, char *buf, size_t buflen)
{
return (dhp->dh_arch->da_disassemble(dhp, addr, buf, buflen));
}
/*
* On some instruction sets (e.g., x86), we have no choice except to
* disassemble everything from the start of the symbol, and stop when we
* have reached our instruction address. If we're not in the middle of a
* known symbol, then we return the same address to indicate failure.
*/
static uint64_t
dis_generic_previnstr(dis_handle_t *dhp, uint64_t pc, int n)
{
uint64_t *hist, addr, start;
int cur, nseen;
uint64_t res = pc;
if (n <= 0)
return (pc);
if (dhp->dh_lookup(dhp->dh_data, pc, NULL, 0, &start, NULL) != 0 ||
start == pc)
return (res);
hist = dis_zalloc(sizeof (uint64_t) * n);
for (cur = 0, nseen = 0, addr = start; addr < pc; addr = dhp->dh_addr) {
hist[cur] = addr;
cur = (cur + 1) % n;
nseen++;
/* if we cannot make forward progress, give up */
if (dis_disassemble(dhp, addr, NULL, 0) != 0)
goto done;
}
if (addr != pc) {
/*
* We scanned past %pc, but didn't find an instruction that
* started at %pc. This means that either the caller specified
* an invalid address, or we ran into something other than code
* during our scan. Virtually any combination of bytes can be
* construed as a valid Intel instruction, so any non-code bytes
* we encounter will have thrown off the scan.
*/
goto done;
}
res = hist[(cur + n - MIN(n, nseen)) % n];
done:
dis_free(hist, sizeof (uint64_t) * n);
return (res);
}
/*
* Return the nth previous instruction's address. Return the same address
* to indicate failure.
*/
uint64_t
dis_previnstr(dis_handle_t *dhp, uint64_t pc, int n)
{
if (dhp->dh_arch->da_previnstr == NULL)
return (dis_generic_previnstr(dhp, pc, n));
return (dhp->dh_arch->da_previnstr(dhp, pc, n));
}
int
dis_min_instrlen(dis_handle_t *dhp)
{
return (dhp->dh_arch->da_min_instrlen(dhp));
}
int
dis_max_instrlen(dis_handle_t *dhp)
{
return (dhp->dh_arch->da_max_instrlen(dhp));
}
static int
dis_generic_instrlen(dis_handle_t *dhp, uint64_t pc)
{
if (dis_disassemble(dhp, pc, NULL, 0) != 0)
return (-1);
return (dhp->dh_addr - pc);
}
int
dis_instrlen(dis_handle_t *dhp, uint64_t pc)
{
if (dhp->dh_arch->da_instrlen == NULL)
return (dis_generic_instrlen(dhp, pc));
return (dhp->dh_arch->da_instrlen(dhp, pc));
}
int
dis_vsnprintf(char *restrict s, size_t n, const char *restrict format,
va_list args)
{
#ifdef DIS_STANDALONE
return (mdb_iob_vsnprintf(s, n, format, args));
#else
return (vsnprintf(s, n, format, args));
#endif
}
int
dis_snprintf(char *restrict s, size_t n, const char *restrict format, ...)
{
va_list args;
va_start(args, format);
n = dis_vsnprintf(s, n, format, args);
va_end(args);
return (n);
}