/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Conversion from decimal to binary floating point
*/
#include "lint.h"
#include <stdlib.h>
#include "base_conversion.h"
/*
* Convert the integer part of a nonzero base-10^4 _big_float *pd
* to base 2^16 in **ppb. The converted value is accurate to nsig
* significant bits. On exit, *sticky is nonzero if *pd had a
* nonzero fractional part. If pd->exponent > 0 and **ppb is not
* large enough to hold the final converted value (i.e., the con-
* verted significand scaled by 10^pd->exponent), then on exit,
* *ppb will point to a newly allocated _big_float, which must be
* freed by the caller. (The number of significant bits we need
* should fit in pb, but __big_float_times_power may allocate new
* storage anyway because the exact product could require more than
* 16000 bits.)
*
* This routine does not check that **ppb is large enough to hold
* the result of converting the significand of *pd.
*/
static void
__big_decimal_to_big_binary(_big_float *pd, int nsig, _big_float **ppb,
int *sticky)
{
_big_float *pb;
int i, j, len, s;
unsigned int carry;
pb = *ppb;
/* convert pd a digit at a time, most significant first */
if (pd->bexponent + ((pd->blength - 1) << 2) >= 0) {
pb->bsignificand[0] = pd->bsignificand[pd->blength - 1];
len = 1;
for (i = pd->blength - 2; i >= 0 &&
pd->bexponent + (i << 2) >= 0; i--) {
/* multiply pb by 10^4 and add next digit */
carry = pd->bsignificand[i];
for (j = 0; j < len; j++) {
carry += (unsigned int)pb->bsignificand[j]
* 10000;
pb->bsignificand[j] = carry & 0xffff;
carry >>= 16;
}
if (carry)
pb->bsignificand[j++] = carry;
len = j;
}
} else {
i = pd->blength - 1;
len = 0;
}
/* convert any partial digit */
if (i >= 0 && pd->bexponent + (i << 2) > -4) {
s = pd->bexponent + (i << 2) + 4;
/* multiply pb by 10^s and add partial digit */
carry = pd->bsignificand[i];
if (s == 1) {
s = carry % 1000;
carry = carry / 1000;
for (j = 0; j < len; j++) {
carry += (unsigned int)pb->bsignificand[j]
* 10;
pb->bsignificand[j] = carry & 0xffff;
carry >>= 16;
}
} else if (s == 2) {
s = carry % 100;
carry = carry / 100;
for (j = 0; j < len; j++) {
carry += (unsigned int)pb->bsignificand[j]
* 100;
pb->bsignificand[j] = carry & 0xffff;
carry >>= 16;
}
} else {
s = carry % 10;
carry = carry / 10;
for (j = 0; j < len; j++) {
carry += (unsigned int)pb->bsignificand[j]
* 1000;
pb->bsignificand[j] = carry & 0xffff;
carry >>= 16;
}
}
if (carry)
pb->bsignificand[j++] = carry;
len = j;
i--;
} else {
s = 0;
}
pb->blength = len;
pb->bexponent = 0;
/* continue accumulating sticky flag */
while (i >= 0)
s |= pd->bsignificand[i--];
*sticky = s;
if (pd->bexponent > 0) {
/* scale pb by 10^pd->exponent */
__big_float_times_power(pb, 10, pd->bexponent, nsig, ppb);
}
}
/*
* Convert the decimal_record *pd to an unpacked datum *px accurately
* enough that *px can be rounded correctly to sigbits significant bits.
* (We may assume sigbits <= 113.)
*/
static void
__decimal_to_unpacked(unpacked *px, decimal_record *pd, int sigbits)
{
_big_float d, b, *pbd, *pbb;
char *ds;
int ids, i, ix, exp, ndigs;
int sticky, powtwo, sigdigits;
px->sign = pd->sign;
px->fpclass = pd->fpclass;
ds = pd->ds;
ndigs = pd->ndigits;
exp = pd->exponent;
/* remove trailing zeroes */
while (ndigs > 0 && ds[ndigs - 1] == '0') {
exp++;
ndigs--;
}
if (ndigs < 1) {
/* nothing left */
px->fpclass = fp_zero;
return;
}
/* convert remaining digits to a base-10^4 _big_float */
d.bsize = _BIG_FLOAT_SIZE;
d.bexponent = exp;
d.blength = (ndigs + 3) >> 2;
i = d.blength - 1;
ids = ndigs - (d.blength << 2);
switch (ids) {
case -1:
d.bsignificand[i] = 100 * ds[ids + 1] +
10 * ds[ids + 2] + ds[ids + 3] - 111 * '0';
i--;
ids += 4;
break;
case -2:
d.bsignificand[i] = 10 * ds[ids + 2] + ds[ids + 3] - 11 * '0';
i--;
ids += 4;
break;
case -3:
d.bsignificand[i] = ds[ids + 3] - '0';
i--;
ids += 4;
break;
}
while (i >= 0) {
d.bsignificand[i] = 1000 * ds[ids] + 100 * ds[ids + 1] +
10 * ds[ids + 2] + ds[ids + 3] - 1111 * '0';
i--;
ids += 4;
}
pbd = &d;
powtwo = 0;
/* pre-scale to get the bits we want into the integer part */
if (exp < 0) {
/* i is a lower bound on log10(x) */
i = exp + ndigs - 1;
if (i <= 0 || ((i * 217705) >> 16) < sigbits + 2) {
/*
* Scale by 2^(sigbits + 2 + u) where
* u is an upper bound on -log2(x).
*/
powtwo = sigbits + 2;
if (i < 0)
powtwo += ((-i * 217706) + 65535) >> 16;
else if (i > 0)
powtwo -= (i * 217705) >> 16;
/*
* Take sigdigits large enough to get
* all integral digits correct.
*/
sigdigits = i + 1 + (((powtwo * 19729) + 65535) >> 16);
__big_float_times_power(&d, 2, powtwo, sigdigits, &pbd);
}
}
/* convert to base 2^16 */
b.bsize = _BIG_FLOAT_SIZE;
pbb = &b;
__big_decimal_to_big_binary(pbd, sigbits + 2, &pbb, &sticky);
/* adjust pbb->bexponent based on the scale factor above */
pbb->bexponent -= powtwo;
/* convert to unpacked */
ix = 0;
for (i = pbb->blength - 1; i > 0 && ix < 5; i -= 2) {
px->significand[ix++] = (pbb->bsignificand[i] << 16) |
pbb->bsignificand[i - 1];
}
if (ix < 5) {
/* pad with zeroes */
if (i == 0)
px->significand[ix++] = pbb->bsignificand[i] << 16;
while (ix < 5)
px->significand[ix++] = 0;
} else {
/* truncate and set a sticky bit if necessary */
while (i >= 0 && pbb->bsignificand[i] == 0)
i--;
if (i >= 0)
px->significand[4] |= 1;
}
if (sticky | pd->more)
px->significand[4] |= 1;
px->exponent = pbb->bexponent + (pbb->blength << 4) - 1;
/* normalize so the most significant bit is set */
while (px->significand[0] < 0x80000000u) {
px->significand[0] = (px->significand[0] << 1) |
(px->significand[1] >> 31);
px->significand[1] = (px->significand[1] << 1) |
(px->significand[2] >> 31);
px->significand[2] = (px->significand[2] << 1) |
(px->significand[3] >> 31);
px->significand[3] = (px->significand[3] << 1) |
(px->significand[4] >> 31);
px->significand[4] <<= 1;
px->exponent--;
}
if (pbd != &d)
(void) free((void *)pbd);
if (pbb != &b)
(void) free((void *)pbb);
}
/*
* Convert a string s consisting of n <= 18 ASCII decimal digits
* to an integer value in double precision format, and set *pe
* to the number of rounding errors incurred (0 or 1).
*/
static double
__digits_to_double(char *s, int n, int *pe)
{
int i, acc;
double t, th, tl;
if (n <= 9) {
acc = s[0] - '0';
for (i = 1; i < n; i++) {
/* acc <- 10 * acc + next digit */
acc = (acc << 1) + (acc << 3) + s[i] - '0';
}
t = (double)acc;
*pe = 0;
} else {
acc = s[0] - '0';
for (i = 1; i < (n - 9); i++) {
/* acc <- 10 * acc + next digit */
acc = (acc << 1) + (acc << 3) + s[i] - '0';
}
th = 1.0e9 * (double)acc; /* this will be exact */
acc = s[n - 9] - '0';
for (i = n - 8; i < n; i++) {
/* acc <- 10 * acc + next digit */
acc = (acc << 1) + (acc << 3) + s[i] - '0';
}
tl = (double)acc;
/* add and indicate whether or not the sum is exact */
t = th + tl;
*pe = ((t - th) == tl)? 0 : 1;
}
return (t);
}
static union {
int i[2];
double d;
} C[] = {
#ifdef _LITTLE_ENDIAN
{ 0x00000000, 0x3cc40000 },
#else
{ 0x3cc40000, 0x00000000 }, /* 5 * 2^-53 */
#endif
};
#define five2m53 C[0].d
static int
__fast_decimal_to_single(single *px, decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps)
{
double dds, delta, ddsplus, ddsminus, df1;
int n, exp, rounded, e;
float f1, f2;
__ieee_flags_type fb;
if (pm->rd != fp_nearest)
return (0);
exp = pd->exponent;
if (pd->ndigits <= 18) {
rounded = 0;
n = pd->ndigits;
} else {
rounded = 1;
n = 18;
exp += pd->ndigits - 18;
}
/*
* exp must be in the range of the table, and the result
* must not underflow or overflow.
*/
if (exp < -__TBL_TENS_MAX || exp + n < -36 || exp + n > 38)
return (0);
__get_ieee_flags(&fb);
dds = __digits_to_double(pd->ds, n, &e);
if (e != 0)
rounded = 1;
if (exp > 0) {
/* small positive exponent */
if (exp > __TBL_TENS_EXACT)
rounded = 1;
if (rounded) {
dds *= __tbl_tens[exp];
} else {
dds = __mul_set(dds, __tbl_tens[exp], &e);
if (e)
rounded = 1;
}
} else if (exp < 0) {
/* small negative exponent */
if (-exp > __TBL_TENS_EXACT)
rounded = 1;
if (rounded) {
dds /= __tbl_tens[-exp];
} else {
dds = __div_set(dds, __tbl_tens[-exp], &e);
if (e)
rounded = 1;
}
}
/*
* At this point dds may have four rounding errors due to
* (i) truncation of pd->ds to 18 digits, (ii) inexact con-
* version of pd->ds to binary, (iii) scaling by a power of
* ten that is not exactly representable, and (iv) roundoff
* error in the multiplication. Below we will incur one more
* rounding error when we add or subtract delta and dds. We
* construct delta so that even after this last rounding error,
* ddsplus is an upper bound on the exact value and ddsminus
* is a lower bound. Then as long as both of these quantities
* round to the same single precision number, that number
* will be the correctly rounded single precision result.
* (If any rounding errors have been committed, then we must
* also be certain that the result can't be exact.)
*/
delta = five2m53 * dds;
ddsplus = dds + delta;
ddsminus = dds - delta;
f1 = (float)(ddsplus);
f2 = (float)(ddsminus);
df1 = f1;
__set_ieee_flags(&fb);
if (f1 != f2)
return (0);
if (rounded) {
/*
* If ddsminus <= f1 <= ddsplus, the result might be
* exact; we have to convert the long way to be sure.
*/
if (ddsminus <= df1 && df1 <= ddsplus)
return (0);
*ps = (1 << fp_inexact);
} else {
*ps = (df1 == dds)? 0 : (1 << fp_inexact);
}
*px = (pd->sign)? -f1 : f1;
return (1);
}
/*
* Attempt conversion to double using floating-point arithmetic.
* Return 1 if it works (at most one rounding error), 0 if it doesn't.
*/
static int
__fast_decimal_to_double(double *px, decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps)
{
double dds;
int e;
__ieee_flags_type fb;
if (pm->rd != fp_nearest || pd->ndigits > 18 || pd->exponent
> __TBL_TENS_EXACT || pd->exponent < -__TBL_TENS_EXACT)
return (0);
__get_ieee_flags(&fb);
dds = __digits_to_double(pd->ds, pd->ndigits, &e);
if (e != 0) {
__set_ieee_flags(&fb);
return (0);
}
if (pd->exponent > 0)
dds = __mul_set(dds, __tbl_tens[pd->exponent], &e);
else if (pd->exponent < 0)
dds = __div_set(dds, __tbl_tens[-pd->exponent], &e);
*px = (pd->sign)? -dds : dds;
*ps = (e)? (1 << fp_inexact) : 0;
__set_ieee_flags(&fb);
return (1);
}
/* PUBLIC FUNCTIONS */
/*
* The following routines convert the decimal record *pd to a floating
* point value *px observing the rounding mode specified in pm->rd and
* passing back any floating point exceptions that occur in *ps.
*
* pd->sign and pd->fpclass are always taken into account. pd->exponent
* and pd->ds are used when pd->fpclass is fp_normal or fp_subnormal.
* In these cases, pd->ds must contain a null-terminated string of one
* or more ASCII digits, the first of which is not zero, and pd->ndigits
* must equal the length of this string. If m is the integer represented
* by the string pd->ds, then *px will be set to a correctly rounded
* approximation to
*
* -1**(pd->sign) * m * 10**(pd->exponent)
*
* (If pd->more != 0 then additional nonzero digits are assumed to follow
* those in pd->ds, so m is effectively replaced by m + epsilon in the
* expression above.)
*
* For example, if pd->exponent == -2 and pd->ds holds "1234", then *px
* will be a correctly rounded approximation to 12.34.
*
* Note that the only mode that matters is the rounding direction pm->rd;
* pm->df and pm->ndigits are never used.
*/
/* maximum decimal exponent we need to consider */
#define SINGLE_MAXE 47
#define DOUBLE_MAXE 326
#define EXTENDED_MAXE 4968
#define QUAD_MAXE 4968
void
decimal_to_single(single *px, decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps)
{
single_equivalence *kluge;
unpacked u;
fp_exception_field_type ef;
int i;
/* special values */
kluge = (single_equivalence *)px;
switch (pd->fpclass) {
case fp_zero:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0;
kluge->f.msw.significand = 0;
*ps = 0;
return;
case fp_infinity:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0xff;
kluge->f.msw.significand = 0;
*ps = 0;
return;
case fp_quiet:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0xff;
kluge->f.msw.significand = 0x7fffff;
*ps = 0;
return;
case fp_signaling:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0xff;
kluge->f.msw.significand = 0x3fffff;
*ps = 0;
return;
}
/* numeric values */
ef = 0;
if (pd->exponent + pd->ndigits > SINGLE_MAXE) {
/* result must overflow */
u.sign = (pd->sign != 0);
u.fpclass = fp_normal;
u.exponent = 0x000fffff;
u.significand[0] = 0x80000000;
for (i = 1; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else if (pd->exponent + pd->ndigits < -SINGLE_MAXE) {
/* result must underflow completely */
u.sign = (pd->sign != 0);
u.fpclass = fp_normal;
u.exponent = -0x000fffff;
u.significand[0] = 0x80000000;
for (i = 1; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else {
/* result may be in range */
if (__fast_decimal_to_single(px, pm, pd, &ef) == 1) {
*ps = ef;
if (ef != 0)
__base_conversion_set_exception(ef);
return;
}
__decimal_to_unpacked(&u, pd, 24);
}
__pack_single(&u, px, pm->rd, &ef);
*ps = ef;
if (ef != 0)
__base_conversion_set_exception(ef);
}
void
decimal_to_double(double *px, decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps)
{
double_equivalence *kluge;
unpacked u;
fp_exception_field_type ef;
int i;
/* special values */
kluge = (double_equivalence *)px;
switch (pd->fpclass) {
case fp_zero:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0;
kluge->f.msw.significand = 0;
kluge->f.significand2 = 0;
*ps = 0;
return;
case fp_infinity:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0x7ff;
kluge->f.msw.significand = 0;
kluge->f.significand2 = 0;
*ps = 0;
return;
case fp_quiet:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0x7ff;
kluge->f.msw.significand = 0xfffff;
kluge->f.significand2 = 0xffffffff;
*ps = 0;
return;
case fp_signaling:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0x7ff;
kluge->f.msw.significand = 0x7ffff;
kluge->f.significand2 = 0xffffffff;
*ps = 0;
return;
}
/* numeric values */
ef = 0;
if (pd->exponent + pd->ndigits > DOUBLE_MAXE) {
/* result must overflow */
u.sign = (pd->sign != 0);
u.fpclass = fp_normal;
u.exponent = 0x000fffff;
u.significand[0] = 0x80000000;
for (i = 1; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else if (pd->exponent + pd->ndigits < -DOUBLE_MAXE) {
/* result must underflow completely */
u.sign = (pd->sign != 0);
u.fpclass = fp_normal;
u.exponent = -0x000fffff;
u.significand[0] = 0x80000000;
for (i = 1; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else {
/* result may be in range */
if (__fast_decimal_to_double(px, pm, pd, &ef) == 1) {
*ps = ef;
if (ef != 0)
__base_conversion_set_exception(ef);
return;
}
__decimal_to_unpacked(&u, pd, 53);
}
__pack_double(&u, px, pm->rd, &ef);
*ps = ef;
if (ef != 0)
__base_conversion_set_exception(ef);
}
void
decimal_to_extended(extended *px, decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps)
{
extended_equivalence *kluge;
unpacked u;
double_equivalence dd;
fp_exception_field_type ef;
int i;
/* special values */
kluge = (extended_equivalence *)px;
switch (pd->fpclass) {
case fp_zero:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0;
kluge->f.significand = 0;
kluge->f.significand2 = 0;
*ps = 0;
return;
case fp_infinity:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0x7fff;
kluge->f.significand = 0x80000000;
kluge->f.significand2 = 0;
*ps = 0;
return;
case fp_quiet:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0x7fff;
kluge->f.significand = 0xffffffff;
kluge->f.significand2 = 0xffffffff;
*ps = 0;
return;
case fp_signaling:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0x7fff;
kluge->f.significand = 0xbfffffff;
kluge->f.significand2 = 0xffffffff;
*ps = 0;
return;
}
/* numeric values */
ef = 0;
if (pd->exponent + pd->ndigits > EXTENDED_MAXE) {
/* result must overflow */
u.sign = (pd->sign != 0);
u.fpclass = fp_normal;
u.exponent = 0x000fffff;
u.significand[0] = 0x80000000;
for (i = 1; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else if (pd->exponent + pd->ndigits < -EXTENDED_MAXE) {
/* result must underflow completely */
u.sign = (pd->sign != 0);
u.fpclass = fp_normal;
u.exponent = -0x000fffff;
u.significand[0] = 0x80000000;
for (i = 1; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else {
/* result may be in range */
if (__fast_decimal_to_double(&dd.x, pm, pd, &ef) == 1 &&
ef == 0) {
u.sign = dd.f.msw.sign;
u.fpclass = fp_normal;
u.exponent = dd.f.msw.exponent - DOUBLE_BIAS;
u.significand[0] = ((0x100000 |
dd.f.msw.significand) << 11) |
(dd.f.significand2 >> 21);
u.significand[1] = dd.f.significand2 << 11;
for (i = 2; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else {
__decimal_to_unpacked(&u, pd, 64);
}
}
__pack_extended(&u, px, pm->rd, &ef);
*ps = ef;
if (ef != 0)
__base_conversion_set_exception(ef);
}
void
decimal_to_quadruple(quadruple *px, decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps)
{
quadruple_equivalence *kluge;
unpacked u;
double_equivalence dd;
fp_exception_field_type ef;
int i;
/* special values */
kluge = (quadruple_equivalence *)px;
switch (pd->fpclass) {
case fp_zero:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0;
kluge->f.msw.significand = 0;
kluge->f.significand2 = 0;
kluge->f.significand3 = 0;
kluge->f.significand4 = 0;
*ps = 0;
return;
case fp_infinity:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0x7fff;
kluge->f.msw.significand = 0;
kluge->f.significand2 = 0;
kluge->f.significand3 = 0;
kluge->f.significand4 = 0;
*ps = 0;
return;
case fp_quiet:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0x7fff;
kluge->f.msw.significand = 0xffff;
kluge->f.significand2 = 0xffffffff;
kluge->f.significand3 = 0xffffffff;
kluge->f.significand4 = 0xffffffff;
*ps = 0;
return;
case fp_signaling:
kluge->f.msw.sign = (pd->sign)? 1 : 0;
kluge->f.msw.exponent = 0x7fff;
kluge->f.msw.significand = 0x7fff;
kluge->f.significand2 = 0xffffffff;
kluge->f.significand3 = 0xffffffff;
kluge->f.significand4 = 0xffffffff;
*ps = 0;
return;
}
/* numeric values */
ef = 0;
if (pd->exponent + pd->ndigits > QUAD_MAXE) {
/* result must overflow */
u.sign = (pd->sign != 0);
u.fpclass = fp_normal;
u.exponent = 0x000fffff;
u.significand[0] = 0x80000000;
for (i = 1; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else if (pd->exponent + pd->ndigits < -QUAD_MAXE) {
/* result must underflow completely */
u.sign = (pd->sign != 0);
u.fpclass = fp_normal;
u.exponent = -0x000fffff;
u.significand[0] = 0x80000000;
for (i = 1; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else {
/* result may be in range */
if (__fast_decimal_to_double(&dd.x, pm, pd, &ef) == 1 &&
ef == 0) {
u.sign = dd.f.msw.sign;
u.fpclass = fp_normal;
u.exponent = dd.f.msw.exponent - DOUBLE_BIAS;
u.significand[0] = ((0x100000 |
dd.f.msw.significand) << 11) |
(dd.f.significand2 >> 21);
u.significand[1] = dd.f.significand2 << 11;
for (i = 2; i < UNPACKED_SIZE; i++)
u.significand[i] = 0;
} else {
__decimal_to_unpacked(&u, pd, 113);
}
}
__pack_quadruple(&u, px, pm->rd, &ef);
*ps = ef;
if (ef != 0)
__base_conversion_set_exception(ef);
}