/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Redirection ld.so. Based on the 4.x binary compatibility ld.so, used
* to redirect aliases for ld.so to the real one.
*/
/*
* Import data structures
*/
#include "lint.h"
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/fcntl.h>
#include <sys/stat.h>
#include <sys/sysconfig.h>
#include <sys/auxv.h>
#include <elf.h>
#include <link.h>
#include <string.h>
#include "alias_boot.h"
/*
* Local manifest constants and macros.
*/
#define ALIGN(x, a) ((uintptr_t)(x) & ~((a) - 1))
#define ROUND(x, a) (((uintptr_t)(x) + ((a) - 1)) & ~((a) - 1))
#define EMPTY strings[EMPTY_S]
#define LDSO strings[LDSO_S]
#define ZERO strings[ZERO_S]
#define CLOSE (*(funcs[CLOSE_F]))
#define FSTATAT (*(funcs[FSTATAT_F]))
#define MMAP (*(funcs[MMAP_F]))
#define MUNMAP (*(funcs[MUNMAP_F]))
#define OPENAT (*(funcs[OPENAT_F]))
#define PANIC (*(funcs[PANIC_F]))
#define SYSCONFIG (*(funcs[SYSCONFIG_F]))
/*
* Alias ld.so entry point -- receives a bootstrap structure and a vector
* of strings. The vector is "well-known" to us, and consists of pointers
* to string constants. This aliasing bootstrap requires no relocation in
* order to run, save for the pointers of constant strings. This second
* parameter provides this. Note that this program is carefully coded in
* order to maintain the "no bootstrapping" requirement -- it calls only
* local functions, uses no intrinsics, etc.
*/
void *
__rtld(Elf32_Boot *ebp, const char *strings[], int (*funcs[])())
{
int i, p; /* working */
long j; /* working */
long page_size = 0; /* size of a page */
const char *program_name = EMPTY; /* our name */
int ldfd; /* fd assigned to ld.so */
int dzfd = 0; /* fd assigned to /dev/zero */
Elf32_Ehdr *ehdr; /* ELF header of ld.so */
Elf32_Phdr *phdr; /* first Phdr in file */
Elf32_Phdr *pptr; /* working Phdr */
Elf32_Phdr *lph = NULL; /* last loadable Phdr */
Elf32_Phdr *fph = NULL; /* first loadable Phdr */
caddr_t maddr; /* pointer to mapping claim */
Elf32_Off mlen; /* total mapping claim */
caddr_t faddr; /* first program mapping of ld.so */
Elf32_Off foff; /* file offset for segment mapping */
Elf32_Off flen; /* file length for segment mapping */
caddr_t addr; /* working mapping address */
caddr_t zaddr; /* /dev/zero working mapping addr */
struct stat sb; /* stat buffer for sizing */
auxv_t *ap; /* working aux pointer */
/*
* Discover things about our environment: auxiliary vector (if
* any), arguments, program name, and the like.
*/
while (ebp->eb_tag != NULL) {
switch (ebp->eb_tag) {
case EB_ARGV:
program_name = *((char **)ebp->eb_un.eb_ptr);
break;
case EB_AUXV:
for (ap = (auxv_t *)ebp->eb_un.eb_ptr;
ap->a_type != AT_NULL; ap++)
if (ap->a_type == AT_PAGESZ) {
page_size = ap->a_un.a_val;
break;
}
break;
}
ebp++;
}
/*
* If we didn't get a page size from looking in the auxiliary
* vector, we need to get one now.
*/
if (page_size == 0) {
page_size = SYSCONFIG(_CONFIG_PAGESIZE);
ebp->eb_tag = EB_PAGESIZE, (ebp++)->eb_un.eb_val =
(Elf32_Word)page_size;
}
/*
* Map in the real ld.so. Note that we're mapping it as
* an ELF database, not as a program -- we just want to walk it's
* data structures. Further mappings will actually establish the
* program in the address space.
*/
if ((ldfd = OPENAT(AT_FDCWD, LDSO, O_RDONLY)) == -1)
PANIC(program_name);
if (FSTATAT(ldfd, NULL, &sb, 0) == -1)
PANIC(program_name);
ehdr = (Elf32_Ehdr *)MMAP(0, sb.st_size, PROT_READ | PROT_EXEC,
MAP_SHARED, ldfd, 0);
if (ehdr == (Elf32_Ehdr *)-1)
PANIC(program_name);
/*
* Validate the file we're looking at, ensure it has the correct
* ELF structures, such as: ELF magic numbers, coded for SPARC,
* is a ".so", etc.
*/
if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
ehdr->e_ident[EI_MAG3] != ELFMAG3)
PANIC(program_name);
if (ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
ehdr->e_ident[EI_DATA] != ELFDATA2MSB)
PANIC(program_name);
if (ehdr->e_type != ET_DYN)
PANIC(program_name);
if ((ehdr->e_machine != EM_SPARC) &&
(ehdr->e_machine != EM_SPARC32PLUS))
PANIC(program_name);
if (ehdr->e_version > EV_CURRENT)
PANIC(program_name);
/*
* Point at program headers and start figuring out what to load.
*/
phdr = (Elf32_Phdr *)((caddr_t)ehdr + ehdr->e_phoff);
for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++,
pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize))
if (pptr->p_type == PT_LOAD) {
if (fph == 0) {
fph = pptr;
} else if (pptr->p_vaddr <= lph->p_vaddr)
PANIC(program_name);
lph = pptr;
}
/*
* We'd better have at least one loadable segment.
*/
if (fph == 0)
PANIC(program_name);
/*
* Map enough address space to hold the program (as opposed to the
* file) represented by ld.so. The amount to be assigned is the
* range between the end of the last loadable segment and the
* beginning of the first PLUS the alignment of the first segment.
* mmap() can assign us any page-aligned address, but the relocations
* assume the alignments included in the program header. As an
* optimization, however, let's assume that mmap() will actually
* give us an aligned address -- since if it does, we can save
* an munmap() later on. If it doesn't -- then go try it again.
*/
mlen = ROUND((lph->p_vaddr + lph->p_memsz) -
ALIGN(fph->p_vaddr, page_size), page_size);
maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC,
MAP_SHARED, ldfd, 0);
if (maddr == (caddr_t)-1)
PANIC(program_name);
faddr = (caddr_t)ROUND(maddr, fph->p_align);
/*
* Check to see whether alignment skew was really needed.
*/
if (faddr != maddr) {
(void) MUNMAP(maddr, mlen);
mlen = ROUND((lph->p_vaddr + lph->p_memsz) -
ALIGN(fph->p_vaddr, fph->p_align) + fph->p_align,
page_size);
maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC,
MAP_SHARED, ldfd, 0);
if (maddr == (caddr_t)-1)
PANIC(program_name);
faddr = (caddr_t)ROUND(maddr, fph->p_align);
}
/*
* We have the address space reserved, so map each loadable segment.
*/
for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++,
pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize)) {
/*
* Skip non-loadable segments or segments that don't occupy
* any memory.
*/
if ((pptr->p_type != PT_LOAD) || (pptr->p_memsz == 0))
continue;
/*
* Determine the file offset to which the mapping will
* directed (must be aligned) and how much to map (might
* be more than the file in the case of .bss.)
*/
foff = ALIGN(pptr->p_offset, page_size);
flen = pptr->p_memsz + (pptr->p_offset - foff);
/*
* Set address of this segment relative to our base.
*/
addr = (caddr_t)ALIGN(faddr + pptr->p_vaddr, page_size);
/*
* If this is the first program header, record our base
* address for later use.
*/
if (pptr == phdr) {
ebp->eb_tag = EB_LDSO_BASE;
(ebp++)->eb_un.eb_ptr = (Elf32_Addr)addr;
}
/*
* Unmap anything from the last mapping address to this
* one.
*/
if (addr - maddr) {
(void) MUNMAP(maddr, addr - maddr);
mlen -= addr - maddr;
}
/*
* Determine the mapping protection from the section
* attributes.
*/
i = 0;
if (pptr->p_flags & PF_R)
i |= PROT_READ;
if (pptr->p_flags & PF_W)
i |= PROT_WRITE;
if (pptr->p_flags & PF_X)
i |= PROT_EXEC;
if ((caddr_t)MMAP((caddr_t)addr, flen, i,
MAP_FIXED | MAP_PRIVATE, ldfd, foff) == (caddr_t)-1)
PANIC(program_name);
/*
* If the memory occupancy of the segment overflows the
* definition in the file, we need to "zero out" the
* end of the mapping we've established, and if necessary,
* map some more space from /dev/zero.
*/
if (pptr->p_memsz > pptr->p_filesz) {
foff = (uintptr_t)faddr + pptr->p_vaddr +
pptr->p_filesz;
zaddr = (caddr_t)ROUND(foff, page_size);
for (j = 0; j < (int)(zaddr - foff); j++)
*((char *)foff + j) = 0;
j = (faddr + pptr->p_vaddr + pptr->p_memsz) - zaddr;
if (j > 0) {
if (dzfd == 0) {
dzfd = OPENAT(AT_FDCWD, ZERO, O_RDWR);
if (dzfd == -1)
PANIC(program_name);
}
if ((caddr_t)MMAP((caddr_t)zaddr, j, i,
MAP_FIXED | MAP_PRIVATE, dzfd,
0) == (caddr_t)-1)
PANIC(program_name);
}
}
/*
* Update the mapping claim pointer.
*/
maddr = addr + ROUND(flen, page_size);
mlen -= maddr - addr;
}
/*
* Unmap any final reservation.
*/
if (mlen != 0)
(void) MUNMAP(maddr, mlen);
/*
* Clean up file descriptor space we've consumed. Pass along
* the /dev/zero file descriptor we got -- every cycle counts.
*/
(void) CLOSE(ldfd);
if (dzfd != 0)
ebp->eb_tag = EB_DEVZERO, (ebp++)->eb_un.eb_val = dzfd;
/*
* The call itself. Note that we start 1 instruction word in.
* The ELF ld.so contains an "entry vector" of branch instructions,
* which, for our interest are:
* +0: ba, a <normal startup>
* +4: ba, a <compatibility startup>
* +8: ba, a <alias startup>
* By starting at the alias startup, the ELF ld.so knows
* that a pointer to "eb" is available to it and further knows
* how to calculate the offset to the program's arguments and
* other structures. We do the "call" by returning to our
* bootstrap and then jumping to the address that we return.
*/
ebp->eb_tag = EB_NULL, ebp->eb_un.eb_val = 0;
return ((void *)(ehdr->e_entry + faddr + 8));
}