/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* _X_cplx_div_rx(a, w) returns a / w with infinities handled
* according to C99.
*
* If a and w are both finite and w is nonzero, _X_cplx_div_rx de-
* livers the complex quotient q according to the usual formula: let
* c = Re(w), and d = Im(w); then q = x + I * y where x = (a * c) / r
* and y = (-a * d) / r with r = c * c + d * d. This implementation
* scales to avoid premature underflow or overflow.
*
* If a is neither NaN nor zero and w is zero, or if a is infinite
* and w is finite and nonzero, _X_cplx_div_rx delivers an infinite
* result. If a is finite and w is infinite, _X_cplx_div_rx delivers
* a zero result.
*
* If a and w are both zero or both infinite, or if either a or w is
* NaN, _X_cplx_div_rx delivers NaN + I * NaN. C99 doesn't specify
* these cases.
*
* This implementation can raise spurious underflow, overflow, in-
* valid operation, inexact, and division-by-zero exceptions. C99
* allows this.
*/
#if !defined(i386) && !defined(__i386) && !defined(__amd64)
#error This code is for x86 only
#endif
/*
* scl[i].e = 2^(4080*(4-i)) for i = 0, ..., 9
*/
static const union {
unsigned int i[3];
long double e;
} scl[9] = {
{ 0, 0x80000000, 0x7fbf },
{ 0, 0x80000000, 0x6fcf },
{ 0, 0x80000000, 0x5fdf },
{ 0, 0x80000000, 0x4fef },
{ 0, 0x80000000, 0x3fff },
{ 0, 0x80000000, 0x300f },
{ 0, 0x80000000, 0x201f },
{ 0, 0x80000000, 0x102f },
{ 0, 0x80000000, 0x003f }
};
/*
* Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
*/
static int
testinfl(long double x)
{
union {
int i[3];
long double e;
} xx;
xx.e = x;
if ((xx.i[2] & 0x7fff) != 0x7fff || ((xx.i[1] << 1) | xx.i[0]) != 0)
return (0);
return (1 | ((xx.i[2] << 16) >> 31));
}
long double _Complex
_X_cplx_div_rx(long double a, long double _Complex w)
{
long double _Complex v;
union {
int i[3];
long double e;
} aa, cc, dd;
long double c, d, sc, sd, r;
int ea, ec, ed, ew, i, j;
/*
* The following is equivalent to
*
* c = creall(*w); d = cimagl(*w);
*/
c = ((long double *)&w)[0];
d = ((long double *)&w)[1];
/* extract exponents to estimate |z| and |w| */
aa.e = a;
ea = aa.i[2] & 0x7fff;
cc.e = c;
dd.e = d;
ec = cc.i[2] & 0x7fff;
ed = dd.i[2] & 0x7fff;
ew = (ec > ed)? ec : ed;
/* check for special cases */
if (ew >= 0x7fff) { /* w is inf or nan */
i = testinfl(c);
j = testinfl(d);
if (i | j) { /* w is infinite */
c = ((cc.i[2] << 16) < 0)? -0.0f : 0.0f;
d = ((dd.i[2] << 16) < 0)? -0.0f : 0.0f;
} else /* w is nan */
a += c + d;
((long double *)&v)[0] = a * c;
((long double *)&v)[1] = -a * d;
return (v);
}
if (ew == 0 && (cc.i[1] | cc.i[0] | dd.i[1] | dd.i[0]) == 0) {
/* w is zero; multiply a by 1/Re(w) - I * Im(w) */
c = 1.0f / c;
i = testinfl(a);
if (i) { /* a is infinite */
a = i;
}
((long double *)&v)[0] = a * c;
((long double *)&v)[1] = (a == 0.0f)? a * c : -a * d;
return (v);
}
if (ea >= 0x7fff) { /* a is inf or nan */
((long double *)&v)[0] = a * c;
((long double *)&v)[1] = -a * d;
return (v);
}
/*
* Compute the real and imaginary parts of the quotient,
* scaling to avoid overflow or underflow.
*/
ew = (ew - 0x3800) >> 12;
sc = c * scl[ew + 4].e;
sd = d * scl[ew + 4].e;
r = sc * sc + sd * sd;
ea = (ea - 0x3800) >> 12;
a = (a * scl[ea + 4].e) / r;
ea -= (ew + ew);
ec = (ec - 0x3800) >> 12;
c = (c * scl[ec + 4].e) * a;
ec += ea;
ed = (ed - 0x3800) >> 12;
d = -(d * scl[ed + 4].e) * a;
ed += ea;
/* compensate for scaling */
sc = scl[3].e; /* 2^4080 */
if (ec < 0) {
ec = -ec;
sc = scl[5].e; /* 2^-4080 */
}
while (ec--)
c *= sc;
sd = scl[3].e;
if (ed < 0) {
ed = -ed;
sd = scl[5].e;
}
while (ed--)
d *= sd;
((long double *)&v)[0] = c;
((long double *)&v)[1] = d;
return (v);
}