/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include "lint.h"
#include <sys/feature_tests.h>
/*
* setcontext() really can return, if UC_CPU is not specified.
* Make the compiler shut up about it.
*/
#if defined(__NORETURN)
#undef __NORETURN
#endif
#define __NORETURN
#include "thr_uberdata.h"
#include "asyncio.h"
#include <signal.h>
#include <siginfo.h>
#include <sys/systm.h>
/* maskable signals */
const sigset_t maskset = {MASKSET0, MASKSET1, MASKSET2, MASKSET3};
/*
* Return true if the valid signal bits in both sets are the same.
*/
int
sigequalset(const sigset_t *s1, const sigset_t *s2)
{
/*
* We only test valid signal bits, not rubbish following MAXSIG
* (for speed). Algorithm:
* if (s1 & fillset) == (s2 & fillset) then (s1 ^ s2) & fillset == 0
*/
/* see lib/libc/inc/thr_uberdata.h for why this must be true */
#if (MAXSIG > (2 * 32) && MAXSIG <= (3 * 32))
return (!((s1->__sigbits[0] ^ s2->__sigbits[0]) |
(s1->__sigbits[1] ^ s2->__sigbits[1]) |
((s1->__sigbits[2] ^ s2->__sigbits[2]) & FILLSET2)));
#else
#error "fix me: MAXSIG out of bounds"
#endif
}
/*
* Common code for calling the user-specified signal handler.
*/
void
call_user_handler(int sig, siginfo_t *sip, ucontext_t *ucp)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
struct sigaction uact;
volatile struct sigaction *sap;
/*
* If we are taking a signal while parked or about to be parked
* on __lwp_park() then remove ourself from the sleep queue so
* that we can grab locks. The code in mutex_lock_queue() and
* cond_wait_common() will detect this and deal with it when
* __lwp_park() returns.
*/
unsleep_self();
set_parking_flag(self, 0);
if (__td_event_report(self, TD_CATCHSIG, udp)) {
self->ul_td_evbuf.eventnum = TD_CATCHSIG;
self->ul_td_evbuf.eventdata = (void *)(intptr_t)sig;
tdb_event(TD_CATCHSIG, udp);
}
/*
* Get a self-consistent set of flags, handler, and mask
* while holding the sig's sig_lock for the least possible time.
* We must acquire the sig's sig_lock because some thread running
* in sigaction() might be establishing a new signal handler.
* The code in sigaction() acquires the writer lock; here
* we acquire the readers lock to ehance concurrency in the
* face of heavy signal traffic, such as generated by java.
*
* Locking exceptions:
* No locking for a child of vfork().
* If the signal is SIGPROF with an si_code of PROF_SIG,
* then we assume that this signal was generated by
* setitimer(ITIMER_REALPROF) set up by the dbx collector.
* If the signal is SIGEMT with an si_code of EMT_CPCOVF,
* then we assume that the signal was generated by
* a hardware performance counter overflow.
* In these cases, assume that we need no locking. It is the
* monitoring program's responsibility to ensure correctness.
*/
sap = &udp->siguaction[sig].sig_uaction;
if (self->ul_vfork ||
(sip != NULL &&
((sig == SIGPROF && sip->si_code == PROF_SIG) ||
(sig == SIGEMT && sip->si_code == EMT_CPCOVF)))) {
/* we wish this assignment could be atomic */
(void) memcpy(&uact, (void *)sap, sizeof (uact));
} else {
rwlock_t *rwlp = &udp->siguaction[sig].sig_lock;
lrw_rdlock(rwlp);
(void) memcpy(&uact, (void *)sap, sizeof (uact));
if ((sig == SIGCANCEL || sig == SIGAIOCANCEL) &&
(sap->sa_flags & SA_RESETHAND))
sap->sa_sigaction = SIG_DFL;
lrw_unlock(rwlp);
}
/*
* Set the proper signal mask and call the user's signal handler.
* (We overrode the user-requested signal mask with maskset
* so we currently have all blockable signals blocked.)
*
* We would like to ASSERT() that the signal is not a member of the
* signal mask at the previous level (ucp->uc_sigmask) or the specified
* signal mask for sigsuspend() or pollsys() (self->ul_tmpmask) but
* /proc can override this via PCSSIG, so we don't bother.
*
* We would also like to ASSERT() that the signal mask at the previous
* level equals self->ul_sigmask (maskset for sigsuspend() / pollsys()),
* but /proc can change the thread's signal mask via PCSHOLD, so we
* don't bother with that either.
*/
ASSERT(ucp->uc_flags & UC_SIGMASK);
if (self->ul_sigsuspend) {
ucp->uc_sigmask = self->ul_sigmask;
self->ul_sigsuspend = 0;
/* the sigsuspend() or pollsys() signal mask */
sigorset(&uact.sa_mask, &self->ul_tmpmask);
} else {
/* the signal mask at the previous level */
sigorset(&uact.sa_mask, &ucp->uc_sigmask);
}
if (!(uact.sa_flags & SA_NODEFER)) /* add current signal */
(void) sigaddset(&uact.sa_mask, sig);
self->ul_sigmask = uact.sa_mask;
self->ul_siglink = ucp;
(void) __lwp_sigmask(SIG_SETMASK, &uact.sa_mask);
/*
* If this thread has been sent SIGCANCEL from the kernel
* or from pthread_cancel(), it is being asked to exit.
* The kernel may send SIGCANCEL without a siginfo struct.
* If the SIGCANCEL is process-directed (from kill() or
* sigqueue()), treat it as an ordinary signal.
*/
if (sig == SIGCANCEL) {
if (sip == NULL || SI_FROMKERNEL(sip) ||
sip->si_code == SI_LWP) {
do_sigcancel();
goto out;
}
/* SIGCANCEL is ignored by default */
if (uact.sa_sigaction == SIG_DFL ||
uact.sa_sigaction == SIG_IGN)
goto out;
}
/*
* If this thread has been sent SIGAIOCANCEL (SIGLWP) and
* we are an aio worker thread, cancel the aio request.
*/
if (sig == SIGAIOCANCEL) {
aio_worker_t *aiowp = pthread_getspecific(_aio_key);
if (sip != NULL && sip->si_code == SI_LWP && aiowp != NULL)
siglongjmp(aiowp->work_jmp_buf, 1);
/* SIGLWP is ignored by default */
if (uact.sa_sigaction == SIG_DFL ||
uact.sa_sigaction == SIG_IGN)
goto out;
}
if (!(uact.sa_flags & SA_SIGINFO))
sip = NULL;
__sighndlr(sig, sip, ucp, uact.sa_sigaction);
#if defined(sparc) || defined(__sparc)
/*
* If this is a floating point exception and the queue
* is non-empty, pop the top entry from the queue. This
* is to maintain expected behavior.
*/
if (sig == SIGFPE && ucp->uc_mcontext.fpregs.fpu_qcnt) {
fpregset_t *fp = &ucp->uc_mcontext.fpregs;
if (--fp->fpu_qcnt > 0) {
unsigned char i;
struct _fq *fqp;
fqp = fp->fpu_q;
for (i = 0; i < fp->fpu_qcnt; i++)
fqp[i] = fqp[i+1];
}
}
#endif /* sparc */
out:
(void) setcontext(ucp);
thr_panic("call_user_handler(): setcontext() returned");
}
/*
* take_deferred_signal() is called when ul_critical and ul_sigdefer become
* zero and a deferred signal has been recorded on the current thread.
* We are out of the critical region and are ready to take a signal.
* The kernel has all signals blocked on this lwp, but our value of
* ul_sigmask is the correct signal mask for the previous context.
*
* We call __sigresend() to atomically restore the signal mask and
* cause the signal to be sent again with the remembered siginfo.
* We will not return successfully from __sigresend() until the
* application's signal handler has been run via sigacthandler().
*/
void
take_deferred_signal(int sig)
{
extern int __sigresend(int, siginfo_t *, sigset_t *);
ulwp_t *self = curthread;
siguaction_t *suap = &self->ul_uberdata->siguaction[sig];
siginfo_t *sip;
int error;
ASSERT((self->ul_critical | self->ul_sigdefer | self->ul_cursig) == 0);
/*
* If the signal handler was established with SA_RESETHAND,
* the kernel has reset the handler to SIG_DFL, so we have
* to reestablish the handler now so that it will be entered
* again when we call __sigresend(), below.
*
* Logically, we should acquire and release the signal's
* sig_lock around this operation to protect the integrity
* of the signal action while we copy it, as is done below
* in _libc_sigaction(). However, we may be on a user-level
* sleep queue at this point and lrw_wrlock(&suap->sig_lock)
* might attempt to sleep on a different sleep queue and
* that would corrupt the entire sleep queue mechanism.
*
* If we are on a sleep queue we will remove ourself from
* it in call_user_handler(), called from sigacthandler(),
* before entering the application's signal handler.
* In the meantime, we must not acquire any locks.
*/
if (suap->sig_uaction.sa_flags & SA_RESETHAND) {
struct sigaction tact = suap->sig_uaction;
tact.sa_flags &= ~SA_NODEFER;
tact.sa_sigaction = self->ul_uberdata->sigacthandler;
tact.sa_mask = maskset;
(void) __sigaction(sig, &tact, NULL);
}
if (self->ul_siginfo.si_signo == 0)
sip = NULL;
else
sip = &self->ul_siginfo;
/* EAGAIN can happen only for a pending SIGSTOP signal */
while ((error = __sigresend(sig, sip, &self->ul_sigmask)) == EAGAIN)
continue;
if (error)
thr_panic("take_deferred_signal(): __sigresend() failed");
}
void
sigacthandler(int sig, siginfo_t *sip, void *uvp)
{
ucontext_t *ucp = uvp;
ulwp_t *self = curthread;
/*
* Do this in case we took a signal while in a cancelable system call.
* It does no harm if we were not in such a system call.
*/
self->ul_sp = 0;
if (sig != SIGCANCEL)
self->ul_cancel_async = self->ul_save_async;
/*
* If this thread has performed a longjmp() from a signal handler
* back to main level some time in the past, it has left the kernel
* thinking that it is still in the signal context. We repair this
* possible damage by setting ucp->uc_link to NULL if we know that
* we are actually executing at main level (self->ul_siglink == NULL).
* See the code for setjmp()/longjmp() for more details.
*/
if (self->ul_siglink == NULL)
ucp->uc_link = NULL;
/*
* If we are not in a critical region and are
* not deferring signals, take the signal now.
*/
if ((self->ul_critical + self->ul_sigdefer) == 0) {
call_user_handler(sig, sip, ucp);
/*
* On the surface, the following call seems redundant
* because call_user_handler() cannot return. However,
* we don't want to return from here because the compiler
* might recycle our frame. We want to keep it on the
* stack to assist debuggers such as pstack in identifying
* signal frames. The call to thr_panic() serves to prevent
* tail-call optimisation here.
*/
thr_panic("sigacthandler(): call_user_handler() returned");
}
/*
* We are in a critical region or we are deferring signals. When
* we emerge from the region we will call take_deferred_signal().
*/
ASSERT(self->ul_cursig == 0);
self->ul_cursig = (char)sig;
if (sip != NULL)
(void) memcpy(&self->ul_siginfo,
sip, sizeof (siginfo_t));
else
self->ul_siginfo.si_signo = 0;
/*
* Make sure that if we return to a call to __lwp_park()
* or ___lwp_cond_wait() that it returns right away
* (giving us a spurious wakeup but not a deadlock).
*/
set_parking_flag(self, 0);
/*
* Return to the previous context with all signals blocked.
* We will restore the signal mask in take_deferred_signal().
* Note that we are calling the system call trap here, not
* the setcontext() wrapper. We don't want to change the
* thread's ul_sigmask by this operation.
*/
ucp->uc_sigmask = maskset;
(void) __setcontext(ucp);
thr_panic("sigacthandler(): __setcontext() returned");
}
#pragma weak _sigaction = sigaction
int
sigaction(int sig, const struct sigaction *nact, struct sigaction *oact)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
struct sigaction oaction;
struct sigaction tact;
struct sigaction *tactp = NULL;
int rv;
if (sig <= 0 || sig >= NSIG) {
errno = EINVAL;
return (-1);
}
if (!self->ul_vfork)
lrw_wrlock(&udp->siguaction[sig].sig_lock);
oaction = udp->siguaction[sig].sig_uaction;
if (nact != NULL) {
tact = *nact; /* make a copy so we can modify it */
tactp = &tact;
delete_reserved_signals(&tact.sa_mask);
#if !defined(_LP64)
tact.sa_resv[0] = tact.sa_resv[1] = 0; /* cleanliness */
#endif
/*
* To be compatible with the behavior of SunOS 4.x:
* If the new signal handler is SIG_IGN or SIG_DFL, do
* not change the signal's entry in the siguaction array.
* This allows a child of vfork(2) to set signal handlers
* to SIG_IGN or SIG_DFL without affecting the parent.
*
* This also covers a race condition with some thread
* setting the signal action to SIG_DFL or SIG_IGN
* when the thread has also received and deferred
* that signal. When the thread takes the deferred
* signal, even though it has set the action to SIG_DFL
* or SIG_IGN, it will execute the old signal handler
* anyway. This is an inherent signaling race condition
* and is not a bug.
*
* A child of vfork() is not allowed to change signal
* handlers to anything other than SIG_DFL or SIG_IGN.
*/
if (self->ul_vfork) {
if (tact.sa_sigaction != SIG_IGN)
tact.sa_sigaction = SIG_DFL;
} else if (sig == SIGCANCEL || sig == SIGAIOCANCEL) {
/*
* Always catch these signals.
* We need SIGCANCEL for pthread_cancel() to work.
* We need SIGAIOCANCEL for aio_cancel() to work.
*/
udp->siguaction[sig].sig_uaction = tact;
if (tact.sa_sigaction == SIG_DFL ||
tact.sa_sigaction == SIG_IGN)
tact.sa_flags = SA_SIGINFO;
else {
tact.sa_flags |= SA_SIGINFO;
tact.sa_flags &=
~(SA_NODEFER | SA_RESETHAND | SA_RESTART);
}
tact.sa_sigaction = udp->sigacthandler;
tact.sa_mask = maskset;
} else if (tact.sa_sigaction != SIG_DFL &&
tact.sa_sigaction != SIG_IGN) {
udp->siguaction[sig].sig_uaction = tact;
tact.sa_flags &= ~SA_NODEFER;
tact.sa_sigaction = udp->sigacthandler;
tact.sa_mask = maskset;
}
}
if ((rv = __sigaction(sig, tactp, oact)) != 0)
udp->siguaction[sig].sig_uaction = oaction;
else if (oact != NULL &&
oact->sa_sigaction != SIG_DFL &&
oact->sa_sigaction != SIG_IGN)
*oact = oaction;
/*
* We detect setting the disposition of SIGIO just to set the
* _sigio_enabled flag for the asynchronous i/o (aio) code.
*/
if (sig == SIGIO && rv == 0 && tactp != NULL) {
_sigio_enabled =
(tactp->sa_handler != SIG_DFL &&
tactp->sa_handler != SIG_IGN);
}
if (!self->ul_vfork)
lrw_unlock(&udp->siguaction[sig].sig_lock);
return (rv);
}
/*
* This is a private interface for the linux brand interface.
*/
void
setsigacthandler(void (*nsigacthandler)(int, siginfo_t *, void *),
void (**osigacthandler)(int, siginfo_t *, void *))
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
if (osigacthandler != NULL)
*osigacthandler = udp->sigacthandler;
udp->sigacthandler = nsigacthandler;
}
/*
* Tell the kernel to block all signals.
* Use the schedctl interface, or failing that, use __lwp_sigmask().
* This action can be rescinded only by making a system call that
* sets the signal mask:
* __lwp_sigmask(), __sigprocmask(), __setcontext(),
* __sigsuspend() or __pollsys().
* In particular, this action cannot be reversed by assigning
* scp->sc_sigblock = 0. That would be a way to lose signals.
* See the definition of restore_signals(self).
*/
void
block_all_signals(ulwp_t *self)
{
volatile sc_shared_t *scp;
enter_critical(self);
if ((scp = self->ul_schedctl) != NULL ||
(scp = setup_schedctl()) != NULL)
scp->sc_sigblock = 1;
else
(void) __lwp_sigmask(SIG_SETMASK, &maskset);
exit_critical(self);
}
/*
* setcontext() has code that forcibly restores the curthread
* pointer in a context passed to the setcontext(2) syscall.
*
* Certain processes may need to disable this feature, so these routines
* provide the mechanism to do so.
*
* (As an example, branded 32-bit x86 processes may use %gs for their own
* purposes, so they need to be able to specify a %gs value to be restored
* on return from a signal handler via the passed ucontext_t.)
*/
static int setcontext_enforcement = 1;
void
set_setcontext_enforcement(int on)
{
setcontext_enforcement = on;
}
#pragma weak _setcontext = setcontext
int
setcontext(const ucontext_t *ucp)
{
ulwp_t *self = curthread;
int ret;
ucontext_t uc;
/*
* Returning from the main context (uc_link == NULL) causes
* the thread to exit. See setcontext(2) and makecontext(3C).
*/
if (ucp == NULL)
thr_exit(NULL);
(void) memcpy(&uc, ucp, sizeof (uc));
/*
* Restore previous signal mask and context link.
*/
if (uc.uc_flags & UC_SIGMASK) {
block_all_signals(self);
delete_reserved_signals(&uc.uc_sigmask);
self->ul_sigmask = uc.uc_sigmask;
if (self->ul_cursig) {
/*
* We have a deferred signal present.
* The signal mask will be set when the
* signal is taken in take_deferred_signal().
*/
ASSERT(self->ul_critical + self->ul_sigdefer != 0);
uc.uc_flags &= ~UC_SIGMASK;
}
}
self->ul_siglink = uc.uc_link;
/*
* We don't know where this context structure has been.
* Preserve the curthread pointer, at least.
*
* Allow this feature to be disabled if a particular process
* requests it.
*/
if (setcontext_enforcement) {
#if defined(__sparc)
uc.uc_mcontext.gregs[REG_G7] = (greg_t)self;
#elif defined(__amd64)
uc.uc_mcontext.gregs[REG_FS] = (greg_t)0; /* null for fsbase */
#elif defined(__i386)
uc.uc_mcontext.gregs[GS] = (greg_t)LWPGS_SEL;
#else
#error "none of __sparc, __amd64, __i386 defined"
#endif
}
/*
* Make sure that if we return to a call to __lwp_park()
* or ___lwp_cond_wait() that it returns right away
* (giving us a spurious wakeup but not a deadlock).
*/
set_parking_flag(self, 0);
self->ul_sp = 0;
ret = __setcontext(&uc);
/*
* It is OK for setcontext() to return if the user has not specified
* UC_CPU.
*/
if (uc.uc_flags & UC_CPU)
thr_panic("setcontext(): __setcontext() returned");
return (ret);
}
#pragma weak _thr_sigsetmask = thr_sigsetmask
int
thr_sigsetmask(int how, const sigset_t *set, sigset_t *oset)
{
ulwp_t *self = curthread;
sigset_t saveset;
if (set == NULL) {
enter_critical(self);
if (oset != NULL)
*oset = self->ul_sigmask;
exit_critical(self);
} else {
switch (how) {
case SIG_BLOCK:
case SIG_UNBLOCK:
case SIG_SETMASK:
break;
default:
return (EINVAL);
}
/*
* The assignments to self->ul_sigmask must be protected from
* signals. The nuances of this code are subtle. Be careful.
*/
block_all_signals(self);
if (oset != NULL)
saveset = self->ul_sigmask;
switch (how) {
case SIG_BLOCK:
self->ul_sigmask.__sigbits[0] |= set->__sigbits[0];
self->ul_sigmask.__sigbits[1] |= set->__sigbits[1];
self->ul_sigmask.__sigbits[2] |= set->__sigbits[2];
self->ul_sigmask.__sigbits[3] |= set->__sigbits[3];
break;
case SIG_UNBLOCK:
self->ul_sigmask.__sigbits[0] &= ~set->__sigbits[0];
self->ul_sigmask.__sigbits[1] &= ~set->__sigbits[1];
self->ul_sigmask.__sigbits[2] &= ~set->__sigbits[2];
self->ul_sigmask.__sigbits[3] &= ~set->__sigbits[3];
break;
case SIG_SETMASK:
self->ul_sigmask.__sigbits[0] = set->__sigbits[0];
self->ul_sigmask.__sigbits[1] = set->__sigbits[1];
self->ul_sigmask.__sigbits[2] = set->__sigbits[2];
self->ul_sigmask.__sigbits[3] = set->__sigbits[3];
break;
}
delete_reserved_signals(&self->ul_sigmask);
if (oset != NULL)
*oset = saveset;
restore_signals(self);
}
return (0);
}
#pragma weak _pthread_sigmask = pthread_sigmask
int
pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
{
return (thr_sigsetmask(how, set, oset));
}
#pragma weak _sigprocmask = sigprocmask
int
sigprocmask(int how, const sigset_t *set, sigset_t *oset)
{
int error;
/*
* Guard against children of vfork().
*/
if (curthread->ul_vfork)
return (__sigprocmask(how, set, oset));
if ((error = thr_sigsetmask(how, set, oset)) != 0) {
errno = error;
return (-1);
}
return (0);
}
/*
* Called at library initialization to set up signal handling.
* All we really do is initialize the sig_lock rwlocks.
* All signal handlers are either SIG_DFL or SIG_IGN on exec().
* However, if any signal handlers were established on alternate
* link maps before the primary link map has been initialized,
* then inform the kernel of the new sigacthandler.
*/
void
signal_init()
{
uberdata_t *udp = curthread->ul_uberdata;
struct sigaction *sap;
struct sigaction act;
rwlock_t *rwlp;
int sig;
for (sig = 0; sig < NSIG; sig++) {
rwlp = &udp->siguaction[sig].sig_lock;
rwlp->rwlock_magic = RWL_MAGIC;
rwlp->mutex.mutex_flag = LOCK_INITED;
rwlp->mutex.mutex_magic = MUTEX_MAGIC;
sap = &udp->siguaction[sig].sig_uaction;
if (sap->sa_sigaction != SIG_DFL &&
sap->sa_sigaction != SIG_IGN &&
__sigaction(sig, NULL, &act) == 0 &&
act.sa_sigaction != SIG_DFL &&
act.sa_sigaction != SIG_IGN) {
act = *sap;
act.sa_flags &= ~SA_NODEFER;
act.sa_sigaction = udp->sigacthandler;
act.sa_mask = maskset;
(void) __sigaction(sig, &act, NULL);
}
}
}
/*
* Common code for cancelling self in _sigcancel() and pthread_cancel().
* First record the fact that a cancellation is pending.
* Then, if cancellation is disabled or if we are holding unprotected
* libc locks, just return to defer the cancellation.
* Then, if we are at a cancellation point (ul_cancelable) just
* return and let _canceloff() do the exit.
* Else exit immediately if async mode is in effect.
*/
void
do_sigcancel(void)
{
ulwp_t *self = curthread;
ASSERT(self->ul_critical == 0);
ASSERT(self->ul_sigdefer == 0);
self->ul_cancel_pending = 1;
if (self->ul_cancel_async &&
!self->ul_cancel_disabled &&
self->ul_libc_locks == 0 &&
!self->ul_cancelable)
pthread_exit(PTHREAD_CANCELED);
set_cancel_pending_flag(self, 0);
}
/*
* Set up the SIGCANCEL handler for threads cancellation,
* needed only when we have more than one thread,
* or the SIGAIOCANCEL handler for aio cancellation,
* called when aio is initialized, in __uaio_init().
*/
void
setup_cancelsig(int sig)
{
uberdata_t *udp = curthread->ul_uberdata;
rwlock_t *rwlp = &udp->siguaction[sig].sig_lock;
struct sigaction act;
ASSERT(sig == SIGCANCEL || sig == SIGAIOCANCEL);
lrw_rdlock(rwlp);
act = udp->siguaction[sig].sig_uaction;
lrw_unlock(rwlp);
if (act.sa_sigaction == SIG_DFL ||
act.sa_sigaction == SIG_IGN)
act.sa_flags = SA_SIGINFO;
else {
act.sa_flags |= SA_SIGINFO;
act.sa_flags &= ~(SA_NODEFER | SA_RESETHAND | SA_RESTART);
}
act.sa_sigaction = udp->sigacthandler;
act.sa_mask = maskset;
(void) __sigaction(sig, &act, NULL);
}