/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
* Copyright (c) 2015, Joyent, Inc. All rights reserved.
*/
/* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */
#include "lint.h"
#include "thr_uberdata.h"
#include <stdarg.h>
#include <poll.h>
#include <stropts.h>
#include <dlfcn.h>
#include <wait.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <sys/file.h>
#include <sys/door.h>
/*
* These leading-underbar symbols exist because mistakes were made
* in the past that put them into non-SUNWprivate versions of
* the libc mapfiles. They should be eliminated, but oh well...
*/
#pragma weak _fork = fork
#pragma weak _read = read
#pragma weak _write = write
#pragma weak _getmsg = getmsg
#pragma weak _getpmsg = getpmsg
#pragma weak _putmsg = putmsg
#pragma weak _putpmsg = putpmsg
#pragma weak _sleep = sleep
#pragma weak _close = close
#pragma weak _creat = creat
#pragma weak _fcntl = fcntl
#pragma weak _fsync = fsync
#pragma weak _lockf = lockf
#pragma weak _msgrcv = msgrcv
#pragma weak _msgsnd = msgsnd
#pragma weak _msync = msync
#pragma weak _open = open
#pragma weak _openat = openat
#pragma weak _pause = pause
#pragma weak _readv = readv
#pragma weak _sigpause = sigpause
#pragma weak _sigsuspend = sigsuspend
#pragma weak _tcdrain = tcdrain
#pragma weak _waitid = waitid
#pragma weak _writev = writev
#if !defined(_LP64)
#pragma weak _creat64 = creat64
#pragma weak _lockf64 = lockf64
#pragma weak _open64 = open64
#pragma weak _openat64 = openat64
#pragma weak _pread64 = pread64
#pragma weak _pwrite64 = pwrite64
#endif
/*
* These are SUNWprivate, but they are being used by Sun Studio libcollector.
*/
#pragma weak _fork1 = fork1
#pragma weak _forkall = forkall
/*
* atfork_lock protects the pthread_atfork() data structures.
*
* fork_lock does double-duty. Not only does it (and atfork_lock)
* serialize calls to fork() and forkall(), but it also serializes calls
* to thr_suspend() and thr_continue() (because fork() and forkall() also
* suspend and continue other threads and they want no competition).
*
* Functions called in dlopen()ed L10N objects can do anything, including
* call malloc() and free(). Such calls are not fork-safe when protected
* by an ordinary mutex that is acquired in libc's prefork processing
* because, with an interposed malloc library present, there would be a
* lock ordering violation due to the pthread_atfork() prefork function
* in the interposition library acquiring its malloc lock(s) before the
* ordinary mutex in libc being acquired by libc's prefork functions.
*
* Within libc, calls to malloc() and free() are fork-safe if the calls
* are made while holding no other libc locks. This covers almost all
* of libc's malloc() and free() calls. For those libc code paths, such
* as the above-mentioned L10N calls, that require serialization and that
* may call malloc() or free(), libc uses callout_lock_enter() to perform
* the serialization. This works because callout_lock is not acquired as
* part of running the pthread_atfork() prefork handlers (to avoid the
* lock ordering violation described above). Rather, it is simply
* reinitialized in postfork1_child() to cover the case that some
* now-defunct thread might have been suspended while holding it.
*/
void
fork_lock_enter(void)
{
ASSERT(curthread->ul_critical == 0);
(void) mutex_lock(&curthread->ul_uberdata->fork_lock);
}
void
fork_lock_exit(void)
{
ASSERT(curthread->ul_critical == 0);
(void) mutex_unlock(&curthread->ul_uberdata->fork_lock);
}
/*
* Use cancel_safe_mutex_lock() to protect against being cancelled while
* holding callout_lock and calling outside of libc (via L10N plugins).
* We will honor a pending cancellation request when callout_lock_exit()
* is called, by calling cancel_safe_mutex_unlock().
*/
void
callout_lock_enter(void)
{
ASSERT(curthread->ul_critical == 0);
cancel_safe_mutex_lock(&curthread->ul_uberdata->callout_lock);
}
void
callout_lock_exit(void)
{
ASSERT(curthread->ul_critical == 0);
cancel_safe_mutex_unlock(&curthread->ul_uberdata->callout_lock);
}
pid_t
forkx(int flags)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
pid_t pid;
if (self->ul_vfork) {
/*
* We are a child of vfork(); omit all of the fork
* logic and go straight to the system call trap.
* A vfork() child of a multithreaded parent
* must never call fork().
*/
if (udp->uberflags.uf_mt) {
errno = ENOTSUP;
return (-1);
}
pid = __forkx(flags);
if (pid == 0) { /* child */
udp->pid = getpid();
self->ul_vfork = 0;
}
return (pid);
}
sigoff(self);
if (self->ul_fork) {
/*
* Cannot call fork() from a fork handler.
*/
sigon(self);
errno = EDEADLK;
return (-1);
}
self->ul_fork = 1;
/*
* The functions registered by pthread_atfork() are defined by
* the application and its libraries and we must not hold any
* internal lmutex_lock()-acquired locks while invoking them.
* We hold only udp->atfork_lock to protect the atfork linkages.
* If one of these pthread_atfork() functions attempts to fork
* or to call pthread_atfork(), libc will detect the error and
* fail the call with EDEADLK. Otherwise, the pthread_atfork()
* functions are free to do anything they please (except they
* will not receive any signals).
*/
(void) mutex_lock(&udp->atfork_lock);
/*
* Posix (SUSv3) requires fork() to be async-signal-safe.
* This cannot be made to happen with fork handlers in place
* (they grab locks). To be in nominal compliance, don't run
* any fork handlers if we are called within a signal context.
* This leaves the child process in a questionable state with
* respect to its locks, but at least the parent process does
* not become deadlocked due to the calling thread attempting
* to acquire a lock that it already owns.
*/
if (self->ul_siglink == NULL)
_prefork_handler();
/*
* Block every other thread attempting thr_suspend() or thr_continue().
*/
(void) mutex_lock(&udp->fork_lock);
/*
* Block all signals.
* Just deferring them via sigoff() is not enough.
* We have to avoid taking a deferred signal in the child
* that was actually sent to the parent before __forkx().
*/
block_all_signals(self);
/*
* This suspends all threads but this one, leaving them
* suspended outside of any critical regions in the library.
* Thus, we are assured that no lmutex_lock()-acquired library
* locks are held while we invoke fork() from the current thread.
*/
suspend_fork();
pid = __forkx(flags);
if (pid == 0) { /* child */
/*
* Clear our schedctl pointer.
* Discard any deferred signal that was sent to the parent.
* Because we blocked all signals before __forkx(), a
* deferred signal cannot have been taken by the child.
*/
self->ul_schedctl_called = NULL;
self->ul_schedctl = NULL;
self->ul_cursig = 0;
self->ul_siginfo.si_signo = 0;
udp->pid = getpid();
/* reset the library's data structures to reflect one thread */
unregister_locks();
postfork1_child();
restore_signals(self);
(void) mutex_unlock(&udp->fork_lock);
if (self->ul_siglink == NULL)
_postfork_child_handler();
} else {
/* restart all threads that were suspended for fork() */
continue_fork(0);
restore_signals(self);
(void) mutex_unlock(&udp->fork_lock);
if (self->ul_siglink == NULL)
_postfork_parent_handler();
}
(void) mutex_unlock(&udp->atfork_lock);
self->ul_fork = 0;
sigon(self);
return (pid);
}
/*
* fork() is fork1() for both Posix threads and Solaris threads.
* The forkall() interface exists for applications that require
* the semantics of replicating all threads.
*/
#pragma weak fork1 = fork
pid_t
fork(void)
{
return (forkx(0));
}
/*
* Much of the logic here is the same as in forkx().
* See the comments in forkx(), above.
*/
pid_t
forkallx(int flags)
{
ulwp_t *self = curthread;
uberdata_t *udp = self->ul_uberdata;
pid_t pid;
if (self->ul_vfork) {
if (udp->uberflags.uf_mt) {
errno = ENOTSUP;
return (-1);
}
pid = __forkallx(flags);
if (pid == 0) { /* child */
udp->pid = getpid();
self->ul_vfork = 0;
}
return (pid);
}
sigoff(self);
if (self->ul_fork) {
sigon(self);
errno = EDEADLK;
return (-1);
}
self->ul_fork = 1;
(void) mutex_lock(&udp->atfork_lock);
(void) mutex_lock(&udp->fork_lock);
block_all_signals(self);
suspend_fork();
pid = __forkallx(flags);
if (pid == 0) {
self->ul_schedctl_called = NULL;
self->ul_schedctl = NULL;
self->ul_cursig = 0;
self->ul_siginfo.si_signo = 0;
udp->pid = getpid();
unregister_locks();
continue_fork(1);
} else {
continue_fork(0);
}
restore_signals(self);
(void) mutex_unlock(&udp->fork_lock);
(void) mutex_unlock(&udp->atfork_lock);
self->ul_fork = 0;
sigon(self);
return (pid);
}
pid_t
forkall(void)
{
return (forkallx(0));
}
/*
* For the implementation of cancellation at cancellation points.
*/
#define PROLOGUE \
{ \
ulwp_t *self = curthread; \
int nocancel = \
(self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \
self->ul_critical | self->ul_sigdefer); \
int abort = 0; \
if (nocancel == 0) { \
self->ul_save_async = self->ul_cancel_async; \
if (!self->ul_cancel_disabled) { \
self->ul_cancel_async = 1; \
if (self->ul_cancel_pending) \
pthread_exit(PTHREAD_CANCELED); \
} \
self->ul_sp = stkptr(); \
} else if (self->ul_cancel_pending && \
!self->ul_cancel_disabled) { \
set_cancel_eintr_flag(self); \
abort = 1; \
}
#define EPILOGUE \
if (nocancel == 0) { \
self->ul_sp = 0; \
self->ul_cancel_async = self->ul_save_async; \
} \
}
/*
* Perform the body of the action required by most of the cancelable
* function calls. The return(function_call) part is to allow the
* compiler to make the call be executed with tail recursion, which
* saves a register window on sparc and slightly (not much) improves
* the code for x86/x64 compilations.
*/
#define PERFORM(function_call) \
PROLOGUE \
if (abort) { \
*self->ul_errnop = EINTR; \
return (-1); \
} \
if (nocancel) \
return (function_call); \
rv = function_call; \
EPILOGUE \
return (rv);
/*
* Specialized prologue for sigsuspend() and pollsys().
* These system calls pass a signal mask to the kernel.
* The kernel replaces the thread's signal mask with the
* temporary mask before the thread goes to sleep. If
* a signal is received, the signal handler will execute
* with the temporary mask, as modified by the sigaction
* for the particular signal.
*
* We block all signals until we reach the kernel with the
* temporary mask. This eliminates race conditions with
* setting the signal mask while signals are being posted.
*/
#define PROLOGUE_MASK(sigmask) \
{ \
ulwp_t *self = curthread; \
int nocancel = \
(self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \
self->ul_critical | self->ul_sigdefer); \
if (!self->ul_vfork) { \
if (sigmask) { \
block_all_signals(self); \
self->ul_tmpmask = *sigmask; \
delete_reserved_signals(&self->ul_tmpmask); \
self->ul_sigsuspend = 1; \
} \
if (nocancel == 0) { \
self->ul_save_async = self->ul_cancel_async; \
if (!self->ul_cancel_disabled) { \
self->ul_cancel_async = 1; \
if (self->ul_cancel_pending) { \
if (self->ul_sigsuspend) { \
self->ul_sigsuspend = 0;\
restore_signals(self); \
} \
pthread_exit(PTHREAD_CANCELED); \
} \
} \
self->ul_sp = stkptr(); \
} \
}
/*
* If a signal is taken, we return from the system call wrapper with
* our original signal mask restored (see code in call_user_handler()).
* If not (self->ul_sigsuspend is still non-zero), we must restore our
* original signal mask ourself.
*/
#define EPILOGUE_MASK \
if (nocancel == 0) { \
self->ul_sp = 0; \
self->ul_cancel_async = self->ul_save_async; \
} \
if (self->ul_sigsuspend) { \
self->ul_sigsuspend = 0; \
restore_signals(self); \
} \
}
/*
* Cancellation prologue and epilogue functions,
* for cancellation points too complex to include here.
*/
void
_cancel_prologue(void)
{
ulwp_t *self = curthread;
self->ul_cancel_prologue =
(self->ul_vfork | self->ul_nocancel | self->ul_libc_locks |
self->ul_critical | self->ul_sigdefer) != 0;
if (self->ul_cancel_prologue == 0) {
self->ul_save_async = self->ul_cancel_async;
if (!self->ul_cancel_disabled) {
self->ul_cancel_async = 1;
if (self->ul_cancel_pending)
pthread_exit(PTHREAD_CANCELED);
}
self->ul_sp = stkptr();
} else if (self->ul_cancel_pending &&
!self->ul_cancel_disabled) {
set_cancel_eintr_flag(self);
}
}
void
_cancel_epilogue(void)
{
ulwp_t *self = curthread;
if (self->ul_cancel_prologue == 0) {
self->ul_sp = 0;
self->ul_cancel_async = self->ul_save_async;
}
}
/*
* Called from _thrp_join() (thr_join() is a cancellation point)
*/
int
lwp_wait(thread_t tid, thread_t *found)
{
int error;
PROLOGUE
if (abort)
return (EINTR);
while ((error = __lwp_wait(tid, found)) == EINTR && !cancel_active())
continue;
EPILOGUE
return (error);
}
ssize_t
read(int fd, void *buf, size_t size)
{
extern ssize_t __read(int, void *, size_t);
ssize_t rv;
PERFORM(__read(fd, buf, size))
}
ssize_t
write(int fd, const void *buf, size_t size)
{
extern ssize_t __write(int, const void *, size_t);
ssize_t rv;
PERFORM(__write(fd, buf, size))
}
int
getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
int *flagsp)
{
extern int __getmsg(int, struct strbuf *, struct strbuf *, int *);
int rv;
PERFORM(__getmsg(fd, ctlptr, dataptr, flagsp))
}
int
getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
int *bandp, int *flagsp)
{
extern int __getpmsg(int, struct strbuf *, struct strbuf *,
int *, int *);
int rv;
PERFORM(__getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
}
int
putmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags)
{
extern int __putmsg(int, const struct strbuf *,
const struct strbuf *, int);
int rv;
PERFORM(__putmsg(fd, ctlptr, dataptr, flags))
}
int
__xpg4_putmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags)
{
extern int __putmsg(int, const struct strbuf *,
const struct strbuf *, int);
int rv;
PERFORM(__putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
}
int
putpmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags)
{
extern int __putpmsg(int, const struct strbuf *,
const struct strbuf *, int, int);
int rv;
PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags))
}
int
__xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags)
{
extern int __putpmsg(int, const struct strbuf *,
const struct strbuf *, int, int);
int rv;
PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
}
int
nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
{
int error;
PROLOGUE
error = abort? EINTR : __nanosleep(rqtp, rmtp);
EPILOGUE
if (error) {
errno = error;
return (-1);
}
return (0);
}
int
clock_nanosleep(clockid_t clock_id, int flags,
const timespec_t *rqtp, timespec_t *rmtp)
{
timespec_t reltime;
hrtime_t start;
hrtime_t rqlapse;
hrtime_t lapse;
int error;
switch (clock_id) {
case CLOCK_VIRTUAL:
case CLOCK_PROCESS_CPUTIME_ID:
case CLOCK_THREAD_CPUTIME_ID:
return (ENOTSUP);
case CLOCK_REALTIME:
case CLOCK_HIGHRES:
break;
default:
return (EINVAL);
}
if (flags & TIMER_ABSTIME) {
abstime_to_reltime(clock_id, rqtp, &reltime);
rmtp = NULL;
} else {
reltime = *rqtp;
if (clock_id == CLOCK_HIGHRES)
start = gethrtime();
}
restart:
PROLOGUE
error = abort? EINTR : __nanosleep(&reltime, rmtp);
EPILOGUE
if (error == 0 && clock_id == CLOCK_HIGHRES) {
/*
* Don't return yet if we didn't really get a timeout.
* This can happen if we return because someone resets
* the system clock.
*/
if (flags & TIMER_ABSTIME) {
if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
rqtp->tv_nsec > gethrtime()) {
abstime_to_reltime(clock_id, rqtp, &reltime);
goto restart;
}
} else {
rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
rqtp->tv_nsec;
lapse = gethrtime() - start;
if (rqlapse > lapse) {
hrt2ts(rqlapse - lapse, &reltime);
goto restart;
}
}
}
if (error == 0 && clock_id == CLOCK_REALTIME &&
(flags & TIMER_ABSTIME)) {
/*
* Don't return yet just because someone reset the
* system clock. Recompute the new relative time
* and reissue the nanosleep() call if necessary.
*
* Resetting the system clock causes all sorts of
* problems and the SUSV3 standards body should
* have made the behavior of clock_nanosleep() be
* implementation-defined in such a case rather than
* being specific about honoring the new system time.
* Standards bodies are filled with fools and idiots.
*/
abstime_to_reltime(clock_id, rqtp, &reltime);
if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
goto restart;
}
return (error);
}
unsigned int
sleep(unsigned int sec)
{
unsigned int rem = 0;
timespec_t ts;
timespec_t tsr;
ts.tv_sec = (time_t)sec;
ts.tv_nsec = 0;
if (nanosleep(&ts, &tsr) == -1 && errno == EINTR) {
rem = (unsigned int)tsr.tv_sec;
if (tsr.tv_nsec >= NANOSEC / 2)
rem++;
}
return (rem);
}
int
usleep(useconds_t usec)
{
timespec_t ts;
ts.tv_sec = usec / MICROSEC;
ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
(void) nanosleep(&ts, NULL);
return (0);
}
int
close(int fildes)
{
extern void _aio_close(int);
extern int __close(int);
int rv;
/*
* If we call _aio_close() while in a critical region,
* we will draw an ASSERT() failure, so don't do it.
* No calls to close() from within libc need _aio_close();
* only the application's calls to close() need this,
* and such calls are never from a libc critical region.
*/
if (curthread->ul_critical == 0)
_aio_close(fildes);
PERFORM(__close(fildes))
}
int
door_call(int d, door_arg_t *params)
{
extern int __door_call(int, door_arg_t *);
int rv;
PERFORM(__door_call(d, params))
}
int
fcntl(int fildes, int cmd, ...)
{
extern int __fcntl(int, int, ...);
intptr_t arg;
int rv;
va_list ap;
va_start(ap, cmd);
arg = va_arg(ap, intptr_t);
va_end(ap);
if (cmd != F_SETLKW)
return (__fcntl(fildes, cmd, arg));
PERFORM(__fcntl(fildes, cmd, arg))
}
int
fdatasync(int fildes)
{
extern int __fdsync(int, int);
int rv;
PERFORM(__fdsync(fildes, FDSYNC))
}
int
fsync(int fildes)
{
extern int __fdsync(int, int);
int rv;
PERFORM(__fdsync(fildes, FSYNC))
}
int
lockf(int fildes, int function, off_t size)
{
extern int __lockf(int, int, off_t);
int rv;
PERFORM(__lockf(fildes, function, size))
}
#if !defined(_LP64)
int
lockf64(int fildes, int function, off64_t size)
{
extern int __lockf64(int, int, off64_t);
int rv;
PERFORM(__lockf64(fildes, function, size))
}
#endif /* !_LP64 */
ssize_t
msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
{
extern ssize_t __msgrcv(int, void *, size_t, long, int);
ssize_t rv;
PERFORM(__msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
}
int
msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
{
extern int __msgsnd(int, const void *, size_t, int);
int rv;
PERFORM(__msgsnd(msqid, msgp, msgsz, msgflg))
}
int
msync(caddr_t addr, size_t len, int flags)
{
extern int __msync(caddr_t, size_t, int);
int rv;
PERFORM(__msync(addr, len, flags))
}
int
openat(int fd, const char *path, int oflag, ...)
{
mode_t mode;
int rv;
va_list ap;
va_start(ap, oflag);
mode = va_arg(ap, mode_t);
va_end(ap);
PERFORM(__openat(fd, path, oflag, mode))
}
int
open(const char *path, int oflag, ...)
{
mode_t mode;
int rv;
va_list ap;
va_start(ap, oflag);
mode = va_arg(ap, mode_t);
va_end(ap);
PERFORM(__open(path, oflag, mode))
}
int
creat(const char *path, mode_t mode)
{
return (open(path, O_WRONLY | O_CREAT | O_TRUNC, mode));
}
#if !defined(_LP64)
int
openat64(int fd, const char *path, int oflag, ...)
{
mode_t mode;
int rv;
va_list ap;
va_start(ap, oflag);
mode = va_arg(ap, mode_t);
va_end(ap);
PERFORM(__openat64(fd, path, oflag, mode))
}
int
open64(const char *path, int oflag, ...)
{
mode_t mode;
int rv;
va_list ap;
va_start(ap, oflag);
mode = va_arg(ap, mode_t);
va_end(ap);
PERFORM(__open64(path, oflag, mode))
}
int
creat64(const char *path, mode_t mode)
{
return (open64(path, O_WRONLY | O_CREAT | O_TRUNC, mode));
}
#endif /* !_LP64 */
int
pause(void)
{
extern int __pause(void);
int rv;
PERFORM(__pause())
}
ssize_t
pread(int fildes, void *buf, size_t nbyte, off_t offset)
{
extern ssize_t __pread(int, void *, size_t, off_t);
ssize_t rv;
PERFORM(__pread(fildes, buf, nbyte, offset))
}
#if !defined(_LP64)
ssize_t
pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
{
extern ssize_t __pread64(int, void *, size_t, off64_t);
ssize_t rv;
PERFORM(__pread64(fildes, buf, nbyte, offset))
}
ssize_t
preadv64(int fildes, const struct iovec *iov, int iovcnt, off64_t offset)
{
extern ssize_t __preadv64(int, const struct iovec *, int, off_t, off_t);
ssize_t rv;
PERFORM(__preadv64(fildes, iov, iovcnt, offset & 0xffffffffULL,
offset>>32))
}
#endif /* !_LP64 */
ssize_t
preadv(int fildes, const struct iovec *iov, int iovcnt, off_t offset)
{
extern ssize_t __preadv(int, const struct iovec *, int, off_t, off_t);
ssize_t rv;
PERFORM(__preadv(fildes, iov, iovcnt, offset, 0))
}
ssize_t
pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
{
extern ssize_t __pwrite(int, const void *, size_t, off_t);
ssize_t rv;
PERFORM(__pwrite(fildes, buf, nbyte, offset))
}
#if !defined(_LP64)
ssize_t
pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
{
extern ssize_t __pwrite64(int, const void *, size_t, off64_t);
ssize_t rv;
PERFORM(__pwrite64(fildes, buf, nbyte, offset))
}
ssize_t
pwritev64(int fildes, const struct iovec *iov, int iovcnt, off64_t offset)
{
extern ssize_t __pwritev64(int,
const struct iovec *, int, off_t, off_t);
ssize_t rv;
PERFORM(__pwritev64(fildes, iov, iovcnt, offset &
0xffffffffULL, offset>>32))
}
#endif /* !_LP64 */
ssize_t
pwritev(int fildes, const struct iovec *iov, int iovcnt, off_t offset)
{
extern ssize_t __pwritev(int, const struct iovec *, int, off_t, off_t);
ssize_t rv;
PERFORM(__pwritev(fildes, iov, iovcnt, offset, 0))
}
ssize_t
readv(int fildes, const struct iovec *iov, int iovcnt)
{
extern ssize_t __readv(int, const struct iovec *, int);
ssize_t rv;
PERFORM(__readv(fildes, iov, iovcnt))
}
int
sigpause(int sig)
{
extern int __sigpause(int);
int rv;
PERFORM(__sigpause(sig))
}
int
sigsuspend(const sigset_t *set)
{
extern int __sigsuspend(const sigset_t *);
int rv;
PROLOGUE_MASK(set)
rv = __sigsuspend(set);
EPILOGUE_MASK
return (rv);
}
int
_pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
const sigset_t *sigmask)
{
extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
const sigset_t *);
int rv;
PROLOGUE_MASK(sigmask)
rv = __pollsys(fds, nfd, timeout, sigmask);
EPILOGUE_MASK
return (rv);
}
int
sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
{
extern int __sigtimedwait(const sigset_t *, siginfo_t *,
const timespec_t *);
siginfo_t info;
int sig;
PROLOGUE
if (abort) {
*self->ul_errnop = EINTR;
sig = -1;
} else {
sig = __sigtimedwait(set, &info, timeout);
if (sig == SIGCANCEL &&
(SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
do_sigcancel();
*self->ul_errnop = EINTR;
sig = -1;
}
}
EPILOGUE
if (sig != -1 && infop)
(void) memcpy(infop, &info, sizeof (*infop));
return (sig);
}
int
sigwait(sigset_t *set)
{
return (sigtimedwait(set, NULL, NULL));
}
int
sigwaitinfo(const sigset_t *set, siginfo_t *info)
{
return (sigtimedwait(set, info, NULL));
}
int
sigqueue(pid_t pid, int signo, const union sigval value)
{
extern int __sigqueue(pid_t pid, int signo,
/* const union sigval */ void *value, int si_code, int block);
return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
}
int
_so_accept(int sock, struct sockaddr *addr, uint_t *addrlen, int version,
int flags)
{
extern int __so_accept(int, struct sockaddr *, uint_t *, int, int);
int rv;
PERFORM(__so_accept(sock, addr, addrlen, version, flags))
}
int
_so_connect(int sock, struct sockaddr *addr, uint_t addrlen, int version)
{
extern int __so_connect(int, struct sockaddr *, uint_t, int);
int rv;
PERFORM(__so_connect(sock, addr, addrlen, version))
}
int
_so_recv(int sock, void *buf, size_t len, int flags)
{
extern int __so_recv(int, void *, size_t, int);
int rv;
PERFORM(__so_recv(sock, buf, len, flags))
}
int
_so_recvfrom(int sock, void *buf, size_t len, int flags,
struct sockaddr *addr, int *addrlen)
{
extern int __so_recvfrom(int, void *, size_t, int,
struct sockaddr *, int *);
int rv;
PERFORM(__so_recvfrom(sock, buf, len, flags, addr, addrlen))
}
int
_so_recvmsg(int sock, struct msghdr *msg, int flags)
{
extern int __so_recvmsg(int, struct msghdr *, int);
int rv;
PERFORM(__so_recvmsg(sock, msg, flags))
}
int
_so_send(int sock, const void *buf, size_t len, int flags)
{
extern int __so_send(int, const void *, size_t, int);
int rv;
PERFORM(__so_send(sock, buf, len, flags))
}
int
_so_sendmsg(int sock, const struct msghdr *msg, int flags)
{
extern int __so_sendmsg(int, const struct msghdr *, int);
int rv;
PERFORM(__so_sendmsg(sock, msg, flags))
}
int
_so_sendto(int sock, const void *buf, size_t len, int flags,
const struct sockaddr *addr, int *addrlen)
{
extern int __so_sendto(int, const void *, size_t, int,
const struct sockaddr *, int *);
int rv;
PERFORM(__so_sendto(sock, buf, len, flags, addr, addrlen))
}
int
tcdrain(int fildes)
{
extern int __tcdrain(int);
int rv;
PERFORM(__tcdrain(fildes))
}
int
waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
{
extern int __waitid(idtype_t, id_t, siginfo_t *, int);
int rv;
if (options & WNOHANG)
return (__waitid(idtype, id, infop, options));
PERFORM(__waitid(idtype, id, infop, options))
}
ssize_t
writev(int fildes, const struct iovec *iov, int iovcnt)
{
extern ssize_t __writev(int, const struct iovec *, int);
ssize_t rv;
PERFORM(__writev(fildes, iov, iovcnt))
}